A CATEGORICAL CONCEPT OF CONNECTEDNESS

by Rudolf E. HOFFMANN

An object C of a category C is a Z-object iff Hom(C, -) preserves coproducts; C is called Z-generated iff $C = \coprod_{i \in J} C_i$ for Z-objects C_i ; the class of Z-objects is denoted by B(C), the class of Z-generated objects by Z(C) (for the corresponding subcategories the same symbols are used); C is called based iff C has coproducts and every object of C is Z-generated.

In Top (topological spaces and continuous maps) Z-objects are the non-void connected spaces (non-void, because an initial object in a category \mathcal{C} is not a Z-object); analogously in Cat (small categories and functors) and Graph (directed graphs) the non-void connected categories, resp. graphs are the Z-objects. For a group G, [G, Ens] will denote the category of G-sets: the transitive (or simple) G-sets are exactly the Z-objects. In the category ${}^{q}Met$ of the quasi-metric spaces (two different points may have infinite distance or null distance) and non-expansive maps Z-objects are those non-void spaces with finite distance only. Cat, Graph, [G, Ens], ${}^{q}Met$, and specially Ens, are based categories (Z-objects in Ens are final objects), but Top is not. There are negative criteria (existence of a null object or a strictly final object) that exclude the existence of Z-objects in the categories of groups, etc., and of unital rings ($\{0\}$ is strictly final); especially if both $\mathcal C$ and $\mathcal C$ are based categories, then $\mathcal C$ is equivalent to the final category 1.

A based category \mathcal{C} is exactly the universal completion of its bases $B(\mathcal{C})$ with respect to coproducts; the functor $B(\mathcal{C}) \to 1$ obviously induces a coproduct-preserving functor $S: \mathcal{C} \to Ens$ (since $B(Ens) \cong 1$), and if, in addition, \mathcal{C} has a final object t, one has the following adjunction $S \to L$, where L is a left adjoint to $Hom(t, \cdot): \mathcal{C} \to Ens$.

A cone $\{f_i:A_i \to A\}_{i \in J}$ is called a Z-system iff every A_i is a Z-object and for every Z-object C, $\{Hom(C,f_i)\}_{i \in J}$ is a coproduct; Z-systems are uniquely determined (up to ...). In Top a Z-system is the

family of connected components; in a based category it is the (unique!) representation of an object as a coproduct of Z-objects. If $\mathcal C$ has coproducts, $Z(\mathcal C) \to \mathcal C$ is coreflective iff $\mathcal C$ has Z-systems (for every object). If $\mathcal C$ has colimits, $Z(\mathcal C) \to \mathcal C$ is closed under colimits. This provides an idea for an existence criterion for Z-systems: if $\mathcal C$ has an $(\mathcal E, \mathbb M$ -mono)-factorization (diagonal condition), if the class of Z-objects is closed under $\mathcal E$ -«quotients», if $\mathcal C$ is $\mathbb M$ -well-powered, and if $\mathcal C$ has colimits for connected diagrams $T: \Sigma \to \mathcal C$ with $\mathbb M$ -transition morphisms (i.e. $Tp \in \mathbb M$ for $p \in \Sigma$), then every object $A \in \mathcal C$ has a Z-system $\{f_i: A_i \to A\}_{i \in I}$ and every $f_i \in \mathbb M$. -A category $\mathcal C$ with coproducts is based iff $\mathcal C$ has Z-systems and $B(\mathcal C) \to \mathcal C$ is dense.

If $(T, \eta, \mu) = \mathbf{T}$ is a monad in a based category \mathcal{C} such that T preserves coproducts, then $\mathcal{C}^{\mathbf{T}}$ is based too (e.g. Cat over Graph, [G, Ens] over Ens); since for a small category \mathcal{C} ,

$$[\alpha, \mathcal{C}] \rightarrow [ob\alpha, \mathcal{C}] = \mathcal{C}^{ob\alpha}$$

is monadic, and a power of a based category is based too (its basis is a co-power of the original basis), $[\mathfrak{A}, \mathfrak{C}]$ is based (because \mathfrak{C} is) (e.g. $Grapb = [\cdot \rightrightarrows \cdot, Ens]$). In a power of Ens one has the following characterization of «coproduct-preserving» triples:

If $V: \mathcal{C} \to Ens^M$ (for a set M) is monadic and preserves coproducts, then there is exactly one (up to ...) category \mathcal{C} with $Ob \mathcal{C} \cong M$ and an isomorphism $\mathcal{C} \cong [\mathcal{C}, Ens]$ such that the following square commutes:

