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Prehistory

Got to know type theory through the proof assistant LEGO in ∼ 1990
in a workshop organized by Terry Stroup in Hetzelsdorf, .de. Among
the attendants: Randy Pollack, Benjamin Pierce, Thorsten
Altenkirch, . . .

hetzels.jpeg

Became fascinated by machine-checked proof, but also annoyed by
lack of “extensional concepts” and intrigued by type dependency and
intensionality.
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Dependent types

Propositions as types for predicate logic.
Curry-Howard: a proof of ϕ ∧ ψ is a pair comprising a proof of ϕ and
a proof of ψ. A proof of ϕ→ ψ is a function mapping proofs of ϕ to
proofs of ψ. A proposition is (induces, corresponds to,. . . ) the type
(set) of its proofs
Generalising to predicates: a proof of ∀x :A.ϕ(x) is a dependent
function mapping an element v ∈ A to an element (=proof) of ϕ(v).
We write the type of such dependent functions as Πx :A.ϕ(x).
a proof of ∃x :A.ϕ(x) is a dependent pair (v , p) consisting of an
element v ∈ A and an element (=proof) p of ϕ(v).
We write the type of such dependent functions as Σx :A.ϕ(x).
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To formalise this, we need families of types depending on values:
dependent types.

Other examples of dependent types: vectors, matrices, arrays,
universes, . . . .

So far (a formal system of dependent types including Π,Σ) this
existed before Martin-Löf: de Bruijn’s Automath.
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Martin-Löf type theory

Martin-Löf augments basic system of dependent types with inductively
defined types: natural numbers, lists, trees, well-orderings, . . .

. . . and an inductive definition of equality: the identity type:

For each type A a dependent type IdA(x , y) where x , y ∈ A
representing equality of x and y
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Reflexivity: a dependent function reflA : Πx :A.IdA(x , x)

An induction principle asserting that this is the only inhabitant:
I Given a dependent type C (x , y , p) where x , y :A and p:IdA(x , y)
I Given a dependent function h : Πx :A.C (x , x , reflA(x)) obtain a

dependent function J(h) : Πx , y :A.C (x , y , p)
I β-reduction: J(h)(x , x , reflA(x)) h(x)

Compare with natural numbers 0 : N and Suc : N→ N. Given a
dependent type C (x) where x : N and h0 : C (0) and
hSuc : Πx :N.C (x)→ C (Suc(x)) you get I (h0, hSuc) : Πx :N.C (x).
One has I (h0, hSuc)(0) h0 and I (h0, hSuc)(Suc(n)) 
hSuc(n, I (h0, hSuc)(n)). Can use that both for primitive recursion (e.g.
C (x) = N) and induction (e.g. C (x) = IdN(x ,Sucx(0))).
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Properties of propositional equality

Leibniz principle: if P : A→ Set then can define
subst : Πx , y :A.Id(x , y)→ P(x)→ P(y) with β-rule
subst(x , x , refl(x), p) p.

Symmetry, transitivity of Id :

sym : Πx , y :A.Id(x , y)→ Id(y , x)
trans : Πx , y , z :A.Id(x , y)→ Id(y , z)→ Id(y , x)

Congruence rules with respect to almost all term formers. In
particular resp : Πf : A→B.Πx , y :A.IdA(x , y)→ IdB(f (x), f (y)).

Can define elements of Id by induction (recursion), thus e.g. find an
inhabitant (“proof”) of

ΠA:Set.Πl :List(A).Id(rev(rev(l)), l)
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Definitional equality

Definitional equality is the congruence induced by β-reduction.

Definitionally equal terms and types are identified (“syntactic
congruence”)

Definitional equality is decidable (inhabitance of Id(x , y) a.k.a.
propositional equality is not).

?
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Extensional type theory

Definitional and propositional equality identified.

If Id(u, v) is inhabited then u = v may be concluded.

Definitional equality and thus type checking becomes undecidable.

Valid typing judgements should be accompanied by a (sufficiently
verbose digest of a) derivation.

Underlying theory of Nuprl and PVS
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Id is great

Coming from the Calculus of Constructions (LEGO) where equality is
encoded by Leibniz formula, the identity type was quite an innovation for
us.

The following type is inhabited, proof using J.

Πx , y :N.Πu:Vec(x).Πp:IdN(x , y).IdN(sum(u), sum(substVec(p, u))

For the first time we could not only define but also reason about
dependent functions and data types.

Fortunately, LEGO had support for arbitrary rewrite rules so we could
easily put in the identity type even before the Calculus of Inductive
Constructions became available.
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Extensional concepts

It was known for a long time that propositional equality suffered from
some unnecessary (?) defects:

From Πx :A.IdB(f (x), g(x)) cannot conclude IdA→B(f , g)

Cannot redefine propositional equality by quotienting (real numbers,
streams, modular arithmetic, . . . )

Cannot conclude IdProp(ϕ,ψ) from ϕ↔ ψ

Cure: book equality, setoids, OTT, axioms for extensional concepts,
setoid interpretation
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Uniqueness of identity

The extensional concepts somehow are orthogonal or even in conflict
with the view of propositional equality as an inductive definition.

But the following are not!
I Uniqueness of identity proofs (UIP):

Πx , y :A.Πp, q:IdA(x , y).Id IdA(x,y)(p, q)
I Streicher’s K : ΠC : Πx :A.IdA(x , x)→ Set.(Πx :A.C (x , refl(x)))→

(Πx :A.Πp:Id(x , x).C (x , p))
I Congruence for the second projection:

Πa:A.Πb, b′:B(a).IdΣx :A.B(x)((a, b), (a, b′))→ IdB(a)(b, b′)

None of these are inhabited (as we now know), but they are
interdefinable and inhabited in an extension of Martin-Löf type theory
with pattern matching (Coquand).
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“Identity equations”

While not all equality proofs are equal (at least we didn’t know how to
prove it) some identities are provable:

Πx , y :A.Πp:Id(x , y).Id Id(x ,y)(p, trans(refl(x), p))

We use
C (x , y , p) := Id Id(x ,y)(p, trans(refl(x), p))

and have
h := λx :A.refl(refl(x)) : Πx :A.C (x , x , refl(x))

This is because by β-reduction trans(refl(x), refl(x)) refl(x).
Recall the definition of trans in terms of J.
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Notation and more identity equations

Let us abbreviate: trans(p, q) by qp and refl(x) by idx . Let us also write
p ∼ q when Id Id(x ,y)(p, q) is inhabited. We have just proved:

p idx ∼ p

In a similar way, we can also prove:

id p ∼ p

p(qr) ∼ (pq)r

i.e. Id(trans(trans(r , q), p), trans(r , trans(q, p))) is inhabited.
Thus, intuitively, each type forms a category with its members as objects,
and Id-proofs as morphisms.
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Symmetry as an inverse

Recall sym : Πx , y :A.Id(x , y)→ Id(y , x). Writing p−1 := sym(p) we can
prove:

p p−1 ∼ 1

p−1 p ∼ 1

So, the category of identity proofs is in fact a groupoid (a category where
all morphisms are isomorphisms). Up to ∼, that is.
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Going further

One can also show that:

Every type-theoretic function is a functor between groupoids

Every dependent type is a groupoid-valued functor or “split fibration”

In particular the subst-maps arising from the Leibniz-principle are
compatible with transitivity, etc.
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Models of type theory

The set-theoretic model: types as sets, dependent types as families of
sets, functions as set-theoretic functions.

[[Id(x , y)]] =

{
{?}, if x = y
∅, otherwise

Domain-theoretic model: types as domains, dependent types as
families of domains, functions as continuous functions
Realizability model: types as ω-sets, dependent types as families of
ω-sets, functions as realizable functions
Term model: types as types, . . .
Deliverables model: types as types together with a predicate,
functions as functions together with a proof that the predicates are
preserved. Provides support for subset and squash types.
Setoid model: types as types together with a (partial) equivalence
relation, functions as functions together with a proof that the
equivalences are respected. Provides support for extensional concepts,
notably quotient types.
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The groupoid interpretation

Interpret types as groupoids (small categories in which all morphisms
are isomorphisms)

Interpret functions as functors between groupoids

Interpret dependent types as groupoid-valued functors

If A is a groupoid then IdA is the following groupoid valued functor:

IdA(x , y) = A(x , y), the A morphisms from x to y with trivial equality

This means that

Id IdA
(p, q) =

{
{?}, if p = q
∅, otherwise

Choosing A as a nontrivial groupoid, e.g. A = {?} and
A(x , y) = (Z,+, 0), should yield a countermodel to UIP (uniqueness
of identity proofs), hence a proof that UIP cannot be uniformly
derived by the rules of type theory.

This works, but there are some interesting points to be looked at:
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Functor part of IdA

We must also define the functor part of IdA.

Given a morphism from (x , y) to (x ′, y ′), i.e., p : x → x ′ and
q : y → y ′, we must define a functor IdA(p, q) between the (trivial)
groupoids IdA(x , y) and IdA(x ′, y ′). If r ∈ IdA(x , y) put

IdA(p, q)(r) = qrp−1

Notice that p−1 is the inverse morphism of p in the groupoid A.

x
p

- x ′

y

r

?

q
- y ′

qrp−1

?
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The associated term formers

We must interpret the refl-constructor. That’s easy:

refl(x) = idx ∈ IdA(x , x) = A(x , x)

J is more difficult and crucially relies on the fact that dependent
types are interpreted as split fibrations. Intuition:

I Given h and an equality proof r : Id(x , y) we get a morphism from
(x , x , idx) to (x , y , r), namely (idx , r , ?). Indeed, r idx = r idx .

I Thus, we define J(h)(x , y , r) := C (idx , r , ?)(h(x))

h(x) ∈ C (x , x , idx) =⇒ C (idx , r , ?)(h(x)) ∈ C (x , y , r)

(x , x , idx)
(idx , r , ?)

- (x , y , r)
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Building K ?

In order to interpret K of type

K (h) : Πx :A.Πp:IdA(x , x).C (x , p) given h : Πx :A.C (x , reflA(x)) we would
need a morphism from (x , idx) to (x , r) for each r from x to x which
anmounts to a single morphism p from x to x such that

x
p

- x

x

idx

?

p
- x

r

?

But then r = pp−1 = idx . So, unless the underlying groupoid is trivial,
this does not work.
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Remaining work

Still need to define morphism part and verifications,. . .

Still need to interpret dependent Σ-types and Π-types.

In order to do all that rigorously and systematically it is best to use
an abstract notion of model like categories with attributes or
categories with families.
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Isomorphism as equality

G. Kreisel: what more do we know if we prove something with
restricted means?

In the case of Martin-Löf type theory the absence of UIP allows one
to treat isomorphism as equality:

We can soundly assume a constant:

iso eq : ΠA,B:Set.Bij(A,B)→ IdSet(A,B)

where Bij(A,B) is the type of bijections between A and B.

We can also assume an equation:
If a ∈ A and f ∈ Bij(A,B) then

subst(iso eq(f ), a) f (a)

“transporting” along iso eq(f ) is like applying f .

Clearly, this is in conflict with UIP, but soundly interpretable in the
gorupoid model: Interpret Set as the groupoid whose objects are
(small) sets and where morphisms are bijections.
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Application of universe extensionality

As an application we can define Set-valued functors in the naive way:

such a functor comprises functions F0 : Ob→ Set and
F1 : Πx , y :Ob.Mor(x , y)→ F (x)→ F (y).

and proofs (in terms of Id) of the functor laws.

Ob and Mor refer to some fixed category, e.g. certain maps on finite
sets,. . .

Now from universe extensionality (iso eq) and functional
extensionality (not described) one can prove that functors are equal iff
they are naturally isomorphic.

The important notion of natural isomorphism just sort of pops out!

mh (lmumun) Groupoid Interpretation DMV-HH 24.09.2015 24 / 33



Non-example: symmetric monoidal categories

Symmetric monoidal category: category with binary operation ⊗ on
objects and morphisms (“parallel composition”). Applied in algebra,
concurrency, linear logic, . . .

Strict variant: A⊗ (B ⊗ C ) = (A⊗ B)⊗ C and
f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h. Disadvantage: often not satisfied, e.g.,
A⊗ B = A× B (cartesian product).

Non-strict variant: A⊗ (B ⊗ C ) ' (A⊗ B)⊗ C (naturally!) plus
MacLane’s pentagon: the two ways of '-rewriting ((A⊗B)⊗C )⊗D
to A⊗ (B ⊗ (C ⊗ D)) are equal.

If we replace = by Id , do strict and non-strict coincide?

Naturality of the isomorphisms again pops out, but pentagon does
not.
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Another application: “suggesting” equations

Remember that the groupoid structure of IdA is provable from the
syntax.

So, it’s there hidden in Martin-Löf’s axioms for equality.

Turns out, that also the proofs, say of associativity of trans, satisfy
some equations, etc.

The syntax of Martin-Löf type theory induces the structure of a weak
ω-groupoid: never any actual equations, just equivalences satisfying
coherence laws that again hold up to isomorphism,. . . .

At the time (late 90s) people didn’t even know how to define such a
thing.
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Trying to get people interested. . .

Return-Path: <mxh@dcs.ed.ac.uk>

Date: Wed, 18 Nov 1998 15:54:10 GMT

To: baez@math.ucr.edu

Subject: Groupoids & Martin-Loef type theory

From: "Martin Hofmann" <mxh@dcs.ed.ac.uk>

Dear John Baez,

It is with some interest that I follow as a spectator the recent

interest in higher-order category theory by theoretical physicists

notably you and your group.

In my own research on Martin-Loef type theory (don’t worry if you

have no clue what that is...) I’ve come across an intriguing application of

groupoids and [...] I kept wondering whether there might also be a

relationship between Martin-Loef type theory and your applications of

groupoids in physics. (Of course, in general "having an interesting

relationship" is not transitive ....).
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Another attempt 10 years later

. . . after talking to JB in person

Date: Fri, 14 Aug 2009 17:17:15 -0700

Message-ID: <179b05930908141717t6fc69388l442c4330cbec8a16@mail.gmail.com>

Subject: Re: your talk at LICS

From: John Baez <john.c.baez@gmail.com>

To: hofmann@ifi.lmu.de

Hi -

I found your work on infinity-groupoids from Martin Loef type

theory to be very inspiring - this is exactly the sort of

approach to logic that I’m excited by.
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And in Week 279 (Sept. 2009) of “This weeks finds”:

I also won’t tell you about the new revolution

linking logic to weak -groupoids. For that you’ll have to read these:

15) Martin Hofmann and Thomas Streicher,

The groupoid interpretation of type theory, in [...]

16) Steve Awodey and Michael A. Warren, Homotopy theoretic

models of identity types, available as arXiv:0709.0248.

17) Steve Awodey, Pieter Hofstra, Michael A. Warren,

Martin-Lf Complexes, available as arXiv:0906.4521.

18) Benno van den Berg and Richard Garner, Types are

weak omega-groupoids [...]
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Learning about Homotopy type theory

From: Helmut Schwichtenberg <schwicht@mathematik.uni-muenchen.de>

To: hofmann@ifi.lmu.de,

Thomas Streicher <streicher@mathematik.tu-darmstadt.de>

Cc: vladimir@ias.edu, morel@mathematik.uni-muenchen.de

Subject: Vladimir Voevodsky on homotopy lambda calculus

Date: Mon, 09 Nov 2009 17:44:09 +0100

Lieber Herr Hofmann, lieber Herr Streicher,

I write this in English because of the cc above. Vladimir Voevodsky

is visiting LMU this week (Fabien Morel is his host), and he will give

a talk at our math colloquium next Friday (13.11., 16:15, Room B 006)

on homotopy lambda calculus. In a discussion we had today it was

obvious that there will be many relations to the theses of the two of

you. It would be very nice if you could come to this lecture (maybe

even from Darmstadt?)

Mit freundlichem Gruss,

Helmut Schwichtenberg
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Quillen model structures

Retrospectively, I know that the Quillen model structures invented well
before Martin-Löf type theory also contain ω-groupoids in implicit form.

Fibrations ⇔ Dependent types
Cofibrations ⇔ Isomorphisms up to Id
Factorisation of diagonal ⇔ Identity type + refl
Diagonal fill-in ⇔ J-elimination rule
Awodey, Shulman, and others have shown how Quillen model
structures yield models of type theory and vice versa. Although some
object about degree of rigour. . .
Possible advantage of type theory: more explicit syntax, can be
completely formalized
Possible advantage of Quillen model structure: More “semantic”,
should be easier to discover in actual mathematical structures
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Recent use of groupoids: proof-relevant logical relations

In ongoing work (TLCA 13, POPL14,. . . ) we (Benton, Nigam, H.) use
groupoids (for the time being only setoids, to be honest) to describe the
current assumptions on the heap in a functional program with side-effects.
One specific curiosity that may be of interest:

In order to accommodate general recursion we need groupoids relative
to complete partial orders (“Scott domains”), but

There do not exist nontrivial group objects in the category of posets:
The inverse operation would have to be both monotone and antitone,
thus equal to the identity.

There do, however, exist nontrivial CPO-enriched groupoids.
I A = {⊥,>}, A(⊥,⊥) = {?}, A(>,>) = Z. A(>,⊥) = A(>,⊥) = ∅.

Order on morphisms: (⊥, ?⊥) ≤ (>, 0,>).
I B = (P(N),⊆), B(U,V ) = Bij(U,V ), (U, ϕ,V ) ≤ (U ′, ϕ′,V ′) ⇐⇒

U ≤ U ′,V ≤ V ′, ϕ′|U = ϕ.

Possible to define general recursion in the resulting category of
CPO-enriched groupoids.
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