
Extensional concepts in intensional type theory

Martin Hofmann

Doctor of Philosophy

University of Edinburgh

1995

Abstract

Theories of dependent types have been proposed as a foundation of constructive

mathematics and as a framework in which to construct certi�ed programs. In

these applications an important role is played by identity types which internalise

equality and therefore are essential for accommodating proofs and programs in the

same formal system.

This thesis attempts to reconcile the two di�erent ways that type theories deal

with identity types. In extensional type theory the propositional equality induced

by the identity types is identi�ed with de�nitional equality, i.e. conversion. This

renders type-checking and well-formedness of propositions undecidable and leads

to non-termination in the presence of universes. In intensional type theory propos-

itional equality is coarser than de�nitional equality, the latter being con�ned to

de�nitional expansion and normalisation. Then type-checking and well-formedness

are decidable, and this variant is therefore adopted by most implementations.

However, the identity type in intensional type theory is not powerful enough

for formalisation of mathematics and program development. Notably, it does

not identify pointwise equal functions (functional extensionality) and provides no

means of rede�ning equality on a type as a given relation, i.e. quotient types. We

call such capabilities extensional concepts. Other extensional concepts of interest

are uniqueness of proofs and more speci�cally of equality proofs, subset types, and

propositional extensionality|the identi�cation of equivalent propositions. In this

work we investigate to what extent these extensional concepts may be added to

intensional type theory without sacri�cing decidability and existence of canonical

forms. The method we use is the translation of identity types into equivalence

relations de�ned by induction on the type structure. In this way type theory with

i

Abstract ii

extensional concepts can be understood as a high-level language for working with

equivalence relations instead of equality. Such translations of type theory into

itself turn out to be best described using categorical models of type theory.

We thus begin with a thorough treatment of categorical models with particular

emphasis on the interpretation of type-theoretic syntax in such models. We then

show how pairs of types and predicates can be organised into a model of type theory

in which subset types are available and in which any two proofs of a proposition

are equal. This model has applications in the areas of program extraction from

proofs and modules for functional programs. For us its main purpose is to clarify

the idea of syntactic translations via categorical model constructions.

The main result of the thesis consists of the construction of two models in

which functional extensionality and quotient types are available. In the �rst one

types are modelled by types together with proposition-valued partial equivalence

relations. This model is rather simple and in addition provides subset types and

propositional extensionality. However, it does not furnish proper dependent types

such as vectors or matrices. We try to overcome this disadvantage by using another

model based on families of type-valued equivalence relations which is however much

more complicated and validates certain conversion rules only up to propositional

equality.

We illustrate the use of these models by several small examples taken from

both formalised mathematics and program development.

We also establish various syntactic properties of propositional equality includ-

ing a proof of the undecidability of typing in extensional type theory and a corres-

pondence between derivations in extensional type theory and terms in intensional

type theory with extensional concepts added. Furthermore we settle a�rmatively

the hitherto open question of the independence of unicity of equality proofs in

intensional type theory which implies that the addition of pattern matching to

intensional type theory does not yield a conservative extension.

Acknowledgements

This thesis would not have appeared without the generous help and support of

many people to whom I wish to express my deep thanks here.

The �rst person to thank here is my supervisor Don Sannella. He has taught

me a lot on research in general and in particular on writing in our weekly meetings.

He created a wonderful environment which allowed me to focus on my research

only without being occupied by �nancial or administrative problems. His detailed

comments on an earlier draft of this thesis resulted in important improvements. My

second supervisor, Gordon Plotkin, has provided valuable guidance in discussions

and in particular has suggested and made possible a visit to Gothenburg during

which the idea for this thesis work arose. Terry Stroup, my former supervisor

from Erlangen, brought me to Edinburgh and looked after me during my �rst

year of studies. I am grateful to Rod Burstall and Andy Pitts for agreeing to be

examiners of this thesis. Rod Burstall was a \step supervisor", as he once put it,

during the whole period of this research and helped me a lot both personally and

scienti�cally.

My friend and colleague Thorsten Altenkirch provided invaluable input to my

research and moral support in many (sometimes lively) discussions. He carefully

proof-read an earlier draft and suggested major improvements. I also owe him

thanks for introducing me to Bath Street Housing Coop, the place where I spent

my �rst two years in Edinburgh. My thanks go to the Coop members too, for

making me feel at home in Scotland.

Thomas Streicher helped me in many conversations, made important sugges-

tions, and was a wonderful host during several visits of mine to Munich.

iii

Acknowledgements iv

The LFCS provided an excellent environment for scienti�c work. The courses,

the visitors, the computing facilities, and the administration took away most of

the di�culties other young researchers have to cope with.

Thanks for stimulating conversations and suggestions on the subject of this

thesis go to David Aspinall, Adriana Compagnoni, Thierry Coquand, Wolfgang

Degen, Peter Dybjer, Bart Jacobs, Per Martin-L�of, Zhaohui Luo, James Mc-

Kinna, Uwe Nestmann, Benjamin Pierce, Alex Simpson, Martin Ste�en, Makoto

Takeyama, and the members of the Edinburgh Lego Club.

Prof. Ulrich Herzog and his colleagues have provided a desk and a computer

and before all a very friendly atmosphere during two periods which I spent in

Erlangen.

I wish to acknowledge �nancial support by Edinburgh University, the DAAD,

and the European Union HCM programme, contract number ERBCHBICT930420.

My very special thanks go to my wife Annette for her love and patience during

our geographical separation.

Declaration

This thesis was composed by myself, and the work reported herein is my own,

unless explicitly declared otherwise. Large parts of the material in Chapter 5 have

already been published in [45] (Sect. 5.1), [47] (Sect. 5.2; together with Th. Strei-

cher), [44] (Sect. 5.3).

v

Table of Contents

1. Introduction 1

1.1 De�nitional and propositional equality : : : : : : : : : : : : : : : : 2

1.2 Extensional concepts : 6

1.3 Method : 8

1.3.1 The use of categorical models : : : : : : : : : : : : : : : : : 8

1.3.2 Syntactic models : 9

1.4 Applications : 11

1.4.1 Application to machine-assisted theorem proving : : : : : : 12

1.5 Overview : 13

2. Syntax and semantics of dependent types 17

2.1 Syntax for a core calculus : 17

2.1.1 Raw syntax : 17

2.1.2 Judgements : 19

2.1.3 Notation : 23

2.1.4 Derived rules and meta-theoretic properties : : : : : : : : : 24

2.2 High-level syntax : 26

2.2.1 Telescopes : 26

2.2.2 Elements of telescopes and context morphisms : : : : : : : : 26

vi

Table of Contents vii

2.2.3 De�nitions and substitution : : : : : : : : : : : : : : : : : : 27

2.3 Further type formers : 29

2.3.1 Unit type : 29

2.3.2 �-types : 29

2.3.3 Function and cartesian product types : : : : : : : : : : : : : 30

2.3.4 The Calculus of Constructions : : : : : : : : : : : : : : : : : 30

2.3.5 Universes : 32

2.3.6 Quotient types : 33

2.4 Abstract semantics of type theory : : : : : : : : : : : : : : : : : : : 33

2.4.1 Syntactic categories with attributes : : : : : : : : : : : : : : 34

2.4.2 Type constructors : 46

2.5 Interpreting the syntax : 62

2.5.1 Partial interpretation : 63

2.5.2 Soundness of the interpretation : : : : : : : : : : : : : : : : 64

2.6 Discussion and related work : 74

3. Syntactic properties of propositional equality 77

3.1 Intensional type theory : 78

3.1.1 Substitution : 78

3.1.2 Uniqueness of identity : 80

3.1.3 Functional extensionality : 83

3.2 Extensional type theory : 86

3.2.1 Comparison with Troelstra's presentation : : : : : : : : : : : 87

3.2.2 Undecidability of extensional type theory : : : : : : : : : : : 87

3.2.3 Interpreting extensional type theory in intensional type theory 89

Table of Contents viii

3.2.4 An extension of TT

I

for which the interpretation in TT

E

is

surjective : 93

3.2.5 Conservativity of TT

E

over TT

I

: : : : : : : : : : : : : : : : 96

3.2.6 Discussion and extensions : : : : : : : : : : : : : : : : : : : 109

3.2.7 Conservativity of quotient types and functional extensionality118

3.3 Related work : 120

4. Proof irrelevance and subset types 123

4.1 The re�nement approach : 124

4.2 The deliverables approach : 126

4.3 The deliverables model : 127

4.3.1 Contexts : 128

4.3.2 Families of speci�cations : 129

4.3.3 Sections of speci�cations (deliverables) : : : : : : : : : : : : 130

4.4 Model checking with Lego : 131

4.4.1 Records in Lego : 131

4.4.2 Deliverables in Lego : 132

4.5 Type formers in the model D : 135

4.5.1 Dependent products : 135

4.5.2 Dependent sums : 136

4.5.3 Natural numbers : 138

4.5.4 The type of propositions : 139

4.5.5 Proof irrelevance : 142

4.5.6 Universes : 144

4.6 Subset types : 145

Table of Contents ix

4.6.1 Subset types without impredicativity : : : : : : : : : : : : : 147

4.6.2 A non-standard rule for subset types : : : : : : : : : : : : : 147

4.7 Reinterpretation of the equality judgement : : : : : : : : : : : : : : 154

4.8 Related work : 156

5. Extensionality and quotient types 158

5.1 The setoid model : 159

5.1.1 Contexts of setoids : 160

5.1.2 Implementing the setoid model S

0

in Lego : : : : : : : : : : 163

5.1.3 Type formers in the setoid model : : : : : : : : : : : : : : : 164

5.1.4 Propositions : 165

5.1.5 Quotient types : 172

5.1.6 Interpretation of quotient types in S

0

: : : : : : : : : : : : : 174

5.1.7 A choice operator for quotient types : : : : : : : : : : : : : 178

5.1.8 Type dependency and universes : : : : : : : : : : : : : : : : 183

5.2 The groupoid model : 186

5.2.1 Groupoids : 188

5.2.2 Interpretation of type formers : : : : : : : : : : : : : : : : : 196

5.2.3 Uniqueness of identity : 203

5.2.4 Propositional equality as isomorphism : : : : : : : : : : : : 203

5.3 A dependent setoid model : 206

5.3.1 Families of setoids : 208

5.3.2 Dependent product : 212

5.3.3 The identity type : 214

5.3.4 Inductive types : 217

Table of Contents x

5.3.5 Quotient types : 220

5.4 Discussion and related work : 222

6. Applications 226

6.1 Tarski's �xpoint theorem : 227

6.1.1 Discussion : 232

6.2 Streams in type theory : 232

6.3 Category theory in type theory : 237

6.3.1 Categories in S

0

: 239

6.3.2 Categories in S

1

: 241

6.3.3 Discussion : 243

6.4 Encoding of the coproduct type : 244

6.4.1 Development in the setoid models : : : : : : : : : : : : : : : 245

6.5 Some basic constructions with quotient types : : : : : : : : : : : : : 247

6.5.1 Canonical factorisation of a function : : : : : : : : : : : : : 248

6.5.2 Some categorical properties of S

0

: : : : : : : : : : : : : : : 249

6.5.3 Subsets and quotients : 250

6.5.4 Saturated subsets : 252

6.5.5 Iterated quotients : 253

6.5.6 Quotients and products : 253

6.5.7 Quotients and function spaces : : : : : : : : : : : : : : : : : 254

6.6 � is co-continuous|intensionally : : : : : : : : : : : : : : : : : : : 255

6.6.1 Parametrised limits of !-chains : : : : : : : : : : : : : : : : 256

6.6.2 Development in TT

E

: 257

6.6.3 Development in TT

I

: 258

Table of Contents xi

7. Conclusions and further work 260

A. Lego context approximating S

0

262

A.1 Extensionality axioms : 262

A.2 Quotient types : 263

A.3 Further axioms : 263

B. Syntax 264

C. A glossary of type theories 272

D. Index of symbols 274

Chapter 1

Introduction

Theories of dependent types have been proposed as a foundation of construct-

ive mathematics [72,19] and as a framework in which to construct certi�ed pro-

grams [64,19,109] and to extract programs from proofs [27,87]. Using implement-

ations of such type theories, substantial pieces of constructive mathematics have

been formalised and medium scale program developments and veri�cations have

been carried out.

One key feature of dependent type theories making them so apt for these

applications is that to a certain extent they allow the internalisation of meta-

theorems; they can \speak about themselves". For instance, it is possible to

use such a type theory as a programming language and at the same time for

reasoning about these programs. Then, the proof that e.g. a program meets its

speci�cation is an element of a certain type and the fact that this is so can be

checked automatically.

To a great extent this is made possible through the internalisation of equal-

ity by propositional equality and more generally through the interplay between

propositional equality and (intensional) de�nitional equality.

The main subject of this thesis is to study this interplay and in particular

extensions to propositional equality which maintain the desirable properties of the

de�nitional equality.

1

Chapter 1. Introduction 2

1.1 De�nitional and propositional equality

In extensional type theory and axiomatic set theory the constant zero function

and the function de�ned by

f(n) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0; if there is no counterexample to Fer-

mat's conjecture of size less than n

1; otherwise

are (probably) equal, whereas intensionally they are quite distinct, because their

de�nitions are entirely di�erent. On the other hand, even in an intensional setting

there may be a proof that the extensions of the two functions agree. In the presence

of such a proof it should be the case that whenever some de�nable property holds

for the constant zero function then it also holds for f .

1

However, certain equalities do not require a proof. For instance, in the above

example the function f equals the function which searches for a counterexample

to Fermat's conjecture. Similarly, we have

if true then e else e

0

= e (1.1)

just by appealing to the de�nition of the if-then-else construct. One therefore

speaks in the former case of a propositional equality whereas in the latter we have

an example of a de�nitional equality. The precise borderline between propositional

and de�nitional equality is uid, but it appears to be commonly agreed that two

1

A simpler example of propositionally equal yet intensionally di�erent functions is

given by the identity on the natural numbers and the function �x:N:Suc

x

(0) sending

x to the x-fold iteration of the successor function on zero. The example with Fermat's

conjecture is however more convincing since one could imagine an intensional theory in

which the former two functions become identi�ed by some \�-rule" for natural num-

bers, whereas in no reasonable intensional or algorithmic setting would one identify two

functions the propositional equality of which is equivalent to Fermat's conjecture.

Chapter 1. Introduction 3

objects are de�nitionally equal if after certain computation steps they evaluate

to identical results.

2

Traditionally, de�nitional equality is therefore meant to be

induced by a strongly normalising conuent rewriting system; in an extended sense

we might simply require de�nitional equality to be decidable and furthermore that

the decision procedure be induced by some notion of terminating computation on

terms. Indeed, we shall consider notions of de�nitional equality de�ned indirectly

via interpretation in some syntactically constructed model.

It is important that de�nitional equality is pervasive so if M and N are de�n-

itionally equal then P (M) is de�nitionally equal to P (N) whatever P is. In

particular the proposition stating that M is propositionally equal to N is de�ni-

tionally equal to the proposition that M is propositionally equal to itself. Since the

latter proposition is always true, de�nitional equality always entails propositional

equality, but certainly not vice versa.

This distinction between \obvious" identities which do not require a proof and

\meaningful" identities which need to be veri�ed is the key di�erence between

intensional and extensional theories. In an extensional theory every identity needs

a proof, whereas in an intensional theory a notion of computation or de�nitional

expansion is built in.

An illustrative example of de�nitional equality arises in category theory. For

conceptual reasons one often does not want to have an equality on objects. Non-

etheless, such an equality is needed to state when a composition f � g is de�ned,

namely when the domain of f and the codomain of g agree. A careful analysis of

common practice shows that the word \agree" here refers in most cases to de�n-

itional equality of objects. For example if G(X) = A �X one would be allowed

2

Luo [67] con�nes de�nitional equality to actual de�nitional expansion and considers

1.1 as an instance of \computational equality". However, since computational and de�n-

itional equality behave identically syntactically this distinction is merely a philosophical

one. On the other hand, Martin-L�of [71] explains the use of the term \de�nitional" for

equalities like 1.1 on the grounds that the \non-canonical" term former if-then-else is

de�ned by 1.1 and a corresponding clause for false.

Chapter 1. Introduction 4

to compose a morphism with codomain G(X) with a projection, but no category

theorist would write \let's prove that the domain and codomain of the following

two morphisms are equal".

A formal framework in which both propositional and de�nitional equality are

present is Martin-L�of's intensional type theory [85]. De�nitional equality is ex-

pressed by the equality judgement � ` M = N : � meaning that M and N are

de�nitionally equal terms of type � in context (type assignment) �. There is also

a notion of de�nitional equality on types: � ` � = � . Propositional equality of

terms M and N is expressed by the judgement � ` P : Id

�

(M;N) meaning that

P is a proof that M and N are propositionally equal terms of type � in context

�. Here \Id" is Martin-L�of's identity type which is de�ned as an inductive family

with the single constructor Re(M) : Id

�

(M;M).

In the presence of a type of propositions \Prop" one can also de�ne proposi-

tional equality by Leibniz's principle. According to this principle a proof that M

is propositionally equal to N is a proof that whenever a property P : � ! Prop

holds for M then it holds for N .

These formulations demonstrate an important aspect of propositional equality

in intensional type theory|the fact that it internalises proofs of equality. Propos-

itional equality is identi�ed with the type of its proofs and it is decidable whether

a term belongs to this type or not. In contrast, in set theory one may de�ne an

\identity type" by

Id

set

�

(M;N) =

8

>

<

>

:

f?g if M = N

; otherwise

Then Id

set

�

(M;N) is nonempty i�M and N are equal, but membership in Id

set

�

(M;N)

is not in general decidable, so ? cannot be considered a proof that M equals N .

A similar situation occurs in extensional Martin-L�of type theory [72,31] where

propositional and de�nitional equality are forcefully identi�ed by the equality re-

ection rule

� ` P : Id

�

(M;N)

� ` M = N : �

Id-DefEq

Chapter 1. Introduction 5

This rule makes de�nitional equality extensional

3

and thus undecidable (Sect. 3.2.2).

Moreover, type checking becomes undecidable because Re(M) : Id

�

(M;N) holds

i� M and N are de�nitionally equal. Also, the term Re(M) can no longer be

considered a proof that M and N are equal as is the case in of the above \identity

type" in set theory. For these and other reasons (see Sect. 3.2.6.2) interest in ex-

tensional type theory seems to have recently decreased. We shall however explain

in Chapter 3 that the equality reection rule can be seen as a shortcut for longer

derivations in intensional type theory.

Unfortunately, the abovementioned formalisations of propositional equality

(identity type and Leibniz equality) su�er from serious limitations when they are

used at types which are not inductive. For example, if P : �x:�:Id

�

(f x; g x) is a

proof that f and g are point-wise propositionally equal then there is in general no

way of constructing an element of Id

�!�

(f; g) although in the presence of P the

functions f and g are clearly propositionally equal in the abstract sense. This has

led to the common misunderstanding that the identity type was intensional. This

is not so because if M(x) and N(x) are expressions containing a free variable of

type � then in certain cases an element of Id

�

(M(x); N(x)) may be constructed

by induction on x even if M(x) and N(x) are not de�nitionally (i.e. intensionally)

equal.

4

Summing up, we can say that de�nitional equality is intensional|it identi�es

objects which become identical upon de�nitional expansion and/or computation;

and that (idealised) propositional equality is extensional, but that it is not ad-

3

Strictly speaking, de�nitional equality does not become extensional here, but the

equality judgement no longer expresses de�nitional equality. To avoid the introduction

of a third notion of equality, judgemental equality , we shall by a slight abuse of language

identify de�nitional equality with the relation expressed by the equality judgement.

4

Luo [67] therefore calls the identity type \weakly intensional". A way of justifying

the predicate \intensional" for the identity type consists of decreeing that intensional

equality on open terms refers to de�nitional equality of all closed instances.

Chapter 1. Introduction 6

equately captured by the identity type or Leibniz equality. This thesis is an

attempt at overcoming this mismatch.

1.2 Extensional concepts

We use the term \extensional concept" to refer to a desirable feature of propos-

itional equality which is not present in its traditional formulation. In this thesis

several such extensional concepts are of interest, notably the following:

i. Functional extensionality: Two functions which are point-wise proposition-

ally equal are propositionally equal.

ii. Uniqueness of identity: Any two proofs of a propositional equality are pro-

positionally equal.

iii. Proof-irrelevance: Any two proofs of a proposition are propositionally equal.

iv. Subset types: The presence of a type former which permits the formation of

a type of elements of a given type that satisfy a certain predicate.

v. Propositional extensionality: Two propositions which imply each other are

propositionally equal.

vi. Quotient types: The presence of a type former which permits arbitrary de�n-

ition of propositional equality on some underlying type.

These extensional concepts are not independent of each other. In particular

iii implies iv and vi implies i (see Sect. 3.2.7) Also, v implies iii if one assumes

a distinguished proposition with exactly one proof. The concepts iii, v, iv only

make sense if there is a di�erence between propositions and arbitrary types. In

this thesis this di�erence is expressed by the assumption of a type of propositions

Prop and a type Prf(P) for each P : Prop. The propositions are then the types

of the form Prf(P) and the elements of these types are proofs. If for conceptual

Chapter 1. Introduction 7

reasons one does not want to have a type of all propositions one can also introduce

a new judgement � ` � Prop to mean that the type P is a proposition. We only

hint at this alternative in Remarks 4.6.1 & 5.1.11.

The concept of uniqueness of identity is of course a special case of proof-

irrelevance, so it only makes sense in the absence of the latter, for example in a

theory with propositions and types identi�ed.

In extensional type theory, these extensional concepts are either present or can

be added easily, see e.g. [31]. Here we take on the more di�cult task of adding

them to intensional type theory. Apart from the advantages of intensional type

theory in general this has the desirable e�ect that we can add a choice principle

for quotient types 5.1.7 which would be unsound in any extensional theory.

Extensional concepts could simply be added axiomatically and justi�ed se-

mantically, say by a set-theoretic interpretation. For example, in order to achieve

functional extensionality we could simply assume a family of constants

Ext

�;�

: �f; g:�! �:(�x:�:Id

�

(f x; g x)) ! Id

�!�

(f; g)

However, in this case an important property, called N-canonicity (Def. 2.1.9), of

de�nitional equality will be violated, namely that every closed term of the natural

numbers is de�nitionally equal to a numeral.

5

The reason is that a term containing

an instance of Ext cannot be de�nitionally equal to a numeral because there are

no rules governing the behaviour of Ext w.r.t. de�nitional equality. This work

can|to some extent|be seen as a quest for extensions of de�nitional equality so

as to include rules for these constants.

An exception to this is uniqueness of identity. As noticed by Streicher [101] it

can indeed by added axiomatically and the axiom can be endowed with a reduction

rule so that no non-canonical elements arise. For us the concept is of relevance

because it is needed to establish equivalence of extensional and intensional type

theory with extensional concepts added (3.2.5).

5

The use of the natural numbers is arbitrary here. One can easily show that a non-

canonical element in some other type induces one in the type of natural numbers.

Chapter 1. Introduction 8

1.3 Method

The main tool we use in order to achieve the goals set out above consists of de�n-

ing interpretations of the type theory with extensional concepts inside pure type

theory. For example, in order to achieve functional extensionality and quotient

types, one interprets every type as a type together with an (internal) equivalence

relation and propositional equality at a particular type as this equivalence rela-

tion. Since this approach is inspired by Bishop's de�nition of a set by its members

and its equality [9] we call this translation the setoid interpretation. Similarly,

for subset types and proof-irrelevance we use a translation of types into types

with unary predicates and of terms into terms plus proofs that these predicates

are respected. Following Burstall and McKinna [13] we call this translation the

deliverables interpretation.

Given such an interpretation we can consider two objects de�nitionally equal if

they receive de�nitionally equal interpretations and in this way ensure N-canonicity.

1.3.1 The use of categorical models

It turns out that due to type dependency the veri�cation that a certain translation

indeed validates all the rules of type theory is quite di�cult. It has therefore

proven useful to insert the intermediate step of abstract categorical models. One

then de�nes a sound interpretation function from the syntax to the abstract model

once and for all and the task of proving that a certain translation is sound can

then be reduced to the task of verifying that one has an instance of the abstract

model.

This may be compared to the situation in the simply typed lambda calculus.

Instead of directly giving an interpretation of typed lambda terms in some math-

ematical structure one can alternatively show that this structure forms a cartesian

closed category and then appeal to the general interpretation function mapping

Chapter 1. Introduction 9

lambda terms to morphisms in an arbitrary cartesian closed category [49]. In

our situation the role of cartesian closed categories is played by syntactic categor-

ies with attributes|an equational presentation of Cartmell's notion of categories

with attributes [15,89]. Such an equational presentation has the advantage that

the property of being a model can be checked using term rewriting (normalisa-

tion). In this way we have encoded all the syntactic models within the Lego proof

checker [68] and advantageously used its normalisation features to verify them.

1.3.2 Syntactic models

So the task of interpreting type theory with extensional concepts can be rephrased

as that of exhibiting a categorical model in which the desired extensional concepts

are valid. The aims set out in Sect. 1.3 above place certain restrictions on such

models.

Firstly, in order that (semantically de�ned) de�nitional equality be decidable,

equality in the model must be decidable, which presupposes that the semantic

objects come with some e�ective description.

Second, the model must have the property that the type of natural numbers

consists of numerals only so that we obtain the desired property that even in the

presence of an extensional concept every closed term of the natural numbers is

de�nitionally equal to a numeral (N-canonicity).

Now any model satisfying these two requirements would meet the speci�cation

set out so far. However, in addition to this we want that the model explains the

extensional concepts in terms of more basic ideas. \More basic" in this context

means in terms of type theory without extensional concepts added. We thus seek

a syntactic model the objects of which are syntactical and the equality of which is

induced by the de�nitional equality of the underlying type theory.

The interpretation in the model then not only induces a coarser notion of

de�nitional equality, but actually computes syntactic expressions which no longer

contain the extensional concepts. Extensional concepts may therefore be seen as

abbreviations or \macros" for longer derivations in the theory without them.

Chapter 1. Introduction 10

In particular, working in the syntactic model for functional extensionality and

quotients can be viewed as using a high-level language for working with equivalence

relations instead of equality and functions together with proofs that they respect

these relations instead of mere functions. Similarly, the syntactic model for subset

types and proof irrelevance can be understood as a high-level language for working

with \deliverables" in the sense of [13], i.e. functions together with proofs that they

respect certain predicates.

We also encounter a model which cannot be called syntactic|the groupoid

model. It is similar in spirit to the syntactic models we give and serves similar

purposes. The groupoid model can be seen as a re�nement of the setoid interpret-

ation in which proofs are constrained by equations. For example the proof that

a function respects equality must respect symmetry. This allows for a more �ne-

grained de�nition of (semantic) propositional equality on the identity type itself

which both shows the underivability of uniqueness of equality proofs and permits

a view of propositional equality of types as isomorphism.

It turns out that the syntactic models for the various extensional concepts

discriminate between the features present in the type theory under consideration.

For instance, the simplest model for quotient types does not support universes

and other more involved forms of type dependency like the de�nition of a family

of types indexed over Booleans by case distinction. It is possible to extend this

model to cover universes, but then the extensional concepts are only available for

types in the universe and not for the universe itself. De�nition of types by cases is

still not possible. On the other hand, in a more complicated model in which these

type dependencies are available, certain expected de�nitional equalities only hold

propositionally, for example certain instances of the computation rules associated

to elimination of natural numbers. Some of these limitations have a natural ex-

planation in terms of the intended meaning of the particular extensional concept in

question; others, like the lack of certain de�nitional equalities, are rather arbitrary

but nevertheless seem unavoidable.

Of course here the question arises whether the method of syntactic models is

not too restrictive. Certainly, any approach to extensional concepts would (modulo

Chapter 1. Introduction 11

some coding) be induced by a model which meets the �rst two requirements on

a syntactic model, viz. semantic equality would have to be decidable and the

interpretation of the natural numbers would have to consist of numerals only.

Given that from the model one also expects some insight about the nature of the

extensional concepts, not much choice is left. We cannot exclude the existence

of such non-syntactic models, but have not encountered any in the course of the

research reported here.

1.4 Applications

The applications of extensional concepts are numerous. Functional extensionality

is required when one wants to reason about higher-order functions and also when

coding coinductive types and greatest �xpoints using function types [60]. Quotient

types are of pivotal use in formalisations of proofs in constructive algebra, since

the most elementary algebraic constructions involve quotients. Quotient types also

provide bisimulation principles to reason about in�nite types. This may facilitate

semantics-based veri�cation of concurrent programs. Subset types can be used

for modular speci�cation. Here the additional computational principle that a

function on a subset type should embody an algorithm de�ned on the whole type

is important (Sect. 4.6.2). Proof irrelevance and propositional extensionality are

of more theoretical interest. For example, propositional extensionality implies

that quotient types are e�ective, i.e. that if two equivalence classes are equal in a

quotient type then their representatives are related (Sect. 5.1.6.4). We work out

several of these applications in some detail in Chapter 6.

Most of the applications also go through if the extensional concepts are merely

assumed axiomatically without supporting them by a syntactic model. Indeed, we

establish a conservativity property (Thm. 3.2.5) of which this fact is a general con-

sequence. The bene�t of the syntactic models in applications is three-fold. First,

they show that using (partial) equivalence relations (called \book-equalities" in

the Automath tradition [25]) is essentially equivalent to using propositional equal-

Chapter 1. Introduction 12

ity with extensional concepts added. Even if one does insist on \book-equalities",

the syntactic models may guide their use, which is particularly important in the

presence of type dependency. Second, they allow to gauge the di�erences in ex-

pressiveness between various approaches to \book-equalities", e.g. equivalence re-

lations vs. partial equivalence relations, Prop-valued vs. type-valued relations, et

cetera. Finally, two of the syntactic models we look at give rise to a complete

separation between proofs and computations. De�nitional equality in the model

only compares the computational parts, so that the decision procedure for equality

and type checking becomes more e�cient.

1.4.1 Application to machine-assisted theorem proving

Theorem proving in type theories with or without extensional concepts is in prin-

ciple possible by writing down derivations according to the rules. For realistic

applications these rules are, however, unmanagable and one either has to move

to informal notation or use machine support. For ordinary type theory without

extensional concepts such machine support exists in the form of proof assistants

like Lego [68]. There are in principle two possibilities as to how a proof assistant

can be extended so as to provide extensional concepts.

As said above, most of the applications go through with axiomatically added

extensional concepts. The Lego system allows for the addition of axioms or con-

stants and even for the addition of certain de�nitional equalities as rewrite rules.

In Appendix A we give Lego code which approximates in this sense one of the syn-

tactic models for extensionality and quotient types (a setoid interpretation). The

main disadvantage of this simple-minded approach is that terms of the natural

numbers may contain instances of these axioms and thus not reduce to a canon-

ical form. We also encounter certain non-standard operations on subset types and

quotient types which cannot be cast into the form of Lego constants.

A deeper application of the work described here consists of a changing the im-

plementation of the proof assistant itself so that it would compute interpretations

in a syntactic model of all types and terms occurring during a proof session and

Chapter 1. Introduction 13

use these interpretations to decide de�nitional equality and thus type checking.

This would restore the ability of internal computation on terms and would also

support the non-standard operations. Additionally, the interpretations could be

made accessible to the user for subsequent processing. For instance, in the case of

the syntactic model for proof-irrelevance the computational part of the interpret-

ation can be seen as a program corresponding to the computational content of a

proof.

Unfortunately, such a change to a proof assistant involves substantial practical

e�ort and thus falls beyond the scope of this thesis.

1.5 Overview

Chapter 2 recapitulates the syntax of dependent type theory including universes

and impredicative quanti�cation. We use a judgement-oriented presentation without

a logical framework. In order to compensate for the lack of a logical framework

we develop a high-level syntax for substitutions and free variables. In the second

part of Chapter 2 we introduce our notion of categorical model for dependent type

theory, so-called syntactic categories with attributes, and we describe the inter-

pretation of syntax therein. The de�nition of the interpretation function and the

soundness proof closely follows [100].

The third chapter is mainly devoted to a comparison between intensional type

theory with extensional concepts added and extensional type theory. The main

result is that the latter is conservative over the former. Together with the unde-

cidability of extensional type theory we consider this result the main theoretical

justi�cation for the use of intensional type theory with extensional concepts added.

We also describe some basic constructions with the identity type that are required

later, such as the de�nition of Martin-L�of's elimination rule in terms of a Leibniz

principle.

Chapter 4 contains the �rst syntactic model construction, a \deliverables inter-

pretation" of the Calculus of Constructions, which models types as types together

Chapter 1. Introduction 14

with a predicate. The model supports subset types and proof-irrelevance, and

it interprets a non-standard rule for subset types which under certain conditions

allows one to lift a function de�ned on a subset to a function on the whole set.

The interpretation establishes a correspondence between two methodologies for

program development in type theory, the deliverables approach and the re�ne-

ment approach. We also sketch an application of the interpretation to typing of

higher-order modules.

Our main purpose in presenting the deliverables interpretation is, however,

to introduce the methodology of describing translations of type theory into itself

using categorical models, and to indicate how the veri�cation of such a categorical

model can be mechanised using Lego.

Chapter 5 forms the kernel of this thesis. It contains three model constructions

centred around extensionality and quotient types. Section 5.1 describes an inter-

pretation under which types are modelled as types together with a Prop-valued

partial equivalence relation (\setoids"). The interpretation is rather simple be-

cause type dependency is only allowed at the level of the relations, not for the

types themselves. In this model functional and propositional extensionality, sub-

set types, and quotient types can be interpreted. For the quotient types a choice

operator may be de�ned which under certain conditions allows a representative

to be recovered from an equivalence class. The model does not contain any prop-

erly dependent types such as matrices and universes. To alleviate this we look at

an extension with universes obtained by amalgamating the setoid model with the

deliverables interpretation. In this way a universe is supported, but extensional

concepts become restricted to types inside the universe.

Sect. 5.3 describes an attempt to overcome the lack of type dependency in the

previous model. We try to answer the question of what the right de�nition of a

family of setoids indexed over a setoid might be, under the hypothesis that the

underlying types of such a family should depend on the underlying type of the

indexing setoid. The criterion for the value of such a de�nition is of course that

the families must form a syntactic category with attributes and support as many

type formers as possible as well as functional extensionality. The answer turns out

Chapter 1. Introduction 15

to be rather unsatisfactory; the model is quite complicated and the veri�cation

even of the type of natural numbers is extremely complicated.

In Sect. 5.2 the|in our opinion|most natural solution to the above question

of dependent setoids is described: the groupoid interpretation of type theory. It is,

however, not a syntactic model, but can only be de�ned in extensional type theory

or set theory. We show how the groupoid interpretation answers the question

of independence of uniqueness of identity and how it permits one to interpret

propositional equality on a universe as isomorphism. It also motivates the setup

of the dependent setoid model in Sect. 5.3, which is why we describe it �rst.

Chapter 6 is devoted to applications of the extensional concepts and of the

conservativity of extensional type theory over intensional type theory with exten-

sional concepts added. Many of these applications have been actually formally

developed within the Lego proof checker.

Sect. 6.1 studies a formalisation of Tarski's generalised �xpoint theorem using

subset types. The main lemma|a property of posets|is instantiated in the course

of the proof with various sub-posets of a given one, whence the need for subset

types. Our development is based on an earlier formalisation by Pollack, which can

be viewed as the result of translating our development to intensional type theory

using the interpretation in the deliverables model.

Sect. 6.2 studies an important application of functional extensionality|an en-

coding of in�nite lists (\streams") as functions. We derive a coinduction principle

for these streams and de�ne a �xpoint combinator the veri�cation of which makes

heavy use of coinduction.

In Sect. 6.3 we describe a simple-minded encoding of category theory in type

theory with extensional concepts (propositional equality is used to compare both

objects and morphisms). We investigate how this encoding gets translated un-

der the various interpretations in terms of setoids. The resulting encodings in

pure intensional type theory resemble encodings proposed independently by other

authors.

Chapter 1. Introduction 16

Sect. 6.4 serves a similar purpose. We show how an encoding of disjoint-union

types in extensional type theory due to Troelstra gets translated under the setoid

interpretations. In particular we show in some detail how functional extensionality

gets eliminated.

Sect. 6.5 is devoted to an examination of our syntax for quotient types by

redoing certain constructions with quotient sets collected by Bourbaki [10] in order

to become independent of their encoding as sets of equivalence classes. All but one

construction go through; we explain why this one (isomorphism between the two

de�nitions of the image of a function as a subset and as a quotient) must fail under

a constructive understanding of quotienting as a rede�nition of (propositional)

equality.

Finally, Sect. 6.6 gives an application of the conservativity of extensional type

theory over intensional type theory. We give an extensional type-theoretic vari-

ant of a theorem due to Mendler which involves indexed families of sets. Our

formalisation is such that the conservativity theorem implies the existence of a

proof of this theorem in intensional type theory with functional extensionality and

uniqueness of identity. However, we were not able to come up explicitly with such

a proof. This \application" suggests that in certain situations extensional type

theory might be useful as a high-level language for type theory with extensional

concepts.

Each of the four theoretical chapters ends with a section discussing possible

extensions and related work. General conclusions and some directions for future

research are summarised in Chapter 7.

The appendix contains a summary of the type-theoretic rules used throughout

the thesis, a glossary of type theories appearing in the thesis, and an index of

symbols. We also include a translation into Lego syntax of some of the rules for

extensional concepts.

Chapter 2

Syntax and semantics of dependent types

In this chapter we �x a particular syntax for a dependently typed calculus and

de�ne an abstract notion of model as well as a general interpretation function

mapping syntactical objects to entities in a model. This interpretation function is

shown to be sound with respect to the syntax.

2.1 Syntax for a core calculus

We start by giving a syntactic description of intensional Martin-L�of type theory

with �-types, natural numbers, and the identity type [71]. On top of this we can

add further inductive types, �-types, universes, impredicative quanti�cation and

so forth, in order to accommodate richer systems like the Calculus of Constructions

[19] or Lego/ECC [65,67]. The syntax we give does not make use of a \logical

framework" as e.g. in [85] or [101]. We could, however, view the core calculus as

a framework and make all further de�nitions of types inside some universe. So we

do not really commit ourselves to a particular style of presentation.

2.1.1 Raw syntax

The raw syntax is formed out of three categories: pre-contexts, pre-types, and

pre-terms. These are de�ned by the grammar in Fig. 2{1.

17

Chapter 2. Syntax and semantics of dependent types 18

� ::= � empty context

j �; x:� context extension

�; � ::= N natural numbers

j �x:�:� dependent product

j Id

�

(M;N) identity type

M;N;O;P ::= x variable

j 0 N introduction (zero)

j Suc(M) N introduction (successor)

j R

N

�

(M;N;O) N elimination (induction)

j �x:�:M

�

typed abstraction

j App

�;�

(M;N) typed application

j Re

�

(M) identity introduction

j J

�;�

(M;N;O;P) identity elimination

Figure 2{1: Syntax of pre-constructions

A few remarks concerning this presentation are in order. First, note that we

include type information in application and abstraction. This makes the de�nition

of the interpretation function for models easier, and it appears somewhat arbitrary

to leave the type information out in this particular place. Indeed much more type

information could be inferred automatically and for an actual implementation one

would set up some sort of front end which would generate as much type information

as possible so that the syntax we give here would only appear as an intermediate

language. Cf. also Streicher [100] where situations are indicated in which the

typing information in an application can not be inferred. To increase readability

we shall, however, often suppress type information informally and in particular we

abbreviate App

�;�

(M;N) by (M N) and �x:�:M

�

by �x:�:M or even �x:M where

appropriate. See Coquand's survey article [16, Sect. 2.3] for a deeper discussion

of such abus de langage.

Chapter 2. Syntax and semantics of dependent types 19

Second, we are a bit sloppy about variable binding in our presentation. For

example, as will emerge from the typing rules, the type � in of R

N

�

contains a free

variable of type N which becomes bound in R

N

�

. To be consistent with the usual

notation we make this binding explicit in the case of �-types, but otherwise not,

since it would lead to overly clumsy terms.

We identify all constructions up to renaming of both free and bound variables

and ensure by a suitable renaming policy that no unwanted variable captures

occur. This could be made more precise by using de Bruijn indices instead of

named variables, but the price to pay is that syntactic weakening would no longer

be the identity and thus notation would become less readable.

The union of pre-terms, -types, and -contexts is called the set of pre-construc-

tions. The pre�x \pre" indicates that these need not \typecheck" in any sense.

The actual terms, types, and contexts (constructions) are those which occur inside

the typing judgements to be de�ned in the next section. To avoid repetition we

use the synonyms \element", \function", \operation" for \terms", where the latter

two are mostly used for terms with distinguished free variables. We also sometimes

say \set" instead of \type".

2.1.2 Judgements

There are six kinds of judgements.

� ` � is a well-formed context of variable declarations

� ` � � is a type in context �

� `M : � M is a term of type � in context �

` � = � The contexts � and � are equal

� ` � = � The types � and � both in context � are equal

� `M = N : � The terms M and N of type � are equal

The last three kinds of judgements state de�nitional equality of contexts, types,

and terms. The valid judgements are de�ned inductively by the following clauses.

Chapter 2. Syntax and semantics of dependent types 20

2.1.2.1 Context rules

Valid contexts are generated from the empty context by successive extensions.

� `

Empty

� ` �

�; x : � `

Compr

It follows from our conventions on variable names that in rule Compr the variable

x does not occur in �.

2.1.2.2 Type formation rules

For each of the type formers N, Id, � there is a formation rule stating the con-

ditions under which a pre-type having that type former as outermost constructor

is well-formed. In particular the type formation rule for � speci�es its binding

behaviour.

�; x : � ` �

� ` �x : �:�

�-Form

� ` M : �

� ` N : �

� ` Id

�

(M;N)

Id-Form

� `

� ` N

N-Form

2.1.2.3 Term formation rules

First, there are two \structural rules" which de�ne the typing of variables and

type conversion along type equalities.

�; x:�;� `

�; x:�;� ` x : �

Var

� ` � = �

� ` M : �

� `M : �

Conv

The following rules each correspond to a constructor on pre-terms and de�ne its

well-formedness and typing. In particular they de�ne the binding behaviour of

the term formers �, R

N

�

, and J

�;�

. The rules can be grouped in pairs according to

whether a certain type appears in the conclusion (introduction) or in a premise

(elimination) of the rule. The rules corresponding to the �-type are

� ; x : � `M : �

� ` �x:�:M

�

: �x:�:�

�-Intro

� `M : �x:�:� � ` N : �

� ` App

�;�

(M;N) : � [x := N]

�-Elim

Chapter 2. Syntax and semantics of dependent types 21

The introduction rules for the natural numbers de�ne the constructors 0 and Suc

whereas the elimination rule de�nes mathematical induction.

� `

� ` 0 : N

N-Intro-0

� ` M : N

� ` Suc(M) : N

N-Intro-Suc

� ; x:N ` �

� `M

z

: �[x := 0]

� ; x:N ; p:� `M

s

: �[x := Suc(x)]

� ` N : N

� ` R

N

�

(M

z

;M

s

; N) : �[x := N]

N-Elim

Notice here that the free variables x in � as well as x and p in M

s

are bound by

R

N

. We could have chosen a notation like

R

N

x:N:�

(M

z

; x:N:p:�:M

s

; N)

to emphasise this. Instead we de�ne later in Sect. 2.2 a high-level syntax for terms

and types with free variables.

Finally, for the identity type Id

�

(M;N) the introduction rule corresponds to

reexivity, whereas the elimination rule is a generalised Leibniz principle which

we study in more detail in Chapter 3.

� `M : �

� ` Re

�

(M) : Id

�

(M;M)

Id-Intro

� ; x:�; y:� ; p: Id

�

(x; y) ` �

� ; x:� `M : � [x := x][y := x][p := Re

�

(x)]

� ` N

1

: �

� ` N

2

: �

� ` P : Id

�

(N

1

; N

2

)

� ` J

�;�

(M;N

1

; N

2

; P) : � [x := N

1

][y := N

2

][p := P]

Id-Elim-J

Chapter 2. Syntax and semantics of dependent types 22

2.1.2.4 De�nitional equality

De�nitional equality of types � ` � = � , terms � ` M = N : �, and contexts

� = � is de�ned as the least congruence with respect to all type and term formers

closed under \de�nitional expansion". This means that de�nitional equality is

reexive, symmetric, and transitive:

� ` �

� ` � = �

T-Refl

� ` � = �

� ` � = �

T-Sym

� ` � = � � ` � = �

� ` � = �

T-Trans

with analogous rules for de�nitional equality on contexts and terms. Further-

more there are congruence rules for every type and term former; for example the

congruence rule for the successor and for the �-type are:

� `M = M

0

: N

� ` Suc(M) = Suc(M

0

) : N

C-Suc

� ` � = �

0

�; x:� ` � = �

0

� ` �x:�:� = �x:�

0

:�

0

C-�

Notice also the congruence rule for context extension.

` � = � � ` � = �

` �; x:� = �; y: �

C-Compr

Special attention is drawn to the congruence rule for abstraction (\�-rule") because

it is left out in some presentations of type theory. See [71] and Sect. 3.2.1.

� ` �x:�:� = �x:�

0

:�

0

�; x:� `M = M

0

: �

� ` �x:�:M

�

= �x:�

0

:M

0

�

0

: �x:�:�

C-Abstr

Finally, closure under de�nitional expansion is formalised by the following rules

which are all understood under the premise that the respective left and right hand

sides both have the indicated types.

� ` App

�;�

(�x:�:M

�

; N) = M [x := N] : � [x := N]

�-Beta

� ` R

N

�

(M

z

;M

s

; 0) = M

z

: �[x := 0]

Nat-Comp-Zero

� ` R

N

�

(M

z

;M

s

;Suc(N)) =

M

s

[x := N][p := R

N

�

(M

z

;M

s

; N)] : �[x := Suc(N)]

Nat-Comp-Suc

Chapter 2. Syntax and semantics of dependent types 23

� ` J

�;�

(M;N;N;Re

�

(N)) =

M [x := N] : � [x := N][y := N][p := Re

�

(N)]

Id-Comp

Notice that, unlike propositional equality given by Id the de�nitional equality is not

annotated by any justi�cation or proof whatsoever. Thus, � `M = M

0

: � states

that M and M

0

are de�nitionally equal terms of type � whereas � ` P : Id

�

(M;M

0

)

states that P is a proof that M and M

0

are propositionally equal terms of type �

in context �. Also a de�nitional equality can never appear as an assumption in

a context, whereas propositional equality obviously can. This stands in contrast

to the system presented in [34] in the framework of so-called labelled deductive

systems.

2.1.3 Notation

The empty context is usually left out in judgements; so we write ` N instead of

� ` N. We sometimes write � ` J for an indeterminate judgement where J may

be of the form �, � = �, �, � = � , M : �, M = N : �. In the running text the

ambient context � and the derivation symbol ` are often left out and informal

equality reasoning may be used to justify equality judgements thereby implicitly

using reexivity, symmetry, transitivity, and the congruence rules.

We shall in the sequel sometimes use an abbreviated notation for inference

rules whereby we omit the context � carried along previously. So a rule

�`J

�`J

0

is

understood as

�;�`J

�;�`J

0

. This abbreviated notation appears also in [6] and [105]. We

also use this abbreviated notation in the running text, so phrases like \let M : �

be . . . " are understood in arbitrary context �. If � ` � then we sometimes write

� ` � true to mean that there exists M with � `M : �.

The implicit typing premises to equality rules mentioned above (Sect. 2.1.2.4)

are also required in all subsequent equality rules. So an equality rule of the form

P

� `M = N : �

Chapter 2. Syntax and semantics of dependent types 24

is understood as

P;� `M : �;� ` N : �

� `M = N : �

We use the symbol � for syntactic identity including �-conversion. So �x:N:x �

�y:N:y, but (�x:N:x) 0 6� 0.

The set of set-theoretic natural numbers is denoted !. If n 2 ! we sometimes

write n also for the corresponding numeral in N, for example we write abbreviate

Suc(Suc(Suc(0))) by 3.

2.1.4 Derived rules and meta-theoretic properties

The meta-theory of systems like the above has been the subject of extensive study

[2,100,105,19,67,38]. For our development we need the following meta-theoretic

properties whose proofs are standard and may be found e.g. in [67].

Proposition 2.1.1 (Weakening) Let �;� ` and � ` �. If the judgement �;� `

J is derivable then so is �; x:�;� ` J .

Proposition 2.1.2 (Substitution) Let �; x:�;� ` and � ` M : �. If the judge-

ment �; x:�;� ` J is derivable then so is �;�[x := M] ` J [x := M]

Proposition 2.1.3 If ` � = � then � `. If � ` � = � then � ` �. If � ` M =

N : � then � `M : �.

Proposition 2.1.4 (Strong normalisation) The rewrite system obtained by dir-

ecting the non-logical equality rules (�-Beta, Id-Comp, Nat-Comp-Zero,Nat-

Comp-Suc) from left to right is strongly normalising. This induces a decision

procedure for de�nitional equality.

Proposition 2.1.5 (Decidability) It is decidable whether a judgement � ` J is

derivable.

Chapter 2. Syntax and semantics of dependent types 25

Remark 2.1.6 The strong normalisation property implies in particular that every

term in the empty context is de�nitionally equal to a canonical one, i.e. a term

having Re, 0, Suc, or � as outermost term former.

Proposition 2.1.7 (Unicity of typing) If � ` M : � and � ` M : � then

� ` � = � .

Proposition 2.1.8 (Unicity of type formation) If � ` �x:�:� = �x:�

0

:�

0

then � ` � = �

0

and �; x:� ` � = �

0

. If � ` Id

�

(M;N) = Id

0

�

(M

0

; N

0

) then

� ` � = �

0

and � ` M = M

0

: � and � ` N = N

0

: �.

These meta-properties continue to hold mutatis mutandis for the various exten-

sions to the core type theory we are going to make.

2.1.4.1 N-canonicity

We are now in the position to make precise what we mean by the property that

in the empty context terms of the natural numbers are canonical which we hinted

at in the Introduction.

De�nition 2.1.9 (N-canonicity) A type theory with natural numbers is N-ca-

nonical if whenever � `M : N then � `M = Suc(: : :Suc(0) : : :)

| {z }

n times

for some n 2 !.

It follows from Prop. 2.1.5 and Remark 2.1.6 above that the core type theory

described so far is N-canonical. We remark that if � ` M : N is a non-canonical

element of the natural numbers and � ` L : � is any term of type � then � `

R

N

�

(L; [x:N; y:�]L;M) : � is a non-canonical element of type � so that the role of

N in the de�nition of N-canonicity is arbitrary.

Chapter 2. Syntax and semantics of dependent types 26

2.2 High-level syntax

In the syntactic model constructions we are interested in we need to de�ne various

operations on contexts and will require the notion of relative contexts or \tele-

scopes" [26]. We thus introduce some high-level syntax and derived rules and

judgements in order to deal with these. We also introduce some abbreviational

machinery to deal with de�nitions and substitutions.

2.2.1 Telescopes

If � and � = x

1

: �

1

; : : : ; x

n

: �

n

are pre-contexts then we write � ` � as an abbrevi-

ation for the n judgements � ` �

1

, �; x

1

: �

1

` �

2

up to �; x

1

: �

1

; : : : ; x

n�1

: �

n�1

` �

n

.

In this case we say that � is a context relative to or a telescope w.r.t. �. It can be

shown by induction that � ` � i� �;� ` where according to our convention the

variables in � have been suitably renamed. The type equality judgements are

extended accordingly to telescopes. I.e. we write � ` � = �

0

if � and �

0

have

the same length and de�nitionally equal components.

2.2.2 Elements of telescopes and context morphisms

Assume � ` � with � = x

1

: �

1

; : : : ; x

n

: �

n

. If f = (M

1

; : : : ;M

n

) is an n-tuple

of pre-terms then we write � ` f : � as an abbreviation for the n judgements

� ` M

1

: �

1

, � ` M

2

: �

2

[x

1

:= M

1

], up to � ` M

n

: �

n

[x

1

:= M

1

] : : : [x

n�1

:=

M

n�1

]. We then call f an element of the telescope �. In the special case where �

is independent of �, i.e. we have � ` and � `, we call f a substitution or a context

morphism from � to �. In this situation we write � ` f) �. De�nitional equality

is extended canonically to elements of telescopes, that is we write � ` f = f

0

: �

if f and f

0

have the same length and de�nitionally equal components.

Syntactic substitution generalises to elements of telescopes. If � ` f : � and

�;� ` � then we write �[(x

1

; : : : ; x

n

) := f] for the parallel substitution of all �-

variables x

1

through x

n

in � by their companions in the n-tuple f . We then have

Chapter 2. Syntax and semantics of dependent types 27

� ` �[(x

1

; : : : ; x

n

) := f]. If the variables are clear from the (linguistic) context we

also write �[f]. An analogous notation applies to substitution inside terms and

telescopes.

The context morphisms include the identity from � to � which consists of the

tuple of variables in �, and they are closed under composition, i.e. if f is a context

morphism from � to � and g is a context morphism from � to � then the parallel

substitution of f into g gives a context morphism from � to � denoted g � f . In this

way the contexts form a category, i.e. composition is associative and the identity

is neutral.

We remark that the property of unicity of typing (Prop. 2.1.7) which holds for

terms does not extend to elements of telescopes. For example the pair (0;Re

N

(0))

can be viewed as a substitution from � to x : N; p : Id

N

(x; x) or to x : N; p :

Id

N

(0; 0). Therefore, elements of telescopes ought to be annotated with typing

information which we shall, however, usually omit.

Since we are going to describe constructions involving abstractly given contexts

and telescopes we need a means of introducing variables for them. If � is a pre-

context of length n and if = (

1

; : : :

n

) is an n-tuple of variables then : �

denotes � with its variables renamed to

1

. . .

n

. This allows us for example to

write : � ` : �.

2.2.3 De�nitions and substitution

Assume �;� ` � for some type expression �. By the declaration

� [� : �] := �

the meta-variable � becomes an abbreviation for the expression �. This notation

emphasises that the variables from � are free in � . For example we may de�ne

eqzero[n : N] := Id

N

(n; 0)

and in ambient context maxint : N

eqmax[n : N] := Id

N

(n;maxint)

Chapter 2. Syntax and semantics of dependent types 28

Explicit variable names in a substitution may now be omitted, for example the

expression eqzero[5] denotes Id

N

(5; 0) and eqmax[5] denotes Id

N

(5;maxint). We

also use square brackets as a form of �rst-order abstraction. I.e. we may write

[� : �]�

to emphasise the �-variables in �. The above declaration can thus equivalently

be written as

� := [� : �]�

Whenever � or [� : �]� appears inside some term then by suitable renaming it is

ensured that none of the �-variables are captured.

Analogous conventions apply to terms, telescopes, and elements. The main

application of �rst-order abstraction is the instantiation of binding operators like

R

N

. For example the following is a (somewhat contrived) proof that every natural

number is equal to itself

n : N `

R

N

[n:N]Id

N

(n;n)

(by ind. on n

Re

N

(0) ; base case

[n : N; p : Id

N

(n; n)]Re

N

(Suc(n)) ; ind. case

n) : Id

N

(n; n) conclusion

Observe the scoping of variable names here. The n in the subscript to R

N

is

di�erent from the one declared in the global context.

It is the hope of the author that with these conventions a reasonable comprom-

ise between readability and formal correctness has been found.

Chapter 2. Syntax and semantics of dependent types 29

2.3 Further type formers

In this section we introduce the syntax of a few further type formers such as

�-types and universes. We also describe how Coquand-Huet's Calculus of Con-

structions �ts into our syntactic framework. It is understood that whenever a rule

introduces new type or term formers then the raw syntax is suitably extended to

account for these, and de�nitional equality is extended accordingly.

2.3.1 Unit type

We start with a unit type, which is sometimes handy for technical reasons. It

introduces a type 1 with single canonical element ?. The unit type comes with an

induction principle stating that ? is the only inhabitant of 1 up to propositional

equality. We shall later (Sect. 4.5.4) consider an extensional unit types which

contains a single element ? up to de�nitional equality.

` 1

Unit-Form

? : 1

Unit-Intro

x:1 ` �[x] `M : �[?] ` N : 1

` R

1

�

(M;N) : �[N]

Unit-Elim

` R

1

�

(M;?) = M : �[?]

Unit-Comp

2.3.2 �-types

�-types serve to internalise telescopes. They are given by the following rules.

` � x:� ` � [x]

` �x:�:� [x]

�-Form

`M : � ` N : � [M]

` pair

�;�

(M;N) : �x:�:� [x]

�-Intro

p : �x:�:� [x] ` �[p]

x:�; y: � [x] `M [x; y] : �[pair

�;�

(x; y)] ` P : �x:�:� [x]

` R

�

�;�;�

(M;P) : �[P]

�-Elim

R

�

�;�;�

(M;pair

�;�

(N;O)) = M [N;O] : �[pair

�;�

(N;O)]

�-Comp

Chapter 2. Syntax and semantics of dependent types 30

In case type information can be inferred from the context we abbreviate the pairing

operator pair

�;�

(M;N) by (M;N). By suitable instantiation of R

�

we can de�ne

projections :1 and :2 which provide a left inverse to the pairing operator viewed

as the context morphism x:�; y: � ` pair

�;�

(x; y)) �x:�:� :

M:1 := R

�

�;�;�

([x:�; y: �]x ; M) : �

M:2 := R

�

�;�;[p:�x:�:�]� [p:1]

([x:�; y: �]y ; M) : � [M:1]

Now from �-Comp we get pair(M;N):1 = M and pair(M;N):2 = N . But pairing

is not surjective which is why �-types only approximate the summation obtained

from telescopes. However, using R

�

we can �nd a term of the type

p: �x:�:� ` Id

�x:�:�

(p; hp:1; p:2i)

namely R

�

(p ; [x:�; y: �]Re

�x:�:�

(pair(x; y))). Thus \surjective pairing holds pro-

positionally".

2.3.3 Function and cartesian product types

Function spaces and cartesian products are special cases of dependent product and

sum. Writing � ! � := �x:�:� and ��� := �x:�:� we have ` �! � and ` ���

provided ` � and ` � and we obtain corresponding introduction and elimination

rules.

Although �-types and unit type are not absolutely crucial we consider them

from now on as part of the core type theory which we henceforth refer to by TT.

The type theory TT is a sub-system of Martin-L�of's intensional type theory [85].

2.3.4 The Calculus of Constructions

Coquand-Huet's [19] Calculus of Constructions is a dependently typed calculus

with products (�-types) only and a universe Prop that is closed under impredic-

Chapter 2. Syntax and semantics of dependent types 31

ative quanti�cation. The latter is described by the following rules.

` Prop

Prop-Form

` S : Prop

` Prf(S)

Proof-Form

x:� ` S[x] : Prop

` 8x:�:S[x] : Prop

Prop-Intro

` Prf(8x:�:S[x]) = �x:�:Prf(S[x])

Prop-Eq

The terms of Prop are called \propositions". If M : Prop is a proposition then

Prf(M) is the type of its proofs. A type of the form Prf(M) for some M : Prop

is also called a proposition. The term \propositions" for these terms (and types)

can be misleading because in some applications of the Calculus of Constructions

the universe Prop is used to represent both datatypes and propositions [87]. In

the present work this will not be done.

The operator 8 together with the equation Prop-Eq gives that the product

over a family of propositions (indexed over �) is a proposition again. In Coquand

and Huet's original presentation, terms of type Prop and their corresponding

Prf-types were syntactically identi�ed. The presentation used here is due to

Streicher [100]. The Calculus of Constructions has types in the empty context, for

example the type of falsehood ` �s: Prop:Prf(s).

We use logical connectives);^;_; tt; ff;: for their encodings in the Calcu-

lus of Constructions. If P;Q : Prop then their implication P) Q is de�ned

as the proposition 8x:Prf(P):Q, their conjunction is de�ned as the proposition

8c:Prop:(P) Q) c)) c, and their disjunction P _Q is given by 8c:Prop:(P)

c)) (Q) c)) c. The true proposition tt is de�ned as 8c:Prop:c) c. The false

proposition ff is de�ned as 8c:Prop:Prf(c). The negation :P of proposition P is

de�ned as P) ff. If x:� ` P : Prop then we de�ne the existential quanti�cation

of P as 9x:�:P := 8c:Prop:(8x:�:P) c)) c. For M;N : � we de�ne Leibniz

equality M

L

=N as

8P :�! Prop:(P M)) (P N)

Chapter 2. Syntax and semantics of dependent types 32

It is well-known that the proof rules for these connectives in higher-order intu-

itionistic logic are derivable [19]. Extending the notation from Sect. 2.1.3 we write

� ` P true for � ` P : Prop to mean that there exists P with � ` P : Prf(P).

The syntactic properties stated in Sect. 2.1.4 including decidability of equality

continue to hold for the Calculus of Constructions, see e.g. [3].

2.3.5 Universes

A universe is a type U containing names or codes for types. This is achieved by

an operator El which for each term M : U gives a type El(M). A universe can be

closed under various type formers in which case there are functions similar to 8

which perform the type formation on the level of codes. As an example we give

the rules for a universe closed under � and containing the natural numbers.

` U

U-Form

`M : U

` El(M)

El-Form

` S : U x : El(S) ` T : U

`

^

�(S; T) : U

U-Intro-�

El(

^

�(S; T)) = �x:El(S):El(T)

U-Eq-�

`

^

N : U

U-Intro-N

` El(

^

N) = N

U-Eq-N

We do not consider \universe-induction" [85, p. 101�.]. Universes can be used

to represent modules [41] and also increase the strength of the type theory. For

example in the presence of a universe containing an empty type 0 (which we

haven't de�ned) it becomes possible to �nd an inhabitant of the type ` �p :

Id

N

(0;Suc(0)):0 which corresponds to Peano's fourth axiom [97]. For a type

theory without universes it may therefore be appropriate to introduce this as an

axiom by the following rule:

� `M : Id

N

(0;Suc(0)) � ` �

� ` Peano

�

(M) : �

Peano-4

Chapter 2. Syntax and semantics of dependent types 33

This rule does not introduce non-canonical elements in the empty context, because

with � = � the premises to Peano-4 cannot be met. In [107] it is shown how a

term Peano

�

(M) can be de�ned by induction on the form of � in the core type

theory without empty types and universes. Cf.. also Sect. 6.4.

2.3.6 Quotient types

Quotient types permit the rede�nition of the propositional equality on a type.

According to the particular notion of propositional equality chosen we obtain dif-

ferent formulations of quotient types. In this thesis we study quotient types with

respect to Leibniz equality (Sect. 5.1), the identity type (Sects. 3.2.6.1, 5.3), and

(marginally) also w.r.t. extensional `de�nitional' equality (Sect. 3.2.6.1). We de-

fer the syntactic rules to these sections. Here we only remark that intensional

formulations of quotient types must invariably introduce non-canonical elements

of identity types which establish propositional equality of equivalence classes of

related elements, and therefore the statement made in Remark 2.1.6 is no longer

true in the presence of quotient types unless de�nitional equality is rede�ned using

a syntactic model like the ones presented in Chapter 5.

2.4 Abstract semantics of type theory

As described in the Introduction we require a precise de�nition of what a model for

a dependently typed calculus should be and also a generic interpretation function

mapping syntactic objects to objects in the model. Many notions of model have

been proposed in the literature; for a comprehensive treatment see e.g. [56]. We

use a derivative of categories with attributes as introduced by Cartmell [15] and

later used by Pitts [89] (dubbed type categories there) and Moggi [84]. This notion

seems to o�er the right level of generality for our purposes, and nevertheless does

not introduce any unnecessary formal padding.

As opposed to the \display-map" approach [103] or \contextual categories"

[15,99], in categories with attributes a distinction is made between \families" (the

Chapter 2. Syntax and semantics of dependent types 34

denotations of types) and their corresponding context extensions. In particular,

the map which assigns the corresponding context extension to a family need not

be injective. This extra generality will be required in almost all the model con-

structions we shall study.

The original de�nition of categories with attributes involves conditional equa-

tions, since certain diagrams are required to be pullbacks. This is a disadvantage if

one wants to construct models internally in some type theory and check the model

equations using normalisation. We thus describe a notion of model without con-

ditional equations inspired by Curien's categorical combinators [21,22,23]. This

means that in addition to abstract contexts and families we introduce a third sort

of abstract sections which are in one-one correspondence to sections (right inverses)

to projections. Their separate introduction allows to quantify over them without

using conditional equations. Ehrhard [30] and Ritter [92] achieves the same goal

by introducing arbitrary morphisms between families as a new sort. For our pur-

poses this appears overly general and the price to pay is that a formal unit type

must be introduced and that the equational theory becomes more complicated.

Since a guideline in our description of the semantics of dependent types is to

stay as close to the syntax as possible without losing the advantages which abstract

semantics o�ers, we have chosen the name syntactic categories with attributes for

the notion of model to be described here.

2.4.1 Syntactic categories with attributes

De�nition 2.4.1 A syntactic category with attributes is given by the following

data:

i. A category C with terminal object >. The objects of C are called contexts (A,

B

1

, �, �, . . .), the morphisms (f , g, h, . . .) are called context morphisms.

The unique morphism from the terminal object to � is denoted !

�

.

1

Read \Alpha", \Beta".

Chapter 2. Syntax and semantics of dependent types 35

ii. A functor Fam : C

op

! Sets. If f 2 C(�;�) is a context morphism

and � 2 Fam(�) then Fam(f)(�) 2 Fam(�) is abbreviated by �ffg. The

elements of Fam(�) are called types or families (�, � , �,. . .) in context �.

iii. If � is a family in context � then there is a context � � � called the compre-

hension of �, and a context morphism p(�) 2 C(� � �;�) called the display

map or the projection of �. Moreover, if in addition f 2 C(B;�) then

q(f; �) 2 C(B � �ffg;� � �) and

B � �ffg

q(f; �)

-

� � �

B

p(�ffg)

?

f

-

�

?

p(�)

commutes.

2

The assignment q(�;�) is functorial in the sense that q(id

�

; �) =

id

���

and for g 2 C(A;B) also q(f � g; �) = q(f; �) �q(g; �ffg). Note that

these equations \typecheck" by virtue of the functoriality of Fam.

iv. For each � 2 Fam(�) there is a set Sect(�) of sections or terms (M , N ,

. . .).

v. If M 2 Sect(�) for � 2 Fam(�) then M 2 C(�;� � �) and

p(�) �M = id

�

(Sect-Char)

or diagrammatically

�

M

-

� � �

@

@

@

@

@

id

�

R 	�

�

�

�

�

p(�)

�

2

Henceforth all diagrams are supposed to commute unless stated otherwise. The

diagrams have been typeset using Paul Taylor's versatile macro package.

Chapter 2. Syntax and semantics of dependent types 36

vi. If � 2 Fam(�) and f 2 C(�;� � �) then Hd(f) 2 Sect(�fp(�) �fg) and

q(p(�) �f; �) �Hd(f) = f (Mor-Inv)

or diagrammatically

� � �fp(�) �fg

q(p(�) � f; �)

-

� � �

�

�

�

�

�

�

�

�

�

�

f

*

�

Hd(f)

6

p(�) � f

-

�

?

p(�)

Moreover, if f : � ! � and M 2 Sect(�ffg) then

M = Hd(q(f; �) �M) (Sect-Inv)

which at the level of contexts becomes

� � �ffg

q(f; �)

-

� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

q(f; �) �M

1

�

M = Hd(q(f; �) �M)

6

f

-

�

?

p(�)

This de�nition is rather condensed and may need some explanation. C being a

category means that there is an associative composition (�) for context morphisms

which has a left- and right-neutral element, the identity id

�

. Fam being a functor

from C

op

to the category Sets of sets and functions means that for each context �

there is a set Fam(�) of possible interpretations of types over � and if f : B ! �

then Fam(f) is a function from Fam(�) to Fam(B) written �ffg and satisfying

�fid

�

g = � and �ff � gg = �ffgfgg for � 2 Fam(�) and g : A ! B.

The projection p(�) associates to each family � 2 Fam(�) a forgetful context

morphism � � � ! �. Its codomain � � � corresponds to the extension of context

� by type �. Substitution along the morphism p(�) corresponds to weakening.

The morphism q(f; �) : � � �ffg ! � � � can be seen as a \weakening" of f .

On the �-part of � � �ffg it behaves like f (this expressed by the commutative

Chapter 2. Syntax and semantics of dependent types 37

square for q) and on the �ffg-part it does nothing (this is indirectly expressed by

the equation Mor-Inv.

The mapping M 7! M associates a context morphism to a section M from

� to � � � which is the identity everywhere but on the last component. This

is expressed by the equation Sect-Char. The equation Mor-Inv is a kind of

surjective pairing property for context morphisms. It expresses that (and how)

f : � ! � � � can be recovered from its two components Hd(f) and p(�) � f .

The (at �rst sight strange) \typing" of Hd may be explained as follows: A

context morphism f : � ! � � � should be thought of as containing two com-

ponents: A context morphism from � to � (obtainable as p(�) � f) and a section

of � submitted to substitution along this �rst component of f , i.e. an element of

Sect(�fp(�) � fg). This is Hd(f).

We continue by giving a few examples of syntactic categories with attributes

which should clarify the de�nition further. In particular, the term model provides

some more intuition and should be carefully gone through by the reader unfamiliar

with categorical models of type theory.

Example 2.4.2 (Term model) Consider a calculus of dependent types T like

the core calculus TT described in Section 2.1. We construct a syntactic category

with attributes, which will later turn out to be the initial one. The underly-

ing category of contexts C has as objects the well-formed contexts of T and

as morphisms context morphisms as de�ned in Sect. 2.2.2 modulo de�nitional

equality. This is easily seen to be a category in which the empty context is a

terminal object. For a context � the set Fam(�) is the set of well-formed types

in this context, i.e. the set of valid judgements � ` �. Context extension is in-

herited from the syntax, so � � (� ` �) = �; x:� and the display map p(� ` �)

is the context morphism consisting of the variables in �. Substitution is syn-

tactic substitution, i.e. if (M

1

; : : : ;M

n

) : B ! � = (x

1

: �

1

; : : : ; x

n

: �

n

) then

(� ` �)f(M

1

; : : : ;M

n

)g = B ` �[x

1

:= M

1

] : : : [x

n

:= M

n

]. The \weakened" con-

text morphism q((M

1

; : : : ;M

n

); �) : B; x:�[x

1

:= M

1

] : : : [x

n

:= M

n

] �! �; x:�

between the respective comprehensions then becomes (M

1

; : : : ;M

n

; x) where x :

Chapter 2. Syntax and semantics of dependent types 38

�[x

1

:= M

1

] : : : [x

n

:= M

n

] is the last variable of the comprehension of the substi-

tuted type. If � ` � is a family then Sect(� ` �) is the set of terms � `M : � again

modulo de�nitional equality. To such a section we associate the context morph-

ism x

1

: �

1

; : : : ; x

n

: �

n

` M : � = (x

1

; : : : ; x

n

;M). Finally if f = (M

1

; : : : ;M

n

) is

a context morphism we put Hd(f) := M

n

. The veri�cation that this forms a syn-

tactic category with attributes is straightforward. The term model of the Calculus

of Constructions has been thoroughly studied by Streicher [100]; in particular a

completeness result for abstract categorical semantics w.r.t. syntax is proved there.

The next example is taken from [55] with minor adjustments.

Example 2.4.3 (Families over sets) Let F be a small category with terminal

object. We form a syntactic category with attributes over the category Sets of

sets and functions as follows: If � is a set then Fam(�) is the set of all functions

from � to Ob(F). If � 2 Fam(�) then � � � is the disjoint union f(; s) j 2

� and s 2 F(1; �())g. The map p(�) is the �rst projection. If furthermore

f : B ! � then �ffg is the composition � � f and q(f; �) sends (b; s) where

b 2 B and s 2 F(1; �(f(b))) to (f(b); s). Finally Sect(�) is the cartesian product

Q

2�

F(1; �()). We leave the remaining de�nitions and the veri�cations to the

reader.

In this example families carry an intensional structure, namely the morphisms in

F which are not global sections and thus are not reected into the underlying

category.

Example 2.4.4 (Set-theoretic model) An important special case of the previ-

ous example arises when F is chosen to be the full subcategory of Sets consisting

of small sets, i.e. with cardinality smaller than some inaccessible cardinal (see

Sect. 5.2.2.6). We then obtain the familiar set-theoretic model [65,16]. of type

theory, which may e.g. be used to demonstrate equational consistency, i.e. the fact

that the type ` Id

N

(0;Suc(0)) is not inhabited.

Example 2.4.5 (Families of !-sets) An !-set is a pair X = (jXj;

X

) where

jXj is a set and

X

is a surjective relation between jXj and the set ! of natural

Chapter 2. Syntax and semantics of dependent types 39

numbers. If n

X

x for some n 2 ! and x 2 jXj then we say that n realises x

or that n is a realiser for x. Surjectivity means that every element of jXj has a

realiser. A morphism between two !-sets X and Y is a function f from jXj to jY j

for which there exists a natural number n (viewed as a code for a partial recursive

function) such that for all x 2 jXj and realisers m

X

x, the computation fng(m)

terminates and is a realiser for f(x). (We write fng(m) for the application of the

partial recursive function coded by n to input m.) We say that f is tracked by

n. The !-sets with these morphisms form a category with terminal object given

by the singleton set f?g equipped with the trivial realisability relation, i.e. every

natural number realises ? and the unique morphism is realised by any code for a

total recursive function.

We construct a syntactic category with attributes over the category of !-sets

as follows: A family over an !-set � is an assignment of a (small) !-set to each

element of j�j. If � = (�

)

2j�j

is such a family then its comprehension � � � is

de�ned by j���j := f(; s) j 2 j�j and s 2 j�

jg and n

���

(; s) i� fp

1

g(n)

�

and fp

2

g(n)

�

s where p

1

and p

2

are codes for the components of some recursive

bijection between ! and !�!. The display map p(�) is the �rst projection tracked

by p

1

. If � is such a family above � and f is a morphism from B to � tracked

by n 2 ! then we de�ne the substitution �ffg simply by composition, viz. as the

family (�

f(�)

)

�2jBj

. The morphism q(f; �) sends (�; s) to (f(�); s) and is tracked

by the pairing of n and a code for the identity. If � is as before then a section

is an element M of the cartesian product

Q

2j�j

j�

j together with a realiser, i.e.

some natural number n such that whenever m

�

 then fng(m)

�

M

. We

leave the de�nition of the remaining components to the reader.

Remark 2.4.6 One might try to de�ne a syntactic category with attributes over

Sets, say, by de�ning Fam(�) as the set of all functions with codomain � and

if � : �

-

� is such a function and furthermore f : B ! � then to de�ne

Chapter 2. Syntax and semantics of dependent types 40

substitution as the pullback

f(b; s) 2 B� � j f(b) = �(s)g

-

�

B

?

f

-

�

?

�

This does not work because then for example �fid

�

g is only isomorphic, but not

equal to �. Also the composition law is not strictly satis�ed. In [46] we describe

a canonical construction which turns a structure like the above into a syntactic

category with attributes.

Some remarks on notation. We usually refer to a syntactic category with

attributes by the name of its category of contexts. If C is any category then a

syntactic category with attributes having C as underlying category of contexts

will be called a syntactic category with attributes over C. Whenever we use one

of the operator symbols which were part of the de�nition of a syntactic category

with attributes it should be clear from the context to which syntactic category

with attributes we are referring.

Although the formulation of the above de�nition might suggest something dif-

ferent, a syntactic category with attributes is meant to be a structure, i.e. the

various components referred to by the operator symbols are explicitly given and

not merely required to exist. The same applies to further de�nitions in this style.

We begin our investigation of syntactic categories with attributes with a char-

acterisation of the sections as special context morphisms.

Proposition 2.4.7 Let � 2 Fam(�). The assignment M 7! M is a bijection

between Sect(�) and ff : � ! � � � jp(�) � f = id

�

g.

Proof. One direction is part of the de�nition of a model. Conversely, if f :

� ! � � � has the speci�ed property then Hd(f) is a section of �fid

�

g = �. It is

immediate from the de�nition that these two maps are inverse to each other. 2

Chapter 2. Syntax and semantics of dependent types 41

So up to bijective correspondence the set Sect(�) is the set of sections of the

corresponding display map. By making these sections part of the structure we can

quantify over sections without having to introduce conditional equations.

Our next step consists of establishing a correspondence to the usual notions of

model which make use of pullbacks.

Proposition 2.4.8 Every diagram of the form

B � �ffg

q(f; S)

-

� � �

B

p(�ffg)

?

f

-

�

?

p(�)

is a pullback.

Proof. Let u : A ! B and v : A ! � � � be context morphisms such that

f �u = p(�) � v. The unique mediating morphism from A to B � �ffg is given by

q(u; �ffg) �Hd(v). Indeed

p(�ffg) � q(u; �ffg) �Hd(v) =

u �p(�fu � fg) �Hd(v) = since Hd(v) 2 Sect(�fu �fg)

u

A � �ff �ug

q(u; �ffg)

-

B � �ffg

q(f; �)

-

� � �

A

Hd(v)

6

?

p(�ff �ug)

u

-

B

p(�ffg)

?

f

-

�

?

�

Similarly we have

q(f; �) �q(u; �ffg) �Hd(v)

= q(f �u; �) �Hd(v)

= v by Mor-Inv

Chapter 2. Syntax and semantics of dependent types 42

For uniqueness let w : A! B��ffg be such that q(f; �) �w = v and p(�ffg) �w =

u. Then

Hd(w)

= Hd(q(fu; �) �Hd(w)) by Sect-Inv

= Hd(q(f; �) �q(u; �ffg) �Hd(w))

= Hd(q(f; �) �w) by Mor-Inv

= Hd(v) by assumption

and thus

w =

q(u; �ffg) �Hd(w) =

q(u; �ffg) �Hd(v)

as required. 2

This property has the consequence that if f : B ! � � � then Hd(f) is the unique

section M 2 Sect(�ffg) with q(p(�) �f; �) �M = f . This implies the following

identities.

Lemma 2.4.9 Let A, B, � be contexts and � 2 Fam(�).

i. Hd(q(f; �) � g) = Hd(g) for f : B ! � and g : A ! B � �ffg.

ii. Hd(Hd(f) � g) = Hd(f � g) for f : B ! � � � and g : A ! B.

We can furthermore use the pullback property in order to characterise syntactic

categories with attributes.

Proposition 2.4.10 Let C be a category with terminal object and equipped with

the following data:

{ A functor Fam : C

op

! Sets with morphism part written �f�g as in

Def. 2.4.1.

{ For each � 2 Fam(�) a C-morphism with codomain � denoted � � �

p(�)

-

�.

Chapter 2. Syntax and semantics of dependent types 43

{ For f 2 C(B;�) and � 2 Fam(�) a pullback square

B � �ffg

q(f; �)

-

� � �

B

p(�ffg)

?

f

-

�

?

p(�)

{ For each � 2 Fam(�) a set Sect(�) and a bijection

� : Sect(�)

-

ff 2 C(�;� � �) jp(�) � f = id

�

g

Then there is a unique way of completing this structure to a syntactic category

with attributes.

Proof. It only remains to de�ne the Hd(�) operation and to check the equations

and uniqueness of the particular choice made. Let f : B ! � � �. The unique

mediating morphism in

B

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

f

z

S

S

S

S

S

S

S

S

S

S

S

S

S

id

B

w

B � �ffg

q(p(�) �f; �)

-

� � �

B

?

p(�ffg)

p(�) � f

-

�

p(�)

?

is a section of �fp(�) � fg. We let Hd(f) be the corresponding section of �fp(�) �fg.

Uniqueness of this choice follows from the universality of the pullback and the

equations are routine calculation. 2

Remark 2.4.11 A special case of Prop 2.4.10 arises when the bijection � is an

identity, i.e. if Sect(�) equals the set of right inverses to p(�). Such a structure

Chapter 2. Syntax and semantics of dependent types 44

is called \category with attributes" by Cartmell and Moggi [15,84] and a \type

category" by Pitts [89]. This notion in turn is equivalent to Jacobs' notion of full

split comprehension category [56], a notion of model based on �brations.

2.4.1.1 Substitution on sections

Assume f : B ! �, � 2 Fam(�), and M 2 Sect(�). We construct a section

Mffg 2 Sect(�ffg) as

Mffg = Hd(M � f)

This reects the intuition that substitution in terms is composition rather than

induced by abstract universal properties. If in particular the morphism f hap-

pens to be a display map, i.e. of the form p(�) for some � 2 Fam(�), then the

\substitution" Mfp(�)g is the weakening of M . Alternatively we can identify the

morphism Mffg as the unique mediating morphism in the diagram

B

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

M � f

z

S

S

S

S

S

S

S

S

S

S

S

S

S

id

B

w

B � �ffg

q(f; �)

-

� � �

B

?

p(�ffg)

f

-

�

p(�)

?

whereby we get that if q(f; �) �N = M � f for some N 2 Sect(�ffg) then N =

Mffg.

2.4.1.2 Notation for weakening

If �; � 2 Fam(�), M 2 Sect(�), and f : B ! � we introduce the following

abbreviated notations for weakening.

�

+

:= �fp(�)g

M

+

:= Mfp(�)g(= Hd(M �p(�)))

f

+

:= q(f; �)

Chapter 2. Syntax and semantics of dependent types 45

This notation being ambiguous (e.g. f

+

can mean both q(f; �) and q(f; �)) we

use it only if the meaning is clear from the context. In the term model we have

(� ` �)

+

= �; x: � ` � and (� `M : �)

+

= �; x: � `M : �.

2.4.1.3 Handling of variables.

If � 2 Fam(�) then Hd(id

���

) is a section of �fp(�)g. In the term model it

corresponds to the term �; x : � ` x : � where the second instance of � is actually

weakened. We abbreviate this section by v

�

. The thus de�ned \semantic variables"

are stable under substitution in the following sense.

Lemma 2.4.12 If f : B ! � and � 2 Fam(�) then

v

�

fq(f; �)g = v

�ffg

We can also establish that the substitution of a section into a variable results

in that section; this corresponds to the syntactic triviality x[x := M] = M .

Lemma 2.4.13 If � 2 Fam(�) and M 2 Sect(�) then

v

�

fMg = M

Proof. Routine calculation. 2

We could have introduced v

�

as a primitive together with an operator Cons which

turns a context morphism f : B ! � and a section M 2 Sect(�ffg) into a context

morphism Cons(M;f) : B ! � � �. The morphism q(f; �) then becomes de�nable

as Cons(v

�ffg

; f �p(�ffg)). We leave it as an exercise to work out the details of

this alternative description.

3

3

In the meantime this \exercise" has been (independently) worked out by P. Dybjer

and it turns out that the resulting notion of model without conditional equations is much

more natural and intuitive than ours. If this thesis would be written again, certainly

this notion would be used instead.

Chapter 2. Syntax and semantics of dependent types 46

The variables other than the last one are obtained as successive weakenings

of v

�

. For example if � 2 Fam(�) and � 2 Fam(� � �) then v

�

2 Sect(�

+

) and

v

�

+

2 Sect(�

++

).

2.4.2 Type constructors

We now turn to the description of the semantic companions to the type formers

described in Sect. 2.1. These semantic operators will be de�ned in such a way

that the term model always provides an instance. This precludes their de�nition

by universal properties as is usually done in the literature (e.g. [100,56]). Instead

we must ask for stability under substitution of all type and term formers not only

the constructors. This sometimes leads to more complicated formulations, but it

is the only way to identify as models the various syntactic constructions to be

de�ned later.

2.4.2.1 Dependent Products

De�nition 2.4.14 Assume a syntactic category with attributes C. We say that

C is equipped with dependent products if the following hold.

{ For every context � and families � 2 Fam(�), � 2 Fam(� � �) there is a

distinguished family �(�; �) 2 Fam(�).

{ IfM 2 Sect(�) then there is a distinguished section �

�;�

(M) 2 Sect(�(�; �)).

{ If M 2 Sect(�(�; �)) and N 2 Sect(�) then there is a distinguished section

App

� ; �

(M;N) 2 Sect(�fNg).

{ If f : B ! � then

�(�; �)ffg = �(�ffg; �fq(f; �)g)

and for M 2 Sect(�(�; �)), N 2 Sect(�)

App

� ; �

(M;N)ffg = App

�ffg ; �fq(f;�)g

(Mffg; Nffg)

Chapter 2. Syntax and semantics of dependent types 47

and for M 2 Sect(�)

�

�;�

(M)ffg = �

�ffg;�fq(f;�)g

(Mfq(f; �)g)

{ If M 2 Sect(�) and N 2 Sect(�) then App

� ; �

(�

�;�

(M); N) = MfNg.

This de�nition of dependent products almost verbally follows the syntactic de�ni-

tion of �-types. The requirements on compatibility of reindexing with the depend-

ent product constructor corresponds to the syntactic de�nition of substitution as

distributive over type- and term constructors.

Remark 2.4.15 We could require an \�-rule" too, i.e. for M 2 Sect(�(�; �))

�

�;�

(App

�fp(�)g ; �fq(p(�);�)g

(M

+

; v

�

)) = M

Then the compatibility condition on �

�;�

(�) could be dropped and in fact � would

enjoy a universal property. However then the term model would not have dependent

products unless an �-rule were present in the syntax.

Proposition 2.4.16 The term model from Example 2.4.2 is equipped with de-

pendent products if the underlying syntax has �-types.

Proof. If � 2 Fam(�) and � 2 Fam(� � �) then � is a valid context and � ` �

and �; x : � ` � by de�nition of the term model. We then put �(�; �) := �x :

�:� 2 Fam(�). If f : B ! � is a (syntactic) context morphism then clearly

(�x : �:�)[f] = �x : �[f]:� [(f; x)]

by de�nition of syntactic substitution. Next if M 2 Sect(�) then �; x : � ` M : �

so we put �

�;�

(M) := �x:�:M 2 Sect(�(�; �)). Conversely, if M 2 Sect(�(�; �))

and N 2 Sect(�) then � `M : �x : �:� and � ` N : � so we put App

� ; �

(M;N) :=

(M N). Again by de�nition of syntactic substitution these choices meet the co-

herence requirements and moreover by Pi-Beta the de�ning equation is also sat-

is�ed. We also see that the \�-rule" mentioned in the above remark corresponds

to �x : �:M x = M which does not necessarily hold. 2

Chapter 2. Syntax and semantics of dependent types 48

We now give another characterisation of dependent products which is sometimes

easier to check.

Proposition 2.4.17 A syntactic category with attributes has dependent products

i� for each family � 2 Fam(�) and � 2 Fam(� � �) there is a distinguished family

�(�; �) 2 Fam(�) and a morphism

ev

�;�

: � � � ��(�; �)fp(�)g ! � � � � �

with p(�) � ev

�;�

= p(�(�; �)fp(�)g) in such a way that for every section M 2

Sect(�) there exists a distinguished section �

�;�

(M) 2 Sect(�(�; �)) such that

ev

�;�

��

�;�

(M)fp(�)g = M , and moreover the following three coherence conditions

are satis�ed for any morphism f : B ! �:

{ �(�; �)ffg = �(�ffg; �fq(f; �)g

{

:

q(q(f; �);�(�; �)fp(�)g)

-

:

:

ev

�ffg;�fq(f;�)g

?

q(q(f; �); �)

-

:

?

ev

�;�

{ �

�;�

(M)ffg = �

�ffg;�fq(f;�)g

(Mfq(f; �)g)

Proof. We give the proof for the term model. The general case is an exercise in

categorical notation. In the situation : � ` � and : �; x : � ` � we de�ne the

context morphism ev

�;�

as

: �; s:�; f : �x:�:� ` (; s; f s) : : �; s: �; t: �

Conversely if we are given a context morphism ev

�;�

with the above source and

target and satisfying the commutativity requirement then we must have

ev

�;�

= [: �; s:�; f : �x:�:�](; s;A[s; f])

for some term

: �; s:�; f : �x:�:� ` A[s; f] : �

Chapter 2. Syntax and semantics of dependent types 49

We then de�ne for � `M : �x:�:� and � ` N : �

(M N) := A[N;M]

The veri�cations are straightforward. 2

From the example of the dependent product it should have become clear how in

principle every syntactic type or term former can be translated into its semantic

equivalent. For every type forming rule one introduces an operator on families and

for every term forming rule an operator on sections where in each case suitable

instances of weakening have to be inserted. Then for every equation one intro-

duces an equation between the corresponding semantic entities and �nally one

imposes equations which ensure the compatibility of all semantic operators with

substitution.

In most cases, however, this approach leads to very clumsy formulations of the

semantic type formers. Indeed, it is often possible to replace a term operator by

a single context morphism (or sometimes by a single section) and a type operator

by a single family. An example for the former is provided by the alternative

characterisation of dependent products in Prop. 2.4.17 where we have replaced

the application operator by the evaluation morphisms. An example for the latter

arises from the identity type we de�ne in Sect. 2.4.2.4 below.

We often follow this strategy in the de�nition of further semantic type formers

without explicitly stating and proving correspondences like Prop. 2.4.17 above.

In most cases we relate our de�nition to stronger ones which make use of

universal properties and thus are more elegant, but are usually not met by syntactic

models like the term model.

2.4.2.2 Unit types

The semantic de�nition corresponding to the unit type de�ned in Sect. 2.3.1 is as

follows:

Chapter 2. Syntax and semantics of dependent types 50

De�nition 2.4.18 A syntactic category with attributes is equipped with unit

types, if for every context � there is a distinguished family 1

�

2 Fam(�) and

a distinguished section ?

�

2 Sect(1

�

) such that for every � 2 Fam(� � 1

�

) and

M 2 Sect(�f?

�

g) there is a distinguished section R

1

�

�

(M) 2 Sect(�) with

R

1

�

�

(M)f?

�

g = M

in such a way that the following coherence equations are satis�ed for every morph-

ism f : B ! �, and M 2 Sect(�f?

�

g):

{ 1

�

ffg = 1

B

{ ?

�

ffg = ?

B

{ (R

1

�

�

(M))ff

+

g = R

1

B

�ff

+

g

(Mff

+

g)

In view of the �rst coherence condition one might require only 1

>

and obtain the

other units by substitution along the unique morphism into the terminal object.

The operator R

1

�

would, however, still have to be required for arbitrary contexts.

The correspondence to the syntax is as follows: If � 2 Fam(� � 1

�

) and M 2

Sect(�f?

�

g) and N 2 Sect(1

�

), then R

1

(M;N) := R

1

�

�

(M)fNg 2 Sect(�fNg).

In many models unit types exist by virtue of the following proposition.

Proposition 2.4.19 A syntactic category with attributes C can be equipped with

unit types if there exists a family 1 2 Fam(>) such that p(1) is an isomorphism.

Proof. We put 1

�

:= 1f!

�

g. Since

� � 1

�

!

�

+

-

> � 1

�

p(1

�

)

?

!

�

-

>

?

p(1)

is a pullback, p(1

�

) is an isomorphism, too. Let ' be its inverse. We put

?

�

:= Hd(') and for � 2 Fam(� � 1

�

) and M 2 Sect(�f'g) we put R

1

�

�

(M) :=

Chapter 2. Syntax and semantics of dependent types 51

Mfp(1

�

)g 2 Sect(�fp(1

�

) �'g) = Sect(�). Stability under substitution follows

since all the operators are given by substitutions themselves. 2

2.4.2.3 Natural numbers

De�nition 2.4.20 A syntactic category with attributes C is equipped with nat-

ural numbers if for every context � there are the following data:

{ a distinguished family N

�

2 Fam(�),

{ a distinguished section 0

�

2 Sect(N

�

) and a distinguished morphism Suc

�

:

� �N

�

! � �N

�

with p(N

�

) � Suc

�

= p(N

�

),

{ for every � 2 Fam(��N

�

),M

z

2 Sect(�f0g), andM

s

2 Sect(�fSuc

�

�p(�)g)

a distinguished section R

N

�

(M

z

;M

s

) 2 Sect(�) with R

N

�

(M

z

;M

s

)f0

�

g = M

z

and R

N

�

(M

z

;M

s

)fSuc

�

g = M

s

fR

N

�

(M

z

;M

s

)g

in such a way that all these data are stable under substitution, i.e. for f : B ! �,

� 2 Fam(� �N

�

), M

z

2 Sect(�f0g), M

s

2 Sect(�fSuc

�

�p(�)g), we have:

{ N

�

ffg = N

B

{ 0

�

ffg = 0

B

{ f

+

�Suc

B

= Suc

�

� f

+

{ R

N

�

�

(M

z

;M

s

)ff

+

g = R

N

B

�

(M

z

ffg;M

s

ff

+

g)

By straightforward calculation we obtain:

Chapter 2. Syntax and semantics of dependent types 52

Proposition 2.4.21 The term model described in 2.4.2 is equipped with natural

numbers given by

N

�

:= � ` N

0

�

:= � ` 0 : N

Suc

�

[: �; n:N] := (;Suc(n)) : �; n:N

R

N

�

�

(M

z

;M

s

) := �; x:N ` R

N

(M

z

;M

s

; x) : �

Again, we relate our notion of natural numbers to a stronger one often o�ered

in the literature, e.g. [78].

De�nition 2.4.22 Let B be a cartesian category (with terminal object and products).

A parametrised natural numbers object in B is a diagram 1

0

-

N

Suc

-

N

such that for any diagram G

z

-

S

s

-

S there exists a unique morphism

R(z; s) : G�N! S such that

G

z

-

S

s

-

S

@

@

@

@

@

hid

G

; 0i

R

G �N

6

R(z; s)

id

G

� Suc

-

G�N

6

R(z; s)

Proposition 2.4.23 Let C be a syntactic category with attributes. If there exists

a family N 2 Fam(>) such that > �N is the object part of a parametrised natural

numbers object in C then C can be equipped with natural numbers in the sense of

Def. 2.4.20.

Proof. We de�ne

N

�

:= Nf!

�

g

0

�

:= Hd(0)f!

�

g

Next we notice that � �N

�

is isomorphic to the cartesian product � � > �N by

virtue of Prop. 2.4.8. Without loss of generality we can identify � �N

�

with this

product. We then put Suc

�

:= id

�

� Suc. We also have that p(N

�

) is a product

projection and 0

�

= hid

�

; 0i.

Chapter 2. Syntax and semantics of dependent types 53

Next we note that for � 2 Fam(� �N

�

), sections of �fSuc

�

gfp(�)g (this is the

\type" of M

s

) are in bijective correspondence to the set of endomorphisms h of

� �N

�

� � with p(�) �h = Suc

�

�p(�). On the other hand elements of Sect(�f0

�

g)

(the \type" of M

z

) are in bijective correspondence to morphisms g : � ! � �N

�

��

with p(�) � g = hid

�

; 0i.

Now given such g and h arising from appropriate sections M

z

and M

s

then

R(g; h) : ��N

�

! � �N

�

�� and p(�) �R(g; h) = id

��N

�

by the uniqueness property

of the natural numbers object. So R(g; h) induces a section of � which is the

desired R

N

�

�

(M

z

;M

s

). The commutativity of the diagram de�ning R(g; h) gives

the required equation for R

N

�

�

. The coherence laws for N

�

, 0

�

, and Suc

�

follow

from their de�nition by substitution (pullback) and the coherence of R

N

�

�

is again

a consequence of the uniqueness property. 2

One may compare this to the proof of mathematical induction for natural numbers

objects in a topos, see e.g. [40].

2.4.2.4 Identity types

For the de�nition of the identity type we �rst observe that for � 2 Fam(�) the

morphism

v

�

: � � �! � � � � �

+

is the \diagonal" which in the term model is given by

: �; x:� ` (; x; x) : �; x:�; y:�

It has the property

p(�

+

) � v

�

= p(�)

+

� v

�

= id

���

where p(�

+

) and p(�)

+

are the two projections � � � � �

+

! � � �.

De�nition 2.4.24 A syntactic category with attributes C is equipped with iden-

tity types if for every context � and � 2 Fam(�) there is

{ a distinguished family Id(�) 2 Fam(� � � � �

+

),

Chapter 2. Syntax and semantics of dependent types 54

{ a distinguished morphism Re

�

: � � �! � � � � �

+

� Id

�

with p(Id

�

) �Re

�

=

v

�

,

{ for every family � 2 Fam(� � � � �

+

� Id

�

) and M 2 Sect(�fRe

�

g) a distin-

guished section J

�;�

(M) 2 Sect(�) with J

�;�

(M)fRe

�

g = M

in such a way that all these data are stable under substitution, i.e. for f : B ! �,

�; � as above, and M 2 Sect(�fRe

�

g) we have:

{ Id(�)ff

++

g = Id(�ffg)

{ Re

�

� f

+

= f

+++

�Re

�ffg

{ J

�;�

(M)ff

+++

g = J

�ffg;�ff

+++

g

(Mff

+

g)

Again in many \semantic" models we can give a simpler de�nition as follows:

Proposition 2.4.25 A syntactic category with attributes can be equipped with

identity types if for every � 2 Fam(�) there is a distinguished family Id(�) 2

Fam(� � � � �

+

) stable under substitution such that

� � � � �

+

� Id(�)

p(Id(�))

-

� � � � �

+

� � � � �

+

p(Id(�))

?

p(�

+

)

-

� � �

?

p(�)

+

(commutes and) is a pullback.

Proof. The universal property of the pullback applied to � � � � �

+

�

v

�

� �

�

v

�

-

� � � � �

+

gives the morphism Re

�

: � � � ! � � � � �

+

� Id(�) with

p(Id(�)) �Re

�

= v

�

as required. Now Re

�

is actually an isomorphism because

� � � � �

+

�

v

�

� � �

v

�

-

� � � � �

+

is also the pullback of the two projections

p(�)

+

;p(�

+

) : � � � � �

+

! � ��. For the inverse of Re

�

we may for example take

p(�

+

) �p(Id(�)). So substituting along this inverse de�nes the desired function

J

�;�

: Sect(�fRe

�

g) ! Sect(�). All the data except Id(�) are de�ned by universal

properties and thus are stable under substitution. 2

Chapter 2. Syntax and semantics of dependent types 55

2.4.2.5 �-types

De�nition 2.4.26 A syntactic category with attributes C is equipped with �-

types if for every context � and families � 2 Fam(�), � 2 Fam(� � �) there is:

{ a distinguished family �(�; �) 2 Fam(�),

{ a distinguished morphism pair

�;�

: � � � � � ! � � �(�; �) with

p(�(�; �)) �pair

�;�

= p(�) �p(�)

{ for each family � 2 Fam(���(�; �)) andM 2 Sect(�fpair

�;�

g) a distinguished

section R

�

�;�

(M) : Sect(�) with R

�

�;�

(M)fpair

�;�

g = M

in such a way that all these data are stable under substitution, i.e. for every

situation f : B ! �, � 2 Fam(�), � 2 Fam(� � �), � 2 Fam(� � �(�; �)),

M 2 Fam(�fpair

�;�

g) we have:

{ �(�; �)ffg = �(�ffg; �ff

+

g)

{ f

+

�pair

�;�

= pair

�ffg;�ff

+

g

� f

++

{ R

�

�;�

(M)ff

+

g = R

�

�ffg;�ff

+

g

(Mff

++

g)

The term model is equipped with �-types with the obvious choice. A more spe-

cialised but simpler de�nition of �-types is the following:

Proposition 2.4.27 A syntactic category with attributes can be equipped with

�-types if for every � 2 Fam(�) and � 2 Fam(� � �) there is a distinguished

family �(�; �) 2 Fam(�) and an isomorphism pair

�;�

: � � � � � ! � � �(�; �)

with p(�(�; �)) �pair

�;�

= p(�) �p(�) both stable under substitution in the sense of

Def. 2.4.26.

Chapter 2. Syntax and semantics of dependent types 56

Proof. The elimination operation R

�

�;�

is de�ned by substitution along the in-

verse of pair

�;�

. 2

The �-types obtained by virtue of the above proposition are called extensional for

they have the property that any P 2 Sect(�(�; �)) is of the form Hd(pair

�;�

�P:1

+

�

P:2) for uniquely determined sections P:1 2 Fam(�) and P:2 2 Fam(�fP:1g).

2.4.2.6 Universes

In this section we de�ne a general semantic framework which allows us to in-

terpret various kinds of universes including the universe Prop in the Calculus of

Constructions. We �rst present a very concise de�nition of semantic universes

which, however, turns out to be too restrictive for many applications. Therefore

we de�ne a looser notion and give a canonical construction which allows to pass

from one to the other. The Calculus of Constructions will play the role of a \run-

ning example". We give the explicit constructions for this particular case and

appeal to the mathematical understanding of the reader for the generalisation to

other instances of universes.

Throughout this section we assume a �xed syntactic category with attributes

C equipped with dependent products.

De�nition 2.4.28 A full submodel of C consists of a subset Fam

0

(�) of Fam(�)

for each context � such that whenever f : B ! � and � 2 Fam

0

(�) then �ffg 2

Fam

0

(B). In other words a full submodel is a subfunctor of Fam : C

op

! Sets.

De�nition 2.4.29 A full submodel Fam

0

is closed under some type former if

whenever all family arguments to the type former are in Fam

0

then so is the newly

formed family.

For example Fam

0

is closed under dependent products if for � 2 Fam

0

(�) and

� 2 Fam

0

(� � �) the product �(�; �) is in Fam

0

(�) (instead of just in Fam(�)). In

case the type former takes no arguments, i.e. it is a constant like N, then closure

means that this constant is in Fam

0

.

Chapter 2. Syntax and semantics of dependent types 57

De�nition 2.4.30 A full submodel Fam

0

is closed under impredicative quanti�c-

ation if whenever � 2 Fam(�) and � 2 Fam

0

(� � �) then �(�; �) 2 Fam

0

(�).

So impredicative quanti�cation means that the product of a family in Fam

0

over

an arbitrary family is in Fam

0

again.

De�nition 2.4.31 A pair (U;El) is a generic family for a full submodel Fam

0

if

U 2 Fam(>) and El 2 Fam

0

(> � U) and for every family � 2 Fam

0

(�) there exists

a unique morphism s : � ! > �U such that � = Elfsg.

Example 2.4.32 If U 2 Fam(>) and El 2 Fam(> �U) are any two families with

the property that whenever Elfsg = Elfs

0

g for some s; s

0

: � ! > � U then the

assignment Fam

0

(�) := f� 2 Fam(�) j 9s : � ! > � U : � = Elfsgg de�nes a full

submodel of C with generic family (U;El).

In fact by de�nition every full submodel with generic family is of the form given

in Ex. 2.4.32. The reason for introducing the notion of full submodel is that it

allows to state closure properties in a shorter way as becomes clear in the next

de�nition.

De�nition 2.4.33 The syntactic category with attributes C is a model of the Cal-

culus of Constructions if it has a full submodel closed under impredicative quanti-

�cation with a distinguished generic family, denoted (Prop;Prf).

Proposition 2.4.34 Let C be a model of the Calculus of Constructions. Then for

any context �, family � 2 Fam(�) and s : � �� ! >�Prop there is a distinguished

morphism 8

�

(s) : � !> �Prop with

Prff8

�

(s)g = �(�;Prffsg)

Moreover, these morphisms are stable under substitution, that is for every f : B !

� and �, s as above we have

8

�

(s) � f = 8

�ffg

(s � f

+

)

Chapter 2. Syntax and semantics of dependent types 58

Proof. If s : � � � !> �Prop then � := Prffsg lies in the full submodel. Since

the latter is closed under impredicative quanti�cation the product �(�; �) does

too. We thus de�ne 8

�

(s) as the unique morphism with Prff8

�

(s)g = �(�; �).

For stability under substitution we observe that substituting either side into Prf

gives rise to the same family. So the equation follows by the de�nition of generic

family. 2

Proposition 2.4.35 The term model of the Calculus of Constructions is a model

for same.

Proof. The generic family is given by the pair (` Prop ; x: Prop ` Prf(x)). We

must show that this is indeed a generic family, i.e. that � ` Prf(M) = Prf(N)

implies � ` M = N . We prove this by induction along derivations together with

the statement that � ` Prf(M) = �x:�:Prf(N) implies � ` M = 8x:�:N . So

assume � ` Prf(M) = Prf(N). If this is an instance of reexivity then � `M = N

by reexivity, too. If it is an instance of the congruence rule for Prf we must

have � ` M = N as a premise. In all other cases we can �nd � such that

� ` Prf(M) = � and � ` � = Prf(N) such that both these judgements have

shorter derivations than � ` Prf(M) = Prf(N) and moreover the last instance

in the proof of � ` Prf(M) = � is neither reexivity, nor transitivity, and if it

is symmetry then the derivation of its premise does not end with either of these

three. In the �rst case either � is Prf(M

0

) and � ` M = M

0

or M is 8x:�:M

0

and

� is �x:�:Prf(M

0

); in either case the result follows from the inductive hypothesis.

All the other cases are similar.

We thus have shown that the types of the form Prf(M) form a full submodel

with generic family. They are closed under impredicative quanti�cation by virtue

of the 8-operator. 2

Chapter 2. Syntax and semantics of dependent types 59

2.4.2.7 Other universes.

In order to de�ne semantic counterparts to other sorts of universes we proceed in

a similar way. We ask for a full submodel with a generic family closed under the

desired type-forming operations. For example in order to interpret the particular

universe used in Sect. 2.3.5 we ask for closure under dependent products and

natural numbers. We can now de�ne operators similar to 8

�

(s) witnessing the

closure on the level of morphisms. Again using uniqueness we can show that

these operators are stable under substitution. Finally, by suitably extending the

argument in the proof of Prop. 2.4.35 we can show that the term model provides

an instance.

The set-theoretic model admits a cumulative hierarchy of universes all closed

under all the standard type formers using inaccessible cardinals. This is worked

out e.g. in [65]. The !-set model admits such a chain of universes all inside the

impredicative universe of partial equivalence relations hinted at in Example 2.4.37

below even without using inaccessible cardinals. This is worked out in [1] and [6].

2.4.2.8 Loose models for universes

Unfortunately the de�nitions above are too restrictive to account for many natural

models like the set-theoretic model and the !-set model. For example if in the

set-theoretic model we put Prop := ftt;�g and Prf(tt) = f?g and Prf (�) = ;

then the induced full submodel, i.e. those families f�

g

2�

with �

2 ff?g; ;g, are

not closed under impredicative quanti�cation because if �

= f?g for all 2 �

then the product over the family is a singleton, but not the chosen singleton f?g.

We present a laxer notion of model for the Calculus of Constructions of which

the set-theoretic model forms an instance (see Example 2.4.37) together with a

canonical construction which turns such a model into an actual model in the sense

of the de�nitions given above. The notion as well as the construction generalise

to other universes in a straightforward way.

Chapter 2. Syntax and semantics of dependent types 60

De�nition 2.4.36 A syntactic category with attributes C equipped with dependent

products is a loose model for the Calculus of Constructions if the following are

given:

{ distinguished families Prop 2 Fam(>) and Prf 2 Fam(> �Prop),

{ for each � 2 Fam(�) and s : � � � ! > � Prop a distinguished morph-

ism 8

�

(s) : � ! > � Prop and a distinguished morphism ev

�;s

: � � � �

Prff8

�

(s) � p(�)g ! � � � � Prffsg with p(Prffsg) � ev

�;s

= p(Prff8

�

(s) �

p(�)g),

{ for each section M 2 Sect(Prffsg) a distinguished section �

�;s

(M) 2

Sect(Prff8

�

(s)g) with

ev

�;s

��

�;s

(M)fp(�)g = M

in such a way that all these data are stable under substitution, that is for f : B ! �,

� 2 Fam(�), s : � � �! > �Prop, M 2 Sect(Prffsg) we have:

{ 8

�

(s) � f = 8

�ffg

(s � f

+

)

{ ev

�;s

� f

++

= f

++

� ev

�ffg;s�f

+

{ �

�;s

(M)ffg = �

�ffg;s �f

+

(Mff

+

g)

Notation. To simplify notation we shall in the sequel denote by \Prop" the

family in Fam(>), its substitutions Propf!

�

g 2 Fam(�), and its comprehension

> �Prop.

Example 2.4.37 The set-theoretic model can be turned into a loose model of the

Calculus of Constructions as follows: We de�ne Prop and Prf as in the erroneous

attempt above, i.e. Prop = ftt; ffg and Prf(tt) = f?g and Prf (ff) = ;, and for

s : � � � ! Prop we de�ne 8

�

(s)() := tt if s(; x) = tt for all x 2 �

and

ff otherwise. Then we can de�ne ev

�;s

as the function sending (x; ?) to (x; ?) in

Chapter 2. Syntax and semantics of dependent types 61

the former case and as the empty function otherwise. The other components are

de�ned accordingly and the veri�cations are straightforward.

This loose model is trivial in the sense that for any two M;N 2 Sect(Prffsg)

for some s : � ! Prop we must have M = N . It is known that the !-set model

can be turned into a nontrivial loose model by letting Prop be the set of partial

equivalence relations on ! endowed with the trivial realisability structure [100,2,

55].

Proposition 2.4.38 There exists a canonical construction which for a given loose

model C for the Calculus of Constructions produces a model in the sense of

Def. 2.4.33 over the same category of contexts. Moreover the new model supports

whatever type former the original one did.

Proof. The families of the new model are de�ned as the disjoint union

Fam

new

(�) := Fam(�)

.

[C(�;Prop)

If f : B ! � then substitution on families in the left summand is inherited from

the original model whereas on the right summand it is given by composition.

For � 2 Fam

new

(�) let �̂ be � if � is already in Fam(�) and Prff�g if � is a

morphism from � to Prop. All the other components of the new model except �

are inherited from the original model by pre-composition with \

^

�".

If � 2 Fam

new

(�) and � 2 Fam(� � �) then we de�ne the product �(�; �) in

the new model as �(�̂; �). On the other hand, if � is a morphism from � � �

to Prop then the product �(�; �) in the new model is de�ned as the morphism

8

�̂

(�) : � ! Prop. For evaluation and abstraction we use either the operations

from the original model or the ones which are part of the de�nition of a loose

model. Both satisfy the required equations and are stable under substitution.

The families in the right summand, viz. the morphisms into Prop, thus form a

full submodel closed under impredicative quanti�cation. It has the generic family

(Prop; id

Prop

). Indeed if s : � ! Prop 2 Fam

new

(�) then there is a unique

Chapter 2. Syntax and semantics of dependent types 62

morphism | namely s itself | such that s arises by substitution from the generic

family. 2

The above proposition is a bit vague as stated, because for example the prom-

ised construction might produce the same (trivial) result for every loose model.

Had we de�ned a notion of morphism between models we could identify the con-

struction as an equivalence.

In case the loose model we start with has the property that the families of the

form Prfffg form a full submodel with generic object, i.e. the functions Prff�g

are injective, then we can choose Fam

new

to be Fam and de�ne �(�; �) by case

distinction according to whether � = Prfftg for some (then unique) t or not. A

special case of this procedure appears in [100] for the particular case of the !-set

model and in [2] for a particular class of models.

2.5 Interpreting the syntax

In this section we de�ne a semantic function which maps well-formed terms, types,

and contexts of the dependently typed calculus de�ned in Sect. 2.1 to entities in

a syntactic category with attributes which supports the type formers and other

features present in the syntax. We proceed by �rst de�ning a partial interpretation

function on pre-constructions which is then proven total on well-formed construc-

tions by induction on derivations. This method, which circumvents the necessity

to prove independence of the interpretation of a particular derivation, is due to

Streicher [100]. Our treatment here di�ers from loc.cit. in that our notion of model

is more general, in particular we do not require extensional �-types, and that in

loc.cit. only the particular example of the Calculus of Constructions is considered.

Chapter 2. Syntax and semantics of dependent types 63

2.5.1 Partial interpretation

Assume a syntactic category with attributes C equipped with dependent products,

natural numbers, and identity types. An a priori partial interpretation function

[[�]] is de�ned which maps:

{ pre-contexts to objects of C

{ pairs � j �, where � is a pre-context and � is a pre-type, to families in

Fam([[�]])

{ pairs � j M , where � is a pre-context and M is a pre-term to sections in

Sect(�) for some � 2 Fam(�).

We show below in Thm. 2.5.6 that this semantic function is de�ned on all contexts,

types, and terms.

The semantic clauses are the following, where in order to reduce the number of

cases we adopt the convention that an expression containing an unde�ned subex-

pression is itself unde�ned. We also adopt the convention that expressions which

do not \typecheck", like � � � if � 62 Fam(�), are unde�ned.

{ [[�]] = >

{ [[�; x:�]] = [[�]] � [[� j �]]

{ [[� j �x:�:�]] = �([[� j �]] ; [[�; x:� j �]])

{ [[� jN]] = N

[[�]]

{ [[� j Id

�

(M;N)]] = Id

[[�j�]]

f[[� jM]]

+

gf[[� j N]]g

{ [[� j x]] = v

[[�

0

j�]]

+

:::

+

| {z }

n times

if � = �

0

; x:�;�

00

where �

00

has length n and x does

not occur in �

0

;�

00

. Unde�ned otherwise.

{ [[� j App

� ;[x:�]�

(M;N)]] = App

[[�j�]] ;[[�;x:�j�]]

([[� jM]]; [[� j N]])

Chapter 2. Syntax and semantics of dependent types 64

{ [[� j �x:�:M

�

]] = �

[[�j�]];[[�;x:�j�]]

([[�; x:� j M]])

{ [[� j 0]] = 0

[[�]]

{ [[� j Suc(M)]] = Hd(Suc

[[�]]

� [[� jM]])

{ [[� j R

N

(M

z

;M

s

; N)]] = R

N

[[�]]

([[� jM

z

]]; [[�; x:N; p:� jM

s

]])f[[� j N]]g

{ [[� j Re

�

(M)]] = Re

[[�j�]]

f[[� jM]]g

{ [[� j J

�;[x;y:�;p:Id

�

(x;y)]�

(M;N

1

; N

2

; P)]] =

J

[[�j�]] ; [[�;x;y:�;p:Id

�

(x;y) j �]]

([[�; x:� jM]])f[[� j N

1

]]

++

gf[[� j N

2

]]

+

gf[[� j P]]g

The n-fold weakening in the clause for variables is understood along the semantics

of the n types in �

00

in their respective contexts. Notice that the semantic com-

binators like R

N

and J take sections as arguments, whereas substitution (�f�g)

takes morphisms as arguments, so that when arguments are supplied via substitu-

tion, like the three last arguments to J we must use � to transform sections into

morphisms.

2.5.2 Soundness of the interpretation

Before we state and prove a soundness theorem for this interpretation we establish

correspondences between syntactic and semantic substitution and weakening. In

order to state these we need to de�ne a semantic equivalent of telescopes.

De�nition 2.5.1 Let C be a model and � 2 Ob(C). A (semantic) telescope

over � is a list of families (�

1

; : : : ; �

n

) with �

1

2 Fam(�), �

2

2 Fam(� � �

1

), . . . ,

�

n

2 Fam(� � �

1

� : : : � �

n�1

). The set of semantic telescopes is denoted by Tel(�).

The empty telescope over � is written ()

�

. The operations of comprehension and

substitution are extended to telescopes by the following recursive de�nition.

{ � � ()

�

= �

{ p(()

�

) = id

�

Chapter 2. Syntax and semantics of dependent types 65

{ ()

�

ffg = ()

B

for f : B ! �.

{ q(f; ()

�

) = f

{ � � (�; �) = � �� � � where (�; �) is the telescope � extended by family �.

{ p((�; �)) = p(�) �p(�)

{ (�; �)ffg = (�ffg; �fq(f;�)g)

{ q(f; (�; �)) = q(q(f;�); �)

By a straightforward induction on the length of telescopes we now obtain

Proposition 2.5.2 The telescopes together with the operations de�ned above sat-

isfy the premises of Prop 2.4.10 and thus de�ne a syntactic category with attributes

where Sect(�) = \the set of sections of p(�)".

The partial interpretation function can be extended to telescopes by de�ning

for pre-contexts � and � = x

1

: �

1

; : : : ; x

n

: �

n

[[� j �]] := ([[� j �

1

]]; [[�; x

1

: �

1

j �

2

]]; : : : ; [[�; x

1

: �

1

; : : : ; x

n�1

: �

n�1

j �

n

]])

Clearly, if [[� j �]] is de�ned then so is [[�]] and the former is a semantic telescope

over the latter. Moreover, the following two properties of the extension are obvious

from the de�nitions of p(�) and q(�;�) on telescopes:

p([[� j �;�]]) = p([[� j �]]) �p([[�;� j �]])

q(f; [[� j �;�]]) = q(q(f; [[� j �]]); [[�;� j �]])

Lemma 2.5.3 (Weakening) Let �;� be pre-contexts, �; � pre-types, M a pre-

term and x a fresh variable. The following equations hold if either side is de�ned:

[[�; x:�;�]] = [[�; x:�]] � [[� j �]]fp([[� j �]])g

[[�; x:�;� j �]] = [[�;� j �]]fq(p([[� j �]]); [[� j �]])g

[[�; x:�;� jM]] = [[�;� jM]]fq(p([[� j �]]); [[� j �]])g

Chapter 2. Syntax and semantics of dependent types 66

Proof. An instance of this lemma is one of the left hand sides of the above

equations. The weight of such an instance is the number of symbols required to

write it down including variables and punctuation symbols. Thus for example the

weight of [[�; x:�;�; y: �]] is greater than the weight of [[�; x:� j �]] because y is

not contained in the latter. We also need the notion of length of a pre-context �

denoted j�j which is the number of variable declarations it contains. We proceed

by induction on the weight and give a representative selection of the many cases

required.

First consider the case where � = �. If either side of the instance is de�ned

then p([[� j �]]) must be de�ned, too. Now [[�; x:�;�]] = [[�; x:�]] = [[�; x:�]] �

[[� j �]]fp([[� j �]])g because [[� j �]] = ()

[[�]]

by de�nition.

If � = �

0

; y: � then

[[�; x:�;�]]

= [[�; x:�;�

0

]] � [[�; x:�;�

0

j �]] by de�nition

= [[�; x:�]] � [[� j �

0

]]fp([[� j �]])g � [[�;�

0

j �]]fq(p([[� j �]]); [[� j �

0

]])g by IH

= [[�; x:�]] � ([[� j �

0

]]fp([[� j �]])g ; [[�;�

0

j �]]fq(p([[� j �]]); [[� j �

0

]])g)

= [[�; x:�]] � [[� j �]]fp([[� j �]])g

The last two steps follow from the de�nition of substitution and comprehension on

semantic telescopes. We have used the inductive hypothesis (IH) on the instances

[[�; x:�;�

0

j �]] and [[�; x:�;�

0

]] which both have smaller weight.

Next we consider the instance [[�; x:�;� j N]]. We have

[[�; x:�;� j N]]

= N

[[�;x:�;�]]

= N

[[�;x:�]]�[[�j�]]fp([[�j�]])g

by IH

= N

[[�;�]]

fq(p([[� j �]]); [[� j �]])g

= [[�;� j N]]fq(p([[� j �]]); [[� j �]])g

For the penultimate step we have used that q(p([[� j �]]); [[� j �]]) is a morphism

from [[�; x:�]] � [[� j �]]fp([[� j �]])g to [[�]] � [[� j �]] = [[�;�]] and the fact that

N

�

ffg = N

B

for any morphism f : B ! �.

Chapter 2. Syntax and semantics of dependent types 67

Now we consider the instance [[�; x:�;� j �y: �:�]]. We have

[[�; x:�;� j �y: �:�]]

= �([[�; x:�;� j �]] ; [[�; x:�;�; y: � j �]])

= �([[�;� j �]]fq(p([[� j �]]); [[� j �]])g;

[[�;�; y: � j �]]fq(p([[� j �]]); [[� j �; y: �]])g)

= �([[�;� j �]]fq(p([[� j �]]); [[� j �]])g;

[[�;�; y: � j �]]fq(q(p([[� j �]]); [[� j �]]); [[�;� j y: �]])g)

= �([[�;� j �]]; [[�;�; y: � j �]])fq(p([[� j �]]); [[� j �]])g

= [[�;� j �y: �:�]]fq(p([[� j �]]); [[� j �]])g

In the second step we have used the IH on the instances [[�;� j �]] and [[�;�; y :

� j �]] both of which have smaller weight than the original instance. We see here

the need for the rather involved structure of the inductive argument. The third

step uses the de�nition of the q(�;�) operation on semantic telescopes and the

fourth step is a consequence of the stability of � under substitution.

The instance [[�; x:�;� j Id

�

(M;N)]] is similar. We expand the de�nition and

use the IH on the instances [[�; x:�;� j �]], [[�; x:�;� j M]], and [[�; x:�;� j N]]

all of which have smaller weight.

Let us now consider the instance [[�; x:�;� j y]] where y is a variable. We

observe that using our notation for telescopes and functoriality of substitution we

can rewrite the iterated weakening in the semantic clause for variables as follows:

[[�

0

; y: �;�

00

j y]] = v

[[�

0

j�]]

fp([[�

0

; y: � j �

00

]])g

where y does not occur in �

0

;�

00

. Suppose now that [[�; x:�;� j y]] is de�ned.

Then either � = �

0

; y: �;�

00

for some type � and y does not occur in �

0

;�

00

;� or

� = �

0

; y: �;�

00

and y does not not occur in �;�

0

;�

00

. In the former case we

calculate as follows:

[[�

0

; y: �;�

00

; x:�;� j y]]

= v

[[�

0

j�]]

fp([[�

0

; y: � j �

00

; x:�;�]])g

= v

[[�

0

j�]]

fp([[�

0

; y: � j �

00

]]) �p([[� j �]]) � p([[�; x:� j �]])g

= : : :

Chapter 2. Syntax and semantics of dependent types 68

Now we notice that

[[�; x:� j �]] = [[� j �]]fp([[� j �]])g

by induction on j�j and the IH. This in turn implies that

p([[� j �]]) � p([[�; x:� j �]]) = p([[� j �]]) � q(p([[� j �]]); [[� j �]])

because semantic telescopes form a syntactic category with attributes. We can

thus continue the calculation as follows:

: : :

= v

[[�

0

j�]]

fp([[�

0

; y: � j �

00

]]) �p([[� j �]]) � q(p([[� j �]]); [[� j �]])g

= v

[[�

0

j�]]

fp([[�; y: � j �

00

;�]]) � q(p([[� j �]]); [[� j �]])g

= [[�

0

; y: �;�

00

;� j y]]fq(p([[� j �]]); [[� j �]])g

On the other hand if � = �

0

; y: �;�

00

and y does not occur in �;�

0

;�

00

then

[[�; x:�;�

0

; y: �;�

00

j y]] =

= v

[[�;x:�;�

0

j�]]

fp([[�; x:�;�

0

; y: � j �

00

]])g

= v

[[�;�

0

j�]]fq(p([[�j�]]);[[�j�

0

]])g

fp([[�; x:�;�

0

; y: � j �

00

]])g by IH

= v

[[�;�

0

j�]]

fq(p([[� j �]]); [[� j �

0

; y: �]])gfp([[�; x:�;�

0

; y: � j �

00

]])g

= : : :

by Lemma 2.4.1.3 and the de�nition of q(�;�) on telescopes. Now again by

induction on j�

00

j and the IH we conclude that

[[�; x:�;�

0

; y: � j �

00

]] = [[�;�

0

; y: � j �

00

]]fq(p([[� j �]]); [[� j �

0

; y: �]])g

and thus

q(p([[� j �]]); [[� j �

0

; y: �]]) �p([[�; x:�;�

0

; y: � j �

00

]]) =

p([[�;�

0

; y: � j �

00

]]) � q(p([[� j �]]); [[� j �

0

; y: �;�

00

]])

using the commutativity of the square corresponding to the substitution [[�;�

0

; y: � j

�

00

]]fq(p([[� j �]]); [[� j �

0

; y: �]])g and the observation on nested q(�;�)-morphisms

on telescopes made above. Now we can �nish the calculation as follows

: : :

= v

[[�;�

0

j�]]

fp([[�;�

0

; y: � j �

00

]])gfq(p([[� j �]]); [[� j �]])g

= [[�;� j y]]fq(p([[� j �]]); [[� j �]])g

Chapter 2. Syntax and semantics of dependent types 69

If the right hand side of the equation for variables is de�ned then we perform the

same case distinction as to whether y occurs in � or �. Since all the steps in the

above calculation are valid if either side is de�ned this implies that the left hand

side is de�ned, too.

The instances of the form [[�; x:�;� j M]] are similar to the instances of the

form [[�; x:�� j �]]. If M is a constant then we follow the proof for N, and if the

outermost constructor of M is a binder then we argue as in the case of �. 2

Lemma 2.5.4 (Substitution) Let �;� be pre-contexts, �; � pre-types,M;N pre-

terms and x a fresh variable. We denote the substitution of M for x in some pre-

construction C by C[M]. The expression [[� jM]] is abbreviated by m. If [[� j �]]

and [[� j M]] are both de�ned and the latter is a section of the former then the

following equations hold if either side is de�ned:

[[�;�[M]]] = [[�]] � [[�; x:� j �]]f[[� jM]]g

[[�;�[M] j � [M]]] = [[�; x:�;� j �]]fq([[� jM]]; [[�; x:� j �]])g

[[�;�[M] j N [M]]] = [[�; x:�;� j N]]fq([[� jM]]; [[�; x:� j �]])g

Proof. Again we proceed by simultaneous induction on the weights of the three

instances. We abbreviate the morphism [[� jM]] by m. It now plays the role of

the \weakening morphism" p([[� j �]]) in Lemma 2.5.3. There are only two cases

the proof of which di�ers from the one of their companion in Lemma 2.5.3. The

�rst one is the instance [[�; �[M]]]. This equals [[�]] � [[�; x:� j �]]fmg i� [[� jM]] is

de�ned and is a section of [[� j �]] because otherwise the substitution would not

typecheck and would thus be unde�ned. This is actually the only place where this

assumption is needed; it is propagated to the other cases through the inductive

process.

The second case is the instance where N is the variable x, i.e.

[[�;�[M] jM]] = [[�; x:�;� j x]]fq(m; [[�; x:� j �]])g

Chapter 2. Syntax and semantics of dependent types 70

Notice here that x[M] = M . By the inductive hypothesis and by induction on j�j

we may assume that

[[� j �[M]]] = [[�; x:� j �]]fmg

and thus

m �p([[� j �[M]]]) = p([[�; x:� j �]]) � q(m; [[�; x:� j �]])

by the commutativity of the square corresponding to the substitution [[�; x:� j

�]]fmg. Now we calculate as follows:

[[�;�[M] jM]]

= [[� jM]]fp([[� j �[M]]])g by j�j-fold application of Lemma 2.5.3

= v

[[�j�]]

fm �p([[� j �[M]]])g by Lemma 2.4.13

= v

[[�j�]]

fp([[�; x:� j �]]) � q(m; [[�; x:� j �]])g as argued above

= [[�; x:�;� j x]]fq(m; [[�; x:� j �]])g by the clause for variables

The proofs of all the other cases almost literally follow the proof of Lemma 2.5.3

and are thus left out. 2

Substitution for arbitrary context morphisms We can extend the inter-

pretation function to (syntactic) context morphisms (together with their domain

and codomain) as follows: If �;� are pre-contexts, f a tuple of pre-terms and M

a pre-term then

{ [[� j () j �]] =!

[[�]]

{ [[� j (f;M) j �; x:�]] = q([[� j �]]; [[� j f�]]) � [[� jM]]

where as before we adopt the convention that expressions which do not typecheck

are unde�ned. We now have the following general substitution property.

Lemma 2.5.5 (General substitution) Let B;�;� be pre-contexts and f a j�j-

tuple of pre-terms, M a pre-term, and � a pre-type. We denote the simultaneous

Chapter 2. Syntax and semantics of dependent types 71

substitution of the �-variables by f in some pre-construction C by C[f]. If [[B j

f j �]] is a morphism from [[B]] to [[�]] then the following equations hold if either

side is de�ned:

[[B;�[f]]] = [[B]] � [[� j �]]f[[B j f j �]]g

[[B;�[f] j �[f]]] = [[�;� j �]]fq([[B j f j �]];� j �)g

[[B;�[f] jM [f]]] = [[�;� jM]]fq([[B j f j �]];� j �)g

Proof. The proof is by induction on the length of f . If f = () and thus � =

� then the �rst equation is satis�ed by de�nition of substitution on semantic

telescopes. The second equation becomes

[[B;� j �]] = [[� j �]]fq([[B j () j �]]; [[� j �]])g

From a jBj-fold application of Lemma 2.5.3 we get

[[B;� j �]] = [[� j �]]fq(p(� j B); [[� j �]])g

where we have used compositionality of q(�;�) and the de�nition of p(�) on

telescopes. But now p(� j B) as a morphism from [[B]] to > must equal !

[[>]]

by the

unicity property of the terminal object. The third equation is analogous.

Now consider the case where f = (f

0

; N) and � = �

0

; y: � . If [[B j f j �]] is

de�ned and is a morphism from B to � then [[B j N]] must be de�ned and be a

section of [[� j �]]f[[B j f

0

j �]]g which by the IH is equal to [[B j � [f

0

]]]. Now for

the �rst equation we calculate as follows:

[[B;�[(f

0

; N)]]]

= [[B;�[f

0

][y := N]]] by de�nition of parallel substitution

= [[B]] � [[B; y: � [f

0

] j �[f

0

]]]f[[B j N]]g by Lemma 2.5.4

= [[B]] � [[�

0

; y: � j �]]fq([[B j f

0

j �

0

]]; [[�

0

j �]])gf[[B j N]]g by ind. on j�j and IH

= [[B]] � [[� j �]]f[[B j (f

0

; N) j �

0

; y: �]]g

by compositionality of �f�g and the de�nition of the interpretation of nonempty

context morphisms.

The other cases are similar. 2

Chapter 2. Syntax and semantics of dependent types 72

We remark that the inductive argument above does not go through if we restrict

ourselves to � = � and thus q([[B j f j �]]; [[� j �]]) = [[B j f j �]].

We have tried to prove the general substitution lemma directly by induction on

the weight of the instances. Then all the inductive cases are very much the same

as, if not easier than in the weakening case (Lemma 2.5.3), but the case where M

is a variable becomes extremely complicated and seems to require weakening and

substitution for terms in the �rst place.

We can now establish a correspondence between syntax and semantics.

Theorem 2.5.6 The interpretation function enjoys the following soundness prop-

erties

{ If � ` then [[�]] is an object of C.

{ If � ` � then [[� j �]] is an element of Fam([[�]]).

{ If � ` M : � then [[� jM]] is an element of Sect([[� j �]]).

{ If � ` and � ` and � ` f : � then [[� j f j �]] 2 C([[�]]; [[�]]).

{ If ` � = � then [[�]] = [[�]].

{ If � ` � = � then [[� j �]] = [[� j �]].

{ If � ` M = N : � then [[� jM]] = [[� j N]].

Proof. The proof is by induction on derivations. Again we only treat selected

cases to give the general idea. The cases for context and type formation rules

are fairly simple applications of the IH. Assume for example that � ` �x : �:� [x]

has been derived from � ` � and �; x:� ` � [x] using �-Form. Then we may

assume that S := [[� j �]] 2 Fam([[�]]) and T := [[�; x:� j �]] 2 Fam([[�; x:�]]).

Now [[�; x:�]] = [[�]] � S by the semantic clause for context extension. So �(S; T)

is de�ned and equals [[� j �x:�:�]] by the clause for �-types.

Chapter 2. Syntax and semantics of dependent types 73

More interesting are rules involving syntactic substitution. Assume for example

that � ` App

� ;[x:�]�

(M;N) : � [N] has been derived from � ` M : �x:�:� [x] and

� ` N : � using �-Elim. Then by induction we may assume that [[� j M]] 2

Fam([[� j �x:�:� [x]]]) and [[� j N]] 2 Fam([[� j �]]). By expanding some de�nitions

and using the IH we get from this that [[� j App

� ;[x:�]�

(M;N)]] is de�ned and is

a section of the family [[�; x:� j � [x]]]f[[� j N]]g. We now use Lemma 2.5.4 to

conclude that this family equals [[� j � [N]]] as required. 2

We �nish our presentation of categorical semantics of dependent type theory with

a trivial completeness theorem for syntactic categories with attributes.

Theorem 2.5.7 Let �;� be pre-contexts, �; � be pre-types, and M;N be pre-

terms.

{ If [[�]] is de�ned in all interpretations then � `.

{ If [[� j �]] is de�ned in all interpretations then � ` �.

{ If [[� jM]] is de�ned in all interpretations then � `M : � for some (unique)

�.

{ If [[�]] = [[�]] in all interpretations then ` � = �.

{ If [[� j �]] = [[� j �]] in all interpretations then � ` � = � .

{ If [[� j M]] = [[� j N]] in all interpretations then � ` M = N : � for some

unique �.

Proof. Using the term model from Ex. 2.4.2 and induction on the de�nition of

the interpretation function. 2

Chapter 2. Syntax and semantics of dependent types 74

Remark 2.5.8 One can de�ne morphisms between syntactic categories with at-

tributes in the obvious way as functions on contexts, morphisms, families, and

sections preserving all the structure up to equality. In this way syntactic categor-

ies with attributes supporting a given set of type formers form a category in which

the respective term model is initial.

2.6 Discussion and related work

Our formulation of the syntax di�ers from the more modern one in [85] in that it

is not based on a logical framework. In the latter approach one �rst de�nes a type

theory with �-types (written (x:�)�) and one universe (called Set) the way we have

done and then one introduces all further constructs as constants of the appropriate

type, e.g. for �-types one would have a constant � : (S: Set)(T : (s: El(S))Set)Set.

In this way many of the rules can be simpli�ed and less meta-notation (like sub-

stitution) is needed. The reason why we have not used this notation was that

the categorical semantics then becomes more complicated. In retrospect we think

that it might have been better to pay this price in exchange for a neater and more

up-to-date syntax.

Another basic characteristic of our presentation of the syntax is the handling

of substitution as a de�ned operation on the raw syntax. Recently, there has been

an interest in treating substitution as part of the syntax and giving reduction (or

equality rules) for it ([22,23] and unpublished notes by Per Martin-L�of). We have

not used this presentation simply because it does not yet seem to be su�ciently

settled, see for instance [76].

The categorical semantics of dependent type theory has attracted quite some

interest, see [15,55,86,30,52] for instance, but mostly from an abstract categorical

point of view. If we can claim any originality for the material in this chapter then

it is for having tried to de-mystify the categorical semantics and to relate it as

closely to the syntax as possible. Let us summarise the most important approaches

to categorical semantics in the literature. The subject started with Cartmell's pi-

Chapter 2. Syntax and semantics of dependent types 75

oneering work [15] who invented the notions of contextual categories and categories

with attributes. Categories with attributes have been described in Remark 2.4.11;

in contextual categories the \families" are replaced by an additional tree structure

on the category of contexts. This latter notion underlies Streicher's work [99,100]

on categorical semantics of the Calculus of Constructions, where the interpret-

ation of the syntax is de�ned formally and the method of partially interpreting

pre-constructions appears for the �rst time.

In these two notions of model, equality of families and compatibility of the

type formers with substitution up to equality is crucial (this in known as the \split

case"). In other approaches to categorical semantics this has been weakened to ca-

nonical isomorphism (the non-split case), e.g. in locally cartesian closed categories

[96], models based on �brations [30,55], and display map categories [52,103]. The

interpretation of the syntax in such structures is not obvious at all, however, a fact

which has astonishingly been neglected by many authors. An exception is Ehrhard

[30] who restricts to the split case and then uses Streicher's method to interpret

the syntax of the Calculus of Constructions in his �brational models. The problem

of interpreting the syntax in non-split categorical structures has only recently been

taken up by Curien using an intermediate syntax with explicit substitutions [23]

and by the author using a categorical construction that turns a non-split structure

into a split one [46]. In both approaches problems (in particular the treatment

of universes) remain, so that one can conclude that at the current state-of-the-art

the non-split models do not properly correspond to the syntax.

Another generalisation o�ered by models based on �brations is that morphisms

between families are primitive rather than de�ned through context comprehension

as special context morphisms. This has the advantage that context comprehen-

sion satis�es a universal property w.r.t. these morphisms [30] and therefore|if it

exists|it is unique up to isomorphism. Morphisms between families also permit

a more natural characterisation of �- and �-types as certain adjoint functors.

Again, this characterises them up to isomorphism so that the presence of these

type formers becomes a property rather than additional structure. However, this

only works for models of extensional type theory.

Chapter 2. Syntax and semantics of dependent types 76

It has already been said that most of the material in this chapter is not original.

However, since no homogeneous treatment covering both syntax and semantics of

dependent type theory exists in the literature, let alone a textbook (this may be

remedied by the forthcoming [89]), we considered it necessary to give a rather

detailed account. As novelties, albeit implicit in existing literature, we consider

the equational presentation of categories with attributes, the emphasis on stabil-

ity under substitution rather than universal properties in the formulation of the

semantic type formers, e.g. the identity type, the construction achieving equality

between the semantics of Prf(8x:�:S) and �x:�:Prf(S) in Prop. 2.4.38, and the

explicit use of telescopes in the correctness proof for the interpretation function.

Chapter 3

Syntactic properties of propositional

equality

The main focus of this Chapter are the proofs of two important properties of ex-

tensional type theory, i.e. type theory with propositional and de�nitional equality

identi�ed. The �rst property is undecidability of this theory; in view of the inform-

ation loss in the equality reection rule an obvious thing, which is nevertheless not

completely trivial to prove (Sect. 3.2.2). The second property is the conservativity

of extensional type theory over intensional type theory with extensional concepts

(Sect. 3.2.5). These two properties constitute the major justi�cation for the use

of intensional type theory with extensional concepts.

On the way we develop some notions and concepts which will be required later

such as the formulation of propositional equality using uniqueness of identity and

a Leibniz property (Sect. 3.2.3.1) and the syntactic formulation of extensional

concepts relevant in Martin-L�of type theory without a universe of propositions

(Sects 3.1.2, 3.1.3, 3.2.6.1). An impatient reader may skip the other parts of this

chapter without a�ecting the understandability of the rest of the thesis.

77

Chapter 3. Syntactic properties of propositional equality 78

3.1 Intensional type theory

Intensional type theory is the one described in Sect. 2.1. Here we present some

derived combinators and operations for the inductive identity type Id

�

de�ned

there (Sect. 3.1.1). Next we look at the extensional concepts of uniqueness of

identity (Sect. 3.1.2) and functional extensionality (Sect.3.1.3) and establish some

syntactic properties of these.

3.1.1 Substitution

From the elimination operator J we can de�ne an operator which allows to replace

propositionally equal objects in a dependent type. Let x:� ` � [x] and M;M

0

: �

and P : Id

�

(M;M

0

) and N : � [M]. We then de�ne

Subst

�;�

(M;M

0

; P;N) :=

J

�;[x;y:�][p:Id

�

(x;y)]� [x]!� [y]

([x:�]�h: � [x]:h ; M ; M

0

; P) N : � [M

0

]

By the equality rule Id-Comp we have

Subst

�;�

(M;M;Re

�

(M); N) = N : � [M] (3.1)

Intuitively, Subst allows to \replace" M by the propositionally equal M

0

in the

type � [M] of N . As opposed to extensional type theory every application of

propositional equality must be recorded in the terms, we cannot simply write

N : � [M

0

], but Subst

�;�

(M;M

0

; P;N) : � [M

0

] as indicated.

Since the �rst two arguments to Subst can be inferred from the third one we

often suppress these and write Subst

�;�

(P;N). Also, as usual, type annotations

may be left out. The same convention applies to other combinators and de�nitional

extensions which we introduce later on.

It is slightly unpleasant that the function type has to be used in order to derive

a principle as basic as substitution. This may be avoided by replacing J by another

Chapter 3. Syntactic properties of propositional equality 79

elimination operator J

0

governed by the typing rule

� ; x; y : � ; p : Id

�

(x; y) ` � [x; y; p]

� ` N

1

: � � ` N

2

: �

� `M : � [N

1

; N

1

;Re

�

(N

1

)]

� ` P : Id

�

(N

1

; N

2

)

� ` J

0

�;�

(M;N

1

; N

2

; P) : � [N

1

; N

2

; P]

Id-Elim-J

0

and an equality rule analogous to Id-Comp. So instead of having to \prove"

� [x; x;Re

�

(x)] for all x : � (the second premise to Id-Elim-J we only need it for

x := N

1

. This elimination operator is de�nable from J using function types and

gives Subst directly without using them. However, since J is more established, we

shall stick to it.

It is worth pointing out that identity elimination (J) allows us to \reason"

about terms involving instances of Subst (an example for such a term occurs in

Ex. 6.6). Intuitively using J one can \replace" the proof P in an instance of

Subst by an instance of reexivity and then use the de�nitional equality Eqn. 3.1

above to get rid of Subst . A more systematic approach to this is provided by the

conservativity result in Sect. 3.2.5 and is exempli�ed again in Ex. 6.6.

3.1.1.1 Symmetry and transitivity

Let M;N : � and P : Id

�

(M;N). We de�ne

Sym

�

(M;N;P) := Subst

�;[x:�]Id

�

(x;M)

(M;N;P;Re

�

(M)) : Id

�

(N;M)

If in addition we have Q : Id

�

(N;O) we de�ne

Trans

�

(M;N;O;P;Q) := Subst

�;[x:�]Id(M;x)

(N;O;Q;P) : Id

�

(M;O)

The typing annotations and the inferable arguments may again be elided.

3.1.1.2 Compatibility with function application

Assume U : � ! � and M;N : � and P : Id

�

(M;N). An element of type

Id

�

(U M;U N) is constructed as follows:

Resp (U;P) := Subst

�;[x:�]Id

�

(U M;x)

(P;Re

�

(U M))

Chapter 3. Syntactic properties of propositional equality 80

More generally, if ` �x:�:� [x] and M;N;P are as before then we can �nd an

element of Id

� [N]

(Subst

�;�

(P;U M) ; U N).

3.1.2 Uniqueness of identity

The conversion functions from � [M] to � [M

0

], if P : Id(M;M

0

), obtained from

Subst depend on the proof supplied. That is, if � ` P;Q : Id

�

(M;N) and � ` L :

� [M] then in general the type

� ` Id

� [N]

(Subst

�;�

(P;L) ; Subst

�;�

(Q;L))

is not inhabited. We shall prove this later in Section 5.2. It is, however, certainly

desirable that the above type is inhabited

1

, or that equivalently the type

� ` Id

Id

�

(M;N)

(P;Q)

is inhabited. We use the term uniqueness of identity to refer to either type being

inhabited for every such P;Q;M;N .

Various authors have proposed the addition of axioms to type theory so as

to achieve uniqueness of identity [101,17,37]. Now as pointed out in [101] it is

su�cient to have uniqueness of identity in the case where one of the two proofs is

a canonical one by reexivity. The general case follows using J, see below. So we

introduce a family of constants

� ` � � `M : � � ` P : Id

�

(M;M)

� ` IdUni

�

(M;P) : Id

Id

�

(M;M)

(P;Re(M))

Id-Uni-I

and (in addition to the obvious congruence rules) an equality rule

� ` � � `M : �

� ` IdUni

�

(M;Re(M)) = Re(Re(M)) : Id

�

(M;M)

Id-Uni-Comp

1

Inhabited, at any rate, if the identity typed is to approximate extensional equality.

For an application of a type theory without uniqueness of identity see Sect. 5.2.4.

Chapter 3. Syntactic properties of propositional equality 81

In this way an instance of IdUni can be eliminated if its arguments are canonical,

so that, provided Id-Uni-Comp does not destroy strong normalisation, a type

theory extended by Id-Uni-I and Id-Uni-Comp is N-canonical in the sense of

Def. 2.1.9. We have not found a formal proof in the literature that Id-Uni-Comp

is indeed strongly normalising, but it seems probable that any of the usual proofs

of normalisation should carry over.

Where appropriate we omit the type annotation and the �rst argument to

IdUni .

For the sake of completeness we give now a proof of the general case of unique-

ness of identity using IdUni . If � ` � then consider the type

� [x; y:� ; p: Id

�

(x; y)] := �q: Id

�

(x; y):Id

Id

�

(x;y)

(p; q)

Now if � `M;N : � and � ` P;Q : Id

�

(M;N) then we have

� ` J

�;�

([x:�]�q: Id

�

(x; x):IdUni

�

(x; p) ; M ; N ; P) Q : Id

Id

�

(M;N)

(P;Q)

3.1.2.1 Uniqueness of identity for de�nable types.

In the presence of a universe one can show that various instances of IdUni are

de�nable. In addition to the unit type we need an empty type 0 containing no

canonical elements and an elimination operator R

0

�

, where � ` R

0

�

(M) : � if

� ` M : 0. Moreover, we need a universe (U;El) in the sense of 2.3.5 containing

codes

^

1 and

^

0 for the unit type and the empty type. We say that uniqueness

of identity is de�nable at type � if for each M : � and P : Id

�

(M;M) the type

Id

Id

�

(M;M)

(P;Re

�

(M)) is inhabited without using IdUni .

Proposition 3.1.1 In TT extended with an empty type 0 and a universe (U;El),

containing 0 and 1, uniqueness of identity is de�nable at 0;1;N. If uniqueness

of identity is de�nable at � then it is de�nable at Id

�

(M;N) for � ` M;N : �. If

�; x:� ` � and uniqueness of identity is de�nable at � and at � , then it is de�nable

at �x:�:� .

Chapter 3. Syntactic properties of propositional equality 82

Proof. For the empty type 0 the result is trivial, since in the presence of a term

M : 0 any type is inhabited by R

0

. For 1 we �rst construct a general proof

x; y:1 ` P

0

[x; y] : Id

1

(x; y) using R

1

satisfying P

0

[x; x] = Re(x) and then show

using J and R

1

that whenever � ` P : Id

1

(M;N) then � `; Id

Id

1

(M;N)

(P;P

0

[M;N]).

Uniqueness of identity at 1 is a trivial consequence from this. We argue similarly

for the case of identity types themselves. If uniqueness of identity is de�nable at

� ` � and � `M;N : � then as shown above we have a general proof

� ; p; q: Id

�

(M;N) ` P

0

[p; q] : Id

Id

�

(M;N)

(p; q)

We deduce uniqueness of identity at Id

�

(M;N) as in the case of 1 using J.

For N we de�ne a term x; y:N ` EqNat[x; y] : U by induction (R

N

) in such a

way that ` EqNat[0; 0] =

^

1 : U, x:N ` EqNat(0;Suc(x)) = EqNat(Suc(x); 0) =

^

0 : U, and x; y:N ` EqNat(Suc(x);Suc(y)) = EqNat(x; y). Now we construct

terms

x; y:N ; p: Id

N

(x; y) ` �[p] : El(EqNat[x; y])

and

x; y:N ; p: El(EqNat[x; y]) ` 	[p] : Id

N

(x; y)

The function � is de�ned using identity elimination, whereas 	 involves induction

(R

N

). Now using identity elimination (J) we can show that

x; y:N ; p: Id

N

(x; y) ` Id

Id

N

(x;y)

((�(p)); p)

is inhabited. So uniqueness of identity at N follows from unicity of proofs of

El(EqNat[x; x]), which can be established by induction.

For �-types consider the type

EqSigma[u; v:�x:�:� [x]] := �p: Id

�

(u:1; v:1):Id

� [y]

(Subst

�;�

(p; u:2) ; v:2)

As in the case of N we can construct an \isomorphism" between Id

�x:�:�

(M;N)

and EqSigma[M;N] and deduce uniqueness of identity from uniqueness of proofs

of EqSigma which in turn follows from uniqueness of identity at � and � .

2

Chapter 3. Syntactic properties of propositional equality 83

The methods of the above proof appear to carry over to other inductive types

and type formers and under a certain assumption also to �-types, see below.

Uniqueness of identity is, however, not de�nable at universes, as emerges from the

proof of its independence in Sect. 5.2.

3.1.2.2 The relationship with pattern-matching

It is worth highlighting the trivial observation that uniqueness of identity is de�n-

able at all types using the device of pattern-matching for dependent types in-

troduced by Coquand in [17]. We do not here give the full de�nition of this

mechanism, but only remark that it allows to de�ne a function on an inductive

type, such as the identity type, by specifying its value at the canonical elements.

In this way we may de�ne a term

�; p: Id

�

(M;M) ` IdUni

�

(M;P) : Id

Id

�

(M;M)

(M;Re

�

(M))

by the single pattern

IdUni

�

(M;Re

�

(M)) = Re

Id

�

(M;M)

(Re

�

(M))

since Re

�

(M) is the only canonical element of Id

�

(M;M). Of course, this reduc-

tion to canonical elements is also the intention behind the elimination rules R

N

, J,

. . . , but there the patterns are given in a parametrised way. This subtle di�erence

is made more explicit in the proof of independence of uniqueness of identity in 5.2.

3.1.3 Functional extensionality

Suppose that � ` U; V : �x:�:� and �; x:� ` P : Id

�

(U x ; V x). It is in general

not possible to derive from these hypotheses that � ` Id

�x:�:�

(U; V) is inhabited,

that is|in the terminology of the Introduction|intensional type theory does not

support functional extensionality. In [101] a formal semantic proof of this is given.

Intuitively one may argue that if functional extensionality were available then

in the case � = � we could deduce Id

�x:�:�

(U; V) true (from the existence of P

Chapter 3. Syntactic properties of propositional equality 84

above), but by strong normalisation (see Remark 2.1.6) an identity type in the

empty context can only be inhabited by a canonical element Re(�), so U and V

must be de�nitionally equal, i.e. intensionally equal, which does not follow from

the existence of the proof P which may have been obtained using induction. This

is an unfortunate problem with the identity type which makes its instances at

higher types essentially unusable. To achieve functional extensionality we may

add a family of constants Ext

�;�

(U; V; P) obeying the rule

� ` U; V : �x:�:�

�; x:� ` P : Id

�

(U x; V x)

� ` Ext

�;�

(U; V; P) : Id

�x:�:�

(U; V)

Ext-Form

The type annotations and the �rst two arguments to Ext may be omitted.

The introduction of these constants is essentially the solution proposed by

Turner in [108]. Clearly, the addition of these constants Ext is consistent as may

be seen from the set-theoretic or the !-set model (Examples 2.4.4 and 2.4.5).

Its serious drawback, immediately pointed out by Martin-L�of in a subsequent

discussion also in [108], is that this introduces non-canonical elements in each type,

since we have not speci�ed how the eliminator J should behave when applied to a

proof having Ext as outermost constructor. For example, consider the (constant)

family f : N ! N ` N. Now if x:N ` P [x] : Id

�

(U x; V x) for two functions

U; V : N! N then Subst

N!N;[x:N!N]N

(Ext(P); 0) is an element ofN in the empty

context which does not reduce to canonical form. We address this problem later in

Chapter 5 where we give syntactic models in which functional extensionality holds

and which induce a decidable de�nitional equality on the syntax under which terms

like the above are indeed de�nitionally equal to an element in canonical form. One

may try to achieve the same thing by adding reduction rules for Ext under which

the above term would for example reduce to 0. Yet no satisfactory set of such

rules has been found to date. Notice, however, that we can show that the term in

question is propositionally equal to 0 because using J we can \replace" Ext(P) by

an instance of Re.

In loc.cit. Turner proposes to add the (de�nitional) equation

� ` Ext

�;�

([x:�]Re

�

(U)) = Re

�x:�:�

(�x:�:U) : Id

�x:�:�

(�x:�:U; �x:�:U) (3.2)

Chapter 3. Syntactic properties of propositional equality 85

i.e. if we use Ext only to establish equality of de�nitionally equal terms then we

may use Re straightaway. The equation is `incomplete' (i.e. does not solve the

problem with non-canonical elements) because for example even in its presence the

above term is not equal to 0 or any other canonical natural number. We remark

that the propositional version of Turner's equation is an instance of IdUni , but

does not seem to follow from J alone. Interestingly, using Turner's equation we

can de�ne uniqueness of identity at �-types as well.

Proposition 3.1.2 Consider an extension of TT containing a family of term

formers Ext

�;�

satisfying Turner's equation (3.2) above. If uniqueness of iden-

tity is de�nable at �; x:� ` � then it is de�nable at � ` �x:�:� .

Proof. Consider the type EqPi[u; v : �x:�:�] := �x:�:Id

�

(u x; v x). We de�ne

�[u; v:�x:�:� ; p: Id

�x:�:�

(u; v)] := �x:�:Resp ([u : �x:�:�]u x ; p) : EqPi[u; v]

and

	[u; v:�x:�:� ; p: EqPi[u; v]] := Ext

�;�

([x:�]p x) : Id

�x:�:�

(u; v)

From uniqueness of identity at � and Ext it follows that any two elements of

EqPi are propositionally equal. On the other hand an element p : Id

�x:�:�

(u; v) is

propositionally equal to 	[u; v;�[u; v; p]] using �rst J and then Turner's equation.

(Notice that Resp (f;Re(x)) = f x by Id-Comp.) We conclude using Resp for

	. 2

Note that this proof still goes through if Eqn. 3.2 only holds propositionally, e.g.

by IdUni .

In the remainder of this chapter we shall leave aside the issue of non-canonical

elements and study the logical implications of functional extensionality together

with uniqueness of identity. We shall see that in a certain sense these two allow

to recover the strength of extensional type theory in an intensional setting.

Chapter 3. Syntactic properties of propositional equality 86

3.2 Extensional type theory

As described in the Introduction, in extensional type theory the de�nitional equal-

ity is identi�ed with propositional equality and thereby becomes extensional. This

is achieved by adding the following two rules [85, p. 65]:

� ` � � `M : � � ` N : �

� ` P : Id

�

(M;N)

� `M = N : �

Id-Defeq

� ` � � `M : � � ` N : �

� ` P : Id

�

(M;N)

� ` P = Re

�

(M) : Id

�

(M;N)

Id-Uni

The �rst rule (Id-DefEq) is the equality reection rule discussed in the Introduc-

tion. Notice that this rule is needed to make the other one (Id-Uni) \typecheck".

For technical reasons we also assume an �-rule for �-types:

� `M : �x:�:�

� `M = �x:�:M x : �x:�:�

�-Eta

In [85] it is pointed out that in the presence of rules Id-DefEq and Id-Uni,

identity elimination becomes de�nable by putting

J

�;�

(M;N

1

; N

2

; P) := M [x := N

1

]

The operators IdUni and Ext are also de�nable, see Prop. 3.2.2; in fact they are

just instances of reexivity! Therefore, extensional type theory does not need ex-

plicit elimination operators for identity. For these reasons, extensional type theory

is intuitively quite appealing. It also is very close to set theory and extensional con-

cepts like quotient types are easily added (see [31] and Sect. 3.2.6.1). Moreover, it

avoids the unusual coexistence of two di�erent notions of equality. The rest of this

Chapter is devoted to refute these apparent advantages of extensional type theory

and to argue in favour of intensional type theory with extensional concepts. The

Chapter 3. Syntactic properties of propositional equality 87

two main arguments we put forward are the undecidability of extensional type the-

ory (Sect. 3.2.2) and the conservativity of extensional type theory over intensional

type theory (Sect. 3.2.5) which shows that nothing is lost by using intensional type

theory.

3.2.1 Comparison with Troelstra's presentation

In order to prevent possible confusion let us remark that in Troelstra and van

Dalen's book [107, Sect. 4{5], the predicates \intensional" and \extensional" are

used in a di�erent way. Their intensional theoryML

i

0

is a version of our extensional

type theory, that is it has rule Id-DefEq, but with type equality con�ned to

basically syntactic identity. So no de�nitional conversion is permitted inside a type

and thus the introduction rule for the identity type must be extended to permit

one to conclude � ` Re(M) : Id

�

(M;M

0

) from � ` M = M

0

: �. Moreover,

ML

i

0

neither contains a congruence rule for abstraction (\�-rule") nor an �-rule

for �-types. On the other hand, their extensional type theory ML

0

agrees mostly

with extensional type theory in our sense (and in the sense of [85]). Intensional

type theory in our sense (and in the sense of [85]) is only mentioned briey as a

note [loc.cit., p. 633].

3.2.2 Undecidability of extensional type theory

The equality reection principle Id-DefEq is problematic since upon its applica-

tion the proof P for the propositional equality is lost. Therefore, a syntax-directed

decision procedure for de�nitional equality in extensional type theory would have

to \guess" this proof P . Our aim in this section is to prove that this is not possible

by showing that de�nitional equality in extensional type theory is undecidable.

Before doing this we describe how this entails undecidability of all other kinds of

judgements. Assume � ` M : � and � ` N : �. Now � ` Re

�

(M) : Id

�

(M;N)

i� � ` M = N : � so typechecking is equivalent to deciding de�nitional equality.

Furthermore, we have � ` Id

�

(M;M) i� � ` M : � so typehood is equivalent to

Chapter 3. Syntactic properties of propositional equality 88

typechecking. The same goes for the remaining three kinds of judgements: type

equality, context equality, and well-formedness of contexts.

Let us now turn to the undecidability of de�nitional equality. Although the rule

Id-DefEq represents an information loss, undecidability is not entirely obvious

because it is not clear how many propositional equalities are actually provable. In

particular, there does not seem to be an obvious reduction to the halting problem,

but one must use the tool of recursively inseparable sets [24]. In order to avoid

the introduction of too much machinery we shall, however, avoid explicit mention

of this notion. We also avoid explicit formalisation of proofs and algorithms in

Martin-L�of type theory and appeal to a variant of Church's thesis and the math-

ematical intuition of the reader.

If n 2 ! is a natural number let n̂ stand for the numeral Suc

n

(0) in type theory.

We have ` n̂ : N. A k-ary function f on the natural numbers is called numeral-wise

representable if there exists a term `

^

f : N ! N ! : : :! N such that for every

k-tuple of natural numbers (x

1

; : : : ; x

k

) we have `

^

f x̂

1

: : : x̂

k

=

\

f(x

1

; : : : ; x

k

) : N.

It is well-known and actually obvious from the form of the recursor R

N

that every

primitive recursive function is numeral-wise representable. Compare this to the

interpretation of Heyting arithmetic in type theory [107, Theorem 4.9].

Fix some G�odel numbering of Turing machines (TMs) in order to allow for

self-application of Turing machines and consider the following function:

f(e; t) :=

8

>

<

>

:

1, if TM e applied to itself halts after less than t steps with result 0

0, otherwise

Since the number of steps required to evaluate f(e; t) is linear in e and t, this

function is primitive recursive. Let `

^

f : N ! N ! N be its numeral-wise

representation.

Now suppose e is such that e applied to itself halts after some number of steps

with a result other than 0. Then f(e;�) is constantly 0 and this fact is actually

provable in type theory, i.e. in this case the following type is inhabited by induction

(R

N

) and �nite case distinction (also R

N

):

t : N ` Id

N

(

^

f ê t ; 0)

Chapter 3. Syntactic properties of propositional equality 89

Using Id-DefEq this implies that

t : N `

^

f ê t = 0 : N

holds.

On the other hand, if TM e applied to itself halts with result 0 then

t : N `

^

f ê t = 0 : N

does not hold because this would contradict the de�nition of f .

Notice that in case e applied to itself does not halt, the above equation may

or may not hold according to whether nontermination is provable in type theory.

Now if de�nitional equality in extensional type theory were decidable we could

construct a Turing machine which when applied to some number e returns 0 if

t : N `

^

f ê t = 0 : N

and returns 1 otherwise. Let e

0

be the G�odel number of this machine and consider

the application of e

0

to itself. By de�nition of e

0

this computation terminates. We

arrive at a contradiction whatever the result is.

Summing up, we obtain:

Theorem 3.2.1 In extensional type theory de�nitional equality, typechecking and

typehood are equivalent and undecidable.

The same argument shows that inhabitation of identity types in nonempty contexts

is undecidable in intensional type theory.

We remark that the undecidability of extensional type theory is part of the

\folklore" in the �eld, but to the best of our knowledge has never been explicitly

proved in the literature.

3.2.3 Interpreting extensional type theory in intensional

type theory

In view of the above undecidability results, implementations of extensional type

theory like e.g. Nuprl [31] deal with derivations rather than terms and judge-

Chapter 3. Syntactic properties of propositional equality 90

ments. The question arises whether derivations in extensional type theory can

be translated into terms in intensional type theory with functional extensional-

ity and uniqueness of identity. For example, we may want to know whether if

x:N ` U; V : N in intensional type theory and x:N ` U = V : N in extensional

type theory then the type x:N ` Id

N

(U; V) is inhabited in intensional type the-

ory. This is indeed the case and follows from a much more general correspondence

between intensional and extensional type theory which we prove below.

3.2.3.1 The type theories TT

I

and TT

E

Streicher has observed in [101] that in the presence of uniqueness of identity the

elimination operator J can be de�ned in terms of its particular instance Subst

de�ned above (Sect. 3.1.1). Indeed, if �; x:� ` H : � [x; x;Re(x)] and � ` P :

Id

�

(M;N) then we form the type

�[x:�] := �p: Id

�

(M;x):� [M;x; p]

Now we observe that � ` �[M] is inhabited by

L[] := �p: Id(M;M):Subst (Sym(IdUni (P)) ; H[M])

Therefore, Subst

�;�

(P;L) P is an inhabitant of � ` � [M;N;P] as required.

This suggests to take Subst instead of J as a primitive if one has uniqueness of

identity. For the remainder of this Chapter, by \intensional type theory" or TT

I

we mean the theory TT from above together with the constants IdUni and Ext,

and with the elimination operator J with its associated rules replaced by a newly

introduced term former Subst governed by the following two rules:

�; x:� ` � [x]

� `M

1

;M

2

: �

� ` P : Id

�

(M

1

;M

2

)

� ` N : � [M

1

]

� ` Subst

�;�

(M

1

;M

2

; P;N) : � [M

2

]

Leibniz

� ` Subst

�;�

(M;M;Re

�

(M); N) = N : � [M]

Leibniz-Comp

Chapter 3. Syntactic properties of propositional equality 91

The type annotations and the �rst two arguments to Subst may be omitted. If

so stated in the running text, TT

I

may be augmented by further type formers

and rules. Thus, the term formers associated to propositional equality in TT

I

are:

Re, Subst , IdUni , and Ext.

By \extensional type theory" or TT

E

we mean the core type theory TT with

the identity elimination rules (the rules Id-Elim-J and Id-Comp J) replaced

by Id-DefEq and Id-Uni, and with �-Eta added. In order to distinguish the

intensional from the extensional type theory we write `

I

and `

E

for the two

respective judgement relations. Recall from Sect. 2.1.3 that (for `2 f`

I

;`

E

g) we

write � ` � true if there exists M with � ` M : � and that � denotes syntactic

identity modulo renaming of variables.

It was mentioned before that the operators of TT

I

are de�nable in TT

E

. More

formally, we can de�ne a \stripping map" j � j by

{ jSubst

�;�

(M

1

;M

2

; P;N)j := jN j

{ jIdUni

�

(M;P)j := Re

Id

j�j

(jM j;jM j)

(Re

j�j

(jM j))

{ jExt

�;�

(U; V; P)j := Re

�x:j�j:j� j

(jU j)

{ homomorphically extended to all other terms, types, contexts. and judge-

ments

This mapping enjoys the following trivial soundness property.

Proposition 3.2.2 If � `

I

J then j�j `

E

jJ j for all contexts � and judgements J .

Proof. By induction on derivations in TT

I

or equivalently by showing that the

term model of TT

E

forms a model of TT

I

with the settings prescribed by the

de�nition of j�j. The only interesting case is the interpretation of Ext. If �; x:� `

E

P : Id

�

(U x; V x) then by Id-DefEq we have �; x:� `

E

U x = V x : �x:�:� . So

by the congruence rule for abstraction we get � `

E

�x:�:U x = �x:�:V x :

�x:�:� and hence using �-Eta and transitivity � `

E

U = V : �x:�:� and �nally

Chapter 3. Syntactic properties of propositional equality 92

� `

E

Re(U) : Id(U; V) as required. Without �-Eta we could obtain functional

extensionality only for abstractions but not for arbitrary terms of �-type. 2

In order to compare the strengths of extensional and intensional type theory we

are now interested in possible converses of this proposition. In particular:

Inv � `

E

J implies �

0

`

I

J

0

for

some �

0

, J

0

with j�

0

j � � and jJ

0

j � J .

Cons-Ty j�j `

E

j�j true implies � `

I

� true .

Cons-Id j�j `

E

jM j = jN j : j�j implies � `

I

Id

�

(M;N) true.

Clearly, Cons-Ty implies Cons-Id. The �rst property Inv which in contrast to

the other two speaks about arbitrary judgements in TT

E

, is not true. A counter-

example is the judgement

x:N `

E

x = Suc

x

(0) : N

where Suc

x

(0) := R

N

N

(0; [x; y:N]Suc(y); x) is the x-th iteration of the successor

function on start value 0. If we decorate both sides of this equation with instances

of Subst we get more complicated terms, but certainly no true equation in TT

I

.

The reason is that (apart from congruence) the only way that a Subst -expression

can be de�nitionally equal to something else is by use of Leibniz-Comp, but then

the outermost Subst disappears and no equation has been added which wasn't

there before. However, we certainly have

x:N `

I

Id

N

(x;Suc

x

(0)) true

since the required inhabitant of the identity type may be constructed by induction.

Together with Id-DefEq this gives a proof of the above judgement in TT

E

and

corroborates Cons-Id.

Our aim is to prove Cons-Ty, and thus Cons-Id and to de�ne a mild exten-

sion of TT

I

under which Inv becomes true.

Chapter 3. Syntactic properties of propositional equality 93

3.2.4 An extension of TT

I

for which the interpretation in

TT

E

is surjective

The above counterexample would no longer go through if there were a term whose

stripping equals x and which nevertheless is de�nitionally equal to Suc

x

(0) in TT

I

.

To cure the problem with Inv we may simply add such a construct. More precisely,

we introduce a new term former <

�

(M;N;P) described by the following two rules:

� `

I

M;N : � � `

I

P : Id

�

(M;N)

� `

I

<

�

(M;N;P) : �

<-Form

� `

I

<

�

(M;N;P) : �

� `

I

<

�

(M;N;P) = N : �

<-Eq

Let us write TT

<

for TT

I

extended with < and `

<

for the corresponding judgement

relation. In view of <-Eq, < is a simple de�nitional extension comparable with the

addition of an explicit function symbol for multiplication which is de�nitionally

equal to its primitive recursive coding using R

N

. The power of < stems from its

interpretation in TT

E

. Namely, we decree that:

j<

�

(M;N;P)j := jM j

Now Prop. 3.2.2 continues to hold:

Proposition 3.2.3 If � `

<

J then j�j `

E

jJ j for all contexts � and judgements

J .

Proof. As before by induction on derivations; the only interesting case is the

rule <-Eq. If � `

<

<

�

(M;N;P) : � then we must have � `

<

M;N : � and � `

<

P : Id

�

(M;N). So we may inductively assume that j�j `

E

jP j : Id

j�j

(jM j; jN j)

and thus j�j `

E

jM j = jN j : j�j by Id-DefEq. But this is the stripping of the

conclusion of rule <-Eq. 2

The interesting aspect of TT

<

is that the interpretation j�j of it in TT

E

is actually

surjective, which means that Inv holds.

Chapter 3. Syntactic properties of propositional equality 94

Theorem 3.2.4 Whenever � `

E

J then there exist �

0

and J

0

in the language of

TT

<

such that �

0

`

<

J

0

and j�

0

j � � and jJ

0

j � J .

Proof. By induction on derivations in TT

E

. The interesting cases are Id-

DefEq, Id-Uni, and �-Eta. In the other cases we just follow the deriva-

tion in TT

E

. For Id-DefEq assume � `

E

P : Id

�

(M;N) and (inductively)

�

0

`

<

P

0

: Id

�

0

(M

0

; N

0

) where jC

0

j � C for C 2 f�; �; P;M;Ng. Now the conclu-

sion of Id-DefEq is � `

E

M = N : �. Putting M

00

:= <

�

0

(M

0

; N

0

; P

0

) we have

�

0

`

<

M

00

= N

0

: �

0

but on the other hand jM

00

j � jM

0

j �M .

The rule Id-Uni has the same premises so we keep the variables introduced so

far. The conclusion of the rule is � `

E

P = Re

�

(M) : Id

�

(M;N). Therefore, we

must �nd a term P

00

with stripping equal to P and which itself is de�nitionally

equal (in TT

I

) to Re(M

0

). Using < we can relax this to propositional equality.

This suggests to de�ne

P

00

:= Subst

�;[x:�

0

]Id(M

0

;x)

(N

0

;M

0

;Sym (P

0

); P

0

)

We have �

0

`

<

P

00

: Id

�

(M;M) and �

0

`

<

IdUni (P

00

) : Id(P

00

;Re(M)). Moreover,

jP

00

j � jP

0

j � P . Therefore with

P

000

:= <

Id

�

0

(M

0

;M

0

)

(P

00

;Re(M

0

); IdUni (P

00

))

we have �

0

`

<

P

000

= Re

�

(M

0

) : Id

�

0

(M

0

;M

0

) and the stripping of this judgement

is the conclusion of rule Id-Uni.

Finally, for �-Eta we use a particular instance of Ext. 2

The particular instance of IdUni used in this proof can be de�ned using J as well.

So if we had used J instead of Subst we could have avoided the use of uniqueness

of identity. Then, however jP

00

j would not be identical to P but only �-reduce to

P . One could circumvent this using J

0

(de�ned above in Sect. 3.1.1) as primitive.

The only use of functional extensionality was in order to mimic the rule �-Eta.

If one were not interested in this rule, one could get surjectivity of j � j with <

alone and no extensional concepts at all. In particular, in TT

<

we can derive a

Chapter 3. Syntactic properties of propositional equality 95

propositional counterpart of the �-congruence rule (�-rule) as follows: Suppose

that �; x:� `

<

U; V : � and �; x:� `

<

P : Id

�

(U; V). Then we have

� `

<

Re

�x:�:�

(�x:�:V) : Id

�x:�:�

(�x:<

�

(U; V; P) ; �x:�:V) (3.3)

This shows quite well how < works. In a certain sense, the above judgement is a

triviality because it is an instance of reexivity. But if one does not identify de�n-

itionally equal terms and instead reads an expression <

�

(M;N;P) as something

like \means M but is written N for reasons of intensionality and this is justi�ed

by virtue of P" then the above judgement really corresponds to the conclusion

of a propositional �-rule. One can do even more and|using extensional concepts

and instances of Resp |move all the instances of < to the root of a term, with the

stripping unchanged, which may be used to obtain a variant of property Cons-Id

as follows: If � `

E

M = N : � we can �nd �

0

, �

0

and <-free terms M

1

, M

2

, N

1

,

N

2

, and proofs P

1

, P

2

such that

�

0

`

<

<

�

0

(M

1

;M

2

; P

1

) = <

�

0

(N

1

; N

2

; P

2

) : �

0

where j�

0

j � �, j�

0

j � �, jM

1

j � M , and jN

1

j � N . From the de�nition of < we

then get

�

0

`

<

Trans (P

1

;Sym (P

2

)) : Id

�

0

(M

1

;M

2

)

which we can see as the conclusion of Cons-Id in case �

0

and �

0

are su�ciently

simple so that they equal their stripping. Also the type annotations of M

1

, M

2

must not contain any instances of < or Subst which may be di�cult to guarantee.

We will not pursue this line of thought any further and prove Cons-Ty and

Cons-Id by other methods below. However, we want to advocate the use of < as

a possible addition to intensional type theory even in the absence of extensional

concepts. This requires a slightly unusual approach to theorem proving in type

theory because in the course of trying to prove a goal it may become necessary

to alter it by interspersing instances of <. E.g. we can't prove that �x:�:U and

�x:�:V from above are de�nitionally equal or (without functional extensionality)

that they are propositionally equal, but by altering the goal using < this becomes

possible as we have just seen in the derivation of Judgement 3.3.

Chapter 3. Syntactic properties of propositional equality 96

3.2.5 Conservativity of TT

E

over TT

I

Our aim is now to prove property Cons-Ty of which Cons-Id is a consequence.

In fact we shall establish the following mild generalisation of Cons-Ty.

Theorem 3.2.5 If � `

I

� and j�j `

E

P : j�j for some P then there exists P

0

such

that � `

I

P

0

: �. Moreover, j�j `

E

jP

0

j = P : j�j.

Before embarking on the proof of this Theorem we remark that it does not follow

from Inv, i.e. in the presence of <, because if � `

<

� and j�j `

E

j�j true then we

have �

0

`

<

�

0

true for some �

0

and �

0

with j�

0

j � j�j and j�

0

j � j�j, but there is

no reason why � `

<

� true should hold, too. It would, however, be true if types

(and contexts) with identical stripping could be shown to be isomorphic. On the

other hand, this fact (at least for types) is a consequence of Cons-Ty because if

j�j � j�

0

j then the stripping of

�f : �! �

0

:�f

�1

:�

0

! �:

Id(�x:�:f

�1

(f x); �x:�:x)� Id(�x:�

0

:f(f

�1

x); �x:�

0

:x)

is inhabited in TT

E

by taking the identity on � for f and f

�1

, and Cons-Ty then

gives an isomorphism between � and �

0

in TT

I

.

These isomorphisms are indeed the key to proving the conservativity theorem,

but it turns out that the use of < can be avoided.

The idea for the proof is to show that the term model of TT

I

quotiented by

propositional equality forms a model of TT

E

. Quotienting a model of type theory

is, however, not an easy thing to do because as soon as one identi�es two morphisms

f; g : � ! � one also has to identify families over � which come from the same

family over � through substitution along f and g. This identi�cation of families

also forces identi�cation of certain contexts and therefore of new morphisms which

were incomparable before. We do not know whether there exists a general theory

of quotients of syntactic categories with attributes and more generally of �brations

and generalised algebraic theories, but we believe that such a theory would have

to be fairly complicated. Fortunately, in the particular case at hand we have a

Chapter 3. Syntactic properties of propositional equality 97

good de�nition for when two types or contexts are to be identi�ed, so that we can

get away without looking at the most general case.

Our strategy consists of �rst extending propositional equality to contexts so

that we can say when two context morphisms are to be identi�ed. Next, by struc-

tural induction we construct possibly unde�ned isomorphisms (up to propositional

equality) between types and between contexts in such a way that the isomorphism

between two types (and between two contexts) is de�ned i� their strippings are

equal in TT

E

. The key idea of the proof is that this semantic property of types

and contexts can be de�ned by structural induction,

We identify two types or contexts if the corresponding isomorphism is de�ned,

and show that this gives a model of TT

E

. We then show that stripping lifts to

an operation on the induced equivalence classes and de�nes a structure-preserving

map between this model and the term model of TT

E

. Its composition with the

interpretation of TT

E

in the quotient model must therefore be the identity. This,

together with the fact that equality in the quotient model is isomorphism, gives

the desired result.

3.2.5.1 Propositional equality of context morphisms

Let � be a context in TT

I

. By induction on the length of � we de�ne a type `

I

�

in the empty context and substitutions x: � `

I

out

�

) � and � `

I

in

�

) x: � as

follows:

� := 1

in

�

:= ?

out

�

:= ()

�; x:� := �g: �:�[out

�

[g]]

in

�;x:�

[: �; x:�] := pair

�;�[out

�

]

(in

�

[]; x)

out

�;x:�

[z: �; x:�] := (out

�

[z:1] ; z:2)

From the equation �-Comp we get the de�nitional equality

: � `

I

out

�

[in

�

[]] = : � (3.4)

Chapter 3. Syntactic properties of propositional equality 98

This equation is needed for the de�nitions above to typecheck, so strictly speaking

we have to establish it along with the inductive de�nition above.

The converse only holds propositionally: If `

I

M : � then by induction on the

length of � and using R

�

we can construct a term srj

�

(M) such that

`

I

srj

�

(M) : Id

�

(in

�

[out

�

[M]] ; M)

This reection of contexts into types allows us to compare substitutions up to

propositional equality. If � `

I

f; g) � then we can form

� `

I

Id

�

(in

�

� f; in

�

� g) (?)

and if � `

I

�, � `

I

P : Id

�

(in

�

� f; in

�

� g), and � `

I

M :�[f] then since � `

I

�[f] = �[out

�

][in

�

� f] we have

� `

I

Subst

�;�[out

�

]

(in

�

� f; in

�

� g; P;M) : �[g]

So the above type (?) behaves like an identity type at contexts. We thus introduce

the abbreviations

Id

�

(f; g) := Id

�

(in

�

� f; in

�

� g)

and

Subst

�;�

(f; g; P;M) := Subst

�;�[out

�

]

(in

�

� f; in

�

� g; P;M)

for these types and terms. We also write

Re

�

(f) := Re

�

(in

�

� f)

and

IdUni

�

(f; P) := IdUni

�

(in

�

� f; P)

As usual, we allow the omission of arguments which can be inferred or are clear

from the context.

From Leibniz-Comp and IdUni-Comp we obtain the de�nitional equalities

� `

I

Subst

�;�

(Re(f);M) = M : �[f]

� `

I

IdUni

�

(f;Re(f)) = Re(Re(f)) : Id

�

(f; f)

Chapter 3. Syntactic properties of propositional equality 99

Remark 3.2.6 This de�nition of propositional equality of context morphisms can

still be carried out when �-Comp is a replaced by a propositional equality (as is

the case in the type theory S

1

to be introduced in Sect. 5.3), but then one must

construct a witness for the propositional counterpart of Eqn. 3.4 along with the

de�nition of in

�

and out

�

. This is possible, but messy to write down.

3.2.5.2 Propositional isomorphisms

A pair of syntactic context morphisms � `

I

f) � and � `

I

f

0

) � is called a

propositional isomorphism between � and � if : � `

I

Id

�

(f

�1

[f []] ;) true and

�:� `

I

Id

�

(f [f

�1

[�]] ; �) true. In this situation we write (f; f

�1

) : �

�

=

�. If

� `

I

� and � `

I

� then a pair of terms �; x:� `

I

f [x] : � and �; x: � `

I

f

�1

[x] : �

is called a propositional isomorphism between � and � if �; x:� `

I

Id

�

(f

�1

[f [x]] ;

x) true and � ; y: � `

I

Id

�

(f [f

�1

[y]] ; y) true. We write � `

I

(f; f

�1

) : �

�

=

� to

indicate this.

We shall now partially de�ne symbols co

�;�

and ty

�;�;�;�

by structural induc-

tion on pre-terms and pre-contexts in such a way that if these symbols are de�ned

they constitute propositional isomorphisms in the following way

(co

�;�

; co

�1

�;�

) : �

�

=

�

and

� `

I

(ty

�;�;�;�

; ty

�1

�;�;�;�

) : �

�

=

� [co

�;�

]

The inductive clauses for these symbols are as follows':

co

�;�

= co

�1

�;�

= ()

co

�;x:�;�;y:�

[: �; x:�] = (co

�;�

[]; ty

�;�;�;�

[; x])

co

�1

�;x:�;�;y:�

[�:�; y: �] = (co

�1

�;�

[�]; ty

�1

�;�;�;�

[co

�1

�;�

;Subst

�;�

(P; y)])

where �:� `

I

P : Id(�; co

�;�

[co

�1

�;�

[�]]) is obtained from the assumption that (co

�;�

;

co

�1

�;�

) : �

�

=

�. The context morphisms co and co

�1

are unde�ned in all other

cases. In particular co

�;�

is unde�ned if � and � have di�erent length.

Chapter 3. Syntactic properties of propositional equality 100

The propositional isomorphisms ty

�;�;�;�

can only be de�ned if � and � share

the same outermost type former. We have a clause for each of these.

ty

�;�;N;N

[; x] =

8

>

<

>

:

x, if co

�;�

is de�ned

unde�ned otherwise

ty

�1

�;�;N;N

= ty

�;�;N;N

For the de�nition of ty

�;�;�x:�

1

:�

2

;�y:�

1

:�

2

assume : �, f : �x:�

1

:�

2

and y: �

1

[co

�;�

[]].

We put U := ty

�1

�;�;�

1

;�

1

[; y] : �

1

[] and V := f v : �

2

[; U]. Now

W := ty

(�;x:�

1

);(�;y:�

1

);�

2

;�

2

[(; U); V] : �

2

[co

�;�

[] ; ty

�;�;�

1

;�

1

[; U]]

by expanding the de�nition of co

(�;x:�

1

);(�;y:�

1

)

. Finally,

Subst (P;W) : �

2

[co

�;�

[] ; y]

where

: � ; y: �

1

[co

�;�

] `

I

P : Id

�;y:�

1

[co

�;�

]

(

(co

�;�

[] ; ty

�;�;�

1

;�

1

[; ty

�1

�;�;�

1

;�

1

[; y]]) ;

(co

�;�

[] ; y))

is obtained from reexivity and the assumption � `

I

(ty

�;�;�

1

;�

1

; ty

�1

�;�;�

1

;�

1

) : �

1

�

=

�

1

[co

�;�

] and thus

ty

�;�;�x:�

1

:�

2

;�y:�

1

:�

2

[; f] := �y: �

1

[co

�;�

[]:Subst (P;W) : (�y: �

1

:�

2

)[co

�;�

[]]

The inverse ty

�1

�;�;�x:�

1

:�

2

;�y:�

1

:�

2

is de�ned in the same way, interchanging the roles

of ty and ty

�1

. The proofs that a propositional isomorphism has been constructed

are obtained using Ext.

For ty

�;�;�x:�

1

:�

2

;�y:�

1

:�

2

we assume : � and f : �x:�

1

:�

2

. Now

U := ty

�;�;�

1

;�

1

[; f:1] : �

1

[co

�;�

[]]

and

V := ty

(�;x:�

1

);(�;y:�

1

);�

2

;�

2

[(; f:1); f:2] : �

2

[co

�;�

[]; U]

We thus de�ne

ty

�;�;�x:�

1

:�

2

;�y:�

1

:�

2

[; f] := (U; V) : (�y: �

1

:�

2

)[co

�;�

[]]

Chapter 3. Syntactic properties of propositional equality 101

The inverse is again obtained by interchanging ty and ty

�1

. For the proof of the

isomorphism property one uses that surjective pairing holds propositionally (see

Sect. 2.3.2).

For ty

�;�;Id

�

(M

1

;M

2

);Id

�

(N

1

;N

2

)

we check whether there exist P , Q with

: � `

I

P : Id

� [co

�;�

[]]

(ty

�;�;�;�

[;M

1

]; N

1

[co

�;�

[]])

: � `

I

P

2

: Id

� [co

�;�

[]]

(ty

�;�;�;�

[;M

2

]; N

2

[co

�;�

[]])

If not, then ty

�;�;Id

�

(M

1

;M

2

);Id

�

(N

1

;N

2

)

is unde�ned. If yes, then for p: Id

�

(M

1

;M

2

)

we de�ne

ty

�;�;Id

�

(M

1

;M

2

);Id

�

(N

1

;N

2

)

[; p: Id

�

(M

1

;M

2

)] :=

Trans (Sym(P

1

);Trans (Resp (�x:�:ty

�;�;�;�

[; x] ; p) ; P

2

))

: (Id

�

(N

1

; N

2

)[co

�;�

[]]

The inverse is de�ned analogously; the proof of the isomorphism property is an

instance of IdUni .

Notice that this de�nition depends in various places on choices of particular

proofs of propositional equalities. Some of the choices, e.g. in the de�nition of

co

�1

�;x:�;�;y:�

, could be avoided by carrying through explicit witnesses for the various

isomorphism properties. Others, like the one in the clause for the identity type,

are more di�cult to eliminate.

These propositional isomorphisms enjoy various properties all of which follow

by straightforward structural induction. First (for convenience) we restate the

isomorphism properties.

Lemma 3.2.7 Let � `

I

� and � `

I

� .

i. If co

�;�

is de�ned so is co

�1

�;�

and the two constitute a propositional iso-

morphism between � and �.

ii. If ty

�;�;�;�

is de�ned so are co

�;�

and ty

�1

�;�;�;�

and � `

I

(ty

�;�;�;�

; ty

�1

�;�;�;�

) :

�

�

=

� [co

�;�

].

Chapter 3. Syntactic properties of propositional equality 102

Next we state that de�nedness of the propositional isomorphisms induces an equi-

valence relation on contexts and on types.

Lemma 3.2.8 i. If `

I

� then co

�;�

is de�ned and : � `

I

Id

�

(; co

�;�

[]) true.

ii. If � `

I

� then ty

�;�;�;�

is de�ned and �; x:� `

I

Id

�

(x; ty

�;�;�;�

[x]) true.

iii. If co

�;�

is de�ned then so is co

�;�

.

iv. If ty

�;�;�;�

is de�ned then so is ty

�;�;�;�

.

v. If co

�;�

and co

�;�

are both de�ned then so is co

�;�

and

: � `

I

Id

�

(co

�;�

[co

�;�

[]] ; co

�;�

[]) true

vi. If ty

�;�;�;�

and ty

�;�;�;�

are both de�ned then so is

ty

�;�;�;�

and

: �; x: � `

I

Id

� [co

�;�

]

(

Subst

�;�

(P; ty

�;�;�;�

[co

�;�

[]; ty

�;�;�;�

[; x]]) ;

ty

�;�;�;�

[; x]) true

for every

: � `

I

P : Id

�

(co

�;�

[co

�;�

[]] ; co

�;�

[]) true

We also need that the propositional isomorphisms are stable under de�nitional

equality and under syntactic substitution.

Lemma 3.2.9 i. If `

I

� = �

0

and `

I

� = �

0

then if co

�;�

is de�ned so is

co

�

0

;�

0

and

: � `

I

Id

�

(co

�;�

[]; co

�

0

;�

0

) true

ii. If `

I

� = �

0

and `

I

� = �

0

and � `

I

� = �

0

and � `

I

� = �

0

then if ty

�;�;�;�

is de�ned so is ty

�

0

;�

0

;�

0

;�

0

and

: �; x:� `

I

Id

�

(Subst

�;�

(P; ty

�;�;�;�

[; x]) ; ty

�

0

;�

0

;�

0

;�

0

[; x]) true

for every : � `

I

P : Id

�

(co

�;�

; co

�

0

;�

0

).

Chapter 3. Syntactic properties of propositional equality 103

Lemma 3.2.10 Suppose that ty

�;�;�;�

is de�ned and that �

0

`

I

f) � and �

0

`

I

g) � are syntactic context morphisms satisfying

�

0

`

I

Id

�

(co

�;�

� f ; g � co

�

0

;�

0

) true

so in particular co

�

0

;�

0

de�ned, then ty

�

0

;�

0

;�[f];� [g]

is de�ned and

0

: �

0

; x:�[f] `

I

Id

� [g � co

�

0

;�

0

]

(ty

�

0

;�

0

;�[f];� [g]

[

0

; x] ; ty

�;�;�;�

[f [

0

]; x]) true

The relationship to extensional type theory is described by the following lemma.

Lemma 3.2.11 i. If co

�;�

is de�ned then `

E

j�j = j�j and : j�j `

E

 =

jco

�;�

j[] : j�j.

ii. If ty

�;�;�;�

is de�ned then j�j `

E

j�j = j� j and

: j�j; x: j�j `

E

x = jty

�;�;�;�

j[; x] : j�j

3.2.5.3 A model for TT

E

We come to the construction of a model for TT

E

by quotienting the term model

of TT

I

. We write � for an equivalence relation determined by the (linguistic)

context and [�] for equivalence classes.

De�nition 3.2.12 The category C has as objects equivalence classes of contexts

`

I

� where � and � are considered equivalent if co

�;�

is de�ned (this forms an

equivalence relation by Lemma 3.2.8). A morphism between [�] and [�] is an

equivalence class of triples (A;B; f) where A 2 [�], B 2 [�], and A `

I

f) B.

Two such triples (A;B; f) and (A

0

;B

0

; f

0

) are equivalent if co

A;A

0

and co

B;B

0

are

de�ned and

�: A `

I

Id

B

0

(co

B;B

0

[f [�]] ; f

0

[co

A;A

0

[�]]) true

Again, it follows from Lemma 3.2.8 together with properties of Id that this de�nes

an equivalence relation. The identity morphism on [�] is given by [(�;�; : � `

I

) �)]. The composition of [(B

0

;�; g)] : [�] ! [�] and [(A;B; f)] : [�] ! [�]

is given by [(A;�; �:A `

I

g[co

B;B

0

[f [�]]] : �)]. Observe that co

B;B

0

is de�ned by

Lemma 3.2.8.

Chapter 3. Syntactic properties of propositional equality 104

Proposition 3.2.13 C is a category with terminal object [�].

Proof. First we check that homsets, identities, and composition are well-de�ned,

i.e. independent of the choice of representatives. For the homsets this is obvious,

the case of identities is an instance of reexivity. For composition we consider the

diagram

A

f

-

B

co

-

B

0

g

-

�

A

1

co

?

f

1

-

B

1

co

?

co

-

B

0

1

?

co

g

1

-

�

1

?

co

If the two outer squares commute up to propositional equality, i.e. if (A;B; f) �

(A

1

;B

1

; f

1

) and (B

0

;�; g) � (B

0

1

;�

1

; g

1

), then the whole rectangle commutes up to

propositional equality because the inner square does by Lemma 3.2.8. It is obvious

that identities are neutral. For associativity of composition assume A `

I

f) B,

B

0

`

I

g) �, �

0

`

I

h) �. A common representative for both ways of composing

the triple is given by

�: A `

I

h[co

�;�

0

[g[co

B;B

0

[f [�]]]]] : �

Finally, the obviously unique morphism from [�] to [�] is given by [(�; �; ())]. 2

De�nition 3.2.14 (The model Q) A syntactic category with attributes Q over

the category C is de�ned as follows: Let [�] 2 Ob(C). A family over [�] is an

equivalence class of pairs (�; �) with � `

I

�, where two such pairs (�; �) and

(�

0

; �

0

) are considered equivalent if ty

�;�

0

;�;�

0

is de�ned. The set of families is

denoted Fam([�]).

If [(�; �)] 2 Fam([�]) then the morphism p([(�; �)]) : [�] � [�; �] ! [�] is

represented by

[((�; x:�) ; � ; �:�; x:� `

I

co

�;�

[� : �])]

Chapter 3. Syntactic properties of propositional equality 105

If [(A;B; f)] : [�] ! [�] then the substitution [(�; �)]f[(A;B; f)]g is represented by

(A ; (�: A `

I

�[co

B;�

[f [�]]])). The morphism q([(A;B; f)]; [(�; �)]) is represented

by

((A; x:�[co

B;�

� f]) ; (�; x:�) ;

�: A; x:�[co

B;�

� f] `

I

(co

B;�

� f; x) : (�; x:�))

A section of [(�; �)] is an equivalence class of triples (�; �;M) with (�; �) � (�; �)

and � `

I

M : � , where two such triples (�; �;M) and (�

0

; �

0

;M

0

) are equivalent if

#:� `

I

Id

�

0

(ty

�;�

0

;�;�

0

[#;M] ; M

0

[co

�;�

0

[#]]) true

If [(�; �;M)] is a section of Sect([(�; �)]) then a morphism [(�; �;M)] : [�] !

[�] � [(�; �)] is represented by

(� ; (�; x: �) ;

#:� `

I

(#;M) : (�; x: �))

Conversely, if [(A;B; f)] : [�] ! [�] � [(�; �)] then we must have B � B

0

; x:� since

equivalent contexts have equal lengths. Thus f � (f

0

;M) for B `

I

M : �[f

0

]. We

put Hd([(A;B; f)]) := [(B; �[f

0

];M)].

Proposition 3.2.15 Q is a syntactic category with attributes.

Proof. Routine veri�cation. As an example we check that substitution in famil-

ies is well-de�ned and commutes with composition. Suppose that g = [(B

0

;�; g)] :

[�] ! [�] and � = [(
; �)] 2 Fam([�]). We have

�fgg = [(B

0

; �[co

�;

� g])]

Now let (

0

; �

0

) � (
; �) be another representative for �. We must show that

(B

0

; �[co

�;

� g]) � (B

0

; �

0

[co

�;

0

� g])

By de�nition this is equivalent to ty

B

0

;B

0

;�[co

�;

� f];�

0

[co

�;

0

�f]

being de�ned. By

Lemma 3.2.10 this holds if ty

;

0

;�;�

0

is de�ned and

�

0

: B

0

`

I

Id

0

(co

;

0

� co

�;

� g ; co

0

;�

� g � co

B

0

;B

0

) true

Chapter 3. Syntactic properties of propositional equality 106

The former follows from the assumption (

0

; �

0

) � (
; �); the latter follows by

equality reasoning from Lemma 3.2.8.

Now suppose that (B

00

;�

0

; g

0

) � (B

0

;�; g) is another representative for g. We

must show that ty

B

0

;B

00

;�[co

�;

� g];�[co

�

0

;

� g

0

]

is de�ned. Using Lemmas 3.2.8 and

3.2.10 this boils down to

B

0

`

I

Id

(co

;

� co

�;

� g ; co

�

0

;

� g

0

� coB

0

;B

00

) true

Using the fact that Id respects composition and using Lemma 3.2.8 this follows

from

B

0

`

I

Id

�

0

(co

�;�

0

� g ; g

0

� coB

0

;B

00

) true

which is the de�nition of (B

00

;�

0

; g

0

) � (B

0

;�; g).

For compatibility with composition assume in addition that f = [(A;B; f)] :

[�] ! [�] and � = [(
; �)] 2 Fam([�]). We have g � f = [(A;�; g � co

B;B

0

� f)] and

thus

�fg � fg = [(A; �[co

�;

� g � co

B;B

0

� f])]

which equals �fggffg as required. 2

Proposition 3.2.16 The stripping map j � j from TT

I

to TT

E

lifts to a struc-

ture preserving map from Q to the term model of TT

E

(constructed according to

Ex. 2.4.2) de�ned by j[�]j = j�j, j[(�; �)]j = j�j, and j[(�; �;M)]j = jM j

Proof. Immediate from Lemma 3.2.11 (for contexts and types) and rule DefEq

and the de�nition of stripping (for context morphisms and terms). 2

Proposition 3.2.17 The model Q supports �-types, �-types, natural numbers,

and extensional identity types, and these are preserved by j � j.

Chapter 3. Syntactic properties of propositional equality 107

Proof. Let � = [(�; �)] 2 Fam(�) and � = [(�

0

; x:�

0

) ; �] 2 Fam(� � �). We

represent �(�; �) 2 Fam(�) by

: � `

I

�x:�:� [co

�;�

0

[]; ty

�;�

0

;�;�

0

[; x]]

It follows from the de�nition of ty for �-types that this is well-de�ned.

IfM = [((�

00

; x:�

00

) ; �

0

; M)] 2 Sect(�) we represent its abstraction �

� ;�

(M) 2

Sect(�(�; �)) by

00

: �

00

`

I

�x:�

00

:M : �x:�

00

:�

0

This is indeed a section of �(�; �) because ty

�;�

00

;�x:�:� [co

�;�

0

];ty

�;�

0

;�;�

0

;�x:�

00

:�

0

is

de�ned by assumption and the de�nition of ty for �-types. For well-de�nedness

we use again the de�nition of ty for �-types.

Now let M = [(�

00

;�x:�

00

:�

0

;M)] 2 Sect(�(�; �)) (observe that the type of M

must be a dependent product) and N = [(�

000

; �

000

; N)] 2 Sect(�). The application

App

� ;�

(M;N) 2 Sect(�fNg) is represented by

000

: �

000

`

I

M ty

�

000

;�

00

;�

000

;�

00

[

000

; N] : �

0

[ty

�

000

;�

00

;�

000

;�

00

[

000

; N]]

Now the required equations are readily checked, and since the �-type and its

associated term formers are modelled by their syntactic companions interspersed

with canonical isomorphisms, it follows that stripping preserves the dependent

product structure because the canonical isomorphisms are mapped to identities

by Lemma 3.2.11.

For the identity type assume � = [(�; �)] 2 Fam(�) and M = [(�

0

; �

0

;M)] 2

Sect(�) and N = [(�

00

; �

00

;M)] 2 Sect(�). We represent the identity type Id

�

(M;

N) 2 Fam(�) by

0

: �

0

`

I

Id

�

00

(ty

�

0

;�

00

;�

0

;�

00

[

0

;M] ; N [co

�

0

;�

00

])

Now if this family has a section then M = N by de�nition of equality on sections

and any two sections of this family are equal by IdUni and the de�nition of equality

on sections.

We follow the same pattern for �-types and natural numbers. 2

Chapter 3. Syntactic properties of propositional equality 108

Proof of Theorem 3.2.5. Consider the following informal diagram of inter-

pretations

Q

�

�

�

�

�

[[�]]

�

�

�

�

�

�

[�]

� I@

@

@

@

@

[[�]]

@

@

@

@

@

j � j

R

TT

I

j � j

-

TT

E

Here TT

I

and TT

E

denote the term models associated to the type theories TT

I

and TT

E

. The informal map [[�]] : TT

I

! Q denotes the interpretation of TT

I

in Q which being a model for TT

E

also is a model for TT

I

. The mapping j � j :

Q ! TT

E

is the lifting of j � j : TT

I

! TT

E

given by Prop. 3.2.16. Finally,

[�] : TT

I

! Q is the canonical mapping associating equivalence classes, which is

structure preserving by de�nition of Q.

These maps preserve all the type and term formers up to semantic equality;

thus, by induction on derivations or more elegantly by an initiality argument

2

we �nd that any two paths in this diagram with common source and target and

starting from either TT

I

or TT

E

are equal. In more elementary terms this gives

in particular the following identities:

i. If � `

I

then [�] = [[j�j]] in Q.

ii. If � `

I

� then [(�; �)] = [[j�j j j�j]] in Q.

iii. If � `

I

M : � then [(�; �;M)] = [[j�j j jM j]] in Q.

iv. If � `

E

then `

E

j[[�]]j = �.

v. If � `

E

� then � `

E

j[[� j �]]j = �.

2

We cannot properly formulate initiality of TT

I

and TT

E

since we have not de�ned

morphisms of models. See however Remark 2.5.8

Chapter 3. Syntactic properties of propositional equality 109

vi. If � `

E

M : � then � `

E

j[[� jM]]j = M : �.

Now suppose that � `

I

� and j�j `

E

M : j�j. The interpretation yields

[[j�j jM]] 2 Sect([[j�j j j�j]])

Thus Sect([(�; �)]) 6= ; by Eqn. ii. By de�nition of Q this means that there exist

�

0

, �

0

, M

0

with �

0

`

I

P

0

: �

0

and co

�;�

0

and ty

�;�

0

;�;�

0

are de�ned. Therefore we

have

: � `

I

ty

�1

�;�

0

;�;�

0

[;M

0

[co

�;�

0

[]]] : �

and therefore � `

I

� true. Call this term M

00

, i.e. � ` M

00

: �. By de�nition of Q

we have (�; �;M

00

) 2 [[j�j jM]] and thus j�j `

E

jM

00

j = M : j�j by Eqn. vi. 2

3.2.6 Discussion and extensions

The relative complexity and clumsiness of the present proof is regrettable and it

is our hope that in the near future a shorter and more elegant proof will be found.

Notice, however, that the described method is fairly robust w.r.t. extensions of the

type theory. For it to be extensible to a new type former it is enough that this

type former admits an action on propositional isomorphisms. To demonstrate this

we consider the addition of quotient types and of a universe closed under �-types

and natural numbers below.

A possible point of criticism is the non-constructive nature of the proof. Not

only has the axiom of choice been used in the de�nition of the canonical iso-

morphisms co and ty; more seriously the interpretation of TT

E

in Q associates

equivalence classes to contexts, types, and terms. In order to get an inhabitant of

type � in the proof above we must arbitrarily choose a representative of the cor-

responding class. So the present proof does not directly give rise to an algorithm

which e�ectively computes an inhabitant of � in TT

I

from a derivation of j�j true

in TT

E

. Such algorithm trivially exists by Markov's principle: we simply try out

all possible terms and derivations and from the non-constructive proof of existence

we know that this search always succeeds. But of course one would like a more

Chapter 3. Syntactic properties of propositional equality 110

e�cient algorithm which makes use of the derivation in TT

E

. It is, however, not

clear whether the described argument gives rise to such an algorithm. An idea

would be to carry out the construction of Q in a setoid model similar to the ones

described in Chapter 5, where quotients come with a canonical choice of repres-

entatives. In the present framework of a set-theoretic presentation of syntactic

categories with attributes this is, however, not possible.

De�nitional equality has played a minor role in the present proof and it appears

that the whole development goes through if TT

I

was replaced by a type theory

without de�nitional equality at all and rules like � replaced by corresponding

constants of identity types in the style of IdUni. The construction of the model

Q would remain unchanged since propositionally equal objects are identi�ed in Q.

3.2.6.1 Quotient types

The Nuprl version [31] of TT

E

contains a quotient type former governed by the

following rules.

� ` � � ; x; x

0

:� ` �[x; x

0

]

� ` �=�

Q-E-Form

� `M :� � ` �=�

� ` [M]

�

:�=�

Q-E-Intro

� ` M;N : � � ` H : �[M;N]

� ` [M]

�

= [N]

�

: �=�

Q-E-Eq

�; x:�=� ` � [x] �; x:� `M [x] : � [[x]

�

]

� ; x; x

0

:� ; p: �[x; x

0

] `M [x] = M [x

0

] : � [[x

0

]

�

]

� ` N : �=�

� ` plug

�

N inM : � [N]

Q-E-Elim

� ` plug

�

[N]

�

inM = M [N] : � [[N]

�

]

Q-E-Comp

Here � is viewed as a binary relation on � and the idea is that �=� is the type

of equivalence classes of the least equivalence relation on � containing �. The

operator [�]

�

associates an equivalence class to an element of �. The ruleQ-E-Eq

states that equivalence classes of �-related elements are equal in �=�. Notice that

Chapter 3. Syntactic properties of propositional equality 111

this rule introduces an information loss in a way similar to Id-DefEq|upon its

application the proof H is lost. The lifting operator \plug

�

� in�" permits one to

de�ne functions on the quotient type as usual in mathematical practice by de�ning

it on representatives and proving independence of the particular representative

chosen. Notice that Q-E-Eq is required for Q-E-Elim to make sense. Finally,

the rule Q-E-Comp states intuitively that the underlying algorithm of a lifted

function is the function itself.

A version of quotient types for TT

I

has to replace the conclusion of Q-E-Eq by

a propositional equality and include instances of Subst in order to make rule Q-

E-Elim typecheck. Formally, we extend TT

I

by the following rules for intensional

quotient types.

� ` � � ; x; x

0

:� ` �[x; x

0

]

� ` �=�

Q-I-Form

� `M :� � ` �=�

� ` [M]

�

:�=�

Q-I-Intro

� ` M;N : � � ` H : �[M;N]

� ` Qax

�

(H) : Id

�=�

([M]

�

; [N]

�

)

Q-I-Ax

�; x:�=� ` � [x] �; x:� `M [x] : � [[x]

�

]

� ; x; x

0

:� ; p: �[x; x

0

] `

H : Id

� [[x

0

]

�

]

(Subst

�=�;�

(Qax

�

(p);M [x]) ; M [x

0

])

� ` N : �=�

� ` plug

�

N inM usingH : � [N]

Q-I-Elim

� ` plug

�

[N]

�

inM usingH = M [N] : � [[N]

�

]

Q-I-Comp

Let TT

EQ

, TT

IQ

refer to the respective extensions of TT

E

and TT

I

with quotient

types and let `

EQ

, `

IQ

denote the corresponding judgement relations.

We notice that, like Ext, the term former Qax introduces non-canonical ele-

ments in the identity type and thus in all types. In Chapter 5 we study models

3

3

In the �rst of these models (Sect. 5.1) Q-I-Form is restricted to relations � of the

form Prf(R) for some � ; x; x

0

: � ` R : Prop, and Q-I-Elim is split into a non-dependent

elimination rule and an induction axiom.

Chapter 3. Syntactic properties of propositional equality 112

which induce further equations for Qax so that these non-canonical elements disap-

pear, but for now TT

IQ

is any extension of TT

I

supporting the rules for quotient

types. So in particular this may be one of the type theories to be studied in

Chapter 5 or it may be a simple addition of the rules for quotient types to TT

I

where we ignore the problem with non-canonical elements.

Let us now study the relationship between TT

IQ

and TT

EQ

. The interpret-

ation j � j of TT

I

in TT

E

extends to quotient types by setting jQax

�

(H)j :=

Re

j�j=j�j

(j[M]

R

j) where � `

I

H : �[M;N], and homomorphically extending to the

other type and term formers. E.g. j�=�j := j�j=j�j. Now again Prop. 3.2.2 contin-

ues to hold, i.e. if � `

IQ

J then j�j `

EQ

jJ j. Moreover, if TT

<Q

and `

<Q

denote

the extension of TT

IQ

by < as in Sect. 3.2.4, we obtain an analogue of Thm. 3.2.4,

i.e. if � `

EQ

J then �

0

`

<Q

J

0

for some �

0

, J

0

with j�

0

j � � and jJ

0

j � J . Here

the only new nontrivial case arises from rule Q-E-Eq. In order to mimic this in

TT

<Q

we have to use Q-I-Ax and an instance of <.

More interestingly, TT

EQ

is again conservative over TT

IQ

with respect to type

inhabitation.

Theorem 3.2.18 If � `

IQ

� and j�j `

EQ

P : j�j for some P then there exists P

0

such that � `

IQ

P

0

: �.

Proof. The proof follows the same pattern as the proof of Thm. 3.2.5. First, we

extend the de�nition of the ty-isomorphisms as follows: Assume � `

IQ

�=� and

� `

IQ

�='. In this context we put U [x:�] := ty

�;�;�;�

[; x] : � [co

�;�

[]]. Now, in

the context : � ; x; x

0

:�; p: �[x; x

0

] we put

V := ty

�;x;x

0

:�;�;y;y

0

:� ;�;'

[; x; x

0

; p] : '[co

�;�

[] ; ty

�;�;�;�

[; x] ; ty

�;�;�;�

[; x

0

]]

and therefore we have

: �; x; x

0

:� ; p: �[x; x

0

] `

IQ

V : '[co

�;�

[] ; U [x] ; U [x

0

]]

and hence

: �; x; x

0

:� ; p: �[x; x

0

] `

IQ

Qax

'

(V)[co

�;�

[]] : Id([U [x]]

'

; [U [x

0

]]

'

)

Chapter 3. Syntactic properties of propositional equality 113

Therefore we may use rule Q-I-Elim and conclude

: �; q:�=� `

IQ

plug

�

q in [U]

'

using V : (�=')[co

�;�

]

If all the participating isomorphisms were de�ned we make this term the value of

ty

�;�;�=�;�='

. The inverse is de�ned analogously.

Next we must show that Lemmas 3.2.7{3.2.11 carry over to this extension.

The proofs are di�cult to write down, but are essentially straightforward. As an

example we show Part ii of Lemma 3.2.8. In the situation � `

IQ

�=� we must

establish

: �; q:�=� `

IQ

Id(q; ty

�;�;�=�;�=�

[; q]) true

After expanding the de�nitions and simplifying by using the Lemma inductively

for � and �, this boils down to the following property which may be compared to

the (�)-rule for quotients in simple type theory [54].

Lemma 3.2.19 If � `

IQ

�=� then

�; q:�=� `

IQ

Id

�=�

(plug

�

q in [x:�][x]

�

using [x; x

0

:�; p: �[x; x

0

]]Qax

�

(p) ; q) true

holds. In other words the lifting of the projection [�]

'

equals the identity.

Proof of Lemma. Let

� [: �; q:�=�] :=

Id

�=�

(plug

�

q in [x:�][x]

�

using [x; x

0

:�; p: �[x; x

0

]]Qax

�

(p) ; q)

By rule Q-I-Comp we have

: � ; x:� `

IQ

Re

�=�

([x]

�

) : � [[x]

�

]

Moreover, since � is an identity type, we have

: � ; x; x

0

:� ; p: �[x; x

0

] `

IQ

H : Id

� [x

0

]

(Subst

�=�;�

(Qax

�

(p);Re

�=�

([x]

�

)) ; Re

�=�

([x

0

]

�

))

for H := IdUni

� [x

0

]

(Subst

�=�;�

(Qax

�

(p);Re

�=�

([x]

�

))). (In fact, this identity may

also be proved using J alone.) Therefore, we may conclude

: �; q:�=� `

IQ

plug

�

q in [x:�]Re

�=�

([x]

�

) usingH : � [q]

Chapter 3. Syntactic properties of propositional equality 114

as required. 2

Having de�ned the canonical isomorphisms co and ty for TT

IQ

we construct

a model Q from TT

IQ

in exactly the same way as in the proof of Thm. 3.2.5.

In order to get an interpretation of TT

EQ

in this model we must show that it

supports the rules for quotient types from TT

EQ

. Suppose that � 2 Fam(�) and

� = [(�; x:�; x

0

:�

0

; �)] 2 Fam(� � � ��

+

). Recall that this means �; x:�; x

0

:�

0

`

IQ

� and that ty

�;�;�;�

0

is de�ned and that both (�; �) and (�; �

0

) are representatives

for �. We de�ne the interpretation of the quotient type as the following family

over �:

�=� := [(� ; �=�

0

)]

where

�

0

= [: �; x; x

0

:�]�[x; ty

�;�;�;�

0

[; x

0

]]

If M = [(�

0

; �

00

;M)] 2 Sect(�) then we put

[M]

�

:= [(� ; �=�

0

; [: �][ty

�1

�;�

0

;�;�

00

[;M [co

�;�

0

[]]]]

�

)]

which is a section of �=�. If M;N 2 Sect(�) and H 2 Sect(�fM

+

gfNg) then by

suitably composing with the ty-isomorphisms and using Q-I-Ax and the de�nition

of equality for sections we obtain that [M]

�

= [N]

�

, i.e. rule Q-E-Eq is validated.

We continue similarly for the remaining term formers and rules and then proceed

as in the proof of Thm. 3.2.5. 2

3.2.6.2 Universes

We consider an extension of both TT

I

and TT

E

by the rules for a universe closed

under �-types and natural numbers from Sect. 2.3.5. It is known that extending

TT

E

by universes allows non-normalising terms to be typed. For example, in the

context � � d: U ; p: Id

U

(d;

^

�(d; [x:d]d) we can derive the type equality

� `

E

D = D! D

Chapter 3. Syntactic properties of propositional equality 115

for D := El(d) using rules Id-DefEq and U-Eq-� and therefore we have the

judgement

� `

E

(�x:D:x x) (�x:D:x x) : D

In TT

I

we can only construct a propositional isomorphism between D and D ! D

using instances of Subst

U;[x:U]El(x)

. This allows one to construct a term M such

that jM j is non-normalising, but where M itself does not contain any redexes at

all because the instances of Subst contain the variable p which prevents reduction.

Our aim is to show that the development in the previous sections goes through

for this extension. Certainly, Thm. 3.2.4 characterising the extension of TT

I

by

the <-operator continues to hold because we make the same extension to TT

I

and

TT

E

. More importantly, Thm 3.2.5 establishing the conservativity of TT

E

over

TT

I

as far as inhabitation of types is concerned, carries over as well.

Theorem 3.2.20 The extension of TT

E

by a universe closed under � and nat-

ural numbers is conservative over TT

I

with the same extension in the sense of

Thm. 3.2.5.

Proof. As in the case of quotient types we have to extend the de�nition of the

ty-isomorphisms so as to account for the newly introduced types U and El(M).

A certain complication arises from the fact that it is no longer the case that

if � `

I

� = � then � and � share the same outermost type former because of

the \non-logical" type equalities U-Eq-� and U-Eq-N. We may introduce an

additional clause for ty to account for this equality, but then in order to retain

transitivity (Lemma 3.2.8) we must close up under composition of ty from the left

and from the right. Then, however, ty is no longer uniquely de�ned and one would

have to establish coherence up to propositional equality. To account for arbitrary

non-logical type equalities this seems indeed to be the only possible way; in the

particular case of a universe we can get away by treating types of the form El(M)

separately.

We say that � `

I

� is a small type if � `

I

� = El(M) for some � `

I

M : U. Notice that in this case we must have either � `

I

� = N or � �

Chapter 3. Syntactic properties of propositional equality 116

�x

1

: �

1

: � � ��x

k

: �

k

:El(N) for some k � 0 and �; x

1

: �

1

; � � �x

k

: �

k

`

I

N : U and small

�

1

,. . . , �

k

. Now we introduce the following two clauses to deal with U and small

types:

ty

�;�;U;U

[: �; x: U] =

8

>

<

>

:

x, if co

�;�

is de�ned

unde�ned otherwise

and

ty

�;�;�;�

[: �; x:�] = Subst

[x:U]El(x)

(P; x)

if there exist M;N;P with � `

I

� = El(M) and � `

I

� = El(N), i.e. � and �

are small, and � `

I

P : Id

U

(M;N [co

�;�

]), and unde�ned otherwise. In the former

case M , N , P are chosen arbitrarily. The inverses are de�ned analogously.

The clause for N in Sect. 3.2.5.2 is removed and the clause for �-types in

Sect. 3.2.5.2 is restricted to those cases which are not yet dealt with by the above

clause for small types, i.e. ty

�;�;�x:�

1

:�

2

;�y:�

1

:�

2

is de�ned by the clause given there

only if �x:�

1

:�

2

and �x: �

1

:�

2

are not small.

Now it is easy to show that the auxiliary properties of these canonical iso-

morphisms continue to hold. Notice that if ty

�;�;�;�

is de�ned and � is small so is

� .

It remains to show that the model Q constructed from the extended syntax as

in Def. 3.2.14 still supports �-types, natural numbers, and a universe.

The type of natural numbers is given by N := [(�;N)]. We have [(�;N; 0)] 2

Sect(N). If M = [(�; �;M)] 2 Sect(N) then we must have � `

I

� = El(S) and

� `

I

P : Id(S;

^

N) for some P . Now we de�ne

Suc(M) := [(�;N;Suc(Subst (P;M)))]

In a similar way we de�ne R

N

using pre-composition with instances of Subst

U;El

where necessary.

For the �-type we only need to consider the case �(�; �) where both � and

� are small since in all other cases we may proceed as in the proof of Prop. 3.2.17

above. So assume � = [�;El(S)] and w.l.o.g. � = [�; x:El(S) ; El(T [x])]. We

Chapter 3. Syntactic properties of propositional equality 117

de�ne �(�; �) as [(�;El(

^

�(S; T)))]. That this is well-de�ned and also the de�ni-

tion of the associated combinators follow from the following Lemma which states

that the ty-isomorphisms for �-types remain essentially unchanged by the altera-

tion for small types.

Lemma 3.2.21 Suppose that � `

I

S : U and � `

I

T : U and �; x: El(S) `

I

M : U

and �; x:El(T) `

I

N : U and � `

I

P : Id(S; T [co

�;�

]) and �; x: El(S) `

I

Q :

Id(M;N [Subst (P; x)]), i.e. ty

�;x:El(S);�;x:El(T);El(M);El(N)

is de�ned. Then

: � ; u:�x:El(S):El(M) `

I

Id(

ty

0

�;�;�x:El(S):El(M);�x:El(T):El(N)

[; x] ;

�x: � [co

�;�

]:Subst

U;El

(Q;u ty

�1

�;�;El(S);El(T)

[; x])) true

where ty

0

is the propositional isomorphism given by the (now overridden) clause

of Sect. 3.2.5.2.

Proof of Lemma. Using Ext and elementary equality reasoning. 2

We may now replace instances of ty at small �-types by ty

0

and proceed as in

the proof of Prop. 3.2.17.

The universe and its externalisation are de�ned as the equivalence classes of

U and El, respectively. The code

^

N in context [�] is given by [�;U;

^

N]. Similarly,

we de�ne the code of � as the lifting to equivalence classes of the syntactic term

former

^

�. That this is well-de�ned is readily checked using Resp and Ext.

We conclude as in the Proof of Thm. 3.2.5. 2

Remark 3.2.22 We believe that this result extends to an impredicative universe

as de�ned in Sect. 2.3.4, but we have not been able to prove this because it is not

clear how the 8-operator lifts to equivalence classes. That is, if ty

�;�;�;�

is de�ned

and �; x: � `

I

M : Prop then it is not obvious why one should have

� `

I

Id

Prop

(8x:�:M [ty

�;�;�;�

] ; 8x:�:M) true

Chapter 3. Syntactic properties of propositional equality 118

although this can probably be shown by induction on the structure of �.

We also remark that the existence of a term M in TT

I

such that jM j is non-

normalising, is now an immediate consequence of the conservativity theorem 3.2.5

extended to universes.

In Chapters 4 and 5 we also consider Prop-valued Leibniz equality as an imple-

mentation of propositional equality. In general, Leibniz equality is much weaker

than the identity type in TT

I

because substitution (Subst) is possible only for

\propositional" families of the form x:� ` Prf(P). Thus, the results reported in

this chapter do not apply to Leibniz equality. However, the type theory S

0

we

consider in Chapter 5 has the unusual property that its Leibniz equality behaves

like the identity type so that the results do carry over. In the deliverables model

of Chapter 4 we could de�ne an identity type which would coexist with Leibniz

equality, but it would not be Prop-valued.

3.2.7 Conservativity of quotient types and functional ex-

tensionality

We have now studied in much detail the question of conservativity of TT

E

over TT

I

.

Another important question is the conservativity of TT

I

over pure type theory

without extensional concepts added. Let TT

p

denote the type theory without

Ext but with IdUni , and let `

p

denote the corresponding judgement relation.

Certainly, we cannot in general have that � `

p

� and � `

I

� true implies � ` � true

because the type of Ext is valid in TT

p

. However, we believe that the following

holds.

Conjecture 3.2.23 If � `

p

� and neither � nor � contains instances of the �-

type then � `

I

� true implies � `

p

� true.

A possible proof of this would use one of the models to be presented in Chapter 5

and show that a �-free type is (propositionally) isomorphic to its denotation in

the model. We shall try to answer this question in future work. In [32, Sect. 4.4.2]

Chapter 3. Syntactic properties of propositional equality 119

such a conservativity result is proved for �rst-order predicate logic over simple type

theory using a similar method, but the situation is much simpler there because

one only has to consider bi-implication instead of isomorphism.

As shown in [101], uniqueness of identity is not conservative over type theory

without it in any reasonable sense, because for example we have

x:� ; u; v:� [x] `

I

Id

�x:�:� [x]

(pair(x; u);pair(x; v)) ! Id

� [x]

(u; v) true

but this does not hold in the pure type theory with J alone. Probably one has

conservativity for types not containing the identity type, but this is logically un-

interesting.

Surprisingly, quotient types are not conservative over TT

p

because in their

presence a weak form of functional extensionality is derivable. Suppose that `

p

F;G : �x:�:� and `

p

H : �x:�:Id

�

(F x;G x). We claim that

`

IQ

Id

�x:�:�

(�x:�:F x; �x:�:G x) true

using quotient types, but of course without using functional extensionality. To get

the conclusion of functional extensionality from this (in the sense of Sect. 3.1.3)

an �-rule for �-types would be required.

De�ne

ExtEq[u; v:�x:�:�] := �x:�:Id

�

(u x; v x)

and consider the quotient type (�x:�:�)=ExtEq. Now we have

x:�; u:�x:�:� ` (u x) : � [x]

and

x:� ; u; v:�x:�:� ; p: ExtEq[u; v] ` p x : Id

� [x]

(u x; v x)

Thus we can \lift" application to the quotient type and get

x:�; q: (�x:�:�)=ExtEq `

IQ

plug

ExtEq

q in [u:�x:�:�]u xusing [u; v:�x:�:� ; p: ExtEq[u; v]]p x : � [x]

Chapter 3. Syntactic properties of propositional equality 120

and by abstracting from x:� we obtain

q: (�x:�:�)=ExtEq `

IQ

�x:�:plug

ExtEq

q in [u: �x:�:�]u x

using [u; v:�x:�:� ; p: ExtEq[u; v]]p x

: �x:�:�

Call this function Extract, i.e.

q: (�x:�:�)=ExtEq `

IQ

Extract[q] : �x:�:�

Notice that by rule Q-I-Comp we have

f : �x:�:� `

IQ

Extract[[f]

ExtEq

] = �x:�:f x : �x:�:�

We have

Qax

ExtEq

(H) : Id

(�x:�:�)=ExtEq

([F]

ExtEq

; [G]

ExtEq

)

and therefore Id

�x:�:�

(�x:�:F x; �x:�:G x) true by Resp.

We do not know whether quotient types are conservative over extensional type

theory (TT

E

).

3.3 Related work

Astonishingly, the meta-theory of propositional equality, in particular in the con-

text of intensional type theory, has attracted very little attention in the literature.

In the standard reference [85] the intensional (TT

I

) and the extensional (TT

E

)

versions of type theory are introduced and compared by way of example.

Streicher [101] was the �rst to see the need for uniqueness of identity as an

additional principle for propositional equality in intensional type theory. He also

realised that the complicated elimination rule J may be replaced by the Leibniz

principle Subst and uniqueness of identity, if one is interested in the latter. In

loc.cit. an �-rule for the identity type is introduced and it is shown that it entails

Chapter 3. Syntactic properties of propositional equality 121

equality reection, i.e. the rule Id-DefEq. The �-rule is as follows: If x; y:� ;

p: Id

�

(x; y) ` M [x; y; p] : � [x; y; p] then

x; y:� ; p: Id

�

(x; y) ` J([x:�]M [x; x;Re(x)] ; x; y ; p) = M : � [x; y; p]

Streicher's work has been taken up in [37] and syntactic consequences of uniqueness

of identity in the context of Pure Type Systems are studied.

Luo [65,67] studies a few meta-properties of propositional equality in the con-

text of the Extended Calculus of Constructions. He discusses the so-called equality

reection principle which states that propositional and de�nitional equality agree

in the empty context. This principle (not to be confused with the equality reec-

tion rule Id-DefEq) is (in the absence of extensional concepts) an immediate

consequence of normalisation. Luo also considers formulations of the Calculus

of Constructions which have an identity type inside Prop and nevertheless allow

elimination (Subst , J) over arbitrary families, not only propositional ones. He

observes that these identity types and the de�nable Leibniz equality imply each

other. However, as shown by Streicher in [101] this bi-implication only forms a

retraction and not a propositional isomorphism between the two incarnations of

propositional equality and so in particular it is not possible to de�ne a J-like elim-

ination rule (or equivalently uniqueness of identity) for Leibniz equality in this

case.

Recently, Gabbay and de Queiroz [34] have looked at propositional equality

in the context of labelled deductive systems. In their setting not only proposi-

tional equality but also de�nitional equality is witnessed by a proof term (\la-

bel"), written as a subscript to =, which in this case records instances of reexiv-

ity, symmetry, transitivity, and of the congruence rules. They have the following

introduction rule for identity types (given here in our notation):

� `M =

s

N : �

� ` Re

�

(M;N; s) : Id

�

(M;N)

and the elimination rule

� ` � � ; M =

t

N :� ` L : � � ` P : Id

�

(M;N)

� ` TEST(P;L) : �

Chapter 3. Syntactic properties of propositional equality 122

where t is a variable that becomes bound in the TEST-expression. They claim that

this elimination rule for propositional equality is simpler than Id-Elim-J, but they

do not compare to the formulation with Subst and IdUni . It is di�cult to give a

satisfactory comparison between their system and TT

I

, say, because the framework

is very di�erent; for example the hypothetical use of de�nitional equalities in the

elimination rule is not possible in TT

I

and in fact we consider it the raison d'être

of propositional equality that it may be assumed hypothetically. We conjecture

that one may give a translation between Gabbay and de Queiroz' calculus and

TT

I

by mapping both annotated de�nitional equality and propositional equality

to the identity type, but since their calculus is not given in a fully formal way it

is hard to give more detail. As an application they give a proof of a constructive

variant of Leisenring's formula 9x:8y:P (x)) P (y), that is they show that the

type (in our notation)

�! �x:�:�y:�:Id

�

(x; y) ! � [x] ! � [y]

is inhabited. Obviously, an inhabitant may be constructed using Subst as well.

Extensional quotient types like the ones considered in Sect. 3.2.6.1 have been

theoretically investigated by Mendler [79] who �nds that they correspond to cat-

egorical coequalisers. See also the section on related work in Chapter 5.

The problem with the failure of strong normalisation in the presence of ex-

tensional identity types and universes (Sect. 3.2.6.2) has also been noticed in [41]

where it is concluded that for this reason identity types cannot be used to describe

sharing constraints in SML functors [80] and that sharing by parametrisation [12,

11] ought to be used instead. We believe that [41] was written in ignorance of the

intensional identity type and that the latter provides a reasonable alternative to

sharing by parametrisation. We leave this to further research.

Chapter 4

Proof irrelevance and subset types

Our aim in this chapter is to present a syntactic model for the extensional concepts

of proof-irrelevance and subset types. The model we give not only provides these

concepts, but also relates two approaches to program development in Martin-L�of

type theory [85] or the Extended Calculus of Constructions (ECC) [65]. Under the

�rst one speci�cations and types are freely mixed using �-types. This methodology

underlies a project for development of correct software at the University of Ulm

[109]. It is also the most natural approach and is probably employed by most users

of type systems like the ones under consideration.

In the second approach types and speci�cations are kept completely distinct.

This way of using type theory has been studied systematically in McKinna's

thesis [75,13]. We consider both approaches in detail. For de�niteness we work in

the Calculus of Constructions extended with �-types and natural numbers which

enables us to use the de�ned logical connectives and Leibniz equality (

L

=). Much of

the development to follow can also be carried out in Martin-L�of type theory repla-

cing Leibniz equality by the identity type and the logical connectives by product,

sum, etc..

123

Chapter 4. Proof irrelevance and subset types 124

4.1 The re�nement approach

Let us start with an example. A type of even numbers can be formed as

Even := �n:N:9m:N:n

L

= 2m

An element of type Even is thus a natural number together with a proof that it

is even. More generally, a function with result type Even can be viewed as an

N-valued function together with a proof that it only takes on even values. Such a

function can thus be viewed as a \veri�ed program". For lack of a better name we

call this methodology the re�nement approach

1

. There are basically two problems

with this approach. First, the projection from a re�ned type such as Even to its

underlying type of elements (here N) is in general not injective

2

, for two elements

of type Even may have the same underlying number, but two di�erent proofs of

evenness. More seriously, a function out of a re�ned type even into a base type

like N may depend on the proof component. For example if f : Even ! Even

then f decomposes into

f

1

: �n:N:Prf(9m:N:n

L

= 2m) !N

and

f

2

: Prf(8n:N:8p:9m:N:n

L

= 2m:9m

0

:N:(f

1

n p)

L

= 2m

0

)

So even in order to compute the underlying natural number of (f x) for some

x : Even, both components of x are required. Even if by strong normalisation we

know that (f x):1 eventually converts to a natural number, this computation may

1

In the terminology of Hayashi [43] Even is a re�nement of N.

2

If we formulate this example using the identity type instead of Leibniz equality and

� instead of 9, then we could prove using Prop. 3.1.1 and R

�

that the projection is

injective. However, for a predicate like [n:N]9m;m

0

:N:n

L

= m � m

0

stating that n is

composite this is not possible.

Chapter 4. Proof irrelevance and subset types 125

in principle require evaluation of the proof part of the argument, x:2. Hence one

cannot honestly claim that f is a veri�ed program; it is at most a computation

which bears some extensional resemblance to an intended algorithm.

The situation is not quite as serious as it might appear, since one can show that

computations of type N (and other basic inductive types) cannot really depend

on proofs.

Proposition 4.1.1 Let � ` P : Prop be a proposition in the empty context and

p : Prf(P) ` M : N be a term of type N containing a variable of type Prf(P).

Then M is de�nitionally equal to a numeral, i.e. p : Prf(P) ` M = Suc

n

(0) for

some n 2 !.

Proof. We give the proof for the Calculus of Constructions with natural num-

bers, but without �-types, i.e. the only type formers are N, Prop, Prf, �. The

extension with �-types and other inductive types is similar. We reason by induc-

tion on the length of the normal form of M . If M = 0 or M = Suc(M

0

) the result

follows directly or from the IH. If M = R

N

[x:N]N

(M

z

;M

s

; N) then by induction

N is a numeral, thus M was not in normal form for it admits a reduction using

Nat-Comp-Zero or Nat-Comp-Suc. Now assume that the normal form of M

is of the form (M

1

M

2

: : :M

n

) where M

1

is not an application. If M

1

is a variable

then by assumption it would have to be p : Prf(P). But then for M to typecheck

we would have to have

Prf(P) = �x

2

:�

2

: : : :�x

n

:�

n

:N

for suitable types �

2

: : : �

n

. But this is possible only if N = Prf(

^

N) for some

^

N : Prop which is not the case.

On the other hand if

M

1

= R

N

[x:N]�x

2

:�

2

::::�x

n

:�

n

:N

(M

z

;M

s

; N)

then again by induction we can assume that N is a numeral whereby M was not

in normal form. This exhausts all possible cases for a normal form of M . 2

Chapter 4. Proof irrelevance and subset types 126

We observe that the proof depended upon the fact that N is not a proposition

and that M does not contain any free variables other than than p : Prf(P). In-

deed, it is not necessarily the case that an open term of type N containing p is

de�nitionally equal to a term not containing p. For example

M [p: Prf(P); x:N] :=

R

N

[y:N]Prf(P)!N

(�f : Prf(P):0; �y:N:�f : Prf(P) ! N:f ; x) p

is in normal form. Now clearly every instanceM [p;N] for some numeralN converts

to 0, but M itself does not convert to 0. The reason is that the application to p

cannot be moved inside the recursion operator.

Of course, using induction (R

N

) we �nd p: Prf(P); x:N ` Id

N

(M [p; x] ; 0) true.

4.2 The deliverables approach

In [75] and [13] another approach to program development is advocated under

which a speci�cation is a type � together with a predicate P : � ! Prop and a

function between two speci�cations (�; P) and (�

0

; P

0

) is a function f

1

: � ! �

0

together with a \proof" f

2

: �a:�:(P a) ! P

0

(f

1

a). Such a pair (f

1

; f

2

) is called

a deliverable for it corresponds to a program together with its veri�cation. Thus

a deliverable contains an actual algorithm (f

1

) which does not depend on proof

components; by forgetting the second component of a deliverable one gets rid of

all computationally irrelevant information. In [75] various examples of program

development in this framework have successfully been carried out.

What we consider a serious disadvantage of the deliverables approach is that

the user has to do a lot of bookkeeping. He or she has to keep track of which

proof corresponds to which program, probably by means of a suitable choice of

identi�ers. Also a lot of work has to be done twice. For example if two deliver-

ables are composed one has to compose the function and proof parts separately.

This problem was realised in loc.cit. too, and as a remedy it is shown there that

Chapter 4. Proof irrelevance and subset types 127

speci�cations and deliverables form a semi-cartesian closed category whereby one

may use categorical combinators like composition, abstraction, and application to

obtain new deliverables from already constructed ones.

Our aim in this chapter is to extend this result substantially by showing how

deliverables can be organised into a full-blown model of the Calculus of Con-

structions where speci�cations interpret types and deliverables interpret terms.

Moreover, we shall see that in this model the underlying type of the speci�cation

interpreting a �-type �x:�:P x for some Prop-valued predicate P is the same

as the underlying type of the speci�cation interpreting �. Thus type re�nement

using �-types over Prop-valued predicates only changes the predicate component,

but leaves the underlying type unchanged. This means that we can basically use

the re�nement approach as an internal language for deliverables thereby unifying

the advantages of the two approaches described above. Furthermore, we shall see

that in the deliverables model the following type is inhabited

� ` �p; q : Prf(P):p

L

= q

for any proposition � ` P : Prop. Thus in the model the projection from a re�ned

type to its underlying \algorithmic" type is provably injective.

4.3 The deliverables model

In this section we construct a syntactic category with attributes whose contexts

and families are (modulo some syntactic clutter) pairs of types and Prop-valued

predicates, whereas morphisms and thus terms are pairs consisting of an ordinary

term of the underlying type and a proof that the predicates are respected. In this

model we shall identify a family Prop which has as underlying type the type Prop

and the trivial predicate [x:Prop]tt (recall that tt stands for the true proposition

8P :Prop:Prf(P) ! Prf(P)). If P : Prop and P

0

is some proof that this trivial pre-

dicate is satis�ed for P , i.e. P

0

: Prf(tt), then we de�ne a speci�cation Prf(P;P

0

)

with underlying type 1

E

(extensional unit type) and predicate �x:1

E

:P . We shall

Chapter 4. Proof irrelevance and subset types 128

see that with this choice we obtain a (loose) model of the Calculus of Construc-

tions which meets the requirements set out in the previous section. Let us now

describe the model in detail. We use the generic notations C, Fam, etc. to denote

the entities in the deliverables model.

4.3.1 Contexts

Let � be a (syntactic) context. A propositional telescope over � is a telescope �

w.r.t. �, i.e. � ` �, such that all the types in � are of the form Prf(M) for some

term M . In particular, the empty telescope is propositional.

A context of speci�cations is a pair (�;�) such that � is a valid (syntactic)

context and � is a propositional telescope over �. For example the pair (�; �) forms

a context of speci�cations which is denoted >. Another example is (x:N; y:N ; p :

Prf(x+ y

L

= 5); q : Prf(x� y

L

= 1)).

If (�;�) and (�

0

;�

0

) are contexts of speci�cations then a morphism (a deliver-

able) from the former to the latter is a pair (f; g) where f is a (syntactic) context

morphism from � to �

0

, i.e. : � ` f [] : �

0

, and g is an element of the telescope

�

0

[f] over �;�, i.e.

: �; �:� ` g[; �] : �

0

[f []]

For example the pair (3; 2) forms the �rst component of a morphism from the

empty context of speci�cations > to the example with natural numbers considered

above. The second component would contain two instances of reexivity.

It is obvious that the morphisms of contexts of speci�cations contain identities

and are closed under component-wise composition so that they form a category.

It is also clear that this category C has a terminal object, viz. > = (�; �).

Notation. If � 2 C is a context of speci�cations we denote by �

set

its underlying

type and by �

pred

its second component, the propositional telescope over �

set

. If

f : � ! � is a morphism of contexts of speci�cations we denote by f

fun

its �rst

component, the syntactic context morphism from �

set

to �

set

; we denote by f

resp

the second component, the element �

set

;�

pred

` f

resp

: �

pred

[f

fun

].

Chapter 4. Proof irrelevance and subset types 129

Equality of contexts of speci�cations and their morphisms is component-wise

de�nitional equality.

4.3.2 Families of speci�cations

Let � be a context of speci�cations. A family of speci�cations over � is a pair

(�

set

; �

pred

) where

�

set

` �

set

and

�

set

; x : �

set

` �

pred

: Prop

for instance, if �

set

= N and �

pred

[n:N] = Even[n] then �

set

[m: �

set

] = N and

�

pred

[m: �

set

; n:N] = (m

L

= n) is a family of speci�cations.

The set of these families is denoted Fam(�). Equality of families of speci�ca-

tions is again point-wise de�nitional equality. If � 2 Fam(�) then we de�ne the

comprehension � � � by

(� � �)

set

:= �

set

; x:�

set

(� � �)

pred

[: �

set

; x:�

set

] := �

resp

[]; p: Prf(�

pred

[; x])

The projection p(�) is given by

p(�)

fun

[: �

set

; x:�

set

] :=

p(�)

resp

[: �

set

; x:�

set

; p: �

pred

[]; q:Prf(�

pred

[; x])] := p

If f : B ! � and � 2 Fam(�) we de�ne the substitution of f in � by

�ffg

set

[�:B

set

] := �

set

[f

fun

[�]]

�ffg

pred

[�:B

set

; x:�

set

[f

fun

[�]]] := �

pred

[f

fun

[�]; x]

We also de�ne the morphism q(f; �) by

q(f; �)

fun

[�:B

set

; x:�

set

[f

fun

[�]]] := (f [�]; x)

q(f; �)

resp

[�:B

set

; x:�

set

[f

fun

[�]]; p:B

pred

[�]; q:Prf(�

pred

[f

fun

[�]; x])] := (f

resp

[p]; q)

Chapter 4. Proof irrelevance and subset types 130

So the �rst components of all the de�nitions made follow exactly the term model

(Ex. 2.4.2), whereas in the second component we carry through the proofs that

the predicates are respected.

4.3.3 Sections of speci�cations (deliverables)

Let � 2 Fam(�). A section of � is a pair (M

fun

;M

resp

) where

: �

set

`M

fun

[] : �

set

[]

: �

set

; p: �

pred

[] ` M

resp

[p] : Prf(�

pred

[M

fun

[]])

A section M gives rise to a context morphism M from � to � � � by decreeing

M

fun

[: �

set

] := (;M

fun

[])

M

resp

[: �

set

; p: �

pred

[]] := (p;M

resp

[; p])

As in the term model, composition with the projection p(�) yields the identity.

If ((f;M) ; (p;Q)) : � ! � � � is a morphism of contexts of speci�cations then

from the de�nition of such morphisms we obtain that

(f; p) : � ! � : �

set

` M : �

set

[f []]

: �

set

; r: �

pred

[] ` Q : Prf(�

pred

[f [];M []])

and thus Hd((f;M) ; (p;Q)) := (M;Q) is a section of �f(f; p)g. By straightfor-

ward equality reasoning we now obtain:

Proposition 4.3.1 Contexts of speci�cations together with families of speci�ca-

tions and their sections form a syntactic category with attributes.

We call this model the deliverables model , or D for short. Proving properties about

syntactic models like the above proposition is often elementary, but requires some

bookkeeping e�ort due to the relatively complex syntax. It is therefore ideally

suited for machine-supported reasoning. In the following we describe how the

Lego system can be used for mechanised proof of such properties.

Chapter 4. Proof irrelevance and subset types 131

4.4 Model checking with Lego

Our de�nition of syntactic categories with attributes contains no conditional equa-

tions. This makes it particularly easy to verify the correctness of an instance of

this de�nition by means of an implementation of type theory, e.g. Lego [68]. The

idea is to code the structure using higher universes as a metalanguage. One prob-

lem is that Lego (or any other implementation of type theory) does not support

contexts and telescopes, which means that we have to encode these using �-types.

These encodings, however, are slightly weaker than actual telescopes for they do

not have surjective pairing up to conversion. Therefore in order to check certain

equations we have to perform certain �-expansions, i.e. replace x by (x:1; x:2).

Since surjective pairing holds on the level of contexts, any equation which holds

in Lego modulo such expansions does hold in the actual model. Also in Lego we

encode meta-level pairs, like the ones occurring in the de�nition of contexts of spe-

ci�cations, as internal �-types. Again, � expansions may become necessary. These

issues will become clear by way of example. In order to reduce redundancy we

adopt a record notation for Lego which unfortunately is not (yet) implemented.

3

For the syntax and the pragmatics of Lego we refer the reader to [68].

4.4.1 Records in Lego

The declaration

[R = <<l

1

:S

1

,: : :,l

n

:S

n

>>]

expands to the following sequence of declarations.

[R = <l

1

:S

1

><l

2

:S

2

>: : :<l

n�1

:S

n�1

>S

n

] �-type

3

In the meantime this situation has changed and records, albeit with a di�erent

syntax, are available in Lego.

Chapter 4. Proof irrelevance and subset types 132

[r:R] [l

1

= r.1 : S

1

] 1st projection

[l

2

= r.2.1 : S

2

]

...

[l

n�1

= r :2:2: : : : :2

| {z }

n� 2 times

:1]

[l

n

= r :2:2: : : : :2

| {z }

n� 1 times

] nth projection

Discharge r;

[MkR[l

1

:S

1

]: : :[l

n

:S

n

] = (l

1

,: : :,l

n

:R)] tupling

So if [r:R] we can access its components by applying the de�ned projection

functions, e.g. (l

2

r) is the second component. Using Lego's post�x notation

for function application this expression may also be written as r.l

2

which is more

suggestive of the intended record semantics. The function MkR allows one to collect

n items of the appropriate types to form an object of type R. The �-rule for the

�-type (�-Comp) gives the equations

(MkR x

1

...x

n

).l

i

== x

i

We now come to the actual implementation of the deliverables model in Lego.

4.4.2 Deliverables in Lego

The contexts of speci�cations are de�ned as elements of the following record type.

[CON = <<set:Type(0), pred:set->Prop>>]

So in Lego a context of speci�cations is just a type and a Prop-valued predicate on

it. As we see below we then use the internal �-type instead of context extension

for comprehension. The morphisms are de�ned analogously:

[MOR[G,D:CON] = <<fun:G.set->D.set,

resp:fg|G.setg(G.pred g)->(D.pred (fun g))>>]

The empty context must be de�ned using a unit type and a true proposition, i.e.

we have

Chapter 4. Proof irrelevance and subset types 133

[Emp = MkCON unit ([x:unit]tt)]

where unit:Type(0) is an inductive type with sole constructor star:unit and tt

is the proposition {X:Prop}X->X| the higher-order encoding of truth. We have

a (not necessarily unique) morphism into Emp from any other context.

[bang[G:CON] = MkMOR G Emp ([:G.set]star)

([g:G.set][:G.pred g][X:Prop][x:X]x)]

Thus in order to prove that the category of contexts of speci�cations has a terminal

object the Lego encoding is of no use; we must look at its de�nition in terms of

contexts and telescopes. We can, however, prove in Lego that morphisms admit

an associative composition and identities.

[Id[G:CON] = MkMOR ([g:G.set]g) ([g:G.set][p:G.pred g]p)]

[Comp[G,D,T|CON][f:MOR D T][g:MOR G D] =

MkMOR ([x:G.set]f.fun(g.fun x))

([x:G.set][p:G.pred x]f.resp (g.resp p))]

Goal fG,D,T,X:CONgff:MOR G Dgfg:MOR D Tgfh:MOR T Xg

Q (Comp (Comp h g) f) (Comp h (Comp g f));

Intros G D T X f g h;

Refine Q refl;

(*** QED ***)

We have formulated associativity in terms of propositional equality (Q). However,

since we were able to prove it using reexivity alone, we know that the two terms in

question have identical normal forms and thus are de�nitionally equal as required.

Alternatively, we can use Lego to calculate these normal forms and compare them

by hand, but the use of propositional equality appears more economical. We see

that Lego is used here only as a proof assistant. The full proof that deliverables

form a syntactic category with attributes is done by hand.

The remaining de�nitions are as follows:

Chapter 4. Proof irrelevance and subset types 134

[FAM[G:CON] = <<set:G.set->Type(0), pred:fg|G.setg(set g)->Prop>>]

[SECT[G|CON][S:FAM G] =

<<fun:fg:G.setgS.set g,

resp:fg|G.setg(G.pred g) -> (S.pred (fun g))>>]

For simplicity we use the same name for the �rst components of contexts and of

families. In the actual Lego implementation we have to choose a di�erent name

each time.

Context comprehension is de�ned using �-types and conjunction.

[Dot[G:CON][S:FAM G] =

MkCON (<g:G.set>S.set g)

([x:<g:G.set>S.set g](G.pred x.1) /\ (S.pred x.2)]

[p[G|CON][S:FAM G] = MkMOR (Dot G S) G

([x:(Dot G S).set]x.1)

([x|(Dot G S).set][p:(Dot G S).pred x]fst p)

[Subst[G,D|CON][S:FAM D][f:MOR G D] =

MkFAM G ([g:G.set]S.set

(f.fun g))

([g|G.set][s:S.set (f.fun g)]S.pred s)]

[q[G,D|CON][f:MOR G D][S:FAM D] =

MkMOR (Dot G (Subst S f)) (Dot D S)

([x:(Dot G (Subst S f)).set](f.fun x.1,x.2)

([x|(Dot G (Subst S f)).set]

[p:(Dot G (Subst f)).pred x]

(pair (f.resp (fst p)) (snd p)))]

We use conjunction in Lego (/\) to concatenate parts of a propositional telescope.

Now we can use Lego to check for example coherence of substitution where in the

case of the identity law we must make an �-expansion.

Goal fG|CONgfS:FAM GgQ (Subst S (Id G)) (MkFAM S.set S.pred);

Intros G S;Refine Q refl;

(*** QED ***)

Chapter 4. Proof irrelevance and subset types 135

Goal fB,G,D|CONgff:MOR B Ggfg:MOR G DgfS:FAM Dg

Q (Subst S (Comp g f)) (Subst (Subst S g) f);

intros;Refine Q refl;

(*** QED ***)

Since the �-expansion we made is an identity in the true deliverables model we

can conclude that the equations we are able to prove in Lego do indeed hold in

the actual model. But for example due to the de�ciencies of the unit type as a

surrogate for the empty context we cannot expect completeness.

4.5 Type formers in the model D

We have now set out the structure of the model, it remains to de�ne various type

constructors. In fact it seems that the deliverables model can be endowed with

whatever features the original type theory has; we shall, however limit ourselves to

�- and �-types, the natural numbers, a universe, and of course the proof-irrelevant

type of propositions.

4.5.1 Dependent products

Let � be a context of speci�cations and � 2 Fam(�) and � 2 Fam(� � �). Their

dependent product �(�; �) 2 Fam(�) is de�ned by

�(�; �)

set

[: �

set

] = �s:�

set

[]:�

set

[; s]

�(�; �)

pred

[: �

set

; f : �(�; �)

set

] = 8s : �

set

[]:�

pred

[; s]) �

pred

[; s; (f s)]

So the set-component of the dependent product is just the syntactic product over

the set-components of � and � , and the associated predicate expresses that a

function in this �-type sends arguments meeting �

pred

to values meeting �

pred

.

The associated combinators are almost forced. If M 2 Sect(�) then �

�;�

(M) 2

Sect(�(�; �)) is de�ned by

�

�;�

(M)

fun

[: �

set

] = �s: �

set

[]:M

fun

[; s]

Chapter 4. Proof irrelevance and subset types 136

�

�;�

(M)

resp

[: �

set

; p: �

pred

[]] = �s:�

set

[]:�q:Prf(�

pred

[; s])M

resp

[; s; p; q]

Similarly we de�ne application for M 2 Sect(�(�; �)) and N 2 Sect(�).

App

� ; �

(M;N)

fun

[: �

set

] = M

fun

[] N

fun

[]

App

� ; �

(M;N)

resp

[: �

set

; p: �

pred

[]] = M

resp

[; p] (N

fun

[]) (N

resp

[; p])

Proposition 4.5.1 The above assignments determine dependent products in the

deliverables model.

Proof. All the equations follow by simply rewriting the de�nitions. For compat-

ibility with substitution one uses the fact that syntactic substitution commutes

by de�nition with all type and term formers. The equations can also be checked

automatically using Lego. 2

4.5.2 Dependent sums

Let � be a context of speci�cations and � 2 Fam(�) and � 2 Fam(� � �). Their

dependent sum �(�; �) 2 Fam(�) is de�ned by

�(�; �)

set

[: �

set

] = �s:�

set

[]:�

set

[; s]

�(�; �)

pred

[: �

set

; f : �(�; �)

set

] =

R

�

�

set

;�

set

;[f :�x:�

set

:�

set

]Prop

([x : �

set

; y : �

set

[x]]�

pred

[x] ^ �

pred

[x; y] ; f)

That is, �(�; �)

pred

holds for a canonical element (x; y) if �

pred

holds for x and

�

pred

holds for y and it is extended to arbitrary elements of �(�; �)

set

using the

�-elimination operator R

�

. Alternatively, one could de�ne �(�; �)

pred

using a

higher-order encoding or the de�ned projections.

Next we de�ne the pairing morphism pair : � � � � � ! � � �(�; �). Its �rst

component is de�ned by

pair

fun

[; s; t] = (; hs; ti)

Chapter 4. Proof irrelevance and subset types 137

The second component is a bit more di�cult. We start from the context

: �

set

; s:�

set

; t: �

set

; p: Prf(�

pred

[]); q:Prf(�

pred

[s]); r:Prf(�

pred

[s; t])

In this context we must �nd an element M of S := Prf(�(�; �)

pred

)[hs; ti]. We

then put

pair[; s; t; p; q; r] = (p;M)

For the construction of M we observe that by virtue of the computation rule �-

Comp, S equals Prf(�

pred

[s] ^ �

pred

[s; t]). We thus put M := ^-Intro(s; t) where

^-Intro is the pairing combinator associated to ^.

For �-elimination assume � 2 Fam(� � �(�; �)) and M 2 Sect(�fpairg). We

must construct a section R

�

(M) of �. The �rst component is just as in the term

model:

R

�

(M)

fun

[: �

set

; x: �(�; �)

set

[]] = R

�

�

set

;�

set

;�

set

(M

fun

; x)

For the second component we use �-elimination as well. We must �nd an inhab-

itant of the type

Prf(�

pred

[R

�

�

set

;�

set

;�

set

(M

fun

; x)])

in the context

: �

set

; x: �(�; �)

set

; p: �

pred

[]; q:Prf(�(�; �)

pred

[x])

Using \cut" this may be reduced to �nding an inhabitant of

�

0

[x] := Prf(�(�; �)

pred

[x]) �

pred

[R

�

�

set

;�

set

;�

set

(M

fun

; x)])

in context : �

set

; x:�(�; �)

set

; p: �

pred

[]. Using R

�

we can reduce this task to �nd-

ing an inhabitant of �

0

[hs; ti] in context : �

set

; x: �(�; �)

set

; p: �

pred

[]; s:�

set

[]; t :

�

set

[s]. But using �-Comp, �

0

[hs; ti] is equal to

Prf(�

pred

[s] ^ �

pred

[t]) �

pred

[M

fun

[s; t]])

This latter type is inhabited by K := �h : Prf(�

pred

[s] ^ �

pred

[t]):M

resp

[s; t; fst(h);

snd(h)] where fst and snd are the projections associated with ^. So putting things

together we get

R

�

(M)

resp

[; x; p; q] = (R

�

�

set

;�

set

;�

0

(K;x)) p

Proposition 4.5.2 The above data endow D with �-types.

Chapter 4. Proof irrelevance and subset types 138

Proof. The pairing morphism satis�es

p(�) �p(�) = p(�(�; �)) �pair

since the �-components are simply copied in both parts of pair. Stability of all

components under substitutions follows again directly from the split property of

syntactic substitution. It remains to check equation �-Comp. In the�

fun

compon-

ent it is identical to its syntactic companion, for the �

resp

-component we calculate

as follows: If : �

set

; s:�

set

; t: �

set

; p: �

pred

[]; q:Prf(�

pred

[s]); r:Prf(�

pred

[t]) then

(R

�

(M)fpairg)

resp

[; s; t; p; q; r]

= K ^-Intro(q; r) by �-Comp

= M

resp

[s; t; fst(^-Intro(q; r)); snd(^-Intro(q; r))] by �-Beta

= M

resp

[s; t; q; r]

2

Using this technique we can show that the deliverables model admits other in-

ductive type constructors. We content ourselves by describing natural numbers in

D.

4.5.3 Natural numbers

If � 2 C we de�ne (N

�

)

set

[] = N and (N

�

)

pred

[; n] = tt. The morphisms

0 and Suc are readily constructed from their syntactic companions. We have

(0

�

)

fun

[] = 0 and (Suc

�

)

fun

[; n] = Suc(n). The �

resp

-components are constants

returning the canonical proof of tt. For N-elimination let � 2 Fam(� �N

�

) and

M

z

2 Sect(�f0g), and M

s

2 Sect(�fSuc

�

�p(�)g). We must construct a sec-

tion R

N

�

(M

z

;M

s

) of �. The �

fun

component is again the same as in the term

model, R

N

�

(M

z

;M

s

)

fun

[; n] = R

N

((M

z

)

fun

; (M

s

)

fun

; n). For the �

resp

-part we

must \show" that �

pred

\holds" for this term. By analogy to the case of �-types

we use R

N

. This time there is no need for strengthening the inductive hypothesis

since the predicate on N is trivial.

Chapter 4. Proof irrelevance and subset types 139

Proposition 4.5.3 (N-canonicity) If M 2 Sect(N

>

) then M is canonical, i.e.

M = Suc

n

(0) for some (set-theoretic) natural number n.

Proof. We have ` M

fun

: N so by Remark 2.1.6 we have ` M

fun

= Suc

n

(0 : N)

for some n 2 !. Moreover, we have `M

resp

: Prf(tt), but by strong normalisation

for the Calculus of Constructions there is only one element of Prf(tt) in the empty

context, so M = Suc

n

(0) as required. 2

4.5.4 The type of propositions

Now we come to the main feature of the deliverables model | the proof-irrelevant

type of propositions. We show that the model is a loose model of the Calculus

of Constructions in the sense of Def. 2.4.36. For the moment we assume that the

underlying type theory supports an extensional unit type obeying the rules

� `

� ` 1

E

Unit-Form

� `

� ` ? : 1

E

Unit-Intro

� `M : 1

E

� `M = ? : 1

E

Unit-Eq

We shall see below how this assumption can be eliminated.

Now we de�ne the family Prop 2 Fam(>) by

Prop

set

= Prop

Prop

pred

[P :Prop] = tt

The generic family of proof types Prf 2 Fam(> �Prop) is de�ned by

Prf

set

[P : Prop] = 1

E

Prf

pred

[P : Prop; x:1

E

] = P

So the proof type associated to a proposition P is always the unit type, but the

predicate associated to P is P itself.

Chapter 4. Proof irrelevance and subset types 140

Therefore, a section of Prop is already determined by its �

fun

component; a

section of Prffsg is already determined by its �

resp

-component.

We come to the de�nition of universal quanti�cation. Let � 2 Fam(�) and

s : � � � ! Prop. Recall that Prop here denotes > � Prop. We de�ne the

morphism 8

�

(s) : � ! Prop by

8

�

(s)

fun

[: �

set

] = 8x:�

set

:�

pred

[x]) s[; x]

For the �

resp

-part we take some constant function returning a proof of tt.

If M 2 Sect(Prffsg), i.e.

: �

set

; x:�

set

`M

fun

: 1

E

: �

set

; x:�

set

; p: �

pred

[]; q:Prf(�

pred

[x]) `M

resp

[p; q] : Prf(s[; x])

then we de�ne �

�;s

(M) 2 Sect(Prff8

�

(s)g) by

�

�;s

(M)

fun

[: �

set

] = ? : 1

E

�

�;s

(M)

resp

[: �

set

; p: �

pred

[]] = �x:�

set

:�q:�

pred

[x]:M

resp

[p; q] :

Prf(8x:�

set

:�

pred

[x]) s[; x])

The evaluation morphism ev

�;s

: � � ��Prff8

�

(s) �p(�)g ! � � ��Prffsg is de�ned

by

(ev

�;s

)

fun

[; x; p] = (; ?)

(ev

�;s

)

resp

[

: �

set

; x:�

set

; f :1

E

p: �

pred

[]; r: Prf(�

pred

[x]); q:Prf(8y:�

set

:�

pred

[y]) s[; y])] =

(p ; q x r)

Proposition 4.5.4 The above data endow D with the structure of a loose model

for the Calculus of Constructions.

Proof. For the �-equation let M 2 Sect(Prffsg). We want to show that

ev

�;s

��

�;s

(M)fp(�)g = M

The �

fun

-part is an equation of type 1

E

and therefore holds by Unit-Eq. The

�

resp

-part follows immediately from the de�nitions and �-Beta and Prop-Eq.

The other laws including the substitutivity laws are also immediate consequences

of the de�nitions. 2

Chapter 4. Proof irrelevance and subset types 141

We can now establish logical consistency of the deliverables model in the sense

that there exists a morphism ff : > ! Prop such that Prffffg has no sections.

Proposition 4.5.5 (Consistency) The family Prffffg with

ff := 8

Prop

(id

Prop

) : > ! Prop

has no sections.

Proof. We have Prffffg

set

= 1

E

and Prffffg

pred

[x] = 8p:Prop:tt) p. A section

of Prffffg thus consists of an element of 1

E

(necessarily ?) and a term of type

� ` Prf(8p:Prop:tt) p)

but no such term exists by consistency of the syntax. 2

4.5.4.1 Eliminating extensional unit types

One may object against the use of extensional unit types as they are not part

of the original syntax and because their behaviour in terms of rewriting and in

particular normalisation is dubious. For instance they lead to non-conuence in

the presence of �-reductions for functions and require a typed notion of reduction

(for otherwise every term could be reduced to ?). Although we believe that their

addition does not cause any substantial problems (and indeed this has been done

in the formulation of the Calculus of Constructions used in [30]) we prefer to show

two ways in which their use can be eliminated.

First, we observe that the only use of the extensional unit type was to ascribe a

�

set

-component to the families of the form Prffsg. So a possible solution consists

of not giving these families a �

set

-component at all. We then have to re�ne the

notion of families so as to allow for that. More precisely, we de�ne

Fam(�) := Fam

type

(�)

:

[Fam

prop

(�)

Chapter 4. Proof irrelevance and subset types 142

where Fam

type

(�) is the set of families of speci�cations over � as de�ned in

Sect. 4.3.2 and Fam

prop

(�) is de�ned as the set of propositions in context �

set

,

i.e. the set of terms P with �

set

` P : Prop. These are called propositional fam-

ilies over �. Now we must show that even with this extended notion of families

we still have a syntactic category with attributes supporting all the structure we

are interested in. The proof of this is absolutely straightforward and tedious. An

element of Fam

prop

(�) behaves like an ordinary family of speci�cations having the

extensional unit type as �

set

-component. All reference to it is omitted. So for

example if P 2 Fam

prop

(�), i.e. �

set

` P : Prop then the comprehension � � P is

de�ned by (� � P)

set

= �

set

and (� � P)

pred

[] = : �

pred

[]; q:Prf(P). Also if � is a

propositional family over � � � then the product �(�; �) is a propositional family

over �.

A more systematic way of eliminating extensional unit types consists of exhib-

iting an interpretation of type theory with them in type theory without them. This

can be done by constructing a syntactic category with attributes whose base cat-

egory is the same as that of the term model|the category of contexts and context

morphisms|and where a family over � is either a type in context � or a formal

constant 1

E

. The relevant operations may then be extended to this constant in

the obvious way, for instance we de�ne � � 1

E

:= � and p(1

E

) := id

�

.

4.5.5 Proof irrelevance

In the deliverables model any two proofs of a proposition are indistinguishable

because proof types have 1

E

as �

set

-component and observations only take the

�

set

-component into account. To make this statement precise we �rst need to

de�ne a semantic analogue to Leibniz equality.

De�nition 4.5.6 Fix a loose model of the Calculus of Constructions and let � 2

Fam(�) and M;N 2 Sect(�). Leibniz equality of M and N , written L Eq(M;N),

is the proposition over � de�ned by

8

�!Prop

(8

PrffPMg

(PN

+

)) : � ! Prop

Chapter 4. Proof irrelevance and subset types 143

where we have used the following abbreviations

�! Prop = �(�;Propf!

���

g) 2 Fam(�)

PM = App

�

+

;(�!Prop)

+

(v

�!Prop

;M

+

) 2 Sect(Propf!

���!Prop

g)

PN = App

�

+

;(�!Prop)

+

(v

�!Prop

; N

+

) 2 Sect(Propf!

���!Prop

g)

Syntactically, the thus de�ned Leibniz equality corresponds to the usual

� ` 8P :�! Prop:(P M)) (P N) : Prop

(To be precise, this gets interpreted as Hd(L Eq([[M]]; [[N]])).) By mimicking the

usual syntactic manipulations in the semantics we can show thatPrffL Eq(M;M)g

is always inhabited, and that if PrffL Eq(M;N)g is inhabited, then whenever

PrffApp

� ;Prop

(P;M)g is inhabited for some P 2 Sect(� ! Prop) then so is

PrffApp

� ;Prop

(P;N)g.

Let us now examine what Leibniz equality means in the deliverables model. If

� 2 Fam(�) and M;N 2 Sect(�) in this model then we have

L Eq(M;N)

fun

[] = 8P :�

set

[] ! Prop:(P (M

fun

[]))) (P (N

fun

[]))

whereas L Eq(M;N)

resp

is some uninteresting proof of tt|the �

pred

-component

of Prop. So L Eq(M;N) simply states actual Leibniz equality of the �

fun

-

components of M and N . Given the de�nition of Prf in the model we see

that Sect(PrffL Eq(M;N)g) is nonempty i� M

fun

and N

fun

are Leibniz equal

in context �

set

;�

pred

. We thus obtain the following proposition expressing proof-

irrelevance in the deliverables model.

Proposition 4.5.7 Let � 2 C be a context of speci�cations and A : � ! Prop

and M;N 2 Sect(PrffAg). Then the set Sect(PrffL Eq(M;N)g) is nonempty.

Proof. Since the �

set

-component of the family PrffAg is 1

E

, both M

fun

and

N

fun

must equal ?. So by the above considerations the section Pr Ir with Pr Ir

fun

=

? and Pr Ir

resp

[: �

set

; p: �

pred

[]] = �P :1

E

! Prop�x: Prf(P ?):x de�nes the de-

sired section. 2

Chapter 4. Proof irrelevance and subset types 144

However, we do not have M = N because the second components (which are not

observed by propositional equality) may di�er. We can also obtain a model if we

identify morphisms and sections with equal �rst component. In the more general

setting of partial equivalence relations instead of predicates this will be done in the

next chapter. Here we prefer not to identify propositionally equal terms because

this would thwart the application to modules described in Sect. 4.6.2.2 below.

There is no fundamental reason for this choice, though.

Corollary 4.5.8 The deliverables model permits the interpretation of a type the-

ory extending the Calculus of Constructions by the rule

� ` A : Prop � ` M;N : Prf(A)

� ` Pr Ir(A;M;N) : Prf(M

L

=N)

Pr-Ir

Proof. We interpret Pr Ir by the section de�ned in the proof above. It remains

to show that the choice of this section is stable under substitution, but this follows

immediately from its uniform syntactic de�nition. 2

4.5.6 Universes

If the underlying type theory has universes so has the deliverables model. In

particular since the underlying type theory has an impredicative universe (Prop)

we can de�ne such a universe in D which astonishingly is di�erent from Prop.

We therefore call it Set and write El instead of Prf. We de�ne

Set

set

= �X: Prop:X ! Prop

Set

pred

[x: Set

set

] = tt

El

set

[X: Set

set

] = X:1

El

pred

[X: Set

set

; x:X:1] = X:2 x

It is now possible to de�ne a 8-operator for this universe. Moreover, the universe

Set will be closed under the subset types de�ned below. Since we do not make

Chapter 4. Proof irrelevance and subset types 145

further use of Set, we do not give the details here. Notice that since the �

set

-

component of an El-type is not 1

E

, proof-irrelevance does not hold for Set. In

this sense D allows us to use the impredicative universe Prop both for proof-

irrelevant logic and for impredicative quanti�cation. One may compare this to the

two impredicative universes Spec and Prop in Paulin-Mohring's thesis work [88].

4.6 Subset types

Given Pr-Ir we can encode subset comprehension using �-types, more precisely

if � ` � and ` P : � ! Prop then the type ` �x:�:Prf(P x) can be seen as

the subset of � containing those elements for which P holds. The �rst projection

` � : �x:�:Prf(P x) ! � where � = �u : �x:�:Prf(P x):(u:1) is now provably

injective in the sense that the proposition

u; v:�x:�:Prf(P x) ` (� u)

L

= (� v)) u

L

= v

is provable using �-elimination (R

�

) and Pr-Ir. Let us now look at how this

particular �-type gets interpreted in the deliverables model. If � 2 Fam(�) and

P : � � �! Prop then we have

�(�;PrffPg)

set

[: �

set

] = �x:�

set

:1

E

�(�;PrffPg)

pred

[: �

set

; u:�(�;PrffPg)

set

[]] =

R

�

:::

([x:�

set

; y:1

E

]�

pred

[x] ^ P [; x] ; u)

That is, the �

set

-component of the �-type is almost the �

set

-component of � and

the �

pred

-component is the conjunction of �

pred

and P . It makes sense to replace

\is almost" by \is" and to de�ne the following subset type former inside D.

De�nition 4.6.1 Let � 2 Fam(�) and P : � � � ! Prop. The subset type

f� jPg 2 Fam(�) is de�ned by

f� jPg

set

[: �

set

] = �

set

[]

f� jPg

pred

[: �

set

; x:�

set

[]] = �

pred

[; x] ^ P

fun

[; x]

Chapter 4. Proof irrelevance and subset types 146

Now if M 2 Sect(�) and H 2 PrffP �Mg then we de�ne a section (M)

H

of f� jPg

by

((M)

H

)

fun

= M

fun

((M)

H

)

resp

= pair(M

resp

; P

resp

)

where here pair is the (de�ned) introduction operator corresponding to ^. Con-

versely, if M 2 Sect(f� jPg) then we have a section wit(M) of � (\witness") given

by wit(M)

fun

= M

fun

and wit(M)

resp

= fst(M

resp

). Every section of the form

wit(M) \satis�es" P in the sense that there is a section cor(M) of PrffP �Mg

(\correctness") given by cor(M)

fun

= ? and cor(M)

resp

= snd(M

resp

) where fst

and snd are the projections corresponding to ^.

Proposition 4.6.2 The deliverables model permits the interpretation of a type

theory extending the Calculus of Constructions by a subset type governed by the

following rules:

` � x:� ` P : Prop

` fx:� jPg

fg-Form

` M : � ` H : Prf(P [M])

` (M)

H

: fx:� jPg

fg-Intro

`M : fx:� jPg

` wit(M) : �

fg-Wit

`M : fx:� jPg

` cor(M) : Prf(P [wit(M)])

fg-Cor

` wit((M)

H

) = M : � ` cor((M)

H

) = H : Prf(P [M])

fg-Beta

Proof. The subset type and its associated combinators are interpreted by the

semantic operations de�ned above. fg-Beta and stability under substitution are

immediate from the de�nition. 2

The above proposition could also be \proved" in a purely syntactical way by

interpreting fx:� j Pg as �x:�:Prf(P). The point is that the more economical

encoding above also interprets them.

Chapter 4. Proof irrelevance and subset types 147

An extended example for the use of subset types will be given in Sect. 6.1.

4.6.1 Subset types without impredicativity

The above development of subset types and proof irrelevance does not hinge on

impredicative propositions; one could carry out the same development in the core

type theory TT and would then obtain a model for a type theory with two di�erent

sorts: types and propositions. So instead of � ` � we would have to write � `

� type and we would also have a judgement � ` � prop. These \propositions"

would support the same type formers as the \types" and moreover we would have

an inclusion rule

� ` � prop

� ` � type

Semantically, the \propositions" would be interpreted as families with extensional

unit type in the �

set

-component. In the absence of Leibniz equality we would

then de�ne a propositional equality using the identity type from the syntax. The

propositions then would be at most single-valued w.r.t. this equality. The resulting

model is then quite close to the subset interpretation of Martin-L�of type theory.

4.6.2 A non-standard rule for subset types

In Section 4.5.4.1 we sketched a re�nement of the deliverables model in which fam-

ilies could have no �

set

-component, which then was meant to be 1

E

. We will now

consider a re�nement under which there are families without �

pred

-component,

which is understood to be tt. This will allow us to derive a \non-standard" rule

for subset types in Prop. 4.6.6 below which shows that every function on a subset

type is in fact de�ned on the whole of the underlying �

set

-component. So we de�ne

a new model with

Fam(�) := Fam

type

(�)

:

[Fam

nprop

(�)

where Fam

type

(�) is the set of families of speci�cations as de�ned before, whereas

Fam

nprop

(�) is the set of (syntactic) types in context �

set

. The elements of this set

Chapter 4. Proof irrelevance and subset types 148

are called non-propositional families of speci�cations over �. If � 2 Fam

nprop

(�)

then we de�ne (� � �)

set

as �

set

; x:� and (� � �)

pred

= �

pred

. Substitution in non-

propositional families is simply syntactic substitution. A section of � is a term

�

set

` M : �. The corresponding morphism M is given by M

fun

[] = (;M) and

M

resp

[; p] = p which makes sense since the comprehension of � does not add

anything to the �

pred

-component. We call the resulting structure the deliverables

model with non-propositional families.

Proposition 4.6.3 The deliverables model with non-propositional families is a

loose model of the Calculus of Constructions and supports natural numbers and

�-types. Moreover, Prop and N are non-propositional, and �(�; �) is non-propo-

sitional i� � is, and �(�; �) is non-propositional i� both � and � are.

Proof. The model equations for non-propositional families are readily checked

by straightforward expansion of the de�nitions. N and Prop are de�ned as their

syntactic companions viewed as non-propositional families. If � 2 Fam

nprop

(� � �)

then �(�; �) 2 Fam

nprop

(�) is de�ned as : �

set

` �x:�

set

[]:�

set

[; x]. If � 2

Fam

nprop

(�) and � 2 Fam(� � �) we de�ne the dependent product by

�(�; �)

set

[: �

set

] := �x:�

set

:�

set

[x]

�(�; �)

pred

[: �

set

; f : �(�; �)

set

[]] := 8x:�

set

:�

pred

[; x; f x]

The dependent sum of two non-propositional families is de�ned as in the syntax;

the dependent sum of an ordinary family and a non-propositional one is de�ned

as in Sect. 4.5.2 where all references to the (non-existing) �

pred

-part of the non-

propositional family are dropped. The other components and the veri�cations are

straightforward. 2

Next we de�ne a syntactical counterpart to non-propositional families which

will serve to de�ne the desired rule for subset types.

Chapter 4. Proof irrelevance and subset types 149

De�nition 4.6.4 Consider the Calculus of Constructions with natural numbers,

�-types, and subset types. The set of non-propositional pre-types is de�ned by the

following clauses.

{ N and Prop are non-propositional.

{ If � and � are non-propositional then so are �(�; �) and �(�; �) for any

pre-type �.

We write � ` � Nprop if � ` � and � is a non-propositional pre-type. In this

situation � is called a non-propositional type.

Proposition 4.6.5 The notion of non-propositional types is stable under equality

and substitution, more precisely if � ` � = � and � ` � Nprop then also � `

� Nprop and B ` �[f] Nprop for every syntactic substitution B ` f) �.

Proof. The only type equality rule which is not a congruence rule is Prop-Eq.

Therefore, if � ` � = � then either both � and � have the same outermost type

former or both types contain an instance of Prf in which case � ` � Nprop does

not hold. We then use induction. The same argument applies to substitution.

2

Proposition 4.6.6 The following rules can be interpreted in the deliverables model

with non-propositional families.

x:� ` � [x] Nprop

x:� ` P [x] : Prop

p: fx:� jP [x]g `M [p]: � [wit(p)]

` N : �

` extend

�;P;�

(M;N) : � [M]

fg-Elim-Nonprop

` H : Prf(P [M])

` extend

�;P;�

(M;N) = M [(N)

H

] : � [N]

fg-Elim-Nonprop-Comp

Chapter 4. Proof irrelevance and subset types 150

Proof. By induction along the de�nition of the interpretation function we show

that if � ` � Nprop then [[� j �]] 2 Fam

nprop

([[�]]). It remains to interpret the two

rules on the semantic level. Thus let � 2 Fam(�), � 2 Fam

nprop

(�), and P : ��� !

Prop. Let w : � � f� jPg ! � � � be the morphism q(p(f� jPg); �) �wit(v

f� jPg

).

We have w

fun

[; s] = (; s) and w

resp

[; p; q] = (p; fst(q)). Now let M 2 Sect(�fwg)

and N 2 Sect(�). We must construct a section extend

�;P;�

(M;N) of �fMg. We

de�ne it by

extend

�;P;�

(M;N)[: �

set

] = M

fun

[;N

fun

[]]

Notice that no �

resp

-component is required because � is non-propositional. The

equation fg-Elim-Nonprop-Comp now holds by de�nition. 2

The non-standard rule allows one to extend a function p: fx:� jP [x]g ` M [p] :

� [wit(p)] de�ned on a subset type to the whole of �, hence the name of the operator

symbol.

In the ordinary deliverables model we could still interpret fg-Elim-Nonprop

by showing that non-propositional types get interpreted as families with a �

pred

-

component which is universally valid (equivalent to tt). One would then use this

proof to interpret the �

resp

-component of extend. But �rst, some care would have

to be taken in order to retain stability under substitution, and second the equation

fg-Elim-Nonprop-Comp would only hold up to Leibniz equality, because the

�

resp

-components of the two sections might disagree.

The \computation" rule fg-Elim-Nonprop-Comp is suspicious from a rewrit-

ing point of view, for if we direct it from left to right we would have to \guess"

a proof H : Prf(P [M]). If on the other hand we choose to direct it from right

to left there is no way of eliminating instances of extend. Such rules do however

make sense as a clari�cation of the semantically determined de�nitional equality

induced by a syntactic model (here D) discussed in the Introduction. Below in

Sect. 4.7 we make that more precise.

Chapter 4. Proof irrelevance and subset types 151

4.6.2.1 Internal program extraction

The rule fg-Elim-Nonprop may be used to perform an internal version of pro-

gram extraction. For example if we have de�ned a function f : Even ! Even

where Even is fx:N j 9m:N:n

L

= 2mg, then we obtain a function

^

f from N to N

by

^

f = �n:N:extend([x:Even]wit(f x); n)

which is valid since N is non-propositional. Now using fg-Elim-Nonprop-Comp

we obtain

x: Even `

^

f wit(x) = wit(f x) : N

which states that

^

f is the \underlying algorithm" of f .

In a similar vein, the non-standard rule for subset types admits the following

generalisation of Prop. 4.1.1 above.

Proposition 4.6.7 Consider a type theory with subset types and the extend-

operator. Let � ` P : Prop and �; p: Prf(P) ` M : � for some non-propositional

type �, e.g. N. Then there exists a term � ` N : � with �; p: Prf(P) ` M = N : �.

Proof. Consider the type fn:N jPg (where n does not occur in P). We have

� ; x: fn:N jPg `M [p := cor(x)] : �

Therefore, by fg-Elim-Nonprop

� ` extend

�;P;�

([x:fn:N jPg]M [p := cor(x)]; 0) : �

Let N be this term. By rule fg-Elim-Nonprop-Comp we get

�; p: Prf(P) ` M = N : �

as required. 2

Chapter 4. Proof irrelevance and subset types 152

We remark that the non-propositional families and the families of the form Prffsg

are independent in the sense of [84]. In our terminology this means, that for

s : � ! Prop the non-propositional families over � are in 1-1 correspondence

to the non-propositional families over � � Prffsg and that for non-propositional

� 2 Fam

nprop

(�) the weakening map

�fp(Prffsg)g : Sect(�) ! Sect(�fp(Prffsg)g)

is a bijection. The non-standard operator extend can be seen as an internalisa-

tion or a syntactic version of Moggi's concept of independence. From equation

fg-Elim-Nonprop-Compwe can only deduce that the above mapping is surject-

ive. To deduce bijectivity in a purely syntactic way we could introduce an �-like

equation: extend([u:fx:� j PgM [wit(u)]; N) = M [N] if x:� ` M [x] : �. This is

a case in point for the type theory with semantically de�ned de�nitional equality

described in Sect. 4.7.

In the set-theoretic model (Ex. 2.4.4), where subset types can be interpreted

as ordinary subsets, one can interpret extend as extend

�;P;�

(M;N) = M(N) if

P (N) holds and c

�

otherwise where c

�

2 � is a \default element" de�ned by

induction on the de�nition of \non-propositional". However, this understanding

is not constructive, whereas the interpretation in D is.

4.6.2.2 Application to modules

We can also use subset types and the deliverables model for modules and higher-

order functors, where it is important that the typing component of a functor does

not depend upon its implementation component. Although the account of modules

we end up with is essentially the same as the one given by Moggi and others in

[84,42] we found it interesting to exhibit the relationship with subset types and

deliverables and to rephrase their constructions in terms of syntactic models.

For what follows we need a type theory in which Prop (the name \Set" would be

more appropriate) contains the natural numbers and other datatypes of interest.

This means that there is a constant � `

^

N : Prop with Prf(

^

N) = N. In the

Chapter 4. Proof irrelevance and subset types 153

deliverables model we can then also de�ne such a constant by putting

^

N

fun

[] =

^

N

and

^

N

resp

returns a proof of tt. Now in the model Prf(

^

N) is not N because any

family of the form Prffsg has �

set

-part 1

E

, but we can interpret the following

rules, where we abbreviate Prff

^

Ng by N.

� `

� ` 0 : N

N-Intro-0

� ` M : N

� ` Suc(M) : N

N-Intro-Suc

� ; x:N ` S : Prop

� `M

z

: Prf(S[x := 0])

� ; x : N ; p : Prf(S) `M

s

: Prf(S[x := Suc(x)])

� ` N : N

� ` R

N

S

(M

z

;M

s

; N) : Prf(S[x := N])

N-Elim

Now we may view Prop as the universe of datatypes, and types like Prop ! Prop

as \kinds". We may then use the subset type to give signatures. For example a

signature for sets with a binary operation would be

4

BIN = fX: Prop jX) X) Xg

The signature for \monads" as used in functional programming [83,110] would be

MON = fT :Prop ! Prop j

(8X:Prop:X) (T X)) ^

(8X;Y : Prop:(X) (T Y))) (T X)) (T Y))g

If S : BIN then wit(S) : Prop and cor(S) : Prf(S) ! Prf(S) ! Prf(S), so

an element of type BIN consists of a datatype and a binary operation on it. For

example we have (

^

N)

�x:�y:x+y

: BIN. We may therefore call elements of a signature

\structures matching the signature". If S is a structure then we call wit(S) its

type component and cor(S) its implementation component.

4

Recall that for X; Y : Prop we have Prf(X) Y) = Prf(X) ! Prf(Y) and that

Prf(X ^ Y) together with pair, fst, and snd is a binary product without surjective

pairing.

Chapter 4. Proof irrelevance and subset types 154

Now we still have that any two \proofs" (elements) of a \proposition" (data-

type) are \Leibniz-equal", for example the type

` Prf(8P : Prf(N) ! Prop:(Prf(P 0)) ! Prf(P (Suc(0))))

is inhabited in the model (by Pr-Ir). But the reason for this is that in the model

a datatype (a \proposition") can never depend upon values of a datatype and so

every P the quanti�cation ranges over must be constant. Thus by working in D it

is possible to typecheck signatures at compile time without performing any compu-

tations on datatypes. Using the deliverables model with non-propositional families

this can be internalised in the following sense. If F : BIN ! BIN is a \functor"

mapping structures matching BIN to themselves, then just as in Sect. 4.6.2.1 we

can de�ne

^

f : Prop ! Prop where

^

f X is the \type component" of f applied to

a structure matching BIN with type component X.

It should be pointed out that now that we have used up the two components

of a speci�cation for types and implementation respectively, there is no possibility

of including logical information anymore. This could be done in a similar model

where a family has three components: type, implementation, and proof. This

might form the basis of a type-theoretic semantics for a modular speci�cation

languages like Extended ML [94] in which programs and speci�cations can coexist.

The internal language of such a model, i.e. the type theory interpretable by it

should resemble one of the higher-order type theories considered in [53].

4.7 Reinterpretation of the equality judgement

We have now described a syntactic model of type theory in which subset types and

proof-irrelevance can be interpreted. We have argued that type theory extended

with these additional constructs can be understood as a macro language for work-

ing under the deliverables approach described in Sect. 4.2 above. Upon application

of the semantic interpretation function to derivations in the extended type the-

ory one obtains a corresponding derivation under the deliverables approach as

explained by the semantic interpretation of the various type and term formers.

Chapter 4. Proof irrelevance and subset types 155

Rather than actually computing the deliverables interpretation of some derivation

one may also look at the new equality judgements induced by this interpretation.

We therefore propose a new type theory in which all the equality rules are replaced

by rules making reference to semantic equality.

De�nition 4.7.1 Let [[: : :]] denote the semantic function associated to D and take

x = y : X to mean that x, y, and X are de�ned, and x, y are equal elements of

the set X. The type theory D is de�ned by the following clauses.

{ The pre-constructions of D are the same as those of ordinary type theory

extended with Pr Ir and the operators associated to subset types.

{ The typing rules are the same as those of ordinary type theory.

{ There are only the following three equality rules:

[[� jM]] = [[� j N]] 2 Sect([[� j �]])

� `M = N : �

Eq-Term

[[� j �]] = [[� j �]] 2 Fam([[�]])

� ` � = �

Eq-Type

[[�]] = [[�]] 2 Ob(C)

` � = �

Eq-Cont

Since the interpretation function is recursive and equality in the deliverables model

is decidable by decidability of equality in the Calculus of Constructions, we �nd

that the new type theory de�ned above also has decidable typing and equality

judgements. In this way we can make sense out of equality rules like fg-Elim-

Nonprop-Comp which now appear as special cases of Eq-Term.

This semantic de�nition of equality also applies to the two syntactic models

for extensionality and quotient types we study in the next chapter.

Chapter 4. Proof irrelevance and subset types 156

4.8 Related work

A subset type former very similar to ours has also been introduced by Martin-L�of

and justi�ed by a very similar model construction|the subset interpretation of

type theory (described in [85]). The main di�erence is that our model accounts

for the full Calculus of Construction, i.e. higher-order logic, and more subtly that

Martin-L�of identi�es morphisms with equal �rst components and families with

equal �rst and equivalent second components. This last identi�cation makes se-

mantic equality undecidable. A di�erence in presentation is that Martin-L�of's

subset interpretation is not described in terms of categorical semantics. In this

simple case this is only a matter of taste; however, for the more involved setoid

models we look at in the next chapter, we found the use of the abstract semantics

unavoidable.

Subset types in an extensional context without unicity of typing (in the sense of

Prop. 2.1.7) have been studied by Salvesen and Smith [93]. They consider a subset

introduction rule which allows one to conclude M : fx:� jP [x]g provided M : �

and P [M] true. They do not have a rule which gives P [M] from M : fx:� jP [x]g,

but only allow to conclude C true if x:�; p: Prf(P [x]) ` C true and x does not

occur in C. They ask the question under what conditions on P this does allow

P [M] to be derived and �nd that this is the case for stable formulae, i.e. those

for which ((P) ff)) ff)) P true. This work does not really compare to ours

because in an intensional setting the questions answered in loc.cit. either make no

sense or have a trivial answer.

The idea that types endowed with predicates can be organised into a model

of type theory also appears in [13]. There, however, only semi-cartesian closure is

shown, thus it follows that \deliverables" form a model of the simply typed lambda

calculus. In loc.cit. also \relativised speci�cations" and \second order deliverables"

are considered. A relativised speci�cation relative to a speci�cation ` � and x:� `

P [x] : Prop consists of a type � and a relation x:�; y: � ` R[x; y] : Prop. If

(�;R) and (�

0

; R

0

) are two relativised speci�cations over (�; P) then a second-

Chapter 4. Proof irrelevance and subset types 157

order deliverable from (�;R) to (�

0

; R

0

) consists of a function x:� ` f [x] : � ! �

0

and a proof x:�; p: Prf(P [x]) ` F : Prf(8y:�:R[x; y]) R

0

[x; f [x] y]). In our model

a relativised speci�cation is a special case of a family in Fam(> � (�; P)) (where

in general � may depend upon �). A second order deliverable then appears as

a morphism from p((�;R)) to p((�

0

; R

0

)) in the slice category over > � (�; P). It

is easily seen that the relativised speci�cations form a full submodel of D. The

setoid model S

0

presented in the next chapter has indeed the property that the

type component of families does not depend on the context.

Many of the ideas underlying the model D are also present in the thesis work

of C. Paulin-Mohring [88]. She describes a type theory with two impredicative

universes Spec and Prop which is then interpreted in an amalgamation of pure

Calculus of Constructions and system F

!

. It is explained in great detail how

the F

!

component of the interpretation (it corresponds to our �

fun

- and �

set

-

components) can be seen as a program extracted from a constructive proof. An

analogy is drawn to the notion of realisability in proof theory and various exten-

sions are proposed such as an interpretation of well-founded recursion using a �x-

point combinator on the F

!

level. Also a subset type is introduced, albeit without

the non-standard rule from Sect. 4.6.2. The main di�erences to our construction

are that categorical models are not used and that the \�

set

-, �

fun

-components"

in Paulin-Mohring's model do not contain type dependency, very much like our

model S

0

to be introduced in the next chapter.

Summing up, we can say that the constructions leading to the deliverables

model were all known, but that some new facets have been presented such as the

organisation using categorical models and the non-standard rule for subset types.

As was said before, our main purpose in presenting the deliverables model is to

exemplify the use of categorical models for syntactic translations.

Chapter 5

Extensionality and quotient types

In this chapter we study models for quotient types and the related concepts of

functional and propositional extensionality. The general method is to construct

models in which types are interpreted as types together with partial equivalence

relations. Propositional equality at some type is then the associated partial equi-

valence relation.

As we discuss below in Sect. 5.4 this idea has been considered by several authors

with various aims. What is new here is that the concept of types with partial

equivalence relations (\setoids") is studied in the context of intensional dependent

type theory, which makes it necessary to de�ne setoids depending on setoids. In the

sequel we shall essentially give three di�erent answers to this question. The �rst

and simplest one (Sect. 5.1) only provides a restricted notion of type dependency

because in the model dependency arises only at the level of the relations, not at the

level of the types themselves. The second one (Sect. 5.2)|the groupoid model|

supports all the type and term-formers we know of and should be considered the

\correct" answer, but unfortunately it is not de�nable in intensional type theory.

However, it answers the question of independence of the uniqueness of identity

and provides valuable insights into the nature of propositional equality. The third

one (Sect. 5.3), �nally, is an attempt to overcome the syntactic problems with the

groupoid model and the limitations of the �rst setoid model. It provides slightly

more type dependency, but|as we shall see|has other disadvantages, so that the

de�nitive answer to the question of dependent setoids remains open.

158

Chapter 5. Extensionality and quotient types 159

We encounter two operations the soundness of which relies on the di�erence

between extensional propositional equality and intensional de�nitional equality: a

choice operator for quotient types (Sect. 5.1.7) and an axiom identifying proposi-

tional equality on a universe with the type of isomorphisms (Sect. 5.2.4).

5.1 The setoid model

We consider an extension of the Calculus of Constructions by dependent sums,

natural numbers, and possibly some datatypes. No further universes are required.

Our aim is to construct a model in which quotient types w.r.t. Leibniz equality

can be interpreted and in which the extensional concepts of proof irrelevance,

functional extensionality, and propositional extensionality are available. In view

of the analysis in Sect. 1.2 we then also have proof-irrelevance which we shall,

however, derive directly. The model we construct has the remarkable property

that Leibniz equality behaves like the identity type in the sense that a substitution

operator for dependent types in the sense of Sect. 3.2.3.1 may be de�ned for it. If

one looks closer at the model this is not so astonishing because the only source for

type dependency in this model is the dependency of proof types on propositions,

w.r.t. which Leibniz equality is substitutive by de�nition.

In the model types will be interpreted as types together with Prop-valued

partial equivalence relations. Type dependency is modelled only at the level of

the relations, i.e. a family indexed over some type � is a type � (not depending

on �) and for each x:� a partial equivalence relation on � compatible with the

relation on �. By analogy to Bishop's de�nition of sets as assemblies together with

an equality relation [9] we call the pairs of types and partial equivalence relations

setoids.

We use the name target type theory to refer to the version of the Calculus

of Constructions the model is built upon, and source type theory to refer to the

internal language of the model which contains all the type and term formers from

the target type theory together with the desired extensional concepts and the

Chapter 5. Extensionality and quotient types 160

\strong" Leibniz equality. De�nitional equality in the source type theory is de�ned

semantically via interpretation in the model according to Sect. 4.7. The model

we construct is called the setoid model S

0

. Its components are called contexts,

families, morphisms, etc. of setoids. The source type theory itself will also be

called S

0

.

Large parts of this section have been published as [45]. The extension to

universes (Sect. 5.1.8) and the discussion of choice principles and Church's thesis

(Sect. 5.1.4.2 and 5.1.4.3) appear here for the �rst time.

5.1.1 Contexts of setoids

A context of setoids is a pair � = (�

set

;�

rel

) where �

set

is a (syntactic) context

(i.e. �

set

`) and �

rel

is a proposition in context : �

set

;

0

: �

set

, i.e. : �

set

;

0

: �

set

`

�

rel

[;

0

] : Prop, in such a way that

;

0

: �

set

; Prf(�

rel

[;

0

]) ` �

rel

[

0

;] true Sym

;

0

;

00

: �

set

; Prf(�

rel

[;

0

]) ; Prf(�

rel

[

0

;

00

]) ` �

rel

[;

00

] true Trans

Here we just write Prf(�

rel

[;

0

]) in a context instead of p : Prf(�

rel

[;

0

]) for some

variable p since this variable does not appear in the conclusion of the judgement.

We shall adopt this abbreviation in the sequel as well. The axioms Sym and

Trans thus express that �

rel

is a partial equivalence relation on �

set

. Two contexts

of setoids �, � are equal if their components are de�nitionally equal, i.e. if ` �

set

=

�

set

and ;

0

: �

set

` �

rel

[;

0

] = �

rel

[;

0

] : Prop. The implicit witnesses for Sym

and Trans are not compared. It is important that the relation is not assumed

reexive for otherwise we could not interpret propositions, see Sect. 5.1.4.

Examples. The empty context of setoids is given by > = (�; tt) where Sym and

Trans are validated by the canonical proof of tt. Another example is the context

Int given by Int

set

= p:N�N and

Int

rel

[p; p

0

: Int

set

] := p:1 + p

0

:2

L

= p:2 + p

0

:1

where in order to establish symmetry and transitivity we use some elementary

lemmas about addition on natural numbers.

Chapter 5. Extensionality and quotient types 161

5.1.1.1 Morphisms

Let �;� be contexts of setoids. A morphism from � to � is a (syntactic) context

morphism f from �

set

to �

set

with

;

0

: �

set

; Prf(�

rel

[;

0

]) ` �

rel

[f []; f [

0

]] true Resp

In this situation we write f : � ! � as usual. Equality of morphisms is de�nitional

equality in the target type theory. Clearly, the composition of two morphisms is

a morphism again and the identity is a morphism. Moreover, the unique context

morphism into > trivially satis�es Resp so that we have

Proposition 5.1.1 The contexts of setoids and their morphisms form a category

C with terminal object.

Notice that we do not identify \provably equal" morphisms, i.e. f and g with

: �

set

;Prf(�

rel

[;]) ` �

rel

[f []; g[]] true. Doing so would render the semantic

equality undecidable and therefore the source type theory would be undecidable.

The di�erence between actual semantic equality and provable equality is also im-

portant for the choice operator we consider in Sect. 5.1.7 which would be unsound

if the two were identi�ed.

5.1.1.2 Families of setoids

Let � be a context of setoids. A family of setoids indexed over � is a pair � =

(�

set

; �

rel

) where �

set

is a type in the empty context (� ` �

set

) and

: �

set

; s; s

0

:�

set

` �

rel

[; s; s

0

] : Prop

is a family of relations on �

set

indexed by �

set

such that

: �

set

; s; s

0

:�

set

; Sym

Prf(�

rel

[;]) ; Prf(�

rel

[; s; s

0

]) ` �

rel

[; s

0

; s] true

: �

set

; s; s

0

; s

00

:�

set

; Trans

Prf(�

rel

[;]) ; Prf(�

rel

[; s; s

0

]) ; Prf(�

rel

[; s

0

; s

00

]) ` �

rel

[; s; s

00

] true

;

0

: �

set

; s; s

0

:�

set

; Comp

Prf(�

rel

[;

0

]) ; Prf(�

rel

[; s; s

0

]) ` �

rel

[

0

; s; s

0

] true

Chapter 5. Extensionality and quotient types 162

Two families are equal if their two components �

set

and �

rel

are de�nitionally

equal.

Thus, a family of setoids consists of a �

set

-indexed family of partial equival-

ence relations on one and the same type �

set

with the property expressed by Comp

(\compatibility") that the relations over related elements in �

set

are equivalent (by

virtue of symmetry of �

rel

). It is important that symmetry and transitivity are

relativised to \existing" : �

set

, i.e. those with �

rel

[;], since otherwise most of

the type formers including quotient types would not go through. Also intuitively

this restriction makes sense since �

set

and �

rel

are meant to be unde�ned or uncon-

strained outside the \existing" part of �. An example of a family is again given by

Int

set

= N�N and Int

rel

[; p; p

0

] = p:1 + p

0

:

L

= p:2 + p

0

:1. Here the family �

rel

does

not actually depend on �

set

. Examples where there is such a dependency will arise

later in Section 5.1.4 when we interpret an impredicative universe of propositions.

The set of families of setoids over � is denoted by Fam(�).

5.1.1.3 Substitution and comprehension

Let B;� be contexts of setoids, f : B ! � and � 2 Fam(�). A family �ffg 2

Fam(B) is de�ned by �ffg

set

= �

set

and

�ffg

rel

[�:B

set

; s; s

0

:�ffg

set

] = �

rel

[f [�]; s; s

0

]

The comprehension of � is de�ned by (� � �)

set

= �

set

; s:�

set

and

(� � �)

rel

[(; s) ; (

0

; s

0

)] = �

rel

[;

0

] ^ �

rel

[; s; s

0

]

The morphism p(�) : ��� ! � is de�ned by p(�)[; s] = ; the relation is preserved

by virtue of ^-elimination. Finally, the morphism q(f; �) : B � �ffg ! � � � is

given by q(f; �)[�; s] = (f [�]; s). This preserves the relation since f does. It is

also readily checked that the relevant square formed out of f , p, and q commutes

(and in fact is a pullback).

Chapter 5. Extensionality and quotient types 163

5.1.1.4 Sections

Let � be a context of setoids and � 2 Fam(�). A section of � is a term �

set

`

M :�

set

which respects the relations, that is

;

0

: �

set

; Prf(�

rel

[;

0

]) ` �

rel

[;M [];M [

0

]] true Resp

Equality of these sections is again de�nitional equality in the target type theory. If

M is a section then its associated context morphism is de�ned byM [] = (;M [])

which is a morphism by virtue of Resp. Conversely, if (f;M) : B ! � � � is a

morphism then Hd((f;M)) := M is a section of �ffg. To see Resp let �; �

0

: B

set

and p: B

rel

[�; �

0

]. We must show that in this context �

rel

[f [�];M [�];M [�

0

]] true.

But this is merely the last component of condition Resp for (f;M) : B ! � � �

by de�nition of (� � �

rel

). Summing up, we have the following:

Proposition 5.1.2 Contexts, families, and sections of setoids form a syntactic

category with attributes|the setoid model S

0

.

The dependent type theory with extensional concepts modelled by this syntactic

category with attributes in the sense of Sect. 4.7 will also be called S

0

.

5.1.2 Implementing the setoid model S

0

in Lego

If we want to use Lego to check the equations of S

0

we must deal with of the

extensional nature of the judgements of the form � ` P true. We have used an

approach whereby semantic objects are rendered as pairs consisting of the actual

part which �gures in the model and a proof that the required judgements hold.

For example, we de�ne

[Con = <<set:Type(0), rel:set->set->Prop>>]

[CON[G:Con] =

(fg,g'|G.setg(G.rel g g')->(G.rel g' g)) /\

(fg,g',g''|G.setg(G.rel g g')->(G.rel g' g'')->(G.rel g g''))]

Chapter 5. Extensionality and quotient types 164

Now a context is an element G of Con and a proof of (CON G), but these proofs

are ignored when two contexts are compared. For each semantic operation we

have a part which works on the �rst components and a part which establishes

preservation of these properties. For instance, composition has two components:

Comp:fA,B,G|Cong(Mor B G)->(Mor A B)->(Mor A G)

COMP:fA,B,G|Congfg|Mor B Ggff|Mor A Bg

(CON A)->(CON B)->(CON G)->

(MOR g)->(MOR f)->(MOR (Comp g f))

Thus in a sense we work in the deliverables model. We cannot use the internal lan-

guage of the deliverables model directly, since it only o�ers propositional equality

of proofs, but we must compare the semantic objects using de�nitional equality.

5.1.3 Type formers in the setoid model

Let � 2 Fam(�) and � 2 Fam(� ��). The dependent product �(�; �) is de�ned by

�(�; �)

set

= �

set

! �

set

�(�; �)

rel

[: �

set

; u; v:�(�; �)

set

] =

8s; s

0

:�

set

:�

rel

[; s; s

0

]) �

rel

[(; s) ; u s ; v s

0

]

If M 2 Sect(�) then we de�ne

�

�;�

(M)[: �

set

] = �s: �

set

:M [; s]

and conversely, if M 2 Sect(�(�; �)) and N 2 Sect(�) we de�ne

App

� ; �

(M;N)[: �

set

] = (M [] N [])

Now by straightforward calculation we obtain:

Proposition 5.1.3 These data endow the model S

0

with dependent products in

the sense of Def. 2.4.14.

In very much the same way we can interpret �-types, natural numbers, and various

inductive types present in the target type theory. Since the interpretation of these

Chapter 5. Extensionality and quotient types 165

is almost forced we leave it out here. In particular we have (N

�

)

set

= N and

(N

�

)

rel

[; x; x

0

] = (x

L

= x

0

). This allows us to establish in exactly the same way as

in the proof of Prop. 4.5.3 that in the empty context the natural numbers contain

canonical elements only, in spite of the extensional concepts (N-canonicity).

5.1.4 Propositions

Our next goal is to identify a type of propositions (and proofs) which allows us to

\externalise" the relations associated to each type and to interpret quotient types

and extensionality. We use the semantic framework of Def. 2.4.36 (loose model of

Constructions). Again, we denote by \Prop" both the family in Fam(>), and its

comprehension > �Prop.

To simplify the exposition we assume as in Chapter 4 that the target type

theory supports an extensional unit type, i.e. there is a type � ` 1

E

in every

context, and a term � ` ? : 1

E

together with the equation � ` M = ? : 1

E

for

every � ` M : 1

E

. We shall use the extensional unit type as the underlying type

of propositional types. It is possible to get rid of the extensional unit type in

the same way as in Section 4.5.4.1, by de�ning families of setoids as being either

of the form de�ned in Section 5.1.1.2, or to consist simply of a proposition in

context �

set

compatible with �

rel

(in which case it is silently understood that the

�

set

-component is the extensional unit type). Comprehension, substitution, and

the type formers have then to be de�ned by case distinction.

Now we are ready to de�ne the required ingredients to interpret propositions.

The underlying type of Prop 2 Fam(>) in S

0

is just the syntactic type of pro-

positions.

Prop

set

= Prop

In order to identify equivalent propositions we de�ne the relation as bi-implication.

Prop

rel

[p; q:Prop] = (p , q)

This is clearly symmetric and transitive and so a family over > has been de�ned.

Note that Comp degenerates to a tautology in the case of families over >.

Chapter 5. Extensionality and quotient types 166

The family Prf 2 Fam(> �Prop) is given by

Prf

set

[p: Prop] = 1

E

Prf

rel

[p: Prop ; x; x

0

:1

E

] = p

where 1

E

is the extensional unit type. The relation on Prf is trivially symmet-

ric and transitive; for Comp we use the relation on Prop. More precisely, if

Prop

rel

[p; q] and Prf

rel

[p; x; y], i.e. p, then also q, thus Prf

rel

[q; x; y].

Next we de�ne universal quanti�cation. If � 2 Fam(�) and S : � � � ! Prop

then we put

8

�

(S)[: �

set

] = 8x:�

set

:�

rel

[; x; x]) S[; x]

For property Resp assume ;

0

: �

set

and �

rel

[;

0

]. We must show that 8

�

(S)[] ,

8

�

(S)[

0

]. So assume 8

�

(S)[] and x:�

set

with �

rel

[

0

; x; x]. Using Sym and Comp

we get �

rel

[; x; x], hence S[; x] by assumption. Property Resp for S using

�

rel

[;

0

] and �

rel

[; x; x] gives S[; x] , S[

0

; x] and thus S[

0

; x] as required.

The other direction is symmetric. We see that the relativisation to \existing"

x:�

set

is necessary to prove Resp.

For the abstraction let M 2 Sect(PrffSg). We de�ne

�

�;S

(M)[: �

set

] = ?

To see that this is indeed a section of Prff8

�

(S)g assume ;

0

: �

set

and �

rel

[;

0

].

We must show that

Prff8

�

(S)g

rel

[; �

�;S

(M)[] ; �

�;S

(M)[

0

]]

which equals 8x:�

set

:�

rel

[; x; x]) S[; x] by de�nition of Prf

rel

and 8. Now

assuming x:�

set

and �

rel

[; x; x] we have that (� ��)

rel

[(; x) ; (

0

; x)], hence S[; x]

by Resp for M .

Finally, the evaluation morphism is given by

ev

�;S

[: �

set

; x:�

set

; u:1

E

] = (; x; ?)

We must show that this de�nes a morphism from � � � �Prff8

�

(S) �p(�)g to � � � �

PrffSg. Assume ;

0

: �

set

, x; x

0

:�

set

with �

rel

[;

0

] and �

rel

[; x; x

0

]; furthermore

Chapter 5. Extensionality and quotient types 167

assume 8x:�

set

:�

rel

[; x; x]) S[; x] (meaning that the two variables of unit type

corresponding to Prff8

�

(S) �p(�)g are \related" according to the de�nition of

Prf

rel

). We must show that S[; x]. But this follows since by Sym and Trans

for � we have �

rel

[;] and thus �

rel

[; x; x] by Sym and Trans for �.

The equations relating evaluation and abstraction follow straightforwardly

from the properties of the extensional unit type. Also the stability under sub-

stitution of all components follows readily by expanding the de�nitions.

Proposition 5.1.4 The model S

0

is a loose model of the Calculus of Construc-

tions.

5.1.4.1 Proof irrelevance and extensionality

Next we explore which additional propositions are provable in S

0

. First, we have

a non-provability result:

Proposition 5.1.5 (Consistency) The family

ff := Prff8

Prop

(id

Prop

)g 2 Fam(>)

has no sections.

Proof. We have ff

set

= 1

E

and ff

rel

[x; y:1

E

] = 8p:Prop:Prop

rel

[p; p]) p. A

section of ff consists of an element of 1

E

(necessarily ?) such that 8p:Prop:(p ,

p)) p (expanding Prop

rel

). But this is not possible by consistency of the syntax.

2

Next we look at Leibniz equality in the model. If � 2 Fam(�) and M;N 2 Sect(�)

then let L Eq(M;N) : � ! Prop be the denotation of Leibniz equality as given

in Def. 4.5.6. By unfolding its de�nition we �nd that in S

0

L Eq(M;N)[: �

set

] =

8P :�

set

! Prop:

(8x; x

0

:�:�

rel

[; x; x

0

]) ((P x) , (P x

0

))))

8y:1

E

:(P M [])) (P N [])

Chapter 5. Extensionality and quotient types 168

So (modulo the trivial quanti�cation over 1

E

) M and N are Leibniz equal in the

model if they are indistinguishable by observations which respect the relation on

�.

Lemma 5.1.6 Let � 2 Fam(�) andM;N 2 Sect(�). The family PrffL Eq(M;N)g

over � has a section i�

: �

set

; Prf(�

rel

[;]) ` �

rel

[;M []; N []] true

Proof. Assume a section of PrffL Eq(M;N)g. By de�nition this means that if

�

rel

[;

0

] for some ;

0

: �

set

then M [] and N [] (not N [

0

]!) are indistinguishable

by observations respecting �

rel

. Now

�x:�

set

:�

rel

[;M []; x]

is such an observation as can be seen using Sym and Trans for � and �

rel

[;] by

virtue of �

rel

[;

0

] and Sym, Trans for �. Therefore, we can deduce �

rel

[;M [];

N []] provided we can show �

rel

[;M [];M []], but this follows from Resp for

M . Conversely, if �[;M []; N []] and P : � ! Prop respects �

rel

then obviously

(P M [])) (P N []) by de�nition of \respects". 2

Thus Leibniz equality \externalises" the relation associated to each family.

Proposition 5.1.7 The following rules providing proof irrelevance as well as func-

tional and propositional extensionality can be interpreted in S

0

.

� ` A : Prop � `M;N : Prf(A)

� `M = N : Prf(A)

Pr-Ir

� ` P : Prop � ` Q : Prop � ` H : Prf(P , Q)

� ` Bi Imp(P;Q;H) : Prf(P

L

=Q)

Bi-Imp

� ` U; V : �x:�:�

�; x:� ` H : Prf(U x

L

= V x)

� ` Ext(H) : Prf(U

L

= V)

Ext

Chapter 5. Extensionality and quotient types 169

Proof. We identify syntactic objects with their denotations in S

0

. Rule Pr-Ir

is immediate because both M and N equal ?. For rule Bi-Imp assume P;Q 2

Sect(Propf!

�

g). The assumption H gives rise to a proof of P [] , Q[] for every

 : �

set

with �

rel

[;]. But by Lemma 5.1.6 this implies that there exists a section

of PrffL Eq(P;Q)g. The proof for Ext is similar. 2

Now we present a somewhat unexpected feature of Leibniz equality, namely that

it behaves like Martin-L�of's identity type in the sense that a Leibniz principle for

dependent types can be interpreted from which the de�nability of Martin-L�of's

elimination rule [85] follows using Pr-Ir and the encoding of J in terms of Subst

and IdUni given in Sect. 3.2.3.1.

Proposition 5.1.8 For each � 2 Fam(�) and � 2 Fam(���) andM;N 2 Sect(�)

and P 2 L Eq(M;N) and U 2 Sect(�fMg) there exists a well-determined section

Subst

�;�

(P;U) 2 Sect(�fNg) in such a way that Subst

�;�

(Re(M); U) = U where

Re(M) is the canonical section of PrffL Eq(M;M)g corresponding to reexivity.

Moreover, this operator Subst is stable under substitution in all its arguments.

Proof. We de�ne Subst

�;�

(P;U) simply as U . That this is a section of �fNg

follows from Lemma 5.1.6 applied to P and rule Comp for the family � . The other

properties are trivially satis�ed. 2

Obviously, this means that we can interpret rules Leibniz and Leibniz-Comp

from Sect. 3.2.3.1 with Id

�

(M;N) replaced by Prf(M

L

=N). As long as we do not

use induction over de�nable families the semantic formulation of closure properties

as in Prop. 5.1.8 above and the more syntactic one in Prop. 5.1.7 are equivalent

and it is a mainly a matter of presentation which one is being used.

Prop. 5.1.8 is important because it states that S

0

has the same strength as TT

I

and thus is conservative over extensional type theory (TT

E

) by Thm. 3.2.5.

Chapter 5. Extensionality and quotient types 170

5.1.4.2 Axiom of choice

We may start with a target type theory in which the \internal axiom of choice"

[5], i.e. the following schema of propositions

� ` � � ` �

� ` (8x:�:9y:�:R[x; y]) ! (9f :�! �:8x:�:R[x; f x]) true

IAC

holds.

1

Then in the source type theory this axiom is nevertheless not in general

valid because in its translation the witness f is required to respect the equivalence

relations present on � and � which cannot be guaranteed for the witness produced

by IAC in the target type theory. In fact one can show by mimicking Diaconescu's

argument (see [59, II.7]) that IAC together with Ext and Bi-Imp implies the

principle of the excluded middle, 8p:Prop:p _ (p) ff); if this holds in the source

type theory then it must hold in the target type theory. This in turn is not

necessarily the case even if IAC is present in the target type theory. The fact that

the axiom of choice may fail because a choice function fails to preserve extensional

equality is well-known and is e.g. discussed in [106,36]. See also the example with

real numbers in Sect. 5.1.7.1 below.

We conjecture, however, that in the particular case where the type � in IAC

is N (\countable choice") or any other type with Leibniz equality as the relation

we can actually interpret IAC in the source type theory provided we have it for

the target type theory. The reason is that this relation is always preserved. See

also Remark 5.1.11 below. The same goes for the principle of dependent choice,

see e.g. [32, Sect. 4.4.3]:

8x:�:9y:�:R[x; y] ! 8x:�:9f :N! �:(f 0

L

= x) ^ (8n:N:R[f n; f(Suc(n))])

where again the choice function has domain N. The internal axiom of choice must

not be confused with the following \proof-relevant" version of the axiom of choice,

1

IAC is not valid in the Calculus of Constructions, but it does hold in its set-theoretic

interpretation of it.

Chapter 5. Extensionality and quotient types 171

which is obviously inhabited:

�x:�:�y: �:Prf(P [x; y]) ! �f :�! �:�x:�:Prf(P [x; y])

The di�erence is that elements of a �-type are distinct if they have di�erent

witnesses, whereas all proofs of an existential statement are identi�ed.

5.1.4.3 Church's thesis

Another principle which gets lost when passing from the target type theory to the

source type theory is Church's thesis in the following formulation:

CT = 9F : (N! N) ! N:8f :N!N:computes[F f; f]

where

computes[e:N; f :N! N] = 8n:N:9z:N:(f n

L

= U[z]) ^ T[e; n; z]

and T is Kleene's T-predicate and U is the output extraction function. Informally,

computes[e; f] expresses that e is (code for a) program which computes f , and CT

states that there exists a functional which to every function f :N! N associates

a program for it.

If CT holds in the target type theory

2

then it need not hold in the source type

theory, because there is no reason why the witness F should preserve pointwise

equality of functions. Even worse, in the source type theory one can actually prove

:CT by mimicking the proof in [106] that CT together with the axiom of choice

and functional extensionality is inconsistent in HA

!

. Intuitively, the reason is

that in the presence of functional extensionality F must yield equal results when

2

We do not know whether there exists a model of the Calculus of Constructions in

which CT is valid, but this seems rather likely since CT is consistent in higher-order

intuitionistic arithmetic (HA

!

) using a realisability model, which interprets types as

subsets of ! rather than partial equivalence relations.[32,104]

Chapter 5. Extensionality and quotient types 172

applied to extensionally equal functions, so one can check whether a function is

e.g. constantly zero by examining whether F applied to it equals F (�x:N:0).

3

Let us point out that the following weaker formulation of CT

CT

0

= 8f :N! N:9e:N:computes[e; f]

does hold in the source type theory if it holds in the target type theory because

it gets translated into basically the same formula. In the presence of IAC this

weaker version implies CT, so that S

0

together with CT

0

provides a type theory

in which the internal axiom of choice is inconsistent (provided CT

0

is consistent in

the target type theory.).

We also believe that CT

0

can be consistently added to TT

I

or TT

E

if we trans-

late the existential quanti�cation using the squash type former to be introduced

in Sect. 5.3.5, rather than into a �-type.

5.1.5 Quotient types

We now turn to the interpretation of quotient types in the model. Their syntax is

given by the following rules:

� ` � � ; s; s

0

:� ` R[s; s

0

] : Prop

� ` �=R

Q-Form

� `M :�

� ` [M]

R

:�=R

Q-Intro

� ` � � ; s:� `M [s] : � � ` N : �=R

� ; s; s

0

:� ; p: Prf(R[s; s

0

]) ` H : Prf(M [s]

L

=M [s

0

])

� ` plug

R

N inM usingH : �

Q-Elim

� ` plug

R

[N]

R

inM usingH = M [N] : �

Q-Comp

3

Per Martin-L�of has told the author that this phenomenon was one of the reasons

for him to reject equality reection (Id-DefEq), which gives functional extensionality

and thus makes (a TT

E

-version of) CT inconsistent.

Chapter 5. Extensionality and quotient types 173

� ` M;N : � � ` H : Prf(R[M;N])

� ` Qax

R

(H) : Prf([M]

R

L

= [N]

R

)

Q-Ax

� ; x:�=R ` P [x] : Prop

� ; s:� ` H : Prf(P [[s]

R

])

� ` M : �=R

� ` Qind

R

(H;M) : Prf(P [M])

Q-Ind

This syntax is a formalisation of usual mathematical practice. Rule Q-Form al-

lows the formation of a type �=R from a type � and a relation R. We do not

require R to be an equivalence relation. Using Q-Intro one constructs elements

(\classes") of �=R from \representatives". The rule Q-Elim allows one to con-

struct functions on the quotient type by de�nition on representatives. The axiom

Q-Ax states that classes of related elements are equal; the axiom Q-Ind states

that �=R consists of \classes" only.

For example, we may de�ne a type of integers as Int := N �N=R

Int

where

R

Int

[u; v:N�N] = (u:1 + v:2

L

= u:2 + v:1). The elimination rule now allows us to

de�ne functions like addition on the integers and the induction principle together

with the equations permits us to derive properties of these functions from their

implementations. In examples we assume that various such functions such as +,

j � j, and � (negation) have been de�ned.

5.1.5.1 Comparison to quotient types in TT

I

Notice that Q-Ind resembles a special case of the dependent elimination rule Q-

I-Elim from Section 3.2.6.1; the additional proviso in Q-I-Elim stating that H

preserves R is trivially satis�ed in this special situation because of proof irrelev-

ance.

Using Prop. 5.1.8 and the fact that the quotienting relation never appears in

the conclusion of a rule we can simulate the rules for quotients given in Sect. 3.2.6.1

in the following way. If s; s

0

:� ` �[s; s

0

] we put R[s; s

0

] := 9p: �[s; s

0

]:tt and �=� :=

�=R. We also put [�]

�

= [�]

R

. Obviously we have R[s; s

0

] true if �[s; s

0

] true

Chapter 5. Extensionality and quotient types 174

and conversely, if R[s; s

0

] true and p: �[s; s

0

] ` P [s; s

0

] true for some s; s

0

:� `

P [s; s

0

] : Prop then P [s; s

0

] true by 9-elimination. Therefore, the rules Q-I-Form,

Q-I-Intro, Q-I-Ax are validated. For Q-I-Elim assume x:�=R ` � [x] and

x:� `M [x] : � [[x]

R

] such that

x; x

0

:� ; p: �[x; x

0

] ` H : Prf(Subst

�=�;�

(Qax

�

(p);M [x])

L

=M [x

0

])

We put �

0

= �x:�=R:� [x] and

M

0

[s:�] = pair([s]

R

;M [s]) : �

0

Now if R[s; s

0

] then we can �nd H : M

0

[s]

L

= M

0

[s

0

] using R

�

, 9-elimination, and

equality reasoning. Therefore the premises to rule Q-Elim are satis�ed. Let N :

�=R and put U = plug

R

N inM

0

usingH : �

0

. The second projection U:2 has type

� [U:1] rather than � [N] as we would need it in order to simulate Q-I-Elim. But

using Q-Ind (over N) we can construct P : Prf((plug

R

N inM

0

usingH):1

L

= N),

and thus have Subst

�=R;�

(P;U:2) : � [N] as required. The computation rule Q-

I-Comp follows from Q-Comp and the semantic interpretation of Subst as the

identity.

5.1.6 Interpretation of quotient types in S

0

Let � 2 Fam(�) and R : � � � � �

+

! Prop be a \relation" over �. Viewed

internally R is a term of type : �

set

; x; x

0

:�

set

` Prop such that

: �

set

; x; y:�

set

;

0

: �

set

; x

0

; y

0

:�

set

;

Prf(�

rel

[;

0

] ^ �

rel

[; x; x

0

] ^ �

rel

[; y; y

0

]) `

R[x; y] , R[x

0

; y

0

] true

We say that R \respects" �

rel

. Our aim is to de�ne a new family �=R on which the

relation is given by R. The underlying type remains unchanged by quotienting.

(�=R)

set

[] = �

set

[]

Now since R is not guaranteed to be symmetric and transitive, we have to take

the symmetric and transitive closure of R, moreover we must ensure compatibility

Chapter 5. Extensionality and quotient types 175

with �

rel

| the relation already present on �. It turns out that the right choice for

(�=R)

rel

is the following higher-order encoding of symmetric, transitive closure.

(�=R)

rel

[: �

set

; s; s

0

:�

set

] =

8R

0

:�

set

! �

set

! Prop:

(8x; x

0

:�

set

:(R

0

x x

0

)) (R

0

x

0

x)) (�)

) (8x; x

0

; x

00

:�

set

:(R

0

x x

0

)) (R

0

x

0

x

00

)) (R

0

x x

00

)) (�)

) (8x; x

0

:�

set

:�

rel

[; x; x

0

]) (R

0

x x

0

)) (�)

) (8x; x

0

:�

set

:R[; x; x

0

]) �

rel

[; x; x]) �

rel

[; x

0

; x

0

]) (R

0

x x

0

)) (�)

) (R

0

s s

0

)

In other words, (�=R)

rel

[;�;�] is the least partial equivalence relation on �

set

which contains �

rel

[;�;�] and R[;�;�] restricted to the domain of �

rel

[;�;�].

We shall call such a relation suitable, so (�=R)

rel

is the least suitable relation.

5.1.6.1 Equivalence classes

Assume M 2 Sect(�). We want to construct a section [M]

R

of �=R. We put

[M]

R

[] = M []

so [M]

R

behaves just like M . We must prove Resp for [M]

R

. Let ;

0

: �

set

and

�

rel

[;

0

]. Moreover, let R

0

:�

set

! �

set

! Prop be a suitable relation. We must

show that R

0

[M [];M [

0

]]. But since M is a section we have �

rel

[;M [];M [

0

]]

so we are done since suitable relations contain �

rel

[;�;�].

For Q-Ax assume M;N 2 Sect(�) and H 2 Sect(PrffR �N

+

�Mg), i.e.

;

0

: �

set

; Prf(�

rel

[;

0

]) ` R[;M []; N []] true

We want to show that Sect(PrffL Eq([M]

R

; [N]

R

)g) is non-empty. By Lemma 5.1.6

and the de�nition of [�]

R

it su�ces to show that

: �

set

; Prf(�

rel

[;]) ` �=R

rel

[;M []; N []] true

In this context we can show �

rel

[;M [];M []] and �

rel

[;N []; N []] using Resp.

Thus for every suitable relation R

0

:�

set

! �

set

! Prop we have (R

0

M [] N [])

by (�) which gives the desired result.

Chapter 5. Extensionality and quotient types 176

5.1.6.2 Lifting

Now we want to de�ne functions on the quotient family �=R, from functions

on � which respect R. More precisely, suppose we are given � 2 Fam(�) and

M 2 Sect(�fp(�)g) and

H 2 Sect(PrffL Eq(

Mfp(�

+

) �p(PrffRg)g;

Mfq(p(�); �) �p(PrffRg)g

)g)

(The two sections inside L Eq are instances of M applied to one of the �-variables

in � � � � �

+

� PrffRg. Thus informally H states that M maps R-related elements

to Leibniz-equal elements.) Finally assume N 2 Sect(�=R). We want to construct

a section plug

R

N inM usingH of � from this. We de�ne

(plug

R

N inM usingH)[: �

set

] = M [; N []]

Let ;

0

: �

set

and �

rel

[;

0

]. Since N 2 Sect(�=R) we have (�=R)

rel

[;N []; N [

0

]].

Now consider the particular relation

R

0

= �x; x

0

:�

set

:

�

rel

[; x; x]^

�

rel

[; x

0

; x

0

]^

�

rel

[;M [; x];M [

0

; x

0

]]

Now the result follows provided we can show that R

0

is suitable. This requires a

somewhat lengthy calculation in which H is used to establish that R

0

extends R.

5.1.6.3 Induction

Finally, we interpret the induction principle Qind. Assume P : � � �=R ! Prop

and let an element of Sect(PrffP � q(p(�); �=R) � [v

�

]

R

+

g) be given. In other words

assume

;

0

: �

set

; Prf(�

rel

[;

0

]) ; s; s

0

:�

set

; Prf(�

rel

[; s; s

0

]) ` P [s] true

Chapter 5. Extensionality and quotient types 177

Now, if M 2 Sect(�=R) then we want to �nd a section of PrffP �Mg, i.e. we must

show

;

0

: �

set

; Prf(�

rel

[;

0

]) ` P [M []] true

In this context we �nd �=R

rel

[;M [];M []] using Sym and Trans and Resp.

Now putting s = s

0

= M [] the result follows if we can show (the stronger condi-

tion) �

rel

[;M [];M []]. But this follows by using the suitable relation

R

0

:= �x; x

0

:�

set

:�

rel

[; x; x]^ �

rel

[; x

0

; x

0

]

Proposition 5.1.9 The setoid model S

0

allows the interpretation of quotient types.

5.1.6.4 E�ectiveness of quotient types

Here we want to address the question as to whether the converse to Q-Ax is

also true, i.e. whether we can conclude R[M;N] from [M]

R

L

= [N]

R

. In general,

this cannot be the case because together with Q-Ax this implies that R is an

equivalence relation. Quotient types are called e�ective [54,82] if this condition

is already su�cient. It turns out that in S

0

all quotient types are e�ective and

that this is a purely syntactic consequence of the rules for quotient types and rule

Bi-Imp.

Proposition 5.1.10 Fix a type theory with quotient types and Bi-Imp. Let � ` �

and � ; x; y:� ` R[x; y] : Prop be an equivalence relation, i.e. in context � we have

8x:�:R[x; x] true (reexivity)

8x; y:�:R[x; y]) R[y; x] true (symmetry)

8x; y; z:�:R[x; y]) R[y; z]) R[x; z] true (transitivity)

Then for each � ` U; V :� with [U]

R

L

= [V]

R

we have R[U; V].

Proof. Consider the term M [y:�] = R[U; y] : Prop. We have

� ; y; y

0

:� ; R[y; y

0

] `M [y]

L

=M [y

0

] true

Chapter 5. Extensionality and quotient types 178

by symmetry and transitivity and Bi-Imp. Let H denote the proof of this. Now

put

M

0

[z:�=R] = plug

R

z inM usingH : Prop

By Q-Comp M

0

[[U]

R

] equals R[U;U] and M

0

[[V]

R

] equals R[U; V]. The former is

true by reexivity of R and both are Leibniz equal by assumption on U and V .

Therefore R[U; V] is true as well. 2

Remark 5.1.11 (Quotient types without impredicativity) Remark 4.6.1 on

the role of impredicativity for subset types applies mutatis mutandis also to S

0

.

We have used the impredicative Calculus of Constructions as a target type the-

ory (and as the basis of the source type theory) mainly for convenience because

it o�ers encodings of the logical connectives and equality so that their existence

does not have to be veri�ed in the model. Also e�ectiveness of quotients can then

be derived in the source type theory. However, if for certain reasons one wants to

stay within a predicative framework such as Martin-L�of type theory one can still

interpret a type theory with a sort rather than a type of propositions. One reason

why one might want to do this is that Martin-L�of type theory as a target type

theory satis�es the internal axiom of choice so that one could hope to interpret

the principles of countable choice and dependent choice in the source type theory

as indicated in Sect. 5.1.4.2 above. The details are left to future research.

5.1.7 A choice operator for quotient types

Our next goal consists of �nding a way of getting hold of a representative for a

given element of a quotient type. The idea is that since in the model an element

M of a quotient type is nothing but an element of the underlying type, albeit with

a weaker Resp requirement, it should under certain circumstances be possible to

view M as an element of this underlying type. In other words we seek to interpret

Chapter 5. Extensionality and quotient types 179

a rule of the form

� `M : �=R \certain proviso"

� ` choice(M) : �

Q-Choice

and the following two equality rules.

� ` choice([M]

R

) : � � `M : �

� ` choice([M]

R

) = M : �

Q-Choice-Comp

� `M : �=R � ` choice(M) : �

� ` [choice(M)]

R

= M : �=R

Q-Choice-Ax

There is no error in rule Q-Choice-Comp; we explain in Sect. 5.1.7.1 how it can

be consistent withQ-Ax. Semantically, we want to interpret the choice operator as

the identity, i.e. if M 2 Sect(�=R) then we want to put choice(M)[: �

set

] = M [].

Now from M 2 Sect(�=R) we can deduce that if �

rel

[;

0

] for some ;

0

: �

set

then �=R

rel

[;M []; M [

0

]]. But in order to conclude choice(M) = M 2 Sect(�)

we need to have (the stronger) �

rel

[;M [];M [

0

]]. One situation in which we

can deduce the latter from the former occurs when from �

rel

[;

0

] we can conclude

that M [] and M [

0

] are actually Leibniz equal, because then we can reason like in

Sect. 5.1.6.3 above. Now this situation in turn occurs for example when �

rel

[;

0

]

entails that and

0

are Leibniz equal themselves. This motivates the following

de�nition.

De�nition 5.1.12 The set of non-quotiented types is de�ned by the following

clauses.

{ N (and other inductive types) and �x

1

:�

1

: : :�x

n

:�

n

:Prf(M) for n � 0 are

non-quotiented.

{ If � and � are non-quotiented, so is �x:�:� .

A (syntactic) context � is non-quotiented if it is made up out of non-quotiented

types only.

Notice that if ` � = � and � is non-quotiented then so is �.

Chapter 5. Extensionality and quotient types 180

Proposition 5.1.13 Let � be a non-quotiented syntactic context and let (�

set

;�

rel

)

be its interpretation in the setoid model. We have

;

0

: �

set

; �

rel

[;

0

] ` :i

L

=

0

:i true

Proof. Easy induction on the de�nition of \non-quotiented". 2

Now we could semantically justify the application of choice in non-quotiented

contexts, i.e. the above \certain proviso" would be that � is non-quotiented. With

such a rule we would, however lose the syntactic weakening and substitution prop-

erties which are implicit in e.g. the typing rule for application. For example if

` M : �=R we can infer ` choice(M) : � because the empty context is non-

quotiented, but we would not have x:�=R ` choice(M) : � although x does not

occur in M . Therefore, we close the rule up under arbitrary substitution and

weakening and thus arrive at the following de�nitive rule for choice:

� ` M : �=R

There exists a non-quotiented context

� and a type � and a term N with

� ` N : � and a syntactic context

morphism � ` f) � such that M �

N [f] and �=R � � [f].

� ` choice(M) : �

Q-Choice

Recall that � means syntactic identity and not just de�nitional equality so that

the side condition is decidable since the possible substitutions f are bounded by

the size of M . The condition is e.g. satis�ed for z: Int ` �jzj : Int with � = n:N

and f [z: Int] = jzj, but it does not hold for z: Int ` z + z : Int

Proposition 5.1.14 The above rules Q-Choice, Q-Choice-Comp, Q-Choi-

ce-Ax can be soundly interpreted in the setoid model.

Proof. We interpret choice(M) like M . Suppose that � ` choice(M) : � by

Q-Choice then M � N [f] for some (syntactic) substitution f : �) �. We

Chapter 5. Extensionality and quotient types 181

identify these syntactic objects with their interpretations. If �

rel

[;

0

] then f []

and f [

0

] are actually Leibniz equal by Prop. 5.1.13 using the assumption that

� is non-quotiented. So M [] and M [

0

] are Leibniz equal and thus related in

�

rel

by the same argument as the one used in Sect. 5.1.6.3. Thus we can assert

M 2 Sect(�). Since both choice and [�]

R

are interpreted as the identity, the rules

Q-Choice-Comp and Q-Choice-Ax are validated. 2

5.1.7.1 Discussion

The choice operator is quite unusual and seems paradoxical at �rst so that a few ex-

amples explaining its use are in order. Let �1 := [(0; 1)]

R

Int

and �1

0

:= [(2; 3)]

R

Int

where 1; 2; 3 are abbreviations for the corresponding numerals of type N and R

Int

is as de�ned in Sect. 5.1.5. Now since 0+3

L

= 1+2 we have R

Int

[(0; 1) ; (2; 3)], and

thus �1

L

= �1

0

. On the other hand, choice(�1) = (0; 1) and choice(�1

0

) = (2; 3).

It seems as if we could conclude (0; 1)

L

= (2; 3) which would be a contradiction.

Now �1

L

=�1

0

means

8P : Int ! Prop:(P � 1)) (P � 1

0

)

In order to get a contradiction from this, we would have to instantiate with P =

�z: Int:choice(�1)

L

= choice(z). But this expression is not well-typed since z: Int `

choice(z) (the context z: Int contains a quotient type) is not. Thus, in some sense

the choice operator does not respect Leibniz equality. As with any term former it

does of course respect de�nitional equality, so in an extensional setting where the

two equalities are identi�ed choice would be unsound.

The main usage of the choice operator is that it permits to recover the underly-

ing implementation of a function between quotients internally. For example, if we

have de�ned some function F : Int ! Int in non-quotiented context � (so in partic-

ular F may not just be a variable) then we may form �; u:N�N ` F [u]

R

Int

: Int,

apply choice and abstract from u to obtain F

0

:= �u:N �N:choice(F [u]

R

Int

) :

(N � N) ! (N � N) Now using Q-Choice-Ax we obtain � ; u:N � N `

Chapter 5. Extensionality and quotient types 182

F [u]

R

Int

= [F

0

u]

R

Int

: Int and moreover|since R

Int

is an equivalence relation|

� ` 8u; v:N�N:R

Int

[u; v]) R

Int

[F

0

u; F

0

v] using the above and Prop. 5.1.10.

Yet another application of choice arises from the use of quotient types to model

\non-constructive" types like the real numbers. Assume that we have de�ned a

type of real numbers Real as a quotient of a suitable subset type RealRep of N!

N (thought of as of decimal or continued fraction expansions), the quotienting

relation being that the di�erence is a fundamental sequence de�ned in the usual

"-� style. Now since di�erent real numbers can be arbitrarily close together, there

can be no non-constant function from the quotient type Real to a ground type like

N and, more generally, all functions from Real to Real must be continuous. This

has been brought forward as a serious argument against the use of quotienting in

a constructive setting, since if one has de�ned a real number one cannot even put

one's hands on its �rst digit! Using the choice operator one can at least solve this

last problem. Assume that we have de�ned a real number R in the empty context,

say e or �. We may then form ` choice(R) : N! N and from this extract desired

intensional information like the �rst digit or other things. However, it is still not

possible to write a non-constant function from the reals to N. Notice that this

lack is not particular to the setoid model, but directly inherited from the target

type theory which does not provide functions from N ! N to N which respect

the \book"-equality for real numbers. Similarly, in the setoid model we have no

non-constant function from Prop to N because this is so in the target type theory.

The constructive real numbers furnish another illustrative example due to

Troelstra [104] for the failure of the axiom of choice because choice functions

need not preserve equality. Consider the function f [x] = x

3

� 3x. Although

f is surjective it has no continuous right inverse. In S

0

surjectivity, that is

8a:Real:9x:Real:f [x]

L

= a, follows using Qind from 8â: RealRep:9x:Real:f [x]

L

=

[â]

R

Real

where Real = RepReal=R

Real

. This in turn is readily established by case

distinction on â. But since this case distinction does not preserve equality of real

numbers we cannot lift this operation to a function on the real numbers themselves.

Chapter 5. Extensionality and quotient types 183

5.1.8 Type dependency and universes

As announced earlier, the model S

0

does not provide any type dependency other

than the one induced by propositions. In particular we have neither universes

nor \large eliminations" [2]. Formally, this can be seen as follows. Assume that

the target type theory contains an empty type 0 and an operator ?

�

such that

?

�

(M) : � if M : 0. Then in the setoid model S

0

we also have this empty

type. Now if we had a universe containing the natural numbers and the empty

type then we could de�ne a family of types n:N ` �[n] such that �[0] = 0 and

�[Suc(n)] = N. Now remember that the �

set

-component is left unchanged upon

substitution. So in view of the �rst equation (�[0] = 0) there would have to be a

function ?

�

: �

set

! � for every type � which contradicts the second equation if

� = 0.

A major application of such families of types is that they allow to derive Peano's

fourth axiom [85,97]. On the level of propositions we are still able to interpret this

axiom, that is we have 0

L

= Suc(0)) ff, provided this holds in the target type

theory. The di�erence is that Prf(ff) is weaker than the empty type because in

the presence of an element of Prf(ff) every proposition is true, but not every type

is inhabited.

Universes are also used for modularisation and structuring. E.g. using a uni-

verse it is possible to de�ne a type of monoids or groups and to identify the

construction of the free group over a monoid as a function. If we want to use

universes in this way then we are not interested in quotienting the universe itself

or types derived from it like U ! U . So it should be enough to allow quotienting

for small types, i.e. those of the form El(M) for some M : U . Moreover, there does

not seem to be a need to de�ne a function from a quotient type into a universe,

unless this function arises by weakening or substitution.

We have investigated an extension to the setoid model which admits a universe

restricted in the sense that quotient types and inductive types and elimination of

them is only allowed within the universe. This will concern us now.

Chapter 5. Extensionality and quotient types 184

In this model, types (in the empty context for now) are triples � = (�

type

; �

set

;

�

rel

) where �

type

is a type, �

set

is a family of types indexed by �

type

and �nally

�

rel

is a partial equivalence relation on each �

set

[s] for s:�

type

. It is not possible

to compare x:�

set

[s] and x

0

:�

set

[s

0

] unless s; s

0

:�

type

are de�nitionally equal. Now

the universe has �

type

component U , whereas types of the form El(M) have trivial

�

type

component 1. Quotienting will then only be possible for such \small" types.

Similarly, the families in elimination rules like the one for the natural numbers

or the one for quotient types will only range over small types. So in particular

we cannot de�ne the above family � over N, because this would require primitive

recursion with result type U . Let us now study the model in more detail.

Contexts are de�ned as triples � = (�

type

;�

set

;�

rel

) where �

type

is a syntactic

context. �

set

is a syntactic telescope over �

type

. The third component �

rel

is a

proposition

g: �

type

; ;

0

: �

set

[g] ` �

rel

[g; ;

0

] : Prop

such that �

rel

de�nes a partial equivalence relation, i.e. we have

g: �

type

; ;

0

: �

set

[g] ;

Prf(�

rel

[g; ;

0

]) ` �

rel

[g;

0

;] true Sym

g: �

type

; ;

0

;

00

: �

set

[g] ;

Prf(�

rel

[g; ;

0

]) ; Prf(�

rel

[g;

0

;

00

]) ` �

rel

[g; ;

00

] true Trans

As usual, equality between such contexts is given by de�nitional equality of all

three components. So a context can be seen as a context of deliverables equipped

with a partial equivalence relation on each �bre.

A morphism between two contexts �;� is a pair f = (f

type

; f

set

) such that

g: �

type

` f

type

[g] : �

type

g: �

type

; : �

set

[g] ` f

set

[g;] : �

set

[f

type

[g]]

and moreover

g: �

type

; ;

0

: �

set

[g] ;

Prf(�

rel

[g; ;

0

]) ` �

rel

[f

type

[g]; f

set

[g;]; f

set

[g;

0

]] true Resp

Chapter 5. Extensionality and quotient types 185

A family over context � is now given by a triple � = (�

type

; �

set

; �

rel

) where

g: �

type

` �

type

[g]

g: �

type

; s:�

type

[g] ` �

set

[g; s]

g: �

type

; s:�

type

[g] ; : �

set

[g] ; x; x

0

:�

set

[g; s] ` �

rel

[g; ; s; x; x

0

] : Prop

in such a way that �

rel

is symmetric and transitive and compatible with �

rel

, i.e.

g: �

type

; s:�

type

[g] ; : �

set

[g] ; x; x

0

:�

set

[g; s] ; Sym

Prf(�

rel

[g; ;]) ; Prf(�

rel

[g; ; s; x; x

0

]) ` �

rel

[g; ; s; x

0

; x] true

g: �

type

; s:�

type

[g] ; : �

set

[g] ; x; x

0

; x

00

:�

set

[g; s] ; Trans

Prf(�

rel

[g; ;]) ; Prf(�

rel

[g; ; s; x; x

0

]) ; Prf(�

rel

[g; ; s; x

0

; x

00

])

` �

rel

[g; ; s; x; x

00

] true

g: �

type

; s:�

type

[g] ; ;

0

: �

set

[g] ; x; x

0

:�

set

[g; s] ; Comp

Prf(�

rel

[g; ;

0

]) ; Prf(�

rel

[g; ; s; x; x

0

]) ` �

rel

[g;

0

; s; x; x

0

] true

We notice that since �

set

does not depend on �

set

the last axiom Comp can be

formulated in the same simple way as before for ordinary setoids. Indeed, in this

setup dependency and quotienting are entirely separated. Again, we have the

relativisation of symmetry and transitivity to \existing" elements of �

set

.

The remaining structure is forced by the construction, so we leave it to the

reader.

More interesting is the de�nition of the universe in the empty context. We

shall require the target type theory to support a universe (U;El). In particular,

this universe may be (Prop;Prf) in which case we obtain an impredicative universe

in the model di�erent from the semantic universe of propositions which exists too.

The universe is de�ned by

U

type

= U

U

set

[X:U] = El(X) ! El(X) ! Prop

U

rel

[X:U][R;R

0

: El(X) ! El(X) ! Prop] =

(8x; x

0

: El(X):(R x x

0

)) (R x

0

x)^

(8x; x

0

; x

00

: El(X):(R x x

0

)) (R x

0

x

00

)) (R x x

00

))^

(8x; x

0

: El(X):(R x x

0

) , (R

0

x x

0

))

Chapter 5. Extensionality and quotient types 186

This means that a morphism f from � to > � U assigns to g: �

type

an element

f

type

[g] : U and to : �

set

[g] a relation El(f

type

[g]) ! El(f

type

[g]) ! Prop in such a

way that if �

rel

[g; ;] then this relation is symmetric and transitive and moreover

if �

rel

[g; ;

0

] then the relations associated to and

0

are equivalent. In other

words such a morphism induces a family over �. This family is formally obtained

by substituting f into the generic family El 2 Fam(> � U) de�ned by

El

type

[X:U] = 1

El

set

[X:U; u:1] = El(X)

El

rel

[X:U ; u:1 ; R:X ! X ! Prop ; x; x

0

: El(X)] = R x x

0

It is easy to check that this indeed de�nes a family, because symmetry and trans-

itivity are relativised to those R:X ! X ! Prop for which U

rel

[X;R;R] holds.

The universe thus obtained is closed under all type formers the original universe

from the underlying type theory is closed under and in addition it is closed under

quotient types. We leave the details to future work.

5.2 The groupoid model

We have seen in the last section that the setoid model S

0

is of rather limited use

when one wants to interpret genuine type dependency other than the one arising

from proofs depending on propositions. For instance, we were unable to de�ne a

family of types over the natural numbers by primitive recursion. The reason was

that the set-part of a family did not depend on the set-part of its context, only

the relations were made dependent. In order to overcome these limitations an

obvious change is to make the �

set

-parts dependent, too. So a setoid depending

on a context of setoids � would consist of a type in context �

set

, i.e. �

set

` �

set

and an equivalence relation on each of the �[], i.e. �

set

; x; x

0

:�

set

` �

rel

together

with terms re; sym; trans having the appropriate types. Now in order to de�ne

context extension one needs a relation on the context �; x:�

set

. This means that

there must be a way of comparing elements in �

set

[] and �

set

[

0

] if and

0

are

related. A natural way of achieving this consists of assuming functions mediating

Chapter 5. Extensionality and quotient types 187

between the two, i.e. a term

;

0

: �

set

; p: �

rel

[;

0

] ; x:�

set

[] ` �

reindex

[p; x] : �

set

[

0

]

One would then expect that �

reindex

sends related elements to related elements and

so forth. It is because the proof p of �

rel

[;

0

] is used computationally in �

reindex

that all the relations have to be proper dependent types and not just families of

propositions. Another way, which we pursue in Section 5.3, consists of de�ning

the relations �

rel

between elements in di�erent �bres �

set

[] and �

set

[

0

]. The

component �

reindex

is, however, still needed.

Now it turns out that in order to obtain a model of type theory along these

lines one needs to impose certain equational constraints on these proofs of re-

latedness and also on the witnesses re; sym; trans which cannot be guaranteed in

a purely syntactic model. The construction can, however, be carried through in

an extensional set-theoretic framework and is of interest for the following three

reasons.

First, the model shows that from the identity elimination rule J alone it is not

possible to prove that any two elements of an identity type are propositionally

equal, that is it provides the proof promised in Sect. 3.1.2 that the additional

elimination rule IdUni introduced there is indeed necessary.

Second, the model gives a semantic view on the dichotomy between de�nitional

and propositional equality. De�nitional equality is the ambient set-theoretic equal-

ity in the model, whereas propositional equality gets interpreted as generalised

isomorphism. This establishes in particular the soundness of a rule which de�nes

propositional equality between elements of a universe as isomorphism.

Thirdly, we consider the model as the \correct" de�nition of dependent setoids

as opposed to the somewhat ad hoc formulation in Sect. 5.3 below. This latter

construction is motivated and clari�ed by the interpretation we shall give now.

Since in the model types are interpreted as groupoids, that is small categories

with isomorphisms only, we call the model the groupoid interpretation of type the-

ory. Much of the material presented here has been published in a joint paper with

Chapter 5. Extensionality and quotient types 188

Streicher [47]. A similar model has independently been studied by Lamarche [58]

without, however, noticing the implications on propositional equality. In [47]

the model was described in rather abstract terms using the notion of �bration

of groupoids. Here we give an elementary description avoiding categorical lan-

guage as much as possible. We use informal Martin-L�of type theory to denote

sets and families of sets as well as elements. In particular we write �x2X:S(x)

for the cartesian product of a family of sets S indexed over a set X, and we use

�x2X:S(x) for the disjoint union of all sets in an X-indexed family S. We denote

pairing by (x; y) and projections by x:1 and x:2. Also we use �x2A: : : : and M N

for set-theoretic functional abstraction and application, respectively.

In the following we de�ne groupoids and families of groupoids and show how

they give rise to a syntactic category with attributes which interprets the stand-

ard type formers including universes and the intensional identity type, but which

nevertheless violates uniqueness of identity. Functional extensionality will be avail-

able, though.

5.2.1 Groupoids

De�nition 5.2.1 A groupoid is a small category in which all morphisms are iso-

morphisms.

In elementary terms a groupoid X consists of a set X

set

and a \proof-relevant"

relation on it, i.e. for each x; y 2 X

set

a set X

rel

(x; y) which is provably an equi-

valence relation. This means that there are functions

re 2 �x2X

set

:X

rel

(x; x)

sym 2 �x; y2X

set

:X

rel

(x; y) ! X

rel

(y; x)

trans 2 �x; y; z2X

set

:X

rel

(y; z)�X

rel

(x; y) ! X

rel

(x; z)

Notice the order of arguments to trans which di�ers from the one used for trans-

itivity of Id or of setoids in Sect. 5.1. We have adopted the applicative order here

to be in line with usual practice in category theory.

Chapter 5. Extensionality and quotient types 189

Moreover, these functions must satisfy the following equations.

trans(p; trans(q; r)) = trans(trans(p; q); r)

trans(p; re) = p = trans(re; p)

trans(p; sym(p)) = re

trans(sym(p); p) = re

where we have omitted the X-arguments. If X is a groupoid we refer to its

components by X

set

, X

rel

, X

re

, X

sym

, X

trans

. If the groupoid we are referring to

is clear from the context we use the following abbreviations

� := X

re

(x)

pq := X

trans

(p; q)

p

�1

:= X

sym

(p)

We also sometimes leave out the �

set

and �

rel

subscripts.

Examples. For each set X we have the discrete groupoid r(X) de�ned by

r(X)

set

= X and r(X)

rel

(x; y) = f?g if x = y and ; otherwise.

If X is a set and G is a group we de�ne a groupoid G
X by (G
X)

set

= X

and (G
X)

rel

(x; y) = G if x = y and ; otherwise. Here re, sym, and trans are

de�ned in the obvious way using the group structure.

Every topological space X gives rise to a groupoid with underlying set being

the set of points jX j of X and with the set of morphisms between points x and

y being the set of paths from x to y quotiented by homotopy, i.e. two paths are

identi�ed if there exists a continuous mapping sending one to the other. For

example the groupoid thus associated to the surface of a ball is the discrete one

element groupoid r(jX j) and the groupoid associated to the surface of a torus is

the groupoid Z
 jX j.

Every type � ` � in intensional type theory TT (without extensional concepts)

gives rise to a groupoid G(�) in the following way. The underlying set G(�)

set

is

the set of terms � `M : � and the set of morphisms G(�)

rel

(M;N) between terms

� ` M;N : � is the set of proofs � ` P : Id

�

(M;N) quotiented by propositional

equality, i.e. � ` P : Id(M;N) and � ` Q : Id(M;N) are identi�ed if � ` Id(P;Q)

Chapter 5. Extensionality and quotient types 190

is inhabited. Identity, composition, and inverses are given by Re

�

, Trans

�

, and

Sym

�

which are readily seen to lift to the quotient using Resp . The proof of the

groupoid equations is a nice application of the elimination rule Id�Elim� J.

Remark 5.2.2 The de�nition of groupoids also makes perfect sense in intensional

type theory replacing \set" by \type" or \context". The problem is that not many

groupoids exist if we ask the de�ning equations to hold in terms of de�nitional

equality. Indeed we see below why this de�nition would not be closed under most

type formers, notably function space and �-type.

De�nition 5.2.3 Let X and Y be groupoids. A morphism of groupoids from X

to Y is a functor from X to Y when viewed as categories.

In elementary terms such a morphism f consists of a function f

fun

: X

set

! Y

set

and a \proof" that f

fun

respects the relations, i.e. a function

f

resp

: �x; y2X

set

:X

rel

(x; y) ! Y

rel

(f

fun

(x); f

fun

(y))

Moreover, this proof must respect re and trans, i.e.

f

resp

(�) = �

resp(pq) = resp(p)resp(q)

From this it follows that sym is also preserved. We omit the �

fun

and �

resp

subscripts if no confusion can arise.

Example. If � ` �; � are types in intensional type theory and �; x:� ` F [x] : �

is a \function" from � to � then F induces a morphism of groupoids G(F) from

G(�) to G(�) by G(F)

fun

(M) := F [M] and G(F)

resp

(P) = Resp

�;�

(F;P). Again,

the required equations are readily veri�ed using Id-Elim-J.

Proposition 5.2.4 Groupoids with morphisms of groupoids form a cartesian closed

category.

Chapter 5. Extensionality and quotient types 191

Proof. Composition and identities are their set-theoretic companions taken for

the element and resp-part separately. The terminal object 1 is the discrete one-

element groupoid denoted r(f?g); the cartesian product is the product category.

We give the explicit construction of the exponential X) Y of two groupoids X

and Y .

(X) Y)

set

= \the set of morphisms from X to Y "

(X) Y)

rel

(f; g) = \the set of natural transformations from f to g"

Thus an element of (X) Y)

rel

(f; g) is a function

� 2 �x2X

set

:Y

rel

(f(x); g(x))

such that for each p 2 X

rel

(x; y) the equation

�(x)g(p) = f(p)�(y)

holds. The groupoid structure is given by

�(x) = �

pq(x) = p(x)q(x)

p

�1

(x) = (p(x))

�1

If f is a groupoid morphism from Z �X to Y its abstraction �(f) is a groupoid

morphism from Z to X) Y . If z 2 Z

set

then �(f)(z) is the functor which

sends x 2 X

set

to f(z; x) and p 2 X

rel

(x; x

0

) to f(�; p). Now if q 2 Z

rel

(z; z

0

) then

�(f)(q) is a natural transformation from �(f)(z) to �(f)(z

0

). Its component at x 2

X

set

is f(q; �). The naturality condition amounts to checking that f(q; �)f(�; p) =

f(�; p)f(q; �) which follows since f preserves transitivity (composition) in X � Y .

It remains to verify the functor laws for �(f). We have

�(f)(�)(x) = f(�; �) = �

�(f)(pq)(x) = f(pq; �) = f((p; �)(q; �)) = f(p; �)f(q; �)

We leave it to the reader to de�ne the evaluation morphism and to check the �

and � equations. 2

Chapter 5. Extensionality and quotient types 192

The exponential of groupoids cannot be de�ned syntactically in intensional type

theory, because there is no way to restrict the type-theoretic function space in

such a way that only those functions are included which preserve reexivity and

transitivity up to de�nitional equality. An encoding in extensional type theory

should, however, be possible.

The assignment r(�) of groupoids to sets extends to a functor between these

categories and as such has a left adjoint � which sends a groupoid G to the

quotient set G

set

=� where g � g

0

, G

rel

(g; g

0

) 6= ;.

De�nition 5.2.5 Let � be a groupoid. A family of groupoids indexed over � is

a functor from � viewed as a category to the category of groupoids. The set

4

of

families over a groupoid � is denoted Fam(�).

In elementary terms a family of groupoids over � consists of a groupoid �() for

each element 2 �

set

. Moreover, these groupoids must be compatible with each

other, i.e. there is a reindexing function

�

reindex

2 �;

0

2�

set

:�

rel

(;

0

) ! �()

set

! �(

0

)

set

and a \proof" that this operation respects the relations, i.e. a function

�

resp

2 �;

0

2 �

set

:�p2�

rel

(;

0

):�u; v2�()

set

:

�()

rel

(u; v) ! �(

0

)

rel

(�

reindex

(p; u); �

reindex

(p; v))

So far we have the notion of dependent setoid sketched in the introduction to this

section. But now again we impose further equational constraints. Both �

reindex

and �

resp

must respect the groupoid structure, i.e.

�

reindex

(�; u) = u

�

reindex

(pq; u) = �

reindex

(p; �

reindex

(q; u))

�

resp

(�; p) = p

4

This is meant to be a \naive" set. In order to avoid size problems one might require

the groupoids taken on by the functor to be small w.r.t. some universe.

Chapter 5. Extensionality and quotient types 193

�

resp

(pq; r) = �

resp

(p; �

resp

(q; r))

�

resp

(p; �) = �

�

resp

(p; qr) = �

resp

(p; q)�

resp

(p; r)

If � is a family of groupoids indexed over � we refer to its components by �

set

,

�

rel

, �

re

, �

sym

, �

trans

. We thus allow both �

rel

(; s; s

0

) and �()

rel

(s; s

0

) to denote

relatedness of s and s

0

in the �bre over 2 �

set

. If the family under consideration

is clear from the context, we abbreviate �

reindex

(p; u) by p � u and also �

resp

(p; q)

by p � q in accordance with the convention to use the same name for object and

morphism part of a functor (For p 2 �

rel

(;

0

) the pair (�

reindex

(p;�); �

resp

(p;�))

is a functor from �() to �(

0

).).

Examples. Every family of sets fS

x

g

x2X

induces a family of (discrete) groupoids

indexed over r(X) in the obvious way. Moreover if X and Y are groupoids we

de�ne the constant family Const(X;Y) over X by

Const(X;Y)

set

(x) = Y

set

independent of x 2 X

set

Const(X;Y)

rel

(x; y; y

0

) = Y

rel

(y; y

0

)

Const(X;Y)

reindex

(p; y) = y

Const(X;Y)

resp

(p; q) = q

We also note that families of groupoids over the terminal groupoid 1 are in 1-1

correspondence to (non-dependent) groupoids.

A family of types �; x:� ` � [x] in TT almost gives rise to a family of groupoids

over G(�). Indeed, if � `M : � is an element of G(�)

set

then we obtain a groupoid

G(�)(M) := G(� [M]). Moreover, if � ` P : Id

�

(M;M

0

) then Subst

�;�

(P;�)

induces a morphism of groupoids from G(� [M]) to G(� [N]). However, we do

not have Subst (Trans (P;Q);M) = Subst (Q;Subst (P;M)) as required by the

second law for �

resp

, but only the corresponding propositional equality. Also the

Subst -functions do not lift to functions de�ned on G(�)

rel

. Nevertheless it is an

instructive exercise to verify the equations for families of groupoids in this case up

to propositional equality.

Chapter 5. Extensionality and quotient types 194

More examples arise from the interpretation of the type constructors which we

are going to describe.

5.2.1.1 Comprehension and Substitution

Let � be a groupoid and � 2 Fam(�). We de�ne the comprehension of � denoted

� � � as the following groupoid:

(� � �)

set

= �2�

set

:�

set

()

(� � �)

rel

((; u) ; (

0

; v)) = �p2 �

rel

(;

0

):�

rel

(

0

; p � u; v)

(� � �)

re

((; u)) = (�

re

(); �

re

(; u))

(p; q)

�1

= (p

�1

; q

�1

)

(p; q)(p

0

; q

0

) = (pp

0

; q(p � q

0

))

Notice that in order for these de�nitions to typecheck the equations imposed on

families are required. For example, for (�

re

(); �

re

(; u)) 2 (� � �)

rel

((; u) ;

(; u)) it is required that �

re

(; u)2 �

rel

(; �

re

� u; u) and this follows from

�

re

� u = u.

It remains to check that � �� is indeed a groupoid. We only verify associativity

of transitivity.

((p; q)(p

0

; q

0

))(p

00

; q

00

) = (pp

0

; q(p � q

0

))(p

00

; q

00

) =

(pp

0

p

00

; q(p � q

0

)(pp

0

� q

00

) = (pp

0

p

00

; q(p � (q

0

(p

0

� q

00

)))) =

(p; q)(p

0

p

00

; q

0

(p

0

� q

00

)) = (p; q)((p

0

; q

0

)(p

00

; q

00

))

The canonical projection p(�) is the �rst projection from (� � �)

set

to �

set

which

is obviously a morphism of groupoids. The reader familiar with category theory

will have noticed that this de�ninition of comprehension is a special case of the

so-called \Grothendieck construction".

Now let �;� be groupoids, � 2 Fam(�) and f : � ! �. The composition

� � f is a family of groupoids over � which de�nes the substitution �ffg. In more

explicit terms we have

�ffg

set

(2�

set

) = �

set

(f

fun

())

Chapter 5. Extensionality and quotient types 195

�ffg

rel

(2 �

set

; u; v2�ffg

set

()) =

�

rel

(f

fun

(); u; v)

�ffg

reindex

(;

0

2 �

set

; p2 �

rel

(;

0

) ; u2�ffg

set

()) =

f(p) � u2 �ffg

set

(y)

The other components are de�ned accordingly. It is immediate from the de�nition

that this substitution operation satis�es the split property �ff � gg = �ffgfgg

and �fid

�

g = �.

Finally, we have the morphism q(f; �) from � � �ffg to � � � whose function

part sends (; u) to (f

fun

(); u), and it is readily seen that the following diagram

is a pullback in the category of groupoids:

� � �ffg

q(f; �)

-

� � �

�

p(�ffg)

?

f

-

�

?

p(�)

This shows that groupoids and families of groupoids form a category with attrib-

utes in the sense of Remark 2.4.11. For technical reasons it is, however, appropriate

to separate sections from their associated context morphisms as follows.

Sections. Let � 2 Fam(�). A section of � is a pair M = (M

el

;M

resp

) where

M

el

2 �2�

set

:�

set

() and M

resp

2 �;

0

2�

set

:�p2�

rel

(;

0

):�

rel

(

0

; p �M

el

();

M

el

(

0

)) in such a way that the following two equations hold for ;

0

;

00

2 �

set

and q 2 �

rel

(;

0

) and q 2 �

rel

(

0

;

00

):

M

resp

(

re

()) =

re

(M

el

()) 2 �

rel

(;M

el

();M

el

())

M

resp

(pq) = M

resp

(p)(p �M

resp

(q)) 2 �

rel

(

00

; (pq) �M

el

();M

el

(

00

))

If M 2 Sect(�) we de�ne the associated context morphism M : � ! � � � by

M

fun

() := (;M

el

()) and M

resp

(p) := (p;M

resp

(p)). This obviously de�nes a 1-1

correspondence between the set of sections and the set of right inverses to p(�).

We can now conclude:

Chapter 5. Extensionality and quotient types 196

Proposition 5.2.6 Groupoids and families of groupoids form a syntactic category

with attributes.

5.2.2 Interpretation of type formers

We now investigate the closure properties of this model w.r.t. various type formers.

It turns out that the groupoid model supports almost all the set-theoretic type

formers, so in particular those studied in the monograph [85]. Here we restrict

ourselves to the interpretation of sum and product types, the identity type, natural

numbers, and a universe.

5.2.2.1 Interpretation of the dependent sum

Let � be a family over � and � a family over � � �. We want to construct a family

over � which interprets the �-type �s : �:� (s). It is a dependent version of the

comprehension groupoid from Section 5.2.1.1. It is de�ned by

�(�; �)

set

(2 �

set

) = �s2 �

set

():�

set

(; s)

�(�; �)

rel

(2 �

set

; u; v2�(�; �)

set

()) =

�p2 �

rel

(; u:1; v:1):�

rel

((; v:1) ; (�; p) � u:2; v:2)

�(�; �)

re

(2 �

set

; u2�(�; �)

set

()) = (�; �)

(p; q)

�1

= (p

�1

; q

�1

)

(p; q)(p

0

; q

0

) = (pp

0

; q(p � q

0

))

p � (s; t) = (p � s; (p; �) � t) Reindexing on elements.

p � (q; r) = (p � q; (p; �) � r) Reindexing on morphisms.

The veri�cations are essentially the same as in Sect. 5.2.1.1 and are left to the

reader.

Chapter 5. Extensionality and quotient types 197

Projections and pairing IfM is a section of �(�; �) then taking the �rst/second

projection in the el- and the resp-part separately yields two sections, one of � de-

noted M:1 and one of �fM:1g denoted M:2. On the other hand, component-wise

pairing turns sections N

1

of � and N

2

of �fN

1

g into a section (N

1

; N

2

) of �(�; �).

These operations are inverse to each other, i.e. (N

1

; N

2

):1 = N

1

, (N

1

; N

2

):2 = N

2

and (M:1;M:2) = M . Compatibility with substitution is straightforward.

The groupoid model thus admits extensional �-types in the sense of Prop. 2.4.27.

5.2.2.2 Dependent product of groupoids

Let �, � , � be as before. For each 2 �

set

let � () denote the family of groupoids

over the groupoid (�

set

(); �

rel

()) de�ned by

� ()

set

(s2�

set

()) = �

set

((; s))

� ()

rel

(s2�

set

()) = �

rel

((; s))

In fact � () is just a special instance of substitution along the morphism from the

one point groupoid to � determined by 2 �

set

. Using this notation we de�ne the

dependent product of � along � as a family over � by

�(�; �)

set

(2�) = \The set of sections of � ()"

�(�; �)

rel

(2� ; M;N2�(�; �)

set

()) =

\The set of natural transformations from M to N"

Natural transformations are de�ned in the same way as for the exponential of

non-dependent groupoids. Also the �bre-wise groupoid structure is like in this

example. A bit trickier is the de�nition of reindexing. For p 2 �

rel

(;

0

) and

M 2 �(�; �)

set

() we put

(p �M)

el

(s2�

set

(

0

)) = (p; �) �M(p

�1

� s)

Here M(p

�1

� s) is an element of �

set

(; p

�1

� s). Now since p � (p

�1

s) = s the

pair (p; �) lies in (� � �)

rel

((; p

�1

� s); (

0

; s)). So the de�nition makes sense. The

morphism part is similar:

(p �M)

resp

(q2�

rel

(

0

; s; s

0

)) = (p; �) �M(p

�1

� q)

Chapter 5. Extensionality and quotient types 198

Finally we must de�ne the resp part of reindexing. So let � be a natural trans-

formation fromM to M

0

in �(�; �)

set

(). We must de�ne a natural transformation

from p �M to p �M

0

. Its component at s 2 �

set

(

0

) is

(p; �) � �(p

�1

� s)

which is an element of �

rel

((

0

; s) ; (p �M)(s); (p �M

0

)(s)). The veri�cations are

tedious but straightforward.

Abstraction and application. We want to show that the groupoid model ad-

mits products in the sense of Prop. 2.4.17; so we have to de�ne abstraction and

the evaluation morphism. In the above situation let M be a section of � . Its

abstraction �

�;�

(M) is a section of �(�; �). Its element part at 2 �

set

is the

section of � () sending s 2 �

set

() to M

el

(; s) and q 2 �

rel

(; s; s

0

) to M

resp

(�; q).

Its resp-part sends p 2 �

rel

(;

0

) to a natural transformation from p � �

�;�

(M)()

to �

�;�

(M)(

0

). Its component at s 2 �

set

(

0

) is M(p; �) which is an element of

�

rel

((

0

; s) ; (p � �

�;�

(M)())(s);M(

0

; s))

The evaluation morphism

ev

�;�

: � � � ��(�; �)fp(�)g ! � � � � �

sends (; s;M) : (� � � ��(�; �)fp(�)g)

set

to (;M

el

s) and acts similarly on morph-

isms. The veri�cations are left to the reader.

5.2.2.3 The identity groupoid

Now we come to the most important part of the model construction. Due to the

particular properties of groupoids and families of groupoids it becomes possible to

de�ne an identity type which is di�erent from the categorical equaliser, and hence

is truly intensional. We use the semantic framework of Def. 2.4.24.

Let � be a family of groupoids over �. We form the groupoid � � � � �

+

which

corresponds to the context : � ; s; s

0

:�(). Over this groupoid we de�ne the

family Id(�) by

Id(�)((; s; s

0

)) = r(�

rel

(; s; s

0

))

Chapter 5. Extensionality and quotient types 199

Thus a proof that s; s

0

2 �

set

() are propositionally equal is an element of �

rel

(; s;

s

0

). Two such proofs are related only if they are actually equal. Thus proposi-

tional and de�nitional equality on identity types coincide in the groupoid model.

Coming back to the example of topological spaces and homotopy we would thus

consider two points of a topological space as \propositionally equal" if there exists

a path linking the two, and two such paths are propositionally equal if they can

be continuously transformed into one another.

It remains to de�ne the reindexing functions for Id(�). If (p; q; r) 2 (� � � �

�

+

)

rel

((; s; s

0

) ; (

1

; s

1

; s

0

1

)) and h 2 Id(�)

set

(x; s; s

0

) = �

rel

(; s; s

0

) then

(p; q; r) � h := r(p � h)q

�1

2 �

rel

(

0

; s

1

; s

0

1

) = Id(�)

set

(

0

; s

1

; s

0

1

)

Notice that by the de�nition of � � � � �

+

we have p 2 �

rel

(;

1

), q 2 �

rel

(p � s; s

1

)

and r 2 �

rel

(p � s

0

; s

0

1

). Moreover since h 2 �

rel

(s; s

0

) by de�nition of families we

have p � h 2 �

rel

(p � s; p � s

0

). So the above de�nition of reindexing in Id(�) is \well

typed".

We check the transitivity law:

(p; q; r)(p

0

; q

0

; r

0

) � h = (pp

0

; q(p � q

0

); r(p � r

0

)) � h =

r(p � r

0

)(pp

0

� h)(q(p � q

0

)

�1

= r(p � r

0

)(pp

0

� h)(p � q

0

�1

)q

�1

=

r(p � (r

0

(p

0

� h)q

0

�1

))q

�1

= (p; q; r) � ((p

0

; q

0

; r

0

) � h)

Now if ? 2 Id(�)

rel

((; s; s

0

) ; h; h

0

)|in other words if h and h

0

are equal|then

clearly (p; q; r) � h = (p; q; r) � h

0

, so we put

(p; q; r) � ? = ?

For this de�nition to work all the coherence equations imposed on families of

groupoids are indeed required.

Identity introduction. Recall that v

�

: � � � ! � � � � �

+

is the diagonal

morphism from ��� to � � ���

+

de�ned on elements by (v

�

)

fun

(; s) = (; s; s). We

must construct a morphism Re

�

: ���! � � � � �

+

�Id(�) with p(Id

�

) �Re

�

= v

�

.

It is de�ned by

(Re

�

)

fun

(; s) := (; s; s; �

re

(s))

(Re

�

)

resp

(p; q) := (p; q; q; ?)

Chapter 5. Extensionality and quotient types 200

This de�nition implicitly uses the equation

(p; q; q) � re (�)(; s) = q(p � �)q

�1

= qq

�1

= �

deduced from the laws for families of groupoids.

Identity elimination. Let � be a family over the family � � � � �

+

� Id(�) and

let M be a section of �fRe

�

g. We construct a section J

�;�

(M) of � by

J

�;�

(M)

el

((; s; s

0

; q)2 (� � � � �

+

� Id(�))

set

) := (�; �; q; ?) �M(; s)

This works since (; s; s; �

re

(s)) and (; s; s

0

; q) are related in � � � � �

+

� Id(�) by

(�; �; q; ?) because (�; �; q) � � = q�� = q.

It remains to de�ne J

�;�

(M)

resp

. Let

(p; r; r

0

; ?) 2 (� � � � �

+

� Id(�))

rel

((; s; s

0

; q); (

1

; s

1

; s

0

1

; q

1

))

or equivalently p 2 �

rel

(;

0

), r 2 �

rel

(

1

; p � s; s

1

), r

0

2 �

rel

(

1

; p � s

0

; s

0

1

), and

q

1

= r

0

(p � q)r

�1

. We must exhibit an element of

�

rel

((

1

; s

1

; s

0

1

; q

1

) ; (p; r; r

0

; ?) � (�; �; q; ?) �M(; s) ; (�; �; q

1

; ?) �M(

1

; s

1

))

Now

M(p; r) relates (p; r; r; ?) �M(; s) and M(

1

; s

1

)

since M is a section. So we have

(�; �; r

0

(p � q)r

�1

; ?) �M(p; r) relates (p; r; r

0

(p � q); ?) �M(; s)

and (�; �; r

0

(p � q)r

�1

; ?) �M(

1

; s

1

)

by \multiplying" by (�; �; r

0

(p � q)r

�1

; ?) which is the desired proof since

(p; r; r

0

; ?)(�; �; q; ?) = (p; r; r

0

(p � q); ?)

by de�nition of transitivity in � � � � �

+

and q

1

= r

0

(p � q)r

�1

by assumption.

Proposition 5.2.7 The groupoid model supports intensional identity types.

Chapter 5. Extensionality and quotient types 201

5.2.2.4 Functional extensionality

It is immediate from the de�nitions of the dependent product and the identity type

that the latter supports functional extensionality, i.e. that Ext constants as de�ned

in Sect. 3.1.3 can be de�ned, and that Turner's equation (Eqn 3.2 in Sect. 3.1.3)

holds. This is important, because we do not have uniqueness of identity in the

groupoid model as shown below in Thm. 5.2.8.

5.2.2.5 The base types

The types 0, 1, N may be interpreted by the discrete groupoids r(;), r(f?g),

r(N). These are initial, terminal, and natural numbers objects, resp., in the cat-

egory of groupoids from which it follows that the introduction and elimination rules

can be interpreted. One may of course construct them explicitly as well. It is also

possible to de�ne a groupoid of lists even over a non-discrete groupoid, but we have

not checked whether arbitrary parametrised inductive de�nitions can be carried

out in the groupoid model. Certainly, arbitrary inductive de�nitions as provided

by Coquand's pattern matching [17] cannot be interpreted, for then uniqueness of

identity would hold in the groupoid model contradicting Theorem 5.2.8 below. We

leave it as an open problem to determine whether the groupoid model supports

all \orthodox" inductive de�nitions, i.e. those which only provide Martin-L�of's

canonical elimination rules as formalised by Dybjer [28].

5.2.2.6 Interpretation of universes

To interpret the universe we mimic the construction described in [65] of a model for

the Extended Calculus of Constructions. Let � be some inaccessible cardinal. This

means that � is regular (closed under union) and whenever a cardinal � is strictly

smaller than � then so is 2

�

[62]. Let U be the set of all groupoids lying inside

the level V

�

of the cumulative hierarchy. We interpret the universe by the discrete

groupoid r(U). Since U is a model of ZFC it is closed under all constructions on

groupoids we described, so all the universe rules can be interpreted. Using a chain

of inaccessible cardinals we can also interpret universes containing each other. If

Chapter 5. Extensionality and quotient types 202

we are interested in a universe closed under impredicative quanti�cation containing

only 0 and 1 we may use the discrete groupoid r(f;; f?gg) with El(X) = X.

Inside the set-theoretic groupoid model we considered so far there does not

exist a non-trivial impredicative universe. However, groupoids can be de�ned in

any locally cartesian closed category, for example the category of !-Sets [100].

Here we can take U to be the set of those !-Set groupoids for which both the

set of objects and each homset are \modest sets", see loc.cit. We conjecture that

in this way we get a non-degenerate (i.e. without proof-irrelevance) model of the

Calculus of Constructions.

We have not looked in detail at universes admitting universe induction. However,

since the category of sets is a full subcategory of the category of groupoids (via

r), every set-theoretic construction of such a universe should carry over to the

groupoid case, see for example [28].

5.2.2.7 Quotient types

The groupoid model admits the interpretation of intensional quotient types as

de�ned in Sect. 3.2.6.1, at least in the case where the quotienting relation � is

internally an equivalence relation. If � 2 Fam(�) and � 2 Fam(� � � � �

+

) is

such that there exist sections of the appropriate families witnessing reexivity,

symmetry, and transitivity, then we can de�ne a groupoid �=� by (�=�)

set

= �

set

and (�=�)

rel

(; s; s

0

) = �(�(; s; s

0

)) where � is the left adjoint to r de�ned after

the proof of Prop. 5.2.4. The rules for quotient types can be interpreted in this way,

but due to the absence of uniqueness of identity we would like to have further rules

which constrain the equality proof obtained by Qax (see rule Q-I-Ax). A special

case of this problem will be considered below in Sect. 5.2.4. The formulation of a

general quotient type former in the groupoid model of which this example would

be an instance is left for future research.

Chapter 5. Extensionality and quotient types 203

5.2.3 Uniqueness of identity

We are now ready to give the promised proof that uniqueness of identity is not in

general de�nable.

Theorem 5.2.8 Uniqueness of identity is not uniformly de�nable at all types, in

particular it is not de�nable at the type ` �x: U:El(x).

Proof. If uniqueness of identity is de�nable at some type � ` � then by the

soundness theorem 2.5.6 and the fact that all groupoids Id(�)(; s; s

0

) are discrete,

every groupoid [[� j �]]() for 2 [[�]] must be a pre-order, i.e. every set ([[� j

�]]())

rel

(x; x

0

) has at most one element. But the interpretation of �x:U:El(x)

does not have this property since in particular it has the element (Z

2

 f?g; ?)

which has two di�erent endomorphisms. 2

We remark that in view of Propositions 3.1.1 and 3.1.2 the interpretations of all

types de�nable from N using �, �, Id must be pre-orders, in fact they are discrete,

which may also be seen directly from the de�nition of these type formers in the

groupoid model.

Since uniqueness of identity can be de�ned using pattern-matching (Sect. 3.1.2.2)

we obtain the following important corollary:

Corollary 5.2.9 Pattern-matching is a non-conservative extension of Martin-L�of

type theory.

5.2.4 Propositional equality as isomorphism

The lack of uniqueness of identity in the syntax has been considered as a drawback,

which can be cured by the introduction of the IdUni constants. There may,

however, be circumstances under which the existence of more than one proof of

identity is actually useful. One such is provided by the following extension to

TT with one universe (U;El) which may be soundly interpreted in the groupoid

Chapter 5. Extensionality and quotient types 204

model. For reasons of exposition we assume functional extensionality and an

explicit constant Subst as in TT

I

although it is de�nable from J. Let

Iso[x; y:U] := �f : El(x) ! El(y):�f

0

: El(y) ! El(x):

Id

El(x)!El(x)

(f

0

� f; id)� Id

El(y)!El(y)

(f � f

0

; id)

be the type of propositional isomorphisms between El(x) and El(y). If F :

Iso[X;Y] let F also stand for the �rst component F:1 : El(X) ! El(Y) and

let F

�1

stand for the second component F:2:1 : El(Y) ! El(X). Now consider the

following new introduction rule for propositional equality on the universe:

� ` X;Y : U � ` F : Iso[X;Y]

� ` UnivId(X;Y; F) : Id

U

(X;Y)

Univ-Id

Moreover, we introduce a de�nitional equality describing the reaction of Subst to

UnivId:

� ` F : Iso[X;Y] � `M : El(X)

� ` Subst

U;El

(X;Y;UnivId(F);M) = F M : El(Y)

Univ-Id-Eq

So if we use Subst to rewrite an element M of El(X) as an element of El(Y)

then this equals the result of applying the isomorphism F to M . Clearly, this

violates uniqueness of identity: this rule makes the operator UnivId injective so

that if any two proofs of a propositional equality were identi�ed then also any

two isomorphisms between types in the universe would be identi�ed, which is a

contradiction as soon as the universe contains a code for a nontrivial type such as

N. Astonishingly however, the above extension is sound in pure TT.

Theorem 5.2.10 The above extension of TT can be soundly interpreted in the

groupoid model.

Proof. Let U be the groupoid with underlying set U

set

the set of all small sets

(i.e. with cardinality smaller than some inaccessible cardinal) and with U

rel

(x; y)

the set of bijections between x and y. The identity bijection provides reexivity;

symmetry and transitivity are given by taking inverses and composition, respect-

ively. We de�ne a family of groupoids El 2 Fam(U) by El(x) = r(x) and if

Chapter 5. Extensionality and quotient types 205

p : x

�

=

y is a bijection between x and y, i.e. p 2 U

rel

(x; y) and e 2 El

set

(x) = x,

then we put p � x := p(x). The El

resp

-component is trivial since both El(x) and

El(y) are discrete. It is readily veri�ed that this de�nes a family of groupoids.

Now we claim that this provides a model for the above extension to TT. Clearly

we interpret the universe as U and the El-operator as El. Now if X;Y 2 U

set

then

the interpretation of Iso is the set of bijections from x to y because El(X) and

El(Y) are discrete and thus propositional equality and semantic identity coincide.

By de�nition any such bijection is an element of U

rel

(X;Y) and thus we interpret

UnivId as the identity. Finally, it may be seen from the interpretation of J and

the de�nition of Subst that the latter is interpreted exactly by �

reindex

so that the

equation Univ-Id-Eq is validated. 2

The rule Univ-Id-Eq may be replaced by the simpler de�nitional equality

� ` UnivId(X;X; id[X]) = Re

U

(X) : Id

U

(X;X)

Univ-Id-Eq'

where id[X] : Iso[X;X] is the identity function viewed as an isomorphism between

X and X. From Univ-Id-Eq' one obtains the propositional version of Univ-Id-

Eq using J in the obvious way.

We do not know whether this extension has many applications as such, but one

might imagine more general extensions which allow to de�ne quotient types with

proof-relevant equality relation of which the above universe would just be a special

case. For example, one could then quotient a slice category by isomorphism and

in this way obtain a pullback operation which is \split" up to Id. If one succeeds

in formulating the interpretation theory for dependent types inside type theory

and with propositional equality rather than set-theoretic extensional equality, one

could in this way address the problem of interpreting type theory in non-split

structures [23,46]. This ties in with the abovementioned work of Lamarche [58]

which attempts to base mathematics on isomorphism rather than equality using a

groupoid interpretation without, however, noticing the relationship with proposi-

tional equality.

Chapter 5. Extensionality and quotient types 206

5.3 A dependent setoid model

Our aim in this section is to give a version of truly dependent setoids which can

be presented as a syntactic model within TT. As we shall see, the model we end

up with has other drawbacks, so that it cannot really be considered superior to

S

0

. The model, which we call S

1

, is similar in spirit to the groupoid model, but

certain compromises have to be made since as we have seen the groupoid model is

not de�nable in intensional type theory.

We have argued that the reason for this is that the preservation of symmetry

and transitivity by context morphisms cannot be guaranteed as soon as one has

dependent products or function spaces. A natural attempt would be to drop

these requirements and to see how far one gets. Then, however, symmetry and

transitivity for contexts may not be used in the de�nition of any type former, for

then stability under substitution would fail. To see why, consider a (contrived)

type former in the groupoid model which sends � 2 Fam(�) to B(�) 2 Fam(�)

(for all �) given by

B(�)

}

= �

}

for } 2 fset; rel; re; sym; transg.

B(�)

reindex

(p; s) = �

reindex

(�

sym

(�

sym

(p)); s)

Now, if f : B ! � and � 2 Fam(�) then we have B(�)ffg = B(�ffg), i.e.

stability under substitution of B, if and only if f

resp

preserves B

sym

.

Now, if no type (and term) former may use symmetry and transitivity for

contexts, we can just as well omit them from the de�nition of contexts. It turns

out that the use of reexivity in certain term formers is unavoidable, notably

in the interpretation of Subst |the elimination operator for the identity type.

Fortunately, using a trick we can ensure the preservation of reexivity by all

context morphisms as we see below in Sect. 5.3.1.2.

However, we cannot ensure that reexivity is preserved by reindexing, i.e. that

for all families � 2 Fam(�) and s : �

set

() we have

�

reindex

(�

re

(); s) = s

Chapter 5. Extensionality and quotient types 207

The lack of this preservation property entails that certain de�nitional equalities,

notably �-Comp and Nat-Comp-Suc, only hold up to (semantical) propositional

equality in the model S

1

so that we can only interpret a weakened type theory

where these equations are replaced by propositional axioms in the style of Id-Uni-

I or Ext-Form. This is not a principal problem because the model S

1

supports

uniqueness of identity and functional extensionality so that by Thm. 3.2.5 and the

remark at the end of Sect. 3.2.6 it has the same expressive power as TT

I

, namely

the one of extensional type theory TT

E

.

Let us now describe the details. The target type theory, i.e. the type theory

in which the syntactic model is formulated, is TT, the core type theory with

dependent sums and products, identity types, and natural numbers.

Parts of the material have been previously published as [44]. The de�nition of

squash types in Sect. 5.3.5 is new and the material on universes (Sect. 5.3.5.1) has

been thoroughly revised and rewritten.

De�nition 5.3.1 A context of setoids is a triple � = (�

set

;�

rel

;�

re

) where �

set

is a (syntactic) context and �

rel

is a (syntactic) context relative to (�

set

;�

set

), i.e.

 : �

set

;

0

: �

set

` �

rel

[;

0

]

and �

re

is a tuple of terms establishing reexivity of �

rel

, i.e.

 : �

set

` �

re

[] : �

rel

[;]

Two contexts of setoids are equal if their three components are de�nitionally equal.

So a context of setoids is a reexive graph if we view �

set

as the set of nodes and

�

rel

[;

0

] as the set of edges from to

0

.

De�nition 5.3.2 Let � and � be contexts of setoids. A morphism from � to �

is a pair f = (f

fun

; f

resp

) where

 : �

set

` f

fun

[] : �

set

and

;

0

: �

set

; p : �

rel

[;

0

] ` f

resp

[p] : �

rel

[f

fun

[]; f

fun

[

0

]]

Chapter 5. Extensionality and quotient types 208

such that reexivity is preserved up to de�nitional equality, i.e.

 : � ` f

resp

[�

re

[]] = �

re

[f

fun

[]] : �

rel

[f

fun

[]; f

fun

[]]

holds. Two morphisms between contexts of setoids are equal if their two compon-

ents are de�nitionally equal.

Proposition 5.3.3 The contexts of setoids together with their morphisms form a

category C with terminal object.

Proof. Clearly, morphisms are closed under component-wise composition and

contain the identity. A terminal object> is given by>

set

= >

rel

= � and >

re

= ().

2

5.3.1 Families of setoids

Now we come to the most important ingredient|the de�nition of dependency in

the model. We �rst introduce a useful abbreviation. If � is a context of setoids

and

1

; : : : ;

n

: �

set

then

�

conn

[

1

; : : : ;

n

]

denotes the context consisting of all types �

rel

[

i

;

j

] for i; j = 1 : : : n; i 6= j, i.e.

the

i

are connected by �

rel

. So for example if ;

0

: �

set

then

�

conn

[;

0

] = (�

rel

[;

0

] ; �

rel

[

0

;])

De�nition 5.3.4 Let � be a context of setoids. A family of setoids above � is a

6-tuple � = (�

set

; �

rel

; �

reindex

; �

sym

; �

trans

; �

ax

) where

{ �

set

is a type depending on �

set

 : �

set

` �

set

[]

Chapter 5. Extensionality and quotient types 209

{ �

rel

is a dependent relation on �

set

;

0

: �

set

; s : �

set

[] ; s

0

: �

set

[

0

] ` �

rel

[s; s

0

]

{ �

reindex

is the reindexing function which allows to substitute connected ele-

ments of �

set

in �

set

;

0

: �

set

; p : �

conn

[;

0

] ; s : �

set

[] ; �s : �

rel

[s; s] `

�

reindex

[p; s; �s] : �

set

[

0

]

such that �

rel

is symmetric and transitive and such that �

reindex

[p; s; �s] is always

�

rel

-related to s. More precisely we require terms

;

0

: �

set

;

p : �

conn

[;

0

] ;

s : �

set

[] ; s

0

: �[

0

] ;

q : �

rel

[s; s

0

] ` �

sym

[p; q] : �

rel

[s

0

; s]

;

0

;

00

: �

set

;

p : �

conn

[;

0

;

00

] ;

s : �

set

[] ; s

0

: �

set

[

0

] ; s

00

: �

set

[

00

] ;

q : �

rel

[s; s

0

] ; q

0

: �

rel

[s

0

; s

00

] ` �

trans

[p; q; q

0

] : �

rel

[s; s

00

]

;

0

: �

set

;

p : �

conn

[;

0

] ;

s : �

set

[] ; �s : �

rel

[s; s] ` �

ax

[p; s; �s] : �

rel

[s; �

reindex

[p; s; �s]]

Two families are equal if all their six components are de�nitionally equal. We

denote the set of families of setoids over context � by Fam(�).

Since �

rel

is not assumed to be symmetric we must make �

conn

[;

0

] a premise

to �

reindex

rather than merely �

rel

[;

0

]. Otherwise, we could not de�ne type

formers like the dependent product. The reexivity assumption �s : �

rel

[s; s] in

�

ax

is needed, for otherwise from �

ax

one could conclude that any two elements

of �

set

[] are �

rel

-related. The function �

reindex

could also be de�ned without this

assumption.

Chapter 5. Extensionality and quotient types 210

5.3.1.1 Comprehension and substitution

Let � be a family of setoids indexed over �. Its comprehension � �� is the context

of setoids de�ned by

(� � �)

set

:= : �

set

; s:�

set

[] ; �s:�

rel

[s; s]

(� � �)

rel

[(; s; p); (

0

; s

0

; p

0

)] := p: �

rel

[;

0

] ; q:�

rel

[s; s

0

])

(� � �)

re

[; s; �s] := (�

re

[]; �s)

Thus a typical context of setoids � of length 2 takes the form

�

set

= s

1

: (�

1

)

set

; �s

1

: (�

1

)

rel

[s

1

; s

1

];

s

2

: (�

2

)

set

[s

1

; �s

1

]; �s

2

: (�

2

)

rel

[s

1

; �s

1

; s

2

; s

2

]

�

rel

[s

1

; �s

1

; s

2

; �s

2

; s

0

1

; �s

0

1

; s

0

2

; �s

0

2

] = p

1

: (�

1

)

rel

[s

1

; s

0

1

] ;

p

2

: (�

2

)

rel

[s

1

; �s

1

; s

0

1

; �s

0

1

; s

2

; s

0

2

]

�

re

[s

1

; �s

1

; s

2

; �s

2

] = (�s

1

; �s

2

)

The morphism p(�) : � � � ! � is de�ned by by

p(�)

fun

[; s; �s] :=

p(�)

resp

[p; q] := p

It follows immediately from the de�nition of (� ��)

re

that this is indeed a morph-

ism.

Let � be a family of setoids indexed over � and f be a morphism from � to

�. We obtain a family of setoids over � denoted �ffg by pre-composing with f ,

i.e. by putting

�ffg

set

[: �

set

] := �

set

[f

fun

[]]

�ffg

rel

[s : �

set

[f

fun

[]] ; s

0

: �

set

[f

fun

[

0

]]] := �

rel

[s; s

0

]

�ffg

reindex

[p : �

conn

[;

0

] ; s : �

set

[f

fun

[]] ; �s : �

rel

[s; s]] :=

�

reindex

[f

resp

[p]; s; �s]

Here by a slight abuse of notation we have applied f

resp

to p : �

conn

[;

0

]. This is

understood component-wise. The other components of �ffg are de�ned similarly

by pre-composition. We omit the obvious de�nition of the q-morphisms.

Chapter 5. Extensionality and quotient types 211

5.3.1.2 Sections

De�nition 5.3.5 If � is a family over a context of setoids � then a section of �

is a pair M = (M

el

;M

resp

) where

 : �

set

`M

el

[] : �

set

[]

and

;

0

: �

set

; p : �

rel

[;

0

] `M

resp

[p] : �

rel

[M

el

[];M

el

[

0

]]

We denote the set of sections of � by Sect(�). Two sections are equal if both

components are de�nitionally equal.

Every section induces a context morphism from its context to the comprehension

of its type. More precisely, if M 2 Sect(�) then we de�ne M : � ! � � � by

M

fun

[] := (;M

el

[];M

resp

[�

re

[]])

M

resp

[p] := (p;M

resp

[p])

We check that reexivity is preserved:

M

resp

[�

re

[]] =

(�

re

[] ; M

resp

[�

re

[]]) =

� � �

re

[;M

el

[];M

resp

[�

re

[]]] =

� � �

re

[M

fun

[]]

So although no equational constraints are placed on sections they nevertheless

induce proper morphisms. This is the \trick" used to obtain preservation of re-

exivity. We have p(�) �M = id

�

as required.

Conversely, if f : � ! ��� then we construct a section Hd(f) 2 Sect(�fp(�) �fg)

as follows. The �

el

-part of p(�) � f sends : �

set

to � := f

fun

[]:1:1:2 : �

set

. Now

f

fun

[]:1:2 is an element of �

set

[�]. So we put

Hd(f)

el

[] := f

fun

[]:1:2

The �

resp

-component is de�ned analogously. We have f = q(f; �) �Hd(f) and

M = Hd(M) so sections and right-inverses to canonical projections are in 1-1

correspondence. Summing up we obtain

Chapter 5. Extensionality and quotient types 212

Proposition 5.3.6 Setoids and families of setoids form a syntactic category with

attributes|the setoid model S

1

.

A frequently asked question is whether one could not identify families as soon

as they have de�nitionally equal �

set

- and �

rel

-components, but arbitrary �

sym

-,

�

trans

-, �

reindex

-, and �

ax

-components. As we shall see, these components enter

directly the de�nition of the Subst -operator (and the derived operators Sym and

Trans witnessing symmetry and transitivity of the identity type). A fortiori we

would then have to identify equivalent morphisms, and to make substitution re-

spect this identi�cation, we would also have to identify certain families. This could

only be achieved using a construction like that in the proof of Thm 3.2.5. The

resulting structure would probably be a model of extensional type theory, but not

a syntactic model in the sense of Sect. 1.3.2 for functional extensionality.

We now pass to the modelling of type formers, notably the identity type and

a �-type satisfying functional extensionality. We also look at natural numbers

and �-types where we see that certain conversion rules are only satis�ed up to

propositional equality.

5.3.2 Dependent product

Let � be a context of setoids, � be a family over � and � be a family over � � �.

We de�ne a family �(�; �) 2 Fam(�) as follows. Its type component is given by

�(�; �)

set

[: �

set

] := �s : �

set

[]:��s : �

rel

[s; s]:�

set

[; s; �s]

The relation is de�ned by

�(�; �)

rel

[U : �(�; �)

set

[] ; V : �(�; �)

set

[

0

]] :=

�s : �

set

[]��s : �

rel

[s; s]�s

0

: �

set

[

0

]��s

0

: �

rel

[s

0

; s

0

]:

�

rel

[s; s

0

] ! �

rel

[U s �s; V s

0

�s

0

]

From the other components the de�nition of which is basically forced we single out

transitivity because it displays a perhaps unexpected need for the use of reindexing.

Chapter 5. Extensionality and quotient types 213

We assume the following variables:

;

0

;

00

: �

set

; f : �(�; �)

set

[]; f

0

: �(�; �)

set

[

0

]; f

00

: �(�; �)

set

[

00

] ;

p: �

conn

[;

0

;

00

] ; q

1

: �(�; �)

rel

[f; f

0

] ; q

2

: �(�; �)

rel

[f

0

; f

00

]

We must show that �(�; �)

rel

[f; f

00

]. To that end assume

s

1

:�

set

[]; �s

1

:�

rel

[s

1

; s

1

] ; s

2

:�

set

[

00

]; �s

2

:�

rel

[s

2

; s

2

] ; h:�

rel

[s

1

; s

2

]

We have to construct an element of �

rel

[f s

1

�s

1

; f

00

s

2

�s

2

]. We would like to use

�

trans

and q

1

; q

2

for this, but in order to do so we need an element of �

set

[

0

] which is

related to both s

1

and s

2

. Using �

reindex

it is possible to obtain such element from

either s

1

or s

2

using the hypothesis p: �

conn

[;

0

;

00

], for instance �

reindex

[Q; s

1

; �s

1

]

where Q : �

conn

[;

0

] is a part of p. The rest is obvious. This shows that with

a more general de�nition of transitivity that does not include the restriction to

connected elements of the context it would not have been possible to de�ne the

�-type.

Next we de�ne introduction and elimination for the dependent product follow-

ing Def. 2.4.14. That is, if M 2 Sect(�) we construct �

�;�

(M) 2 Sect(�(�; �)) and

conversely if M 2 Sect(�(�; �)) and N 2 Sect(�) we construct App

� ; �

(M;N) 2

Sect(�fNg). The element parts are

�

�;�

(M)

el

[: �

set

] := �s : �

set

[]:��s : �

rel

[s; s]:M

el

[; s; �s]

and

App

� ; �

(M;N)

el

[: �

set

] := M

el

[] N

el

[] N

resp

[�

re

[]]

The relational parts are de�ned similarly. Also the governing equations are readily

checked. Stability under substitution may be veri�ed by careful inspection by

hand or (better) using the Lego proof checker. The fact that morphisms preserve

reexivity is crucial for this property to hold.

Proposition 5.3.7 The setoid model S

1

supports dependent products.

Chapter 5. Extensionality and quotient types 214

5.3.3 The identity type

We are now ready to de�ne the interpretation of the identity type in the model

S

1

. The basic idea is to interpret propositional equality on a type as the as-

sociated relation endowed with a trivial relation (namely any two elements are

related) so that we can interpret uniqueness of identity. In view of Sect. 3.2.3.1

this allows us to replace J by (the simpler combinator) Subst . Moreover, we can

interpret functional extensionality in the sense of Sect. 3.1.3. Ext will satisfy

certain de�nitional equations which in particular ensure that all elements of type

N in the empty context are equal to canonical values. However, the de�nitional

equality Leibniz-Comp is only validated up to propositional equality, that is we

can interpret a constant of the corresponding identity type. In [44] we sketch

the de�nition of a more complicated identity type in S

1

with \strict" Leibniz-

Comp, but since|as announced above|other computational equations only hold

propositionally and there is no �x for those, we do not give this construction here.

Suppose we are given a context of setoids � and a family of setoids � over �.

We �rst form the context consisting of � and two copies of �. In our notation this

is � � � � �

+

. The identity setoid, denoted Id(�), is a family over this context. We

de�ne it by

Id(�)

set

[(; s

1

; �s

1

; s

2

; �s

2

) : (� � � � �

+

)

set

] := �

rel

[s

1

; s

2

]

and

Id(�)

rel

[x; x

0

: (� � � � �

+

)

set

; p: Id(�)

set

[x] ; q: Id(�)

set

[x

0

]] = 1

i.e. any two elements of Id(�)

set

are related. Clearly this is symmetric and trans-

itive. To de�ne the rewriter Id(�)

reindex

we make use of transitivity and symmetry

of �

rel

. We see that although the relations on contexts are not assumed to be sym-

metric and transitive, we do need these properties for the relations on families.

Chapter 5. Extensionality and quotient types 215

5.3.3.1 Reexivity

The distinguished morphism Re

�

: ���! � � � � �

+

�Id(�) interpreting reexivity

is given by

(Re

�

)

fun

[(; s; �s) : (� � �)

set

] = (; s; �s; s; �s; �s) : (� � � � �

+

� Id(�))

set

The �

resp

component is trivial since any two elements of the identity setoid are

related (by ?). It is also clear from the de�nition that Re

�

satis�es the required

equations, i.e. is stable under substitution and equals the diagonal when composed

with p(Id(�)).

5.3.3.2 Identity elimination

Let � 2 Fam(�) and M;N 2 Sect(�). We introduce the abbreviation Id(M;N)

for the family Id(�)fN

+

gfMg 2 Fam(�). Id(M;N) corresponds to the setoid of

proofs that M and N are equal. We also write Re(M) for the section

Hd(Re

�

�M) 2 Sect(Id(M;M))

Now assume � 2 Fam(�), � 2 Fam(���), M

1

;M

2

2 Sect(�), P 2 Sect(Id(M

1

;M

2

)),

and N 2 Sect(�fM

1

g) corresponding to the premises of rule Leibniz. We want

to de�ne a section Subst (P;N) of �fN

2

g using �

reindex

. We put

Subst (P;N)

el

[] = �

reindex

[(�

re

[]; P

el

[]) ; (�

re

[]; �

sym

[�

re

[];�

re

[]; P

el

[]]);

N

el

[] ; N

resp

[�

re

[]]]

The �rst two arguments to �

reindex

constitute a proof that (; (M

1

)

el

[]) and (;

(M

2

)

el

[]) are connected in � � �. Notice that reexivity of � is required here as

well as symmetry of the relation on families. In particular, the use of reexivity

(as a proof that the two �rst components of the two elements of � � � are related)

is crucial.

The next two arguments to �

reindex

are the elementN

el

[] : �

set

[; (M

1

)

el

[]] and

a proof that it is related to itself. We hence obtain an element of �

set

[; (M

2

)

el

[]]

as required.

Chapter 5. Extensionality and quotient types 216

The �

resp

-part of Subst is de�ned similarly using �

ax

.

As announced above this eliminator does not satisfy the rule Leibniz-Comp.

The reason for this is that �

reindex

applied to a proof by reexivity is not necessarily

the identity function. However, by virtue of �

ax

the propositional companion to

Leibniz-Comp is inhabited in the model.

5.3.3.3 Extensional concepts

If P 2 Sect(Id(M;M)) then|since the relation on Id(�) is trivial|there is a

canonical section of Id(Re(M); P) sending 2 �

set

to ?. Thus we conclude

Proposition 5.3.8 The model S

1

supports the concept of uniqueness of identity.

Next assume that � 2 Fam(� � �), that U; V 2 Sect(�(�; �)), and that

P 2 Sect(Id(App

�

+

; �

+

(U

+

; v

�

) ; App

�

+

; �

+

(V

+

; v

�

)))

i.e. corresponding to the premises to rule Ext-Form (Sect. 3.1.3). We want to

de�ne a canonical section Ext

�;�

(U; V; P) of Id(U; V) from this. The element part

of P is basically (modulo some currying of �-types) a term of type

 : �

set

; s : �

set

[] ; �s : �

rel

[s; s] ` �

rel

[U

el

[; s; �s] ; V

el

[; s; �s]]

The element part of the section we are looking for amounts to an inhabitant of

 : �

set

; s : �

set

[] ; �s : �

rel

[s; s] ; s

0

: �

set

[] ; �s

0

: �

rel

[s; s] `

�

rel

[U

el

[g; s; �s] ; V

el

[g; s

0

; �s

0

]]

We obtain that by using either U

resp

or V

resp

and transitivity of �

rel

. The �

resp

part is again trivial.

Proposition 5.3.9 The model S

1

supports the concept of functional extensional-

ity.

We discuss quotient types below in Sect. 5.3.5.

Chapter 5. Extensionality and quotient types 217

5.3.4 Inductive types

Simple inductive types like the unit type, the Booleans, and the natural numbers

may be de�ned by taking the identity type from the target type theory as the

relation. Unfortunately, in the case of the natural numbers we obtain the compu-

tation rule Nat-Comp-Suc (see Sect. 2.1.2.4) only up to propositional equality

because of the reexivity assumptions in contexts.

We show the construction of the natural numbers in S

1

following Def. 2.4.20.

Let � be a context of setoids.

N

set

[: �

set

] := N

N

rel

[;

0

: �

set

; n; n

0

:N] := Id

N

(n; n

0

)

where Id

N

is the identity type from the target type theory. This is obviously

symmetric and transitive. The reindexing function N

reindex

is simply the identity.

The section 0

�

2 Sect(N

�

) and the morphisms Suc

�

: � �N

�

! � �N

�

are

de�ned using the derived combinator Resp de�ned in Sect. 3.1.1.2. For example

we have

(Suc

�

)

fun

[: �

set

; n:N] := (;Suc(n);Resp ([n:N]Suc(n);�

re

[]))

(Suc

�

)

resp

[(; n); (

0

; n

0

): (� �N

�

)

set

; (p; q): (� �N

�

)

rel

[(; n); (

0

; n

0

)]] :=

(p;Resp ([n:N]Suc(n); q)) : (� � �)

rel

[(;Suc(n)); (

0

;Suc(n

0

))]

For the elimination rule R

N

assume some family � 2 Fam(� �N

�

) and sections

M

z

2 Sect(�f0g) and M

s

2 Sect(�fSuc

�

�p(�)g). We must construct a section

R

N

�

(M

z

;M

s

) 2 Sect(�) from this. Assuming : �

set

; n:N and �n: Id

N

(n; n) we have

to �nd an element R

N

�

(M

z

;M

s

)

el

[; n; �n] of �

set

[; n; �n]. Notice the dependency of

�

set

on the proof that n is equal to itself. As we have seen this dependency is in

general unavoidable, because � may contain term formers like Subst which make

use of �

re

which is in turn de�ned using the reexivity assumptions like �n added

during context comprehension ((� �N)

set

is �

set

; n:N; �n: Id

N

(n; n)).

We wish to de�ne the desired element using R

N

, but in order to do so we must

slightly strengthen the inductive hypothesis, because M

s

expects elements of �

set

Chapter 5. Extensionality and quotient types 218

which are related to themselves. So we use

(R

N

[n:N]��n:Id

N

(n;n):�s:�

set

[;n;�n]:�

rel

[s;s]

(?

z

; ?

s

; n) �n):1

where the question marks are readily �lled using M

z

and M

s

. In the case of ?

s

, i.e.

the inductive step, we assume n:N and hyp : ��n: Id

N

(n; n):�s:�

set

[; n; �n]:�

rel

[s; s]

and sn : Id

N

(Suc(n);Suc(n)). We then have to construct an element of

�s:�

set

[;Suc(n); sn]:�

rel

[s; s]

There are various possibilities for obtaining this element. The easiest is probably

to instantiate hyp with Re

N

(n) and to apply (M

s

)

el

. This gives an element of

�

set

[;Suc(n);Resp (Suc;Re

N

)] = �

set

[;Suc(n);Re

N

(Suc(n))]

from which we obtain an element of �

set

[;Suc(n); sn]. The second component,

i.e. a proof that this element is related to itself, is obtained using (M

s

)

resp

and the

required �rst component using instances of Subst and IdUni (which is de�nable

at N).

We omit the nontrivial but essentially forced �

resp

-part for R

N

�

(M

z

;M

s

).

Now the equation Nat-Comp-Zero follows immediately from its syntactic

companion. The other equation Nat-Comp-Suc does not even hold for the �

el

-

parts, because in the right-hand side, according to the de�nition of substitution for

sections, the (omitted) �

resp

-part of R

N

�

(M

z

;M

s

) applied to reexivity appears,

whereas the left-hand side does not contain this term. Of course, using induction

the two can be proved propositionally equal in the target type theory and are thus

propositionally equal in the source type theory so that a propositional counterpart

of Nat-Comp-Suc can be interpreted. It seems that in many special cases Nat-

Comp-Suc does indeed hold, for instance if � does not depend on N.

We are now able to establish the two important meta-properties of S

1

: N-

canonicity and consistency:

Proposition 5.3.10 If M 2 Sect(N

>

) then M = Suc

x

(0) for some x 2 !.

Chapter 5. Extensionality and quotient types 219

Proof. By de�nition of S

1

and in particular the interpretation of the natural

numbers we must have (in the target type theory) � ` M

el

: N and � ` M

resp

:

Id

N

(M

el

;M

el

). By Remark 2.1.6 we have � ` M

el

= Suc

x

(0) for some x 2 ! and

� `M

resp

= Re

N

(M

el

) : Id

N

(M

el

;M

el

). Hence M = Suc

x

(0) in S

1

. 2

Proposition 5.3.11 The family Id

N

(0;Suc(0)) over > has no sections.

Proof. If M 2 Sect(Id

N

(0;Suc(0))) then in the target type theory we have

� `M

el

: Id

N

(0;Suc(0)) which is a contradiction. 2

5.3.4.1 �-types

Our de�nition of contexts and context morphisms is based on an equational con-

straint (preservation of reexivity). So we cannot expect that they can easily be

internalised in S

1

by some sort of �-type. The obvious guess for a �-type in the

setoid model has (for �, �, � as in the de�nition of the �-type) as underlying set

�(�; �)

set

(: �

set

) = �s : �

set

():��s : �

rel

(s; s):�

set

(; s; �s)

and as relation

�(S; T)

rel

((s; �s; t); (s

0

; �s

0

; t

0

)) = �

rel

(s; s

0

)� �

rel

(t; t

0

)

We can now de�ne pairing and the �rst projection and more generally interpret the

weak �-elimination rule [81]. In order to de�ne a second projection or equivalently

the dependent �-elimination rule we must use �

reindex

and thus we cannot get the

equation

(M;N):2 = N

but only interpret the corresponding propositional identity.

Chapter 5. Extensionality and quotient types 220

5.3.5 Quotient types

We believe that intensional quotient types obeying the syntax given in Sect. 3.2.6.1

are de�nable in S

1

, but checking all the necessary proof obligations turned out to

be too complicated even with machine support. Particular instances of quotient

types|especially in the empty context|can, however, easily be seen to exist in

S

1

. Examples are types of integers and rationals. We therefore propose to add

the required quotients as primitive when working in S

1

until a formal veri�cation

of the quotient type former in S

1

can be given.

As an example of how this works, we de�ne a squash type former, which can

be seen as a quotient by the everywhere true relation.

Proposition 5.3.12 The setoid model S

1

supports a squash type former de�ned

by the following rules.

� ` �

� ` 2�

2-Form

� `M : �

� ` 2M : 2�

2-Intro

� `M;N : 2�

� ` 2 ax(M;N) : Id

2�

(M;N)

2-Ax

� ` �; � �; x:� ` M [x] : � � ` N : 2�

� ; x; x

0

:� ` H : Id

�

(M [x];M [x

0

])

� ` plug

2

N inM usingH : �

2-Elim

� ` plug

2

2N inM usingH : �

� ` 2 eq(M;N;H) : Id

�

(plug

2

2N inM usingH ; M [N])

2-Eq

Proof. Assume � 2 Fam(�). We de�ne 2� 2 Fam(�) by 2�

set

:= �

set

and

2�

rel

[;

0

: �

set

; x:�

set

[]; x

0

:�

set

[

0

]] = �

rel

[; x; x]� �

rel

[; x

0

; x

0

]

Furthermore, we put 2�

reindex

= �

reindex

. The other components are straight-

forward. If M 2 Sect(�) then 2M 2 Sect(2�) is given by 2M

el

= M

el

and

Chapter 5. Extensionality and quotient types 221

2M

resp

is trivial. Finally, if M : Sect(�fp(�)g) and N 2 Sect(2�) and H 2

Sect(Id(Mfp(�)

+

g;Mfp(�

+

)g)), i.e. as in the premises to rule 2-Elim, then we

de�ne plug

2

N inM usingH 2 Sect(�) by

plug

2

N inM usingH

el

[: �

set

] := M

el

[; N

el

[] ; N

resp

[;�

re

[]]:1]

The �

resp

part of this section is combined using �

trans

out of an instance of H

el

and M

resp

applied to instances of N and an instance of �

reindex

applied to N . One

cannot use H directly because it only works for elements over one and the same

: �

set

, whereas for the required�

resp

-part we must compare elements over di�erent

(albeit related) elements of �

set

. With �

reindex

being part of the de�nition of plug

we cannot achieve 2-Eq up to de�nitional equality for the same reason as in the

situation of identity types where Id-Comp only holds propositionally. 2

We remark that an analogue to the dependent quotient elimination rule Q-I-Elim

is de�nable and that a de�nitional counterpart to 2-Eq would be desirable, but

cannot be interpreted in S

1

.

An application of squash types is that they permit the de�nition of existential

quanti�cation as

9x:�:� [x] := 2�x:�:� [x]

For this existential quanti�er the usual intuitionistic introduction and elimination

rules can be de�ned, but with the restriction that in the elimination rule the

conclusion type must be at most single valued, i.e. any two elements of it must

be propositionally equal. In particular, for this existential quanti�er we can prove

unique choice, i.e. if � ` � then the following type is inhabited:

(9x:�:1)� (�x; x

0

:�:Id(x; x

0

)) ! �

We also conjecture that the schemes \countable choice" and \dependent choice"

from Sect. 5.1.4.2 (with 8 replaced by �) are inhabited.

We believe that one can de�ne a choice operator for the squash type similar to

the one in Sect. 5.1.7, but we have not checked the details.

Chapter 5. Extensionality and quotient types 222

5.3.5.1 Universes

We were also unable to identify a universe in S

1

closed under �-types. The obvious

candidate would have as underlying set the type:

�S : U:�S

r

: El(S) ! El(S) ! U: type and relation

(�s; s

0

: El(S):El(S

r

s s

0

) ! El(S

r

s

0

s)) � symmetry

(�s; s

0

; s

00

: El(S):El(S

r

s s

0

) ! El(S

r

s

0

s

00

) ! El(S

r

s s

00

)) transitivity

and the identity type as relation. Contrary to what we stated in [44] this universe

is apparently not closed under the �-type former, unless one assumes functional

extensionality in the underlying target type theory. This universe does, however,

contain the empty type and a unit type so that it may e.g. be used to derive

Peano's fourth axiom.

We conjecture that it is possible to add a universe to S

1

using the method

described in Sect. 5.2.2.6 with the same restriction on the source type theory, i.e.

the extensional concepts are then only available inside the universe.

5.4 Discussion and related work

An interpretation of types, sorts or sets as sets together with (partial) equivalence

relations with a corresponding relativisation of quanti�ers and abstractions has

been proposed by several authors with various aims.

The �rst was probably Gandy [35] who gives an interpretation of simple type

theory (no dependency) in itself to establish relative consistency of an extensional-

ity axiom (corresponding to our Propositions 5.1.5 and 5.3.11). In [36] he extends

this result to G�odel-Bernays' formulation of axiomatic set theory. There he em-

phasises the semantic character of his method by using the term inner model for

the interpretation. Gandy also recognises the value of the interpretation itself as

an explanation of the nature of extensionality: \The results of this paper may be

. . . expressed by saying: in ordinary mathematics it is not possible to prove the

existence of non-extensional quantities".

Chapter 5. Extensionality and quotient types 223

Feferman [32, Sect. 4.4.2] strengthens Gandy's result by proving conservativ-

ity of extensionality w.r.t. second-order formulae. His method does not seem to

generalise easily to type dependency, which is why we must content ourselves with

Conjecture 3.2.23. Luckhardt [63] applies Gandy's method to higher-order Heyting

arithmetic.

Assemblies together with (partial) equivalence relations as a formalisation of

the notion of a set underlies Bishop's approach to constructive analysis [9] and has

also been used by B�enabou [8] where these objects are called ensembles empiriques

(empirical sets). B�enabou's setting di�ers from Bishop's because the relation in

empirical sets is \proof relevant" very much like the�

rel

-part in groupoids, however

the set of proofs that two objects are related carries a structure of topological

space there. B�enabou's motivating example is the set of stars where a \proof"

that two stars are \equivalent" is a person who sees them identi�ed. The set of

persons is assumed to be endowed with a structure of a topological space expressing

closeness. The \relation" thus de�ned is symmetric and transitive and moreover

has the property of observational stability, namely that for any two points the set

of proofs that they are related is open. Or to stay within the example, if p mixes

up stars x and x

0

and p

0

is close enough to p then p

0

identi�es them, too. B�enabou

then de�nes functional relations between empirical sets and proves that with this

notion of morphism the empirical sets form a topos, in fact are the topos of sheaves

over the topological space of observers. B�enabou's main objective seems to be of

a pedagogical nature, namely to �nd an intuitive way of explaining sheaves and

toposes.

This bears some resemblance with the Scott-Fourman theory of existence and

identity [95] and the construction of a topos out of a categorical model of higher-

order logic (\tripos") described in [51]. Again, a category is formed the objects of

which are objects of some category endowed with an abstract equivalence relation

and the morphisms are functional relations. We believe that B�enabou's construc-

tion can be cast into this abstract framework. The motivating example in [51],

the e�ective topos [50] is of a similar nature.

With the exception of Bishop's approach (and ours) in all these constructions

Chapter 5. Extensionality and quotient types 224

the morphisms between \setoids" are functional relations rather than functions

preserving the relations. The reason for this is that functional relations provide

the axiom of unique choice which is crucial to topos logic.

5

In the Calculus of

Constructions or extensions of it like S

0

, this axiom may be phrased as follows:

� ` � � ` P : Prf(9x:�:8y:�:x

L

= y)

� ` AC!(P) : �

AC!

This axiom thus blurs the distinction between proofs and datatypes present in S

0

because it allows to construct an element of type � out of a proof. Obviously, with

functional relations instead of functions one achieves unique choice because one

identi�es elements of a type with premises to the unique choice axiom.

We have not considered functional relations and unique choice for two reas-

ons. First, we want the interpretation function to map functions to functions,

i.e. algorithms, rather than functional relations, i.e. speci�cations. Second, with

functional relations as morphisms it does not seem possible to keep proposition-

ally equal elements distinct intensionally

6

, so that we lose the decidable semantic

equality and also the choice principle. Of course, setoids with functional relations

as morphisms have their own merits, but for this project we found it interesting

to look at the other alternative. Some more thoughts on the issue of functions

vs. functional relations and unique choice can be found in Sect. 6.5.1. We also

remark that if we express totality of a functional relation using �-types instead of

existential quanti�cation then there is no di�erence between functions and func-

tional relations. This is for example the case in the type theory suggested in

Remark 5.1.11.

5

Due to the set-theoretic nature of B�enabou's setting, unique choice is present even

if one takes functions instead of functional relations.

6

We have no precise proof of this because there is more than one way of setting up a

type-theoretic setoid model with functional relations as morphisms, but in the obvious

one one has to make this identi�cation for example in order to de�ne substitution in

families.

Chapter 5. Extensionality and quotient types 225

B�enabou also considers a categorical version of empirical sets called th�eorie

d'appartenance et �egalit�e formelle in which a \setoid" is simply a span in a cat-

egory along with morphisms witnessing reexivity, symmetry, and transitivity.

These morphisms are to obey equational laws similar to the groupoid equations

in Sect. 5.2. Morphisms between these objects are again (suitably de�ned) func-

tional relations. Closely related to this is Carboni's explicit description of the

exact completion of a left exact category [14]. This category has as objects spans

with structural morphisms witnessing reexivity, symmetry, and transitivity; and

morphisms are morphisms in the underlying category respecting the relations.

It deserves mention that in none of these categorical approaches is type de-

pendency a primitive. It can be encoded using pullbacks or subsets of cartesian

products, but only in an extensional setting where de�nitional and propositional

equality are identi�ed.

Jacobs [54] and Mendler [79] have looked at categorical re-formulations of the

syntax of quotient types in the context of simple type theory and extensional type

theory, respectively. Jacobs identi�es (extensional) quotient types as left adjoint

to equality, whereas Mendler proves that they correspond to coequalisers. For our

purposes the syntax is not really important, we feel free to add or remove rules as

long as this is sound w.r.t. the setoid semantics and corresponds to (constructive)

mathematical practice.

Chapter 6

Applications

In this chapter we describe some small applications of the extended type theories

studied in this thesis. Most of the applications only use the extensional concepts

qua constants; the additional de�nitional equalities gained by the interpretation

in the various syntactic models are not used. This allows us to carry out the ex-

amples within the existing Lego system by merely working in a context containing

assumptions for the various extensional concepts (see Appendix A). Most of the

examples have been carried out in Lego, but we prefer to stick to the notation used

so far and not give actual Lego syntax here. The main purpose of the examples is

to explain the usefulness of extensional concepts as opposed to a direct encoding

in pure intensional type theory according to one of the syntactic models.

This becomes particularly clear in Sect. 6.1 where subset types are heavily

used and in Sect. 6.2 which explores an encoding of streams using functional

extensionality. The example of category theory in type theory (Sect. 6.3) shows

how the obvious encoding of categories in type theories with extensional concepts

gets translated in the various setoid models. The resulting encodings of category

theory in pure intensional type theory are quite complex, which we see as evidence

for the structuring and taxonomic aspect of setoid models.

The explicit unfolding of the interpretation in the setoid models is pursued

further in Sect. 6.4 where we show how a familiar encoding of coproduct types in

extensional type theory gets interpreted in pure intensional type theory. On the

one hand, this constitutes an interesting application of functional extensionality,

226

Chapter 6. Applications 227

on the other hand it exempli�es the elimination of this concept by way of the

interpretation in the setoid models.

Section 6.5 aims at a comparison between quotient types and the usual set-

theoretic encoding of quotienting. This also sheds some light on the di�erence

between setoid models and toposes and the role of \unique choice". The last ex-

ample (Sect. 6.6) provides evidence for the usefulness of the conservativity of equal-

ity reection over intensional type theory with extensional concepts (Thm. 3.2.5).

In order to prove the practical usefulness of intensional type theory with exten-

sional concepts, larger case studies taken from Computer Science and constructive

mathematics would be required. However, we felt that subsequent research in this

�eld would bene�t more from the present short examples, each of which highlights

a speci�c topic or problem raised in this work.

6.1 Tarski's �xpoint theorem

Our aim is to give a formalisation of the following general form of Tarski's �xpoint

theorem [102]. Our formalisation is based on a previous one by Randy Pollack [91]

which uses the Extended Calculus of Constructions [67] without extensional con-

cepts added.

De�nition 6.1.1 A poset (T;�) is a complete lattice if every subset P � T has

a (necessarily unique) least upper bound (lub)

W

P in T .

Theorem 6.1.2 (Tarski) Let (T;�) be a complete lattice and f : T ! T be

monotone. The sub-poset of �xpoints of f is then a complete lattice, too.

\Informal" proof. We �rst note that if P � T then P has also a greatest lower

bound in T given by

V

P :=

W

fxjx � Pg. This implies that the dual of a complete

lattice is a complete lattice again.

Chapter 6. Applications 228

Now we show that the lub of the set of \post-�xpoints" of f , i.e.

W

fxjx � f(x)g,

is a �xpoint of f and that it is actually the greatest �xpoint, i.e. that

_

fxjx � f(x)g =

_

fxjx = f(x)g

Both properties follow by expanding the de�nition of \least upper bound". By

duality we also obtain the existence of least �xpoints.

Next we observe that for any x 2 T the sub-poset "x = fyjx � yg of elements

above x is a complete lattice. The lub of P � " x in "x is given by the lub of

P [fxg in T . The veri�cation is by case distinction on whether or not P is empty.

Now given a subset P � fxjx = f(x)g of the �xpoints of f let l be its lub in

T . First, we show that f restricts to " l. Suppose that l � x. We want to show

that l � f(x). Since l is a lub this amounts to showing that P � f(x), but this

follows from the assumption and the fact that P contains �xpoints only. Now let

w be the least �xpoint of f viewed as a function on " l. This �xpoint exists since

by the above " l is a complete lattice. We claim that w is the desired lub of P in

fxjx = f(x)g. Obviously, w is an upper bound of P since w � l � P . On the

other hand, if P � w

0

and w

0

is a �xpoint of f then l � w

0

by de�nition of l and

thus|since w is the least �xpoint of f above l|we have w � w

0

as required. 2

The structure of this proof is somewhat intriguing since the facts about com-

pleteness and �xpoints are �rst proved for T and later on in the proof instantiated

with other partial orders obtained from T by restriction. If we are to formalise this

proof in some dependent type theory we therefore have to prove these preliminary

facts for arbitrary posets and later on instantiate them. Now if we de�ne a poset

as a type together with a binary Prop-valued relation for example, then (without

subset types) there is no way of identifying the up-closure "x of an element x as

a poset again.

In the formal proof by Pollack this di�culty is overcome by representing the

underlying set of a poset not merely as a type, but as a type together with a Prop-

valued predicate

1

which singles out the intended elements. The poset axioms are

1

Actually, Pollack uses partial equivalence relations rather than just predicates, but

Chapter 6. Applications 229

then relativised to the intended elements and so are further notions such as lubs

and �xpoints. This is where the deliverables model from Chapter 4 comes in.

Since in this model ordinary types are in fact modelled as types with Prop-valued

predicates, we can get away with the previous naive de�nition of a poset as having

merely a type as underlying set. The interpretation of the development in the

model should then roughly give rise to Pollack's proof, but we don't even need to

carry out the translation if we are merely interested in the existence of a proof. The

formal proof obtained thus is substantially shorter than Pollack's original proof

and moreover follows much closer the informal proof given above. The reason is

that we do not need to verify each time we apply an operation or a law that all

the arguments satisfy the relativising predicate. A certain drawback of the use

of subset types is the need for explicit coercion functions from subsets to their

supersets. In Pollack's proof coercions arise only at the level of the predicates, but

not at the level of the terms themselves.

Let us now describe the details of the proof. We work in the internal language

of the deliverables model, i.e. we assume the additional term and type formers

introduced there, notably subset types and proof-irrelevance. We also require a

universe (U;El) to de�ne a type of posets which makes the presentation more

compact, but could in principle be avoided by using type variables. To increase

readability we do not explicitly write down the El- and Prf-operators and we use

the abbreviations for logical connectives and quanti�ers introduced in Chapter 4.

We also allow in�x notation for the ordering �.

In the context T :U;�:T ! T ! Prop we de�ne a proposition PO stating

that (T;�) forms a partial order and CL stating that (T;�) is actually a complete

lattice. The de�nition of CL uses four auxiliary predicates expressing that an

element of T is a lower, upper, least upper bound or greatest lower bound of some

since the present proof does not make use of quotienting, the extra generality o�ered by

using PERs is not needed.

Chapter 6. Applications 230

property P : T ! Prop.

lower[P :T ! Prop; x:T] = 8z:T:(P z)) x � z

upper[P :T ! Prop; x:T] = 8z:T:(P z)) z � x

lub[P :T ! Prop; x:T] = upper[P; x] ^ lower[�y:T:upper[P; y] ; x]

glb[P :T ! Prop; x:T] = lower[P; x] ^ upper[�y:T:lower[P; y] ; x]

CL = PO ^ 8P :T ! Prop:9x:T:lub[P; x]

Furthermore, if f :T ! T we de�ne a predicate mon[f] stating that f is monotone

w.r.t. � and if in addition P :T ! Prop we de�ne a predicate closed[f; P] express-

ing that P is preserved by f . We also de�ne predicates �x[f; x] := (x

L

= f x) and

pre�x[f; x] := (x � f x). Notice that all the de�nitions made so far depend on T

and � and that these can be instantiated using substitutions. E.g. the proposition

PO[T; �x; y:T:y � x] expresses that the dual of (T;�) is a poset.

We keep the variables T;�; f and assume proofs of the propositions CL[T;�]

and mon[T;�; f]. We may then construct the following proofs:

fpu[f] : 8u:T:lub[�x:T:pre�x[f; x] ; u]) �xpt[f; u]

lubfpsu[f] : 8u 2 T:lub[�x:T:pre�x[f; x] ; u]) lub[�x:T:�x[f; x] ; u]

establishing that the lub of the set of pre-�xpoints is a �xpoint and actually the

greatest �xpoint. We also prove that complete lattices have glbs.

Glb : 8P :T ! Prop:9g:T:glb[P; g]

by constructing g as the lub of the lower bounds.

Now while keeping T , �, and f we instantiate the de�nitions made so far

with di�erent arguments. Whenever P : T ! Prop we may form the subset type

fx:T jP xg and de�ne an order �

0

on this type by pre-composing the relation �

by the injection wit(�).

�

0

= �x; y:fx:T jP xg:wit(x) � wit(y)

Henceforth we write � instead of �

0

. Now we prove the proposition PO[fx:T jPxg;

�], i.e. that a subset of a poset is a poset again and use this to establish the main

Chapter 6. Applications 231

lemma, namely that the up-closure of some element of a complete lattice is a

complete lattice. The up-closure is represented as " x := fy:T jx � yg.

upsCL : 8x:T:CL["x;�]

Roughly, this proof upsCL is constructed as follows. Assuming x:T and P :

fy:T jx � yg ! Prop we construct a predicate P

0

on T as

�y:T:9p: (x � y):(P (y)

p

) _ x

L

= y

following the set-theoretic de�nition in the informal proof (Recall that (y)

p

: "x

is an instance of the introduction operator for subset types.). The existential

quanti�cation over proofs that y lies in the subset is required to lift the predicate

P to the whole of T . Another way of doing so would be to use the extend-operator

from Sect. 4.6.2.

We may now use proof-irrelevance to deduce that if y:T and p:x � y then P

0

y

i� (P (y)

p

) _ x

L

= y. (Had we used the extend-operator this would be an instance

of fg-Elim-Nonprop-Comp.) We then follow the informal proof.

Now we prove that f is increasing on lubs of sets of �xpoints.

8P :T ! Prop:(8a:T:(P a)) �xpt[f; a])) 8l:T:lub[P; l]) l � (f l)

We then form the subset of �xpoints Fix := fx:T jx

L

= f xg and focus on the main

goal

CL[Fix;�]

where again � refers to the restriction of the original ordering to Fix. It is trivial

to show that this is again a partial order. Given P : Fix ! Prop we use existential

elimination on 9l:T:lub[�a:T:9p: �xpt[f; a]:P (a)

p

; l] giving a variable l:T and a

proof that l is the lub in T of the P \lifted" to T using existential quanti�cation

over proofs as above. Next we use existential elimination with

Glb[" l;�;upsCL l] �c: " l:f wit(c) � wit(c)

giving w: " l and a proof that it is the greatest lower bound of the post-�xpoints in

" l. Here we use f still as a function on T . We then need to show that l � f(wit(c))

Chapter 6. Applications 232

if c: " l in order to get that w is actually a �xpoint of f . Another possibility would

be to explicitly construct an f

0

: " l ! " l and to take the least �xpoint of this

function. One concludes as in the informal proof.

6.1.1 Discussion

The pattern of the formal proof follows quite closely the informal one except for

the coercion functions between subsets and their supersets. B. Reus, who has

been using a similar type theory to develop synthetic domain theory in Lego, has

reported that these coercions are extremely cumbersome. In general, the coercions

seem unavoidable, unless one gives up decidability and explicit proof objects; one

could, however, imagine a system in which coercions from a subset type to a non-

propositional supertype in the sense of Sect. 4.6.2 may be elided. This ties in with

Hayashi's ATTT [43] where one has implicit coercions between re�nement types

and basic types. The details of this in the context of the deliverables model remain

to be worked out, though.

Apart from its simplicity, the present formalisation using subset types also has

the advantage of being more convincing than the proof in the pure Calculus of Con-

structions by Pollack, since it is closer to the intended set-theoretic understanding

of posets and lattices.

6.2 Streams in type theory

We assume a type theory with functional extensionality, e.g. the internal language

of the model S

0

or S

1

. For de�niteness we assume S

0

and thus functional ex-

tensionality w.r.t. Leibniz equality. Given a type � (not necessarily in the empty

context) we form a type of in�nite lists (\streams") over � as

Str(�) := N! �

If S : Str(�) we put

Hd

�

(S) := S 0 : �

Chapter 6. Applications 233

and

Tl

�

(S) := �n:N:S (Suc(n))

Now we de�ne a bisimulation as a relation s; s

0

: Str(�) ` R : Prop with the

property that 8s; s

0

: Str(�):R[s; s

0

]) Hd(s)

L

= Hd(s

0

) and 8s; s

0

: Str(�):R[s; s

0

])

R[Tl(s);Tl(s

0

)]. In this case we can establish the coinduction principle

s; s

0

: Str(�) ` R[s; s

0

]) s

L

= s

0

true

In other words, bisimilar streams may be substituted for one another in an arbit-

rary context. The (straightforward) proof of this uses functional extensionality to

reduce equality on streams to equality on � and induction (R

N

).

Streams can be constructed using co-iteration [61,111] as follows. If out : � ! �

and step : � ! � then for init : � we put

CoIt

�;�

(out; step; init) = �n:N:out (step

n

init) : Str(�)

where �

n

is the n-th iteration of a function de�ned using R

N

. Now by the rules

for de�nitional equality we have

Hd(CoIt

�;�

(out; step; init)) = out init : � (6.1)

Tl(CoIt

�;�

(out; step; init)) = CoIt

�;�

(out; step; step init) : Str(�) (6.2)

For example if M : � we may de�ne a constant stream

Const(M) = CoIt

�;1

(�x:1:M; �x:1:x; ?)

It satis�es Hd(Const(M)) = M and Tl(Const(M))

L

= Const(M) by coinduction.

More generally, using coinduction we can show terminality of Str(�), i.e. that

any function f : � ! Str(�) which satis�es the two equations 6.1 and 6.2 above up

to propositional equality must be propositionally equal to �x: �:CoIt

�;�

(out; step; x).

Chapter 6. Applications 234

To be independent of the \implementation" of streams as functions one also

needs a pre�xing

2

operation: if M :� and S: Str(�) then

Pref(M;S) = �n:N:R

N

[x:N]�

(M;�x:N:�s:�:S x ; n)

satisfying Hd(Pref(M;S)) = M and Tl(Pref(M;S)) = S. Pre�xing is also prim-

itive in Coquand's approach to in�nite objects [18] and in�nite lists in Martin-

L�of's non-standard type theory [73,74]. Using coinduction we can prove that

Pref(Hd(S);Tl(S))

L

= S for S : Str(S).

Possibly terminating streams, i.e. solutions to domain equations of the form

�

�

=

(�
�)

?

have been proposed as a model of dataow networks [57]|these are networks of

agents communicating via channels with unbounded capacity playing a role in

protocol veri�cation [98,29].

If the in�nite streams described above are used instead of possibly terminating

ones, one has the advantage that liveness, i.e. the absence of deadlock modelled by

a terminating stream, is built into the typing. A certain di�culty arises from the

ubiquitous use of the �xpoint combinator for the de�nition of domain-theoretic

streams. (For example, the behaviour of a dataow network is de�ned as the least

solution to a system of �xpoint equations obtained from the speci�cation of the

agents and the geometry of the network.) Since for the type Str(�) obviously no

�xpoint combinator can be available (for instance �s: Str(N):Const(Suc(Hd(s)))

has no �xpoint and �s: Str(�):Tl(s) has no unique �xpoint which could be obtained

by an iterative process

3

), we cannot immediately compute the solution of such

2

In fact, pre�xing is de�nable in terms of co-iteration using function types, but it

seems more economic to de�ne it directly as above. Pre�xing can also be de�ned in

terms of a generalised version of co-iteration, co-recursion, as is shown in [61].

3

The domain-theoretic least �xpoint of these functions is in both cases the unde�ned

stream.

Chapter 6. Applications 235

equations. Not surprisingly, this is the point where we have to supply a proof of

\liveness", i.e. a proof that the domain-theoretic least �xpoint of a function on

streams is indeed in�nite. Fortunately, due to the simplicity of the above domain

equation we can always compute a candidate for this least �xpoint which coincides

with the least �xpoint if the latter happens to be in�nite.

Suppose that F : Str(�) ! Str(�) and that � is inhabited, e.g. by M : �. If the

least �xpoint of F

4

is total then Hd(F s) must be independent of s so a \guess"

for it is M

0

:= Hd(F (Const(M))). Continuing with the iteration, we obtain the

tail of the �xpoint as the �xpoint of the function

�s: Str(�):Tl(F (Pref(M

0

; s)))

This suggests the following de�nition for the candidate for �xpoints.

Fix(F;M) = CoIt

�;Str(�)!Str(�)

(

�F : Str(�) ! Str(�):Hd(F (Const(M))) ;

�F : Str(�) ! Str(�):�x: Str(�):Tl(F (Pref(Hd(F (Const(M))); x))) ;

F)

We acknowledge that this is not a very e�cient implementation, but if so desired

one may always translate instances of Fix using general recursion and prove once

and for all that the thus extracted general recursive programs never deadlock.

Along with this candidate we de�ne a totality predicate on \stream trans-

formers" as a greatest �xpoint:

Total(F : Str(�) ! Str(�)) = 9P : (Str(�) ! Str(�)) ! Prop:(P F) ^ (8F:(P F))

9x:�:(8s:Str(�):Hd(F s)

L

= x)^

P (�s: Str(�):Tl(F (Pref(x; s)))))

Here the �rst line is a higher-order encoding of the greatest �xpoint of the re-

mainder when abstracted from P . Using coinduction it is possible to prove the

4

\Least �xpoint" is understood informally here via some again informal embedding

of Str(�) into �|the domain of possibly terminating streams.

Chapter 6. Applications 236

following proposition:

8F :Str(�) ! Str(�):8m:�:

Total(F)) F (Fix(F; x))

L

= Fix(F; x)

and also that every other �xpoint of F equals Fix(F; x). This proof (which we

have carried out in Lego) makes heavy use of the property that every function and

predicate respects bisimilarity. It would highly complicate the proof if one did

not have coinduction and instead used a de�ned \book-equality" on streams. If,

for conceptual reasons, one is interested in such a development, one may always

translate the present proof using the interpretation in one of the setoid models.

It is possible to justify the choice of Total using an intuitive domain-theoretic

argument. It turns out that whenever F : � ! � has an in�nite least �xpoint

in the domain-theoretic sense and the domain S of elements of the streams is

at, then F must satisfy the predicate Total. Indeed, if the least �xpoint of F is

in�nite then F ? must be di�erent from ? and therefore m

0

:= Hd(F ?) must

be di�erent from ?. Thus, since S is at, �s:Hd(F ?) must be the constant

function �s:m

0

. Now recall the \dinaturality principle" [90] for the least �xpoint

Y(f � g) = f(Y(g � f)). Consider Tl(Y(F)). We have:

Tl(Y(F))

= Tl(Y(�s:Pref(Hd(F s);Tl(F s)))) since F s 6= ?

= Tl(Y(�s:Pref(m

0

;Tl(F s))))

= Y(�s:Tl(F (Pref(m

0

; s)))) by dinaturality:

Thus Total(F) is satis�ed for the predicate

P := �F:\Y(F) is in�nite"

A simple application of Fix and Total is the recursive de�nition of Const(M)

as the �xpoint of F = �s: Str(�):Pref(M;s). This satis�es Total with the obvious

choice P = �f:f

L

= F because Hd(F s) = M and Tl(F (Pref(M;s))) = F .

We remark that in a Lego development we have been able to prove \Total" for

the central loop of the alternating bit protocol in the setup of Dybjer and Sander

[29] and could thus redo their domain-theoretic proof in the setting of (total) type

theory.

Chapter 6. Applications 237

6.3 Category theory in type theory

Formulating category theory within type theory is a nice application of dependent

types and propositional equality. Several authors have attempted to formalise bits

of category theory in type-theoretic systems with varying results [33,48,4]. In fact,

Luo [66] reports that giving a sound foundation for category theory was one of

Martin-L�of's original motivations for introducing his type theories [70].

Our own experience suggests that the simplest approach is to use propositional

equality for both objects and morphisms. In this way we have managed to give a

formal proof of the Yoneda Lemma in Lego|a nontrivial task because it neces-

sitates the formalisation of presheaf categories which in turn mix up equality of

objects and of morphisms. Our formalisation makes use of functional extension-

ality in various places.

Here we will not reproduce this fairly obvious formalisation, but rather ex-

plain how the de�nition of a category using propositional equality gets translated

into setoids using the models S

0

and S

1

. The resulting structures bear resemb-

lance with Hornung's and Huet's formalisations [33,48] which, however, lack object

equality and therefore do not seem to permit the de�nition of functor categories.

(In [33] this is possible using intensional equality for objects, however more com-

plicated constructions mixing equality of objects and arrows do not seem to go

through anymore.) This application shows how the setoids models can be used

as a guideline for formalisations if one does insist on using (partial) equivalence

relations rather than propositional equality.

Let us �rst recall the de�nition of a category using propositional equality.

De�nition 6.3.1 In type theory with extensional concepts a category is given by

a type ` Ob of objects, a family of types

x; y:Ob ` Mor[x; y]

of morphisms, an operation

x: Ob ` id[x] : Mor[x; x]

Chapter 6. Applications 238

an operation

x; y; z:Ob ; f : Mor[x; y]; g:Mor[y; z] ` comp[x; y; z; g; f] : Mor[x; z]

and the following operations corresponding to the usual axioms where comp[x; y; z;

g; f] is abbreviated by g �f :

x; y:Ob ; f : Mor[x; y] ` idL[f] : Id

Mor[x;y]

(f � id[x]; f)

x; y:Ob ; f : Mor[x; y] ` idR[f] : Id

Mor[x;y]

(id[y] �f; f)

x; y; z; w:Ob ; f : Mor[x; y]; g:Mor[y; z]; h:Mor[z;w] `

Ass[f; g; h] : Id

Mor[x;w]

(h �(g � f); (h � g) � f)

It should be clear that this de�nition is stable under constructions like functor

category, arrow category, slice category, opposite category etc. and has|whenever

x:� ` � [x] is a family of types|a particular instance based on Ob = � and

Mor[x; y] = � [x] ! � [y], called Full[�; �]

5

. Of special interest is the category

Full[U;El] for a universe (U;El), which can be compared to the category of small

sets. The use of propositional equality on objects (Id

Ob

) is needed for instance in

the de�nition of slice categories.

The typing of composition may suggest that composable morphisms must have

de�nitionally rather than propositionally equal domain and codomain, respect-

ively, and that thus we cannot use propositional equality on objects. However,

using Subst we can adapt the domain and codomain of a morphism. For instance,

if X;X

0

; Y : Ob and P : Id

Ob

(X;X

0

) and F : Mor[X;Y] then we have

F

0

:= Subst

Ob;[x:Ob]Mor[x;Y]

(P;F) : Mor[X

0

; Y]

and using Id-Elim-J we can establish properties of F

0

. For example, if F is an

isomorphism then so is F

0

.

5

This corresponds to the category-theoretic notion of \full internal subcategory"

de�ned for example in [55, Thm. 4.5.7], where it is attributed to P�enon.

Chapter 6. Applications 239

6.3.1 Categories in S

0

In the model S

0

, a category according to the above de�nition (in the empty context,

for simplicity) expands to the following. The objects are represented by a type

` Ob and a partial equivalence relation x; y:Ob ` x = y : Prop. (We use in�x

notation here to increase readability. This Prop-valued equivalence on objects is

not to be confounded with de�nitional equality which is denoted x = y : Ob.)

Morphisms are represented by a single type ` Mor of morphisms and a relation

x; y:Ob ; f; g: Mor ` f =

x;y

g : Prop

stating that f and g are equal qua morphisms from x to y. These data are subject

to the following axioms where we have used conjunction (^) and implication ())

instead of context extensions:

x; y:Ob ; f; g:Mor ` (x = x) ^ (y = y) ^ f =

x;y

g)) g =

x;y

f true

and

x; y:Ob ; f; g; h: Mor ` (x = x)^(y = y)^(f =

x;y

g)^(g =

x;y

h)) (f =

x;y

h) true

and

x; y; x

0

; y

0

: Ob ; f; g:Mor ` (x = x

0

) ^ (y = y

0

) ^ (f =

x;y

g)) f =

x

0

;y

0

g true

The identity operation now takes the form

x:Ob ` id[x] : Mor

with

x; x

0

: Ob ` (x = x

0

)) id[x] =

x;x

id[x

0

] true

and composition takes the form

x; y; z:Ob ; f; g: Mor ` comp[x; y; z; g; f] : Mor

with

x; y; z; x

0

; y

0

; z

0

: Ob ; f; g; f

0

; g

0

: Mor `

x = x

0

^ y = y

0

^ z = z

0

^

f =

x;y

f

0

^ g =

y;z

g

0

)

comp[x; y; z; g; f] =

x;z

comp[x

0

; y

0

; z

0

; g

0

; f

0

] true

Chapter 6. Applications 240

In view of Lemma 5.1.6, the laws are then expressed in terms of � =

�;�

�, e.g.

idL becomes

x; y:Ob ; f : Mor ` x = x ^ y = y ^ f =

x;y

f) comp[x; x; y; f; id[x]] =

x;y

f true

The salient feature of this encoding is the single type of morphisms independent

of the respective domains and codomains. This makes it easy to replace domain

and codomain of a morphism by propositionally equal ones, but it precludes the

particular instance of a category based on a universe (Full[U;El]), since such a

universe is not available in S

0

. In the extension of S

0

by universes described in

Sect. 5.1.8 the situation is di�erent. Here we can of course construct a category

with U as its set of objects, but then we do not have a substitutive equality on

objects (at least not an equality with extensional concepts). Let us sketch how

a category looks in this extension under the assumption that Ob has trivial �

set

and �

rel

-components, and that Mor has trivial �

type

-component. A category is

then given by a type Ob of objects (for instance Ob = U) and a family of types

x; y:Ob ` Mor[x; y] such that each of the types Mor[x; y] is endowed with a partial

equivalence relation:

x; y:Ob ; f; g: Mor[x; y] ` f =

x;y

g : Prop

x; y:Ob ; f; g:Mor[x; y] ` f =

x;y

g) g =

x;y

f true

x; y:Ob ; f; g; h:Mor[x; y] ` f =

x;y

g ^ g =

x;y

h) f =

x;y

h true

The composition operation has the usual typing:

x; y; z:Ob ; f : Mor[x; y]; g:Mor[y; z] ` comp[x; y; z; g; f] : Mor[x; z]

and the congruence laws and the other components are as one expects them to be.

This encoding of categories is quite similar to the ones o�ered in [48,33]:

Of course this notion of category is not stable under constructions such as

functor categories because of the lack of object equality. But in the extension of

S

0

with universes both notions of category coexist (and even mixed forms where Ob

has nontrivial �

set

- and �

type

-components), and it makes sense to call a category

Chapter 6. Applications 241

\small" if it has a \set of objects", i.e. if in the source type theory Ob = El(X)

for some X : U (or if in the target type theory it has trivial �

type

-component).

One would then allow the formation of a functor category C ! D only if C is

\small". The same restrictions on functor categories apply in set theory, but for

size reasons, not for lack of substitutive equality. We remark that such a distinction

between categories which have object equality and those which don't also is made

by B�enabou in [7], albeit for di�erent reasons.

6.3.2 Categories in S

1

In S

1

we have both dependency of morphisms on objects and a substitutive object

equality. This is achieved by a \reindexing" function on morphisms. Again we

only treat the case of a category in the empty context and use in�x \=" (not to be

confused with de�nitional equality) for the relations on objects and morphisms. A

category then consists of a type ` Ob and a partial equivalence relation x; y:Ob `

x = y. Unlike in S

0

, symmetry and transitivity must now be witnessed by terms

which are part of the category structure.

x; y:Ob ; p:x = y ` Ob

sym

[p] : y = x

x; y; z:Ob ; p: x = y ; q:y = z ` Ob

trans

[p; q] : x = z

Next we have a set of morphisms indexed over \existing" objects

x; y:Ob ; �x:x = x ; �y: y = y ` Mor[�x; �y]

Notice that we do not indicate the dependency on x and y since these can be

inferred from �x and �y. The equality relation is de�ned for arbitrary morphisms

not necessarily with common domain and codomain.

x; y; x

0

; y

0

: Ob ; �x:x = x ; �y: y = y ; �x

0

:x

0

= x

0

; �y

0

: y

0

= y

0

;

f : Mor[�x; �y] ; g: Mor[�x

0

; �y

0

] `

f =

�x;�y;�x

0

;�y

0

g

This equality is again symmetric and transitive with the restrictions made in

Def. 5.3.4. We do not explicitly state these. More interesting is the \reindexer"

Chapter 6. Applications 242

for morphisms over related objects:

x; y; x

0

; y

0

: Ob ; �x:x = x ; �y: y = y ; �x

0

:x

0

= x

0

; �y

0

: y

0

= y

0

;

p: x = x

0

; q:y = y

0

; f : Mor[�x; �y] ;

�

f : f =

�x;�y;�x;�y

f

`

reindex[p; q;

�

f] : Mor[�x

0

; �y

0

]

and in addition the axiom on reindexing

� ` ax[p; q;

�

f] : f =

�x;�y;�x

0

;�y

0

reindex[p; q;

�

f]

where � is the context in the judgement for \reindex". Using symmetry and

transitivity we can construct a proof that reindex[p; q;

�

f] is related to itself. The

identities take the form

x: Ob; �x:x = x ` id[�x] : Mor[�x; �x]

x; x

0

: Ob; �x:x = x; �x

0

:x

0

= x

0

; p:x = x

0

` id resp[p] : id[x] =

�x;�x;�x

0

;�x

0

id[x

0

]

A special case of id resp is

x: Ob; �x:x = x ` id resp[�x] : id[�x] =

�x;�x;�x;�x

id[�x]

We abbreviate this term by id[�x]. Composition is de�ned similarly:

x; y; z:Ob ; �x:x = x; �y: y = y; �z: z = z ;

f : Mor[�x; �y]; g: Mor[�y; �z] ;

�

f :f = f; �g: g = g

` comp[�g;

�

f] : Mor[�x; �z]

x; y; z:Ob ; �x:x = x; �y: y = y; �z: z = z ;

f : Mor[�x; �y]; g: Mor[�y; �z] ;

�

f :f = f; �g: g = g

x

0

; y

0

; z

0

: Ob ; �x

0

:x

0

= x

0

; �y

0

: y

0

= y

0

; �z

0

: z

0

= z

0

;

f

0

: Mor[�x

0

; �y

0

]; g

0

: Mor[�y

0

; �z

0

] ;

�

f

0

: f

0

= f

0

; �g

0

: g

0

= g

0

p: x = x

0

; q:y = y

0

; r: z = z

0

; u:f =

�x;�y;�x

0

;�y

0

f

0

; v: g =

�y;�z;�y

0

;�z

0

g

0

` comp resp[p; q; r; u; v] : comp[�g;

�

f] =

x;y;x

0

;z

0

comp[�g

0

;

�

f

0

]

Again we can de�ne a term comp[�g;

�

f] witnessing \existence" of comp[�g;

�

f]. As

an example of an equational law we give again the left identity law:

x; y:Ob ; �x:x = x ; �y: y = y ; f : Mor[�x; �y];

�

f : f =

�x;�y;�x;�y

f

` idL[

�

f] : comp[

�

f; id[�x]] =

�x;�y;�x;�y

f

Chapter 6. Applications 243

It follows from the fact that S

1

forms a syntactic category with attributes closed

under �-types, �-types, and identity types that the above encoding of categories

is stable under all constructions on categories which can be carried out with the

encoding based on propositional equality using these type formers. This includes

functor categories, arrow categories, slice categories, the instances Full(�; �), and

many more. Of course, many of these instances do not fully exhaust the generality

of the encoding, as for example the possible dependency of composition on the

\existence proofs"

�

f . Nevertheless, this generality has proven necessary in order to

obtain a syntactic category with attributes and so one can expect counterexamples

to every simpli�cation of the above encoding. It is, however, di�cult to construct

such counterexamples explicitly because even with machine support the encoding

becomes unmanageable as soon as one goes beyond the simplest cases.

6.3.3 Discussion

We have seen how some reasonable encodings of category theory in type theory

arise as translations of an obvious encoding using propositional equality with ex-

tensional concepts added. We consider such an encoding useful for the following

two reasons.

First, a development of category theory in constructive type theory permits to

directly explore the constructive content of many category-theoretic arguments,

which gets hidden if tools like set-theoretic quotienting and choice from equivalence

classes are being used. A case in point is Lafont's proof [20, Sect. 4.10] that

the addition of function types to an algebraic theory constitutes a conservative

extension. Second, type theory as a basis of category theory is philosophically

appealing as the consistency of type-theoretic systems like TT, S

0

, S

1

even with

universes can be proved within ordinary mathematics (probably even in primitive

recursive arithmetic), whereas the relative consistency of a set-theoretic foundation

of category theory like Mac-Lane's universes [69, I.6] goes beyond ZFC.

Chapter 6. Applications 244

6.4 Encoding of the coproduct type

In the literature on extensional type theory various encodings of type formers

from simpler or more general ones have been proposed. In particular, we have

the encoding of a sum (coproduct) type using natural numbers and functions

by Troelstra [107, Ex. 11.4.7] and the encoding of inductive types like the natural

numbers in terms of Martin-L�of's well-ordering type [85,39]. By the conservativity

theorem 3.2.5 these encodings can also be carried out within TT

I

and therefore

give rise to counterparts in the various setoid models. Since we have not looked

at interpretations of the well-ordering type in the setoid models, we only work out

the example with coproducts here and leave the study of well-ordering types to

future work.

By coproduct type we mean a type former which to any two types � and �

associates a type � + � together with the following term formers: if M : � then

inl

�;�

: � + � and if M : � then inr

�;�

(M) : � + � . If z:� + � ` �[z] and x:� `

L[x]:�[inl

�;�

(x)] and y: � ` R[y]:�[inr

�;�

(y)] then whenever M : � + � we have

R

�+�

�

(L;R;M) : �[M] and the de�nitional equalities R

�+�

�

(L;R; inl(M)) = L[M]

and R

�+�

�

(L;R; inr(M)) = R[M].

The abovementioned encoding of coproducts in TT

I

requires a type (called N

2

in [72]) with two elements (called 0 and 1) and corresponding elimination rule

which in the situation z:N

2

` �[x], L : �[0], R : �[1], and M : N

2

gives an element

R

N

2

�

(L;R;M) : � in such a way that R

N

2

�

(L;R; 0) = L and R

N

2

�

(L;R; 1) = R.

Moreover, for each type � ` � a term ?

�

: Id

N

2

(0; 1) ! � is required. The type

N

2

may be de�ned as

N

2

:= �m:N:�n:N:Id

N

(m+ n;Suc(0))

where + is the obvious encoding of addition in terms of R

N

; the terms ?

�

may be

de�ned by induction on the structure of � [107, p. 592, Prop 4.1]. The interesting

case is when � = Id

�

(M;N). Here one de�nes a function from N

2

to � using R

N

2

which takes on the values M , N on 0, 1, respectively, and then obtains ?

Id

�

(M;N)

Chapter 6. Applications 245

using Resp . Unlike in the extensional theory studied in loc.cit., the term ?

�

may thus contain a variable of type Id

N

2

(0; 1). We remark that this de�nition is

not possible in the presence of an empty type, but becomes again possible if the

empty type is contained in a universe [97]. Troelstra and van Dalen now o�er the

following encoding of the coproduct type � + � for types �; � :

� + � := �n:N

2

:(Id

N

2

(n; 0) ! �)� (Id

N

2

(n; 1) ! �)

Indeed, if M : � then we have

inl(M) := (0; �p: Id(0; 0):M; �p: Id(0; 1):?

�

p) : � + �

and analogously we de�ne the right injection using ?

�

. Conversely, assume z:�+

� ` �[z], x:� ` L : �[inl(x)] and y: � ` R : �[inr(x)] and M : � + � . Using R

�

and

R

N

2

the task of �nding an element of �[M] may be reduced to �nding elements of

the following two types:

u: Id(0; 0) ! �; v: Id(0; 1) ! � ` �[(0; u; v)]

u: Id(1; 0) ! �; v: Id(1; 1) ! � ` �[(1; u; v)]

These elements in turn can be constructed using Subst and L, R, provided we

can show that the variables u and v are propositionally equal to the second and

third components of some instance of inl and inr, respectively. Let us focus on the

�rst type. If u: Id(0; 0) ! � and v: Id(0; 1) ! � then using functional extension-

ality and uniqueness of identity we �nd that Id

Id(0;0)!�

(u; �p: Id(0; 0):u (Re(0)))

is inhabited, and using functional extensionality and an instance of ?, we �nd

that Id

Id(0;1)!�

(v; �p: Id(0; 1):?

�

p) is inhabited. Therefore, the triple (0; u; v) is

propositionally equal to inl(u (Re(0))). Similarly for the second type.

The two equalities associated with the coproduct type can only be shown pro-

positionally. The reason is that in the above construction IdUni gets applied to a

variable and thus no reduction is possible.

6.4.1 Development in the setoid models

The above argument goes through immediately in the model S

1

because all the

constructions used are supported by this model. It also goes through in S

0

when we

Chapter 6. Applications 246

replace the identity type by Leibniz equality (which is substitutive by Prop. 5.1.8),

but due to the presence of an impredicative universe the de�nition of the terms ?

�

requires some explanation. The terms ?

�

: Prf(0

L

= 1) ! � are again de�ned by

induction on the structure of �. If � = Prop we choose some arbitrary proposition;

if � = Prf(P) then we de�ne a function F : N

2

! Prop with F 0 = tt and F 1 = P

and de�ne ?

Prf(P)

as

�p: Prf(0

L

= 1):p (�x:N

2

:Prf(F x)) I

where I = �x: Prop:�p: Prf(x):p is the canonical proof of tt.

Notice that this implies that each of the types [[� j �]]

set

, which all \live" in the

empty context, is inhabited by some element ?

0

�

. This in turn is not surprising

since these types are generated from 1, Prop, N by � and !.

For simplicity we assume that N

2

is available in the target type theory; if

we were to carry out its de�nition in terms of N and the identity type then

its underlying type would be N �N and the relation would be Leibniz equality

restricted to pairs with sum equal to 1.

Now let � and � be families of setoids which arise as values of the interpretation

function (so that ? is available). The underlying type of (the interpretation of)

� + � becomes

(� + �)

set

:= N

2

� �

set

� �

set

Notice here that the underlying type of a Leibniz equality is the extensional unit

type which disappears at the left of a function space.

The injections inl and inr are de�ned using the default elements ?

0

in the

obvious way. The relation on this type singles out the elements which lie in the

image of either injection and on these elements uses the relations on � and � .

The elimination rule applies to a family of setoids indexed over � + � , but by

de�nition of families its underlying type (call it �) does not depend on �+ � . The

input to the elimination rule thus consists of functions �

set

! � and �

set

! � and

an elementM of �+ � . The conclusion is then obtained by case distinction on the

Chapter 6. Applications 247

�rst component of M and application of either function to the second and third

component, respectively. We omit the veri�cations.

Explicitly carrying out the construction in S

1

is quite complicated and would

probably not clarify much. The key step, however, where the elimination of func-

tional extensionality takes place, is quite instructive and relatively easy to explain.

The need for functional extensionality in the de�nition of the eliminator R

�+�

came from the need for constructing an element of �[(0; u; v)] from an element

of �[(0; u

0

; v

0

)] (for some u

0

and v

0

) under the assumption that u; u

0

and v; v

0

are

point-wise equal functions. In TT

I

one �rst concludes that these functions are pro-

positionally equal and then uses Subst ; within the model S

1

, the family � comes

with a \reindexer" which allows to pass between �bres over related elements, so

that in order to pass between the two instances of � one only needs relatedness of

(0; u; v) and (0; u

0

; v

0

) which is de�ned pointwise.

6.5 Some basic constructions with quotient types

In a series of books a collective of French mathematicians has under the pseudonym

\N. Bourbaki" attempted to put all of mathematics, in particular geometry and

algebra, on a solid axiomatic foundation based on set theory. They emphasise

abstraction and modularisation: the set-theoretic encoding of a concept is used as

little as possible and derived universal properties are employed instead. Their �rst

book [10] is on basic set-theoretic constructions and contains a section on quotient

sets where some universal constructions with them are given. As an application of

the quotient type formers we shall in this section try to redo these constructions in

a type-theoretic setting. The emphasis on abstraction in the Bourbaki approach

makes it particularly apt for a development in type theory.

As in various places higher-order logic is required, we work in the impredicative

type theory S

0

. Parts of the development can also be carried out using the quotient

types for �rst-order Martin-L�of type theory given in Sect. 3.2.6.1.

Chapter 6. Applications 248

6.5.1 Canonical factorisation of a function

A function x:� ` f [x] : � is a surjection if 8y:�:9x:�:f [x]

L

= y holds; f is an

injection if 8x; x

0

:�:f [x]

L

= f [x

0

]) x

L

= x

0

holds. Notice that due to the lack of the

axiom of choice it is not the case in type theory that every surjection has a right

inverse. It is also not the case that if a function is both surjective and injective then

it has an inverse. This would be equivalent to the axiom of unique choice (AC!)

which is not available in S

0

. (We come back to this point later.) If y: � ` g[y] : � is

another function then we write g �f for the function x:� ` g[f [x]] : �. We extend

Leibniz equality to functions in the obvious way.

Now let x:� ` f [x] : � be any function and consider the equivalence relation

R[x; x

0

:�] := (f [x])

L

=(f [x

0

]). By de�nition of R the function f lifts to the quotient

type �=R, that is we have

x:�=R ` g[x] := plug

R

x in f using ([x; x

0

:�; p:R[x; x

0

]]p) : �

and by Q-Comp we get x:� ` f [x] = g[[x]

R

]. Using Qind we readily establish that

g is injective and that h[x:�] := [x]

R

is surjective. The thus obtained factorisation

of f into a surjection and an injection is initial among all such. This means that

if x:� ` s[x] : � is surjective and y:� ` i[y] : � is injective and f

L

= i � s then there

exists a unique (up to

L

=) function x:�=R ` u[x] : � such that u �h

L

=s and i �h

L

=g.

Indeed, we obtain u as the lifting of s.

Bourbaki now points out that the quotient �=R is in bijective correspondence

with the image of � under f , i.e. the subset of � consisting of those elements which

have an inverse image in �. In fact they factor f as a three-fold composition of

the class-map, this bijection, and the injection from the image into � . If we code

the image of f in type theory as

6

Im(f) := �y: �:Prf(9x:�:(f x)

L

= y)

6

We could also use a subset type former, but since we haven't explicitly described it

in S

0

we use �-types instead.

Chapter 6. Applications 249

then we obtain another factorisation of f into a surjection and an injection, this

time through Im(f). It is easy to see that this factorisation is terminal (up to

propositional equality). Using either initiality or terminality we obtain a function

l : �=R! Im(f).

Since we lack unique choice, we are, however, unable to de�ne an inverse to

this. If we had AC! in the sense of Sect. 5.4 we could construct an inverse as

follows. Given u : Im(f) we form the type �z:�=R:l[x]

L

= u and prove using 9-

elimination that this type contains a unique element. If P is a proof term for this

then we can form �u: Im(f):AC!(P) providing the desired inverse to l.

Let us note that in the model S

0

the above mapping l is the function f itself,

whereas an inverse to l would have to be a mapping in the other direction which

need not necessarily exist, for instance if �

set

is empty.

We remark that if we had unique choice then we could de�ne quotient types in

the usual way as the subset of � ! Prop consisting of \equivalence classes". We

also remark that if we use the �-type instead of 9 to de�ne images then we have

of course \choice", but the projection from Im(f) to � would not be injective.

Bourbaki also explains that any equivalence relation (in the sense of Sect. 5.1.10)

R on � can be seen as being of the above form using the function f which sends an

element x:� to the set of elements related to x. In the impredicative type theory

S

0

this can be mimicked by putting f [x] := �x

0

:�:R[x; x

0

] : � ! Prop. We have

x; y:� ` (f [x]

L

= f [y])

L

=R[x; y] true

by propositional extensionality. In �rst-order type theory (S

1

) this is, however,

not possible.

6.5.2 Some categorical properties of S

0

One may look at the issue of factorisation from a more modern category-theoretic

view as follows. A regular epi is a surjection which can be obtained as the co-

equaliser of two functions. Conversely, a regular mono is an equaliser of a parallel

Chapter 6. Applications 250

pair. Let S

0

=

L

= be the category obtained from S

0

by taking closed types as ob-

jects and functions up to propositional equality as morphisms. The regular epis

in S

0

=

L

= are precisely those which can be obtained from class maps by pre- and

post-composing with isomorphisms (notice that x:� ` [x]

R

: �=R is the coequaliser

of the two projections from �x:�:�y:�:Prf(R[x; x

0

]) to �. Similarly, the regular

monos are precisely those which can be obtained in this way from projections out

of �-types with propositional second component (= subset types). Here proposi-

tional extensionality is needed. In S

0

=

L

= the regular epis together with injections

and the surjections with regular monos each form a factorisation system [5, p. 190].

The content of unique choice in the framework of S

0

is precisely that all surjections

are regular epis and that all injections are regular monos. We also remark without

proof that S

0

=

L

= is regular [5, p. 187], i.e. has �nite limits

7

and coequalisers (given

by quotient types) which are stable under pullback (the veri�cation of the latter

property requires the dependent elimination rule for quotients Q-I-Elim). In ad-

dition this category has the property that the regular monos are \classi�ed" by the

object Prop. It is also very easy to see that the category with the same objects,

but with functional relations as morphisms (again up to propositional equality) is

a topos. One only has to check that � ! Prop is a \power object" in the sense

of [5]. We have not pursued this category-theoretic analysis any further in this

thesis because it glosses over the distinction between de�nitional and propositional

equality, which we consider as crucial in type theory.

6.5.3 Subsets and quotients

Let � be a type and x; x

0

:� ` R[x; x

0

] : Prop an equivalence relation. If x:� `

P [x] : Prop we may form the \subset" � := �x:�:Prf(P [x]) and denote by i[x: �] :=

x:1 : � the �rst projection which is injective by Pr-Ir. In �rst-order type theory,

7

In order to have a canonical choice for these �nite limits it is advisable to identify

objects with equal �

set

component and extensionally equal �

rel

-components.

Chapter 6. Applications 251

e.g. S

1

, we must restrict to a predicate P which is single-valued, i.e. any two proofs

of which are propositionally equal, or use the squash type former.

On � we have the induced equivalence relation R

�

[x; x

0

] := R[i[x]; i[x

0

]]. Now

we can de�ne a bijective correspondence between the quotient of � by R

�

� := �=R

�

and the image of � under the class map from � to �=R, i.e. the type

' := �z:�=R:9x: �:z

L

= [i[x]]

R

In one direction (from � to ') we use the lifting of the obvious map from � to '

obtained by restricting the codomain of x: � ` [i[x]]

R

: �=�. The other direction is

more complicated. In set theory, i.e. in the development of [10], one uses a right

inverse to the class map from � to �=R

�

. In type theory we use the (derived)

dependent elimination rule Q-I-Elim from Sections 3.2.6.1 and 5.1.5.1. We de�ne

�[z:�=R] := �x: �:Prf(z

L

= [i[x]]

R

) ! �=R

�

By 9-elimination a term of type x:�=R ` �[x] gives rise to a function from ' to �,

and such term can be de�ned using the dependent elimination rule for quotients

provided we can �nd a term M with

x:� `M [x] : �[[x]

R

]

together with a proof of

x; x

0

:� ; p: Prf(R[x; x

0

]) ` Subst (Qax

R

(p);M [x])

L

=M [x

0

]

We de�ne

M [z:�] := �x: �:�p: Prf(z

L

= [i[x]]

R

):[x]

R

�

and the proviso is readily established using functional extensionality and the de�n-

itions of � and R

�

. The veri�cation that the function obtained thus is the required

inverse is straightforward.

In S

0

this inverse would have been obtained more easily by working in the

model directly rather than by using the \internal language" given by the syntax

for quotient types.

Chapter 6. Applications 252

6.5.4 Saturated subsets

The predicate P from above is called saturated if for each x in P the whole equi-

valence class associated to x is contained in P , more precisely if

8x; y:�:P [x]) R[x; y]) P [y]

In [10] it is noted that a subset is saturated i� it is the inverse image under the

class map of some subset of the quotient set �=R. This is true in type theory as

well. Indeed, if P is saturated then we de�ne P

0

[z:�=R] := 9x:�:P [x] ^ [x]

R

L

= z

and we have that

x:� ` P [x]

L

= P

0

[[x]

R

]

using propositional extensionality and e�ectiveness of the quotient type as de�ned

in Sect. 5.1.6.4. Without e�ectiveness this example does not go through even if

we would replace equality of predicates by bi-implication. We could also de�ne P

0

using lifting (plug). That both de�nitions agree requires again e�ectiveness.

The other direction, i.e. that an inverse image along the class map is saturated,

is straightforward and only requires Qax.

Bourbaki also de�nes the saturation of a subset P of � as the inverse image of

the image of P under the class map. We can show that this saturation is equal to

x:� ` 9x

0

:�:R[x; x

0

] ^ P [x

0

], but again this requires e�ectiveness.

In loc.cit. saturatedness is extended to predicates with parameters, i.e. rela-

tions, and then called compatibility. Of particular interest is the case of functional

relations where the image along the class map de�nes a set-theoretic analogue to

lifting (plug). Since (due to the lack of unique choice) functions and functional

relations are di�erent in our type theory, we cannot sensibly compare the two

de�nitions.

In loc.cit. a more general notion of lifting is also de�ned which takes a function

x:� ` h[x] : � with x; x

0

:� ` R[x; x

0

]) Q[h[x]; h[x

0

]] for equivalence relations R

and Q on � and � , respectively into a function from �=R to �=Q. In type theory

we do this by lifting the composition of h with the class map for �=Q.

Chapter 6. Applications 253

6.5.5 Iterated quotients

Let �, R be as above and z; z

0

:�=R ` S[z; z

0

] : Prop be an equivalence relation on

the quotient of � by R. On � we de�ne an equivalence relation T by T [x; x

0

] :=

S[[x]

R

; [x

0

]

R

]. It is argued in [10] that the quotient types (�=R)=S and �=T are

in bijective correspondence by relating elements which come from one and the

same element in � by taking equivalence classes. In type theory we can de�ne

the bijection by appropriately lifting the class maps. In the model S

0

the thus

obtained bijection is simply the identity on �

set

in accordance with the set-theoretic

de�nition.

Conversely, if T is any equivalence relation on � which has the property that

R[x; x

0

] entails T [x; x

0

] for x; x

0

:�, then (since T is saturated in both x and x

0

)

we can by the analysis in Sect. 6.5.4 de�ne an equivalence relation S on �=R and

�nd that T is equal to the relation de�ned by pre-composing S with the class

map for �=R. Bourbaki calls the thus obtained relation S the quotient of T by R

denoted T=R. One thus obtains a bijective correspondence between (�=R)=(T=R)

and �=T .

That the above line of reasoning goes through both in the set-theoretic frame-

work of [10] and in type theory is a nice example for the emphasis on abstraction

and modularity in the Bourbaki approach.

6.5.6 Quotients and products

Let R and S be equivalence relations on � and � , respectively. An equivalence

relation R�S on the product ��� is de�ned component-wise. One has a bijective

correspondence between (�=R) � (�=S) and (� � �)=(R � S). One direction is

obtained by lifting the obvious map from � � � to �=R � �=S. For the other

direction we consider the function x:�; y: � ` [(x; y)]

R�S

: (�� �)=(R�S) and lift

along y to obtain

w: �=S; x:� ` plug

R�S

w in [y: �][(x; y)]

R�S

usingH : � � �=R � S

Chapter 6. Applications 254

where H uses reexivity of R, the de�nition of R � S and Qax. Now in order

to lift this function along x we must use Qind to replace w by an equivalence

class and the lifted function by its de�nition. This method is of use when we

want to de�ne a binary function on a quotient type. By giving such a function

on representatives and showing that it respects the relations component-wise, one

has, strictly speaking, de�ned a function on (� � �)=(R � S). Pre-composition

with the said bijection yields the desired binary function.

This concludes the type-theoretic analysis of Bourbaki's constructions with

quotients.

6.5.7 Quotients and function spaces

Motivated by the last construction we may ask whether quotienting is compatible

with function spaces, e.g. whether the type �! �=S is isomorphic to the quotient

of � ! � by the equivalence relation � ! S := [u; v:� ! �]8x:�:S[u x; v x].

In the model S

0

and also in set theory this is the case, but apparently this is

not derivable from our syntax for quotient types. The reason lies in the fact that

in topos logic, where every surjection is isomorphic to a class map, this property

implies the internal axiom of choice (IAC) from Sect. 5.1.4.2 which is in general not

valid. (Recall that IAC means the proposition (8x:�:9y: �:P [x; y]) ! (9f :� !

�:8x:�:P [x; f x]) for all types �; � .) Parts of the following development also appear

in a category-theoretic guise in [5, p. 251 �.].

IAC is equivalent to saying that all surjections (in the sense of Sect. 6.5.1)

split internally, i.e.

8s : '! :(8y: 9x:':(s x)

L

= y)) 9t: ! ':8y: :s(t y)

L

= y

In order to obtain IAC from this one starts from P with 8x:�:9y:�:P [x; y] and

instantiates with s being the �rst projection from ' := �x:�:�y: �:Prf(P [x; y]) to

 := �. Surjectivity of this function is precisely the assumed premise to IAC, a

splitting of this surjection on the other hand gives the conclusion of IAC.

Chapter 6. Applications 255

That all surjections split internally is in turn equivalent to saying that if s :

' ! is surjective then so is � ! s := �u: � ! ':s �u for all types �. Let us

call (following [5]) a surjection with this property powerful . To obtain an internal

splitting of powerful s we instantiate with � = and apply surjectivity of � ! s

to the identity on . The other direction is easy.

Now under the assumption that for every equivalence relation S on � the types

� ! �=S and (� ! �)=(� ! S) are isomorphic, we �nd that every \class map"

�x: �:[x]

S

is powerful. This is the case in S

0

. Unlike in a topos it is, however, not

the case in S

0

that every surjection is isomorphic to a class map. For example the

surjection onto Im(f) described above (Sect. 6.5.1) does not have this property.

Thus we obtain that compatibility of quotienting with function spaces is not true

in a topos, unless it satis�es IAC and thus is Boolean, and this can not be derived

from our syntax for quotient types which (except for the choice operator) can be

interpreted in any topos. The choice operator, on the other hand, is of no use

here because it only works for non-quotiented context and we want compatibility

of quotients with function spaces even if one of the involved types contains free

variables of quotient type.

In view of this one may consider including the isomorphism between �! �=S

and (�! �)=(�! S) as a primitive in the syntax of quotient types.

6.6 � is co-continuous|intensionally

In [77], Mendler shows that in a locally cartesian closed category C every \�-

functor" �

f

: C=A ! C=B sending u : X ! A to f �u : X ! B preserves directed

limits and in particular limits of !-chains. In view of the correspondence between

locally cartesian closed categories and extensional type theory [96,46], this result

carries over to TT

E

and by Thm. 3.2.5 also to TT

I

. The result has applications

to encodings of coinductive types in TT

I

(in fact the encoding of streams as N!

� is a special case) and to the intensional formulation of bisimilarity avoiding

the use of impredicativity, i.e. the quanti�cation over all bisimulations [60]. We

Chapter 6. Applications 256

sketch the set-theoretic instance of a special case of Mendler's result and give a

translation into TT

E

. The crux of this example is to demonstrate the power of

the conservativity theorem 3.2.5 because a direct proof in TT

I

seems to be very

complicated.

6.6.1 Parametrised limits of !-chains

As in Sect. 5.2 we use informal Martin-L�of type theory to refer to sets and families

of sets and functions between them.

Consider an ! chain of sets and functions

� � �

b

i+1

-

B

i+1

b

i

-

B

i

b

i�1

-

� � �

b

1

-

B

1

b

0

-

B

0

and let L be its limit with projections �

i

: L ! B

i

. This means that b

i

��

i+1

=

�

i

for i 2 ! and that for every \compatible family" (x

i

)

i2!

with x

i

2 B

i

and

b

i

(x

i+1

) = x

i

there exists a unique element hx

i

ji 2 !i 2 L with �

i

(hx

i

ji 2 !i) = x

i

.

This de�nes the limit up to isomorphism. Recall that such limit L always exists

and that it may be explicitly constructed as the set of compatible families by

L := ff 2 �i 2 !:B

i

j 8i 2 !:b

i

(f

i+1

) = f(i)g

The projections are then de�ned by �

i

(f 2 L) = f(i) and if (x

i

)

i2!

is a compatible

family as above then we de�ne the unique associated element of L as

hx

i

j i 2 !i = �i 2 !:x

i

The veri�cation is routine.

Now suppose that the whole development so far depended upon some para-

meter # 2 � and that we form the disjoint union over all possible values of this

parameter. This means that we consider the chain

� � �

b

0

i+1

-

�# 2 �:B

#

i+1

b

0

i

-

�# 2 �:B

#

i

b

0

i�1

-

� � �

b

0

1

-

�# 2 �:B

#

1

b

0

0

-

�# 2 �:B

#

0

Here the notation B

#

i

indicates the dependency of B

i

on # and may be used to

denote substitution. This applies to the other meta-variables (L, b

i

,. . .) as well.

Chapter 6. Applications 257

The functions b

0

i

are given by

b

0

i

(x 2 �# 2 �:B

#

i+1

) := (x:1; b

#

i

(x:2)) 2 �# 2 �:B

#

i

Now we have:

Proposition 6.6.1 (Mendler) The set �# 2 �:L

#

with projections

�

0

i

((#; f) 2 �# 2 �:L) = (#; �

i

(f)) : �# 2 �:B

#

i

is a limit of the chain of the b

0

i

.

Proof. Let x

i

2 �# 2 �:B

#

i

with

b

0

i

(x

i+1

) = x

i

for i 2 ! (6.3)

be a compatible family. By applying the �rst projection to this equation and

induction on i we �nd that all the �rst components x

i

:1 are equal (to #

0

:= x

0

:1

for instance). Therefore we have x

i

:2 2 B

#

0

i

and b

#

0

i

(x

i+1

:2) = x

i

:2 by applying

the second projection to Eqn. 6.3. This allows us to form

(#

0

; hx

i

:2 j i 2 !i) 2 �# 2 �:L

#

It is routine to check that this satis�es the commutation requirement and that it

is unique among those. 2

We remark that the \proof-relevant" character of � is crucial here. If we replace

it by \existential quanti�cation", i.e. 9# 2 �:B

#

i

:= ; if B

#

i

= ; for all # and f?g

otherwise, then 9# 2 �:L

#

is not a limit of the sequence of the 9# 2 �:B

#

i

. For

example, if � = ! and B

#

i

= f?g i� # � i then x

i

:= ? is a compatible family,

but 9# 2 �:L

#

is empty. This phenomenon is the gist of Halln�as' de�nition of

bisimulation as an !-limit by replacing 9 by �.

6.6.2 Development in TT

E

The above proof can be formalised in TT

E

|the extensional type theory introduced

in Sect. 3.2.3.1|almost without changes. We assume a chain depending on #:�:

Chapter 6. Applications 258

{ #: � ; i:N ` B[#; i]

{ #: � ; i:N ` b[#; i] : B[#;Suc(i)] ! B[#; i]

and de�ne the type of compatible families by

CompFam[#:�] := �f : �i:N:B[#; i] :�i:N:Id(b[#; i] (f (Suc(i))) ; f i)

For simplicity we identify the limit L with this type. Now we make the following

de�nitions:

{ B

0

[i:N] := �#: �:B[#; i]

{ b

0

[i:N] := �x:B

0

[Suc(i)]:(x:1; b[x:1; i] x:2)

{ CompFam

0

:= �f : �i:N:B

0

[i] :�i:N:Id(b

0

[i] (f (Suc(i))) ; f i)

{ If x:� ` � [x] then �!x:�:� = �x:�:(� ��y:�:� [y]! Id

�

(x; y))

and establish in TT

E

`

E

�x:CompFam

0

:�!z: (�#: �:CompFam[#]):�i:N:Id

B

0

[i]

((z:1; z:2:1 i) ; x:1 i) true

i.e. that �#: �:CompFam[#] is the limit of the B

0

[i]. Notice that if x: CompFam

0

and i:N then x:1 i : B

0

[i] because x:2 is the proof of compatibility, and similarly

for elements of CompFam.

6.6.3 Development in TT

I

Now from the conservativity theorem 3.2.5 it follows immediately that the same

judgement holds in intensional type theory with functional extensionality and

uniqueness of identity (TT

I

), provided the assumptions on B and b are valid in

TT

I

. However, giving a direct derivation of this in TT

I

is quite di�cult, because

the \candidate" z: �#: �:CompFam[#] already contains instances of Subst so for

Chapter 6. Applications 259

the veri�cation we have to reason about terms containing instances of Subst . More

precisely, we �rst construct a term

x: CompFam

0

; i:N `

I

Uniform : Id

�

((x:1 0):1

| {z }

\#

0

"

; (x:1 i):1)

using x:2 (the proof that x:1 is compatible) and R

N

. Then we construct an element

of

x: CompFam

0

`

I

CompFam[(x:1 0):1]

the �rst component of which (of type �i:N:B[(x:1 0):1; i]) is given by

x:CompFam

0

`

I

�i:N:Subst

�;[#:�]B[#;i]

(Uniform[x; i] ; (x:1 i):2)

The veri�cation now uses IdUni (and the derived induction principle J) and Ext.

The author has spend considerable time with Lego trying to formalise this com-

pletely without succeeding. The strategy is of course clear and is indeed dictated

by the proof of Thm. 3.2.5, but carrying out all the necessary dependent sub-

stitutions in Lego turns out to be extremely cumbersome. The lesson is that

machine-supported reasoning in TT

I

, in order to be e�cient, must be supported

by tactics, which could very well be based on the conservativity theorem.

One could e.g. imagine that one would conduct parts of a development in TT

E

.

This has the advantage that certain terms which can be proven propositionally

equal are syntactically identi�ed, for instance Subst

�;�

(P;M) and Subst

�;�

(P

0

;M)

for some M : � [N

1

] and P;P

0

: Id

�

(N

1

; N

2

).

Chapter 7

Conclusions and further work

We have compared extensional and intensional formulations of type theory and

argued for the need for adding \extensional concepts" to the latter. These exten-

sional concepts have been justi�ed using syntactic models based on pure intensional

type theory.

A natural next step would be to develop an implementation of the syntactic

models along the lines of Sect. 1.4.1 so as to gain more experience with them.

We think (although this may turn out to be wrong) that this implementation

task is essentially straightforward and merely requires a lot of time. It is worth

mentioning that in a certain sense such an implementation already exists in the

form of the combinators for the syntactic models de�ned in Lego (Sect. 4.4 &

5.1.2), but the variable-free syntax they support is of very limited practical use.

A more di�cult and also theoretically challenging question in this direction

would be to develop an implementation of the groupoid model . This model as we

have presented it is based on classical extensional set theory and as such is not

amenable to a direct implementation. However, it seems that the fragment of the

groupoid model which is actually taken on by the interpretation function from the

syntax does admit an e�ective description, which we consider worthwhile to work

out.

The intended application of such an endeavour|the idea of interpreting pro-

positional equality on types as isomorphism (Sect. 5.2.4) in the absence of unique-

ness of identity|has not been pursued deeply in this thesis. It appears to be quite

a promising subject. For instance, preliminary investigation has shown that an

extension of the type-theoretic de�nition of categories by additional axioms which

260

Chapter 7. Conclusions and further work 261

allow one to conclude propositional equality of objects from isomorphism might

give rise to an elegant syntactic formulation of coherent isomorphisms. Such a

notion of category is stable under the notions of functor and slice category, and

contains the particular example Full(U;El) if (U;El) is a universe with proposi-

tional equality as isomorphism as mentioned in Sect. 5.2.4. However, this universe

must appear as a primitive in type theory. In order to be able to \construct" it

from more general principles, some kind of \proof-relevant" quotient type former

would be needed of which this universe would be an instance.

This leads us to another important question which has only been marginally

addressed in this thesis: the expressiveness of the \source type theories" with

extensional concepts w.r.t. to the setoid models in which they are interpreted. It

seems that for every setoid in the model there exists an isomorphic one which is

taken on by the interpretation function and that every section of de�nable families

is de�nable. This would work by exhibiting a given setoid as the quotient of its

�

set

component by its �

rel

-component. The resulting relation on the quotient

type will, however, only be equivalent (not equal) to the original one, hence the

isomorphism. Such a completeness result (if it holds) would not be all too useful

since we still do not know which types and terms are de�nable. So what one would

really like to have is an overview over the principles and rules (like countable choice

or compatibility of quotients with exponentiation) which are valid in the setoid

models.

More specially, the meta-theory of quotient types should be studied more thor-

oughly. We have made some attempts at that in the course of the examples in

Sect. 6.5, but these were far from exhaustive. For instance, it would be interesting

to shed some light on the role of e�ectiveness of quotient types in applications.

The interpretability of type formers in the setoid models ought to be studied

from a more general perspective. For instance one would like to know whether

the di�culties with interpreting inductive types and universes in S

1

are inherent

or stem from a awed de�nition of the model. After two years of experience with

setoid interpretation the author tends towards the �rst alternative, but this is of

course only a personal impression.

Appendix A

Lego context approximating S

0

Below is a sequence of Lego declarations which simulates quotient types, proof-

irrelevance, and functional and propositional extensionality as supported by S

0

,

cf. App. B. This code is slightly more general than S

0

as Lego supports an in�nite

hierarchy of universes. It should, however, be possible to interpret the code using

the method described in Sect. 5.1.8. To be absolutely safe, one can of course avoid

the use of Lego universes when working with quotient types. The code does not

contain subset types as those can be simulated by �-types and it does not support

the non-standard operations extend and choice as the syntactic restrictions for

those cannot be stated in Lego. A version of this code extended by proofs of certain

properties such as e�ectiveness of quotient types is part of the Lego distribution.

Notice that Q refers to Leibniz equality.

A.1 Extensionality axioms

$[Bi Imp:fX,Y:Propg(X->Y)->(Y->X)->Q X Y]; propositional extensionality

$[Pr Ir:fX:Propgfx,y:XgQ x y]; proof irrelevance

$[Ext:fA:Type(0)gfB:A->Type(0)gfU,V:fa:AgB ag

(fa:AgQ (F a)(G a))->Q F G]; functional extensionality

262

Appendix A. Lego context approximating S

0

263

A.2 Quotient types

[A|Type(0)][R:A->A->Prop]; all declarations are relative to A and R

$[QU : Set // R]; Q-Form. //R indicates the dependency of QU on R

$[QU class:A->QU//R]; Q-Intro

$[QU Ax:fa1,a2:Ag(R a1 a2) -> Q (QU class a1) (QU class a2)]; Q-Ax

$[QU Elim:fC|Setgff:A->Cg Q-Elim

(fa1,a2:Ag(R a1 a2) -> (Q (f a1) (f a2))) -> QU -> C];

$[QU Ind:fP:QU->Propg(fa:AgP(QU class a)) -> fq:QUgP q]; Q-Ind

[[C|Set][f:A->C][H:fa1,a2:Ag(R a1 a2) -> Q (f a1) (f a2)][a:A] Q-Comp

QU it f H (QU class a) ==> f a];

Discharge A; relativising the declarations to A and R

A.3 Further axioms

One may add axioms approximating the substitutivity property of Leibniz equality

(Prop. 5.1.8) and the special case of Prop. 4.6.7 where � = N. The correspond-

ing de�nitional equalities can, however, only be approximated by propositional

equalities, which hampers their e�cient use.

$[Q Subst:fA|Type(0)gfB:A->Type(0)gfa,a'|Ag(Q a a')->(B a)->(B a')];

$[Q Subst Comp:fA|Type(0)gfB:A->Type(0)gfa:Agfb:B ag

Q (Q Subst B (Q refl a) b) b];

$[extend : fP:Propg(P -> Nat) -> Nat];

$[extend Comp : fP:Propgff:P->Natgfp:PgQ (f p) (extend f)];

Appendix B

Syntax

For the convenience of the reader all of the rules appearing throughout this thesis

are summarised in this appendix. Notice that some of the rules are incompatible

with each other, e.g. Id-Uni-I and Univ-Id. Notice also that since the rules are

literally the same as in the text, some appear in abbreviated form and others do

not

Rules for TT

� `

Empty

� ` �

�; x : � `

Compr

�; x : � ` �

� ` �x : �:�

�-Form

� `M : �

� ` N : �

� ` Id

�

(M;N)

Id-Form

� `

� `N

N-Form

�; x:�;� `

�; x:�;� ` x : �

Var

� ` � = �

� `M : �

� `M : �

Conv

� ; x : � `M : �

� ` �x:�:M

�

: �x:�:�

�-Intro

� `M : �x:�:� � ` N : �

� ` App

�;�

(M;N) : � [x := N]

�-Elim

� `

� ` 0 :N

N-Intro-0

� `M :N

� ` Suc(M) :N

N-Intro-Suc

264

Appendix B. Syntax 265

� ; x:N ` �

� `M

z

: �[x := 0]

� ; x:N ; p:� `M

s

: �[x := Suc(x)]

� ` N :N

� ` R

N

�

(M

z

;M

s

; N) : �[x := N]

N-Elim

� `M : �

� ` Re

�

(M) : Id

�

(M;M)

Id-Intro

� ; x:�; y:� ; p : Id

�

(x; y) ` �

� ; x:� `M : � [x := x][y := x][p := Re

�

(x)]

� ` N

1

: �

� ` N

2

: �

� ` P : Id

�

(N

1

; N

2

)

� ` J

�;�

(M;N

1

; N

2

; P) : � [x := N

1

][y := N

2

][p := P]

Id-Elim-J

Equality rules|a selection

� ` �

� ` � = �

T-Refl

� ` � = �

� ` � = �

T-Sym

� ` � = � � ` � = �

� ` � = �

T-Trans

� `M =M

0

:N

� ` Suc(M) = Suc(M

0

) :N

C-Suc

� ` � = �

0

�; x:� ` � = �

0

� ` �x:�:� = �x:�

0

:�

0

C-Pi

` � = � � ` � = �

` �; x:� = �; y: �

C-Compr

� ` �x:�:� = �x: �

0

:�

0

�; x:� `M =M

0

: �

� ` �x:�:M

�

= �x:�

0

:M

0�

0

: �x:�:�

C-Abstr

Rules for sematically de�ned de�nitional equality (Sect. 4.7)

[[� jM]] = [[� j N]] 2 Sect([[� j �]])

� `M = N : �

Eq-Term

[[� j �]] = [[� j �]] 2 Fam([[�]])

� ` � = �

Eq-Type

[[�]] = [[�]] 2 Ob(C)

` � = �

Eq-Cont

Appendix B. Syntax 266

Computation rules. These are always understood under the premise that left and

right hand sides both have the indicated type.

� ` App

�;�

(�x:�:M

�

; N) =M [x := N] : � [x := N]

�-Beta

� ` R

N

�

(M

z

;M

s

; 0) =M

z

: �[x := 0]

Nat-Comp-Zero

� ` R

N

�

(M

z

;M

s

; Suc(N)) =

M

s

[x := N][p := R

N

�

(M

z

;M

s

; N)] : �[x := Suc(N)]

Nat-Comp-Suc

� ` J

�;�

(M;N;N;Re

�

(N)) =

M [x := N] : � [x := N][y := N][p := Re

�

(N)]

Id-Comp

Rules for �-types and unit type.

` 1

Unit-Form

? : 1

Unit-Intro

x:1 ` �[x] `M : �[?] ` N : 1

` R

1

�

(M;N) : �[N] ` R

1

�

(M; ?) =M

Unit-Elim/Comp

` � x:� ` � [x]

` �x:�:� [x]

�-Form

`M : � N : � [M]

` pair

�;�

(M;N) : �x:�:� [x]

�-Intro

p : �x:�:� [x] ` �[p]

x:�; y: � [x] `M [x; y] : �[pair

�;�

(x; y)] ` P : �x:�:� [x]

` R

�

�;�;�

(M;P) : �[P]

�-Elim

R

�

�;�;�

(M; pair

�;�

(N;O)) =M [N;O] : �[pair

�;�

(N;O)]

�-Comp

Rules for the extensional unit type

� `

� ` 1

E

Unit-Form

� `

� ` ? : 1

E

Unit-Intro

� `M : 1

E

� `M = ? : 1

E

Unit-Eq

Rules for the Calculus of Constructions

` Prop

Prop-Form

` S : Prop

` Prf(S)

Proof-Form

x: � ` S(x) : Prop

` 8x:�:S[x] : Prop

Prop-Intro

` Prf(8x:�:S[x]) = �x:�:Prf(S[x])

Prop-Eq

Appendix B. Syntax 267

Universes

` U

U-Form

`M : U

` El(M)

El-Form

` S : U x : El(S) ` T : U

`

^

�(S; T) : U

U-Intro-�

El(

^

�(S; T)) = �x: El(S):El(T)

U-Eq-�

`

^

N : U

U-Intro-N

` El(

^

N) = N

U-Eq-N

Peano's fourth axiom

� `M : Id

N

(0; Suc(0)) � ` �

� ` Peano

�

(M) : �

Peano-4

Further rules for the identity type

� ; x; y : � ; p : Id

�

(x; y) ` � [x; y; p]

� ` N

1

: � � ` N

2

: �

� `M : � [N

1

; N

1

;Re

�

(N

1

)]

� ` P : Id

�

(N

1

; N

2

)

� ` J

0

�;�

(M;N

1

; N

2

; P) : � [N

1

; N

2

; P]

Id-Elim-J

0

� ` � � `M : � � ` P : Id

�

(M;M)

� ` IdUni

�

(M;P) : Id

Id

�

(M;M)

(P;Re(M))

Id-Uni-I

� ` � � `M : �

� ` IdUni

�

(M;Re(M)) = Re(Re(M)) : Id

�

(M;M)

Id-Uni-Comp

� ` U; V : �x:�:�

�; x:� ` P : Id

�

(U x; V x)

� ` Ext

�;�

(U; V; P) : Id

�x:�:�

(U; V)

Ext-Form

�; x:� ` � [x]

� `M

1

;M

2

: �

� ` P : Id

�

(M

1

;M

2

)

� ` N : � [M

1

]

� ` Subst

�;�

(M

1

;M

2

; P;N) : � [M

2

]

Leibniz

Appendix B. Syntax 268

� ` Subst

�;�

(M;M;Re

�

(M); N) = N : � [M]

Leibniz-Comp

Rules for extensional type theory

� ` � � `M : � � ` N : �

� ` P : Id

�

(M;N)

� `M = N : �

Id-Defeq

� ` � � `M : � � ` N : �

� ` P : Id

�

(M;N)

� ` P = Re

�

(M) : Id

�

(M;N)

Id-Uni

� `M : �x:�:�

� `M = �x:�:M x : �x:�:�

�-Eta

Rules for TT

<

� `

I

M;N : � � `

I

P : Id

�

(M;N)

� `

I

<

�

(M;N; P) : �

<-Form

� `

I

<

�

(M;N; P) : �

� `

I

<

�

(M;N; P) = N : �

<-Eq

Rules for quotient types in TT

E

� ` � � ; x; x

0

:� ` �[x; x

0

]

� ` �=�

Q-E-Form

� `M :� � ` �=�

� ` [M]

�

:�=�

Q-E-Intro

� `M;N : � � ` H : �[M;N]

� ` [M]

�

= [N]

�

: �=�

Q-E-Eq

�; x:�=� ` � [x] �; x:� `M [x] : � [[x]

�

]

� ; x; x

0

:� ; p:�[x; x

0

] `M [x] =M [x

0

] : � [[x

0

]

�

]

� ` N : �=�

� ` plug

�

N inM : � [N]

Q-E-Elim

� ` plug

�

[N]

�

inM =M [N] : � [[N]

�

]

Q-E-Comp

Rules for quotient types in TT

I

� ` � � ; x; x

0

:� ` �[x; x

0

]

� ` �=�

Q-I-Form

� `M :� � ` �=�

� ` [M]

�

:�=�

Q-I-Intro

Appendix B. Syntax 269

� `M;N : � � ` H : �[M;N]

� ` Qax

�

(H) : Id

�=�

([M]

�

; [N]

�

)

Q-I-Ax

�; x:�=� ` � [x] �; x:� `M [x] : � [[x]

�

]

� ; x; x

0

:� ; p:�[x; x

0

] ` H : Id

� [[x

0

]

�

]

(Subst

�=�;�

(Qax

�

(p);M [x]) ; M [x

0

])

� ` N : �=�

� ` plug

�

N inM usingH : � [N]

Q-I-Elim

� ` plug

�

[N]

�

inM usingH =M [N] : � [[N]

�

]

Q-I-Comp

Proof irrelevance

� ` A : Prop � `M;N : Prf(A)

� ` Pr Ir(A;M;N) : Prf(M

L

=N)

Pr-Ir

Rules for subset types

` � ; x:� ` P : Prop

` fx:� jPg

fg-Form

`M : � ` H : Prf(P [M])

` (M)

H

: fx:� jPg

fg-Intro

`M : fx:� jPg

` wit(M) : �

fg-Wit

`M : fx:� jPg

` cor(M) : Prf(P [wit(M)])

fg-Cor

` wit((M)

H

) =M 2 � ` cor((M)

H

) = H 2 Prf(P [M])

fg-Beta

�; x:� ` � [x] Nprop

�; x:� ` P [x] : Prop

�; p: fx:� jP [x]g `M [p]: � [wit(p)]

� ` N :�

� ` extend

�;P;�

(M;N) : � [M]

fg-Elim-Nonprop

Same premises as fg-Elim-Nonprop and

� ` H : Prf(P [M])

� ` extend

�;P;�

(M;N) =M [(N)

H

] : � [N]

fg-Elim-Nonprop-Comp

Appendix B. Syntax 270

Extensional concepts in S

0

� ` A : Prop � ` M;N : Prf(A)

� ` M = N : Prf(A)

Pr-Ir

� ` P : Prop � ` Q : Prop � ` H : Prf(P , Q)

� ` Bi Imp(P;Q;H) : Prf(P

L

=Q)

Bi-Imp

� ` U; V : �x:�:�

�; x:� ` H : Prf(U x

L

= V x)

� ` Ext(H) : Prf(U

L

= V)

Ext

Quotient types in S

0

� ` � � ; s; s

0

:� ` R[s; s

0

] : Prop

� ` �=R

Q-Form

� `M :�

� ` [M]

R

:�=R

Q-Intro

� ` � � ; s:� `M [s] : � � ` N : �=R

� ; s; s

0

:� ; p: Prf(R[s; s

0

]) ` H : Prf(M [s]

L

=M [s

0

])

� ` plug

R

N inM usingH : �

Q-Elim

� ` plug

R

[N]

R

inM usingH = M [N] : �

Q-Comp

� ` M;N : � � ` H : Prf(R[M;N])

� ` Qax

R

(H) : Prf([M]

R

L

= [N]

R

)

Q-Ax

� ; x:�=R ` P [x] : Prop

� ; s:� ` H : Prf(P [[s]

R

])

� ` M : �=R

� ` Qind

R

(H;M) : Prf(P [M])

Q-Ind

Rules for the choice operator

� ` M : �=R

There exists a non-quotiented context

� and a type � and a term N with

� ` N : � and a syntactic context

morphism � ` f) � such that M �

N [f] and �=R � � [f].

� ` choice(M) : �

Q-Choice

Appendix B. Syntax 271

� ` choice([M]

R

) : � � `M : �

� ` choice([M]

R

) = M : �

Q-Choice-Comp

� `M : �=R � ` choice(M) : �

� ` [choice(M)]

R

= M : �=R

Q-Choice-Ax

Rules for the identity type on universes

� ` X;Y : U � ` F : Iso[X;Y]

� ` UnivId(X;Y; F) : Id

U

(X;Y)

Univ-Id

� ` F : Iso[X;Y] � `M : El(X)

� ` Subst

U;El

(X;Y;UnivId(F);M) = F M : El(Y)

Univ-Id-Eq

� ` UnivId(X;X; id[X]) = Re

U

(X) : Id

U

(X;X)

Univ-Id-Eq'

Rules for squash types

� ` �

� ` 2�

2-Form

� `M : �

� ` 2M : 2�

2-Intro

� ` M;N : 2�

� ` 2 ax(M;N) : Id

2�

(M;N)

2-Ax

� ` �; � �; x:� `M [x] : � � ` N : 2�

� ; x; x

0

:� ` H : Id

�

(M [x];M [x

0

])

� ` plug

2

N inM usingH : �

2-Elim

� ` plug

2

2N inM usingH : �

� ` 2 Eq(M;N;H) : plug

2

2N inM usingH = M [N] : �

2-Eq

Axioms of Choice and Unique Choice

� ` � � ` �

� ` (8x:�:9y:�:R[x; y]) ! (9f :�! �:8x:�:R[x; f x]) true

IAC

� ` � � ` P : Prf(9x:�:8y:�:x

L

= y)

� ` AC!(P) : �

AC!

Appendix C

A glossary of type theories

We use various type theories sometimes in parallel, so that the following summary,

which gives the name or symbol of each relevant type theory together with a brief

description and a reference to its �rst appearance in the text, may be helpful.

TT, core type theory: Dependent type theory with dependent products, sums

natural numbers, unit type, and identity types. (p. 30)

Calculus of Constructions: A part of TT together with an impredicative uni-

verse. In the C.o.C. propositional equality may be de�ned as Leibniz equality (see

2.3.4). It is generally weaker than the identity type; in S

0

(see below) the two are,

however, equivalent. (p. 30)

TT

I

: The type theory TT together with the extensional concepts of functional

extensionality and uniqueness of identity. The elimination operator J is replaced

by the Leibniz principle Subst for convenience. The extensional concepts are

merely assumed as constants. (p. 90)

TT

E

: The type theory TT together with the equality reection rule which identi-

�es de�nitional and propositional equality. Also called \extensional type theory".

(p. 90)

272

Appendix C. A glossary of type theories 273

TT

<

: Extension of TT

I

with an intensional counterpart to equality reection

(\<"). For every derivable judgement in TT

E

there exists a decoration of this

judgement with Subst and < derivable in TT

<

. (p. 93)

D: Type theory de�ned by the deliverables model|a kind of subset interpret-

ation of the Calculus of Constructions. D supports all type and term formers of

the C.o.C. and in addition proof-irrelevance and subset types. The symbol D is

also used for the deliverables model itself. (p. 130)

S

0

: Type theory de�ned by the \non-dependent" setoid model in Sect. 5.1 (also

called S

0

). It includes the C.o.C. and supports proof-irrelevance, subset types,

functional and propositional extensionality, and quotient types. The extensional

concepts in S

0

are based on Leibniz equality which in S

0

is equivalent in strength

to the identity type. S

0

does not support universes, except for the impredicative

universe of propositions. There exists an extension of S

0

which makes universes

available, but extensional concepts are then restricted to types inside the universe,

see Sect. 5.1.8. (p. 160)

S

1

: Type theory de�ned by the \dependent" setoid model in Sect. 5.3. It sup-

ports all type and term formers of TT

I

including functional extensionality based

on the identity type. Probably quotient types are also supported. Unlike S

0

the

type theory S

1

caters for proper type dependency, however, it is not clear whether

a universe is supported. (p. 212)

Source type theory: Type theory de�ned by a syntactic model, e.g. S

1

or D.

Target type theory: Type theory used to construct a syntactic model. Usually

TT or the C.o.C.

Appendix D

Index of symbols

The following summarises the mathematical symbols used throughout the thesis

together with a brief explanation and a reference to their �rst appearance in the

text.

�

op

opposite category 42

Sets category of sets and functions 42

Subst substitution operator for identity types 78

Id identity type, propositional equality 20

Re reexivity operator for id. types (canon-

ical element)

79

Sym symmetry operator for id. types 79

Trans transitivity operator for id. types 79

Resp compatibility of id. types with function

application

79

J elimination operator for id. types 21

IdUni uniqueness of identity proofs 80

` judgement relation in type theory 19

� ` � true judgement expresing that � is non-

empty

23

� composition (of morphisms, substitu-

tions, and terms)

27

id identity morphism 35

274

Appendix D. Index of symbols 275

N type of natural numbers 20

0;Suc canonical elements of N, zero and

successor

21

R

}

elimination operator for type former } 21

� syntactic identity 24

Int type of positive and negative integers 173

Real type of real numbers 182

Str(�) type of streams over � 232

Hd

�

(�) �rst element of a stream 232

Tl(�) tail of a stream 233

CoIt coiterator for streams 233

� empty context 17

C a category, category of contexts 34

> terminal object, semantic equivalent to

the empty context

34

Ob(C) objects of category 38

� � � semantic context extension, \compre-

hension"

35

Fam(�) families over �, interpretation of types 35

Sect(�) sections of �, interpretation of terms 35

�ffg semantic substitution 35

p(�) display map 35

q(f; �) weakened substitution 35

M context morphism associated to section

M

35

Hd(f) last component of a semantic context

morphism

36

�

+

semantic weakening 44

Tel(�) telescopes over � 64

()

�

empty telescope over � 64

ev

�;�

evaluation morphism 48

Appendix D. Index of symbols 276

App semantic application operation 46

�

�;�

(M) semantic abstraction operator 46

[[�]] interpretation function 63

1 (extensional) unit type 29, 139

v

�

semantic counterpart to a variable 45

feg(x) Kleene application 39

Prop type of propositions 31

Prf(P) type of proofs of P 31

Prop semantic counterpart of Prop 57

Prf semantic counterpart of Prf 57

8 impredicative universal quanti�cation 31

);_;^;9; tt; ff logical connectives de�ned in terms of 8 31

� ` P true judgement expressing that Prf(P) in

non-empty

32

!

�

terminal projection 34

U type-theoretic universe 32

El(T) type of elements of T : U 32

�

set

underlying type of a

speci�cation/setoid/groupoid

128, 160, 207,188

�

type

component of a large setoid 184

�

pred

component of a deliverable 128

�

rel

relation component of a setoid/groupoid 160, 207, 188

�

reindex

component of a family of

setoids/groupoids

208, 192

�

re

reexivity of setoids/groupoids 207, 189

�

sym

symmetry of setoids/groupoids 208,189

�

trans

transitivity of setoids/groupoids 208,189

�

ax

axiom for �

reindex

208

�

fun

function component 128, 207, 190

�

el

element component 211

�

resp

compatibility component 128, 207, 190, 192

Appendix D. Index of symbols 277

f� j Pg subset type 145

(M)

P

subset introduction 146

wit subset elimination 146

cor subset elimination 146

extend non-standard operator for subset types 149

[M]

R

quotient introduction 172, 111

�=R quotient type 172, 111

plug quotient elimination (lifting) 172, 111

Qax equality axiom for quotients 172, 111

Qind induction for quotients 172

M

L

=N Leibniz equality 31

L Eq(M;N) semantic Leibniz equality 167

Pr Ir operator for proof irrelevance 143

Bi Imp operator for propositional extensionality 168

Ext operator for functional extensionality 84

< intensional counterpart of equality

reection

93

`

I

judgement relation for TT

I

91

`

E

judgement relation for TT

E

91

j�j interpretation of TT

I

in TT

E

91

�

conn

connectedness relation 208

� ` f) � syntactic context morphism 26

1

E

extensional unit type 139

2 squash type and term former 220

? least element in a domain 236

?

�

inhabitant of Id(0; 1) ! � 244

W

least upper bound 227

Bibliography

[1] Stuart Allen. A non-type-theoretic account of Martin-L�of's types. In Sym-

posium on Logic in Computer Science, 1987.

[2] Thorsten Altenkirch. Constructions, Normalization, and Inductive Types.

PhD thesis, University of Edinburgh, 1994.

[3] Thorsten Altenkirch. Proving strong normalization of CC by modifying

realizability semantics. In Henk Barendregt and Tobias Nipkow, editors,

Types for Proofs and Programs, Springer LNCS 806, pages 3{18, 1994.

[4] Thorsten Altenkirch, Zhaohui Luo, et al. Equality for categories. E-mail,

Apr.{Sep. 1990. Unpublished.

[5] Michael Barr and Charles Wells. Toposes, Triples and Theories. Springer,

1985.

[6] Michael Beeson. Foundations of Constructive Mathematics. Springer, 1985.

[7] J. B�enabou. Fibred categories and the foundations of naive category theory.

Journal of Symbolic Logic, 50:10{37, 1985.

[8] J. B�enabou. Th�eorie des ensembles empiriques. Cahiers de po�etique com-

par�ee, MEZURA, No. 17 & 21, Institut National des Langues et Civilisations

Orientales, 2, rue de Lille, 75007 Paris, 1990.

[9] Errett Bishop and Douglas Bridges. Constructive Analysis. Springer, 1985.

278

Bibliography 279

[10] N. Bourbaki. El�ements de math�ematique, Livre I, Th�eorie des ensembles|

fascicule de r�esultats. Hermann, Paris, 1964.

[11] Rod Burstall. Programming with Modules as Typed Functional Program-

ming. In Proc. Inter. Conf. on Fifth Generation Computer Systems, Tokyo,

1984.

[12] Rod Burstall and Butler Lampson. Pebble, a kernel language for modules

and abstract data types. Information and Computation, 76:278{346, 1988.

[13] Rod Burstall and James McKinna. Deliverables: An approach to program

semantics in constructions. In Symposium on Mathematical Foundations of

Computer Science, 1993. also as LFCS technical report ECS-LFCS-91-133.

[14] A. Carboni. Some free constructions in realizability and proof theory.

Journal of Pure and Applied Algebra, to appear.

[15] J. Cartmell. Generalized Algebraic Theories and Contextual Categories.

PhD thesis, Univ. Oxford, 1978.

[16] Thierry Coquand. Metamathematical investigations of a calculus of con-

structions. In Piergiorgio Odifreddi, editor, Logic and Computer Science,

pages 91{118. Academic Press Ltd., 1990.

[17] Thierry Coquand. Pattern matching with dependent types. In Workshop

on Logical Frameworks, Baastad, 1992. Preliminary Proceedings.

[18] Thierry Coquand. In�nite objects in type theory. In H. Barendregt and

T. Nipkow, editors, Types for Proofs and Programs. Springer, 1994. LNCS

806.

[19] Thierry Coquand and G�erard Huet. The Calculus of Constructions. Inform-

ation and Computation, 76:95{120, 1988.

[20] R. Crole. Categories for Types. Cambridge University Press, 1993.

Bibliography 280

[21] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms and

Functional Programming. Pitman, 1986.

[22] Pierre-Louis Curien. Alpha-conversion, conditions on variables and categor-

ical logic. Studia Logica, 3:318{360, 1989.

[23] Pierre-Louis Curien. Substitution up to isomorphism. Fundamenta Inform-

aticae, 19:51{86, 1993.

[24] N. J. Cutland. An Introduction to Recursive Function Theory. Cambridge

University Press, 1980.

[25] N. G. de Bruijn. A survey of the project Automath. In J. P. Seldin and J. R.

Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus, and Formalism, pages 589{606. Academic Press, London, 1980.

[26] N. G. de Bruijn. Telescopic mappings in typed lambda calculus. Information

and Computation, 91(2):189{204, April 1991.

[27] Gilles Dowek et al. The COQ proof assistant user's guide, V5.6. Rapport

technique 134, INRIA Rocquencourt, Dec. 1991.

[28] Peter Dybjer. Inductive sets and families in Martin-L�of's type theory and

their set-theoretic semantics. In G. Huet and G. Plotkin, editors, Logical

Frameworks, pages 280{306, 1991.

[29] Peter Dybjer and Herbert Sander. A functional programming approach to

the speci�cation and veri�cation of concurrent systems. In Speci�cation and

Veri�cation of Concurrent Systems, pages 331{343. Springer, 1990. Work-

shops in Computing.

[30] Thomas Ehrhard. Une s�emantique cat�egorique des types d�ependants. Ap-

plication au Calcul des Constructions. PhD thesis, Universit�e Paris VII,

1988.

Bibliography 281

[31] Robert Constable et al. Implementing Mathematics with the Nuprl Develop-

ment System. Prentice-Hall, 1986.

[32] Solomon Feferman. Theories of �nite type. In Jon Barwise, editor, Handbook

of Mathematical Logic, chapter D.4. North-Holland, 1977.

[33] G. Huet and A. Sa��bi. Constructive category theory. Draft, presented at the

Joint CLICS-TYPES Workshop on Categories and Type Theory, Gothen-

burg, Jan 8{10, 1995.

[34] D.M. Gabbay and R.J.G.B. de Queiroz. Equality in labelled deductive sys-

tems and the functional interpretation of propositional equality. In P. Dekker

and M. Stokhof, editors, Proceedings of the Ninth Amsterdam Colloquium,

pages 547{565, 1994.

[35] Robin Gandy. On the axiom of extensionality I. Journal of Symbolic Logic,

21:36{48, 1956.

[36] Robin Gandy. On the axiom of extensionality II. Journal of Symbolic Logic,

24:287{300, 1959.

[37] Herman Geuvers and Benjamin Werner. On the Church-Rosser property for

expressive type systems and its consequences for their metatheoretic study.

In Proceedings of the 9th Annual IEEE Symposium on Logic in Computer

Science, 1994.

[38] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD

thesis, University of Edinburgh, 1994.

[39] Healfdene Goguen and Zhaohui Luo. Inductive data types: Well-ordering

types revisited. Technical Report ECS-LFCS-92-209, LFCS, April 1992.

[40] Robert Goldblatt. Topoi: The Categorial Analysis of Logic. North-Holland,

revised edition, 1984.

Bibliography 282

[41] R. Harper and J. C. Mitchell. On the type structure of Standard ML. ACM

Trans. Programming Lang. and Systems, 15(2):211{252, 1993. Earlier ver-

sion appears as \The Essence of ML" in Proc. 15th ACM Symp. on Principles

of Programming Languages, 1988, pp. 28{46.

[42] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the

phase distinction. In Conference record of the 17th ACM Symposium on

Principles of Programming Languages (POPL), pages 341{354, San Fran-

cisco, CA USA, 1990.

[43] Susumu Hayashi. Singleton, union, and intersection types for program ex-

traction. Information and Computation, 109(1/2):174{210, 1994.

[44] Martin Hofmann. Elimination of extensionality for Martin-L�of type theory.

In H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs.

Springer, 1994. LNCS 806.

[45] Martin Hofmann. A simple model for quotient types. In Proceedings of

TLCA '95, Edinburgh, Springer LNCS, 1995. To appear.

[46] Martin Hofmann. On the interpretation of type theory in locally cartesian

closed categories. In Proceedings of CSL '94, Kazimierz, Poland, September

1994. To appear as Springer LNCS.

[47] Martin Hofmann and Thomas Streicher. A groupoid model refutes unique-

ness of identity proofs. In Proceedings of the 9th Symposium on Logic in

Computer Science (LICS), Paris, 1994.

[48] Wolfgang Hornung. Entwicklung eines LEGO-Kontexts f�ur die Veri�kation

kategorieller Aussagen. Diplomarbeit. Universit�at Erlangen, 1992.

[49] G�erard Huet. Cartesian closed categories and �-calculus. In Guy Cousineau

et al., editors, Combinators and Functional Programming Languages, volume

242 of LNCS, pages 123{135. Springer, Berlin, Heidelberg, New York, 1985.

Bibliography 283

[50] J. M. E. Hyland. The e�ective topos. In A. S. Troelstra and D. van Dalen,

editors, The L. E. J. Brouwer Centenary Symposium, pages 165{216. North-

Holland, 1982.

[51] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts. Tripos theory. Mathem-

atical Proceedings of the Cambridge Philosophical Society, 88:205{232, 1980.

[52] Martin Hyland and Andrew Pitts. The Theory of Constructions: Categorical

Semantics and Topos-Theoretic Models. In Categories in Computer Science

and Logic. AMS, 1989.

[53] B. Jacobs, E. Moggi, and Th. Streicher. Relating Models of Impredicative

Type Theories. In D. Pitt et al., editor, Proc. Conf. Category Theory and

Computer Science, Paris, France, pages 197{218. Springer, LNCS vol. 530,

1991.

[54] Bart Jacobs. Quotients in simple type theory. manuscript.

[55] Bart Jacobs. Categorical Type Theory. PhD thesis, University of Nijmegen,

1991.

[56] Bart Jacobs. Comprehension categories and the semantics of type theory.

Theoretical Computer Science, 107:169{207, 1993.

[57] Gilles Kahn. The semantics of a simple language for parallel programming.

Information Processing, 74:471{475, 1974.

[58] Fran�cois Lamarche. A Proposal about Foundations I. manuscript.

[59] Joachim Lambek and Philip Scott. Introduction to Higher-Order Categorical

Logic. Cambridge University Press, 1985.

[60] Lars Halln�as. An intensional characterisation of the largest bisimulation.

Theoretical Computer Science, 53, 1987.

Bibliography 284

[61] Fran�cois Leclerc and Christine Paulin-Mohring. Programming with Streams

in COQ. A Case Study: The Sieve of Eratosthenes. In H. Barendregt and

T. Nipkow, editors, Types for Proofs and Programs. Springer, 1994. LNCS

806.

[62] A. Levy. Basic Set Theory. Springer-Verlag, 1979.

[63] Horst Luckhardt. Extensional G�odel Functional Interpretation. A Consist-

ency Proof of Classical Analysis, volume 306 of Lecture Notes in Mathemat-

ics. Springer, Berlin, 1973.

[64] Z. Luo. Program speci�cation and data re�nement in type theory. In S. Ab-

ramsky and T. S E. Maibaum, editors, TAPSOFT '91. Proccedings of the

International Joint Conference on Theory and Practice of Software Develop-

ment. Volume 1: Colloquium on Trees in Algebra and Programming. LNCS

493., pages 142{168, 1991.

[65] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, Uni-

versity of Edinburgh, July 1990.

[66] Zhaohui Luo. Type Theory, Logic, and Computer Science. Course notes for

the LFCS Postgraduate Course on type theory, January 1991.

[67] Zhaohui Luo. Computation and Reasoning. Oxford University Press, 1994.

[68] Zhaohui Luo and Robert Pollack. LEGO proof development system: User's

manual. Technical Report ECS-LFCS-92-211, LFCS, Computer Science

Dept, University of Edinburgh, 1992.

[69] Saunders Mac Lane. Categories for the Working Mathematician. Springer,

1971.

[70] Per Martin-L�of. A theory of types. manuscript, 1971.

Bibliography 285

[71] Per Martin-L�of. An intuitionistic theory of types: Predicative part. In H. E.

Rose and J. C. Sheperdson, editors, Logic Colloquium 1973, pages 73{118.

North-Holland, 1975.

[72] Per Martin-L�of. Intuitionistic Type Theory. Bibliopolis�Napoli, 1984.

[73] Per Martin-L�of. Mathematics of in�nity. In P. Martin-L�of and G. Mints,

editors, Proc. of COLOG '88, Tallinn, USSR, pages 146{197. Springer LNCS

vol. 417, 1988.

[74] Per Martin-L�of. Nondeterministic de�nitions in type theory. Lecture notes

by Peter Dybjer, March 1991.

[75] James McKinna. Deliverables: A Categorical Approach to Program Devel-

opment in Type Theory. PhD thesis, University of Edinburgh, 1992.

[76] Paul-Andr�e Mellies. Typed �-calculi with explicit substitutions may not

terminate. In Proceedings of TLCA '95, Edinburgh, LNCS, 1995. to appear.

[77] N. P. Mendler. � is cocontinuous. Manuscript.

[78] N. P. Mendler. Inductive De�nition in Type Theory. PhD thesis, Cornell

University, 1988.

[79] Nax P. Mendler. Quotient types via coequalisers in Martin-L�of's type theory.

in the informal proceedings of the workshop on Logical Frameworks, Antibes,

May 1990.

[80] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,

1991.

[81] John C. Mitchell and Gordon D. Plotkin. Abstract types have existen-

tial type. ACM Transactions on Programming Languages and Systems,

10(3):470{502, July 1988.

Bibliography 286

[82] Ieke Moerdijk and Saunders Mac Lane. Sheaves in Geometry and Logic. A

First Introduction to Topos Theory. Springer, 1992.

[83] Eugenio Moggi. Computational lambda calculus and monads. In 4th Sym-

posium on Logic in Computer Science. IEEE, 1989.

[84] Eugenio Moggi. A category-theoretic account of program modules. Math.

Struct. in Comp. Sci., 1(1):103{139, 1991.

[85] B. Nordstr�om, K. Petersson, and J. M. Smith. Programming in Martin-L�of's

Type Theory, An Introduction. Clarendon Press, Oxford, 1990.

[86] Adam Obtu lowicz. Categorical and algebraic aspects of Martin-L�of type

theory. Studia Logica, 3:299{317, 1989.

[87] Christine Paulin-Mohring. Extracting F

!

's programs from proofs in the

calculus of constructions. In Principles of Programming Languages (POPL),

pages 1{17. ACM, 1989.

[88] Christine Paulin-Mohring. Extraction de programmes dans le Calcul des

Constructions. PhD thesis, Universit�e Paris VII, 1989.

[89] Andrew Pitts. Categorical logic. In Handbook of Logic in Computer Science

(Vol. VI). Oxford University Press, 199? to appear.

[90] Gordon Plotkin. Generic notes on domains. Notes for lectures from several

terms at the University of Edinburgh, 1989-90.

[91] Randy Pollack. A formalisation of Tarski's �xpoint theorem in Lego. Part

of the Lego-distribution and personal communication.

[92] Eike Ritter. Categorical Abstract Machines for Higher-Order Typed Lambda

Calculi. PhD thesis, University of Cambridge, 1992.

[93] A. Salvesen and J. M. Smith. The strength of the subset type in Martin-L�of's

type theory. In IEEE Symposium on Logic in Computer Science, 1988.

Bibliography 287

[94] D. Sannella. Formal program development in Extended ML for the working

programmer. In Proc. 3rd BCS/FACS Workshop on Re�nement, Hursley

Park, 1990, pages 99{130. Springer Workshops in Computing, 1991.

[95] D. S. Scott. Identity and existence in intuitionistic logic. In M. P. Fourman,

C. J. Mulvey, and D. S. Scott, editors, Applications of Sheaves, pages 660{

696. Springer-Verlag, 1977.

[96] Robert A. G. Seely. Locally cartesian closed categories and type theory.

Mathematical Proceedings of the Cambridge Philosophical Society, 95:33{48,

1984.

[97] Jan Smith. The independence of Peano's fourth axiom from Martin-L�of's

type theory without universes. Journal of Symbolic Logic, 53(3), 1988.

[98] Thomas Streicher. A veri�cation method for �nite dataow networks with

constraints applied to the veri�cation of the alternating bit protocol. Tech-

nical Report MIP 8706, Universit�at Passau, 1987.

[99] Thomas Streicher. Correctness and Completeness of a Categorical Semantics

of the Calculus of Constructions. PhD thesis, Universit�at Passau, 1989.

[100] Thomas Streicher. Semantics of Type Theory. Birkh�auser, 1991.

[101] Thomas Streicher. Semantical Investigations into Intensional Type Theory.

Habilitationsschrift, LMU M�unchen, 1993.

[102] Alfred Tarski. A lattice-theoretical �xpoint theorem and its applications.

Paci�c Journal of Mathematics, 5:285{309, 1955.

[103] Paul Taylor. Recursive Domains, Indexed Category Theory, and Polymorph-

ism. PhD thesis, University of Cambridge, 1986.

[104] A.S. Troelstra. Aspects of constructive mathematics. In Jon Barwise, ed-

itor, Handbook of Mathematical Logic, chapter D.5, pages 973{1052. North-

Holland, 1977.

Bibliography 288

[105] A.S. Troelstra. On the syntax of Martin-L�of's type theories. Theoretical

Computer Science, 51, 1987.

[106] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, An In-

troduction, volume I. North-Holland, 1988.

[107] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, An In-

troduction, volume II. North-Holland, 1988.

[108] David Turner. A new formulation of constructive type theory. In P. Dybjer,

editor, Proceedings of the Workshop on Programming Logic, pages 258{294.

Programming Methodology Group, Univ. of G�oteborg, May 1989.

[109] F.W. von Henke, A. Dold, M. Grosse, H. Rue�, D. Schwier, and M. Strecker.

Construction and deduction methods for the formal development of software.

In Arbeitsberichte des Korso-Projekts. Springer LNCS, to appear 1995.

[110] P. L. Wadler. Comprehending monads. Mathematical Structures in Com-

puter Science, 2:461{493, 1992.

[111] Gavin C. Wraith. A note on categorical datatypes. In Proc. Conf. Category

Theory and Computer Science, Manchester, UK, pages 213{223. Springer

LNCS vol. 389, 1989.

