Notes on Enrichment

Alexander E. Hoffnung

June 30, 2012

Abstract

We write down the definition of enriched bicategory. Nothing here is new.

Contents

1 Enriched Categories 2
2 Enriched Bicategories 4
2.1 V-Homormophisms . 5

Enriched category theory is attractive for many reasons. See Kelly [3]. Category theory permits simple definitions of algebraic concepts such as monoids and groups. Enrichment then permits further definitions such as that of algebras over a field. In some respects, these are just fun toy examples, but these sorts of examples supply enriched category theory with remarkable flexibility. We recall a definition of enriched bicategory, which has been written down by a number of people sometimes with some variation. It seems this definition first appeared in the thesis of Carmodey [1]. Lack also gave a definition in his thesis over strict monoidal bicategories 4. Forcey has studied the combinatorics of polytopes associated to enrichment and higher categories in detail. See [2], for example.

Enriched categories are defined over monoidal categories. Why is this? Very simply, the monoidal structure consists, in part, of a functor $\otimes: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$, which is used to define composition in the enriched category. In other words, for objects a, b, c of a \mathcal{V}-enriched category, there is a composition map in \mathcal{V} given by

$$
c_{a b c}: \operatorname{hom}(a, b) \otimes \operatorname{hom}(b, c) \rightarrow \operatorname{hom}(a, c) .
$$

To draw attention to the idea that enriched bicategories are a weakening of enriched categories, we first remind ourselves of the definition enriched categories. Starting with a monoidal category \mathcal{V}, a \mathcal{V}-enriched category \mathcal{C} consists of a set of objects a, b, c, \ldots, and for each pair of objects a, b, an object hom (a, b) of \mathcal{V}. Further, the structure maps of \mathcal{C}, which we will detail below are morphisms in \mathcal{V}.

It is useful to note that an enriched category is not necessarily a category, and an enriched bicategory is not necessarily a bicategory. However, there are certain examples of monoidal categories and bicategories for which the resulting enriched structures
should be very familiar. We should add a section containing some examples at the end.

1 Enriched Categories

A monoidal category \mathcal{V} consists of:

- a functor

$$
\otimes: V \times V \rightarrow V,
$$

called the monoidal product,

- an object I called the monoidal unit, and
- natural isomorphisms α, λ, ρ satisfying, for a, b, c, d in \mathcal{V}, the coherence conditions described the commutativity of the following diagrams:

and

$$
(a \otimes I) \otimes b \xrightarrow{\rho_{a} \otimes 1_{b}-}=a \otimes(I \otimes b)
$$

Given this data we can define a \mathcal{V}-category, also known as a category enriched over \mathcal{V}.

Definition 1.1. $A \mathcal{V}$-category \mathcal{C} consists of:

- a set $\mathrm{Ob}(\mathcal{C})$ of objects a, b, c, \ldots;
- for each pair of objects a, b, a hom-object $\operatorname{hom}(a, b) \in \mathcal{V}$, which we will often denote (a, b);
- a morphism called composition

$$
c=c_{a b c}: \operatorname{hom}(a, b) \otimes \operatorname{hom}(b, c) \rightarrow \operatorname{hom}(a, c)
$$

for each triple of objects $a, b, c \in \mathcal{C}$;

- an identity-assigning morphism

$$
i_{a}: I \rightarrow \operatorname{hom}(a, a)
$$

for each object $a \in \mathcal{C}$;
all satisfying the axioms:

for each quadruple of objects $a, b, c, d \in \mathcal{B}$;
-

for each pair of objects $a, b \in \mathcal{B}$.

2 Enriched Bicategories

Now, we write the definition of a 'category enriched over a monoidal bicategory'. We choose to call these 'enriched bicategories', but alternatively might call them 'weakly enriched categories'.

Definition 2.1. Let \mathcal{V} be a monoidal bicategory. A \mathcal{V}-bicategory \mathcal{B} consists of:

- a set ObB of objects a, b, c, \ldots;
- for every pair of objects a, b, a hom-object $\operatorname{hom}(a, b) \in \mathcal{V}$, which we denote (a, b) suppressing the tensor product when necessary;
- a morphism called composition

$$
c=c_{a b c}: \operatorname{hom}(a, b) \otimes \operatorname{hom}(b, c) \rightarrow \operatorname{hom}(a, c)
$$

for each triple f objects $a, b, c \in \mathcal{B}$;

- an identity-assigning morphism

$$
i_{a}: I \rightarrow \operatorname{hom}(a, a)
$$

for each object $a \in \mathcal{B}$;

- an invertible 2-morphism called the associator

for each quadruple of objects $a, b, c, d \in \mathcal{B}$;
- and invertible 2-morphisms called the right unitor and left unitor

for every pair of objects $a, b \in \mathcal{B}$;
- satisfying the following axioms

the arrow marked \sim is a structure cell for \mathcal{V}.

$2.1 \mathcal{V}$-Homormophisms

We present a 'weak' notion of \mathcal{V}-homomorphism.
Definition 2.2. Let \mathcal{V} be a monoidal bicategory and \mathcal{A} and \mathcal{B} be \mathcal{V}-bicategories. A \mathcal{V}-homomorphism, or pseudo enriched homomorphism, $F: \mathcal{A} \rightarrow \mathcal{B}$ consists of:

- a function $F: \operatorname{Ob} \mathcal{A} \rightarrow \mathrm{Ob} \mathcal{B}$,
- for each pair of objects $a, b \in \mathrm{Ob} \mathcal{A}$, a 1-morphism

$$
F_{a b}: \mathcal{A}(a, b) \rightarrow \mathcal{B}(F a, F b)
$$

in \mathcal{V},

- for each triple of objects $a, b, c \in \mathrm{Ob} \mathcal{A}$, a pair of 2-morphisms:

in \mathcal{V},
- satisfying the following axioms

References

[1] S. M. Carmody, Cobordism Categories, PhD thesis, University of Cambridge, 1995.
[2] S. Forcey, Quotients of the Multiplihedron as Categorified Associahedra, Available as arXiv:0803.2694.
[3] G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge University Press, Cambridge, 1982.
[4] S. G. Lack,The algebra of distributive and extensive categories, PhD thesis, University of Cambridge, 1995.

