The groupoid interpretation of type theory

Martin Hofmann and Thomas Streicher

August 27, 1996

1 Introduction

Many will agree that identity sets are the most intriguing concept of intensional
Martin-Lof type theory. For instance, it may appear surprising that their ax-
iomatisation as an inductive family allows one to deduce the usual properties
of equality, notably the replacement rule (Leibniz’ principle) which allows one
to conclude P(a’) from P(a) and a proof that a equals a’. Here, unlike in other
logical systems, this holds for arbitrary families of sets P not necessarily corre-
sponding to a predicate. This is not in conflict with decidability of type checking
since if a equals o' and p : P(a) then one does not in general have p : P(a'), but
only subst(s,p) : P(a') where s is the proof that a equals a' and subst is defined
from the eliminator for identity sets.

It is now a natural question to ask whether these translation functions
subst(s,-) actually depend upon the nature of the proof s or, more generally,
the question whether any two elements of an identity set are equal. We will call
UIP(A) (Uniqueness of Identity Proofs) the following property. If a;,a, are
objects of type A then for any two proofs p and ¢ of the proposition “a; equals
as” there is another proof establishing equality of p and ¢q. More generally, UIP
will stand for UIP(A) for all types A. Notice that in traditional logical formal-
ism a principle like UIP cannot even be sensibly expressed as proofs cannot be
referred to by terms of the object language and thus are not within the scope
of propositional equality.

The question whether UIP is valid in intensional Martin-Lof type theory was
open for a while though it was commonly believed that UIP is underivable as
any attempt for constructing a proof has failed (Coquand 1992; Streicher 1993;
Altenkirch 1992). On the other hand, the intuition that a type is determined
by its canonical objects might be seen as evidence for the validity of UIP as
the identity sets have at most one canonical element corresponding to a proof of
reflexivity. Indeed, UIP is derivable in an extension of type theory based on this
intuition, namely type theory augmented with pattern matching as implemented
in the ALF system (Coquand 1992; Altenkirch et al. 1994).

In this paper we answer the question of derivability of UIP in pure type
theory in the negative by exhibiting a counter model. By the above, this model
does not validate pattern matching thereby providing a proof that the latter is
not conservative over traditional type theory.

The model we give stands in sharp contrast to the abovementioned intuition
of types being determined by their canonical inhabitants. In the model a type A
will consist of a set |A| of objects together with (possibly empty) sets A(ay,as)
of “proofs” that ay,as € |A| are propositionally equal. Although a closed term
of type A will be modelled as an object of A an open term will not only map
objects to objects but also equality proofs to equality proofs. Thus, an open
term is not fully determined by its behaviour on closed terms. The principle
UIP can then be refuted by including a type in which the set A(a;,as) has more
than one element for some aj,as € |A|.

The hard work consists of demonstrating that these mathematical objects
can indeed interpret all of Martin-Lof’s type theory. It turns out that various
additional structure has to be imposed for that purpose. In particular, we need
for each type a composition, identities, and inverses; that is to say functions

o A((lz,(lg) X A((ll,ag) - A((Il,(lg)
id : A(a1,a1)
()" Aar, a2) = Afaz, a1)

for all objects aq, as, a3 witnessing that propositional equality is an equivalence
relation. In order to interpret the various type and term formers it turns out that
these operations must satisfy certain equations. Namely, composition must be
an associative operation with neutral element id with inverses given by (1)~'. In
other words every type will be a groupoid, i.e. a category with isomorphisms only.
Open terms and dependent types will then be interpreted as certain functors
taking account of the fact that propositional equality is preserved by function
application.

A posteriori this justifies a view of propositional equality in type theory
as a notion of isomorphism. We exploit this view by exhibiting non-standard
axioms for propositional equality on universes which contradict UIP and pattern
matching. These axioms are put to use in a new formalisation of categories in
type theory in which isomorphic objects are propositionally equal.

Independently, Frangois Lamarche (1991) has investigated the logical struc-
ture of the category of groupoids with the motivation of finding a logical system
in which classes of mathematical structures appear as types. He observed that
a theory with type dependency arises as a natural candidate for an internal
language of the category of groupoids. He gives interpretations of dependent
function spaces and sums which agree essentially with ours.

Parts of the material presented in this article have already been published by
the authors in (1993, 1994, 1995). The main purpose of the current version is to
make the material accessible to a wider audience and to serve as future reference.
As opposed to the extended abstract (Hofmann and Streicher 1994) the model
construction is described here in full detail and also in more elementary terms.
Furthermore, the syntactic extensions to pure type theory which have been
sketched in (Hofmann 1995) are worked out here in detail. The application
to formalisation of basic category theory and the analysis of interpretations of
universes are altogether new.

Acknowledgements

We are indebted to Thorsten Altenkirch, Thierry Coquand, Peter Dybjer, Per
Martin-Lof for numerous discussions on equality in type theory and to Francois
Lamarche for explanations and discussions about the groupoid model. The
diagrams have been typeset using Paul Taylor’s Latex package.

2 Syntax

We work in Martin-Lof’s type theory formulated inside a Logical Framework as
defined in Ch. 19 & 20 of (Nordstrém, Petersson, and Smith 1990). However,
we will use a slightly different notation as will be explained below. This type
theory derives judgements of the following forms:

A type to mean that A is a type,
e a: A to mean that a is an object of type A
e A = B to mean that types A and B are definitionally equal,

e a=a': A tomeant that a and a' are definitionally equal objects of type

A.

All judgements are relative to a list of variable declarations of the form
x1: Aq,...,2,: A, where the variables z1,..., x, are distinct and A; type holds

under the assumption z1: Ay, ..., z;_1: A;_1. Such lists of assumptions are called
contexts and are ranged over by capital Greek letters I', A, One writes J [I]
(alternatively T F 7) to indicate that judgement J holds in context I'. In the
formal presentation (which we include as an appendix) the valid judgements
in context, i.e. under assumptions, are defined inductively; context validity is
included as an auxiliary judgement. In the informal presentation below we only
indicate the relevant part of a context.

If A type and B type under [x: A] then the dependent function space (z: A)B
is a type. If b : B [z: A] then [z: A]b: (x: A)B. Conversely, if f : (z: A)B and
a: A then f(a) : Blz:=a]. This typed abstraction constitutes the main difference
to the presentation in loc. cit.

We have (-equality

([x: A]b) (a) = b[x:=a] : Bx:=al

and also n-equality
[z: A]b(z) =b: (z: A)B

provided z is not free in b.

Iterated applications of the form f(a1)(az) - - - (an) are written as f(ay, ..., an)
where we take the freedom of omitting arguments which can be inferred from
later ones.

There is a special type Set containing names for certain types, the so-called
sets, as objects. Whenever A : Set then we have El(A) type, in particular, we

can form the “generic” family El(A) type [A: Set]. It is common to omit the El
operator, thus writing a: A instead of a: FlI(A). Nordstrém et al. write a € A for
a: El(A). We want to reserve the €-symbol for membership in the metatheory.

This machinery allows one to introduce set formers and term forming oper-
ations (be they constructors or eliminators) simply as constants together with
their definitional equalities. For example, the intensional identity sets are given
by the following constants.

Id: (A: Set)(ay,aq: A)Set
refl: (A: Set)(a: A)Id(A, a,a)

J: (A: Set)(C: (a1, aq: A)(s: Id(A, a1, a2))Set)(d : (a: A)C(a,a, refi(A, a)))
(ar,a9: A)(s: Id(A, a1,a2))C (a1, a9, s)

In addition, we impose the definitional equality
J(A,C,d,a,a,refl(A,a)) = d(a) : C(a,a, refi(A,a)) In-C

for A, C,d, a of appropriate type. Note that .J is called idpeel in loc.cit.. Accord-
ing to our convention on omitting redundant arguments we will usually write
Id(a1,a2) and refi(a) instead of Id(A, a1, a2) and refi(A, a), respectively.

In addition to identity sets we also use II-sets, X-sets, disjoint union, natural
numbers, and a universe. See the appendix for their formal definition. Follow-
ing common practice, we write A — B for II(4,[a: A]B) and and A x B for
(A, [a: A]B) if A and B are types or sets (in the case of x).

The notion of equality induced by identity sets is called propositional equal-
ity (as opposed to definitional equality). That is to say, two objects aq,as : A
are propositionally equal if Id(ay, as) is inhabited. The main purpose of proposi-
tional equality is that it can be assumed in contexts and thus allows for hypothet-
ical equality reasoning. In particular, propositional equality can be established
by induction.

Definitional equality, on the other hand, can only be established by pure
equational reasoning, i.e. corresponds to the equational theory generated by the
postulated equality judgements.

Accordingly, definitional equality is (at least in traditional cases) decidable,
whereas propositional equality is not, as soon as one includes natural numbers
and TI-sets.

By the congruence rules for definitional equality the latter always entails the
propositional one, but not necessarily vice versa.

3 Syntactic considerations on identity sets

The elimination operator .J is motivated by the view of Id(A,_,) as an in-
ductively defined family with constructor refl. Accordingly, .J permits one to
define an object of type (a1, a2: A)(s: Id(A, a1,a2)C(a1,a9,s) by prescribing its
behaviour for arguments of canonical form, i.e. a; = as = a and s = refi(A, a).

In the presence of Il-sets, this elimination operation J allows one to derive
the following replacement rule in the presence of Il-sets.

subst : (A: Set)(P: (a: A)Set)(a1,aq: A)(s: Id(a1,a2))P(ar1) — P(as)

satisfying
subst(refi(a),p) = p

See loc.cit. for the definition of subst.
From subst one easily derives symmetry and transitivity of propositional
equality as well as congruence with respect to function application:

sym : (A: Set)(ay, az: A)Id(ay, as) — Id(as,ay)

trans : (A: Set)(a1,as, a3: A)
Id(a27 (13) — Id(a1 s GQ) — Id(a1 N (13)

resp : (A: Set)(B: Set)(u: (a: A)B)
(a1,a2: A)Id(ay,a2) — Id(u(ay),u(as))

Notice that we supply arguments to trans in the applicative order.
We also have the following dependent version of resp.

resp' : (A: Set)(B: (a: A)Set)(u: (a: A)B(a))
(a1,a2: A)(s: Id(ay, a2))Id(subst(s,u(ay)), u(az))

To derive resp’ the full power of .J is needed; subst alone does not suffice.

3.1 Uniqueness of identity proofs (UIP)

For most inductive sets it is possible show that arbitrary objects are proposi-
tionally equal to canonical ones. For example, the following types are inhabited

(n:N)Id(n,0) + Id(n, succ(pred(n)))
(f:TI(A, B))Id(f, fun([z: Alapply(f, x)))

There are several ways of stating an analogous property for identity sets. We
introduce the following abbreviations.

vip & (A: Set)(ar, az: A)(s1,892: Id(ar,a2))1d(s1, s2)
UIP_refl ef (A: Set)(a: A)(s: Id(a, a))Id(s, refi(a))

UIP_tuple def (A: Set)(ay, az: A)(s: Id(aq,az))
Id(X([ar: A]E([as: Alld(ar, a2))), (a1, as,s), (a1, a1, refl(ar)))

Using J, one can show that UIP_tuple is inhabited and that UIP_refi(A) and
UIP(A) are equivalent for each A: Set. See (Streicher 1993) for the proofs. He

also explains that in the presence of UIP the eliminator .J can be defined in terms
of the derived operator subst thereby allowing for a very intuitive axiomatisation
of propositional equality in terms of a uniqueness property of identity proofs and
a type-theoretic pendant of Leibniz’ principle stating that replacement of equal
objects preserves validity.

It is also known (Coquand 1992) that an object of UIP can be constructed
by pattern-matching.

The main result of this paper consists of an interpretation of type theory in
which UIP (Uniqueness of Identity Proofs) is not inhabited. A fortiori, UIP is
not derivable and, therefore, pattern-matching is not a conservative extension
of Martin-L6f type theory.

3.2 Definability of instances of UIP

Although UIP is not derivable in general, instances UIP(A) for certain sets A
are inhabited. Hedberg (1995) has shown that this is in particular the case if
A admits a decidable equality, that is to say, if there is a function eq: A —
A — N such that Id(eq(ai,a2),0) and Id(a;,a2) are equivalent. One can also
show that UIP is preserved by the set formers ¥ and disjoint union. It is also
preserved by the identity set former itself, provided one further assumes that
UIP applied to proofs by reflexivity gives back a proof by reflexivity. Below we
will demonstrate that UIP(II(A, B)) follows from UIP(A) and (a: A) UIP(B(a))
under the assumption of an extensionality axiom. This gives UIP for all sets

definable without universes.

3.3 Alternatives to UIP

Streicher (1993) gives another principle equivalent to UIP which in its formula-
tion does not mention propositional equality of identity proofs:

cong_snd ef (A: Set)(B: (a: A)Set)(a: A)(b,b': B(a))
(s: Id(X(A, B),{(a,b), {(a,b')))Id(B,b,b")

He also introduces an eliminator K for the family Id(A,a,a) [a: A]:

K : (A: Set)(C: (a: A)(s: Id(A, a,a))Set)(d : (a: A)C(a, refi(A, a)))
(a: A)(s: Id(A, a,a))C(a,s)

satisfying K (d, refi(a)) = d(a). Using K an inhabitant of UIP may be con-
structed.

Both alternatives can be directly defined using pattern matching. It is an
open problem whether the converse is also true, i.e. whether pattern matching
forms a conservative extension of type theory augmented by K (or a constant
of type UIP together with an appropriate conversion rule).

3.4 Propositional equality as isomorphism

It has been argued in (Hofmann 1995) that intensional type theory augmented
by UIP together with an extensionality axiom for Il-sets can simulate exten-
sional type theory whilst retaining decidability of type checking.

On the other hand, we will demonstrate below that Martin-Lof’s original
formulation of identity sets allows for the addition of axioms (inconsistent with
UIP) expressing a view of propositional equality as a generalised notion of iso-
morphism. Intuitively, these axioms state that for a universe U and A,B : U
the identity set Id(U, A, B) corresponds to the set of isomorphisms between A
and B. Such version of identity sets may be useful for a formulation of cate-
gory theory inside type theory providing a formal underpinning for the common
practice of considering isomorphic objects as equal.

4 The groupoid interpretation

Although the principle UIP turns out as being non-derivable, certain proposi-
tional equalities between objects of identity sets can be established using J. If
A: Set and aj,as @ A and s1, s3 : Id(ay,az2) then we write s; =ppop S2 to mean
that Id(Id(ay,as), s1,s2) is inhabited.

Proposition 4.1 1. If a1,a9 : A and s : Id(a1,a2) then

trans(s, refl(a;

(s, a1)) =prop
trans(refl(as), s) =prop

(

(

trans(sym(s), s) =prop refl(ar)
trans(s, sym(s)) =prop refl(as)

2. If ay,a9,a3,a4 : A and sy : Id(ay,a2) and so : Id(as, a3) and sz : Id(as, as)
then
trans(ss, trans(sz, 1)) =prop trans(trans(ss, s2), s1)

3. If A,B : Set and a1,a2,a3 : A and f : (a: A)B and s, : Id(a1,a2) and
s9 @ Id(az, as3) then

resp(f, refllar)) =prop refl(f(ar))
resp(f, trans(sz, $1)) =prop trans(resp(f, s2), resp(f, s1))

Proof. All of these follow straightforwardly using .J. As an example we derive
trans(sym(s), s) =prop refi(ar) where s : Id(A, a1, a2). We put
c [a1, az: A][s: Id(ay, a2)|Id(trans(sym(s), s) , refl(a1))

We have
J(A,C,d, a1, a9, s) : Id(trans(sym(s), s), refl(ai))

where

d% [a: Alrefl(Id(A, a,a), refl(A, a))

The object d(a) has the required type C(a, a, refl(A, a)) because both sym(refi(a))
and trans(refl(a), refi(a)) are definitionally equal to refi(a). This in turn follows
from the definition of sym and trans in terms of subst. O

These propositional equalities suggest that one can view a set as a category
having as objects the objects of A and in which a morphism from a; to as
is an object of Id(A,a1,as), or rather an equivalence class of such objects by
propositional equality. Composition is then given by transitivity and reflexivity
gives the identities. Symmetry, on the other hand, establishes that every such
morphism is actually an isomorphism.

A category in which every morphism is an isomorphism is called a groupoid.
So the identity sets endow every set with a groupoid structure in a natural way.
Furthermore, the equations under 4.1 (3) establish that a function f from A to
B extends to a functor from A to B with morphism part given by resp(f,_).

Under this view the principle UIP translates into the statement that every
such groupoid is in fact a trivial one with at most one morphism between any two
objects. This suggests that a refutation of the principle UIP can be obtained
by way of an interpretation of type theory in which types are interpreted as
arbitrary groupoids, provided one succeeds in ascribing appropriate meaning to
the type and set formers. We will do exactly this in the rest of this section.

Our metalanguage for the construction of the interpretation is informal set
theory augmented with Grothendieck universes or inaccessible cardinals. We
use set theory merely for convenience; all our definitions can also be carried
out in extensional Martin-Lo6f type theory with universes which shows that our
constructions do not depend upon the consistency of large cardinals. We assume
some basic knowledge of category theory, notably the concepts of category,
functor, and natural transformation, see (Mac Lane 1971).

4.1 Groupoids

A groupoid! is a category I where all morphisms are isomorphisms.The groupoids
together with functors between them form a (large) category GPD.

4.1.1 Examples

The products and exponentials of groupoids qua categories are groupoids again
so that GPD is cartesian closed. Recall that the objects of I' x A are pairs (v,)
where v € I' and 6 € A and that the objects of I' = A are functors from I' to
A.

For every set X the discrete category A(X) with only identities as morphisms
is a groupoid the discrete groupoid over X. If z € X we write x rather than
id, for the A(X)-morphism from z to z. Notice that we have x : z — y iff
z = y. We remark that A{()} is a terminal object in GPD denoted []. More

'Tn universal algebra the term groupoid is sometimes used for a set with a binary operation.
Our use of the term groupoid is in accordance with homotopy theory and category theory,
cf. (Brown 1988).

generally, a groupoid will be called discrete if all its morphisms are identities.
Note that up to isomorphism discrete groupoids are of the form A(X).
Every group G can be viewed as a one-object groupoid in the obvious way.

Types (at least non-dependent ones) will be interpreted as groupoids, their
closed terms as objects of groupoids. The role of the morphisms in a groupoid
is to give meaning to propositional equality. Composition of these morphisms
accounts for transitivity, identity corresponds to reflexivity, and the inverses to
symmetry.

Open terms are interpreted as functors between groupoids where the mor-
phism part witnesses the preservation of propositional equality.

Notation. We notationally identify a groupoid with its underlying set of ob-
jects thereby writing v € T to mean that v is an object of I'. We write p~! for
the inverse of morphism p.

4.2 Families of groupoids

To obtain a full-fledged interpretation of type theory we need to account for
type dependency, that is we have to define a notion of a family of groupoids
indexed over a groupoid. This notion should be such that the usual type formers
can receive appropriate meaning and in particular such that the homset I'(—, —)
arises as a family of groupoids indexed over I' x T' thus providing meaning for
the identity types.

Fortunately, category theory provides us with such a notion of dependency.

A family of groupoids indexed over groupoid I' is a functor A : I' —» GPD.
Notice that such a functor yields a groupoid A(7y) for each v € I' and moreover
a functor A(p) : A(y) — A(v') whenever p : v — +'. This will serve as inter-
pretation of replacement and more generally of identity elimination. The fact
that A itself is a functor ensures that the functors A(p) are compatible with
the groupoid structure of I, in particular, we have A(p)o A(p~!) = id 4(,) and
A(p~") o A(p) = id a(), thus all the functors A(p) are actually isomorphisms of
groupoids.

4.2.1 Notation

If p:v— " and a € A(y) then we write p-_: A(y) — A(y') for the functor
Alp).

We write Ty(T') for the collection of families of groupoids indexed over T
When f: A — T'is a morphism in GPD and A € Ty(T") then the composition
Ao f is an element of Ty(A). We use the notation A{f} for this family. In this
way Ty extends to a contravariant “collection-valued” functor on GPD.

4.2.2 Example

If I is a groupoid then a family of groupoids Ir indexed over I' x T is defined
by Ir(m,72) = A(T(v,7")) and Ir ((p1,p2))(@) = p2ogopy ' where p; - v; = 7;

and g € Ir(v1,72). Notice that
Iy = homr((-) 7,)

where (_)~' : T°? — T is the obvious isomorphism between I'°? and T'. Notice
that the restriction to groupoids is the minimal requirement for making hom
covariant in both arguments.

This family It will be the interpretation of the family of identity set when
I is the interpretation of a closed type. Below, we will generalise Ir to families
of groupoids.

4.3 Objects of families

Let A € Ty(T') be a family of groupoids over I'. A (dependent) object M of A
consists of the following data

e an A(y)-object M (y) for each v € T,

e for each morphism p : v — +' an A(y')-morphism M (p) : p-(M(y)) —
M(y")
such that
M(Hlfy) = 7dM('y)

and

M(p'op) =M(p') o (p'- M(p))
Apart from the “adjustment” p'-_in the second equation required to make the
right-hand side typecheck these laws express functoriality of M. After having
defined the semantic counterpart of context formation we will be able to identify
dependent objects as corresponding to certain functors.

We write Tm(A) for the collection of dependent objects of A. For functor
f:+ A =T the operation _{f}: Ty(I') - Ty(A) extends to dependent objects.
If Ae Ty(T) and a € Tm(A) then a{f} € Ty(A{f}) is given by composing the
components of a with f in the obvious way.

4.4 Category-theoretic semantics

Our plan is to organise groupoids and families of groupoids into a model of
dependent type theory, namely a category with families (CwF). This notion of
model was invented by Dybjer, see (Dybjer 1996), and subsequently used by
Martin-Lof (Per Martin-Lof 1995). Our reference for CwF's is the survey article
(Hofmann 199). Let us review here that a CwF consists of the following data.

e A category C of contexts and substitutions with terminal object [| corre-
sponding to the empty context.

e A collection-valued functor Ty : C°P — Set associating with each context
I" the collection of types depending on it. If f : A - T'and A € Ty(T') one
writes A{f} for Ty(f)(A). The type A{f} corresponds to the substitution
of f into A.

10

e For each T' € C and A € Ty(T') a collection of terms Tm(T', A) together
with a substitution function Tm(f, A): Tm(T, A) — Tm(A, A{f}) func-
torial in f: A — I" in the obvious sense.

e For each A € Ty(T') a so-called context extension I'.A which has the
property that the homset C(A,T.A) and {(f,M) | f: A > T and M €
Tm (A, A{f})} are isomorphic naturally in A.

e Operations corresponding to the desired type, set, and term formers.

We have already defined the category of contexts, namely GPD, and the collec-
tions Ty and Tm together with the required substitution operations.

4.5 Context extension

If A e Ty(T) is a family of groupoids the context extension I'.A is the total
category of the co-fibration obtained by applying the Grothendieck construction
to A. In more explicit terms the groupoid I'.A takes the following form.

The objects of I'.A are pairs (v,a) where v € T and a € A(y). A mor-
phism in T".A from (vy,a) to (v',a’) is a pair (p,q) where p € T'(y,v') and
qg € A(W)(p-a,a’). The composition of (p,q) : (y,a) — (v',a’) and (p',q") :
(+',a") = (v",a") is defined as (p' o p,q' o (p-q)). The identity at (v,a) is
(idy,id,). The inverse of (p,q) : (y,a) = (/,a') is (p~L,p ' q7!) : (v,d) —
(v,a). The verifications are left to the reader.

The projection sending (v, a) to v and (p, ¢) to p is a morphism of groupoids
from T".A to I'. It is called the canonical projection associated to A and is
denoted py : A — T.

In order that I'.A indeed captures context extension we need a bijective
correspondence between the set

{(fyM)| f:A—=Tand M € Tm(A{f})}

and the homset GPD(A,T.A). Given f: A - T and M € Tm(A{f}) we define
(f,M)a: A —>T.Aby

(f, M) a(0) = (f(6), M(6))
(f, M)a(p) = (f(p), M(p))

To obtain an inverse we first define a semantic analogue to the sequent ', x: A
x: A as follows. A dependent object v4 € Tm(A{pa}) is given by

va(y,a) =a
va(p,q) = ¢

Notice that A{pa} € Ty(T.A).
Now,if h: A — I'.A then we have pgoh : A = T'andva{h} € Tm(A{paoh})
It is routine that these data establish the required bijective correspondence
natural in A.

11

We have established that groupoids and families of groupoids form an in-
stance of a CwF.

It remains to identify dependent function spaces and an appropriate universe
Set, as well as, interpretations of the set formers, in particular the identity sets.
We treat these issues in order.

4.6 Dependent function space

To each dependent object M € Tm(A) we can associate a functor M : ' —
I'A by M(y) = (y,M(v)) and M(p) = (p, M(p)). We have ps o S = idr.
Conversely, given a section f : ' — A of py, i.e. p4 o f = idp then we have
f(y) =(v,M(v)) and f(p) = (p, M (p)) for a uniquely determined M € Tm(A).

This correspondence enables us to view Tm(A) (for A € Ty(T")) not merely as
a set, but as a groupoid. A morphism 7 from term M to term N is an assignment
of an A(y)-morphism 7., : M (y) — N(v) such that the family 7, := (id., 7) is
a natural transformation from M to N, i.e. for every p : v — 7' the following
diagram commutes

() 22 37y
N - N
v) ~0) ")

Now suppose that 4 € Ty(T') and B € Ty(I'.A). We wish to define a family
I » (A, B) € Ty(T") together with additional structure to interpret application
and abstraction. In order to avoid lengthy and rather unreadable calculations
we will only give the definitions and leave the straightforward verifications to
the reader.
If y € T let B, € Ty(A(y)) be the family of groupoids over the groupoid
A(y) given by
By(a) = B(7,a)
By (p)(-) = (id+, p) - -
Notice that B, = B{4} where 4 : A(y) — I'.A is the functor sending a to (v, a)
and p:a— a' to (idy,p).
Now we put

rr(A, B)(y) = Tm(B,) considered as a groupoid
Ifp:y— 9" and M € Tm(B,) then (p- M) € Tm(B) is given by

(p-M)(a€ A(Y')) = (p,id)-M(p~" -a)
(p-M)(q:a—a')=(pid) M(p~"-q)

If M,M'" € Tm(By) and 7 : M — M' is a natural transformation then p-7 :
p-M — p-M' is defined by

(P T)a = (pyid) -Tp1.,

12

for a € A(v").

4.6.1 Abstraction and application

Suppose that M € Tm(B). We define its abstraction A4 (M) € Tm (Il r (4, B))
on objects by

Aa.B(M)(y)(a) = M(y,a)

AaB(M)()(q) = M(id, q)

If p: v = +' then we need a natural transformation
AaB(M)(p) : p-AaB(M)(y) = Aas(M)(Y)

At object a € A(v') it is given by M (p, id,).
Conversely, if M € Tm(II(A, B)) we define a dependent object \,'y €
Tm(B). Its object part is given by

Maip(M)(v,a) = M(7)(a)

For the morphism part assume p: v — ~' and ¢ : p-a — a’. We define

Al (M)(p,q) = M(y')(q) o (idy,q) - M(P)p.a

We claim that

Mls(M)(p,q) : (p,9) - Aa (M) (y,a) = Ay 5(M)(y',a')
as required. To see this, first note that
M) (q) « (idy, q)- M'(y')(p-a) = M'(y')(a")
because ¢ : p-a — a’. On the other hand M (p) : p- M (vy) = M (y'), thus

M(p)p-a: (pyidar) - M(y)(a) = M'(y)(p-a)

as p~'-p-a = a. The claim follows by (id./,q) o (p, ida) = (p, q).

Note that we can define application of M € Tm(Il(4, B)) to N € Tm(A) as
Ails (M) (N},

Rather than defining an object of a family TI;,r (A, B) we will often define
an object of B instead. This will be referred to as “currying”.

4.7 The universe of sets

Let V be a universe in the metalanguage which is closed under dependent func-
tion space, dependent sum, and inductive definitions. If our metalanguage is
chosen to be axiomatic set theory such universe may be chosen either as a
Grothendieck universe (Mac Lane 1971) or V,, for k an inaccessible cardinal
(Luo 1994). If we use extensional Martin-Lof type theory as a metalanguage
then V will be a type-theroetic universe with the required closure properties.

13

Call a groupoid I V-small, or small for short, if both its collection of objects
and its homsets lie in V. Let us write Gpd for the groupoid which has as objects
the small groupoids and only isomorphisms of groupoids as morphisms. The
(non-full) inclusion from Gpd to GPD defines a family El € Ty(Gpd).

The groupoid Gpd together with its associated family El serves as the inter-
pretation of the type Set and its associated “invisible” El operator. Notice that,
if A: T — Gpd then El{A} is actually equal to A. Therefore, it is appropriate
to introduce the notation Se(T") for the homset I' — Gpd where Se(T") C Ty(T).

4.8 Interpretation of the syntax

The structure exhibited so far is sufficient to interpret the Logical Framework,
i.e. the dependent function spaces and the universe Set. This means that we
have a unique compositional assignment [—] which maps

e a well-formed contexts I' to a groupoid [I'],
e a type A [I] to a family of groupoids [A [[']] € Ty([T]),
e an object a : A [T'] to a dependent object [a : A [[']] € Tm(A [I),

in such a way that derivable equality judgements are validated. More explicitly,
this means that

o [A[T]] =[A"[T]], whenever A = A’ [I'] is derivable,
e [a: AT =[d : A[l], whenever a =a' : A[L].

Notice that if A : Set [I'] then we have [A : Set [T']] € Se([T']) by composition-
ality. The same goes for dependent function spaces which are interpreted by
My w (s,).

In order to extend this interpretation to a hierarchically? structured equa-
tional theory such as in particular Martin-Lof set theory we have to assign to
each constant of type A an element of [A] in such a way that the required
definitional equalities are validated.

In defining these semantic constants we will use type-theoretic syntax to
denote semantic entities, thereby omitting semantic brackets.

4.9 Dependent function spaces and sums

Since the dependent function space of a small family of groupoids over a small
groupoid is again small, we immediately obtain an interpretation of II-sets.
To interpret Y-sets we need an element

Y : (A: Set)(B: (a: A)Set)Set

By currying, this amounts to defining a small family over the groupoid T' :=
[A: Set, B: (a: A)Set]. We will use I' as a black box and only use the fact that

2The type of a constant may depend on previously declared constants.

14

its two components arise as small families A € Se(I') and B € Se(I'.A) by
projection.

We have to define a small family X(A, B) € Se(T"). If y € T'let B, € Se(A(y))
be defined as in Section 4.6.

The family (A, B) € Ty(T') is now defined as follows.

S(4, B)(y) = A(1).B,
p'((l,b) = (p'(l, (pa 7dp(l)b)

In order to give meaning to pairing and elimination it is sufficient, albeit not
necessary, to exhibit an isomorphism between I"X.(A4, B) and I'.A.B. But these
two groupoids are identical up to restructuring of parentheses. That is to say
the isomorphism sends (v, a,b) to (v, (a,b)) and vice versa and similarly for
morphisms.

4.10 Identity sets

Before embarking on the precise definition of identity sets we motivate the main
idea by assuming that the ambient context is empty. Solet A be a groupoid. The
interpretation of Id(A) arises as the family I4 € Ty(A x A) as defined in 4.2.2.
Recall that Ta(ai,a2) = A(ar,a2) and T4(q1,¢2)(s) = g2 0 8o q]’]. Reflexivity
is interpreted as the dependent object which sends a € A to refi(a) := id, €
A(a,a). If g: a — da', then

La(g, @)(refi(a) = qoida 0 g ™" = ider = refi(a’)

Therefore, refl is indeed a dependent object of the family I4(a,a) [a: A].
For identity elimination let C' be a family over the groupoid

O .= [(],17(12114,55 IA((]J:(]‘?)]

The groupoid @ has as objects triples (a1, as,s) where s € A(ai,a2). A ©-
morphism from (a1, as,s) to (a},a),s') amounts to a pair (¢q1,¢2) where ¢; :
a; = a with Tx(q1,q2)(s) = s', i.e. g2 0 s = ' 0 q1. Notice that, therefore, © is
(isomorphic to) the arrow category A™.

In order to interpret J(A, C) one has to provide a uniform way of extending
an object d of (a: A)C(a,a, refl(a)) to a dependent object J(A,C,d) of C such
that J(A, C,d)(a,a,refl(a)) = d(a). The key to the interpretation of J(A,C) is
the observation that for any object (a1, a2, s) we have

(idg,,8) : (a1,a1,1d4,) = (a1, as,s)

because

a) — 49

15

commutes. Therefore, we can put
J(A,C,d)(a1,a2,8) = (idg,, s) -d(ar)

The morphism part of .J is defined analogously.

For those familiar with fibrations we remark that the extension J(A, C,d)
depends crucially on the morphism part of C, i.e. on the choice of a splitting of
C when viewed as a fibration of groupoids. Therefore, it seems unlikely that it
can be characterised by a universal property.

4.10.1 The identity set former
To interpret identity sets in full generality we need an element
Id € Tm((A: Set)(a,a': A)Set)

By currying this amounts to defining a small family over the groupoid [A: Set,
ay: A, as: A]. This groupoid has as objects triples (A4, a1, a2) where A is a small
groupoid and ay, as are objects of A. A morphism from (4, a1, as) to (4',d},a})
is a triple (p,q1,q2) where p : A — A’ is an isomorphism of groupoids, i.e.
p € Gpd(A,A"), and ¢; : p(a;) = a} in A'. Note that El(p)(a;) = p(a;) thus
permitting us to write also p(z) instead of p- x.

The family Id over [A: Set,a;: A, as: A] is now given by

Id(A, ay,az) = A(A(a1, a2))
1d(p,q1,42)(s) = g op(s) o qy ' € Id(A',af, ab)

where p: A - A" and g; € A'(p(a;),a;) and s € Id(A, a1,a:) = A(ar, a»).

4.10.2 Reflexivity

We define a dependent object
refl : (A: Set)(a: A)Id(A, a,a))

Again, by currying this amounts to giving a dependent object of the family

Idgiag = Id(A,a) [A: Set,a: A] (over the groupoid [A: Set,a: A]). Let us make

the involved groupoids explicit. The groupoid [A: Set, a: A] has as objects pairs

(A,a) where A is a small groupoid and a € A. A morphism from (A4,a) to

(A',d') is a pair (p,q) where p: A — A" and q € A'(p(a),a’). Furthermore, we

have Idgiq,(A,a) = A(A(a,a)) and if s € A(a,a) then (p,q) s =qop(s)oq™'.
The object part of refl is now given by

refl(A, a) = id, € A(a,a)

Now since Idg;q4 is discrete the definition of the morphism part of refl reduces
to checking that

qop(refllA,a)) oq~ " = refilA',a")
This in turn is immediate by by functoriality of p and the fact that ¢~
inverse of q.

lis an

16

4.10.3 Identity elimination

We seek a global element of the following groupoid.

(A: Set)(C: (a1,a92: A, s: Id(A, a1,az2))Set)(d : (a: A)C(a,a, refl(A, a)))
(ar,a2: A)(s: Id(A, a1,a2))C (a1, a9, s)

By currying this amounts to defining a dependent object
J e Tm(C(ar,aq,s) [T a1: A as: A, s: Id(A, a1, a2)])
where
[=[A:Set,C:(a1,a2: A,s:Id(A, a1,a2))Set,d: (a: A)C(a,a, refi(A, a))]

and A, C,d refer to the respective components of I'. Note that we have A €
Se(T), a family C € Se([I',a1,a2: A, s: Id(A, a1, a2)]), and a dependent object d
of C(a,a,refl(A,a)) [T, a: A] via projection (and uncurrying in the case of d).

The object part of J is given as follows. Let u = (7, a1,a2,8) be an object
of [T',a1,as: A, s: Id(A, ar,as)]. Put

f(u) == (idy, id,,, s, %)

Notice that
f(u): (v, a1,a1,refi(A, a1)) = (v,a1,a2,s)

as (s,idg,) -refl(A,a1) = sorefl(A,a1) o id;ll = s. Now recall that d(y,a1) €
C(v,a1,a1,refl(A,a1)); so we are led to define

J(u) = f(u)-d(vy,a1) € C(vy,a1,as,s)

We come to the morphism part. Let v = (7,a1,a2,s) and «' = (7', a},a}, s')
be objects of [, a1,a2: A, s: Id(A,a1,a9)] and let h = (p,q1,q2,%) : u = u'. In
other words p: v — 7" and ¢; : p-(a;) — a} and

@20 (p-s)=soq (1)
We have to define a morphism J(h) : h-J(u) = J(u') in C(u'). We claim that
J(h) = f(u')-d(p,q1)

has the required property. To see this, first observe that (p,q1) : (v,a1) —
(7', a}) and therefore

d(p,q1) = (p,q1,q1,%) -d(v,a1) = d(v', a}) (2)

as d € Tm(C(a,a,refl(A,a)) [T',a: A]). Notice that

(p7QI7q17*) : (77“17“17 T‘Eﬂ((ll)) - (Vlaalh(]‘,l? reﬂ(al)')

17

Applying the operation f(u')-_ to (2) and using functoriality yields

f)-dp,a) « (f(u) o (par,qu. %) -d(y,a1) = f(u')-d(v', ay)

Now we calculate as follows.

f(U’) ° (p:qhq]:*)
(idv': idaq s 517*) o (p: qi, Q17*)
(p:qhsloqh*)

= (p,q1,q20(p-8),*) by Eqn 1
= (p7 q1,42; *) ° (id’ya id(ll) S:*) since b id(ll = 7d(z’1
ho f(u)

So J(h) : (ho f(u))-d(y,a1) = f(u')-d(v',a}) and therefore J(h) : h-J(u) —
J(u") as required. The verification of the functor laws for J is tedious but
straightforward.

Notice that for all v € ' and a € A(vy) we have

f(yv,a,a,mefl(A, a)) = (id, id,, idq,*)

Therefore

J(77 a,a, Teﬂ(Aa (l)) = f(FY: a, a, refl(A, (l)) : d(77 (l) = d(’Ya (1)

and
J(p,q,q,%) = f(o/,a',a',refi(A,a")) - d(p, q) = d(p, q)

whenever (p,q) : (7,a) = (v',a’). This establishes the validity of the definitional
equality required for .J.

4.11 Other set formers

The natural numbers N € Se([]) are given as the discrete groupoid A(N) over
the set of natural numbers. We omit the definition of the associated operations.
The disjoint union set A + B is interpreted as the co-product of groupoids,
which is constructed as the disjoint union of the underlying sets of objects and
morphisms.

In a similar way, we can interpret lists, trees, unit set, empty set, and other
datatypes.

4.12 Universes

Let V' be a meta-theoretic universe contained in V. We write Gpd(V') for the
groupoid of V-small groupoids with isomorphisms as morphisms.

Provided V' has appropriate meta-theoretic closure properties the groupoid
Gpd(V) can serve as interpretation of a universe closed under the usual set
forming operations.

We call a meta-theoretic universe V impredicative, if it is closed under im-
predicative universal quantification, i.e. for A € V and B : A — V the dependent

18

function space H,ec 4 B(a) is in V. Of course, non-trivial instances of such V are
possible only in an intuitionistic metatheory such as an extensional variant of
Luo’s ECC (Luo 1994) whose consistency is established by various realizability
models.

If V is impredicative (and has the usual closure properties) then Gpd(V)
is closed under impredicative quantification as well. That is to say, if A € V
and B : A — Gpd(V) then H,r (A, B) € Gpd(V'). This is immediate from the
definition of dependent function spaces in the groupoid model.

For subsequent applications it is useful to have universes of small discrete
groupoids available. We write Gpda (V') for the groupoid consisting of V-small
discrete groupoids with isomorphisms (or rather bijections) as morphisms. Due
to the fact that discrete groupoids are closed under all set forming operations
so will be a universe of the form Gpda (V). Moreover, since identity sets (even
of non-discrete groupoids) are discrete, the family of groupoids Id(A) lives in
Gpda (A) provided the groupoid A has V-small homsets.

Of particular interest is the situation where V is impredicative and Set is
confined to groupoids with V-small homsets. Due to impredicativity of V' this
interpretation of Set is still closed under dependent function space as well as the
remaining set forming operations. Now, Gpd(V) and Gpda (V') are impredica-
tive universes (still contained in Set) which moreover contain all identity sets.
We thus obtain an interpretation of impredicative higher-order logic in which
propositional equality is proof-relevant.

Notice, that since universes of the above form are not discrete they cannot
be contained in a universe of the form Gpda (V). Nevertheless, if V' is a meta-
theoretic universe contained in V' then Gpda (V') contains the discrete groupoid
consisting of V'-small groupoids. Universes obtained in this way are still closed
under all set formers, but do not contain identity sets of non-discrete groupoids.

We have not checked whether these universes can be suffiently narrowed
down so as to validate universe elimination, cf. Ch. 14 of (Nordstrém, Petersson,
and Smith 1990), but we do not see any principle obstacle.

5 Applications and extension

In this section we will exploit the benefits of the model construction carried out.
We derive the promised independence results and investigate some extensions
validated by the groupoid model, in particular a set of axioms expressing that
equality on certain universes is isomorphism. These extension are put to use in
a new type-theoretic formalisation of basic category theory in which isomorphic
objects are propositionally equal.

5.1 Independence of UIP

Since for a groupoid A the identity set Id(A, a;, az) is interpreted as A(A(aq, as))
it will contain more than one object if there is more than one A-morphism
from a; to as. Due to discreteness of identity sets these objects are then not

19

even propositionally equal as propositional and definitional equality coincide for
discrete groupoids. More formally, we have the following theorem.

Theorem 5.1 The type UIP is empty.

Proof. Suppose that u € Tm(UIP). Let A be the group Z, viewed as a one-
object groupoid. That is to say, we have a single object x € A and two distinct
morphisms id,,p € A(*,x) where pop = id,. Then u(A,x,x,p, id,) would be
an element of Id(Id(A,*,*),p,id.). However, the latter set is empty as p # id,
and identity sets are discrete. O

By soundness of the interpretation the following is now immediate.

Corollary 5.2 There is no syntactically definable closed term of type UIP.

5.1.1 Non-definability of K

As UIP can be proved using the eliminator K for the family Id(A,a,a) [a: 4],
as given in Section 3.3 it follows that the latter cannot be interpreted in the
groupoid model. Tt is, however, instructive to see directly, why an attempt
of interpreting K in the same way as .J fails. Let A be a groupoid and C' €
Se([a: A, s: Id(A, a,a)]) and d : (a: A)C(a, refl(a)). In order to construct a de-
pendent object of C' extending d in the same way as we did in the case of J we
would have to come up with a morphism in [a: A, s: Id(A, a,a)] from (a, refl(a))
to (a,s) for arbitrary s : a — a. Now such a morphism would amount to a
morphism ¢ : a — a satisfying soq = gorefi(a) = q. But this implies s = refi(a).
So no such morphism exists if s # refl(a).

That an interpretation of K cannot be achieved in any other way either
can be seen as follows. Let A be a groupoid with an object ay € A such that
A(ag, ap) contains a non-identity morphism pg. Let C € Se([a: A, Id(a,a)]) be
the family of discrete groupoids given by

Cla,p) = Nx|p=id,}

So C(a,p) is empty for p # id,. To see that this is a family of groupoids assume
that we have a morphism (g, %) : (a,p) = (a’,p’),i.e.¢: a = a' and p'og = qop.
So p' = idy iff p = id,. Now d(a) := % is an object of (a: A)C(a, refi(a)).
However, Tm(C) is empty as C(ag,po) is empty.

5.1.2 Non-definability of cong_snd

Finally, let us look at the congruence property cong_snd. If A is a groupoid and
B €Se(A) and a: A and b,b' : B(a) then

Id(Z(AaB)a <(l,b>, <a7bl>) = A{(pa q) ‘ p:a—a,q pb - bl}
whereas

Id(B(a),b,b") = N{qg|q:b— b}

20

So the two groupoids are different and one can easily construct a situation in
which the first one is inhabited and the second one is empty.

5.2 Canonicity of identity types

Unlike II-sets with n-equality or extensional identity sets, the intensional iden-
tity sets are not defined by a universal property. Therefore, it is natural to ask
how interpretations of identity sets in the groupoid model look like in general.

To answer this question, assume for the moment that we enrich our type
theory by another set former Id' : (A: Set)A — A — Set together with appro-
priately typed constants refl’ and J' satisfying the corresponding definitional
equalities. Then using J and J’ one can exhibit terms

i: (A: Set)(ar,a0: A)Id(A, a1,a2) = Id'(A,a1,a9)
j : (A Set)(a17a2:A)Id’(A,a1,a2) — Id(A,a1,a2)

in such a way that, moroever, the following two types are inhabited

(A: Set) (a1, az: A)(s: Id(A, ar,a2))Id(j(i(s)), s)
(A: Set)(ar,as: A)(s": Id' (A, a1,a2))Id(i(j(s")), s')

It follows that UIP holds with respect to Id’ if and only if it holds w.r.t. Id
because the property of having at most one element is stable under propositional
isomorphism. It follows that no interpretation of identity sets satisfying UIP
is possible in the groupoid model, thus in particular extensional identity sets
cannot be interpreted.

A more refined analysis shows that i and j establish an equivalence in the
category-theoretic sense and therefore any possible interpretation of the identity
set Id(A, a1, as) must be a posetal groupoid whose connected components are
in a 1-1 correspondence with A(a1,as).

5.3 Functional extensionality

Despite the intensional character of the groupoid model propositional equality
on function spaces is pointwise in the sense that the following type is inhabited
in the model.

Fun_Ext & (A: Set)(B: (a: A)Set)(f, g:TI(A, B))
((a: A)Id(B(a), f(a),9(a))) — Id(f,g)

To see this, let I’ denote the groupoid [A: Set, B: (a: A)Set, f,g:1(A, B)] and
let PE € Se(T") denote the family (a: A)Id(B(a), f(a), g(a)).

Let v € T. The groupoid Id(f, g)() is the discrete groupoid with objects the
natural transformations in the sense of Section 4.6. More precisely, an object of
Id(f,g)(vy) is an assignment 7 mapping objects a € A(v) to B(+, a)-morphisms
Ta ¢ f(7)(a) = g(7)(a) such that whenever ¢ : a — a' then the following diagram

21

commutes.

F()(a) To 9(7)(a)
(id.q)- (@) LT (i) - g(1)(a)
f(v)(q) 9(7)(q)

f()(a") ~ 9(7)(a")

Now let M be an object of PE(vy). By definition of dependent function space
M (a) is a morphism from f(v)(a) to g(vy)(a) for every a € A(y). Furthermore,
if g:a — a' then

M(q) : (id,q) - M(a) = M (a") (3)

where - refers to the identity set Id(f(a), g(a)). By discreteness of identity sets
(3) translates into the following diagram.

(@ M@ | i)
(idq) - £ (@) S0 M) Gy o) @)
F(v)(q) g(v)(q)

M(a')

f(y)(a") g(7)(a")

This means that the objects of Id(f,g)(y) and PE(y) are the same! Being a
dependent function space of a discrete family, PFE is discrete itself. So Id(f, g)(7)
and PE(y) are isomorphic. One can also show that this isomorphism is natural
in 7 thus establishing an isomorphism between the families PE and Id(f, g). A
more refined analysis shows that one direction of this isomorphism arises as the
interpretation of the following proof that equal functions are pointwise equal.

app_resp ef [A: Set][B: (a: A)Set][f, g: TI(A, B)][s: Id(f, 9)]
[a: A]resp([h: TI(A, B)]h(a), s)
: (A: Set)(B: (a: A)Set)(f,9:TI(A, B))Id(f,g9) — (a: A)Id(f(a), g(a))

This allows us to interpret the following extension of Martin-Lof’s type theory.

fun_ext : Fun_Ext

fun_ext_azl : (A: Set)(B: (a: A)Set)(f, g:1I(A, B))
(s: Id(f, g))Id(s, fun_ext(app_resp(s)))

fun_ext_az2: (A: Set)(B: (a: A)Set)(f,g:11(A, B))
(s: (a: A)Id(f(a), g(a)))Id(s, app-resp(fun_ext(s)))

22

The special case of fun_ext_azl where s is an instance of reflexivity was proposed
by Turner (Turner 1989) as a possible axiomatisation of functional extensional-
ity. It is easy to see that this special case is equivalent to the general fun_ext_az1
using J. Apparently, fun_ext_az2 is independent of fun_ext_azl (and Turner’s
axiom). Note that our two axioms determine the postulated object fun_ext
uniquely up to propositional equality. Obviously, the axioms fun_ezxt_az1/2 are
derivable from UIP.

A potential application of functional extensionality is that it allows one to
derive UIP(II(A, B)) from (a: A)UIP(B(a)). Assuming fun_ext alone, does not
seem to suffice for that purpose.

Notice that functional extensionality allows us to express an identity set
of the form Id(TI(A, B)) in terms of identity sets of the form Id(B(a)). A
similar decomposition is possible for Y.-sets without any extension to the syntax.
Indeed, using X-elimination we can establish a canonical isomorphism between
Id(X(A, B), {u1,ua), (v1,v2)) and

S([p: Id(A, wy,v1)1d(B(va), subst(p, us), va)

Analogously, we can decompose identity sets at disjoint unions and natural
numbers.

5.4 Universe extensionality

In this section we want to make an extension of type theory taking account of
the fact that propositional equality on a universe is isomorphism. To make this
more precise we need some notation. We write Iso(A4, B) for the set

S([f:A— B]X([g: B — Alld(g o f,id) x Id(f o g,id))

where composition (o) and identities (id) are defined as usual in terms of ab-
straction and application. If h : Iso(A, B) we abbreviate its first component by
h and its second component by h~!. Conversely, if f : A — B and it is clear
from the context that f has an inverse in the sense propositional equality then
we may write f : Iso(A, B).

Now let U be a universe of discrete groupoids, i.e. of the form Gpda (V).

It is then clear that if A, B : U then the interpretations of Iso(A, B) and
Id(U, A, B) are isomorphic. One direction of the isomorphism is syntactically
definable as

id_iso ' [A, B: U][s: Id(A, B)]subst([X: U]Iso(A, X), s, id A)
. (A, B: U)Id(A, B) — Iso(A, B)

Notice that Iso(A, B) and Id(A, B) are not isomorphic if U = Gpd(V') because
then Iso(A, B) is in one-to-one correspondence with equivalences between A and
B. Thus Iso(A, B) may be inhabited even if A and B are not isomorphic.

23

Like in the case of functional extensionality we can now syntactically postu-
late an inverse to the function id_iso:

iso_id : (A, B: U)Iso(A, B) — Id(A, B)
iso_id_axl: (A, B: U)(s: Id(A, B))Id(s, iso_id(id_iso(s)))
iso_id_ax2: (A, B: U)(s: Iso(A, B))Id(s, id_-iso(iso-id(s)))

By analogy to functional extensionality we refer to this extension by wuniverse
extensionality.

We remark that universe extensionality is inconsistent with UIP(U) if U
contains the natural numbers. This is so because the set Iso(IN,N) contains
two different definable elements f and g. UIP together with the above constants
would identify f and g and therefore two different natural numbers.

5.5 A new formalisation of category theory

An application of the above extension is a new formalisation of category theory
where isomorphic objects are propositionally equal. Let U be a universe of
discrete groupoids. We reflect this syntactically by assuming (A: U) UIP(A).

A category with isomorphism as equality then consists of the following data.

e aset Ob: Set of objects,

a family of sets Mor: Ob — Ob — U of morphisms,

objects id and comp of the obvious types corresponding to identity and
composition,

proofs of the traditional axioms stated in terms of propositional equality,

a proof that for each A, B: Ob the sets Id(Ob, A, B) and Iso(A, B) are

canonically isomorphic.

This definition deserves some explanation. The set Iso(A, B) for A, B: Ob is
defined analogously to Iso for members of a universe. More precisely, Iso(A, B)
is

Y[f: Mor(A, B)|X[g: Mor(B, A)]
Ld(comp(g, f), id(A)) x Id(comp(f, g),id(B))

This set being “canonically isomorphic” to Id(A, B) means that the canonical
function Id(A, B) — Iso(A, B) obtained by applying subst to id(A) is bijective.
The fact that the homsets Mor(A, B) are discrete enables us to do without
further axioms qualifying the behaviour of the assumed proofs of the category
equations. In other words, there is only one reason for morphisms to be equal.
If we want to consider the collections of categories as objects of Set then we
have to restrict Ob to a member of a certain not necessarily discrete universe.

24

Of course, this formalisation of categories does not per se require universe
extensionality. The point is that universe extensionality is necessary for organ-
ising U itself into a category with isomorphism as equality.

More precisely, we can define a category where Ob 7 and Mor(A, B) def
A— B.

Furthermore, using functional extensionality in an essential way, we can
show that categories with isomorphism as equality are closed under formation
of functor categories. The crucial point here is to establish a one-to-one corre-
spondence between between natural isomorphism between two functors F' and
G (between categories C' and D) and proofs that F' and G are equal. This is
achieved by decomposing the set Id(FUNC(C, D), F,G) according to the rules
set out at the end of Section 5.3. Here the set of functors FUNC(C, D) is defined
as usual by grouping together object and morphism part as an object of a ¥-set.

The components of a natural isomorphism now correspond to a proof that
the object parts of F' and G are pointwise equal, thus equal by functional exten-
sionality. The naturality condition, on the other hand, is required for the proof
that the two morphism parts are propositionally equal. The details are messy,
but have been machine-checked using a proof assistant (LEGO).

We emphasise that the abovementioned decomposition of Id(F,G) suggests
the usual definition of isomorphism between functors. It would be interesting
to see whether this analogy can be exploited for finding appropriate notions of
isomorphism for other mathematical structures (e.g. models of typed lambda
calculus).

Notice that, obviously, UIP(FUNC(C, D)) is not valid as there is in general
more than one natural isomorphism between any two functors. This implies
that categories and functors do not form a category with equality as isomor-
phism since its homsets are not discrete. Of course, categories and functors still
can be organised into a category in the traditional sense. However, it might be
interesting to view equivalent categories as propositionally equal. This, how-
ever, would require “2-level groupoids” in which we have morphisms between
morphisms and accordingly the identity sets are not necessarily discrete. We do
not know whether such structures (or even infinite-level generalisations thereof)
can be sensibly organised into a model of type theory.

A Syntax of type theory
A.1 General rules

Ewmp

[] ctat
A type [T
I,z: A ctat

Iz A A ctat
x: AL,z A A

COMPR

VAR

25

In rule COMPR z is a fresh variable.
Rules expressing that definitional equality is a congruence relation with re-
spect to all subsequent type and term forming operations.

A.2 Rules for the Logical Framework

A type [Tl B type [T, z: A
(z: A)B type [T]
A type [Tl B type [I',x: A] t: B[, x: A
[z: A]t : (z: A)B [T

Atype] Biypel,2: Al t:(x:A)B[I] s:A|[l

t(s) : Blz:=s] [T
A type] B itype[l,z: A] t:B[[,z: A

([x: Alt)(s) = tlz:=s] : B[xz:=s] [T
A type [Tl B type[I',x: A] t:(x: A)B [T
[

Fun

LAM

8

»

b
=

[z:At(z) = ¢ : (= A)B [T] 1
I' ctzt
——— SET
Set type [[']
A: Set [T

El(A) type [T]
We henceforth omit the FEl-operator and use the conventions on abstraction,

application, and omission of redundant arguments set out in Section 2. We
abbreviate (x: A)B by A — B if x does not occur in B.

A.3 Martin-Lof’s set theory

Martin-Lof’s set theory is defined as the extension of the Logical Framework by
the following constants and definitional equations understood in every valid con-
text. The definitional equalities hold under the proviso that their components
are well-typed.

A.4 Tl-sets
TT : (A: Set)(A — Set) — Set
fun : (A: Set)(B: A — Set)((a: A)B(a)) — II(A, B)
app : (A: Set)(B: A — Set)(TI(A, B)) — (a: A)B(a)
app(fun(b),a) = b(a) : B(a)

fun([z: Alapp(t,x)) =t : 1I(A, B)

)

26

Alternatively, we can replace app by the so-called funsplit operator (Nordstrom,
Petersson, and Smith 1990). Then the second n-like equality only holds propo-
sitionally.

We take the freedom of writing f(a) for app(f,a).

A.5 Y-sets

Y (A: Set)(A — Set) — Set
pair: (A: Set)(B: A — Set)(a: A)B(a) — X(A, B)

E: (A: Set)(B: A — Set)(C : £(A, B) — Set)
((a: A)(b: B(a))C(pair(a,b))) = (c:X(A, B))C(c)

E(d, pair(a,b)) = d(a,b) : C(pair(a,b))

When A, B : Set then we abbreviate X([z: A]B) by A x B. We also write (a, b)
for pair(a,b).

A.6 Identity sets
Id: (A: Set)A — A — Set
refl : (A: Set)(a: A)Id(A, a,a)

J i (A: Set)(C: (a1, aq9: A)Id(A, aq,a2) — Set)
((a: A)C(a,a,refi(A,a))) = (a1, a2: A)(s: Id(A,a1,a2))C (a1, as, s)

J(d, refl(a)) = d(a) : C(refl(a))

27

A.7 Natural numbers and disjoint unions
N : Set
0:N
suce: N = N
R:(C:N — Set)C(0) = ((n: N)C(n) — C(succ(n))) = (n:N)C'(n)

R(d,e,0) =d: C(0)
R(d, e, succ(n)) = e(n, R(d,e,n)) : C(succ(n))

+ : Set = Set — Set
i:(A,B:Set)A - A+ B
j: (A,B:Set)B - A+ B

D: (A, B: Set)(C: (A + B) — Set)
A)C

((a: A)C(i(a))) = ((b: B)C(§(b))) = (c: A + B)C(c)
D(d,e,i(a)) = d(a) : C(i(a))
D(d; e, j(b)) = e(b) : C(5(b))

A.8 Universes

A universe U in Set is defined by two constants U : Set and T': U — Set
Closure properties of the universe under certain type and term formers are
expressed by reintroducing them with Set replaced by U. If the desired type for-
mer is available for Set as well then it suffices to reintroduce the type former for
U and relate it to the corresponding type former on the level of Set by an appro-
priate equality axiom for T'. The associated term formers can then be inherited
from Set. For example, closure under impredicative universal quantification is

defined by

T: (A: Set)(A = U) » U

fun: (A: Set)(B: A — U)((a A)AT(B(a))) — T(f[(B))
app : (A: Set)(B: A — U)(t:T(II(B))) — (a: A)T'(B(a))
[and n equations

If we have II-sets then ﬁt\ﬂ and app together with their equations can be replaced
by the single set equation

T(TI(A, B)) = TI(A, [a: A]T(B(a)))

References

Altenkirch, T. (1992, January). An open question concerning inductive equal-
ity. E-mail message to the Edinburgh LEGO club.

28

Altenkirch, T., V. Gaspes, B. Nordstrom, and B. von Sydow (1994). A User’s
Guide to ALF. Sweden: Chalmers University of Technology. Available
under ftp://ftp.cs.chalmers.se/pub/users/alti/alf.ps.Z.

Brown, R. (1988). Topology. Ellis Horwood.

Coquand, T. (1992). Pattern matching with dependent types. In Workshop
on Logical Frameworks, Bastad. Preliminary Proceedings.

Dybjer, P. (1996). Internal type theory. In Proc. BRA TYPES workshop,
Torino, June 1995, Springer LNCS. To appear.

Hedberg, M. (1995). Uniqueness and internal decidability in type theory.
Manuscript, Chalmers University, Gothenburg.

Hofmann, M. (199I). Syntax and semantics of dependent types. In P. Dybjer
and A. M. Pitts (Eds.), Semantics and Logics of Computation. Cambridge
University Press.

Hofmann, M. (1993, July). A model of intensional Martin-Lof type theory in
which unicity of identity proofs does not hold. unpublished note, available
on email request.

Hofmann, M. (1995). Eztensional Concepts in Intensional Type Theory. Ph.
D. thesis, Univ. of Edinburgh.

Hofmann, M. and T. Streicher (1994). A groupoid model refutes uniqueness of
identity proofs. In Proceedings of the 9th Symposium on Logic in Computer
Science (LICS), Paris.

Lamarche, F. (1991(I)). A Proposal about Foundations I. Manuscript.
Luo, Z. (1994). Computation and Reasoning. Oxford University Press.
Mac Lane, S. (1971). Categories for the Working Mathematician. Springer.

Nordstrom, B., K. Petersson, and J. M. Smith (1990). Programming in
Martin-Ldf’s Type Theory, An Introduction. Clarendon Press, Oxford.

Per Martin-Lof (1995). Tarskian semantics for type theory. Talk given at the
symposium “25 years of constructive type theory”, Venice.

Streicher, T. (1993). Semantical Investigations into Intensional Type Theory.
Habilitationsschrift, LMU Miinchen.

Turner, D. (1989, May). A new formulation of constructive type theory. In
P. Dybjer (Ed.), Proceedings of the Workshop on Programming Logic, pp.
258-294. Programming Methodology Group, Univ. of Goteborg.

29

https://www.researchgate.net/publication/2858048

