
The groupoid interpretation of type theoryMartin Hofmann and Thomas StreicherAugust 27, 19961 IntroductionMany will agree that identity sets are the most intriguing concept of intensionalMartin-L�of type theory. For instance, it may appear surprising that their ax-iomatisation as an inductive family allows one to deduce the usual propertiesof equality, notably the replacement rule (Leibniz' principle) which allows oneto conclude P (a0) from P (a) and a proof that a equals a0. Here, unlike in otherlogical systems, this holds for arbitrary families of sets P not necessarily corre-sponding to a predicate. This is not in con
ict with decidability of type checkingsince if a equals a0 and p : P (a) then one does not in general have p : P (a0), butonly subst(s; p) : P (a0) where s is the proof that a equals a0 and subst is de�nedfrom the eliminator for identity sets.It is now a natural question to ask whether these translation functionssubst(s;) actually depend upon the nature of the proof s or, more generally,the question whether any two elements of an identity set are equal. We will callUIP(A) (U niqueness of Identity Proofs) the following property. If a1; a2 areobjects of type A then for any two proofs p and q of the proposition \a1 equalsa2" there is another proof establishing equality of p and q. More generally, UIPwill stand for UIP(A) for all types A. Notice that in traditional logical formal-ism a principle like UIP cannot even be sensibly expressed as proofs cannot bereferred to by terms of the object language and thus are not within the scopeof propositional equality.The question whether UIP is valid in intensional Martin-L�of type theory wasopen for a while though it was commonly believed that UIP is underivable asany attempt for constructing a proof has failed (Coquand 1992; Streicher 1993;Altenkirch 1992). On the other hand, the intuition that a type is determinedby its canonical objects might be seen as evidence for the validity of UIP asthe identity sets have at most one canonical element corresponding to a proof ofre
exivity. Indeed, UIP is derivable in an extension of type theory based on thisintuition, namely type theory augmented with pattern matching as implementedin the Alf system (Coquand 1992; Altenkirch et al. 1994).In this paper we answer the question of derivability of UIP in pure typetheory in the negative by exhibiting a counter model. By the above, this modeldoes not validate pattern matching thereby providing a proof that the latter isnot conservative over traditional type theory.1

The model we give stands in sharp contrast to the abovementioned intuitionof types being determined by their canonical inhabitants. In the model a type Awill consist of a set jAj of objects together with (possibly empty) sets A(a1; a2)of \proofs" that a1; a2 2 jAj are propositionally equal. Although a closed termof type A will be modelled as an object of A an open term will not only mapobjects to objects but also equality proofs to equality proofs. Thus, an openterm is not fully determined by its behaviour on closed terms. The principleUIP can then be refuted by including a type in which the set A(a1; a2) has morethan one element for some a1; a2 2 jAj.The hard work consists of demonstrating that these mathematical objectscan indeed interpret all of Martin-L�of's type theory. It turns out that variousadditional structure has to be imposed for that purpose. In particular, we needfor each type a composition, identities, and inverses; that is to say functions� : A(a2; a3)�A(a1; a2)! A(a1; a3)id : A(a1; a1)()�1 : A(a1; a2)! A(a2; a1)for all objects a1; a2; a3 witnessing that propositional equality is an equivalencerelation. In order to interpret the various type and term formers it turns out thatthese operations must satisfy certain equations. Namely, composition must bean associative operation with neutral element id with inverses given by ()�1. Inother words every type will be a groupoid, i.e. a category with isomorphisms only.Open terms and dependent types will then be interpreted as certain functorstaking account of the fact that propositional equality is preserved by functionapplication.A posteriori this justi�es a view of propositional equality in type theoryas a notion of isomorphism. We exploit this view by exhibiting non-standardaxioms for propositional equality on universes which contradict UIP and patternmatching. These axioms are put to use in a new formalisation of categories intype theory in which isomorphic objects are propositionally equal.Independently, Fran�cois Lamarche (1991) has investigated the logical struc-ture of the category of groupoids with the motivation of �nding a logical systemin which classes of mathematical structures appear as types. He observed thata theory with type dependency arises as a natural candidate for an internallanguage of the category of groupoids. He gives interpretations of dependentfunction spaces and sums which agree essentially with ours.Parts of the material presented in this article have already been published bythe authors in (1993, 1994, 1995). The main purpose of the current version is tomake the material accessible to a wider audience and to serve as future reference.As opposed to the extended abstract (Hofmann and Streicher 1994) the modelconstruction is described here in full detail and also in more elementary terms.Furthermore, the syntactic extensions to pure type theory which have beensketched in (Hofmann 1995) are worked out here in detail. The applicationto formalisation of basic category theory and the analysis of interpretations ofuniverses are altogether new. 2

AcknowledgementsWe are indebted to Thorsten Altenkirch, Thierry Coquand, Peter Dybjer, PerMartin-L�of for numerous discussions on equality in type theory and to Fran�coisLamarche for explanations and discussions about the groupoid model. Thediagrams have been typeset using Paul Taylor's Latex package.2 SyntaxWe work in Martin-L�of's type theory formulated inside a Logical Framework asde�ned in Ch. 19 & 20 of (Nordstr�om, Petersson, and Smith 1990). However,we will use a slightly di�erent notation as will be explained below. This typetheory derives judgements of the following forms:� A type to mean that A is a type,� a : A to mean that a is an object of type A� A = B to mean that types A and B are de�nitionally equal,� a = a0 : A to meant that a and a0 are de�nitionally equal objects of typeA.All judgements are relative to a list of variable declarations of the formx1:A1; : : : ; xn:An where the variables x1; : : : ; xn are distinct and Ai type holdsunder the assumption x1:A1; : : : ; xi�1:Ai�1. Such lists of assumptions are calledcontexts and are ranged over by capital Greek letters �;�; : : : . One writes J [�](alternatively � ` J) to indicate that judgement J holds in context �. In theformal presentation (which we include as an appendix) the valid judgementsin context, i.e. under assumptions, are de�ned inductively; context validity isincluded as an auxiliary judgement. In the informal presentation below we onlyindicate the relevant part of a context.If A type and B type under [x:A] then the dependent function space (x:A)Bis a type. If b : B [x:A] then [x:A]b : (x:A)B. Conversely, if f : (x:A)B anda:A then f(a) : B[x:=a]. This typed abstraction constitutes the main di�erenceto the presentation in loc.cit.We have �-equality ([x:A]b) (a) = b[x:=a] : B[x:=a]and also �-equality [x:A]b(x) = b : (x:A)Bprovided x is not free in b.Iterated applications of the form f(a1)(a2) � � � (an) are written as f(a1; : : : ; an)where we take the freedom of omitting arguments which can be inferred fromlater ones.There is a special type Set containing names for certain types, the so-calledsets, as objects. Whenever A : Set then we have El(A) type, in particular, we3

can form the \generic" family El(A) type [A: Set]. It is common to omit the Eloperator, thus writing a:A instead of a:El(A). Nordstr�om et al. write a 2 A fora : El(A). We want to reserve the 2-symbol for membership in the metatheory.This machinery allows one to introduce set formers and term forming oper-ations (be they constructors or eliminators) simply as constants together withtheir de�nitional equalities. For example, the intensional identity sets are givenby the following constants.Id : (A:Set)(a1; a2:A)Setre
 : (A:Set)(a:A)Id(A; a; a)J : (A: Set)(C: (a1; a2:A)(s: Id(A; a1; a2))Set)(d : (a:A)C(a; a; re
(A; a)))(a1; a2:A)(s: Id(A; a1; a2))C(a1; a2; s)In addition, we impose the de�nitional equalityJ(A;C; d; a; a; re
(A; a)) = d(a) : C(a; a; re
(A; a)) Id-Cfor A;C; d; a of appropriate type. Note that J is called idpeel in loc.cit.. Accord-ing to our convention on omitting redundant arguments we will usually writeId(a1; a2) and re
(a) instead of Id(A; a1; a2) and re
(A; a), respectively.In addition to identity sets we also use �-sets, �-sets, disjoint union, naturalnumbers, and a universe. See the appendix for their formal de�nition. Follow-ing common practice, we write A ! B for �(A; [a:A]B) and and A � B for�(A; [a:A]B) if A and B are types or sets (in the case of �).The notion of equality induced by identity sets is called propositional equal-ity (as opposed to de�nitional equality). That is to say, two objects a1; a2 : Aare propositionally equal if Id(a1; a2) is inhabited. The main purpose of proposi-tional equality is that it can be assumed in contexts and thus allows for hypothet-ical equality reasoning. In particular, propositional equality can be establishedby induction.De�nitional equality, on the other hand, can only be established by pureequational reasoning, i.e. corresponds to the equational theory generated by thepostulated equality judgements.Accordingly, de�nitional equality is (at least in traditional cases) decidable,whereas propositional equality is not, as soon as one includes natural numbersand �-sets.By the congruence rules for de�nitional equality the latter always entails thepropositional one, but not necessarily vice versa.3 Syntactic considerations on identity setsThe elimination operator J is motivated by the view of Id(A; ;) as an in-ductively de�ned family with constructor re
. Accordingly, J permits one tode�ne an object of type (a1; a2:A)(s: Id(A; a1; a2)C(a1; a2; s) by prescribing itsbehaviour for arguments of canonical form, i.e. a1 = a2 = a and s = re
(A; a).4

In the presence of �-sets, this elimination operation J allows one to derivethe following replacement rule in the presence of �-sets.subst : (A:Set)(P : (a:A)Set)(a1; a2:A)(s: Id(a1; a2))P (a1)! P (a2)satisfying subst(re
(a); p) = pSee loc.cit. for the de�nition of subst.From subst one easily derives symmetry and transitivity of propositionalequality as well as congruence with respect to function application:sym : (A:Set)(a1; a2:A)Id(a1; a2)! Id(a2; a1)trans : (A: Set)(a1; a2; a3:A)Id(a2; a3)! Id(a1; a2)! Id(a1; a3)resp : (A: Set)(B:Set)(u: (a:A)B)(a1; a2:A)Id(a1; a2)! Id(u(a1); u(a2))Notice that we supply arguments to trans in the applicative order.We also have the following dependent version of resp.resp0 : (A: Set)(B: (a:A)Set)(u: (a:A)B(a))(a1; a2:A)(s: Id(a1; a2))Id(subst(s; u(a1)); u(a2))To derive resp0 the full power of J is needed; subst alone does not su�ce.3.1 Uniqueness of identity proofs (UIP)For most inductive sets it is possible show that arbitrary objects are proposi-tionally equal to canonical ones. For example, the following types are inhabited(n:N)Id(n; 0) + Id(n; succ(pred(n)))(f : �(A;B))Id(f; fun([x:A]apply(f; x)))There are several ways of stating an analogous property for identity sets. Weintroduce the following abbreviations.UIP def= (A:Set)(a1; a2:A)(s1; s2: Id(a1; a2))Id(s1; s2)UIP re
 def= (A: Set)(a:A)(s: Id(a; a))Id(s; re
(a))UIP tuple def= (A: Set)(a1; a2:A)(s: Id(a1; a2))Id(�([a1:A]�([a2:A]Id(a1; a2))) ; ha1; a2; si ; ha1; a1; re
(a1)i)Using J , one can show that UIP tuple is inhabited and that UIP re
(A) andUIP(A) are equivalent for each A:Set. See (Streicher 1993) for the proofs. He5

also explains that in the presence of UIP the eliminator J can be de�ned in termsof the derived operator subst thereby allowing for a very intuitive axiomatisationof propositional equality in terms of a uniqueness property of identity proofs anda type-theoretic pendant of Leibniz' principle stating that replacement of equalobjects preserves validity.It is also known (Coquand 1992) that an object of UIP can be constructedby pattern-matching.The main result of this paper consists of an interpretation of type theory inwhich UIP (Uniqueness of Identity Proofs) is not inhabited. A fortiori, UIP isnot derivable and, therefore, pattern-matching is not a conservative extensionof Martin-L�of type theory.3.2 De�nability of instances of UIPAlthough UIP is not derivable in general, instances UIP(A) for certain sets Aare inhabited. Hedberg (1995) has shown that this is in particular the case ifA admits a decidable equality, that is to say, if there is a function eq : A !A ! N such that Id(eq(a1; a2); 0) and Id(a1; a2) are equivalent. One can alsoshow that UIP is preserved by the set formers � and disjoint union. It is alsopreserved by the identity set former itself, provided one further assumes thatUIP applied to proofs by re
exivity gives back a proof by re
exivity. Below wewill demonstrate that UIP(�(A;B)) follows from UIP(A) and (a:A)UIP(B(a))under the assumption of an extensionality axiom. This gives UIP for all setsde�nable without universes.3.3 Alternatives to UIPStreicher (1993) gives another principle equivalent to UIP which in its formula-tion does not mention propositional equality of identity proofs:cong snd def= (A:Set)(B: (a:A)Set)(a:A)(b; b0:B(a))(s: Id(�(A;B); ha; bi ; ha; b0i))Id(B; b; b0)He also introduces an eliminator K for the family Id(A; a; a) [a:A]:K : (A:Set)(C: (a:A)(s: Id(A; a; a))Set)(d : (a:A)C(a; re
(A; a)))(a:A)(s: Id(A; a; a))C(a; s)satisfying K(d; re
(a)) = d(a). Using K an inhabitant of UIP may be con-structed.Both alternatives can be directly de�ned using pattern matching. It is anopen problem whether the converse is also true, i.e. whether pattern matchingforms a conservative extension of type theory augmented by K (or a constantof type UIP together with an appropriate conversion rule).
6

3.4 Propositional equality as isomorphismIt has been argued in (Hofmann 1995) that intensional type theory augmentedby UIP together with an extensionality axiom for �-sets can simulate exten-sional type theory whilst retaining decidability of type checking.On the other hand, we will demonstrate below that Martin-L�of's originalformulation of identity sets allows for the addition of axioms (inconsistent withUIP) expressing a view of propositional equality as a generalised notion of iso-morphism. Intuitively, these axioms state that for a universe U and A;B : Uthe identity set Id(U ; A;B) corresponds to the set of isomorphisms between Aand B. Such version of identity sets may be useful for a formulation of cate-gory theory inside type theory providing a formal underpinning for the commonpractice of considering isomorphic objects as equal.4 The groupoid interpretationAlthough the principle UIP turns out as being non-derivable, certain proposi-tional equalities between objects of identity sets can be established using J . IfA : Set and a1; a2 : A and s1; s2 : Id(a1; a2) then we write s1 =prop s2 to meanthat Id(Id(a1; a2); s1; s2) is inhabited.Proposition 4.1 1. If a1; a2 : A and s : Id(a1; a2) thentrans(s; re
(a1)) =prop strans(re
(a2); s) =prop strans(sym(s); s) =prop re
(a1)trans(s; sym(s)) =prop re
(a2)2. If a1; a2; a3; a4 : A and s1 : Id(a1; a2) and s2 : Id(a2; a3) and s3 : Id(a3; a4)then trans(s3; trans(s2; s1)) =prop trans(trans(s3; s2); s1)3. If A;B : Set and a1; a2; a3 : A and f : (a:A)B and s1 : Id(a1; a2) ands2 : Id(a2; a3) thenresp(f; re
(a1)) =prop re
(f(a1))resp(f; trans(s2; s1)) =prop trans(resp(f; s2); resp(f; s1))Proof. All of these follow straightforwardly using J . As an example we derivetrans(sym(s); s) =prop re
(a1) where s : Id(A; a1; a2). We putC def= [a1; a2:A][s: Id(a1; a2)]Id(trans(sym(s); s) ; re
(a1))We have J(A;C; d; a1; a2; s) : Id(trans(sym(s); s) ; re
(a1))where d def= [a:A]re
(Id(A; a; a); re
(A; a))7

The object d(a) has the required type C(a; a; re
(A; a)) because both sym(re
(a))and trans(re
(a); re
(a)) are de�nitionally equal to re
(a). This in turn followsfrom the de�nition of sym and trans in terms of subst. �These propositional equalities suggest that one can view a set as a categoryhaving as objects the objects of A and in which a morphism from a1 to a2is an object of Id(A; a1; a2), or rather an equivalence class of such objects bypropositional equality. Composition is then given by transitivity and re
exivitygives the identities. Symmetry, on the other hand, establishes that every suchmorphism is actually an isomorphism.A category in which every morphism is an isomorphism is called a groupoid.So the identity sets endow every set with a groupoid structure in a natural way.Furthermore, the equations under 4.1 (3) establish that a function f from A toB extends to a functor from A to B with morphism part given by resp(f;).Under this view the principle UIP translates into the statement that everysuch groupoid is in fact a trivial one with at most one morphism between any twoobjects. This suggests that a refutation of the principle UIP can be obtainedby way of an interpretation of type theory in which types are interpreted asarbitrary groupoids, provided one succeeds in ascribing appropriate meaning tothe type and set formers. We will do exactly this in the rest of this section.Our metalanguage for the construction of the interpretation is informal settheory augmented with Grothendieck universes or inaccessible cardinals. Weuse set theory merely for convenience; all our de�nitions can also be carriedout in extensional Martin-L�of type theory with universes which shows that ourconstructions do not depend upon the consistency of large cardinals. We assumesome basic knowledge of category theory, notably the concepts of category,functor, and natural transformation, see (Mac Lane 1971).4.1 GroupoidsA groupoid1 is a category � where all morphisms are isomorphisms.The groupoidstogether with functors between them form a (large) category GPD.4.1.1 ExamplesThe products and exponentials of groupoids qua categories are groupoids againso that GPD is cartesian closed. Recall that the objects of ��� are pairs (
; �)where
 2 � and � 2 � and that the objects of �) � are functors from � to�. For every setX the discrete category4(X) with only identities as morphismsis a groupoid|the discrete groupoid over X . If x 2 X we write ? rather thanidx for the 4(X)-morphism from x to x. Notice that we have ? : x ! y i�x = y. We remark that 4fhig is a terminal object in GPD denoted []. More1In universal algebra the term groupoid is sometimes used for a set with a binary operation.Our use of the term groupoid is in accordance with homotopy theory and category theory,cf. (Brown 1988). 8

generally, a groupoid will be called discrete if all its morphisms are identities.Note that up to isomorphism discrete groupoids are of the form 4(X).Every group G can be viewed as a one-object groupoid in the obvious way.Types (at least non-dependent ones) will be interpreted as groupoids, theirclosed terms as objects of groupoids. The rôle of the morphisms in a groupoidis to give meaning to propositional equality. Composition of these morphismsaccounts for transitivity, identity corresponds to re
exivity, and the inverses tosymmetry.Open terms are interpreted as functors between groupoids where the mor-phism part witnesses the preservation of propositional equality.Notation. We notationally identify a groupoid with its underlying set of ob-jects thereby writing
 2 � to mean that
 is an object of �. We write p�1 forthe inverse of morphism p.4.2 Families of groupoidsTo obtain a full-
edged interpretation of type theory we need to account fortype dependency, that is we have to de�ne a notion of a family of groupoidsindexed over a groupoid. This notion should be such that the usual type formerscan receive appropriate meaning and in particular such that the homset �(�;�)arises as a family of groupoids indexed over � � � thus providing meaning forthe identity types.Fortunately, category theory provides us with such a notion of dependency.A family of groupoids indexed over groupoid � is a functor A : � ! GPD.Notice that such a functor yields a groupoid A(
) for each
 2 � and moreovera functor A(p) : A(
) ! A(
0) whenever p :
 !
0. This will serve as inter-pretation of replacement and more generally of identity elimination. The factthat A itself is a functor ensures that the functors A(p) are compatible withthe groupoid structure of �, in particular, we have A(p) �A(p�1) = idA(
0) andA(p�1) �A(p) = idA(
), thus all the functors A(p) are actually isomorphisms ofgroupoids.4.2.1 NotationIf p :
 !
0 and a 2 A(
) then we write p � : A(
) ! A(
0) for the functorA(p).We write Ty(�) for the collection of families of groupoids indexed over �.When f : � ! � is a morphism in GPD and A 2 Ty(�) then the compositionA � f is an element of Ty(�). We use the notation Affg for this family. In thisway Ty extends to a contravariant \collection-valued" functor on GPD.4.2.2 ExampleIf � is a groupoid then a family of groupoids I� indexed over � � � is de�nedby I�(
1;
2) = 4(�(
;
0)) and I�((p1; p2))(q) = p2 � q � p�11 where pi :
i !
0i9

and q 2 I�(
1;
2). Notice thatI� = hom�(()�1;)where ()�1 : �op ! � is the obvious isomorphism between �op and �. Noticethat the restriction to groupoids is the minimal requirement for making homcovariant in both arguments.This family I� will be the interpretation of the family of identity set when� is the interpretation of a closed type. Below, we will generalise I� to familiesof groupoids.4.3 Objects of familiesLet A 2 Ty(�) be a family of groupoids over �. A (dependent) object M of Aconsists of the following data� an A(
)-object M(
) for each
 2 �,� for each morphism p :
 !
0 an A(
0)-morphism M(p) : p �(M(
)) !M(
0)such that M(id
) = idM(
)and M(p0 � p) =M(p0) � (p0 �M(p))Apart from the \adjustment" p0 � in the second equation required to make theright-hand side typecheck these laws express functoriality of M . After havingde�ned the semantic counterpart of context formation we will be able to identifydependent objects as corresponding to certain functors.We write Tm(A) for the collection of dependent objects of A. For functorf : � ! � the operation ffg : Ty(�) ! Ty(�) extends to dependent objects.If A 2 Ty(�) and a 2 Tm(A) then affg 2 Ty(Affg) is given by composing thecomponents of a with f in the obvious way.4.4 Category-theoretic semanticsOur plan is to organise groupoids and families of groupoids into a model ofdependent type theory, namely a category with families (CwF). This notion ofmodel was invented by Dybjer, see (Dybjer 1996), and subsequently used byMartin-L�of (Per Martin-L�of 1995). Our reference for CwFs is the survey article(Hofmann 199). Let us review here that a CwF consists of the following data.� A category C of contexts and substitutions with terminal object [] corre-sponding to the empty context.� A collection-valued functor Ty : Cop ! Set associating with each context� the collection of types depending on it. If f : �! � and A 2 Ty(�) onewrites Affg for Ty(f)(A). The type Affg corresponds to the substitutionof f into A. 10

� For each � 2 C and A 2 Ty(�) a collection of terms Tm(�; A) togetherwith a substitution function Tm(f;A) : Tm(�; A) ! Tm(�; Affg) func-torial in f : �! � in the obvious sense.� For each A 2 Ty(�) a so-called context extension �:A which has theproperty that the homset C(�;�:A) and f(f;M) j f : � ! � and M 2Tm(�; Affg)g are isomorphic naturally in �.� Operations corresponding to the desired type, set, and term formers.We have already de�ned the category of contexts, namely GPD, and the collec-tions Ty and Tm together with the required substitution operations.4.5 Context extensionIf A 2 Ty(�) is a family of groupoids the context extension �:A is the totalcategory of the co-�bration obtained by applying the Grothendieck constructionto A. In more explicit terms the groupoid �:A takes the following form.The objects of �:A are pairs (
; a) where
 2 � and a 2 A(
). A mor-phism in �:A from (
; a) to (
0; a0) is a pair (p; q) where p 2 �(
;
0) andq 2 A(
0)(p � a; a0). The composition of (p; q) : (
; a) ! (
0; a0) and (p0; q0) :(
0; a0) ! (
00; a00) is de�ned as (p0 � p; q0 � (p � q)). The identity at (
; a) is(id
 ; ida). The inverse of (p; q) : (
; a) ! (
0; a0) is (p�1; p�1 � q�1) : (
0; a0) !(
; a). The veri�cations are left to the reader.The projection sending (
; a) to
 and (p; q) to p is a morphism of groupoidsfrom �:A to �. It is called the canonical projection associated to A and isdenoted pA : �:A! �.In order that �:A indeed captures context extension we need a bijectivecorrespondence between the setf(f;M) j f : �! � andM 2 Tm(Affg)gand the homset GPD(�;�:A). Given f : �! � and M 2 Tm(Affg) we de�nehf;MiA : �! �:A by hf;MiA(�) = (f(�);M(�))hf;MiA(p) = (f(p);M(p))To obtain an inverse we �rst de�ne a semantic analogue to the sequent �; x:A `x : A as follows. A dependent object vA 2 Tm(AfpAg) is given byvA(
; a) = avA(p; q) = qNotice that AfpAg 2 Ty(�:A).Now, if h : �! �:A then we have pA�h : �! � and vAfhg 2 Tm(AfpA�hg)It is routine that these data establish the required bijective correspondencenatural in �. 11

We have established that groupoids and families of groupoids form an in-stance of a CwF.It remains to identify dependent function spaces and an appropriate universeSet, as well as, interpretations of the set formers, in particular the identity sets.We treat these issues in order.4.6 Dependent function spaceTo each dependent object M 2 Tm(A) we can associate a functor M : � !�:A by M(
) = (
;M(
)) and M(p) = (p;M(p)). We have pA � S = id�.Conversely, given a section f : � ! �:A of pA, i.e. pA � f = id� then we havef(
) = (
;M(
)) and f(p) = (p;M(p)) for a uniquely determined M 2 Tm(A).This correspondence enables us to view Tm(A) (for A 2 Ty(�)) not merely asa set, but as a groupoid. A morphism � from termM to termN is an assignmentof an A(
)-morphism �
 :M(
)! N(
) such that the family �
 := (id
 ; �
) isa natural transformation from M to N , i.e. for every p :
 !
0 the followingdiagram commutes M(
) M(p)- M(
0)N(
)�
? N(p)- N(
0)?� 0
Now suppose that A 2 Ty(�) and B 2 Ty(�:A). We wish to de�ne a family�LF(A;B) 2 Ty(�) together with additional structure to interpret applicationand abstraction. In order to avoid lengthy and rather unreadable calculationswe will only give the de�nitions and leave the straightforward veri�cations tothe reader.If
 2 � let B
 2 Ty(A(
)) be the family of groupoids over the groupoidA(
) given by B
(a) = B(
; a)B
(p)() = (id
 ; p) �Notice that B
 = Bf
̂g where
̂ : A(
)! �:A is the functor sending a to (
; a)and p : a! a0 to (id
 ; p).Now we put�LF(A;B)(
) = Tm(B
) considered as a groupoidIf p :
 !
0 and M 2 Tm(B
) then (p �M) 2 Tm(B0
) is given by(p �M)(a 2 A(
0)) = (p; id) �M(p�1 � a)(p �M)(q : a! a0) = (p; id) �M(p�1 � q)If M;M 0 2 Tm(B
) and � : M ! M 0 is a natural transformation then p � � :p �M ! p �M 0 is de�ned by(p � �)a = (p; id) � �p�1 � a12

for a 2 A(
0).4.6.1 Abstraction and applicationSuppose thatM 2 Tm(B). We de�ne its abstraction �A;B(M) 2 Tm(�LF(A;B))on objects by �A;B(M)(
)(a) =M(
; a)�A;B(M)(
)(q) =M(id
 ; q)If p :
 !
0 then we need a natural transformation�A;B(M)(p) : p ��A;B(M)(
)! �A;B(M)(
0)At object a 2 A(
0) it is given by M(p; ida).Conversely, if M 2 Tm(�(A;B)) we de�ne a dependent object ��1A;B 2Tm(B). Its object part is given by��1A;B(M)(
; a) =M(
)(a)For the morphism part assume p :
 !
0 and q : p �a! a0. We de�ne��1A;B(M)(p; q) =M(
0)(q) � (id
0 ; q) �M(p)p � aWe claim that��1A;B(M)(p; q) : (p; q) ���1A;B(M)(
; a)! ��1A;B(M)(
0; a0)as required. To see this, �rst note thatM(
0)(q) : (id
0 ; q) �M 0(
0)(p � a)!M 0(
0)(a0)because q : p � a! a0. On the other hand M(p) : p �M(
)!M(
0), thusM(p)p � a : (p; ida0) �M(
)(a)!M 0(
0)(p � a)as p�1 � p � a = a. The claim follows by (id
0 ; q) � (p; ida0) = (p; q).Note that we can de�ne application of M 2 Tm(�(A;B)) to N 2 Tm(A) as��1A;B(M)fNg.Rather than de�ning an object of a family �LF(A;B) we will often de�nean object of B instead. This will be referred to as \currying".4.7 The universe of setsLet V be a universe in the metalanguage which is closed under dependent func-tion space, dependent sum, and inductive de�nitions. If our metalanguage ischosen to be axiomatic set theory such universe may be chosen either as aGrothendieck universe (Mac Lane 1971) or V� for � an inaccessible cardinal(Luo 1994). If we use extensional Martin-L�of type theory as a metalanguagethen V will be a type-theroetic universe with the required closure properties.13

Call a groupoid � V-small, or small for short, if both its collection of objectsand its homsets lie in V . Let us write Gpd for the groupoid which has as objectsthe small groupoids and only isomorphisms of groupoids as morphisms. The(non-full) inclusion from Gpd to GPD de�nes a family El 2 Ty(Gpd).The groupoid Gpd together with its associated family El serves as the inter-pretation of the type Set and its associated \invisible" El operator. Notice that,if A : �! Gpd then ElfAg is actually equal to A. Therefore, it is appropriateto introduce the notation Se(�) for the homset �! Gpd where Se(�) � Ty(�).4.8 Interpretation of the syntaxThe structure exhibited so far is su�cient to interpret the Logical Framework,i.e. the dependent function spaces and the universe Set. This means that wehave a unique compositional assignment [[�]] which maps� a well-formed contexts � to a groupoid [[�]],� a type A [�] to a family of groupoids [[A [�]]] 2 Ty([[�]]),� an object a : A [�] to a dependent object [[a : A [�]]] 2 Tm(A [�]),in such a way that derivable equality judgements are validated. More explicitly,this means that� [[A [�]]] = [[A0 [�]]], whenever A = A0 [�] is derivable,� [[a : A [�]]] = [[a0 : A [�]]], whenever a = a0 : A [�].Notice that if A : Set [�] then we have [[A : Set [�]]] 2 Se([[�]]) by composition-ality. The same goes for dependent function spaces which are interpreted by�LF(; ;).In order to extend this interpretation to a hierarchically2 structured equa-tional theory such as in particular Martin-L�of set theory we have to assign toeach constant of type A an element of [[A]] in such a way that the requiredde�nitional equalities are validated.In de�ning these semantic constants we will use type-theoretic syntax todenote semantic entities, thereby omitting semantic brackets.4.9 Dependent function spaces and sumsSince the dependent function space of a small family of groupoids over a smallgroupoid is again small, we immediately obtain an interpretation of �-sets.To interpret �-sets we need an element� : (A: Set)(B: (a:A)Set)SetBy currying, this amounts to de�ning a small family over the groupoid � :=[A:Set; B: (a:A)Set]. We will use � as a black box and only use the fact that2The type of a constant may depend on previously declared constants.14

its two components arise as small families A 2 Se(�) and B 2 Se(�:A) byprojection.We have to de�ne a small family �(A;B) 2 Se(�). If
 2 � let B
 2 Se(A(
))be de�ned as in Section 4.6.The family �(A;B) 2 Ty(�) is now de�ned as follows.�(A;B)(
) = A(
):B
p �(a; b) = (p � a ; (p; idp � a) � b)In order to give meaning to pairing and elimination it is su�cient, albeit notnecessary, to exhibit an isomorphism between �:�(A;B) and �:A:B. But thesetwo groupoids are identical up to restructuring of parentheses. That is to saythe isomorphism sends (
; a; b) to (
; (a; b)) and vice versa and similarly formorphisms.4.10 Identity setsBefore embarking on the precise de�nition of identity sets we motivate the mainidea by assuming that the ambient context is empty. So let A be a groupoid. Theinterpretation of Id(A) arises as the family IA 2 Ty(A�A) as de�ned in 4.2.2.Recall that IA(a1; a2) = A(a1; a2) and IA(q1; q2)(s) = q2 � s � q�11 . Re
exivityis interpreted as the dependent object which sends a 2 A to re
(a) := ida 2A(a; a). If q : a! a0, thenIA(q; q)(re
(a)) = q � ida � q�1 = ida0 = re
(a0)Therefore, re
 is indeed a dependent object of the family IA(a; a) [a:A].For identity elimination let C be a family over the groupoid� := [a1; a2:A; s: IA(a1; a2)]The groupoid � has as objects triples (a1; a2; s) where s 2 A(a1; a2). A �-morphism from (a1; a2; s) to (a01; a02; s0) amounts to a pair (q1; q2) where qi :ai ! a0i with IA(q1; q2)(s) = s0, i.e. q2 � s = s0 � q1. Notice that, therefore, � is(isomorphic to) the arrow category A!.In order to interpret J(A;C) one has to provide a uniform way of extendingan object d of (a:A)C(a; a; re
(a)) to a dependent object J(A;C; d) of C suchthat J(A;C; d)(a; a; re
(a)) = d(a). The key to the interpretation of J(A;C) isthe observation that for any object (a1; a2; s) we have(ida1 ; s) : (a1; a1; ida1)! (a1; a2; s)because a1 ida1 - a1a1ida1? s - a2?s15

commutes. Therefore, we can putJ(A;C; d)(a1; a2; s) = (ida1 ; s) � d(a1)The morphism part of J is de�ned analogously.For those familiar with �brations we remark that the extension J(A;C; d)depends crucially on the morphism part of C, i.e. on the choice of a splitting ofC when viewed as a �bration of groupoids. Therefore, it seems unlikely that itcan be characterised by a universal property.4.10.1 The identity set formerTo interpret identity sets in full generality we need an elementId 2 Tm((A:Set)(a; a0:A)Set)By currying this amounts to de�ning a small family over the groupoid [A:Set;a1:A; a2:A]. This groupoid has as objects triples (A; a1; a2) where A is a smallgroupoid and a1; a2 are objects of A. A morphism from (A; a1; a2) to (A0; a01; a02)is a triple (p; q1; q2) where p : A ! A0 is an isomorphism of groupoids, i.e.p 2 Gpd (A;A0), and qi : p(ai) ! a0i in A0. Note that El(p)(ai) = p(ai) thuspermitting us to write also p(x) instead of p �x.The family Id over [A:Set; a1:A; a2:A] is now given byId(A; a1; a2) = 4(A(a1; a2))Id(p; q1; q2)(s) = q2 � p(s) � q�11 2 Id(A0; a01; a02)where p : A! A0 and qi 2 A0(p(ai); a0i) and s 2 Id(A; a1; a2) = A(a1; a2).4.10.2 Re
exivityWe de�ne a dependent objectre
 : (A:Set)(a:A)Id(A; a; a))Again, by currying this amounts to giving a dependent object of the familyIddiag := Id(A; a) [A:Set; a:A] (over the groupoid [A:Set; a:A]). Let us makethe involved groupoids explicit. The groupoid [A:Set; a:A] has as objects pairs(A; a) where A is a small groupoid and a 2 A. A morphism from (A; a) to(A0; a0) is a pair (p; q) where p : A ! A0 and q 2 A0(p(a); a0). Furthermore, wehave Iddiag(A; a) =4(A(a; a)) and if s 2 A(a; a) then (p; q) � s = q � p(s) � q�1.The object part of re
 is now given byre
(A; a) = ida 2 A(a; a)Now since Iddiag is discrete the de�nition of the morphism part of re
 reducesto checking that q � p(re
(A; a)) � q�1 = re
(A0; a0)This in turn is immediate by by functoriality of p and the fact that q�1 is aninverse of q. 16

4.10.3 Identity eliminationWe seek a global element of the following groupoid.(A:Set)(C: (a1; a2:A; s: Id(A; a1; a2))Set)(d : (a:A)C(a; a; re
(A; a)))(a1; a2:A)(s: Id(A; a1; a2))C(a1; a2; s)By currying this amounts to de�ning a dependent objectJ 2 Tm(C(a1; a2; s) [�; a1:A; a2:A; s: Id(A; a1; a2)])where� = [A : Set; C : (a1; a2:A; s: Id(A; a1; a2))Set; d : (a:A)C(a; a; re
(A; a))]and A;C; d refer to the respective components of �. Note that we have A 2Se(�), a family C 2 Se([�; a1; a2:A; s: Id(A; a1; a2)]), and a dependent object dof C(a; a; re
(A; a)) [�; a:A] via projection (and uncurrying in the case of d).The object part of J is given as follows. Let u = (
; a1; a2; s) be an objectof [�; a1; a2:A; s: Id(A; a1; a2)]. Putf(u) := (id
 ; ida1 ; s; ?)Notice that f(u) : (
; a1; a1; re
(A; a1))! (
; a1; a2; s)as (s; ida1) � re
(A; a1) = s � re
(A; a1) � id�1a1 = s. Now recall that d(
; a1) 2C(
; a1; a1; re
(A; a1)); so we are led to de�neJ(u) := f(u) � d(
; a1) 2 C(
; a1; a2; s)We come to the morphism part. Let u = (
; a1; a2; s) and u0 = (
0; a01; a02; s0)be objects of [�; a1; a2:A; s: Id(A; a1; a2)] and let h = (p; q1; q2; ?) : u ! u0. Inother words p :
 !
0 and qi : p �(ai)! a0i andq2 � (p � s) = s0 � q1 (1)We have to de�ne a morphism J(h) : h � J(u)! J(u0) in C(u0). We claim thatJ(h) := f(u0) � d(p; q1)has the required property. To see this, �rst observe that (p; q1) : (
; a1) !(
0; a01) and therefored(p; q1) : (p; q1; q1; ?) � d(
; a1)! d(
0; a01) (2)as d 2 Tm(C(a; a; re
(A; a)) [�; a:A]). Notice that(p; q1; q1; ?) : (
; a1; a1; re
(a1))! (
0; a01; a01; re
(a1)0)17

Applying the operation f(u0) � to (2) and using functoriality yieldsf(u0) � d(p; q1) : (f(u0) � (p; q1; q1; ?)) � d(
; a1)! f(u0) � d(
0; a01)Now we calculate as follows.f(u0) � (p; q1; q1; ?)= (id
0 ; ida01 ; s0; ?) � (p; q1; q1; ?)= (p; q1; s0 � q1; ?)= (p; q1; q2 � (p � s); ?) by Eqn. 1= (p; q1; q2; ?) � (id
 ; ida1 ; s; ?) since p � ida1 = ida01= h � f(u)So J(h) : (h � f(u)) � d(
; a1) ! f(u0) � d(
0; a01) and therefore J(h) : h � J(u)!J(u0) as required. The veri�cation of the functor laws for J is tedious butstraightforward.Notice that for all
 2 � and a 2 A(
) we havef(
; a; a; re
(A; a)) = (id
 ; ida; ida; ?)Therefore J(
; a; a; re
(A; a)) = f(
; a; a; re
(A; a)) � d(
; a) = d(
; a)and J(p; q; q; ?) = f(
0; a0; a0; re
(A; a0)) � d(p; q) = d(p; q)whenever (p; q) : (
; a)! (
0; a0). This establishes the validity of the de�nitionalequality required for J .4.11 Other set formersThe natural numbers N 2 Se([]) are given as the discrete groupoid 4(N) overthe set of natural numbers. We omit the de�nition of the associated operations.The disjoint union set A + B is interpreted as the co-product of groupoids,which is constructed as the disjoint union of the underlying sets of objects andmorphisms.In a similar way, we can interpret lists, trees, unit set, empty set, and otherdatatypes.4.12 UniversesLet V be a meta-theoretic universe contained in V . We write Gpd(V) for thegroupoid of V -small groupoids with isomorphisms as morphisms.Provided V has appropriate meta-theoretic closure properties the groupoidGpd(V) can serve as interpretation of a universe closed under the usual setforming operations.We call a meta-theoretic universe V impredicative, if it is closed under im-predicative universal quanti�cation, i.e. for A 2 V and B : A! V the dependent18

function space �a2AB(a) is in V . Of course, non-trivial instances of such V arepossible only in an intuitionistic metatheory such as an extensional variant ofLuo's ECC (Luo 1994) whose consistency is established by various realizabilitymodels.If V is impredicative (and has the usual closure properties) then Gpd(V)is closed under impredicative quanti�cation as well. That is to say, if A 2 Vand B : A ! Gpd(V) then �LF(A;B) 2 Gpd(V). This is immediate from thede�nition of dependent function spaces in the groupoid model.For subsequent applications it is useful to have universes of small discretegroupoids available. We write Gpd4(V) for the groupoid consisting of V -smalldiscrete groupoids with isomorphisms (or rather bijections) as morphisms. Dueto the fact that discrete groupoids are closed under all set forming operationsso will be a universe of the form Gpd4(V). Moreover, since identity sets (evenof non-discrete groupoids) are discrete, the family of groupoids Id(A) lives inGpd4(A) provided the groupoid A has V -small homsets.Of particular interest is the situation where V is impredicative and Set iscon�ned to groupoids with V -small homsets. Due to impredicativity of V thisinterpretation of Set is still closed under dependent function space as well as theremaining set forming operations. Now, Gpd(V) and Gpd4(V) are impredica-tive universes (still contained in Set) which moreover contain all identity sets.We thus obtain an interpretation of impredicative higher-order logic in whichpropositional equality is proof-relevant.Notice, that since universes of the above form are not discrete they cannotbe contained in a universe of the form Gpd4(V). Nevertheless, if V 0 is a meta-theoretic universe contained in V then Gpd4(V) contains the discrete groupoidconsisting of V 0-small groupoids. Universes obtained in this way are still closedunder all set formers, but do not contain identity sets of non-discrete groupoids.We have not checked whether these universes can be su�ently narroweddown so as to validate universe elimination, cf. Ch. 14 of (Nordstr�om, Petersson,and Smith 1990), but we do not see any principle obstacle.5 Applications and extensionIn this section we will exploit the bene�ts of the model construction carried out.We derive the promised independence results and investigate some extensionsvalidated by the groupoid model, in particular a set of axioms expressing thatequality on certain universes is isomorphism. These extension are put to use ina new type-theoretic formalisation of basic category theory in which isomorphicobjects are propositionally equal.5.1 Independence of UIPSince for a groupoidA the identity set Id(A; a1; a2) is interpreted as4(A(a1; a2))it will contain more than one object if there is more than one A-morphismfrom a1 to a2. Due to discreteness of identity sets these objects are then not19

even propositionally equal as propositional and de�nitional equality coincide fordiscrete groupoids. More formally, we have the following theorem.Theorem 5.1 The type UIP is empty.Proof. Suppose that u 2 Tm(UIP). Let A be the group Z2 viewed as a one-object groupoid. That is to say, we have a single object ? 2 A and two distinctmorphisms id?; p 2 A(?; ?) where p � p = id?. Then u(A; ?; ?; p; id?) would bean element of Id(Id(A; ?; ?); p; id?). However, the latter set is empty as p 6= id?and identity sets are discrete. �By soundness of the interpretation the following is now immediate.Corollary 5.2 There is no syntactically de�nable closed term of type UIP.5.1.1 Non-de�nability of KAs UIP can be proved using the eliminator K for the family Id(A; a; a) [a:A],as given in Section 3.3 it follows that the latter cannot be interpreted in thegroupoid model. It is, however, instructive to see directly, why an attemptof interpreting K in the same way as J fails. Let A be a groupoid and C 2Se([a:A; s: Id(A; a; a)]) and d : (a:A)C(a; re
(a)). In order to construct a de-pendent object of C extending d in the same way as we did in the case of J wewould have to come up with a morphism in [a:A; s: Id(A; a; a)] from (a; re
(a))to (a; s) for arbitrary s : a ! a. Now such a morphism would amount to amorphism q : a! a satisfying s�q = q �re
(a) = q. But this implies s = re
(a).So no such morphism exists if s 6= re
(a).That an interpretation of K cannot be achieved in any other way eithercan be seen as follows. Let A be a groupoid with an object a0 2 A such thatA(a0; a0) contains a non-identity morphism p0. Let C 2 Se([a:A; Id(a; a)]) bethe family of discrete groupoids given byC(a; p) = 4f? j p = idagSo C(a; p) is empty for p 6= ida. To see that this is a family of groupoids assumethat we have a morphism (q; ?) : (a; p)! (a0; p0), i.e. q : a! a0 and p0 �q = q �p.So p0 = ida0 i� p = ida. Now d(a) := ? is an object of (a:A)C(a; re
(a)).However, Tm(C) is empty as C(a0; p0) is empty.5.1.2 Non-de�nability of cong sndFinally, let us look at the congruence property cong snd. If A is a groupoid andB 2 Se(A) and a : A and b; b0 : B(a) thenId(�(A;B); ha; bi ; ha; b0i) = 4f(p; q) j p : a! a; q : p � b! b0gwhereas Id(B(a); b; b0) =4fq j q : b! b0g20

So the two groupoids are di�erent and one can easily construct a situation inwhich the �rst one is inhabited and the second one is empty.5.2 Canonicity of identity typesUnlike �-sets with �-equality or extensional identity sets, the intensional iden-tity sets are not de�ned by a universal property. Therefore, it is natural to askhow interpretations of identity sets in the groupoid model look like in general.To answer this question, assume for the moment that we enrich our typetheory by another set former Id 0 : (A: Set)A ! A ! Set together with appro-priately typed constants re
 0 and J 0 satisfying the corresponding de�nitionalequalities. Then using J and J 0 one can exhibit termsi : (A: Set)(a1; a2:A)Id(A; a1; a2)! Id 0(A; a1; a2)j : (A:Set)(a1; a2:A)Id 0(A; a1; a2)! Id(A; a1; a2)in such a way that, moroever, the following two types are inhabited(A:Set)(a1; a2:A)(s: Id(A; a1; a2))Id(j(i(s)) ; s)(A:Set)(a1; a2:A)(s0: Id0(A; a1; a2))Id(i(j(s0)) ; s0)It follows that UIP holds with respect to Id 0 if and only if it holds w.r.t. Idbecause the property of having at most one element is stable under propositionalisomorphism. It follows that no interpretation of identity sets satisfying UIPis possible in the groupoid model, thus in particular extensional identity setscannot be interpreted.A more re�ned analysis shows that i and j establish an equivalence in thecategory-theoretic sense and therefore any possible interpretation of the identityset Id(A; a1; a2) must be a posetal groupoid whose connected components arein a 1-1 correspondence with A(a1; a2).5.3 Functional extensionalityDespite the intensional character of the groupoid model propositional equalityon function spaces is pointwise in the sense that the following type is inhabitedin the model. Fun Ext def= (A:Set)(B: (a:A)Set)(f; g: �(A;B))((a:A)Id(B(a); f(a); g(a))) ! Id(f; g)To see this, let � denote the groupoid [A: Set; B: (a:A)Set ; f; g: �(A;B)] andlet PE 2 Se(�) denote the family (a:A)Id(B(a); f(a); g(a)).Let
 2 �. The groupoid Id(f; g)(
) is the discrete groupoid with objects thenatural transformations in the sense of Section 4.6. More precisely, an object ofId(f; g)(
) is an assignment � mapping objects a 2 A(
) to B(
; a)-morphisms�a : f(
)(a)! g(
)(a) such that whenever q : a! a0 then the following diagram21

commutes. f(
)(a) �a - g(
)(a)(id ; q) � f(
)(a) (id ; q) � �a- (id ; q) � g(
)(a)f(
)(a0)?f(
)(q) �a0 - g(
)(a0)g(
)(q)?Now let M be an object of PE(
). By de�nition of dependent function spaceM(a) is a morphism from f(
)(a) to g(
)(a) for every a 2 A(
). Furthermore,if q : a! a0 then M(q) : (id ; q) �M(a)!M(a0) (3)where � refers to the identity set Id(f(a); g(a)). By discreteness of identity sets(3) translates into the following diagram.f(
)(a) M(a) - g(
)(a)(id ; q) � f(
)(a) (id ; q) �M(a)- (id ; q) � g(
)(a)f(
)(a0)?f(
)(q) M(a0) - g(
)(a0)g(
)(q)?This means that the objects of Id(f; g)(
) and PE(
) are the same! Being adependent function space of a discrete family, PE is discrete itself. So Id(f; g)(
)and PE(
) are isomorphic. One can also show that this isomorphism is naturalin
 thus establishing an isomorphism between the families PE and Id(f; g). Amore re�ned analysis shows that one direction of this isomorphism arises as theinterpretation of the following proof that equal functions are pointwise equal.app resp def= [A:Set][B: (a:A)Set][f; g: �(A;B)][s: Id(f; g)][a:A]resp([h: �(A;B)]h(a); s): (A:Set)(B: (a:A)Set)(f; g: �(A;B))Id(f; g)! (a:A)Id(f(a); g(a))This allows us to interpret the following extension of Martin-L�of's type theory.fun ext : Fun Extfun ext ax1 : (A: Set)(B: (a:A)Set)(f; g: �(A;B))(s: Id(f; g))Id(s; fun ext(app resp(s)))fun ext ax2 : (A: Set)(B: (a:A)Set)(f; g: �(A;B))(s: (a:A)Id(f(a); g(a)))Id(s; app resp(fun ext(s)))22

The special case of fun ext ax1 where s is an instance of re
exivity was proposedby Turner (Turner 1989) as a possible axiomatisation of functional extensional-ity. It is easy to see that this special case is equivalent to the general fun ext ax1using J . Apparently, fun ext ax2 is independent of fun ext ax1 (and Turner'saxiom). Note that our two axioms determine the postulated object fun extuniquely up to propositional equality. Obviously, the axioms fun ext ax1/2 arederivable from UIP.A potential application of functional extensionality is that it allows one toderive UIP(�(A;B)) from (a:A)UIP(B(a)). Assuming fun ext alone, does notseem to su�ce for that purpose.Notice that functional extensionality allows us to express an identity setof the form Id(�(A;B)) in terms of identity sets of the form Id(B(a)). Asimilar decomposition is possible for �-sets without any extension to the syntax.Indeed, using �-elimination we can establish a canonical isomorphism betweenId(�(A;B); hu1; u2i; hv1; v2i) and�([p: Id(A; u1; v1)]Id(B(v2); subst(p; u2); v2)Analogously, we can decompose identity sets at disjoint unions and naturalnumbers.5.4 Universe extensionalityIn this section we want to make an extension of type theory taking account ofthe fact that propositional equality on a universe is isomorphism. To make thismore precise we need some notation. We write Iso(A;B) for the set�([f :A! B]�([g:B ! A]Id(g � f; id)� Id(f � g; id))where composition (�) and identities (id) are de�ned as usual in terms of ab-straction and application. If h : Iso(A;B) we abbreviate its �rst component byh and its second component by h�1. Conversely, if f : A ! B and it is clearfrom the context that f has an inverse in the sense propositional equality thenwe may write f : Iso(A;B).Now let U be a universe of discrete groupoids, i.e. of the form Gpd4(V).It is then clear that if A;B : U then the interpretations of Iso(A;B) andId(U ; A;B) are isomorphic. One direction of the isomorphism is syntacticallyde�nable asid iso def= [A;B:U][s: Id(A;B)]subst([X :U]Iso(A;X) ; s; idA): (A;B:U)Id(A;B)! Iso(A;B)Notice that Iso(A;B) and Id(A;B) are not isomorphic if U = Gpd(V) becausethen Iso(A;B) is in one-to-one correspondence with equivalences between A andB. Thus Iso(A;B) may be inhabited even if A and B are not isomorphic.23

Like in the case of functional extensionality we can now syntactically postu-late an inverse to the function id iso:iso id : (A;B:U)Iso(A;B)! Id(A;B)iso id ax1 : (A;B:U)(s: Id(A;B))Id(s; iso id(id iso(s)))iso id ax2 : (A;B:U)(s: Iso(A;B))Id(s; id iso(iso id(s)))By analogy to functional extensionality we refer to this extension by universeextensionality.We remark that universe extensionality is inconsistent with UIP(U) if Ucontains the natural numbers. This is so because the set Iso(N;N) containstwo di�erent de�nable elements f and g. UIP together with the above constantswould identify f and g and therefore two di�erent natural numbers.5.5 A new formalisation of category theoryAn application of the above extension is a new formalisation of category theorywhere isomorphic objects are propositionally equal. Let U be a universe ofdiscrete groupoids. We re
ect this syntactically by assuming (A:U)UIP(A).A category with isomorphism as equality then consists of the following data.� a set Ob : Set of objects,� a family of sets Mor : Ob! Ob! U of morphisms,� objects id and comp of the obvious types corresponding to identity andcomposition,� proofs of the traditional axioms stated in terms of propositional equality,� a proof that for each A;B:Ob the sets Id(Ob; A;B) and Iso(A;B) arecanonically isomorphic.This de�nition deserves some explanation. The set Iso(A;B) for A;B:Ob isde�ned analogously to Iso for members of a universe. More precisely, Iso(A;B)is �[f :Mor(A;B)]�[g:Mor(B;A)]Id(comp(g; f); id(A))� Id(comp(f; g); id(B))This set being \canonically isomorphic" to Id(A;B) means that the canonicalfunction Id(A;B)! Iso(A;B) obtained by applying subst to id(A) is bijective.The fact that the homsets Mor(A;B) are discrete enables us to do withoutfurther axioms qualifying the behaviour of the assumed proofs of the categoryequations. In other words, there is only one reason for morphisms to be equal.If we want to consider the collections of categories as objects of Set then wehave to restrict Ob to a member of a certain not necessarily discrete universe.24

Of course, this formalisation of categories does not per se require universeextensionality. The point is that universe extensionality is necessary for organ-ising U itself into a category with isomorphism as equality.More precisely, we can de�ne a category where Ob def= U and Mor(A;B) def=A! B.Furthermore, using functional extensionality in an essential way, we canshow that categories with isomorphism as equality are closed under formationof functor categories. The crucial point here is to establish a one-to-one corre-spondence between between natural isomorphism between two functors F andG (between categories C and D) and proofs that F and G are equal. This isachieved by decomposing the set Id(FUNC(C;D); F;G) according to the rulesset out at the end of Section 5.3. Here the set of functors FUNC(C;D) is de�nedas usual by grouping together object and morphism part as an object of a �-set.The components of a natural isomorphism now correspond to a proof thatthe object parts of F and G are pointwise equal, thus equal by functional exten-sionality. The naturality condition, on the other hand, is required for the proofthat the two morphism parts are propositionally equal. The details are messy,but have been machine-checked using a proof assistant (Lego).We emphasise that the abovementioned decomposition of Id(F;G) suggeststhe usual de�nition of isomorphism between functors. It would be interestingto see whether this analogy can be exploited for �nding appropriate notions ofisomorphism for other mathematical structures (e.g. models of typed lambdacalculus).Notice that, obviously, UIP(FUNC(C;D)) is not valid as there is in generalmore than one natural isomorphism between any two functors. This impliesthat categories and functors do not form a category with equality as isomor-phism since its homsets are not discrete. Of course, categories and functors stillcan be organised into a category in the traditional sense. However, it might beinteresting to view equivalent categories as propositionally equal. This, how-ever, would require \2-level groupoids" in which we have morphisms betweenmorphisms and accordingly the identity sets are not necessarily discrete. We donot know whether such structures (or even in�nite-level generalisations thereof)can be sensibly organised into a model of type theory.A Syntax of type theoryA.1 General rules [] ctxt EmpA type [�]�; x:A ctxt Compr�; x:A;� ctxtx : A [�; x:A;�] Var25

In rule Compr x is a fresh variable.Rules expressing that de�nitional equality is a congruence relation with re-spect to all subsequent type and term forming operations.A.2 Rules for the Logical FrameworkA type [�] B type [�; x:A](x:A)B type [�] FunA type [�] B type [�; x:A] t : B [�; x:A][x:A]t : (x:A)B [�] lamA type [�] B type [�; x:A] t : (x:A)B [�] s : A [�]t(s) : B[x:=s] [�] appA type [�] B type [�; x:A] t : B [�; x:A] s : A [�]([x:A]t)(s) = t[x:=s] : B[x:=s] [�] �A type [�] B type [�; x:A] t : (x:A)B [�][x:A] t(x) = t : (x:A)B [�] �� ctxtSet type [�] SetA : Set [�]El(A) type [�] ElWe henceforth omit the El -operator and use the conventions on abstraction,application, and omission of redundant arguments set out in Section 2. Weabbreviate (x:A)B by A! B if x does not occur in B.A.3 Martin-L�of's set theoryMartin-L�of's set theory is de�ned as the extension of the Logical Framework bythe following constants and de�nitional equations understood in every valid con-text. The de�nitional equalities hold under the proviso that their componentsare well-typed.A.4 �-sets� : (A: Set)(A! Set)! Setfun : (A:Set)(B:A! Set)((a:A)B(a))! �(A;B)app : (A: Set)(B:A! Set)(�(A;B)) ! (a:A)B(a)app(fun(b); a) = b(a) : B(a)fun([x:A]app(t; x)) = t : �(A;B)26

Alternatively, we can replace app by the so-called funsplit operator (Nordstr�om,Petersson, and Smith 1990). Then the second �-like equality only holds propo-sitionally.We take the freedom of writing f(a) for app(f; a).A.5 �-sets� : (A:Set)(A! Set)! Setpair : (A: Set)(B:A! Set)(a:A)B(a)! �(A;B)E : (A: Set)(B:A! Set)(C : �(A;B)! Set)((a:A)(b:B(a))C(pair(a; b)))! (c: �(A;B))C(c)E(d; pair(a; b)) = d(a; b) : C(pair(a; b))When A;B : Set then we abbreviate �([x:A]B) by A�B. We also write ha; bifor pair(a; b).A.6 Identity setsId : (A:Set)A! A! Setre
 : (A:Set)(a:A)Id(A; a; a)J : (A: Set)(C: (a1; a2:A)Id(A; a1; a2)! Set)((a:A)C(a; a; re
(A; a)))! (a1; a2:A)(s: Id(A; a1; a2))C(a1; a2; s)J(d; re
(a)) = d(a) : C(re
(a))

27

A.7 Natural numbers and disjoint unionsN : Set0 : Nsucc : N! NR : (C : N! Set)C(0)! ((n:N)C(n)! C(succ(n)))! (n:N)C(n)R(d; e; 0) = d : C(0)R(d; e; succ(n)) = e(n;R(d; e; n)) : C(succ(n))+ : Set! Set! Seti : (A;B: Set)A! A+Bj : (A;B: Set)B ! A+BD : (A;B:Set)(C: (A+B)! Set)((a:A)C(i(a)))! ((b:B)C(j(b)))! (c:A+B)C(c)D(d; e; i(a)) = d(a) : C(i(a))D(d; e; j(b)) = e(b) : C(j(b))A.8 UniversesA universe U in Set is de�ned by two constants U : Set and T : U ! SetClosure properties of the universe under certain type and term formers areexpressed by reintroducing them with Set replaced by U . If the desired type for-mer is available for Set as well then it su�ces to reintroduce the type former forU and relate it to the corresponding type former on the level of Set by an appro-priate equality axiom for T . The associated term formers can then be inheritedfrom Set. For example, closure under impredicative universal quanti�cation isde�ned by �̂ : (A:Set)(A! U)! Ucfun : (A:Set)(B:A! U)((a:A)T (B(a)))! T (�̂(B))dapp : (A:Set)(B:A! U)(t:T (�̂(B))) ! (a:A)T (B(a))� and � equationsIf we have �-sets then cfun anddapp together with their equations can be replacedby the single set equationT (�̂(A;B)) = �(A; [a:A]T (B(a)))ReferencesAltenkirch, T. (1992, January). An open question concerning inductive equal-ity. E-mail message to the Edinburgh LEGO club.28

Altenkirch, T., V. Gaspes, B. Nordstr�om, and B. von Sydow (1994). A User'sGuide to ALF. Sweden: Chalmers University of Technology. Availableunder ftp://ftp.cs.chalmers.se/pub/users/alti/alf.ps.Z.Brown, R. (1988). Topology. Ellis Horwood.Coquand, T. (1992). Pattern matching with dependent types. In Workshopon Logical Frameworks, B�astad. Preliminary Proceedings.Dybjer, P. (1996). Internal type theory. In Proc. BRA TYPES workshop,Torino, June 1995, Springer LNCS. To appear.Hedberg, M. (1995). Uniqueness and internal decidability in type theory.Manuscript, Chalmers University, Gothenburg.Hofmann, M. (199?). Syntax and semantics of dependent types. In P. Dybjerand A. M. Pitts (Eds.), Semantics and Logics of Computation. CambridgeUniversity Press.Hofmann, M. (1993, July). A model of intensional Martin-L�of type theory inwhich unicity of identity proofs does not hold. unpublished note, availableon email request.Hofmann, M. (1995). Extensional Concepts in Intensional Type Theory. Ph.D. thesis, Univ. of Edinburgh.Hofmann, M. and T. Streicher (1994). A groupoid model refutes uniqueness ofidentity proofs. In Proceedings of the 9th Symposium on Logic in ComputerScience (LICS), Paris.Lamarche, F. (1991(?)). A Proposal about Foundations I. Manuscript.Luo, Z. (1994). Computation and Reasoning. Oxford University Press.Mac Lane, S. (1971). Categories for the Working Mathematician. Springer.Nordstr�om, B., K. Petersson, and J. M. Smith (1990). Programming inMartin-L�of 's Type Theory, An Introduction. Clarendon Press, Oxford.Per Martin-L�of (1995). Tarskian semantics for type theory. Talk given at thesymposium \25 years of constructive type theory", Venice.Streicher, T. (1993). Semantical Investigations into Intensional Type Theory.Habilitationsschrift, LMU M�unchen.Turner, D. (1989, May). A new formulation of constructive type theory. InP. Dybjer (Ed.), Proceedings of the Workshop on Programming Logic, pp.258{294. Programming Methodology Group, Univ. of G�oteborg.
29

View publication statsView publication stats

https://www.researchgate.net/publication/2858048

