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ON THE HOMOTOPY GROUPS OF THE UNION OF SPHERES

P. J. HlLTONf.

1. Introduction.

Let 8( be a sphere of dimension r,+ l, rt^ 1, i = 1, ..., h, and let T
be the union of the spheres Sv ..., Sk, with a single common point. Then
T serves as a universal example for homotopy constructions (see [1]). The
object of this paper is to compute the group irn{T), n > 1, as a direct sum
of homotopy groups of spheres of appropriate dimensions^:. Each
summand is embedded in TTn{T) by a certain multiple Whitehead product;
the products which appear will be called basic products and will now be
defined.

Let TQ = SUi v SU2 v... v SUm, where 1 < % < u2 < ... < um < k. Then
the injection 7rn(T0)->Trn(T) embeds 7rn(T0) univalently as a direct
summand unrn(T). We will identify elements of 7rn(To) with their images
in 7rn(T), and an element in the image of 7rn(T0) will be said to involve
the spheres SUi, ..., 8Um. With these conventions, we define and order
the basic products as follows.

The basic products § of weight 1 are the elements tl3 ..., t,k, where
li < h < ••• < Lk> Li being the positive generator of 7rr.+1 (#,•), i = 1, ..., k.
Now suppose the basic products of weight < w defined and ordered. Then
a basic product of weight w > 1 is a Whitehead product [a, 6], where a
is a basic product of weight u, b is a basic product of weight v, u-\-v = w,
a<b, and if b is defined as the Whitehead product, [c, d], of the basic
products c, d, then c ̂  a. The basic products of weight w are then ordered
arbitrarily among themselves and are greater than any product of lesser
weight.

It will be seen that a basic product of weight w is a string of symbols
iVi...iVw, suitably bracketed, where l^v^k, j=l, ..., w. Suppose
i,- occurs wi times in this string. Then we will say that the basic product
involves the sphere S{ wi times, and the height of the basic product is

k
defined as S r\,«;,..

t=i

t Received 29 May, 1954; read 17 June, 1954.
| T is, of course, simply-connected, but it is convenient to regard the trivial case

n = 1 as excluded from the discussion. Thus all homotopy groups discussed in this paper
are of dimension n > 1.

§ It is convenient for this definition to think of i, as a Whitehead product of minimum
weight.

The definition of the basic products imitates P. Hall's definition of basic commutators
(see §3 of this paper), with a minor modification which is unimportant algebraically, but
which ensures that [»lf i2] and not [i2, <x] is a basic product. This appears to be natural
in many applications of Theorem A (see §6 of this paper).
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ON THE HOMOTOPY GROUPS OF THE UNION OF SPHERES. 155

Let the basic products be written px, p2, ..., ps, ..., and let the height
of ps be qs. Then the main theorem may be expressed as

0

THEOREM A. 7rn(T) = S irn(S
Qi+1), where the direct summand 7Tn(S

9i+1)

is embedded in rrn(T) by composition with the basic product Pi&Tq+i{T).
Note that, for each n, there are only finitely many non-zero terms

on the right-hand side, since the sequence {qt} tends to infinity. Clearly
there is considerable choice in defining the basic products. However,
according to a theorem due to E. Witt (see [11]), the number of basic
products of weight w, involving the spheres S{ w{ times, i = 1, ..., k, is

s
w d\Wi {w1/d)\...(wk/d)\>

where yt,{d) is the Mobius inversion function. Each such basic product
gives rise to a term 7Tn(S

Q+1) in the direct sum decomposition of 7Tn(T),
k

where q = 2 r,-w,-. Thus the number of occurrences of the term 7rn(S
Q+1)

i=i

on the right-hand side in Theorem A does not depend on the particular
choice of basic products and a different choice would lead at most to a
rearrangement of the summands and a change of embedding isomorphism.

Consider the case T= S1 vS2 v83. The basic products of weight 1 are
*i> *2> l3> those of weight 2 are [tl5 i2], [il5 i3], [t2, 63]; those of weight 3 are

[l3> [li> l3]J' [l3> [l2; l3]J- I* ^ 1 b e observed that ul 5 [t2, t3]J is not a

basic product. It can therefore be expanded as a linear combination of

terms involving basic products, and it is almost immediate that [tl5 [i2, i3]J

is a linear combination of L2, [il3 i3]J and [t3, [t1} i2]J- In fact, we deducef

THEOREM B. Let <X.STTP{X), peirq{X), yeiTr(X). Then the " Jacobi
identity "holds:

] j a ] + (_l)2r[[yja]ji8] + (_l)rp[[a3ig]jy] = 0.

We also deduce the " relative Jacobi identity ". Further applications
of Theorem A are given in the final section.

The author wishes to acknowledge the decisive contributions made by
J.-P. Serre and J. A. Green; the fundamental idea in the proof of
Theorem A is due to Serre, and the necessary extension of the algebraic
method is due essentially to Green. The author is also grateful to J. C.
Moore for his kind assistance.

f This theorem has also been proved by Hurewicz, G. W. Whitehead, Nakaoka, Toda,
Uehara and probably others.

D
ow

nloaded from
 https://academ

ic.oup.com
/jlm

s/article-abstract/s1-30/2/154/830283 by N
ew

 York U
niversity user on 29 April 2019



156 P. J. HILTON

2. Two topological lemmas.

Let X be a path-connected space, and let Q be the space of loops on X.
Let 77 be the natural isomorphism 7]:TTP+1(X)~7TP(CI), let h be the
Hurewicz homomorphism h:irp(Q)->Hp(Q,) and let

Now the composition of loops in Q, gives it the structure of an #-space
and induces a Pontryagin multiplication into the homology classes of Q..
We write this multiplication as £. f eHp+a(Q.), geHp(Q.)} £'eHg(Q), or
sometimes just as £f'.

Let Q, be the space of loops on T and let e,- = pi{) ii&irr.+i(T), e,e#r.(Q),
i = l, ..., k. Then Bott and Samelson have proved (see [2])

LEMMA 2 .1 . The Pontryagin homology ring of Q, the space of loops
on T, is a free associative ring, freely generated by the elements ev ..., ek.

Revert to the general case and let <X.STTP+1(X), Pe7Tq+1(X) so that
[a, P]GTTp+q+i{X). Then Samelson has proved (see [8])

LEMMA 2.2. />[a,j8]= (_i)*(pa.pj8—(—l)OT/>j8.

3. An algebraical theorem.

Let R be a ring generated by ev ..., ek, let e be an. arbitrary mapping
of R X R into the set (1, — 1), and let A be an arbitrary mapping of R X R
into the integers. Define for a, beR,

= \(a, b)ab—e(a, b)ba.

We call aob the quasi-commutator (qc) of a and b, and define basic
qc'a (bqc) exactly as for basic products, starting with the ordered set
ev ..., ek of bqc's of weight 1, and using the o operation instead of the
Whitehead product operation. Let the bqc's be bv 62, ..., b3, .... We
define a bqc-monomidl as a word M of the form biibii...bir. The weight
of M is its degree as a polynomial in ev ..., ek, and the disorder of M is
the number of pairs (u, v), 1 < u < v < r, with iu > iv. Then M has zero
disorder if and only if it has the form 6x

ni 62
na ..., n( ^ 0.

THEOBEM 3.1 . -4TM/ monomial in ex, ..., ek of degree w can be written
as a linear combination of bqc-monomials of weight w and zero disorder.

THEOBEM 3.2. If ev ..., ek are free generators of the free associative
ring R, then the bqc-monomials of zero disorder constitute a free additive
basis for R.

THEOBEM 3.3. The number of bqc's of weight w is

Q(W)k) = ± S
W d\u>

where \L is the Mobius function.
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ON THE HOMOTOPY GROUPS OF THE UNION OF SPHERES. 157

These theorems have all been provedf in the case e = — 1 , A=—1
(see [11]). Clearly Theorem 3.3 cannot depend on the particular choice
of " commutator ". Assume Theorem 3.1 . Then the 6#c-monomials of
zero disorder span R. Since R is graduated by degree and since the
number of monomials spanning the subring of R consisting of homogeneous
elements of degree d, say, is finite and the same for commutators as for
quasi-commutators, Theorem 3.2 follows from the known facts for com-
mutators. The proof of Theorem 3.1 in its generalized sense presents
no new difficulties, and it should be sufficient to sketch the proof, which is
modelled on the ideas of P. Hall and Magnus.

We define the degree of M — biph... bir to be r. Now let b be the first bqc
(in the sequence bv b2, ...) to occur in disorder in M, in the sense that
6 = bio for a pair (u, v), 1 ̂  u < v ^ r, with iu > iv. Suppose that 6 first
occurs in disorder in M as bio, so that, certainly, iv_1>iv. Now
bu°

bi.-i = XbiA-x~ebio-A (writing A, e for short). Thus

M = eA6, . . .6 , 0 _AA-A + 1 -h-A •• A - A o & U bu+> -K
= f-\M'-€M", say.

We now show that, if M arose from a monomial in the elf ..., ek by
successive applications of this process, then bivobiu] is a bqc. Certainly
biv<bivi. Now qc'a of weight > 1 arise by this process (they were not
present at the start), so that, if 6,-o_, = ao/?, a must at an earlier stage have
been the first bqc to be in disorder. Obviously this process, applied, say,
to 6, does not put into disorder any 6' < b, so that a ^biv and biuobiv r is a
bqc. Thus M is expressed as eXM' — eif", where M', M" are 6gc-monomials,
M' has less disorder than M, and M" has smaller degree. M' still has
degree r, and, of course, the weights of M', M" are the same as that of M.

We have now established the basis for an induction. For if we suppose
that all bqc monomials of degree < r may be expressed as a linear combina-
tion of monomials of zero disorder, we have a process for steadily reducing
the disorder of a monomial of degree r. In this way the proof of
Theorem 3.1 is completed.

4. Proof of Theorem A.

Let Q be the space of loops on T. By (2.1), H{Q) is the free
associative ring freely generated by el5 ..., ek. Let the o operation in
H(Q) be specified for homogeneous elements by defining A (a, 6) = (— l)p,
c(a, 6 )= ( - l )^+ 1 > , where azHp{Q), beHq(Cl). It is then clear from
(2. 2) that p maps the basic products pv p2, ..., ps,... onto a complete set
of bqc's bv 62, ...,bs, ..., where Pp{ = £,-, i = 1, 2, ....

f In P. Hall's definition of basic commutators, the commutator (ab—ba) would only
be basic if a > 6. Thus we get the same definition as Hall if we define 0 0 6 = ba—ab
and admit a o b as basic only if a < 6. See the footnote on basic products.
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158 P. J. HILTON

Let q{ be the height of p{. Use the symbol pt for a map S9'*1 ->T in the
class p{. Then p{ induces a map /,•: Q,—> iQ, where Qt- is the space of loops
on /S^+1, and hence a homomorphism /,•»:#(&,)->#(&). Let r;,- be the
natural isomorphism >qi:7rg,+1(S

9i+1)^i7Tq.(Q,i), and let &,- be the Hurewicz
isomorphism hi:7Tq.(Qi)^Ha.(Q,i). Then #(&,) is a free ring freely
generated by 6/ = h^i, where t is the positive generator of rrq.+1(S

ai+1).

LEMMA 4 .1 . fa is a ring-homomorphism and fab/ = &,-.

That fa is a ring-homomorphism follows from the more general
proposition that a map X-> Y always induces a homomorphism of the
Pontryagin ring of Q(X) into that of Q(F). That fab/ = 6,- follows from
the commutativity of the diagram

rrtti(Q)

4- h

where p(,, fa are induced by p{, f(. It follows from (4.1) that

f + h'n — hn

Consider the maps /f:Qt.-»Q, / 3 : ^ - > O , induced by p(, p^. If we
represent composition of loops in Q by <o. ID', CO, a)' e Q, then we may define
f0: Q{ xQi->& by fa (a>,-, cû ) = /f <o{ ./,• w,, cu,- e Qo <at e Q,. Now let yt e J? (O,)}

y3. e -ff(^). Then y,<8)y,- e H (Q,- x Q3).

LEMMA 4.2. (/tt)• (y,.0y3.) = (fa 7i). (fa Yj).

Let u: Ip-^ Q(be a, singular ̂ »-cube of £2,., and let t;: /«-> Q̂  be a singular
g-cube of ty. Then (u, v): Ipxlq-+ £lt X Qi? given by (%, v) (x, y) — (ux, vy),
x e Ip, y e IQ, is a singular (p-{-q)-oube of Q,-X O,., and we may restrict atten-
tion to such cubes of fy x O.t in considering the homology of Qt- x O,r Then

fa(u, v)(x, y) =ftux./,vy. (4.3)

Thus, if we allow fa fj} fa also to stand for the induced chain-mappings,
(4.3) reads

fii(v><8>v)=fiu.fjv,
the multipHcation on the right being the multiplication of elements of the
chain-group of Q which induces the Pontryagin multipHcation of homology
classes. The lemma thus follows by passing to homology classes.

We have maps f(: Q,—> £1, i = 1, 2, These induce maps

given by
„,/(«>!, . . . , wm) = / x w1 fm iom, (Of e
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ON THE HOMOTOPY GROUPS OF THE UNION OF SPHERES. 159

where, for the sake of definiteness, we take the bracketing on the right-
hand side to be the natural bracketing from the left. Let a>,° be the null-
loop in Qt. Then, if I < m, we may identify fij x ... X 0/ with the subspace
Qx x ... x Q , X w?+1 X ... X o>£ of Qt x ... X Qm. Since each /,• maps
o),° to the null-loop in Q., it follows that

J\QX x ... x Qj^fiClj, x ... x Q,->Q.
00

Let Q* = IIQ,-. Now -ff(Q,) is the free ring generated by £/. Since the
I

dimension of b/ tends to infinity with i, it follows that H(Q,*) is
additively generated by the (finite) tensor products b'^ (gibing)... and
the set of maps mf induce a well-defined homomorphism

By (4.1) and an easy extension f of (4.2),

<f>(b'1
ni®b'2

n*®...) = bp.b'»* (4.4)

Since the expressions b^b^... form a free additive basis of H(C1), by
Theorem 3.2, it follows that <f> is in fact an additive isomorphism of
H(Q*) onto H(Q).

Let us suppose for simplicity of notation that the first t of the spheres
in T have dimension 2. Then the set of maps {mf} induces an isomorphism
of TT^Q,*) onto TT^Q), mapping each 77,-1,- onto ryt,-, i = l, ...,t. Let Q. be the
universal cover of Q. and let Q* be the universal cover of Q*; then
Q,* = Qx x ... X Qj X O.l+1 X ..., where Gtt- is the universal cover of Q,-,
i — 1, ..., t. The maps mf, m = t, t-\-l, ..., may be lifted uniquely to maps

^ i Q i x Sj. x ... x 4 x Q,+1 x ... x Qm->Qi,

sending the class of null-loops on Qj X ... X Qm to the class of null-loops
on Q. Moreover, writing mO* for the space of arguments of ^g, and
embedding tQ.* in mQ* in the obvious way, £ ^ I ̂  m, we have

*~iflr:lQ*-^Q, (4.5)

which induces a well-defined homomorphism

LEMMA 4 .6 . <}> is an isomorphism onto H(Q.).

Let Q*(o)=Q*, Q * w = 5 1 x . . . x d u x Q u + 1 X . . . ) a<°=Q, Q<"> the
covering space of Q with fundamental group (^tu+1, ..., r)(,t), u < i . Then
Q*«) = Q*3 Q » = Q} Q*(«) is a covering space of Q*<«-« with cover-

f Despite the appearance of (4 . 4), </> is not a ring-homomorphism. If we identify
bt' eH(nj) with bi(g)u2 e£T(n1xn2)»

 M2 being the unit element of f?(fla), and similarly
identify 6a' with Uxlgjba', then 6 / . 62' = 6j'(g)6,', 6 a ' . bx' = ±(6!'062')f but, of course,
blbt # ±6a6x in H(n).
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160 P. J. HILTON

transformation group (r}uiu), and Q(u) is a covering space of Q(u-1) with
cover-transformation group (r]iu). Moreover, there exist sets of maps
W( u )},

m/<M>: Qxx.. . x QMx Qu + 1x. . . x ̂ x . . . x Qm-> n(u),

such that m/<»> covers „/<-«, m/«» = m/, J ^ ^ , and the set {m/<«>}
induces a homomorphism

and an isomorphism of ^(Q*^) onto ^ (Q^) mapping ^ts onto iysis,
w-f-1 < s < t. We assert that the appropriate cover-transformation groups
operate trivially on the homology groups of the spaces Q*(u), Q(u). This
follows from

LEMMA 4.7. If X is an H-space and Y is a covering space of X, then
Y is an H-space and the factor group TT1(X)/7T1(Y) operates trivially on the
homology groups of Y.

The argument is almost exactly as on p. 478 of [9]. Writing 77 for the
subgroup TT^Y) ofTr^X) and E for the space of paths on X emanating from
the distinguished point e e l , we define an operation fvg in E by

(fvg)t=ftvgt,
the operation on the right being that given by the ^-structure of X.

Now Y is obtained from E by identifying/, f'eE when and only when
the loop h, given by

h(t)=f(2t), O^t^l

=f'(2-2t), |<«<1,

represents an element of IT. Writing this equivalence f—f, we have to
show that, i f /~ / ' and g~g' thenfwgc^f vg'. Now the loop k, given by

k(t) = g(2t), 0<«< i

= g'(2-2t), i<tf<l,

represents an element of rr, and the loop h v k represents the product of
the elements represented by h, k; but

(hvk)(t)=(fvg)(2t), 0<<<!

= (f'vg')(2-2t), *<*<1,

so that Y carries a multiplication induced by that in E. Let us write
eeE for the null-loop o n e e l and let pt:X, e-+X, e be a homotopy such
that po=l, pxx = xve. Then />/ : E, e->E, e, given by (pt'f)(u) = ptf{u),
is such that pQ' = 1, p1'f=fye. Moreover, it is easy to veryify that p{
induces a homotopy Y-> Y deforming {/} to {/} v{e}, rel {e}, where {/},
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ON THE HOMOTOPY GROUPS OF THE UNION OF SPHERES. 161

{e} stand for the equivalence classes (points of F) containing /, e.
Similarly {/} may be deformed to {e} v {/}, rel {e}, and F is an iZ-space.

That n1(X)l7r1(Y) operates trivially on the homology groups of Y
also follows almost exactly as on p. 478 of [9]. It is only necessary to observe
that Serre's second step remains valid in our more general situation because
TTX(Y) is normal in 7TX(X), the fundamental group of an //-space being
abelian. This completes the proof of Lemma 4.7.

Since <f> is an isomorphism of H(Q.*) onto H{£1), Lemma 4.6 now
follows from t applications of

LEMMA 4.8. Let f: Xx-> X2 be a map inducing isomorphisms

Let rrbea normal subgroup of 77̂  (Xx) such that TT1 = Trx(Xx)ln is cyclic infinite
and let TT2 = TTX(X2)/(f>7r. Let Yv Y2 be covering spaces of Xx, X2 with cover -
transformation groups n1, n2, which act trivially on the homology groups of
Yx, Y2, and let g: Yx-> F2 be the unique map lifting f and sending the class
of null-loops to the class of null-loops. Then g induces isomorphisms

It is trivial that g induces the isomorphism ITX(YX) = TTX(Y2). Let en
generate TT1 and let kt be the projection F,->X,-, *'= 1, 2. Serre shows
on p. 503 of [9], that the sequence

0 -> C( Y{) ̂ ' G( Ft) X C{Xt) -> 0 (4.9)

is exact, where G stands for chain-group. Moreover, we olearly have
commutativity in the diagram

l - c r ,

Z2 C{Y2)%

It follows from (4.9) and the fact that TT* acts trivially on the homology
groups of F; that there is an exact sequence

0-+Hn(Y{)
 lXHn{Xt) X H^iY^O, (4.10)

and from the commutativity of the previous diagram that the diagram

YJ*Z Hn(Xx) i Hn_x(Yx)-+0

0^Hn(Y2)
kZ Hn(X2) i ^_!(F2)->0

is commuta t i ve . T h u s <f>kx% = k2ii.ifj, ifjdx = d2<f>. Since <f>, kx* a re (1-1),
the first equation shows that ip is (1-1), and since d2, <f> are onto, the second
equation shows that «/r is onto. Thus Lemma 4.8 is established and with
it Lemma 4.6.

JOUR. 118. M
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162 P. J. HILTON

It should be noted that our method of proof of (4.6) enables us to
calculate the homology groups of JET(Q) and, of course, of H(Q*); for it
follows from (4.10) that the homology groups of Y{ are free abelian if and
only if those of X{ are free abelian, in which case

Now the homology groups of Cl are free abelian, so that the homology
groups of all the Q(w). are free abelian, and, moreover, finitely generated.
Thus if p^ is the n-th. Betti number of Q(M), p{® = pn, p® = pn, we have

whence

and, inverting this formula,

Pn = Pn % - l T ' " T ( 1) ~\ Pn-r~T~-"

After this digression we return to the proof of Theorem A.
By an obvious extension of the Whitehead theorem (see [10]), we deduce

from (4. 6) that the set of maps mg induces isomorphisms of the homotopy
groups of Q:S: onto those of Q, so that the set of maps mf induces isomorphisms

00

of the homotopy groups of Q* onto those of Q. But 7rn_1(D
:i:) = 2 7rn_1

00

Thus 7rn_1(£2)^27rn_1(Q,-); moreover 7rn_1(Cli) is embedded in 7rn_1(Q)
i=l

by composition with the homotopy olass of fb so that, in the induced
isomorphism

7rn{8q<+1) is embedded in 7rn(T) by composition with p{. This completes
the proof of Theorem A.

Theorem 3.3 does not play a prominent role in the statement of
Theorem A. Q(w, k) is the number of basic products of weight w, but,
in general, different basic products of the same weight belong to homo-
topy groups of T of different dimensions. However, in the important
special case when rx = r2 = ... = rk = r, we have

COROLLARY 4.10. Let T be the union of k (r-\-l)-spheres with a single
common point, r^l. Then

irn(T) ^ E (sum of Q{w, k) copies of 7Tn(S
wr+1)),

where Q{w, k) = — S u.(d)kw/a.
W d\w . . . . . .
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ON THE HOMOTOPY GROUPS OF THE UNION OF SPHERES. 103

5. The Jacobi identity

As mentioned in the introduction, if T= Sf+1 v#g+1 vS^+1, then

[li> [l2' l3]J ig n ° t a basic product. This means that, in the direct sum

decomposition,

we get a non-trivial representation of \i1} [t2, i3]J,

t = l

Now suppose that ph, ..., ph, ... are the basic products not involving S3.
Shrinking S3 to a point, we get

00

whence <x.h = 0, A = 1, 2, Similarly, we see that a, = 0 for any basic
product Pi which does not involve all of S1} S2, S3. For a basic product
Pi involving Sv S2, and S3, we have <fr+l >p-\-q-\-r-\-\, except for

. Thus

where a, b are integers. Moreover, only one such relation can exist, since
there is no non-trivial relation between the basic products. Thus, if p

is the homomorphism p:vp+q+r+1(T)->Hp+q+r(Q), then p\j.v [t2, t3]J is

uniquely expressible as a linear combination of pu2, [cv i3]J and

/°[*3> iLv lzf\> a n ( i *n e relation

subsists in Hp^q+r(Ql) if and only if (5.1) subsists in irp+a+r+1{T). The

problem is therefore to find a linear relation between p\tv [t2, t3]J,

P\_L2> bv ^3]! and pft.3, [i>i, t2]J in which the coefficient of p\tv [i2, t3]j is ± 1 .
Let us change notation slightly (in view of the result we wish to prove).

Let T = S1
pwS2

QvS3
r, and let us look for a linear relation between

[*2» *!»]> *i]> p[[*3i li]3 '2] a n d p[[li> 4L J i n which the coefficient of

2> 'si* l i ] is i 1; ^ is then clear that the same linear relation will holdf

between [[ia, t3], t j , [[t3, t j , t2] and [[il5 t2], i3 j .

f The ensuing calculation is implicit in the last remark of [8].
M2
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164 P. J. HILTON

Now, by (2.2),

Similarly,
e3 e3 ea .

and

_j_ ( _ i)r»+arfi»

We observe that

whence

Theorem B now follows by mapping Sx
p v >S2

8 v #3
r into X. by a map

which agrees on Sx
p with a representative of xG7Tp(X), on #2

9 with a repre-
sentative of p&7rQ(X), and on 83

r with a representative of ye7rr(^).
We note that any further relation between Whitehead products would

imply a relation between quasi-commutators; by the same argument as
that used by Magnus in the case of ordinary ring commutators (see [7]),
we have

COROLLARY 5 .2 . All identical relations between Whitehead products
follow from the skew-commutative law [a, £] = (— l)pq[fi, a], a.eTTp(X))

(3e7Tq(X), and the Jacobi identity by application of the laws of addition and
the distributivity of the Whitehead product.

We now prove

THEOREM 5 . 3 . Let [£, rf\, [17, $]eirs+t(X, A) be generalized Whitehead
products of elements | 8TT S + 1 (X, ^4), f)Zirt{A)in the sense of [1], s, t> I, so
that the symbol [] stands for the Whitehead product in whatever sense is
relevant. Then, if u.eTrp+1(X, A), f3e7ra(A), yZTTr{A), we have

(_l)(WD(i[Q8, y ] , a ] + (_l)flr[[y, a], £] + (-l)*2H-l)[[a, ft, y] = 0.

To prove this, we propose, for convenience, to modify the Blakers-
Massey definition of the generalized Whitehead product in a manner due
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ON THIS HOMO^OPY GROUPS OF THE UNION OF SPHERES. 165

to M. G. Barratt. Consider the homotopy sequence

where E{+1 is a cell bounded by $ / . Since i is onto in all dimensions,
d is (1-1), and it is clear that ^7rs+<(J£/f+1v>S2

/, S^vSJ) contains
[t1? izl&TTs+i^iSj8 v 82

l). Let 9 = d~1[i1, i2], and let (£, 77) be the class of a
map EI+1

 VSJ, S^VSJ^-X, A, which agrees on Es+1 with a representative
of £ and on S2

l with a representative of rj. We then define

IS, vY = (£.*i) oo, fo, £]' = ( -1 )* [6 id'.

These definitions are related to those of Blakers-Massey by

[£i?]' = -|£i7], [ ^ ^ ^ ( - l y - 1 ^ ^ (5.4)

Moreover, using the symbol [] ' temporarily to denote also the ordinary
Whitehead product, we have immediately

Y = W, VY, d[r,, ft = fa dft. (5 . 5)
Now consider the homotopy sequence

Again, i is onto in all dimensions, so that d is (1-1), and the image of d

obviously contains [[t2, t3]', t j , [[t3, tx]', t2j and [[t1} t2]', t3j . Let /cx be

the positive generator of 7Tp+1(E^+1, S^). Then it is clear from (5. 5) that

= 0.

It now follows from the univalence of d, by mapping 2£f+1 v 82
q v ̂ 8

r into X
in the obvious way, that

The theorem as stated results from this, using (5.4).

6. Applications

Let yE7Tn{Sr) and let <D be the homomorphism O ^ ( A S ^ - ^ T T ^ / S / V/S2
r)

obtained by pinching an equatorial AS "̂1 to a point. Let .ffjLi, i = 1, 2, ...,
project 7rn(#1

>' v iŜ /) onto its (i+2)-nd direct summand in the decomposition
given by Theorem A and let H^ = H'^®. Thus we have
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l6d P. j .

and

8> [tl! t j ] O # 2 y + . . . . (6.1)

The homomorphism Ho is a generalization of the Hopf invariant, and may
easily be seen to generalize that defined in [3] if n ^ 4r—4. In fact, we
have

THEOBEM 6.2. H* = EH0, where H*: iru{Sr)->^n+ii^) *'* the homo-
morphism defined in [3], and E is the suspension.

This follows immediately from

LEMMA 6 . 3 . Let T = S1
rv82

s, let pt be the i-th basic product, of
height q{, and let x:7rn+i($irX$2S> ^iry/^2S)-^7rn+i(^r+s) oe induced by
shrinking SfvS^ to a point. Then xd~1(pio<x.) = 0, <xe7Tn(S

Qi+1)) i>3,

Xd~Hp3 O a) = Ea, a e TTJS^-1).

Of course d:7rn+1(/Sr
1

rx£2
s, S1

rv82
s)-+7rn(81

rv82
s) is univalent, and

The proof is now just as in the proof of Lemma 3 of [4]. In fact, we
draw the analogous conclusion, generalizing that of Lemma 3 of [4],
namely

THEOREM 6.4. x ^ + i W x t f / , S1
rvSi

s) = ETTJS^8-1).

The projections H'^x (* ̂  1) a r e n 0* canonical since they dejpend
essentially on the choice of basic products. However, the basic products
ps, p±, p5 would be afipected at most by changes of sign and the interchange
of p^ p5 if the spheres 8r, 8s were reordered and are, to that extent,
canonical. We revert later to this question. Meanwhile we prove

LEMMA 6 .5 . Let a, pe<Trr(X), [a, jS] = O. Then, if yZ7rn{8r),

(a+j8) Oy = a Oy+j8 Oy.

For it follows immediately from (6.1) thatf

and all the later terms disappear since [a, j8] = 0.

THEOREM 6.6. Let rj be the homomorphism induced by the map
SrvSr-> Sr in the class (i, i), and let d': 7Tn+1{Sr x Sr, SrwSr)-» 7rn(8

r) be given

f As pointed out by Serre, this lemma admits an elementary proof.
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ON THE BOMOTOPY GROUPS OF THE UNION of SPHERES. 167

by d' = r)d. Then all elements of d' 7rn+1{8r x 8r, Sr\Sr) are expressible as

[t, tjOff, a 8 7r7l(i8'2r~1), r odd,

[i, *]Oor+[*, [ M ] ] O T , aeir.OS*-*), TSTrJ/Sf3'-2), r « .

/w particular, all Whitehead products in rrn{Sr) are so expressible. Moreover,

2(0, i]Oa) = 0, r odd,

3 ([t, [h *]] Or) = 0, r even.-f

We recall from [5] that [i, [i, t]] = 0, r odd, and that 3 [i, [t, i]] = 0
and ft, [t, t]l e ̂ 7r3r_3(/S

r-1)3 r even. It follows easily that all g-tuple
Whitehead products involving only the element t vanish in 8r, where
q ^ 3 if r is odd, and q > 4 if r is event- The first half of the theorem
now follows from the fact that, if &edf'iTn+1(S

rxSr, 8rv8r), then

a = [t, i] O#0' a '+[i , [t, *]] OHT! « '+[t, [6, i]] OH2' a '+ ...,

where a = ^a', a'e^7rn+1(/SfrX/Sfr, 8rvSr).
The second half of the theorem now follows from Lemma 6.5.

THEOREM 6 .7 . Let a e>nn(8
r), j8 enr(X), and let k be an integer. Then,

if r is odd,

= 4m or

0L, k = 4m—2 or 4m—1.

Since kp = poh, k(fi o a) = ft ok* = 0 o&(i o a), and (jS, £] = j8 o [t, t], it
is obviously sufficient to prove the theorem if jS = t. Assume k positive,
and suppose we have proved that

h Oa = kx+ WZL^ k t] Ojff0 a. (6.8)

Then (ifci+i)oa = ^oa-fa+[ i ; i ) t]oHQa, since all the " higher ''
products vanish. By (6.5), we deduce that

(*+l)iOa= ( A j + l j a + ^ i ^ [t,

Thus (6.8) is proved if k is positive (it is, of course, trivial if k = 0 or 1).

f Some of the results of this section and further resultB of the same type have been
obtained by I. M. James and will be published in a forthcoming paper, " On the suspension
triad ".

% See Theorem 6 . 10 for a stronger result. By a " g-tuple Whitehead product",
we mean an element obtained by {q— 1) applications of the Whitehead product operation.
Thus a basic product of weight w is a w-tuple Whitehead product.
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i68 P. J. HILTON

Again, 0 = (h—&i)o<x = &iOa+(—h)o«.—k2[i, i ]o# 0 a , so that, k
being positive,

[i, L]oH0<x+k*[i,} i ] o# 0 a

This estabh'shes (6.8) for all k, and the theorem follows from the fact
thatt2([i ,

The analogous result, in case r is even, may be proved similarly. We
will merely state it.

THEOEEM 6.9. Let a e7Tn(S
r), /? e 7Tr(X), and let k be an integer. Then

if r is even,

Note that 3([jS, [p, ft)] o ^ a ) = 0 andj

l)^ O m o d 3 j ]c = ^m-\) 9 m
o

= _ imod3, A; = 9m+2, 9m+3, 9ra+4,

= Imod3, k = 9m—4, 9m—3, 9m—2.

Of course, we use in (6.7) and (6.9) the fact that, for any
integer q, q[i, i]oa = <?([i, t]oa), which follows immediately from (6.5).

THEOEEM 6.10. Let ae^iS'), peTTm{Sr), ye7Tn{Sr). Then

= 0, rodd,

3 [a, [j8, y]] = 0, r even,

and all q-tuple products in Sr vanish, q > 3.

First, assume r odd. Then [/?, y] = [<•, t] Off, by (6. 6), and

[a> W> y]] = [iOa, [i, i]Oor].

The result now follows from Theorem (2.1) of [6] and the fact that

ft, [i, t]J = 0. Next, assume r even. Then

W, y] = [*, i] O a+[ i , [t, i]] O T and 3 08, y] = 3 [t, t] O a.

f We know of no case in which [(,-i]o£f0a =£ 0, with r odd.
The author and I. M. James have now proved (independently) that the term

J is zero.
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O N THE HOMOTOPY GEOTJPS OF TBE UNION OF SPHEBES. 169

Thus 3 [a, [/?, y]] = [a, 3[j8, y]] = [tOa, 3[i, i]Oa~|, and the result again
follows from Theorem (2.1) of [6] and the fact that u, 3[c5 t]J = 0.

Now, obviously, the vanishing of all (/-tuple products implies the
vanishing of all #'-tuple products, q' > q. Thus the last assertion of the
theorem is proved if r is odd and it remains to show that all quadruple
products in Sr vanish if r is even. We first prove a lemma.

LEMMA 6.11. [a, [ft y]] = [t, [t, I]]OT, for some r&7Tl+m+n_2(8
2r-2).

Consider first [al3 [ft, y2]], o^e^tf/), fte^mW')* ^ " n O W Then

«l> [fii, yj] = [*i", 4] Oor+[h, [*i, *d] Or' + [t2, [LV t2]] Or"+ ... , (6. 12)

where oS7rl+m+n_2(JS*-i), r', r" e7rl+m+n_2(S^). Now apply j ^ - i to
(6.12). By an adaptation of the argument of Lemma 3 of [4], we have

By Corollary 2 on p. 282 of [10], the order of a is a power of 2. Now
apply 7] to (6.12). Then [a, \fi, y]] = [t, t]oa+[i, [i, t]] Or, where
T = T'+T", and, multiplying by 3, we have 0 = 3([i, t]oa). Since the
order of a, and hence of [i, t] OCT, is a power of 2, it follows that [i, t] oa = 0
and the lemma is proved.

Reverting to the theorem, we see that

[8, [a, 08, y]]] = [t08, [i, [i, t]] Or] = 0,

since t, [t, [t, t]J = 0, and, using the Jacobi identity, all quadruple

products vanish, and the theorem is proved.
Next, we take up again the question of the homomorphisms Hi_1.

We recall from [4] that 2#*a = 0 if «.C7rn(8
r), r odd. It follows! that

2#0a = 0 if r is odd and n^.4r—4. The difficulty of extending this
result to general values of n is due to the fact that the homomorphisms
#,_! are not canonical. We demonstrate the difficulty if n^.5r— 5.
Then (i1+t2)oa = i1oa+t2Oa+^3ofi0a+...-f])8o55a) where

and

t I. M. James has communicated to ine a proof of this for arbitrary n, based on a
theorem in his paper, " On the suspension triad ".
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170 P. J .

Let A be the automorphism 7rn(S
r vSr) = 7rn(/S'r vSr) induced by the map

which exchanges the two r-spheres. Then, applying A, we get, if r is even,

(ta+ti) O a = i2 Oa+4 O a

where, by the Jacobi identity,

= —^7+^3 o [t*, t*], where t* generates T ^ . ^ ^ 2 ' ' - 1 ) .

We deduce, if r is even, n ^ 5r—5, that

HX = H2, Hz = Hbi 2H, = 0, [t**»]oiT4 = 0. (6.12)

Now let r be odd. Again applying A, we get

(i2-K) Oa = i2 Oa+tj Oa+(— p3) oH0<x.—p5oH1 a—p4O^2a

—p8 O#3 a—1?7' O^4 a— pQ OH5 «.}

and, by the Jacobi identity, p7' = p7-\-ps o [t*, t*]. Also

(—jp3) o # 0 a = — (p8 o-ffo a)+[?8» JPs] oH0{H0 a)

= - Cp8 O^O a)+i?3 O [t*, *•] O#0(#0 a).

We deduce, if r is odd, n < 5r—5, that

. (6.13)

Note that 4H0 a = 0; on general grounds we may deduce that, if r is odd,
Hoa.is always of order a power of 2. We hope to revert to these questions
in a later paper.

We close this section with a theorem, which generalizes an original
result due to Hopf. Let us say that H^ has weight w if the basic product
pi+2 has weight w. Then, if t stands for the positive generator of 7Tg(S

Q)
for any q, we have

THEOBEM 6.14. Hi(kiOa.) = kwioHioL) where H( has weight w. In
particular

#,((—t)oaj =2/,-a if Hi has even weight,

= — loHiCn. if Ht has odd weight,
For

Ooi.= ki1O0L-\-ki2O<x.-\-[ki1, ki2]oH0cn.-\-...,

the general term being A ^ + s O ^ a , where Hi is of weight w. Since
kwpm oHi<x. = pi+3 okw i o.fl,- a, the result follows.
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O N tHE HOMO^OPY &ROfrPS 01? *HE UNION OF SPHERES. l 7 i

Notice that, if # , has weight w, then Hf maps 7rn(S
r) into 7Tn(S^r-1)+1).

Now w(r— 1)+1 is odd if w is even or if w and r are odd. We then deduce,
as a corollary, using 6.7,

COROLLARY 6.15. Hi(hooi.) = kwHia, where Ht has weight w, if

(i) w is even,

or (ii) w is odd, r is odd, h is even,

or (iii) w is odd, r is odd, k = 1 mod 4.

7. Appendix to /Section 3

It seems to be of some interest to consider the general operation of
quasi-commutation and certain special cases. The Jacobi identity for
triple products proved in Section 5 arises from the existence of a Jacobi
identity for the particular quasi-commutators chosen. In general, one
would not expect a Jacobi identity to subsist. However, (3.1) tells us
that it is always possible to express ao(boc) as a linear combination of
monomials in the bqcs a, b, c, aob, aoc, boc, ao(aob), ao(aoc), bo(aob),
bo(aoc), bo (boc), co(aob), co(aoc), co(boc), with zero disorder, and
(3.2) tells ~us that this representation is unique if a, b, c are algebraically
independent in R. One would then say that a Jacobi identity subsists if,
in fact, ao(boc) is expressible as a linear combination of bo (aoc) and
co(aob). The argument adopted in Section 5 may be adapted to show
that, if a, b, c are independent, the monomials occurring in the expansion
of ao(boc) must each contain all of the symbols a, b, c, so that we have
proved

THEOREM 7.1. In a ring R, with quasi-commutators aob, we always
have

ao(b oc)= mx(abc)-\-m2 a(b oc)-\-mzb(a oc)+ra4c(a ob)

+m5 bo (a oc)-\-m6 co(a ob),

where the m{ are integers, 1 ̂  i ^ 6, and the representation is unique if a, b, c,
are algebraically independent.

If we carry out the process described in Section 3 for the operation
a ob = ab-\-ba, we find

THEOREM 7.2. If aob = ab-\-ba, then

ao(boc) = 2a(boc)-\-2b(aoc)+2c(aob)—bo(aoc)—co(aob).

The case A = 0, e = — 1 is of combinatorial interest; for then aob = ba
and (3.1) allows us to insert brackets into any monomial in e±, ..., ek in
such a way that the bracketed terms constitute a monomial in the bqcs of
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i72 ON THE HOMOTOPY GROUPS OF THE UNION OP SPHERE'S.

zero disorder. Thus, for example, e2
2e1

2 = e2(e2e1
2), e3e2e1 — e3(eze1).

The latter example shows all that is left of the " Jacobi identity " in this
special case.
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THE ISOMORPHISM BETWEEN LF(2, 32) AND Ae

W. L. EDGE*.

The isomorphism of the linear fractional group LF(2, 32), of order 360,
and the alternating group AG is on record ([1], 309; and [5], with PSL
for LF, 8 and 9). If one seeks not merely for record but for proof one
might take the conclusion to Chapter XII of [1], in which chapter the
subgroups of LF(2, q) for any Galois field OF(q) are obtained and
catalogued; representations of LF(2, q) as permutation groups have
degrees equal to the indices of these subgroups whenever LF(2, q) is simple,
as it is known to be if q > 3. For q = 32 there are subgroups of index 6.
But while the fact of the isomorphism has been common knowledge for
so long, and while it cannot be gainsaid that a proof has been available,
it may be questioned whether an essential reason for the existence of these
subgroups of index 6 has been perceived. LF(2, q) may be handled as

* Received 29 July, 1954; read 25 November, 1954.
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