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Abstrat

Brane supersymmetry breaking and hiral fermions are disussed in the on-

text of interseting D6- and D8-branes in ompati�ations of type II orientifolds.

The orientifold projetion ontains a reetion R

i

in i internal oordinates whih

leaves orientifold planes of spae dimension (9� i) invariant. In order to ahieve

partial supersymmetry breaking, a four dimensional orbifold symmetry is im-

posed. The reetion R

i

is hosen suh that it ats as omplex onjugation on

an additional two torus. Canellation of RR harges enfores the existene of D-

branes of the same dimensionality as the O-planes. The D-branes an either be

hosen to lie on top of the O-planes leading to loal RR harge anellation and

a N = 2 supersymmetri non-hiral spetrum or allowing for global RR harge

anellation only, the D-branes an be hosen to lie at non trivial angles on the

two torus. The intersetion points of two D-branes support hiral fermions in the

bifundamental representation of the gauge groups whih are provided by �elds

living on the worldvolume of the D-branes involved. These models have broken

supersymmetry in the open string setor while the losed string setor, whih in

partiular ontains gravity, remains N = 2 supersymmetri.

The gauge groups and hiral spetra depend on the hoie of the reetion

R

i

and the orbifold group. Several expliit examples with partile spetra lose

to the standard model are given.

Canellation of gauge anomalies, the stability of the models and phenomeno-

logial impliations are disussed.
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Introdution

In this thesis, orientifold models of type II superstrings are investigated where

hiral fermions arise from supersymmetry breaking intersetions of D-branes.

One of the major hallenges of ontemporary theoretial physis is the exis-

tene of two di�erent theories whih desribe the known fundamental interations

at di�erent sales but so far annot be implemented satisfatorily into a ommon

theory.

On the one hand, the standard model of partile physis is based on renor-

malizable quantum �eld theories. It desribes earth based experiments, e.g. in

partile aelerators, at an impressive auray.

On the other hand, the general theory of relativity is a lassial theory de-

sribing gravitational interations whih beome dominant at long distanes.

Inluding general relativity into quantum theories amounts to treating spae

and time quantum mehanially. Several di�erent approahes have been made,

whih are reviewed in [102℄. None of them is yet ompletely satisfatory, but

e.g. the semi-lassial approah of onsidering quantum �eld theory in urved

spae [17℄ is apable of prediting the Hawking radiation of a blak hole. Addi-

tional appliations of a quantized theory of gravity are expeted to be relevant

for astrophysis and investigations on the early universe.

Further indiations to look for a theory beyond the standard model arise

from the large amount of free parameters of the standard model whih have

to be �xed experimentally and annot be predited from the theory itself. In

addition, astrophysial models require an extreme �ne-tuning of parameters in

order to ontain galaxies, stars and biologial life. The spetrum and gauge

groups so far have no explanation from �rst priniples, and last but not least the

standard model Higgs setor predition still needs to be on�rmed.

One step beyond the standard model an be made by introduing a symme-

try relating bosons and fermions, namely the supersymmetry. This theory has

the tehnial advantage of removing quadrati divergenes in the salar masses.

Furthermore, it o�ers the possibility of reduing the amount of free parameters

of partile physis beause the gauge ouplings unify at the so alled GUT sale

and thus allow for embedding the standard model gauge groups into a single

GUT group. A review artile on these topis is given by [89℄.

Another attempt for going beyond the standard model onsists in Kaluza-

7
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Klein theories [76, 78℄. This ansatz assumes that gravity propagates in more

than four spaetime dimensions where the supplementary dimensions are taken

to be of �nite size. This ansatz, however, seems to be inonsistent if there is

no underlying theory assumed. The need for string regularization shemes in

Kaluza-Klein theories has reently been disussed e.g. in [52℄.

A very promising andidate for a theory whih ontains both gravity and

gauge interations is provided by string theory [58, 59, 86, 93, 94℄. Interestingly,

it also o�ers a natural explanation for the other approahes to �nd a theory be-

yond the standard model. Fermions are implemented in string theory by intro-

duing loal supersymmetry on the worldsheet. Furthermore, superstring theory

is onsistently de�ned only in ten dimensions whih requires a mehanism of `hid-

ing dimensions' as in the Kaluza-Klein theories to make it a viable andidate for

a phenomenologially appealing theory ontaining the known interations. For

a reent review artile on strings and extra dimensions see e.g. [47℄.

In fat, there does not only exist one single fermioni string theory. Five

di�erent string theories are onsistently de�ned in ten dimensions. These are

the heteroti theories with gauge groups SO(32) and E

8

�E

8

and the type IIA,

IIB and type I theory. The heteroti theories and type I superstring theory

have N = 1 supersymmetry in D = 10 while the type IIA and IIB theory have

extended N = 2 supersymmetry. Exept for the type IIA theory, all other ten

dimensional theories are hiral.

In the 1980's, the main progress in string theory foused on the formulation of

the weakly oupled heteroti theories [61, 60, 62℄. Compati�ations on Calabi-

Yau manifolds [28, 109℄ and orbifolds [40, 41℄ leading toN = 1 supersymmetry in

four dimensions were onsidered. The breaking of gauge groups through Wilson

lines was e.g. onsidered in [73℄, and three family models with an extension of

the standard model gauge group were obtained [70, 46℄.

Besides the heteroti theories, also the ten dimensional type I superstring

is provided with a gauge group SO(32). The examination of this theory also

started in the 1980's [103℄ with the disovery of orientifold planes. The ompu-

tational tools for obtaining e�etive lower dimensional theories from orientifold

onstrutions were suessively worked out in [99, 57, 66, 15, 16℄.

The piture of �ve distint onsistent string theories started to hange dra-

matially with the disovery of a web of dualities whih relates all theories. The

two type II theories and the two heteroti theories were e.g. found to be T-dual

to eah other [38, 55℄. Between the type I theory and the heteroti theory with

gauge group SO(32), S-duality has been onjetured whih relates one theory at

strong oupling with the other one at weak oupling [111, 98℄. Furthermore, the

low energy limit of the ten dimensional type IIA string theory at strong oupling

is given by eleven dimensional supergravity [110, 111℄, and the heteroti E

8

�E

8

theory at strong oupling is desribed by eleven dimensional supergravity on an

interval with the two gauge fators on�ned to the ten dimensional walls [68, 67℄.
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Impliations of this on the four dimensional theories have been onsidered e.g.

in [90, 91℄. The onjetured web of dualities between the string theories and the

relations to eleven dimensional supergravity led to the assumption that all known

theories are speial vaua of an underlying theory, alled M-theory [111, 105℄.

In the reent years, a lot of progress has been made in the searh for the

standard model from type II orientifold theories. A very important ingredient

is the role of the D-branes [95℄ whih arry RR harges opposite to those of the

orientifold planes. The main omputational tools were worked out in [54℄.

The Dp-branes an either be viewed as endpoints of open strings whih have

Neumann boundary onditions along p spatial dimensions or as solitoni objets

whih ouple to the losed string modes. In the latter piture, further geometri

objets with ouplings to losed strings are the orientifold planes. Assoiated to

both types of ouplings are physial RR harges. For a theory to be onsistent,

the total RR harge has to vanish. These are the `RR tadpole anellation

onditions'. The onstraints on four dimensional model building arising from

the RR harge anellations are very restritive in the supersymmetri ase.

Various approahes of obtaining phenomenologially interesting models within

the supersymmetri framework inlude blowing-up of orbifold singularities [31,

92℄, loating D-branes at di�erent points in the internal spae, whih is T-dual

to inluding non-trivial Wilson lines (see e.g. [36℄ for a model with disrete Wil-

son lines and [32℄ for ontinuous ones), and onsidering disrete values for the

NSNS antisymmetri tensor [14, 13, 113, 108, 3, 75℄ whih redues the rank of the

gauge group and has a T-dual desription in terms of deformed ompati�ation

latties [24℄.

In orientifold ompati�ations it may make sense to go beyond the partial

supersymmetry breaking by orbifold symmetries to ompletely broken supersym-

metry. The reason is that supersymmetry may not be neessary to explain the

hierarhy between the Plank and the eletroweak sale. In D-brane set-ups one

an sometimes keep the fundamental sale, the string saleM

s

, at the weak sale

and obtain the Plank sale M

P

by large ompat extra dimensions [6, 7℄.

The supersymmetry breaking in the open string setor an be realized in

two di�erent ways by D-branes while the losed string setors are not a�eted.

One way is the inlusion of anti-D-branes in the models whih arry RR harges

opposite to the D-branes. They also have the opposite GSO projetion. That

is the reason why tahyoni salar exitations from strings strething between

D-branes and anti-D-branes our for small distanes of the D-branes. Many of

these models are unstable and undergo phase transitions [11, 107, 84, 5, 50, 101℄.

The other way to break supersymmetry in the open string setor is by al-

lowing for magneti bakground uxes on the worldvolume of the D-branes in

onsisteny with the RR harge anellation onditions. These magneti uxes

also trigger the breaking of hiral and gauge symmetry. In a T-dual piture, the

various uxes of di�erent D-branes are replaed by intersetion angles of lower di-
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mensional D-branes whih wrap di�erent yles in the ompat spae. D-branes

at angles in orientifold theories have �rst been studied for the speial ase where

the D-branes wrap the same yles as the orientifold planes leading to loal RR

harge anellation. The six dimensional set-ups were onstruted in [20℄ and

the four dimensional models were worked out in [19, 18℄ for a single orbifold

group generator while my ollaborators and me studied produts of two orbifold

group generators in [49℄. These models preserve N = 1 supersymmetry in the

orresponding dimension but turn out to have a non-hiral spetrum. In [21℄

the relation between symmetri orbifolds in orientifold theories with D-branes

at angles and asymmetri orbifolds in ordinary type I theory with bakground

uxes was disussed for six non ompat dimensions. Subsequently, in [22, 23℄

the hiral four dimensional spetrum for toroidal ompati�ations in orientifold

theories with D-branes at angles was omputed. All these searhes for hiral

fermions were derived from orientifold theories.

In [2, 1℄ four dimensional models were onsidered whih desend from om-

pati�ations of type II superstring theories without any orientifold projetion.

The D-branes interset on one, two or three tori while they are situated at an

orbifold �xed point in the remaining ompat spae. Phenomenologial issues,

namely hierarhies of mass sales and Yukawa ouplings as well as the stability

of the proton were �rst disussed in the ontext of type II theories. Further

attempts to derive the standard model from this lass of interseting D-branes

were performed in [9℄.

These theories di�er from the orientifold theories in three relevant features.

First of all, ompati�ations of type II theories preserve an extended amount

of supersymmetry in the losed string setor. Seondly, type II theories do not

need D-branes for RR harge anellation. If D-branes are introdued, a suitable

amount of anti-D-branes is neessary for harge anellation. Thirdly, in orien-

tifold theories also the D-brane on�gurations have to be invariant under the

projetions. This leads to the existene of mirror images under the orientifold

ation whih in turn restrits the total number of fermion generations to be even

in ordinary ompati�ations on retangular tori. This problem does not arise

when onsidering the T-dual of a theory with a disrete NSNS bakground ux.

The tilted tori allow for an odd number of generations, and in [24℄ the �rst ex-

ample of a three generation model in four dimensions was given. In [71, 69℄ a

three generation model whih has exatly the gauge group SU(3)�SU(2)�U(1)

was found based on purely toroidal ompati�ations. This kind of onstrution

ontains a huge amount of free parameters, among others the numbers of identi-

al D-branes and their wrapping numbers along all six ompat diretions whih

are only �xed by four RR tadpole onditions and the requirement of obtaining

three generations. Therefore, it is relatively easy to engineer models with a stan-

dard model like hiral setor. However, the losed string setor as well as the

gauge setors of toroidal orientifolds preserve N = 4 supersymmetry. Partial
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supersymmetry breaking in the losed string and gauge setors an be ahieved

by orbifold ompati�ations. In [48℄ we pursued this ansatz for the speial

ase of four dimensional orbifolds plus an additional two torus. The RR harge

anellation onditions in this lass of models are far more restritive than the

toroidal ones. In [27℄ further non-supersymmetri hiral orientifold models with

D6-branes and additional orbifold symmetries were examined. Another hallenge

of non-supersymmetri models, namely the issue of stability, was �rst addressed

in [100℄ for the purely toroidal ompati�ations, and in [27, 26℄ it was proven

that all non-supersymmetri theories with D6-branes at angles, inluding those

where some moduli are frozen by an orbifold symmetry, su�er from a dilaton

tadpole. One possible way out of this dilemma is the onstrution of supersym-

metry preserving hiral type II orientifolds with D6-branes at angles [35, 33, 34℄.

For a very speial hoie of the orbifold symmetry, it is possible to selet the

non-trivial angles of D6-branes suh that N = 1 supersymmetry is preserved.

Further toroidal orientifold models with some loally preserved supersymmetries

at D6-brane intersetions [30, 29℄ or a Pati-Salam GUT group [79℄ have also been

analyzed reently.

In the ase of broken supersymmetry, this lass of models is, however, not

suitable to solve the mass hierarhy problem onerning the eletroweak and the

Plank sale sine D6-branes at angles to not allow for large volume ompati-

�ations. Only a `modest hierarhy problem' whih relates the weak sale and

the string sale in the TeV range an be explained in suh models [30℄.

A more appropriate ansatz to handle the mass hierarhy problem is by on-

sidering orientifold models with lower dimensional interseting D-branes with

ommon transversal diretions. I presented the �rst of suh D4-brane models

in [64℄ in the T-dual disguise of interseting D8-branes with four ommon lon-

gitudinal ompat dimensions. In [77℄ hiral spetra of models with interseting

D4- and D5-branes in oriented and unoriented theories were briey disussed

without, however, solving the problem of the losed string tahyoni modes aris-

ing in D5-brane models. In [65℄ I extended the disussion of D8-brane models

to give some three generation models and disuss the stability.

The thesis is organized as follows.

Chapter 1 reviews the basi ingredients of orientifold onstrutions with D-

branes at angles.

In hapter 2, D6-brane models on four dimensional orbifolds times an ad-

ditional two torus are presented where the D6-branes interset non-trivially on

this two torus. The tadpole anellation onditions and generi hiral spetra are

omputed. The generalized Green-Shwarz mehanism needed for U(1) anomaly

anellation is ommented on, and �nally two examples are presented.

In hapter 3, models with D8-branes are onsidered. Tadpole and anomaly

anellation are inspeted and the hiral spetrum is omputed. The problem of

stability of non-supersymmetri models is disussed in terms of NSNS tadpoles.
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Four examples are given, and phenomenologial impliations are disussed.

A summary and onlusions are given in hapter 4. Tehnial details of the

alulations are olleted in the appendies A to G.

This thesis is based on

� [48℄: S. F�orste, G. Honeker and R. Shreyer, Non-supersymmetri orien-

tifolds with D-branes at angles, JHEP 06 2001, 004, hep-th/0105208,

� [65℄: G. Honeker, Interseting brane world models from D8-branes on

(T

2

�T

4

=Z

3

)=
R

1

type IIA orientifolds, JHEP 01 2002, 025, hep-th/0201037.

Chapter 1 ollets basi ingredients of orientifold onstrutions and D-branes

at angles relevant for the following hapters. Chapter 2 is based on [48℄ and

hapter 3 on [65℄.



Chapter 1

Conept of D-branes at angles

1.1 Con�guration in type II theories

1.1.1 Strings in onstant bakgrounds

Type II superstring theories are onsistently de�ned in ten spaetime dimensions.

The losed string is desribed by bosoni oordinatesX

�

(�; �) and their fermioni

superpartners 	

�

(�; �) with the spaetime index � = 0 : : : 9. � is the time-like

parameter on the two dimensional worldsheet and � 2 [0; 2�) is the periodi

spae-like worldsheet parameter. Open strings an be introdued into the theory

by imposing boundary onditions on X

�

(�; �) and 	

�

(�; �) at � = 0; �. The

bosoni part of the sigma-model ation in the NS-R-formalism with trivial metri

on the worldsheet whih desribes the ten dimensional superstring theories is

then given by

S

bos

=

1

4��

0

Z

M

d�d�

�

G

��

�

�

X

�

�

�

X

�

+ �

��

B

��

�

�

X

�

�

�

X

�

�

+

1

2��

0

Z

�M

d�A

�

�

�

X

�

;

(1.1)

where �M is the boundary of the worldsheet M . The �elds that appear in the

ation (1.1) are the bakground metri G

��

and the antisymmetri tensor �eld

B

��

whih both arise from the losed string NSNS setor, as well as the gauge

potential A

�

pertaining to the eletro magneti gauge �eld strength F

��

loalized

at the boundary �M .

The solution to the two dimensional equation of motion in the losed string

setor is given by equation (A.1) in appendix A together with the mode expansion

of the left- and right-moving parts (A.2) and (A.3) whih depend in a trivial

bakground only on the light-one oordinates �

�

= � � �, respetively.

In the open string setor there exist two di�erent kinds of boundary ondi-

tions onsistent with the equations of motion and (p + 1) dimensional Lorentz-

invariane (0 6 p 6 9) if we restrit to the at non-ompat ase and onsider

only trivial bakground �elds, i.e. B

��

= 0, G

��

= �

��

and A

�

= 0. Neumann

13
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boundary onditions are then given by

�

�

X

�

(�; � = 0) = �

�

X

�

(�; � = �) = 0;

while Dirihlet onditions read

�

�

X

�

(�; � = 0) = �

�

X

�

(�; � = �) = 0:

These onditions are solved by the same ansatz as for the losed string se-

tor (A.2), (A.3) if one takes into aount that Neumann onditions preserve the

momentum at the boundary, i.e. p

�

=

1

2

(p

�

L

+p

�

R

) = 0, while Dirihlet onditions

�x the oordinates of the boundary to lie on a hypersurfae, i.e.

1

2

(p

�

L

� p

�

R

) = 0.

In addition, left- and right moving raising- and lowering operators are identi-

�ed via �

�

n

+ ~�

�

�n

= 0 for Neumann and �

�

n

� ~�

�

�n

= 0 for Dirihlet boundary

onditions. An open string with Neumann boundary onditions along p spatial

oordinates de�nes a p dimensional hypersurfae, the Dp-brane.

If we now onsider type II superstring theories ompati�ed on a two torus,

e.g. along the X

4;5

diretions with radiiR

1;2

, the left- and right moving momenta

are quantized in units of n=R

i

(n 2 Z, i = 1; 2). In addition, strings an

wind around the ompat diretions, the orresponding winding modes being

quantized in units of mR

i

=�

0

(m 2 Z).

In the ompat theory, Neumann- and Dirihlet boundary onditions along

the diretion X

i

are exhanged under T-duality,

T :

�

X

i

L

(�

+

) +X

i

R

(�

�

)! X

i

L

(�

+

)�X

i

R

(�

�

);

R

i

! R

0

i

=

�

0

R

i

;

(1.4)

whih ats asymmetrially on the left- and right-moving setor.

For onsisteny of the spae-time theory, the ation (1.1) with generi bak-

ground �elds has to be invariant under gauge transformations of the potential,

ÆA

�

= �

�

�; (1.5)

whih is trivially ful�lled sine (1.5) only adds a total derivative to the integrand

of the boundary term. In addition, the antisymmetri tensor variation

ÆB

��

= �

�

�

�

� �

�

�

�

(1.6)

leaves the bulk ation invariant, but adds a surfae term whih has to be aneled

by a transformation of the open string gauge potential A

�

,

ÆA

�

= ��

�

: (1.7)

The ombination F

��

= B

��

+ F

��

is then the quantity whih is invariant un-

der (1.6) in ombination with (1.7).
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On the X

4;5

plane with F

45

= �F

54

6= 0 and G

ij

= Æ

ij

, the boundary

onditions are modi�ed:

�

�

�

X

4

+ F

45

�

�

X

5

�

(� = 0; �) = 0; (1.8)

�

�

�

X

5

�F

45

�

�

X

4

�

(� = 0; �) = 0: (1.9)

For a vanishing NSNS antisymmetri tensor bakground, F

45

= F

45

has to obey

the Dira quantization ondition

F

45

=

q

p

�

0

R

1

R

2

; (1.10)

with q; p 2 Z in order for the gauge �eld to be well de�ned on the two torus [8, 63℄.

This an be seen by hoosing the gauge

A

4

= a

4

;

A

5

= a

5

+ F

45

X

4

;

for a U(1) bundle. Going one around the X

4

diretion of the two torus, the

gauge potential hanges aording to [88℄

A

�

(X

4

+R

1

; X

5

) = A

�

(X

4

; X

5

) +

�

0

2�i

�

g

�1

�

�

g

�

(X

4

; X

5

);

with the transition funtion g = e

2�i�(X

5

)

and �(X

5

) = F

45

R

1

X

5

=�

0

. In order for

g to be single-valued on the overlap of two fundamental ells of the two torus,

�(X

5

= R

2

) 2 Z is required whih provides the quantization ondition (1.10)

for p = 1. By generalizing to the Abelian omponent of a U(p) bundle over

the same torus, (1.10) is preisely reovered. The generalization to a non-trivial

NSNS antisymmetri tensor bakground is dealt with in setion 1.2.

1.1.2 T-dual piture: D-branes at angles

Applying the T-duality transformation (1.4) along the X

5

diretion exhanges

�

�

X

5

with �

�

X

5

at the boundaries of the string worldsheet, and the quantiza-

tion ondition on the bakground uxes an be rephrased as F

45

= tan(�') 2

R

0

2

=R

1

� Q . The boundary onditions for D-branes with onstant bakground

ux (1.8), (1.9) an then be rewritten as

�

�

�

os(�')X

4

+ sin(�')X

5

�

(� = 0; �) = 0; (1.12)

�

�

�

� sin(�')X

4

+ os(�')X

5

�

(� = 0; �) = 0; (1.13)

whih desribe a D-brane wrapping a 1-yle in the X

4;5

plane at angle �'

relative to the X

4

axis.
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The orrespondene between the pitures of D-branes at angles and D-branes

with onstant bakground uxes an also be understood by omparing the or-

responding utuation spetra of lower dimensional D-branes with those from

the Born-Infeld ations of spae �lling D-branes with uxes [63℄.

So far, we have only onsidered open strings with both endpoints on the

same kind of D-brane. If the theory inludes D-branes with di�erent bakground

uxes or in the T-dual language D-branes at a relative angle �', then also strings

with endpoints on two di�erent kinds of D-branes appear. Let us for simpliity

assume that one kind of D-branes wraps the 1-yle along the X

4

diretion on

a two torus. A string whih begins on this D-brane will have the boundary

ondition

�

�

X

4

(�; 0) = 0; �

�

X

5

(�; 0) = 0:

If the string ends on a D-brane whih is rotated by an angle �' relative to the

�rst kind, it is subjet to the onditions (1.12), (1.13) at � = �. The solution to

these onditions is given by

X

4

(�; �) =

X

m2Z+'

1

m

�

m

e

�im�

os(m�) +

X

n2Z�'

1

n

~�

n

e

�in�

os(n�); (1.15)

X

5

(�; �) =

X

m2Z+'

1

m

�

m

e

�im�

sin(m�)�

X

n2Z�'

1

n

~�

n

e

�in�

sin(n�); (1.16)

and neither windings nor momenta our.

The argumentation an be extended to the fermioni setors of the theory.

The two dimensional Dira equation for losed strings has the solution (A.4) with

the mode expansions of the left- and right-moving parts given in (A.5) and (A.6).

In ontrast to the bosoni variables, periodiity in the variable � and Lorentz

invariane still allow for two di�erent periodiity onditions on the worldsheet,

namely

Ramond: 	

�

(�; � + 2�) = 	

�

(�; �);

Neveu-Shwarz: 	

�

(�; � + 2�) = �	

�

(�; �);

whih lead to integer osillator modings in the R and half-integer ones in the

NS setor. One further subtlety in the fermioni setor is the ourrene of

di�erent spin strutures � = �1 [106℄ whih require in the open string setor the

identi�ations

Neumann:  

�

r

+ i�

~

 

�

�r

= 0;

Dirihlet:  

�

r

� i�

~

 

�

�r

= 0:

The fermioni osillator moding for open strings strething between D-branes

at angles hanges ompletely analogous to the one for the bosoni oordinates.

One important onsequene of this hange is the fat that the R setor of a
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string with pure Neumann or Dirihlet boundary onditions has zero modes  

�

0

whereas for a string strething between D-branes at angles �', the zero mode on

the orresponding two torus is replaed by reation- and annihilation operators

 

i;i

�'

where i; i parameterize the two torus on whih the intersetion ours. The

appearane of zero modes in the spetrum signals a degeneray of the ground-

state. While the R-setor groundstate of an open string on a stak of D9-branes

is eightfold degenerated, non-trivial angles on a two torus lead to a fourfold

degenerated R-groundstate of strings with endpoints on di�erent D-branes, and

eah further two torus with non-trivial angles redues this degeneray by a fator

of two. This means that non-trivial angles [12℄ or in the T-dual piture bak-

ground �elds [8, 4℄ break hiral symmetry. For a generi hoie of bakgrounds or

angles, supersymmetry is also broken and tahyoni modes appear in the spe-

trum. These e�ets will be worked out in detail in setions 2.2.1 and 3.1.2 for

interseting D6- and D8-branes, respetively.

1.2 Orientifold projetions

The onept of T-duality between bakground �elds and angles and the break-

down of hiral and supersymmetry is independent of the partiular superstring

theory under disussion. In type II theories, however, open strings and lower

dimensional Dp-branes are not required for onsisteny. This is in ontrast to

type I superstring theory where a de�nite number of D-branes anels the RR

harges arising from orientifold planes. The amount and dimensionality of D-

branes required for a onsistent model depend on the partiular orientifold group

of the model. One further appealing feature of type I string theory is the redued

amount of supersymmetry rendering it potentially more interesting in view of

deriving the standard model from string theory.

Type I superstring theory is obtained from the type IIB theory by gauging

worldsheet parity 
 whih ats on the losed string setor as follows [54℄


 :

8

<

:

X

�

L

(�

+

) $ X

�

R

(�

�

);

	

�

L

(�

+

) ! 	

�

R

(�

�

);

	

�

R

(�

�

) ! �	

�

L

(�

+

):

(1.17)

The minus sign in the third line is required in order to obtain 
 

�

~

 

�




�1

=  

�

~

 

�

.

Otherwise, the graviton would be projeted out by the additional symmetry.

In total, the ten dimensional type IIB superstring theory ontains as massless

modes in the bosoni setor the metri G

��

, an antisymmetri tensor B

��

and

the dilaton � from the NSNS setor and a salar �, a two-form B

0

��

and a

self-dual four-form D

����

from the RR setor. The NS-R and R-NS setors

provide two gravitini with spin 3/2 and two dilatini with spin 1/2 leading to

N = 2 supersymmetry in ten dimensions. Gauging worldsheet parity amounts
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to projeting out the modes with 
 eigenvalue �1. The remaining massless

�elds are the metri, dilaton and RR two form in the bosoni setor and one

gravitino and dilatino in the fermioni setor sine NS-R and R-NS states are

identi�ed under 
. In the non-ompat theory, the NSNS two-form B

��

is gauge

equivalent to B

��

= 0. It is ompletely projeted out by 
. Upon ompatifying

on a two torus, e.g. in the X

4;5

plane, however, the two-form is only de�ned up

to lattie shifts suh that e�etively, a quantized non-vanishing disrete value

b = 1=2 with B

45

= �

45

b�

0

=R

1

R

2

remains possible [14, 13, 113, 3, 75℄ whih

annot be gauge transformed into B

45

= 0. Inluding a non-trivial bakground

NSNS antisymmetri tensor of rank r on a higher dimensional torus redues the

rank of the gauge group arising from open string states by a fator of 2

r=2

.

The T-duality transformation (1.4) along one oordinate X

5

of the two torus

mentioned in setion 1.1.2 maps the non-trivial value of the NSNS tensor to a

tilted shape of the ompati�ation torus with trivial bakground uxes [24℄.

This an be derived from expressing the metri and antisymmetri tensor bak-

ground in terms of the K�ahler and omplex moduli and performing the T-duality

transformation. The K�ahler struture of the original retangular two torus with

disrete NSNS bakground ux b = 0; 1=2 and radii R

1;2

along X

4;5

is given by

T = T

1

+ iT

2

= b + i

R

1

R

2

�

0

;

and the omplex struture is given by

U = U

1

+ iU

2

= i

R

2

R

1

: (1.19)

The T-duality transformation exhanges the role of K�ahler and omplex stru-

ture,

T

0

= �

1

U

; U

0

= �

1

T

:

The metri and the NSNS two form on a two torus are given in terms of the

K�ahler and omplex struture,

G =

T

2

U

2

�

1 U

1

U

1

U

2

1

+ U

2

2

�

U

1

=0

=

T

2

U

2

�

1 0

0 U

2

2

�

; B =

�

0

R

1

R

2

T

1

�

0 1

�1 0

�

:

Upon T-duality along X

5

, these quantities transform into

G

0

=

1

�

0

�

R

2

1

+ (bR

0

2

)

2

b(R

0

2

)

2

b(R

0

2

)

2

(R

0

2

)

2

�

; B

0

= 0;

whih for b = 1=2 desribe the tilted torus shown in �gure 1.1.

The orientifold projetion 
 of the original theory with bakground uxes

transforms under T-duality along i oordinates into 
R

i

where R

i

is the ree-

tion along these i oordinates. In hapter 2 and 3 we will disuss the ases where
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b

x

4

x

4

x

5

x

5

b = 1=2

e

2

e

1

e

2

e

1

R

1

R

1

R

2

R

2

a

b = 0

Figure 1.1: Two tori in the T-dual piture admitting D-branes at angles. The

index prime on radii and basis vetors is omitted.

three and one ompat oordinate, respetively, are T-dualized. In order to sim-

plify the notation and also in view of orbifold groups disussed in setion 1.3, it

is onvenient to introdue omplex oordinates on the ompat spae

Z

1

= X

4

+ iX

5

; Z

2

= X

6

+ iX

7

; Z

3

= X

8

+ iX

9

: (1.23)

In terms of these omplex oordinates, the reetion R

3

ats then as omplex

onjugation,

R

3

: Z

i

! Z

i

; i = 1; 2; 3: (1.24)

In the models disussed in hapter 3, the reetion only ats on one oordinate,

R

1

: Z

1

! Z

1

: (1.25)

From the de�nition (1.24) it is lear that only the real axes X

4;6;8

are invariant

under the orientifold projetion 
R

3

. Similarly, aording to (1.25) the real axis

X

4

and the four oordinates X

6;7;8;9

are invariant under 
R

1

. Together with

the four non ompat diretions, 
R

3

leaves six spatial plus one time diretion

invariant. These are the orientifold six O6-planes. Similarly, for 
R

1

one obtains

O8-planes.

Consisteny of the theory enfores the existene of D-branes of the same

dimensionality whih an be rotated by angles �'

j

relative to the 
R

i

invariant

axes as disussed in setion 1.1.2. For 
R

i

to be a symmetry of the theory, also

the mirror images of rotated D-branes at angles ��'

j

have to exist. The details

of the onstrution will be disussed in setions 2.1.2 and 2.1.3 in the ontext of

D6-branes. The argumentation diretly arries over to the ase of interseting

D8-branes.

1.3 Orbifold groups

The ten dimensional type II superstring theories possess 32 superharges. Torus

ompati�ations preserve all these harges, whereas moding out the worldsheet
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parity 
 in ombination with some target spae ation preserves 16 of them.

Purely toroidal orientifold models thus give N = 4 supersymmetry in four di-

mensions. In order to break half of the remaining supersymmetries, we inor-

porate an orbifold group ation Z

M

in the ompati�ed models. The orbifold

generator � ats as a rotation on the ompat oordinates,

� : Z

j

! e

2�iv

j

Z

j

: (1.26)

A Z

M

rotation requires �

M

= 1I, and modular invariane of string theory requires

P

j

v

j

= 0(mod 2). In the models disussed here, we restrit our attention to

orbifold groups whih at non-trivially only on the seond and third torus. The

four distint allowed orbifolds whih are listed in table 1.1 an be viewed as

di�erent singular limits of ompatifying on a smooth K3 manifold. The

Four dimensional orbifolds

Group (v

2

; v

3

)

Z

2

(1=2;�1=2)

Z

3

(1=3;�1=3)

Z

4

(1=4;�1=4)

Z

6

(1=6;�1=6)

Table 1.1: The four orbifold limits of K3.

four dimensional orbifold groups listed in table 1.1 at symmetrially on left-

and right-moving setors provided that the omplex onjugation does not a�et

these two tori. This will be the ase in the models disussed in hapter 3.

If on the other hand we hoose the reetion symmetry R

3

, the models are

T-dual to ordinary 
 orientifolds with an asymmetri orbifold ation

^

�. In the

omplex notation (1.23), T-duality along X

5;7;9

an be rephrased as

T : Z

j

L

+ Z

j

R

! Z

j

L

+ Z

j

R

;

and the orbifold ation

^

� beomes

^

� = T�T

�1

: Z

j

L

+ Z

j

R

! e

2�iv

j

Z

j

L

+ e

�2�iv

j

Z

j

R

:

The T-dual piture an be used to study speial lasses of asymmetri orien-

tifolds [21℄. For the orbifold group Z

2

, the T-dual version ats also symmetri-

ally, and one reovers the supersymmetri model disussed in [54℄. The other
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six dimensional supersymmetri models of this kind have been studied in [20℄.

All six dimensional models are also reviewed in detail in [104℄.

For the heteroti theories, whih are believed to be onneted to open string

theories by a strong/weak oupling duality, similar observations have been made

in [82, 83℄.

Inluding the orbifold group Z

M

produes additional O6-planes as an be

read o� from the following sequene

e

��ikv

j

Z

j

�

k

�! e

�ikv

j

Z

j

R

3

�! e

��ikv

j

Z

j

:

This means that e.g. the hyperplane (X

�

; X

4

; e

��i=3

X

6

; e

�i=3

X

8

) is invariant

under the ombination of R

3

with a Z

3

rotation on the seond and third torus.

1.4 RR tadpole anellation onditions

The O-planes an be viewed as soures and drains for losed strings. The re-

sulting tree hannel interation between two rossaps,

R

1

0

dlhCje

�2�lH

jCi, is

represented by the Klein bottle amplitude diagram depited in �gure 1.2. The

interation is mediated by the bosoni losed string setors, namely the NSNS

and RR setors. The tadpoles arising from the two di�erent kinds of losed

strings propagating in the bulk anel eah other due to supersymmetry, but in

order to have a fully onsistent theory, it is neessary that they also vanish sep-

arately. In the NSNS setor, this ould be ahieved by appropriately rede�ning

the vauum as suggested in [44, 45℄. The proedure an, however, not be applied

to the RR setor sine there are onserved harges assoiated to the RR forms.

Instead, orientifold theories ontain further interations, namely sattering of a

losed string between an O-plane and a D-brane,

R

1

0

dl

�

hCje

�2�lH

jBi+ h::

�

,

whih has the M�obius strip as loop-hannel diagram, and sattering between

two D-branes,

R

1

0

dlhBje

�2�lH

jB

0

i, represented by the ylinder at tree level. For

onsisteny of the theory, the net RR harge of all three diagrams has to an-

el. The ontributions to the three diagrams an be diretly alulated in the

boundary state formalism [97, 50, 74℄, but the normalizations of boundary jBi

and rossap jCi states whih determine the number of D-branes required an

be more easily read o� when starting from the loop hannel. Furthermore, in

the D8-brane models of hapter 3, the ouplings of twisted losed strings to D-

branes and O-planes determine the ation of the orientifold and orbifold group

on the Chan-Paton labels of open string states whih an only be understood by

starting from the loop hannel. In hapter 2 we will disuss how the boundary

state piture onstrains the allowed ompati�ation latties.

The orrespondene to the loop hannel an be established by the two di�er-

ent hoies of parameter ranges on the worldsheet desribing the Klein bottle.

The standard parameter range of a losed string is

0 6 � < 2�; 0 6 � < 2�l: (1.30)



22 1. RR tadpole anellation onditions

a)

b)

c)


R

i

h

1


R

i

h

2


R

i

h

g

g

g

a

a

b

Figure 1.2: Tadpole diagrams: a) Klein bottle, b) M�obius strip, ) ylinder.


R

i

h

j

denote orientifold group elements, g denotes an orbifold group element.

The Klein bottle tree hannel diagram is obtained by taking a double over, i.e.

a torus with 0 6 � < 2�, 0 6 � < 4�l, the periodi identi�ations � � � + 2�,

� � � + 4�l and a Z

2

identi�ation

(�; �) � (4�l � �; � + �):

The two di�erent fundamental regions respeting these symmetries are depited

in �gure 1.3. The diagram on the left hand side leads to the interpretation

of a tree hannel interation, whereas the diagram on the right hand side has

the interpretation of a 1-loop interation with the losed string undergoing a

twist 
 on the worldsheet. For this, the role of � and � have to be exhanged,

and in order to obtain the standard parameter range of a losed string with

0 6 � < 2�t, a resaling is needed whih gives t = 1=4l. In a similar manner,

by reparameterizing t = 1=2l, the ylinder losed string tree diagram transforms

into an open string loop diagram. The M�obius strip also transforms into an open

string 1-loop diagram, but this time again a double over of the fundamental

region is needed leading to the reparameterization t = 1=8l.
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Figure 1.3: Triangulated versions of the tree hannel Klein bottle diagram.

The RR harges of O-planes and D-branes an be extrated from the loop di-

agrams by omputing the UV-limits of the following parts of the amplitudes [97℄:

Klein bottle: Closed string NSNS states with P

orb


R

i

(�1)

F

insertion,

M�obius strip: Open string R states with �P

orb


R

i

insertion, (1.32)

Annulus/Cylinder: Open string NS states with P

orb

(�1)

F

insertion,

where P

orb

=

�

1 + � + : : :+�

M�1

�

=M projets onto states invariant under the

orbifold group, F is the worldsheet fermion number and the fator (�1)

F

arises

from the GSO projetion [56℄ whih for our models is given by (1.35) in the

losed string setor, and the open string analog is obtained by restriting to e.g.

the left-movers only. The minus sign in the M�obius strip takes into aount the

spae time fermion number.

The periodiity and boundary onditions in the tree hannel with the stan-

dard parameter range (1.30) on a generi bosoni worldsheet �eld �(�; �) in the

g-twisted setor (see �gure 1.2) are as follows [54, 37℄:

Klein bottle: �(0; � + �) = 
R

i

h

1

�(0; �);

�(2�l; � + �) = 
R

i

h

2

�(2�l; �);

�(�; 2� + �) = g�(�; �);

M�obius strip: �(2�l; � + �) = 
R

i

h�(2�l; �);

�(�; 2� + �) = g�(�; �):

For worldsheet fermions, a phase �1 from the GSO projetion has to be inluded

as well [54℄.

For onsisteny of the boundary onditions, the Klein bottle has to ful�ll

(
R

i

h

1

)

2

= (
R

i

h

2

)

2

= g

2

; (1.33)

and in the M�obius strip

(
R

i

h)

2

= g

2

(1.34)
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is required. The orbifold group element g denotes the twist setor of the losed

string propagating in the tree hannel. Due to the hoie of the orientifold group

f
R

3

�

k

g, only untwisted losed strings ouple to the O6-planes and D6-branes

in the models disussed in hapter 2, even though twisted losed string setors

exist. This is in ontrast to the D8-brane models disussed in hapter 3 where

all twist setors ouple to the O8-planes and D8-branes.

1.5 Low energy spetra

The physial states are given by those string exitations whih are invariant

under the orbifold and orientifold ation and the GSO projetion.

1.5.1 Closed setor

The GSO projetion in the expliit examples in hapter 2 and 3 is hosen to be

P

GSO

=

1 + (�1)

F

2

1� (�1)

~

F

2

; (1.35)

where F and

~

F are left- and right-moving worldsheet fermion numbers, respe-

tively.

The NSNS setor groundstate is odd under (�1)

F

and even under (�1)

~

F

and thus projeted out. The reetion R

i

does not a�et the non-ompat

oordinates. De�ning reation- and annihilation operators with omplex indies

as in equation (A.7), we obtain the ation of the orientifold group on bosoni

osillators given in equation (A.10). The ation on the fermioni setor an

be easily read o� from this bearing in mind the minus sign of (1.17). The

orbifold group ats on the osillators as de�ned in equation (1.26) with the

mode expansion (A.2), (A.3) inserted. The graviton and dilaton are massless

model independent states. They are represented by

�

 

�

�1=2

~

 

�

�1=2

+  

�

�1=2

~

 

�

�1=2

�

j0i

NSNS

: (1.36)

In addition, model dependent vetors and salars arise. The GSO projetion

onsistent with 
R

3

in the RR setor is given by (s

i

= �1=2)

(�1)

F

js

0

; s

1

; s

2

; s

3

i = �e

�i(s

0

�s

1

�s

2

�s

3

)

js

0

; s

1

; s

2

; s

3

i; (1.37)

(�1)

~

F

js

0

; s

1

; s

2

; s

3

i = e

�i(s

0

+s

1

+s

2

+s

3

)

js

0

; s

1

; s

2

; s

3

i; (1.38)

while for 
R

1

, the GSO projetion onto the left moving setor is replaed by

(�1)

F

js

0

; s

1

; s

2

; s

3

i = �e

�i(s

0

�s

1

+s

2

+s

3

)

js

0

; s

1

; s

2

; s

3

i: (1.39)
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The ation of the orbifold and orientifold group on the RR setor is given by

� : js

0

; s

1

; s

2

; s

3

i ! e

2�i~v�~s

js

0

; s

1

; s

2

; s

3

i;

R

3

: js

0

; s

1

; s

2

; s

3

i ! js

0

;�s

1

;�s

2

;�s

3

i;

R

1

: js

0

; s

1

; s

2

; s

3

i ! js

0

;�s

1

; s

2

; s

3

i;

with ~v listed in table 1.1 for the di�erent four dimensional orbifold groups.

In the �

n

-twisted setors, the masses are given by

�

0

4

m

2

L;R

= N

L;R

+

1

2

q

2

L;R

+ E

va

�

1

2

; (1.40)

with the state represented by

q

L;R

=

8

<

:

(0; 0;�nv

2

;�nv

3

) NS;

(

1

2

;

1

2

;

1

2

� nv

2

;

1

2

� nv

3

) R;

(1.41)

the osillator number N

L;R

and

E

va

=

1

2

X

j=2;3

jnv

j

j(1� jnv

j

j); (1.42)

where 0 6 jnv

j

j < 1 is required. In the models with D6-branes, the orientifold

group ation 
R

3

preserves the twist setor, whereas in the D8-brane models


R

1

exhanges the �

n

and the �

�n

twisted setors.

The NS-R setors are mapped to the R-NS setors under the orientifold

projetion. Thus, the fermioni superpartners of the NSNS and RR setors are

provided by an invariant superposition of NS-R and R-NS states.

1.5.2 Open setor

The open string groundstates for strings with both ends on the same type of

D-branes an be treated in the same way as one setor, e.g. the left moving one,

of the losed string.

In addition, strings between D

a

- and D

b

-branes at angles appear. If the non-

trivial angles �'

i

appear only in the seond and third torus with (�'

2

; �'

3

) =

��n(v

2

; v

3

), the whole disussion of the previous setion arries over. The osil-

lator moding is then the same as for twisted losed strings and one an therefore

speak of `twisted open string setors'.

If on the other hand the D-branes interset on the �rst torus at an angle �',

equations (1.41), (1.42) have to be modi�ed as follows,

q

(')

L;R

= q

L;R

+ (0; '; 0; 0); (1.43)

E

(')

va

= E

va

+

1

2

j'j(1� j'j): (1.44)
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The representation of open D

a

-D

b

string states under the gauge group is deter-

mined by regarding the orbifold and orientifold group ation,


R

i

�

k

: j ;mni�

(a;b)

nm

! j
R

i

�

k

�  ;mni

�



(b)


R

i

k

�

(a)�1


R

i

k

�

T

nm

; (1.45)

�

k

: j ;mni�

(a;b)

nm

! j�

k

�  ;mni

�



(b)

k

�

(a)�1

k

�

nm

; (1.46)

where the  matries ating on the Chan-Paton labels �

(a;b)

are determined by the

tadpole anellation onditions and the requirement that they form a projetive

representation of the orientifold group [54℄.

For example, applying two orientifold group elements one obtains

�


R

i

�

k

�

�


R

i

�

k

0

�

: j ;mni�

(a;b)

nm

! j�

l

� ;mni

�



(b

0

)�T


R

i

k



(b)


R

i

k

0

�

(a)�1


R

i

k

0



(a

0

)


R

i

k

�

nm

;

(1.47)

with l = k

0

� k for 
R

3

and l = k + k

0

for 
R

1

. D

a

0

is the R

i

image brane of

D

a

. Comparing (1.47) with (1.46) leads to 

(a)

l

' 

(a

0

)�T


R

i

k



(a)


R

i

k

0

up to a phase.

If the orbifold or orientifold ation is a symmetry of the D-brane on�gura-

tion, i.e. it only ats as a phase on the orresponding mass eigenstates  , the

representations of the Chan-Paton labels �

(a;b)

are obtained from

�

(a;b)

= �

k

( )

�



(b)


R

i

k

�

(a)�1


R

i

k

�

T

;

�

(a;b)

= ~�

k

( )

(b)

k

�

(a)�1

k

;

where �

k

( ); ~�

k

( ) 2 C are the phases obtained from the ation of the orientifold


R

i

�

k

and orbifold �

k

generator on the state  , respetively.

For all models disussed in this thesis, 
R

i

�

k

is a symmetry of D

a

-D

a

0

strings

at R

i

invariant intersetions as well as D



-D



strings if the stak of D



-branes is

loated on top of an O-plane. The gauge group supported by suh D



-branes is

therefore only a subgroup of U(N



). Furthermore, in hapter 2, a �

M=2

rotation

for M even preserves the D6-brane on�gurations whereas in hapter 3, eah �

rotation leaves the D8-brane positions invariant. The orresponding low energy

spetra are disussed in detail in setion 2.3 for interseting D6-branes and in

setion 3.1.2 for D8-branes at angles.



Chapter 2

Orientifold models with

interseting D6-branes

In this hapter, we present four dimensional orientifold ompati�ations of type

IIA superstring theory where we ombine the worldsheet parity operator 
 with

a reetionR

3

of half of the internal oordinates. In addition, we inlude the four

dimensional orbifold groups listed in table 1.1. On the one two torus whih is

not a�eted by the orbifold projetion, we allow for non-trivial angles of the D6-

branes whih support hiral fermions at the intersetion points. The maximal

rank of the gauge groups depends on the orbifold group under onsideration.

These models have been studied in [48℄.

2.1 Amplitudes and RR tadpole anellation

Canellation of RR tadpoles gives onstraints on the allowed number of idential

D6-branes and on the projetion of the wrapped 1-yles on the two torus onto

the 
R

3

invariant plane.

The orientifold projetion 
R

3

ats as de�ned in setion 1.2 and appendix A,

equation (A.10), on the osillators. In addition, the orbifold groups of setion 1.3

are moded out. At �rst, the Klein bottle amplitude is omputed whih gives an

RR tadpole. In setion 2.1.2 and 2.1.3, the open string loop amplitudes needed

for RR harge onservation are suessively omputed. The strategy of determin-

ing the RR tadpoles onsists of omputing the loop hannel expression of eah

amplitude, then reparameterizing the worldsheet as explained in setion 1.4 and

extrating the infrared divergent limit l ! 1. Imposing tadpole anellation

amounts to summing over the ontributions from the three ontributing 1-loop

amplitudes and solving a quadrati equation.

The normalizations of boundary and rossap states are obtained by mathing

the diret tree hannel alulation with the modular transformations of the loop

hannel amplitudes. Imposing worldsheet duality in this lass of models results

27
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in seleting out speial orbifold latties.

2.1.1 The Klein bottle amplitude

The loop hannel expression of the Klein bottle amplitude is given by

K = 4

Z

1

0

dt

t

3

Tr

U+T

losed

�


R

3

2

P

orb

P

GSO

(�1)

S

e

�2�tH

�

; (2.1)

where  = V

4

= (8��

0

)

2

is a onstant fator appearing in all three loop amplitudes,

V

4

is the regularized volume of non-ompat momentum spae,

P

orb

=

1 + �+ � � �+�

M�1

M

(2.2)

is the orbifold projetor, P

GSO

is as de�ned in (1.35) with (�1)

F

and (�1)

~

F

given

by (1.37) and (1.38), respetively, and S denotes the spae time fermion number.

The Hamiltonian H is displayed in (A.11) with mode expansion (A.12). The

trae inludes a sum over all lattie and osillator ontributions from untwisted

and twisted setors. The tree hannel RR exhange arises from the part of the

total loop hannel Klein bottle amplitude (2.1) listed in (1.32).

In the following, we will disuss separately the �rst torus on whih the orbifold

group ats trivially and then the seond and third torus on whih the rotation

ats.

In this hapter we mainly fous on the ase of a trivial antisymmetri NSNS

tensor bakground in the T-dual piture. The generalization to a non-vanishing

bakground b = 1=2 on the �rst two torus is straightforward and will be used in

hapter 3.

Lattie ontributions on T

2

The torus lattie whih is not subjet to the orbifold projetion an have the

two di�erent 
R

3

invariant shapes displayed in �gure 1.1 orresponding to a

vanishing or non-trivial antisymmetri NSNS tensor bakground in the T-dual

piture with D9-branes. In this hapter, we use the terminology introdued in

setion 1.2 of lattie orientations a and b relative to the O6-plane in the piture

of D6-branes at angles if not stated otherwise.

Untwisted losed strings an have Kaluza-Klein momenta whih lie in the

dual lattie,

P = m

1

~e

�

1

+m

2

~e

�

2

; (2.3)

and winding modes in the lattie,

�

0

W = n

1

~e

1

+ n

2

~e

2

; (2.4)
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where m

i

; n

i

2 Z and the ~e

i

(~e

�

i

) are the basis vetors of the (dual) torus lattie.

Only states invariant under the orientifold group 
R

3

ontribute to the Klein

bottle amplitude. Kaluza-Klein momenta P are left invariant by the orienta-

tion reversal on the worldsheet, 
P


�1

= P , while the winding diretions of

the string are reversed, 
W


�1

= �W . The reetion R

3

maps momenta and

windings onto their omplex onjugates on the two torus. Combining the orien-

tation reversal on the worldsheet with the reetion, the lattie ontributions to

the Klein bottle amplitude in the tree hannel transform as follows,

(
R

3

)P

1;1

(
R

3

)

�1

= P

1;1

;

(
R

3

)W

1;1

(
R

3

)

�1

= �W

1;1

:

Only 
R

3

invariant Kaluza-Klein modes ontribute. Therefore, only Kaluza-

Klein momenta along the diretion of the O6-plane and windings perpendiular

to the same ontribute on the �rst two torus. For the a type lattie, the ontri-

butions to the trae are of the form

1

4

�

p

2

L

+ p

2

R

�

=

�

0

2

(P

4

)

2

+

1

2�

0

(W

5

)

2

=

�

0

2

m

2

R

2

1

+

1

2�

0

n

2

R

2

2

;

where R

1

, R

2

are the radii of the two torus as de�ned in �gure 1.1.

By summing over all allowed momenta and windings m;n 2 Z, the lattie

ontributions an be ast into a general expression of the form

L

R

1

;R

2

[�; �℄(t) �

 

X

m2Z

e

���tm

2

=�

1

! 

X

n2Z

e

���tn

2

�

2

!

with �

i

= R

2

i

=�

0

. The orresponding expressions for the Klein bottle amplitude

for both lattie orientations a and b representing the bakground b = 0; 1=2,

respetively, in the T-dual piture are listed in table B.1.

Lattie ontributions on T

4

=Z

M

Lattie ontributions on the orbifold only appear in the untwisted setor. The

ompati�ation lattie has to be hosen suh that it remains invariant under

the orbifold generator �. For Z

2

and Z

4

, the SU(2)

2

lattie is mapped onto itself

under a rotation by e

�i=2

. The two lattie orientations A and B onsistent with

the reetion symmetryR

3

are shown in �gure 2.1. In fat, the Z

2

symmetry also

preserves retangular a type latties with R

1

6= R

2

and the b type lattie with

apex angle 2� 6= �=2 (see �gure 1.1 for the de�nition of the lattie orientations

and �gure B.1 for the de�nition of �). The tadpole anellation onditions are,

however, independent of the variables R

1

; R

2

and �. For simpliity, we utilize

the quadrati latties.

If the orbifold group is hosen to be Z

3

or Z

6

, the SU(3) latties depited in

�gure 2.2 are onsistent with rotational and R

3

symmetry. For the part of the
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A B

R

1

3

24

1

4

2

3

R

R

R

Figure 2.1: Solid irles denote Z

4

�xed points, empty irles the additional Z

2

�xed points whih are exhanged under a Z

4

rotation. For the A lattie, all

�xed points are R

3

invariant. For the B lattie, the Z

2

�xed points 3 and 4 are

exhanged under R

3

.

trae with trivial insertion, the lattie ontributions are determined exatly in

the same way as for the two torus T

1

whereas for a �

k

insertion, the momenta

and windings transform in the following way (j = 2; 3),

(
R

3

�

k

)P

j;j

(
R

3

�

k

)

�1

= e

�2�ikv

j

P

j;j

;

(
R

3

�

k

)W

j;j

(
R

3

�

k

)

�1

= �e

�2�ikv

j

W

j;j

:

This means that Kaluza-Klein momenta whih are rotated by �

�k=2

from the

real axes and windings rotated by the same angle from the imaginary axes of the

two tori T

2;3

ontribute to the lattie sums. If � is a Z

2

or Z

3

rotation, �

1=2

is

also a symmetry of the lattie, and therefore the Kaluza-Klein and winding sums

are idential to those with trivial insertion. The orbifold symmetry does not give

any onstraint on the hoie of orientations. All possible lattie ombinations

AA, AB (whih is equivalent to BA) and BB are allowed.

If on the other hand � is a Z

4

or Z

6

rotation, �

1=2

interhanges the lattie

orientations A and B. Merely the lattie AB gives a onsistent interpretation

of the Klein bottle amplitude in the tree hannel. Only untwisted losed strings

interat with the rossaps, and therefore only one kind of lattie ontributions

on the four dimensional orbifold an appear. The AA and BB latties lead to

a linear superposition of two lattie sums whih is inonsistent with worldsheet

duality. This onstraint is worked out in greater detail in appendix C.3.

The lattie ontributions per two torus for all onsistent models are listed in

table B.1.
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R

A B

1

2

3

4

56 6

4

5

2 3

1

R

R

R

Figure 2.2: Solid irles denote Z

3

�xed points, empty irles the Z

2

�xed points.

A Z

2

rotation exhanges the Z

3

�xed points 2 and 3, a Z

3

rotation permutes the

Z

2

�xed points 4,5,6. R

3

exhanges 5,6 in the A lattie and 4,6 in the B lattie.

The loop hannel amplitude

In order to extrat the RR exhange in the tree hannel, only the NSNS setor

with (�1)

F

insertion in the 1-loop hannel needs to be evaluated. The non-

ompat diretions in light-one gauge ontribute a fator #

�

0

1=2

�

=�(2t) for the

worldsheet fermions and 1=�

2

(2t) for the worldsheet bosons. The de�nitions

of the Dedekind eta and generalized Jaobi theta funtions are given in ap-

pendix B.2. Eah omplex ompat set of osillators from the untwisted setor

gives the same ontribution. An insertion of �

k

in the trae does not a�et the

osillator part beause only 
R

3

invariant states �

j

~�

j

and �

j

~�

j

ontribute and

the phases anel between left- and right-movers. Upon modular transformation,

this orresponds in the tree hannel to no twisted setors oupling to the ross-

aps. This result is onsistent with the tree hannel boundary onditions (1.33)

and (1.34) whih for this lass of models give the twist setors (
R

3

�

k

)

2

� 1I.

From (
R

3

)�

j;j

r

(
R

3

)

�1

= ~�

j;j

r

follows that 
R

3

preserves eah twist setor.

Formally all twist setors ontribute to the trae, where one omplex ompat

dimension yields the osillator part #

�

nv

i

1=2

�

=#

�

1=2+nv

i

1=2

�

(2t) for nv

j

6= 0. However,

the numerial result may be zero in speial ases as happens for Z

2

twist setors.

The last ingredients needed for evaluating the trae in (2.1) are the numbers

�

(n;k)

of �

n

�xed points whih are invariant under the insertion 
R

3

�

k

. These

�xed points are displayed in �gure 2.1 for Z

2

and Z

4

and in �gure 2.2 for Z

3

and

Z

6

. Sine the lattie sums and osillator ontributions are invariant under the

insertions, only the total number �

(n)

=

P

k

�

(n;k)

of �

n

�xed points enters the

omputation.

In summary, the NSNS part with (�1)

F

insertion of the one loop Klein bottle
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amplitude yields

K = 

Z

1

0

dt

t

3

L

K

1

 

K

(0)

L

K

2

L

K

3

+

M�1

X

n=1

�

(n)

K

(n)

!

; (2.7)

where the osillator ontributions K

(n)

are given in terms of Jaobi theta fun-

tions in (B.15), L

K

i

denote lattie ontributions arising from the i

th

two torus

listed in table B.1 and the numbers �

(n)

an be easily read o� from �gures 2.1

and 2.2.

The tree hannel amplitude

The modular transformation t = 1=4l leads to the RR exhange in the tree

hannel,

~

K = 

K

1



K

2



K

3

Z

1

0

dl

~

L

K

1

(

~

L

K

2

~

L

K

3

~

K

(0)

+ 4

M�1

X

k=1

sin

2

�

�k

M

�

~

K

(k)

)

; (2.8)

where

~

K

(0)

and

~

K

(k)

are given in (B.19) and (B.20), respetively. The lattie

sums

~

L

K

i

and onstants 

K

i

arise from Poisson resummation of the L

K

i

, namely

L(t) = l

~

L(l), and are listed expliitly in table B.1. The fator 4 sin

2

(�k=M)

reets the fat that only Z

M

invariant states from the losed string setor prop-

agate in the tree hannel [20℄. In terms of rossap states this an also be

rephrased as the appearane of the `omplete projetor' as explained in detail in

appendix C.1.2, in partiular formula (C.13).

The infrared limit l!1 is obtained from the leading terms in the expansion

of lattie sums and osillator ontributions. The latter an be easily read o� from

the produt expansion of the Jaobi theta funtions (B.9).

The Klein bottle amplitude an also be omputed diretly in the tree hannel

by using the boundary state approah [97, 74, 50℄. The detailed alulation is

given in appendies C.1 and C.3. The normalization of the rossap state is

determined via worldsheet duality to be

N

C

=

r



K

1



K

2



K

3

2M

: (2.9)

2.1.2 The annulus amplitude

The RR tadpole an be aneled by inluding open strings in the theory. One

of the 1-loop amplitudes for open strings is the annulus. It is given by

A = 

Z

1

0

dt

t

3

Tr

open

�

1

2

P

orb

P

GSO

(�1)

S

e

�2�tH

�

; (2.10)

where the trae inludes all possible endpoints of open strings on di�erent D6-

branes.
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Lattie ontributions on T

2

Let us �rst disuss the ontributions to the one-loop amplitude from strings

starting and ending on the same stak of D6-branes. Sine eah D6-brane wraps

a 1-yle on T

1

, in�nitely many parallel opies of the same stak of D6-branes

have to be onsidered. The situation is depited in �gure 2.3. On the retangu-

lar torus, the length L

a

of the wrapped 1-yle is determined by the wrapping

numbers (n

a

; m

a

) along (X

4

; X

5

) and the orresponding radii R

1

; R

2

, namely

L

a

=

p

(n

a

R

1

)

2

+ (m

a

R

2

)

2

. The `winding modes' are quantized in units of the

distane of adjaent opies of the same D6

a

-brane,

�

0

W =

sR

1

R

2

L

a

; (2.11)

with s 2 Z. Furthermore, strings an move along the Neumann diretion of the

D6

a

-brane,

P =

r

L

a

; (2.12)

with r 2 Z. The lattie ontributions to the trae then appear as

L

A

a

=

P

r;s

e

�2�t�

0

M

2

with M

2

= P

2

+ (�

0

W )

2

. The results for the b type lattie

on T

1

an be read o� from table B.1. Alternatively, the wrapping numbers along

the basis vetors e

1

; e

2

(see �gure 1.1) on a tilted torus an be replaed with

their projetions onto the (X

4

; X

5

) diretions, (n

a

; m

a

+ bn

a

) with b = 1=2 for

the tilted torus and b = 0 for the retangular one.

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

x

5

x

4

N

1

W

P

Figure 2.3: Kaluza-Klein momenta and windings from open strings with

both endpoints on the same stak of D6

1

-branes with wrapping numbers

(n

1

; m

1

) = (2; 1).

Lattie ontributions on T

4

=Z

M

We restrit to the ase where the D6-branes lie on top of the O6-planes along the

orbifold diretions. The resulting D6-brane on�gurations are shown in �gure 2.4
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for Z

2

and Z

4

and in �gure 2.5 for Z

3

and Z

6

symmetries. As on T

1

, momentum

and winding states are quantized in units of the inverse length of the 1-yle and

the distane of parallel D6-branes on eah two torus, respetively.

The loop and tree hannel amplitudes

`Twisted open strings' are those strings with one endpoint loated on a D6-

brane whih is the Z

M

image of the other one, i.e. the position of the seond

D6-brane is obtained by a �

n=2

rotation of the �rst one . The osillators are

moded in analogy with (1.15), (1.16) on T

2;3

with ' = �n=M . Suh D6-branes

an interset multiply on the fundamental ell of the orbifold. The intersetion

numbers �

(n)

A

an be read o� from �gures 2.4 and 2.5.

The 1-loop amplitude for D6

a

-D6

a

strings reads

A

aa

=



4

N

2

a

Z

1

0

dt

t

3

L

A

1

(

L

A

2

L

A

3

A

(0;0)

aa

+

M�1

X

n=1

�

(n)

A

A

(n;0)

aa

)

; (2.13)

with A

(n;k)

ab

given by (B.16) when i#

�

�'

1=2

�

=#

�

1=2+�'

1=2

�

(t) is replaed by #

�

0

1=2

�

=�

3

(t)

for �' ! 0. The number N

a

ounts idential D6

a

-branes. The square appears

due to the separate ounting of the endpoints � = 0; � of an open string. The

lattie ontributions are again olleted in table B.1. In equation (2.13) we have

BA

Figure 2.4: Supersymmetry preserving D6-brane on�gurations on T

4

for Z

2

(solid lines) and Z

4

(solid and dashed lines).

impliitly used the fat that the Chan-Paton representations of Z

2

elements

of the orbifold group have to be traeless as disussed below. A generi Z

M

rotation interhanges the D6-brane positions on T

2;3

. Therefore, �

n

insertions

give vanishing ontributions to the annulus amplitude exept for the speial ase

of a Z

2

rotation where D6-brane positions are mapped onto themselves. The

Z

2

rotation is aompanied by a non-trivial ation on the Chan-Paton matries
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B
A

Figure 2.5: Supersymmetry preserving D6-brane on�gurations on T

4

for Z

3

(solid lines) and Z

6

(solid and dashed lines).

�

(ab)

of open D6

a

-D6

b

strings whih provides a prefator tr(

a

M=2

)tr(

b;�1

M=2

) in

the amplitude with �

M=2

insertion. In order to avoid additional tadpoles from

twisted losed string modes propagating in the tree hannel whih annot be

aneled by the Klein bottle, this prefator has to vanish. This is exatly the

ondition of traeless  matries for Z

2

elements, the so alled `twisted tadpole

anellation ondition'.

The modular transformation t = 1=2l leads to

~

A

aa

=



2

4

N

2

a



A

1



A

2



A

3

Z

1

0

dl

~

L

A

1

#

h

1=2

0

i

2

�

6

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

~

L

A

2

~

L

A

3

#

h

1=2

0

i

2

�

6

+ 4

M�1

X

k=1

sin

2

�

�k

M

�

#

h

1

2

k=M

i

#

h

1

2

�k=M

i

#

h

1

2

�

1

2

+k=M

i

#

h

1

2

1

2

�k=M

i

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

;

(2.14)

where the argument of the Jaobi theta funtions is 2l. Comparing this with the

result from the boundary state formalism, one obtains the normalization fator

for the boundary states

N

B

=

r



A

1



A

2



A

3

2

5

M

: (2.15)

The details of boundary states for D6-branes are given in appendix C.2.

Having found the omplete boundary and rossap states, the alulation of

the remaining amplitudes beomes a straightforward task. Open strings streth-

ing between D6

a

- and D6

b

-branes at an angle ��' are desribed by the shifted
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Figure 2.6: Two types of D6-branes with wrapping numbers (n

1

; m

1

) = (2; 1)

and (n

2

; m

2

) = (1; 2) interseting multiply on the fundamental ell of the torus.

osillator moding �

Z+�'

aording to equations (1.15), (1.16) whih transforms

into a phase in the tree hannel. One further important ingredient is the fat

that D6-branes at angles an interset multiply on the fundamental ell of the

two torus. This situation is depited in �gure 2.6. The intersetion number I

ab

is given by

I

ab

= n

a

m

b

�m

a

n

b

: (2.16)

Formally, the intersetion number an take negative values. In terms of physial

quantities, this means that the partiles with support at the intersetion lous

of the D6

a

- and D6

b

-branes transform under the onjugate representation.

The multipliity of intersetions leads to a repliation of matter whih needs

to be taken into aount in omputing the annulus amplitude in the loop hannel.

The tree level ylinder amplitude from strings strethed between the branes D6

a

and D6

b

interseting at a relative angle ��' reads

~

A

ab

=



2

3

N

a

N

b

I

ab



A

2



A

3

Z

1

0

dl

(

~

L

A

2

~

L

A

3

~

A

(0)

ab

+ 4

M�1

X

n=1

sin

2

�

�n

M

�

~

A

(n)

ab

)

; (2.17)

with

~

A

(0)

ab

and

~

A

(n)

ab

de�ned in (B.21) and (B.22) respetively. The tadpole is

obtained from the asymptoti behavior on the retangular (b = 0) and tilted
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(b = 1=2) torus T

1

,

~

A

(0)

ab

=

#

h

1=2

0

i

3

�

9

#

h

1=2

�'

i

#

h

1=2

1=2+�'

i

(2l)

l!1

�!

�8

I

ab

�

n

a

n

b

R

1

R

2

+ (m

a

+ bn

a

)(m

b

+ bn

b

)

R

2

R

1

�

;

(2.18)

and similarly for

~

A

(n)

ab

with the asymptoti behavior of the Jaobi theta funtions

belonging to the twisted osillator ontributions given by (B.10).

2.1.3 The M�obius strip amplitude

The M�obius strip amplitude in the 1-loop hannel is given by the part of the

total 1-loop open string amplitude with 
R

3

insertion,

M = 

Z

1

0

dt

t

3

Tr

open

�


R

3

2

P

orb

P

GSO

(�1)

S

e

�2�tH

�

: (2.19)

As mentioned at the end of setion 1.2, 
R

3

is only a symmetry of the theory if

eah D6

a

-brane at angle �' relative to the X

4

axis is aompanied by its mirror

image under R

3

, a D6

a

0

-brane at angle ��'. For a D6

a

-brane with wrapping

numbers (n

a

; m

a

), the mirror image D6

a

0

is desribed by the wrapping numbers

(n

a

0

; m

a

0

) = (n

a

;�m

a

� 2bn

a

); (2.20)

where b = 0 and 1=2 belong to a retangular and tilted torus, respetively. The

situation is depited in �gure 2.7 for the retangular torus.

On T

2;3

the mirror image of a D6

a

-brane rotated by �

n=2

from the 
R

3

invariant axis is a D6

a

0

-brane whih is rotated by �

�n=2

.

The open strings whih are invariant under the insertion 
R

3

in the M�obius

strip are those whih have their endpoints on mirror D6-branes and are loated

at 
R

3

invariant intersetion points. The number of 
R

3

invariant intersetions

on T

1

is given by

I


R

3

a

0

a

= 2 (m

a

+ bn

a

) : (2.21)

The intersetions on T

2;3

for Z

2;3;4

are all 
R

3

invariant. For Z

6

, however, one

has to be more areful in ounting the number of invariant intersetions. For

further details see �gure 2.5 and the omments belonging to �gure 2.2.

The ontributions of the M�obius strip to the RR exhange an be alulated

either from the open string R states in the 1-loop hannel | with the osillator

ontributions for D6-branes at non-trivial angle �' on T

1

given by (B.17) and the

lattie sums for the 
R

3

invariant positions listed in table B.1 | and perform-

ing a modular transformation or equivalently diretly in the tree hannel from
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Figure 2.7: A D6

1

-brane with (n

1

; m

1

) = (3; 1) and its mirror image D6

1

0

on

a retangular torus. Solid irles denote intersetion points whih are invariant

under 
R

3

, the empty irles form pairs under 
R

3

.

the overlap of the orresponding boundary and rossap states as explained in

appendix C.3. For a string with both endpoints on a stak of D6-branes aligned

with the X

4

-axis on T

1

, the RR part of the tree hannel amplitude is given by

~

M
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= �
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>

>

>

>

>

=

>

>

>

>

>

>

;

(2.22)

where the argument of the # and � funtions is 2l �

i

2

. Similarly, we obtain the

relevant ontribution from a string starting on a D6

a

-brane at angle �' with

respet to the X

4

-axis on T

1

and ending on its mirror image D6

a

0

~

M

a

= �



2

2

N

a

I


R

a

0

a



M

2



M

3

Z

1

0

dl

(

~

L

M

2

~

L

M

3

~

M

(0)

a

+ 4

M�1

X

n=1

sin

2

�

�n

M

�

~

M

(n)

a

)

;

(2.23)

where I


R

3

a

0

a

is the number of 
R

3

-invariant intersetions de�ned in (2.21).

~

M

(0)

a
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and

~

M

(n)

a

are de�ned in (B.23) and (B.24), respetively.

In writing down the amplitudes, we have already used the fat that

tr

�



a

0

�T


R

3



a


R

3

�

= N

a

. This means that we an hoose 

a


R

3

� 1I in agreement

with the supersymmetri models disussed in [20, 19, 49℄. Furthermore, the

`twisted tadpole anellation ondition', i.e. no tadpoles from Z

2

insertions in

the loop hannel, has impliitly been used.

Finally, the tree hannel `omplete projetor ondition' onstrains the rep-

resentation of the orientifold group to ful�ll tr

�



a

0

�T


R

3

M

2



a


R

3

M

2

�

= �N

a

for M

even.

2.1.4 Tadpole anellation

The tadpole anellation onditions are obtained by summing over all possible

open string on�gurations in the annulus and M�obius strip amplitude and taking

the limit l!1. The tadpole arising from the Klein bottle amplitude is aneled

provided that

Z

2

:

X

a

N

a

n

a

=

8

>

>

>

<

>

>

>

:

16 (aaa);

8 (aab);

4 (abb);

Z

3

:

X

a

N

a

n

a

=

4 (aAA; aAB; aBB);

Z

4

:

X

a

N

a

n

a

=

8 (aAB);

Z

6

:

X

a

N

a

n

a

=

4 (aAB)

;

(2.24)

holds. For the b type T

1

in the parameterization with R and � aording to

�gure B.1, one has to replae n

a

by n

a

+m

a

so as to obtain the projetion onto

the 
R

3

invariant axis.

If we want to inlude only D6-branes in the models, we are restrited to the

ases n

a

> 0 and m

a

� 0. n

a

< 0 would introdue anti-D6-branes, m

a

< 0 labels

mirror images and n

a

= 0 orresponds to D7-branes in the T-dual type I piture.

The requirement of inluding only D6-branes severely restrits the gauge groups.

In setion 2.3 we give some expliit examples.
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2.2 Spetrum and anomaly anellation

2.2.1 Spetrum

The losed string spetrum is N = 2 supersymmetri and non-hiral while the

open string setor ontains N = 2 supersymmetri non-hiral subsetors from

strings with both endpoints on the same stak of D6-branes or �

n=2

rotated

ones as well as hiral non-supersymmetri subsetors from strings ending on

D6-branes at angles on T

1

.

Closed setor

The losed string setor onsists of all states whih are invariant under the ori-

entifold projetion (A.10) and the orbifold ation (1.26). The untwisted setor

ontains the following massless states for all hoies of Z

M

(s

i

; ~s

i

= �1=2):

NSNS: ( 

�

�1=2

~

 

�

�1=2

+  

�

�1=2

~

 

�

�1=2

)j0i graviton + dilaton;

( 

�

�1=2

~

 

1

�1=2

+  

1

�1=2

~

 

�

�1=2

)j0i 1 vetor;

( 

�

�1=2

~

 

1

�1=2

+  

1

�1=2

~

 

�

�1=2

)j0i 1 vetor;

 

i

�1=2

~

 

i

�1=2

j0i ;  

i

�1=2

~

 

i

�1=2

j0i (i = 1; 2; 3) 6 salars;

( 

1

�1=2

~

 

1

�1=2

+  

1

�1=2

~

 

1

�1=2

)j0i 1 salar;

( 

2

�1=2

~

 

3

�1=2

+  

3

�1=2

~

 

2

�1=2

)j0i 1 salar;

( 

3

�1=2

~

 

2

�1=2

+  

2

�1=2

~

 

3

�1=2

)j0i 1 salar;

RR: js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

axion+ 3 salars

s

0

= s

1

; s

2

= s

3

+ 1 vetor (H = �1);

~s

0

= �~s

1

; ~s

2

= ~s

3

js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

2 salars:

s

0

= �s

1

; s

2

= �s

3

~s

0

= ~s

1

; ~s

2

= �~s

3

= �s

2

In the RR setor, 
R

3

invariant states are of the form js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

�

j~s

0

;�~s

1

;�~s

2

;�~s

3

i

L

js

0

;�s

1

;�s

2

;�s

3

i

R

. Only one term of the sum is listed

above.
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For Z

2

, additional untwisted states are invariant under the orbifold group,

NSNS: ( 

2

�1=2

~

 

3

�1=2

+  

3

�1=2

~

 

2

�1=2

)j0i 1 salar;

( 

2

�1=2

~

 

3

�1=2

+  

3

�1=2

~

 

2

�1=2

)j0i 1 salar;

( 

i

�1=2

~

 

i

�1=2

+  

i

�1=2

~

 

i

�1=2

)j0i (i = 2; 3) 2 salars;

RR: js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

2 salars

s

0

= �s

1

; s

2

= �s

3

+ 1 vetor (H = �1) :

~s

0

= ~s

1

; ~s

2

= �~s

3

= s

2

The strategy of omputing massless states in the twisted losed setors is ex-

plained in setion 1.5.1. For example, the orbifold Z

3

inorporates a � and a �

2

twisted setor. In the terminology of setion 1.5.1, the tahyoni NSNS vauum

in the � twisted setor is given by

j0i

(�)

NSNS

= j0; 0;

1

3

; �

1

3

i

L

j0; 0; �

1

3

;

1

3

i

R

:

There exist four GSO invariant massless states in the NSNS setor,

 

2

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

;  

3

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

; (2.26)

 

2

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

;  

3

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

: (2.27)

The 
R

3

symmetry preserves the twist setor. The states in (2.26) are invariant

by themselves whereas the two states in (2.27) are mapped onto eah other by

the orientifold symmetry. The �

2

twisted NSNS states are onstruted orre-

spondingly. In total, the � and �

2

twisted NSNS setors eah ontribute three

real salars per Z

3

�xed point.

In the � twisted RR setor, the massless GSO invariant states are fourfold

degenerate due to the existene of zero modes along the non ompat diretions

and the �rst two torus T

1

,

j0i

(�;1)

RR

= j

1

2

; �

1

2

; �

1

6

;

1

6

i

L

j�

1

2

; �

1

2

;

1

6

; �

1

6

i

R

;

j0i

(�;2)

RR

= j�

1

2

;

1

2

; �

1

6

;

1

6

i

L

j

1

2

;

1

2

;

1

6

; �

1

6

i

R

;

j0i

(�;3)

RR

= j

1

2

; �

1

2

; �

1

6

;

1

6

i

L

j

1

2

;

1

2

;

1

6

; �

1

6

i

R

;

j0i

(�;4)

RR

= j�

1

2

;

1

2

; �

1

6

;

1

6

i

L

j�

1

2

; �

1

2

;

1

6

; �

1

6

i

R

:

The states j0i

(�;1)

RR

and j0i

(�;2)

RR

provide real salars whih are identi�ed under 
R

3

while the remaining states j0i

(�;3)

RR

and j0i

(�;4)

RR

form the two heliities of a massless

vetor. 
R

3

projets the vetor out provided that the �xed point to whih the

state is assoiated transforms trivially. The �

2

twisted RR states are obtained

along the same lines. Thus, for the BB type lattie, the � and �

2

twisted RR
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setors eah ontribute one real salar per Z

3

�xed point. In eah A type lattie,

the two non trivial Z

3

�xed points 2 and 3 of �gure 2.2 are exhanged by the


R

3

symmetry giving rise to vetors. Again, the 
R

3

invariant superposition

of the NS-R and R-NS states provides the fermioni superpartners.

In Z

2

twisted setors, the bosoni massless GSO invariant states are given by

(s

i

; ~s

i

= �1=2):

NSNS: j0; 0; s

2

; s

3

i

L

j0; 0; ~s

2

; ~s

3

i

R

;

s

2

= s

3

; ~s

2

= ~s

3

RR: js

0

; s

1

; 0; 0i

L

j~s

0

; ~s

1

; 0; 0i

R

:

s

0

= �s

1

; ~s

0

= ~s

1

The exat spetrum again depends on the transformation properties of the �xed

points under R

3

. The onstrution of the Z

4

and Z

6

twisted setors goes along

the same lines as the Z

3

twisted ones.

The omplete massless losed spetra for all onsistent four dimensional left-

right symmetri orbifolds with 
R

3

projetion are listed below using N = 1

terminology. They do, however, form the N = 2 supergravity multiplet plus

N = 2 hyper- and vetormultiplets.

Closed string spetrum for Z

2

twist-setor AA AB BB

untwisted SUGRA+ 11C + 4V

� 32C 28C + 4V 26C + 6V

Closed spetrum of Z

3

untwisted SUGRA+ 8C + 3V

�+�

2

28C + 8V 30C + 6V 36C

Closed string spetrum for Z

4

untwisted SUGRA+ 8C + 3V

�+�

3

16C

�

2

19C + 1V

Closed string spetrum for Z

6

untwisted SUGRA+ 8C + 3V

�+�

5

4C

�

2

+�

4

18C + 2V

�

3

11C + 1V

Open setor

The open string spetrum is subdivided into two parts. Strings with both end-

points on the same type of D6

a

-brane provide N = 2 non-hiral vetor- and

hypermultiplets and support the gauge group. Strings ending on D6

a

- and

D6

b

-branes at angle ��' on T

1

support hiral fermions and salar pseudo-

superpartners whose masses depend on the intersetion angle ��'.

The mass formula (1.40) applied to open strings strething between D6-

branes at angle �

�

2

< ��' <

�

2

on T

1

and �

k

rotated positions on T

2;3

for
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the NS setor reads

�

0

4

m

2

= N

os

+

1

2

(�'+ 2

k

M

� 1); (2.28)

with the osillator number N

1

os

for a single reation operator  

�

given by

0 6 N

1

os

2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1=2 + Z � = 0; 0;

1=2��'+ Z � = 1; 1;

1=2� k=M + Z � = 2; 3;

1=2 + k=M + Z � = 2; 3:

(2.29)

The setor with k = 0 ontains a tahyon  

1

�'�1=2

j0i with

�

0

4

m

2

= ��'=2.

The lightest R setor states are massless. In table D.1, the hirality and Z

2

eigenvalue of eah groundstate are listed.

The representations under the gauge group are determined by the ation of

the orientifold (1.45) and orbifold group (1.46) on the Chan-Paton indies. A

possible hoie onsistent with the tadpole anellation onditions,

tr

�



a

0

�T


R

3



a


R

3

�

= N

a

; (2.30)

tr

a

M=2

= 0 for M even;

the property of the orbifold generator (�

M=2

)

2

= 1I,

�



a

M=2

�

2

' 1I;

and the onstraint

tr

�



a

0

�T


R

3

M

2



a


R

3

M

2

�

= �N

a

(2.32)

is taken into aount by



a


R

3

= 1I

N

a

; (2.33)



a

M=2

=

0

�

0 i1I

N

a

=2

�i1I

N

a

=2

0

1

A

: (2.34)

This agrees with the supersymmetri six dimensional model of [54℄ whih is

obtained from the Z

2

model disussed here by taking the deompati�ation

limit of the two torus T

1

in the T-dual piture with bakground uxes. In the

piture with D6-branes at angles this limit is given by R

1

;

1

R

2

!1.

In addition to the ation on the Chan-Paton indies, the transformation

properties of the mass eigenstates have to be taken into aount. 
R

3

maps

D6

a

-branes onto their images D6

a

0

. Thus, generially a D6

a

-D6

b

string is mapped
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onto a D6

b

0

-D6

a

0

string, and onstraints on the representations arise only for 
R

3

invariant on�gurations, namely for strings with both endpoints on D6

a

-branes

whih are their own mirror image and for strings strething between mirror

branes. The largest possible gauge group obtained from a stak of N

a

idential

D6

a

-branes is U(N

a

). If the brane position preserves some symmetry, only a

subgroup appears.

A general Z

M

rotation exhanges D6-brane positions on T

2;3

. For a Z

3

sym-

metry, this gives the gauge group

Z

3

:

Y

m

a

6=0

U(N

a

)

Y

m

a

=0

SO(N

a

); (2.35)

where m

a

= 0 labels the position of 
R

3

�

k

invariant D6-branes on the retan-

gular torus.

If the orbifold group is of even order, the Z

2

fator preserves the positions of

all D6-branes. The gauge group is redued, U(N

a

)

Z

2

�! U(N

a

=2)

2

. One further

subtlety arises from the fat that in the speial ase of Z

3

all D6-brane positions

on T

2;3

are related by �

k

rotations. This is not true in general. For Z

2;4;6

two

separate orbits our whih are displaed by a �

1=2

rotation. For example in �g-

ure 2.5, when taking the orbifold symmetry Z

6

, all solid lines denote D6-branes

whih belong to the same orbit while all D6-branes along the dashed lines belong

to the other one. The omputation of RR tadpole anellation in setion 2.1.4

has been performed in terms of idential D6-branes. The gauge group before im-

posing symmetry onstraints is therefore U(N

a

)

2

. The Z

2

symmetry breaks the

group down to U(N

a

=2)

4

, and if the stak of D6

a

-branes with idential position

on T

1

is its own mirror image under 
R

3

, eah fator U(N

a

=2)

2

orresponding

to one orbit on T

2;3

is further redued to U(N

a

=2). The resulting gauge groups

are

Z

2;4;6

:

Y

m

a

6=0

U(N

a

=2)

4

Y

m

a

=0

U(N

a

=2)

2

: (2.36)

All results in this setion are obtained for a retangular torus T

1

. They remain

true for D6

a

-branes on the tilted torus if one takes into aount that the 
R

3

in-

variant on�guration is then given by the wrapping numbers (n

a

; m

a

) = (2;�1)

in the basis of �gure 1.1. By omparison with the tadpole anellation ondi-

tions (2.24), one an derive that the maximal rank of the gauge group is redued

by onsidering the tilted torus or equivalently swithing on a bakground �eld b

in the T-dual piture [14, 13, 113, 3, 75℄.

Further details of the open string spetra will be disussed in setion 2.3.

2.2.2 Anomaly anellation

The resulting spetra are free of non-Abelian gauge anomalies provided that the

tadpole anellation onditions (2.24) are ful�lled. For details see setion 2.3.
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The total gauge group generially ontains several U(1) fators arising from the

deomposition U(N)! SU(N)�U(1) and from staks with a single D6

a

-brane,

i.e. N

a

= 1. These U(1) fators ontribute to mixed gauge and gravitational

anomalies. Only some spei� linear ombinations of U(1) fators are anomaly

free. The others should get a mass of the order of the string sale M

s

by a

generalized Green-Shwarz mehanism involving losed string moduli [1, 81℄.

In the T-dual piture of D9

a

-branes with magneti uxes, the ten dimensional

RR �eld C

2

and its dual C

6

have the following worldvolume ouplings to the

gauge �elds [42, 85, 1, 71℄,

Z

D9

a

C

6

F

2

a

;

Z

D9

a

C

2

F

4

a

:

Upon dimensional redution, one obtains four two forms (i 6= j 6= k 6= i, i; j; k =

1; 2; 3),

B

0

2

= C

2

;

n

j

a

n

k

a

B

i

2

=

Z

T

j

�T

k

(D9

a

)

C

6

;

and their four dimensional duals

n

1

a

n

2

a

n

3

a

C

0

=

Z

T

1

�T

2

�T

3

(D9

a

)

C

6

;

n

i

a

C

i

=

Z

T

i

(D9

a

)

C

2

;

with n

1

a

� n

a

depending on the spei� stak of D9

a

-branes and n

2;3

a

� onst:

universal fators for the lass of models under onsideration where non-trivial

uxes are only implemented on T

1

. The prefators n

i

a

arise from the pull-bak

of the RR forms on the magnetized tori T

i

.

Imposing an orbifold symmetry Z

M

on T

2;3

leaves B

0

2

; B

1

2

and their four di-

mensional duals C

0

; C

1

invariant.

The e�etive worldvolume ouplings in the models under onsideration with

a retangular T

1

are of the form

n

a

Z

R

1;3

C

0

F

2

a

; m

a

Z

R

1;3

B

0

2

F

a

;

n

a

Z

R

1;3

C

1

F

2

a

; m

a

Z

R

1;3

B

1

2

F

a

; (2.38)

where only the non-universal prefators n

a

and m

a

arising from the pullbak of a

RR form or a gauge �eld on the magnetized torus, respetively, have been listed.

The generalization to tilted tori is straightforward.
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The anomalous U(1) fators beome massive due to the linear ouplings to

RR �elds in (2.38). In [71℄ it was pointed out that also anomaly free U(1)s

an have suh ouplings. Non-anomalous as well as anomalous U(1)s beome

massive if they ouple to RR �elds linearly aording to (2.38). In theories

with an arbitrary number of D6-branes, however, the number of massive U(1)

fators annot exeed the number of RR forms involved in the Green-Shwarz

mehanism.

In order to obtain phenomenologially relevant models, one has to make sure

that the hyperharge does not get a mass in this way.

2.3 Z

3

and Z

2

models

2.3.1 The Z

3

ase

In the Z

3

orbifold, the gauge group generated by a stak of N

a

D6

a

-branes with

arbitrary wrapping numbers (n

a

; m

a

) is U(N

a

). For the 
R

3

invariant position

with (n

a

; m

a

) = (1; 0) on the retangular torus, the orresponding projetion

ondition breaks the gauge group down to SO(N

a

).

The lattie orientations A, B an be hosen independently on T

2;3

. The

tadpole anellation ondition (2.24) is not a�eted by this hoie.

Strings with endpoints on di�erent staks of D6

a

- and D6

b

-branes transform

in the antifundamental of one gauge group and the fundamental of the other one,

(F

a

;F

b

). The orientifold symmetry 
R

3

maps a stak of D6

a

-branes onto their

images D6

a

0

while replaing the representations by their onjugates. Therefore,

a string with an endpoint on D6

a

0

and the other one on D6

b

transforms in the

bifundamental of the gauge groups, (F

a

;F

b

). The multipliity of states is deter-

mined by the degeneray of mass eigenstates, the intersetion numbers I

ab

on

T

1

as de�ned in (2.16) and I

a

0

b

obtained from the wrapping numbers of mirror

branes (2.20) and �nally the intersetion number � on T

2;3

whih depends on

the hoie of ompati�ation latties.

Strings with endpoints on mirror branes are subjet to the 
R

3

symmetry

provided that the intersetion point is also aR

3

�xed point. The mass eigenstates

are odd under 
R

3

, and inserting 

a


R

3

= 1I

N

a

in (1.45) gives states in the

antisymmetri representation (A

a

). If the intersetion points are exhanged by


R

3

, no projetion ondition emerges. 
R

3

then identi�es strings at di�erent

intersetion points whih aommodate both the antisymmetri and symmetri

representation (A

a

) + (S

a

).

The hiralities of fermioni states are given in table D.1. Only in the setors

with non-trivial angles on all three tori, the hiral symmetry is broken. In the

ase of Z

3

, two suh setors exist. This leads to an even number of opies of eah

representation.

The generi spetrum for the Z

3

orbifold is listed in table 2.1. The 
R

3
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symmetry leads to an identi�ation of the D6

a

-D6

b

and D6

b

0

-D6

a

0

strings. The

D6

b

-D6

a

strings provide the anti-partiles for the former ones. It an be ex-

pliitly heked that the spetrum is free of non-Abelian gauge anomalies if the

tadpole anellation ondition (2.24) is ful�lled. In order to do so, the follow-

ing relations between the ubi Casimir operators of the fundamental, adjoint

(Adj), symmetri and antisymmetri representation of SU(N) are useful,

C

3

(Adj) = 2NC

3

(F);

C

3

(S) = (N + 4)C

3

(F); (2.39)

C

3

(A) = (N � 4)C

3

(F):

Chiral fermioni spetrum for Z

3

rep. mult.

aa

0

(A

a

)

L

4m

a

�

aa

0

(A

a

)

L

+ (S

a

)

L

2m

a

(n

a

� 1)�

ab (F

a

;F

b

)

L

2(n

a

m

b

� n

b

m

a

)�

ab

0

(F

a

;F

b

)

L

2(n

a

m

b

+ n

b

m

a

)�

Table 2.1: Generi hiral spetrum for (T

2

� T

4

=Z

3

)=
R

3

. � = 1; 3; 9 is the

intersetion number on T

2;3

for the latties AA, AB, BB, respetively.

A Z

3

example

As we restrit our analysis to D6

a

-branes, the largest feasible gauge group whih

respets the tadpole ondition (2.24) and yields hiral fermions is U(3) � U(1).

We an split this group into SU(3) � U(1)

2

. Choosing the retangular a torus

and the wrapping numbers (n

1

; m

1

) = (1; 1), (n

2

; m

2

) = (1; 2), out of the two

U(1)s the linear ombination

Q

nonan:

= Q

1

�

3

2

Q

2

is non anomalous. The D6-brane positions are depited in �gure 2.8. The re-

maining U(1) fator should beome massive by the generalized Green-Shwarz

mehanism as explained in setion 2.2.2. The resulting spetrum is displayed in

table 2.2 for the lattie aAA. A di�erent lattie on T

2;3

hanges the spetrum

by an overall multipliity � (see table 2.1).
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x

9

�

�

U(1) SU(3)

T

1

T

2

T

3

x

4

x

5

x

6

x

8

x

7

Figure 2.8: D6-brane on�guration of the (T

2

� T

4

=Z

3

)=
R

3

example. On T

2;3

the D6-branes are evenly distributed among the three possible positions.

Chiral spetrum, Ex. 1

SU(3)� U(1)

nonan:

mult.

11

0

(3)

2

4

12 (3)

�5=2

2

12

0

(3)

�1=2

6

Table 2.2: Chiral fermioni spetrum for (T

2

� T

4

=Z

3

)=
R

3

with (n

1

; m

1

) =

(1; 1), (n

2

; m

2

) = (1; 2) and lattie aAA. All states are left-handed.

2.3.2 The Z

2

ase

Z

2

models are the most simple examples for T

4

=Z

M

orbifolds where M is even.

In this ase, the tadpole anellation ondition depends on the hoie of the

orbifold lattie,

X

a

�n

a

N

a

= 16; (2.41)

where � = 1; 2; 4 is the intersetion number on T

2;3

for the lattie hoie aa, ab,

bb, respetively. The breaking pattern of the gauge group is

U(N

a

)

2

Z

2

�! U(N

a

=2)

2

� U(N

a

=2)

2

[


R

3

�! U(N

a

=2)

2

for a stak of D6-branes whih

are their own mirror branes℄ as explained in setion 2.2.1 where the square arises

from the existene of two orbits on T

2;3

. A Z

2

rotation maps eah setor onto

itself while assigning a �xed parity �1 to eah massless state. As listed in ta-

ble D.1, left-handed states are Z

2

-even and right-handed ones are Z

2

-odd in all

setors with a non-vanishing angle on T

1

. Therefore, not only strings strething

between D6-branes at non-vanishing angles on all three tori ontribute to the
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hiral spetrum but also those whih merely interset on T

1

. This aounts for

the fat that the intersetion number � expliitly enters the tadpole anellation

ondition (2.41) in ontrast to the Z

3

models.

An alternative hoie to (2.33) and (2.34) for the  matries onsistent with

the tadpole onditions (2.30) and (2.32) is given by



a


R

3

=

0

�

0 1I

N

a

=2

1I

N

a

=2

0

1

A

;



a

�

=

0

�

1I

N

a

=2

0

0 �1I

N

a

=2

1

A

:

In this basis, the Chan-Paton labels of the gauge bosons are blok-diagonal whih

is onvenient for determining the representations of hiral fermions.

The hiral part of the open string spetrum obtained by imposing 
R

3

and

Z

2

invariane is listed in table 2.3.

If the model ontains an 
R

3

invariant stak of D6



-branes, the rank of the

gauge group supported by this olletion is redued as explained above. The

resulting hiral spetrum has to be modi�ed aordingly. The relevant part is

displayed in table 2.4.

The analysis of the Z

4

and Z

6

ases is ompletely analogous to the Z

2

orb-

ifold. There exist two independent D6-brane orbits on T

2;3

and a ondition on

the Chan-Paton matries, tr

�

M=2

= 0, yielding the gauge group U(N

a

=2)

4

for

given (n

a

; m

a

). Not only strings ending on D6-branes at non-trivial angles on all

three tori provide hiral fermions, but also strings with endpoints on D6-branes

of idential positions on T

2;3

ontribute to the hiral spetrum sine Z

2

-even and

-odd states have opposite hirality. One additional subtlety enters the ompu-

tation of the open spetrum in the ase of Z

6

as the intersetion points of �

and �

3=2

rotated D6-branes on T

2;3

are permuted by the orbifold group. How-

ever, the tadpole onditions (2.24) already indiate that we annot inlude the

standard model gauge group SU(3)� SU(2)� U(1) in Z

4

or Z

6

without adding

anti-D6-branes. Therefore, we will not disuss these models in detail but lose

this hapter by giving a Z

2

example whih enloses SU(3)� SU(2)� U(1).

Models with anti-D-branes and spatial separation of parallel D-branes orre-

sponding to a Wilson line bakground in the T-dual piture will be disussed in

the ontext of D8-brane models in hapter 3.

A Z

2

example

If we hoose not to inlude anti-D6-branes in our analysis, the standard model

gauge group an only be enlosed for the hoie � = 1 (f. eq. (2.41)). Taking

the aaa lattie and the minimal possible hoie of three staks of D6-branes,
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namely

N

1

= 6; (n

1

; m

1

) = (1; 1);

N

2

= 4; (n

2

; m

2

) = (1; 0); (2.42)

N

3

= 2; (n

3

; m

3

) = (4; 1);

we obtain the gauge group SU(3)

4

� SU(2)

2

� U(1)

10

. The D6-brane positions

are depited in �gure 2.9. The seond stak of D6

2

-branes is 
R

3

invariant. In

x

4

SU(3)

4

U(1)

4

�

T

1

T

2

T

3

x

5

x

6

x

7

x

9

x

8

�

SU(2)

2

Figure 2.9: D6-brane on�guration of the Z

2

example. On T

2;3

the D6-

branes with horizontal and vertial positions eah aommodate the gauge group

SU(3)

2

� SU(2)� U(1)

5

(before the Green-Shwarz mehanism).

this ase, the tadpole ondition (2.41) has to be modi�ed,

N

2

2

+

X

a6=2

n

a

N

a

= 16; (2.43)

in order to avoid double ounting for the strings with endpoints on the D6

2

-

branes.

This is in agreement with the fat that models ontaining only staks of

D6-branes with wrapping number (n;m) = (1; 0) on the retangular torus T

1

are in the deompati�ation limit of the T-dual two torus idential to the six

dimensional supersymmetri models onsidered in [54℄ for Z

2

and [20℄ for Z

3

leading to U(16)

2

and SO(8), respetively.

Due to the 
R

3

symmetry, the setor 1

0

2 provides the anti-partiles for the

setor 12 just as the 23 and 23

0

setors belong together, whereas normally the

setor D6

a

0

-D6

b

0

ontains the anti-partiles for the setor D6

a

-D6

b

. Generially,

sine I

ab

+ I

a

0

b

is even, an even number of generations transforming under the

same gauge fators originates from the intersetions of D6

a

and D6

b

-branes,

half of them in the bifundamental and the other half in the antifundamental

of one and the fundamental of the other gauge fator. In the model de�ned

by (2.42), the 13 and 13

0

setors are of this kind whereas in the setor 12,

there exists a single partile in the (3

1

; 2

2

) of SU(3)

1

� SU(2)

2

. However, as
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the omplete spetrum is symmetrially distributed among the gauge fators

whih are supported by a spei� D6-brane on�guration, the total number of

(3

i

; 2

j

) representations of all possible SU(3)

i

� SU(2)

j

(i = 1; : : : 4; j = 1; 2)

ombinations is even. The omplete hiral spetrum is listed in table D.2. The

model ontains (at least) six non anomalous U(1) fators. A possible set of linear

ombinations in terms of the original U(1) harges Q

i

(i = 1 : : : 10) is given by

~

Q

1

= Q

1

+Q

2

� 3Q

7

� 3Q

8

;

~

Q

2

= Q

3

+Q

4

� 3Q

9

� 3Q

10

;

~

Q

3

= Q

1

�Q

2

� 3Q

5

; (2.44)

~

Q

4

= Q

3

�Q

4

� 3Q

6

;

~

Q

5

= �4Q

5

+Q

7

�Q

8

;

~

Q

6

= �4Q

6

+Q

9

�Q

10

:

The harges are also listed in table D.2. The remaining anomalous U(1)s are

expeted to beome massive by the generalized Green-Shwarz mehanism.
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Chiral fermioni spetrum for Z

2

rep. of U(

N

a

2

)

4

� U(

N

b

2

)

4

mult.

aa

0

U (F

a

;F

a

; 1; 1)

L

+ (1; 1;F

a

;F

a

)

L

4m

a

n

a

(A

a

; 1; 1; 1)

L

4m

a

(A

a

+ S

a

; 1; 1; 1)

L

2m

a

(n

a

� 1)

aa

0

T (F

a

; 1; 1;F

a

)

L

+ (1;F

a

;F

a

; 1)

L

2m

a

n

a

�

abU (F

a

; 1; 1; 1; 1;F

b

; 1; 1)

L

+ (1;F

a

; 1; 1;F

b

; 1; 1; 1)

L

2(n

a

m

b

� n

b

m

a

)

+(1; 1;F

a

; 1; 1; 1; 1;F

b

)

L

+ (1; 1; 1;F

a

; 1; 1;F

b

; 1)

L

(F

a

; 1; 1; 1;F

b

; 1; 1; 1)

L

+ (1;F

a

; 1; 1; 1;F

b

; 1; 1)

L

2(n

a

m

b

� n

b

m

a

)

+(1; 1;F

a

; 1; 1; 1;F

b

; 1)

L

+ (1; 1; 1;F

a

; 1; 1; 1;F

b

)

L

ab

0

U (F

a

; 1; 1; 1;F

b

; 1; 1; 1)

L

+ (1;F

a

; 1; 1; 1;F

b

; 1; 1)

L

2(n

a

m

b

+ n

b

m

a

)

+(1; 1;F

a

; 1; 1; 1;F

b

; 1)

L

+ (1; 1; 1;F

a

; 1; 1; 1;F

b

)

L

(F

a

; 1; 1; 1; 1;F

b

; 1; 1)

L

+ (1;F

a

; 1; 1;F

b

; 1; 1; 1)

L

2(n

a

m

b

+ n

b

m

a

)

+(1; 1;F

a

; 1; 1; 1; 1;F

b

)

L

+ (1; 1; 1;F

a

; 1; 1;F

b

; 1)

L

abT (F

a

; 1; 1; 1; 1; 1;F

b

; 1)

L

+ (1;F

a

; 1; 1; 1; 1; 1;F

b

)

L

(n

a

m

b

� n

b

m

a

)�

+(1; 1;F

a

; 1;F

b

; 1; 1; 1; )

L

+ (1; 1; 1;F

a

; 1;F

b

; 1; 1)

L

ab

0

T (F

a

; 1; 1; 1; 1; 1; 1;F

b

)

L

+ (1;F

a

; 1; 1; 1; 1;F

b

; 1)

L

(n

a

m

b

+ n

b

m

a

)�

+(1; 1;F

a

; 1; 1;F

b

; 1; 1; )

L

+ (1; 1; 1;F

a

;F

b

; 1; 1; 1)

L

Table 2.3: Generi hiral spetrum for interseting D6-branes and Z

2

symme-

try. `U ' labels idential on�gurations on T

2;3

, `T ' denotes D6-branes whih are

perpendiular on T

2;3

. Permutations of entries are abbreviated by underlining.
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Chiral fermioni spetrum with 
R

3

invariant D6



-branes

rep. of U(

N



2

)

2

� U(

N

b

2

)

4

mult.

bU (F



; 1;F

b

; 1; 1; 1)

L

+ (1;F



; 1; 1;F

b

; 1)

L

2m

b

(F



; 1; 1;F

b

; 1; 1)

L

+ (1;F



; 1; 1; 1;F

b

)

L

2m

b

(F



; 1; 1;F

b

; 1; 1)

L

+ (1;F



; 1; 1; 1;F

b

)

L

2m

b

(F



; 1;F

b

; 1; 1; 1)

L

+ (1;F



: 1; 1;F

b

; 1)

L

2m

b

bT (F



; 1; 1; 1;F

b

; 1)

L

+ (1;F



;F

b

; 1; 1; 1; )

L

m

b

�

(F



; 1; 1; 1; 1;F

b

)

L

+ (1;F



; 1;F

b

; 1; 1; )

L

m

b

�

Table 2.4: Modi�ation of the hiral spetrum from interseting D6-branes for

an 
R

3

invariant stak of D6



-branes with wrapping numbers (n



; m



) = (1; 0)

on the retangular torus. The orbifold symmetry is Z

2

.
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Chapter 3

Orientifold models with

interseting D8-branes

In this hapter, four dimensional orientifold models of type IIA theory on

T

2

� T

4

=Z

3

with D8-branes at angles [65℄ are presented. The orientifold pro-

jetion 
R

1

reets one oordinate of the six dimensional ompat spae,

R

1

: Z

1

! Z

1

;

where

Z

1

= X

4

+ iX

5

is the omplex notation introdued in (1.23). In order to ahieve partial su-

persymmetry breaking in the losed string setor, a Z

3

orbifold symmetry is

inluded

� : Z

j

! e

2�iv

j

Z

j

;

with v = (0; 1=3;�1=3). The sets of points whih are left invariant under 
R

1

onstitute orientifold planes, whih are extended along all non-ompat dire-

tions and the four dimensional orbifold, but only along the X

4

axis on the �rst

two torus T

1

. Thus, they extend along eight spatial dimensions. In order to

anel the RR harges of these O8-planes, an appropriate on�guration of D8-

branes has to be added. In ontrast to the D6-brane models of hapter 2, only

in ase of a Z

3

symmetry the tadpole anellation onditions are ful�lled by

inluding merely D8-branes. For the other four dimensional orbifolds, the Z

2

subgroup produes additional tadpoles whih an only be aneled by adding

D4-branes besides the D8-branes as an be seen by omparison with the super-

symmetri limits of these models [53℄. Sine they do not admit for large volume

ompati�ations, we restrit to the Z

3

ase.

Performing a T-duality along the X

5

diretion, D8-branes at angles on T

1

orrespond to D9-branes with non-trivial magneti bakground ux F

45

whih is

quantized in terms of the radii of the two-torus as disussed in setion 1.1.2. A

55
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tilted torus T

1

in the angle piture again orresponds to a non-trivial onstant

bakground NSNS two-form ux B

45

in the T-dual piture. As in hapter 2,

due to the reetion symmetry R

1

, eah D8

a

-brane is aompanied by its mirror

image D8

a

0

with wrapping numbers given by (2.20), and two staks of branes

D8

a

and D8

b

generially have several intersetions within the fundamental ell

of the torus. The orresponding intersetion numbers are as de�ned in (2.16).

In the lass of models under onsideration, the orbifold generator � pre-

serves the position of eah D8

a

-brane while assigning di�erent phases �

j

(where

� � e

2�i=3

and j = 0; 1; 2) to the mass eigenstates. Therefore, a stak of N

a

D8

a

-branes with idential positions is deomposed aording to the di�erent

eigenvalues of the Z

3

rotation, N

a

= N

0

a

+N

1

a

+N

2

a

, giving rise to the gauge

group

U

�

N

0

a

�

� U

�

N

1

a

�

� U

�

N

2

a

�

:

Partiles whih are supported at the intersetion lous of two staks of branes

D8

a

and D8

b

with Z

3

eigenvalue 1 transform as (F

i

a

;F

i

b

) whereas those with

eigenvalue �

�1

transform as (F

i

a

;F

i�1

b

). This is in ontrast to the D6-brane

models where � exhanges the brane positions.

The gauge oupling onstants of the U(N

i

a

) fators with support on a D8

a

-

brane are determined by the length L

a

of the 1-yle on T

1

whih the D8

a

-branes

wrap [2℄. The length of the yle in terms of wrapping numbers and radii of the

two-torus T

1

is given by the generalization of the one in setion 2.1.2 to tilted

tori

L

a

=

p

(n

a

R

1

)

2

+ ((m

a

+ bn

a

)R

2

)

2

; (3.5)

with b = 0; 1=2 orresponding to the retangular and tilted torus, respetively.

The models with D8-branes do not only di�er from those with D6-branes in

the ation of the orbifold group but also in view of solving the mass hierarhy

problem. While in D6-brane models, the wrapped 3-yles on T

1

� T

2;3

are

hosen suh that there does not exist any ompat diretion transverse to all

D6-branes, the D8-brane models admit a T-dual desription in terms of D4-

branes for the orbifold group Z

3

. The latter have the transverse diretions along

T

2;3

in ommon. This admits for a large orbifold volume whih might serve to

lower the string sale down to the TeV region and thus solve the mass hierarhy

problem [7, 6℄.

Some phenomenologial aspets of the orientifold theories with interseting

D8-branes are disussed at the end of this hapter in setion 3.5.
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3.1 RR tadpoles and hiral spetra

3.1.1 RR tadpole anellation

In this setion, we derive the onsisteny onditions of the (T

2

� T

4

=Z

3

)=
R

1

models whih are determined by the requirement that all | untwisted and

twisted | RR harges of the O8-planes are aneled by those of the D8

a

-branes.

The omputation of untwisted tadpoles in the tree hannel is similar to the one

presented in hapter 2. The twisted tadpoles only our in suh lasses of mod-

els where the reetion R

1

ommutes with the orbifold generator. As for the

D6-brane models, the tadpole anellation onditions an be entirely expressed

in terms of the wrapping numbers n

a

orresponding to the projetion of the

1-yles on T

1

onto the X

4

-axis and the number of idential D8

a

-branes N

i

a

.

The RR tadpole anellation onditions are again omputed along the lines

of setion 1.4. In ontrast to the models with D6-branes at angles [48℄ onsid-

ered in hapter 2 and the supersymmetri [20, 19, 49℄ and non-supersymmetri

orientifolds in [27℄, the following relation holds

(
R

1

h)

2

= h

2

:

Therefore, twisted as well as untwisted losed strings propagate in the tree han-

nel leading to untwisted and twisted tadpole anellation onditions whih have

to be ful�lled simultaneously.

At this point, we turn to the expliit alulation of the three 1-loop-amplitudes.

The diret alulation in the tree hannel an be performed using the boundary

state approah. For this lass of models, the relevant formulas are displayed in

appendix F. The normalizations of untwisted and twisted rossap and bound-

ary states are �xed by worldsheet duality. In this lass of models, there is no

further onstraint on the latties from the tree hannel piture. The onstraints

on N

i

a

arise from the ation of the orbifold group on the Chan-Paton matries of

the open strings and an only be derived by starting from the 1-loop amplitudes.

Klein bottle

The losed string 1-loop ontributions to the RR exhange in the tree hannel

are again obtained by omputing the NSNS parts with (�1)

F

insertion where the

GSO projetion (1.35) in this lass of models is determined by (1.38) and (1.39).

The lattie ontributions L

1

on T

1

where the reetion R

1

ats are as disussed

in hapter 2 and [24, 48℄. In addition, in the untwisted setor Kaluza-Klein

momenta arise along all diretions of the orbifold whereas windings are projeted

out by worldsheet parity. The expliit formulas for the lattie ontributions of

the orbifold to the amplitudes are listed in appendix E.1. 
R

1

exhanges �

and �

�1

twisted setors. Hene, in the 1-loop hannel, only untwisted setors
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ontribute. The alulation of the ontribution with 1I insertion goes ompletely

along the lines disussed in hapter 2 and [24, 48℄ yielding

K

U

=



3

Z

1

0

dt

t

3

L

K

1

L

K

2

L

K

3

K

(0)

; (3.7)

where  is the onstant fator mentioned in setion 2.1.1. L

K

2

L

K

3

is as given

in (E.4). Performing the modular transformation t = 1=(4l) gives the ontribu-

tion from the untwisted RR �elds,

~

K

U

=



3

Z

1

0

dl

256

3

R

1

R

2

!

~

L

K

1

~

L

K

2

~

L

K

3

~

K

(0)

; (3.8)

where R

1;2

are the two radii of the �rst two-torus T

1

and ! is the dimensionless

volume of the orbifold T

4

=Z

3

.

In addition, �

1;2

insertions reate tadpoles whih are independent of the

internal volume of the orbifold,

K

T

=



3

Z

1

0

dt

t

3

L

K

1

2

X

k=1

K

(k)

: (3.9)

The expliit expression of K

(k)

in terms of generalized Jaobi-Theta funtions is

given in formula (E.7). The lattie ontributions L

K

1

are the same as in formula

(3.7), whereas the Kaluza-Klein momenta on T

2;3

are not invariant under �.

Transforming to the tree hannel, the twisted Klein bottle is given by

~

K

T

= �16



3

Z

1

0

dl

R

1

R

2

~

L

K

1

2

X

k=1

~

K

(k)

; (3.10)

where the ontribution of the twisted osillators

~

K

(k)

is listed in (E.10).

Annulus

The annulus amplitude is obtained from open strings strething between branes

D8

a

and D8

b

at angle ��'

ab

on T

1

. The ontributions from T

1

have been dis-

ussed in detail in hapter 2 and [24, 48℄. The omputation of the trae with

trivial insertion is again ompletely analogous to the one performed there yield-

ing the untwisted RR tadpole of the annulus in the tree hannel

~

A

U

ab

= �N

a

N

b

I

ab



3

Z

1

0

dl

1

6

!

~

A

(0)

~

L

A

2

~

L

A

3

: (3.11)

N

a

labels the number of D8

a

-branes of idential position, I

ab

is the intersetion

number on T

1

de�ned in (2.16),

~

L

A

2

~

L

A

3

is given in (E.5) and the osillator ontri-

bution is given by (2.18). The expliit dependene of the annulus tadpole on the
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orbifold volume ! is due to the fat that D8

a

-branes have Neumann diretions

along all four orbifold diretions X

6:::9

leading to Kaluza-Klein momenta P

6:::9

in the loop hannel.

In addition to the trivial insertion, eah �

k

insertion preserves the positions

of D8-branes. Kaluza-Klein momenta are projeted out, and the Z

3

rotation ats

non-trivially on the Chan-Paton labels of open strings with endpoints on branes

D8

a

, D8

b

via the matries 

a

�

k

; 

b

�

k

leading to

A

T

ab

=

I

ab

4



3

Z

1

0

dt

t

3

2

X

k=1

tr

a

k

tr

�1;b

k

A

(k)

; (3.12)

with A

(k)

expliitly listed in (E.8). By modular transformation t = 1=(2l), one

arrives at the twisted RR tadpole ontributions of the annulus,

~

A

T

ab

= �I

ab



3

Z

1

0

dl

1

2

2

X

k=1

tr

a

k

tr

�1;b

k

~

A

(k)

; (3.13)

with

~

A

(k)

given by (E.11). Thus, the asymptoti behavior of the annulus ampli-

tudes is given by

~

A

U

ab

l!1

�! N

a

N

b

4

3

!



3

Z

1

0

dl

�

n

a

n

b

R

1

R

2

+ (m

a

+ bn

a

)(m

b

+ bn

b

)

R

2

R

1

�

; (3.14)

~

A

T

ab

l!1

�! �



3

Z

1

0

dl

2

X

k=1

tr

a

k

tr

�1;b

k

�

n

a

n

b

R

1

R

2

+ (m

a

+ bn

a

)(m

b

+ bn

b

)

R

2

R

1

�

:

(3.15)

The amplitudes

~

A

aa

from D8

a

-D8

a

strings develop the same asymptotis.

M�obius strip

The omputation of the untwisted RR exhange in the tree hannel arising from

the M�obius strip amplitude is again very similar to the ase disussed in hap-

ter 2 and [24, 48℄. Only strings strething between mirror branes D8

a

and D8

a

0

ontribute. Their multipliity is determined by the number of 
R

1

invariant

intersetions I


R

1

a

0

a

whih is idential to (2.21). The Neumann diretions on T

2;3

lead to lattie ontributions from Kaluza-Klein momenta displayed in (E.6).

Therefore, also the untwisted RR exhange from the M�obius strip is linearly

proportional to the orbifold volume !.

The omputation of the twisted RR tadpoles in the M�obius strip is also om-

pletely analogous to the annulus ase. The Z

3

rotation ats non-trivially on the

Chan-Paton matrix of the D8

a

-D8

a

0

strings, lattie ontributions are projeted

out and the osillator ontributions in the tree hannel are listed in (E.12). The



60 3. RR tadpole anellation

orresponding loop hannel osillator ontributions are given in (E.9). In sum-

mary, we obtain the asymptoti behavior

M

U

a

l!1

�! �



3

Z

1

0

dl

256

3

R

1

R

2

!n

a

tr

�



�1;a

0


R

1



T;a


R

1

�

; (3.16)

M

T

a

l!1

�!



3

Z

1

0

dl16n

a

R

1

R

2

2

X

k=1

tr

�



�1;a

0


R

1

k



T;a


R

1

k

�

: (3.17)

The traes in (3.17) an be transformed due to the requirement that the 

matries form a projetive representation of the orientifold group as explained

in setion 1.5.2, i.e.



a

k+l

= 

�1

k+l



�T;a

0


R

1

l



a


R

1

k

with some phases 

k+l

.

RR tadpole anellation

The RR tadpole anellation onditions an be extrated from the asymptoti

behavior of the Klein bottle (3.8) and (3.10), the annulus (3.14) and (3.15) and

the M�obius strip (3.16) and (3.17) after summing over all possible open string

on�gurations.

The untwisted tadpole anellation onditions are

"

X

a

n

a

N

a

� 16

#

2

= 0; (3.19)

tr

�



�1;a

0


R

1



T;a


R

1

�

= N

a

: (3.20)

The twisted tadpole anellation onditions split into the projetion onto the X

4

axis proportional to R

1

=R

2

and onto the X

5

diretion proportional to R

2

=R

1

,

R

2

R

1

:

2

X

k=1

�

�

�

X

a

(m

a

+ bn

a

)

�

tr

a

k

� tr

a

0

k

�

�

�

�

2

= 0; (3.21)

R

1

R

2

:

2

X

k=1

�

8

2

+

�

�

�

X

a

n

a

�

tr

a

k

+ tr

a

0

k

�

�

�

�

2

� 2 � 8 �

X

a

n

a

�



2k

tr

a

2k

+ ~

2k

tr

a

0

2k

��

= 0: (3.22)

Condition (3.21) is trivially ful�lled if for mirror branes D8

a

and D8

a

0

the equa-

tion tr

a

k

= tr

a

0

k

holds. Furthermore, equation (3.22) gives a total square for

eah twist setor k provided that 

2k

= ~

2k

= 1 and tr

2k

2 R. These onditions

�x the form of 

a

�

,



a

�

= diag

�

1I

N

0

a

; e

2�i=3

N

1

a

; e

�2�i=3

N

2

a

�

; (3.23)
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with N

a

= N

0

a

+N

1

a

+N

2

a

and N

1

a

= N

2

a

.

Inserting (3.23) in (3.19) and (3.22) determines the RR tadpole anellation

onditions entirely in terms of the wrapping numbers n

a

orresponding to the

projetion of the 1-yles onto the X

4

axis and the number of idential branes

N

i

a

,

X

a

n

a

N

0

a

= 8; (3.24)

X

a

n

a

N

1

a

= 4: (3.25)

So far, we have only onsidered D8

a

-branes whih are mapped to their mirror

image D8

a

0

under the reetion R

1

. A D8



-brane whih is its own mirror image

ontributes only half the amount to the tadpole anellation onditions, i.e.

n



N

0



2

+

X

a6=

n

a

N

0

a

= 8; (3.26)

n



N

1



2

+

X

a6=

n

a

N

1

a

= 4: (3.27)

The wrapping numbers of the 
R

1

invariant D8



-brane are (n



; m



) = (1; 0) for

vanishing bakground antisymmetri NSNS tensor �eld b and (n



; m



) = (2;�1)

for b = 1=2 as in hapter 2. In the limit R

1

;

1

R

2

!1 where the T-dual two torus

T

1

deompati�es, the supersymmetri six dimensional set-up is reovered whih

for vanishing antisymmetri NSNS tensor, i.e. a single stak of D8



-branes with

(n



; m



) = (1; 0) and b = 0, is idential to the Z

3

orientifold in [53℄.

3.1.2 Chiral open spetrum

The omputation of the losed string spetrum is analogous to the one pre-

sented in setion 2.2.1 when taking into aount the altered orientifold ation

given by (A.10) on the osillators. 
R

1

invariant RR setor states are of the

form js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

� j~s

0

;�~s

1

; ~s

2

; ~s

3

i

L

js

0

;�s

1

; s

2

; s

3

i

R

. The main

di�erene in the omputation of the twisted setor ontributions as ompared to

the D6-brane models in setion 2.2.1 arises from the fat that 
R

1

exhanges

the � and �

2

twisted setors.

The losed string spetrum ontains the N = 2 supergravity multiplet as

well as eleven hypermultiplets and ten tensor multiplets. The omplete losed

string setor is N = 2 supersymmetri and non-hiral.

In order to determine the open string spetrum, we �x the Chan-Paton ma-
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tries



a


R

1

= 

a

0


R

1

=

0

B

B

B

�

1I

N

0

a

0 0

0 0 1I

N

1

a

0 1I

N

1

a

0

1

C

C

C

A

;



a

�

= 

a

0

�

= diag

�

1I

N

0

a

; e

2�i=3

N

1

a

; e

�2�i=3

N

1

a

�

in analogy to the supersymmetri ase disussed in [53℄. Open strings strething

between D8

a

-branes of idential position then support the gauge groups

U(N

0

a

)�

�

U(N

1

a

)

�

2

:

In the ase of an 
R

1

invariant stak of D8



-branes, the gauge group is redued

to

SO(N

0



)� U(N

1



):

The D8

a

-D8

a

and D8



-D8



setors of open strings are again N = 2 supersym-

metri and non-hiral.

Finally, the setors of strings strething between D8

a

and D8

b

-branes at an-

gles ��'

ab

are non-supersymmetri and hiral. This part of the spetrum gener-

ially ontains tahyons sine the mass formula (1.40) applied to open strings

for this lass of models gives the following masses of states in the NS setor,

�

0

4

m

2

ab

= N

os

+

�'

ab

2

�

1

2

;

where N

os

an be read o� from (2.29) by setting k=M � 0. Thus, the state

 

1

�'�1=2

j0i

NSNS

is tahyoni. A omplete list of lightest NS states is given in

table G.1. In ontrast to the models with D6-branes disussed in hapter 2,

mass eigenstates in the models with D8-branes have to be lassi�ed aording to

their Z

3

eigenvalues. Tahyoni states only our in the setors with eigenvalue

1. In priniple, this introdues the possibility of hoosing the brane set-up,

i.e. the numbers N

i

a

, suh that no hiral setor with trivial eigenvalue ours.

However, the tadpole anellation onditions (3.26), (3.27) onstrain the models

severely. Furthermore, in ontrast to the type IIB models examined in [1, 2, 9℄

the orientifold projetion 
R

1

enfores the existene of mirror branes. D8

a

-D8

a

0

strings automatially inlude a setor ontaining tahyons whih an be only

projeted out ompletely by the 
R

1

symmetry in ase of a single U(1)

a

gauge

fator and the wrapping number n

a

= 1.

The R setor of D8-branes at angles provides hiral fermions. The ground-

state is fourfold degenerated as displayed in the table D.1. The degeneray is

lifted by the Z

3

symmetry. In summary, the hiral spetrum is listed in table 3.1.

For an 
R

1

invariant D8



-brane, the spetrum is slightly hanged as displayed
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in table 3.2. As for D6-brane models, the setor D8

a

0

-D8

b

0

generially provides

the anti-partiles of the D8

a

-D8

b

setor, and the setor D8

a

-D8

b

0

is paired with

D8

a

0

-D8

b

. For  = 

0

, only the setors D8



-D8

b

and D8



-D8

b

0

are present and

form a pair. RR tadpole anellation ensures that the hiral spetrum is free of

purely non-Abelian gauge anomalies as an be expliitly heked using (2.39).

Mixed U(1) anomalies will have to be ured by a generalized Green-Shwarz

mehanism involving twisted RR �elds from the losed string setor [43, 1, 81℄.

The hiral D8

a

-D8

a

0

, D8

a

-D8

b

and D8

a

-D8

b

0

setors with Z

3

eigenvalue 1 are

aompanied by a tahyoni salar pseudo-superpartner. As already mentioned

in the previous paragraph, the D8

a

-D8

a

0

setor is only absent provided that

n

a

= 1 and N

0

a

= 1; N

1

a

= N

2

a

= 0, i.e. the D8

a

-brane aommodates a single

U(1)

a

gauge fator.

Massless hiral fermioni spetrum on T

2

� T

4

=Z

3

with D8-branes

setor Z

3

multipliity rep.

aa

0

1 2(2m

a

+ (2b)n

a

) (A

0

a

; 1; 1) + (1;F

1

a

;F

2

a

)

(n

a

� 1)(2m

a

+ (2b)n

a

) (A

0

a

+ S

0

a

; 1; 1) + 2(1;F

1

a

;F

2

a

)

� (2m

a

+ (2b)n

a

) (

�

F

0

a

; 1;

�

F
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a
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n
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F
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�

F
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a

) + (1;A
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a
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�
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a

) (
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F

0

a

;

�

F

1

a

; 1) + (1; 1;A

2

a

)

n

a

�1

2

(2m
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+ (2b)n

a

) 2(

�

F

0

a

;

�

F

1

a

; 1) + (1; 1;A

2

a

+ S

2

a

)

ab 1 2(n

a

m

b

� n

b

m

a

) (

�

F

0

a

;F

0

b

) + (

�

F

1

a

;F

1

b

) + (

�

F

2

a

;F

2

b

)

� (n

a

m

b

� n

b

m

a

) (F

0

a

;

�

F

1

b

) + (F

1

a

;

�

F

2

b

) + (F

2

a

;

�

F
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b

)

�

2
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a

m

b
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b

m

a

) (F
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a

;

�

F
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b

) + (F

1

a

;

�

F

0

b

) + (F
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a

;

�

F
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b

)

ab
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1 2(n

a

m

b

+ n

b
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+ (2b)n
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n

b

) (F
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;F

0

b

) + (F

1

a

;F
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) + (F
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a

;F

1

b

)

� (n

a

m
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+ n

b
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�
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;

�

F
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) + (

�
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;

�

F

1

b

) + (

�

F

2

a

;

�

F

0

b

)

�

2

(n

a

m

b

+ n

b

m

a

+ (2b)n

a

n

b

) (

�

F

0

a

;

�

F

1

b

) + (

�

F

1

a

;

�

F

0

b

) + (

�

F

2

a

;

�

F

2

b

)

Table 3.1: Chiral spetrum from interseting D8-branes. The setors are lassi-

�ed by the Z

3

eigenvalue of the orresponding R groundstate.

3.2 Canellation of mixed anomalies

The generi hiral open spetrum displayed in table 3.1 and 3.2 is free of purely

non-Abelian gauge anomalies, but yields mixed gravitational anomalies of the
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Chiral fermions for an 
R

1

invariant stak of D8



-branes

setor Z

3

multipliity rep.

b 1 2n



(m

b

+ bn

b

) (

�

F

0



;F

0

b

) + (

�

F

1



;F

1

b

) + (F

1



;F

2

b

)

� n



(m

b

+ bn

b

) (F

0



;

�

F

1

b

) + (F

1



;

�

F

2

b

) + (

�

F

1



;

�

F

0

b

)

�

2

n



(m

b

+ bn

b

) (F

0



;

�

F

2

b

) + (F

1



;

�

F

0

b

) + (

�

F

1



;

�

F

1

b

)

Table 3.2: Modi�ation of the hiral spetrum from interseting D8-branes in-

volving an 
R

1

invariant stak of D8



-branes.

form

U(1)

i;a

� g

��

: 6 (2Æ

i;0

� Æ

i;1

� Æ

i;2

) (m

a

+ bn

a

)N

i

a

(3.31)

as well as mixed gauge anomalies whih for (i; a) 6= (j; b) are proportional to

U(1)

i;a

� SU(N

j

b

)

2

:

n

(m

a

+ bn

a

)n

b

(2Æ

i;0

� Æ

i;1

� Æ

i;2

) (2Æ

j;0

� Æ

j;1

� Æ

j;2

) (3.32)

�3n

a

(m

b

+ bn

b

) (Æ

i;1

� Æ

i;2

) (Æ

j;1

� Æ

j;2

)

o

N

i

a

C

2

(F

j

b

);

where C

2

(F) =

N

2

�1

2N

is the quadrati Casimir of the fundamental representation

of SU(N).

Consisteny of the models requires anomalous gauge �elds to aquire a mass

and thus deouple from the e�etive low energy �eld theory. This is realized

by the Green-Shwarz mehanism whih in models with K3 orbifold ompati�-

ations involves twisted setor �elds [43℄. The potential andidates are the RR

salars

6

C

(0)

k

and two-forms

6

C

(2)

k

in six dimensions whih belong to the twisted

hyper- and tensormultiplets, respetively. They arise from the Kaluza-Klein re-

dution of the ten-dimensional two form

10

C

(2)

and self-dual four form

10

C

(4)

on

a vanishing supersymmetri two-yle �

k

on the orbifold,

6

C

(2)

k

=

Z

�

k

10

C

(4)

;

6

C

(0)

k

=

Z

�

k

10

C

(2)

: (3.33)

The salar has a dual four form in six dimensions,

6

C

(4)

k

=

Z

�

k

10

C

(6)

:

Moding out the worldsheet parity amounts to mapping di�erent yles �

k

onto

eah other suh that for the T

4

=Z

3

limit, k runs over nine distint values.
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(m

a

+ bn

a

)C

(2)

k

$ n

b

B

(0)

k

U(1)

i;a

SU(N

j

b

)

SU(N

j

b

)

Figure 3.1: Green-Shwarz ounter terms.

Reduing further down to four dimensions, the pullbak of a losed RR setor

k-form on a multiply wrapped brane gives a (k � 2)-form times the wrapping

number along the 
R

1

invariant diretion [1℄ of the T-dual piture,

n

b

B

(0)

k

=

Z

T

1

(D9

b

)

6

C

(2)

k

; n

b

B

(2)

k

=

Z

T

1

(D9

b

)

6

C

(4)

k

;

while integrating out the two form (F

a

)

45

= (F

a

+B)

45

=

(m

a

+bn

a

)�

0

n

a

R

1

R

2

on the torus

yields as prefator m

a

+ bn

a

. The resulting four dimensional ouplings are of the

form

(m

a

+ bn

a

)

Z

R

1;3

tr (

a

k

�

a

i

)C

(2)

k

^ F

a;i

; n

b

Z

R

1;3

tr

�



b

k

�

b

i

�

b

j

�

B

(0)

k

F

b;i

^ F

b;j

;(3.36)

n

a

Z

R

1;3

tr (

a

k

�

a

i

)B

(2)

k

^ F

a;i

; (m

b

+ bn

b

)

Z

R

1;3

tr

�



b

k

�

b

i

�

b

j

�

C

(0)

k

F

b;i

^ F

b;j

;

where �

a

i

is the Chan-Paton fator belonging to the gauge-�eld omponent F

a;i

.

The expressions on the left hand side in (3.36) render the anomalous gauge

�elds massive. Like for the D6-brane models in setion 2.2.2, also anomaly free

U(1) fators might aquire a mass due to the linear ouplings.

Combining the two ouplings (3.36) of the salars B

(0)

k

and their dual two

forms C

(2)

k

, we obtain the Green-Shwarz diagram depited in �gure 3.1, similarly

for the dual pairs C

(0)

k

and B

(2)

k

. These diagrams have the orret form to anel

the mixed gauge anomalies (3.32). Similar diagrams exist whih anel the mixed

gravitational anomalies (3.31).

3.3 NSNS tadpoles

Apart from the RR tadpoles onsidered in setion 3.1.1, non-supersymmetri

theories generially produe also NSNS tadpoles. In this setion, we will follow
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the disussion of [27℄ in omputing the NSNS tadpoles and deriving the e�etive

salar potential for the losed string moduli. The analysis will be performed at

next to leading order in string perturbation theory, i.e. at open string tree level

e

��

s

where �

s

is the dilaton of type I superstring theory in ten dimensions.

The massless NSNS setor �elds of our model are the four-dimensional dilaton

as well as the internal metri and NSNS two form ux moduli. In our fatorized

ansatz on T

2

� T

4

=Z

3

, the moduli of T

1

are the two radions R

1

and R

2

. The

two form ux b an only take disrete values. In addition, K3 has 80 moduli. In

the orbifold limit T

4

=Z

3

, these moduli are provided by eleven hyper- and nine

tensormultiplets where eah of the nine orbifold �xed points ontributes one

hyper- and one tensormultiplet. The remaining two hypermultiplets originate

from the untwisted losed string setor [53℄. The twisted NSNS moduli at eah

�xed point group into a triplet state �

i

k

(i = +;�; 3, k = 1 : : : 9) under the

R-symmetry of T

4

assoiated to the omplex struture and K�ahler deformations

of the manifold and a singlet state b

(0)

k

whih originates from the Kaluza-Klein

redution of the ten dimensional 
 odd form B

(2)

on �

k

. These states are listed

in table 3.3.

Twisted NSNS states on T

4

=Z

3

state represented by

b

(0)

k

 

2

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

+  

2

�1=6

~

 

2

�1=6

j0i

(�

2

)

NSNS

+ 

3

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

+  

3

�1=6

~

 

3

�1=6

j0i

(�

2

)

NSNS

�

3

k

 

2

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

+  

2

�1=6

~

 

2

�1=6

j0i

(�

2

)

NSNS

� 

3

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

�  

3

�1=6

~

 

3

�1=6

j0i

(�

2

)

NSNS

�

+

k

 

2

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

+  

3

�1=6

~

 

2

�1=6

j0i

(�

2

)

NSNS

�

�

k

 

3

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

+  

2

�1=6

~

 

3

�1=6

j0i

(�

2

)

NSNS

Table 3.3: Massless twisted NSNS states of the (T

2

� T

4

=Z

3

)=
R

1

orientifold.

The relation of the representations to the K3 moduli is explained in the text.

The NSNS triplet and the RR salar of (3.33) provide the bosoni degrees

of freedom of a hypermultiplet, and the NSNS salar together with the RR two

form of (3.33) belong to a tensormultiplet at eah orbifold �xed point [43℄ | for

a luid desription see also [10℄.

The omputation of NSNS tadpoles is ompletely analogous to the one of the

RR tadpoles: they are extrated from the infrared divergenes in the tree han-

nel Klein bottle, annulus and M�obius strip amplitude. These three ontributions



3. NSNS tadpoles 67

lead to a sum of perfet squares whih an be identi�ed with the dis tadpoles

of the various NSNS moduli of the theory. The NSNS amplitudes an be de-

rived diretly from the tree hannel using the boundary states and rossaps of

appendix F. The normalizations of NSNS states are determined by the fat that

for unbroken supersymmetry the NSNS tree hannel amplitude of eah diagram

anels the orresponding RR amplitude. The Klein bottle diagram does not feel

the supersymmetry breaking. For the other two diagrams, the osillator ontri-

butions (E.11), (E.12) involving D8-branes at generi angles an be generalized

to

~

A

(k)

ab

! (�1)

2(�+�)

#

h

�

�

i

�

3

#

h

�

�'+�

i

#

h

1

2

1

2

+�'

i

Y

i=2;3

#

h

��kv

i

�

i

#

h

1

2

�kv

i

1

2

i

(2l); (3.37)

~

M

(k)

a

! (�1)

2(�+�)

#

h

�

�

i

�

3

#

h

�

'+�

i

#

h

1

2

1

2

+'

i

Y

i=2;3

#

h

�+2kv

i

�+kv

i

i

#

h

1

2

+2kv

i

1

2

+kv

i

i

(2l +

i

2

): (3.38)

These are the analogous formulas to those whih are valid for D6-branes in

toroidal ompati�ations derived in [22℄ (see also [80℄). In (3.37) and (3.38)

� = 0; 1=2 orresponds to the RR and NSNS setors, respetively, and � =

0; 1=2 arises from the overlap of states with the same or opposite spin strutures,

respetively. The lattie ontributions remain the same as for the RR amplitudes

in setion 3.1.1. Eah NSNS amplitude has two ontributions from the di�erent

hoies of the relative signs of the spin strutures in the overlapping boundary

states and rossaps. The tadpoles are again read o� by summing over all D8-

brane on�gurations and taking the limit l!1.

In the 
R

1

orientifold model on T

2

� T

4

=Z

3

, three di�erent ontributions to

the tadpoles arise at next to leading order. Two of them, the dilaton tadpole

and the tadpole of the omplex struture on T

1

, originate from the untwisted

part of the amplitudes. These ontributions have the interpretation given in [27℄

whih we will briey repeat here. Additionally, a third tadpole is generated by

the twisted moduli orresponding to the �xed points of T

4

=Z

3

.

In detail, the dilaton tadpole of the annulus amplitude arises from a single

dilaton vertex operator insertion on the disk. As observed in [95, 39, 96℄, this

tadpole an be obtained from omputing the losed string exhange between

two D-branes at tree level. The oupling of the gravitational modes to a D-

brane is proportional to its e�etive four dimensional tension whih in turn is
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proportional to the volume of the D-brane on the ompat spae.

The dilaton tadpole of the orientifold theory with D8-branes is therefore

obtained by evaluating all tadpole ontributions and identifying the expression

whih is proportional to the net tension of the D8-brane on�guration | or more

preisely to the sum of all D8-brane tensions minus that of the O8-plane | with

the dilaton exhange. The remaining untwisted tadpoles belong to the untwisted

NSNS moduli of the theory, and the twisted ones arise from the twisted K3

moduli. The omparison with the �eld theory omputation is presented further

below in this setion.

In agreement with the general expetation and the expressions in [27℄ valid

for interseting D6-branes, one �nds for D8-branes at angles the dilaton tadpole

h�

s

i

D

=

1

p

Vol(T

6

)

 

K

X

a=1

N

a

Vol(D8

a

)� 16Vol(O8)

!

; (3.39)

with

Vol(D8

a

) = !L

a

= !

p

(n

a

R

1

)

2

+ ((m

a

+ bn

a

)R

2

)

2

;

Vol(O8) = !R

1

;

and the tadpole for the imaginary part of the omplex struture U de�ned

in (1.19) on T

1

is given by

hui

D

=

1

p

Vol(T

6

)

 

K

X

a=1

N

a

(n

a

R

1

)

2

� ((m

a

+ bn

a

)R

2

)

2

L

a

� 16Vol(O8)

!

: (3.40)

In ontrast to the type IIB models onstruted in [1, 2℄, the real part of the om-

plex struture in the T-dual piture with bakground �elds, i.e. the antisymmet-

ri NSNS two form, is not a modulus of the orientifold theory, and therefore we

only obtain a tadpole for the imaginary part. De�ning u =

p

jU

2

j =

p

R

1

=R

2

,

the dilaton and the omplex struture tadpole an be ast into the form

h�

s

i

D

=

p

!

 

K

X

a=1

N

a

L

a

� 16u

!

; (3.41)

hui

D

= u

�

�u

 

p

!

 

K

X

a=1

N

a

L

a

� 16u

!!

; (3.42)

with

L

a

(U) =

r

(n

a

u)

2

+ ((m

a

+ U

1

n

a

)

1

u

)

2

:

The formulas (3.41) and (3.42) reet the fat that, regarding T

1

where the

reetion R

1

ats, only the left-right symmetri states on T

1

of the losed string
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Hilbert spae, in this ase the omplex struture modulus, ouple to the rossaps

and boundary states whereas the left-right antisymmetri ones, here the K�ahler

modulus, do not. In addition, we expet to �nd ouplings to some moduli '

k

of

K3.

Comparing with the boundary (F.8) and rossap (F.7) states whih in par-

tiular ontain a term of the form

j';�

2

; �i

NSNS

� exp

n

�i�

�

 

2

�1=6

~

 

2

�1=6

+  

3

�1=6

~

 

3

�1=6

�o

j0i

NSNS

;

one may speulate that these moduli arise from the singlet states b

(0)

k

of table 3.3.

However, sine neither the relative normalization of the twisted amplitudes as

ompared to the untwisted ones nor the expliit �eld theory desription of the

K3 part is known, we prefer to stik to the symboli notation '

k

for the relevant

twisted NSNS moduli.

Indeed, a third tadpole arises from the twisted setor whih an be ast into

the form

h'

k

i

D

=

 

X

a

tr(

a

)L

a

� 4u

!

:

From

h�

s

i

D

�

�V

��

s

; hui

D

�

�V

�u

; h'

k

i

D

�

�V

�'

k

;

we an derive an ansatz for the salar potential in the string frame of the form

V (�

s

; U; '

k

) = e

��

s

 

K

X

a=1

N

a

L

a

� 16u+ '

k

 

K

X

a=1

tr(

a

)L

a

� 4u

!!

: (3.47)

This potential is omputed only to non-trivial leading order in string theory

even though higher powers of the omplex struture modulus our. The ansatz

(3.47) for the salar potential an be ompared with the �eld theory expeta-

tion obtained from the Dira-Born-Infeld ation of a D9

a

-brane with onstant

magneti and eletri bakground ux in the T-dual piture in the limit '

k

! 0,

S

D9

a

= �T

9

Z

D9

a

d

10

xe

��

s

p

�det (G+ F

a

); (3.48)

with the D9-brane tension T

9

= (2�)

�9

�

0�5

and the onstant values on T

1

G = 1I

2

; (F

a

)

45

= (B + F

a

)

45

=

(m

a

+ bn

a

)

n

a

�

0

R

1

R

2

:

In addition, to lowest order in the K3 moduli the relation

detG(K3) = vol(K3) = !
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3

and four generations

is valid. The dependene on the twisted setor modes '

k

in the orbifold limit

T

4

=Z

3

seems to be muh more ompliated and will not be further pursued here.

The salar potential (3.47) omputed from string theory is unstable to lowest

order. This means that the minimum of the theory is not hosen in an appropri-

ate way and hints to an instability of the D8-brane on�guration. In the T-dual

theory, the tilting of D8-branes towards the X

4

axis orresponds to the dynami-

al deompati�ation to the six dimensional supersymmetri theory. A further

indiation of the instability arises from the fat that it seems to be impossi-

ble within the framework of interseting D8-branes to obtain a onsistent hiral

theory whih does not ontain any tahyon at all as mentioned in setion 3.1.2.

The problem of stability in the ontext of tahyons in a purely toroidal om-

pati�ation has also been addressed in [100℄. The moduli in toroidal D6-brane

models with non-trivial intersetion angles on all three tori an be hosen suh

that no tahyoni states are present. But even in this ase, NSNS tadpoles signal

an instability towards the deay to the supersymmetri vauum [27℄.

3.4 Examples

In this setion, we disuss four models in view of their phenomenologial rele-

vane. The tadpole anellation onditions (3.26), (3.27) severely restrit the

possible hoies of gauge groups. For example, the GUT gauge group SU(5)

an only be obtained from N

0

a

= 5 if we restrit our attention to D8-branes

(i.e. we do not want to inlude anti-D8-branes), and we would have to introdue

at least two more staks of D8-branes leading to exoti matter. Furthermore,

the generi spetrum in table 3.1 shows that only an even number of antisym-

metri representations of SU(N

0

a

= 5) an be engineered. Therefore, we will

not further pursue GUT models, but show two models whih inlude the gauge

group SU(3)�SU(2)�U(1)

Y

and two left-right symmetri models whih ontain

SU(3)�SU(2)

L

� SU(2)

R

�U(1)

B�L

. In order to obtain a phenomenologially

appealing spetrum, we also inlude parallely displaed D6-branes and anti-D6-

branes. In all four models we hoose the non-trivial bakground b = 1=2 as only

in this ase an odd number of generations is ahievable.

3.4.1 Example 1a: SU(3)� SU(2)� U(1)

3

and four gener-

ations

In the �rst example, we hoose three di�erent staks of D8-branes,

N

1

A

= 3; (n

A

; m

A

) = (2;�1);

N

0

B

= 2; (n

B

; m

B

) = (4;�1); (3.51)

N

1

C

= 1; (n

C

; m

C

) = (1; 0):



3. Example 1a: SU(3)� SU(2)� U(1)
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and four generations 71

x

4

U(1)� U(1)

SU(2)

SU(3)

x

5

Figure 3.2: Example 1a: D8-brane on�guration on T

1

. The shaded area em-

phasizes the fundamental ell of the torus. Solid lines denote D8-branes, dotted

lines denote their mirror images.

The D8-brane on�guration on T

1

is depited in �gure 3.2. The stak of D8-

branes of type A is 
R

1

invariant. Thus, the modi�ed tadpole anellation

onditions (3.26), (3.27) hold and the spetrum an be read o� from tables 3.1

and 3.2. In this attempt, we only inlude D8-branes and require that quarks have

no tahyoni pseudo-superpartners. In addition, we want to avoid exoti matter

whih would arise from additional staks of D8-branes with non-Abelian gauge

groups. This �xes the numbersN

1

A

andN

0

B

as well as the orresponding wrapping

numbers n

A

; n

B

along the R

1

invariant diretion. It also �xes the number of

quark generations to be even. The spetrum obtained from the setting (3.51) is

displayed in table 3.4 where we have also listed the original (Q

i

a

) and anomaly-free

(Q

Y

;

~

Q) U(1) harges. The fator U(1)

1;A

whih arises from the 
R

1

invariant

stak of D8-branes is anomaly-free by itself. In addition, there are two more

anomaly-free linear ombinations,

Q

Y

=

Q

1

A

3

+Q

1

C

�Q

2

C

; (3.52)

~

Q =

Q

0

B

4

+Q

1

C

+Q

2

C

;

where Q

Y

an be interpreted as hyperharge for the left- and right-handed quarks

and leptons. The remaining anomalous U(1) fator aquires a mass by the

generalized Green-Shwarz mehanism as desribed in setion 3.2 and deouples

from the e�etive theory. In the AC�

0

, BB

0

�

0

and CC

0

�

0

setors, tahyoni

pseudo-superpartners our, whereas all other setors have either massless or

massive salar partners transforming in the same representation.
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2

and four generations

Chiral fermioni spetrum for example 1a

mult. rep. of SU(3)� SU(2) Q

1

C

Q

2

C

Q

0

B

Q

1

A

Q

Y

~

Q

AB�

1

2 (3; 2) 0 0 �1 �1 �1=3 �1=4

�

2

2 (3; 2) 0 0 �1 1 1=3 �1=4

AC�

0

2 (3; 1) 1 0 0 �1 2=3 1

2 (3; 1) 0 1 0 1 �2=3 1

�

1

1 (3; 1) 0 �1 0 1 4=3 �1

�

2

1 (3; 1) �1 0 0 �1 �4=3 �1

BC�

1

1 (1; 2) �1 0 1 0 �1 �3=4

�

2

1 (1; 2) 0 �1 1 0 1 �3=4

BC

0

�

1

3 (1; 2) �1 0 �1 0 �1 �5=4

�

2

3 (1; 2) 0 �1 �1 0 1 �5=4

BB

0

�

0

4 (1; 1

a

) 0 0 2 0 0 1=2

6 (1; 1

a

) + (1; 3

s

) 0 0 2 0 0 1=2

CC

0

�

0

2 (1; 1) 1 1 0 0 0 2

Table 3.4: Chiral fermioni spetrum from interseting D8-branes, example 1a.

3.4.2 Example 1b: SU(3)� SU(2)� U(1)

2

and four gener-

ations

The hiral fermion ontent of example 1a disussed in setion 3.4.1 ontains

a di�erent number of partiles and anti-partiles , namely four andidates for

quarks and six andidates for anti-quarks, and also a di�erent amount of quarks

and leptons. Bearing in mind the onsiderations made in engineering model 1a,

we modify the third type of D8-brane C suh that the amount of quarks and

leptons mathes. This an be ahieved by

N

1

A

= 3; (n

A

; m

A

) = (2;�1);

N

0

B

= 2; (n

B

; m

B

) = (4;�1); (3.53)

N

1

C

= 1; (n

C

; m

C

) = (2;�1);

if the staks C and A are parallely displaed. The separation of the D8-branes

serves to break SU(4) down to SU(3) � U(1). In the T-dual piture, distanes



3. Example 2a: SU(3)� SU(2)

L

� SU(2)

R

� SO(8)� U(1)

3

and three

generations 73

SU(3)
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Figure 3.3: Example 1b: D8-brane on�guration on T

1

.

translate into Wilson lines. The D8-brane on�guration is displayed in �gure 3.3.

As one an easily see from this �gure, loating the stak C at X

5

= R

2

=4 and

taking into aount lattie shifts gives again an 
R

1

invariant on�guration.

1

In this ase, we obtain four generations of quarks and leptons as well as several

exoti fermions. The omplete spetrum is listed in table 3.5. In this ase,

Q

0

B

beomes massive while Q

1

A

and Q

1

C

are anomaly-free by themselves. The

linear ombination Q

Y

=

Q

1

A

3

+ Q

1

C

an be interpreted as the standard model

hyperharge.

3.4.3 Example 2a: SU(3)�SU(2)

L

�SU(2)

R

�SO(8)�U(1)

3

and three generations

So far, we have only managed to engineer an even number of generations of the

standard model gauge group even though we have swithed on a non-trivial bak-

ground �eld b. The following examples are hosen to be left-right symmetri and

ontain three generations of left-handed quarks and leptons. We again hoose the

SU(3) fator to arise from the 
R

1

invariant position and the SU(2)

L

�SU(2)

R

fators to be supported by D8-branes at non-trivial angles. In order to ful�ll the

tadpole anellation onditions (3.26), (3.27), an additional gauge group SO(8)

as well as an anti-D8-brane have to be inluded. The D8-brane on�guration of

1

Loating a D8



-brane at X

5

= R

2

=4 is onvenient, but not neessary. For m



+ bn



= 0,

equation (3.21) does not give any onstraint on the  matries. The seond hoie on-

sistent with the losure of the orbifold group is 




R

1

= 



0


R

1

= 1I

N



and 



�

= 

�1;

0

�

=

diag

�

1I

N

0



; e

2�i=3

N

1



; e

�2�i=3

N

2



�

for  6= 

0

. In this ase, N

1



and N

2



an be hosen independently.
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Chiral fermioni spetrum for example 1b

mult. rep. of SU(3)� SU(2) Q

0

B

Q

1

A

Q

1

C

AB�

1

2 (3; 2) �1 �1 0

�

2

2 (3; 2) �1 1 0

BC�

1

2 (1; 2) �1 0 �1

�

2

2 (1; 2) �1 0 1

BB

0

�

0

10 (1; 1

a

) 2 0 0

6 (1; 3

s

) 2 0 0

Table 3.5: Chiral fermioni spetrum from interseting D8-branes, example 1b.

our �rst hoie

N

0

A

= 8

N

1

A

= 3

o

(n

A

; m

A

) = (2;�1);

N

1

B

= 2; (n

B

; m

B

) = (1; 0); (3.54)

N

1

C

= 1; (n

C

; m

C

) = (�1; 0);

with a parallel displaement of the D8-branes B and anti-D8-brane C is shown

in �gure 3.4. The omplete spetrum is listed in table G.2 in the appendix. It

ontains three generations of quarks and leptons as well as their anti-partiles.

In addition, it ontains exoti matter transforming in the fundamental repre-

sentation of SO(8), a (2; 2) of SU(2)

L

� SU(2)

R

whose tahyoni partner ould

be interpreted as a non-standard Higgs partile and several singlets of the non-

Abelian gauge groups. The anomaly-free U(1)s are given by

Q

B�L

= �

1

3

Q

1

A

+Q

1

C

�Q

2

C

;

Q

0

= �

2

3

Q

1

A

+Q

1

B

�Q

2

B

; (3.55)

Q

00

=

1

4

�

Q

1

B

+Q

2

B

+ 2Q

1

C

+ 2Q

2

C

�

;

where Q

B�L

an be interpreted as Baryon - Lepton number ourring in left-right

symmetri models.

There are two fats whih have to be taken are of when inluding anti-

D8-branes. On the one hand, the GSO projetion in the D8-brane - anti-D8-

brane setor is opposite to the usual one and results in seleting the reverse
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R

Figure 3.4: Example 2a: D8-brane on�guration on T

1

.

hirality. On the other hand, the 
R

1

projetion in the R setor of the CC

0

strings selets the symmetri instead of the antisymmetri representation. Due

to the displaement of the staks B and C, there will be no tahyons strethed

between parallel B-branes and anti-C-branes as long as the radii R

1

and R

2

are

hosen big enough.

In this example, tahyoni pseudo-superpartners  

1

�'�1=2

j0i

NSNS

our in the

AB�

0

, BB

0

�

0

and CC

0

�

0

setors. In the AC�

0

and BC

0

�

0

setors, the reversed

GSO projetion leaves the tahyoni groundstate j0i

NSNS

invariant.

3.4.4 Example 2b: SU(3)�SU(2)

L

�SU(2)

R

�SO(8)�U(1)

2

and three generations

As a last example, we start with the same SU(3)�SU(2)

L

�SU(2)

R

on�guration

as in example 2a, but hoose the anti-D8-brane C to be 
R

1

invariant and

parallely displaed relative to the SU(3) stak. The D8-brane positions resulting

from

N

0

A

= 8

N

1

A

= 3

o

(n

A

; m

A

) = (2;�1);

N

1

B

= 2; (n

B

; m

B

) = (1; 0); (3.56)

N

1

C

= 1; (n

C

; m

C

) = (�2; 1)

are displayed in �gure 3.5. The omplete hiral spetrum is listed in table G.3
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SU(3)� SO(8)

SU(2)

L

� SU(2)

R

U(1)

Figure 3.5: Example 2b: D8-brane on�guration on T

1

.

of appendix G.2, and the anomaly free U(1) fators are given by

Q

B�L

= �

1

3

Q

1

A

�Q

1

C

; (3.57)

Q

0

= Q

1

B

�Q

2

B

+ 2Q

1

C

:

In this ase, the spetrum ontains three generations of left- and right-handed

quarks and leptons beside some exoti matter. The GSO projetion is reversed

in the AC and BC setors, and tahyons with the same representation of the

gauge group as the fermions appear in the AB�

0

, BB

0

�

0

and BC�

0

setors.

3.5 Mass and gauge hierarhies

The D8-brane models disussed in this hapter have a dual desription in terms

of interseting D4-branes. Applying T-duality along all four diretions X

6;:::;9

of

the orbifold, the ation of the orientifold beomes 
R

1

I

4

where I

4

is the reetion

of all four T-dual oordinates I

4

: X

6;:::;9

! �X

6;:::;9

, and the orbifold volume is

transverse to all D4-branes. Within this framework, the hierarhy between the

eletro weak and the Plank sale an be explained by a large ompat transverse

volume [112, 87, 7, 6, 72℄.

The e�etive ten dimensional Lagrangian of the orientifold theory ontains

the relevant gravitational part [94℄

S

10

= �

1

2�

2

Z

d

10

x

p

�G

1

�

2

s

R

(10)

+ : : : ;

where �

2

=

1

2

(2�)

7

�

04

is the ten dimensional gravitational oupling onstant,

�

s

= e

�

s

ontains the dilaton �

s

of type I superstring theory and R

(10)

is the ten

dimensional urvature.
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The Dira-Born-Infeld ation of a Dp

a

-brane is given by [94℄

S

Dp

a

= �T

p

Z

Dp

a

d

p+1

x

1

�

s

p

�det (G+B + 2��

0

F

a

); (3.59)

where

T

p

= (2�)

�p

�

0�(p+1)=2

is the tension of a Dp-brane and a resaling F

a

! 2��

0

F

a

as ompared to (3.48)

has been performed in order to obtain the anonial normalization.

Upon dimensional redution to four dimensions, the e�etive Lagrangian be-

omes

S

4

= �

Z

d

4

x

p

�G

 

1

2�

2

V

6

�

2

s

R +

V

p�3

(2�)

p�2

p

�

p�3

4�

s

F

2

a

+ : : :

!

;

where V

6

is the omplete ompat volume and V

p�3

is the ompat (p � 3)

yle wrapped by the Dp-brane. Identifying the oeÆient of the urvature

with (16�G

N

)

�1

where G

N

is Newton's onstant and the oeÆient of the �eld

strength with (4g

2

a

)

�1

where g

a

is the four dimensional gauge oupling gives the

following results for D4-branes [2℄

1

p

G

N

=M

P

=

p

R

1

R

2

!

p

2�

3

�

s

�

0

; (3.62)

4�

2

g

2

a

=

M

s

�

s

L

a

; (3.63)

where R

1

R

2

is the volume of the two torus T

1

, ! is the dimensionless volume

of the four dimensional orbifold as given in appendix E.1, L

a

is the length (3.5)

of the 1-yle whih the D4

a

-brane wraps on T

1

, and M

s

= 1=

p

�

0

is the string

sale.

In order not to obtain too small gauge ouplings, the radii R

1

; R

2

may not

be hosen too large aording to equation (3.63). The string sale M

s

an,

however, be lowered down to about 1 � 10 TeV by taking the orbifold volume

V

orb

� !�

02

� O([10

9

(TeV)

�1

℄

4

).

One further feature of the piture with D-branes at angles is the fat that

Yukawa ouplings are exponentially suppressed in terms of the area A

ijk

whih

is bounded by the three types of D-branes involved [2℄,

Y

ijk

= exp (�A

ijk

) : (3.64)

The Higgs �eld H

i

and the two fermions F

j

R

; F

k

L

involved are loated at the three

di�erent verties whih the D-branes at angles generate.

As for the gauge ouplings, in order to avoid too small Yukawa ouplings,

the areas A

ijk

may not beome too large aording to formula (3.64).



78 3. Mass and gauge hierarhies

Applying the relationship (3.63) to the examples disussed in setion 3.4, we

obtain

�

QCD

�

2

= 2

r

1 +

1

16

1

u

4

for examples 1a and 1b;

�

QCD

�

2

=

1

2

r

1 +

1

4

1

u

4

for examples 2a and 2b;

where u =

p

R

1

=R

2

is as de�ned in setion 3.3. These values are only valid at

tree level at the string sale M

s

. In order to make ontat with the observed

data at the eletroweak sale, the running of ouplings as well as loop orretions

whih might be large would have to be taken into aount.

The qualitative behavior of Yukawa ouplings (3.64) an be niely read o�

from �gure 3.2 for example 1a. The sizes A

ijk

of the smallest triangular world-

sheets in units of

R

1

R

2

�

0

are

1

48

;

1

16

;

1

12

and

1

4

. There exist, however, also trilinear

ouplings whih arise from one single intersetion point. The reason for this is

that in example 1a, two quark generations Q

1;2

L

are realized as (3; 2) and the

other two Q

3;4

L

as (3; 2) in the AB setor. Couplings to Higgs salars h from the

BB

0

setor are allowed by regarding the quantum numbers. Sine the position

of D8-branes A is hosen to be 
R

1

invariant, the intersetion points of AB

are also intersetion points of BB

0

. The same argumentation applies to leptoni

Yukawa ouplings sine the D8-brane positions of staks B and C are hosen

suh that the intersetion loi of BC, BC

0

and CC

0

on the 
R

1

invariant axis

oinide.

The AB and BB

0

setors of example 1b are idential to those of example 1a.

Therefore, the same Yukawa ouplings for the quark setor arise. The di�erent

hoie of the D8-brane C results in leptons being loated at the intersetions of

staks B and C whih do not oinide with any intersetion point of the BB

0

setor. As a result, all leptoni Yukawa ouplings are suppressed in terms of a

non-vanishing worldsheet.

Let us now briey omment on example 2b. In this ase, all left handed

quarks Q

i

L

(i = 1; 2; 3) are realized as (3; 2

L

) while all right handed quarks Q

j

R

(j = 1; 2; 3) transform as (3; 2

R

). All quarks arise from the AB setor where A is

the 
R

1

invariant stak of D8-branes. The BB

0

setor an provide Higgs salars

h in the (2

L

; 2

R

) with U(1) harges Q

1

B

= Q

2

B

= �1. The quantum numbers

thus allow for trilinear ouplings of the form hQ

i

L

Q

j

R

for i; j = 1; 2 and i = j = 3

sine the third generation di�ers in the quantum numbers Q

1

B

; Q

2

B

from the other

two. In the same spirit, trilinear ouplings hL

i

L

L

j

R

of a Higgs partile with two

leptons L

i

L

, L

j

R

are allowed for i; j = 1; 2 and i = j = 3. But in ontrast to

the ouplings involving quarks, the leptons arise from the BC setor whih does

not have any ommon intersetion point with the BB

0

setor. Naively, one an

therefore speulate that quark and lepton masses are generated from ouplings

to the same Higgs salars h aquiring a vauum expetation value, and that there
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will be a hierarhy of quark and lepton masses sine the relevant worldsheets are

of the order A

hQQ

= 0 and A

hLL

� O(

R

1

R

2

�

0

). This naive interpretation, however,

has to be handled with are sine not all types of ouplings to Higgses might

our, e.g. if only one type of salar partiles h with Q

1

B

= Q

2

B

= 1 exists and

no ouplings hQQ are allowed.

The same arguments hold for example 2a sine the AB and BB

0

setors are

the same as in example 2b, and also in this ase no ommon intersetion point

of BB

0

and BC

0

exists. In addition, Yukawa ouplings between quarks and

anti-quarks our and are suppressed by the same mehanism as the leptoni

ones.
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Chapter 4

Summary and onlusions

In this thesis, supersymmetry breaking via D-branes at angles in orientifold

models of type II superstring theories is investigated. Two di�erent lasses of

models are disussed. In hapter 2, the orientifold projetor is hosen suh

that D6-branes are required to anel the RR harges of the orientifold planes,

whereas in hapter 3 D8-branes are needed.

The orientifold projetion ontains a reetion R

i

of i internal oordinates

leading to O(9� i)-planes. The reetion an be rephrased as a omplex onju-

gation of i omplex oordinates. The RR harge anellation ondition enfores

the existene of a suitable amount of D(9 � i)-branes and their mirror images

under the reetion. Partial supersymmetry breaking is ahieved by the intro-

dution of a four dimensional orbifold. The ation of the orbifold symmetry on

the Chan-Paton fators of the open string setor depends on the hoie of the

orientifold projetion.

In hapter 2, the orientifold projetion 
R

3

maps the orbifold generator �

to its inverse,


R

3

� = �

�1


R

3

:

A generi Z

M

generator rotates the positions of the D6-branes. Only a Z

2

ro-

tation maps D6-branes onto themselves while ating non-trivially on the Chan-

Paton labels of the open string states. The D6-branes are hosen to lie on top of

the O6-planes along the diretions of the orbifold. Supersymmetry breaking is

ahieved by allowing for non-trivial intersetion angles of the D6-branes on the

additional two torus. The D6-branes support non-Abelian gauge groups on their

worldvolume, and at the intersetion point of two D6-branes hiral fermions in

the bifundamental of the gauge groups are loated.

We have expliitly shown the omputation of the 1-loop losed and open

string amplitudes, namely the Klein bottle, M�obius strip and annulus. The tree

hannel amplitudes have been obtained by modular transformation. In addition,

we have shown the diret omputation in the tree hannel by means of the

boundary state approah. The onsisteny of the two approahes, the worldsheet

81
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duality, gives additional onstraints on the geometry of the ompati�ation for

the D6-brane models. Two di�erent orientations of the tori, the A and B type

latties, are onsistent with the reetion R

3

. The orbifold group ats non-

trivially on the zero mode ontributions to the loop amplitudes. In order to

obtain the omplete projetor in the tree hannel, only the ombination AB for

the orbifold lattie is allowed in the ase of a Z

4

and Z

6

symmetry whereas no

onstraints arise for Z

2

and Z

3

.

The tadpole anellation onditions are given in equation (2.24). The analysis

is performed for a retangular two torus orresponding to a trivial bakground in

the T-dual language but an easily be generalized to tilted tori or, equivalently,

a non-vanishing antisymmetri NSNS tensor bakground in the T-dual model.

The losed string spetrum is N = 2 supersymmetri in four dimensions. The

open string setor ontains the N = 2 supersymmetri gauge �elds with gauge

groups [48℄

Z

3

:

Q

m

a

6=0

U(N

a

)

Q

m

a

=0

SO(N

a

);

Z

2;4;6

:

Q

m

a

6=0

U(N

a

=2)

4

Q

m

a

=0

U(N

a

=2)

2

:

The open setor also ontains strings with endpoints on two di�erent kinds of

D6-branes. These setors provide hiral fermions in the bifundamental of the

two gauge groups supported on the worldvolume of the D6-branes. Sine the

orbifold group Z

3

ats trivially on the Chan-Paton labels, eah hiral fermion

is aompanied by a tahyon in the same representation. This situation is dif-

ferent for Z

2;4;6

. The mass eigenstates di�er in their Z

2

parity. Therefore, only

hiral fermions with even parity have tahyoni pseudo superpartners. We have

expliitly given examples for Z

2

and Z

3

. Exluding anti-D-branes, for Z

3

the

maximal gauge group obtainable is SU(3) � U(1) if we require the presene of

hiral fermions. The resulting spetrum is listed in table 2.2. We have also

worked out an example for Z

2

whih enloses the standard model gauge group

as well as several non-anomalous U(1) fators and some exoti matter. We have

argued that the anomalous U(1)s ouple to untwisted losed string modes thus

beoming massive by a generalized Green-Shwarz mehanism. The anomaly

free U(1)s are displayed in equation (2.44), and the hiral spetrum is listed in

table D.2. However, in this framework we an neither obtain a three generation

model nor give an obvious solution to the hierarhy problem.

In hapter 3, the reetion is hosen to at only on one two torus. The orbifold

group a�ets the other tori. Therefore the orientifold and orbifold generators

ommute,


R

1

� = �
R

1

:

RR harge anellation requires D8-branes whih wrap a 1-yle on the two torus

and are extended along all four orbifold diretions. In ontrast to the models

disussed in hapter 2, the orbifold group ats non-trivially on the Chan-Paton

labels. While the reetion 
R

3

enfores the existene of D6-branes for all kinds



4. Summary and onlusions 83

of four dimensional orbifolds, 
R

1

generially requires both D8- and D4-branes

at the same time. Only in the ase of no Z

2

subsymmetry, i.e. a Z

3

orbifold,

onsistent models with only D8-branes exist. In this ase, the models are T-

dual to orientifolds with a di�erent orientifold group generator 
R

1

I

4

and only

D4-branes where I

4

is the reetion along all transversal orbifold oordinates.

This kind of model o�ers the possibility of solving the mass hierarhy problem

by large transverse dimensions as suggested in [7, 6℄. The generi RR tadpole

anellation onditions (3.26), (3.27) do not only onstrain the amount of D8-

branes with idential position, but determine also the ation on the Chan-Paton

matries whih e�etively deomposes a stak ofN

a

D8

a

-branes into i subsystems

N

i

a

with Z

3

eigenvalues �

i

. The resulting gauge group is [65℄
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:

Y
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a

+bn

a
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#
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m

a

+bn
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=0

SO(N
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a

)� U(N
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):

As for the models with D6-branes, the loop and tree hannel amplitudes rel-

evant for RR tadpole anellation are alulated. In this lass of models, world-

sheet duality does not give any additional onstraints on the latties. The generi

hiral spetrum is displayed in table 3.1. Only those mass eigenstates whih have

trivial Z

3

eigenvalue have a tahyoni pseudo superpartner. Therefore, tahyons

an be partially projeted out as ompared to the models disussed in hapter 2.

The tadpole anellation onditions are, however, very restritive and therefore

any model with a phenomenologially interesting gauge group and hiral spe-

trum will ontain a tahyon. We have argued that U(1) anomalies are aneled

by a generalized Green-Shwarz mehanism involving losed string modes from

the twisted setor. The instability of the model does not only manifest itself in

the appearane of a tahyon, but also in the existene of non-vanishing NSNS

tadpoles whih we have omputed to linear order in the moduli of the orbifold.

Furthermore, we have given two expliit examples of embedding the standard

model gauge group in this lass of interseting D8-brane senarios. These exam-

ples lead to an even number of generations. A more promising ansatz onsists

in onsidering left-right symmetri models with three generations. We have also

shown two examples of this type whih omprise some exoti matter besides

the left-right symmetri extension of the standard model. The tahyons whih

our in the spetrum have the orret quantum numbers for being interpreted

as non-standard Higgs partiles.

In summary, in this thesis model building from type IIA orientifolds preserv-

ing N = 2 supersymmetry in the gravity and gauge setors with hiral fermions

from supersymmetry breaking intersetions of D-branes have been investigated.

The set-up o�ers a rih variety of engineering di�erent gauge groups and ob-

taining repliation of generations from multiple D-brane intersetions. We have

shown for the �rst time how to inorporate four dimensional hiral spetra from

D-branes at angles with a redued amount of supersymmetry in the gauge and
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gravity setor. Furthermore, with this requirement we have sueeded in on-

struting models with a redued amount of tahyons and shown that an inter-

pretation in terms of non-standard Higgs partiles is appealing. In addition, we

have for the �rst time performed an orientifold onstrution with D-branes at

angles whih admits for large transverse dimensions and is by this means apable

of solving the hierarhy problem.

Models with interseting D-branes learly still deserve to be further explored.

On the one hand, it will be interesting to onsider the NSNS tadpoles beyond the

linear order in the orbifold moduli sine they might play a role in stabilizing the

D8-brane models. In the T-dual models, loating D4-branes at di�erent �xed

points in the transverse spae might also lead to di�erent models, and it would be

worthwhile to onsider inationary senarios along the idea of interseting D4-

branes in purely toroidal type IIA ompati�ations presented in [51℄ for expliit

orientifold models. Other possibilities of obtaining improved models onsist in

onsidering more ompliated orbifold and orientifold groups. A very reent

ansatz [25℄ uses even a di�erent GSO projetion leading to an orientifold of type

0' string theory. Also in this ase, non-trivial intersetion angles of D6-branes are

aompanied by a non-vanishing dilaton tadpole. Therefore, another hallenge

within interseting D-brane model building onsists in inluding the Fishler

Susskind mehanism [44℄ and exploring how it a�ets measurable quantities.



Appendix A

Notation and onventions

The bosoni losed string oordinates whih solve the two dimensional equation

of motion an be deomposed into a left- and a right-moving part depending on

the light-one oordinates of the worldsheet �
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where x

�

and p

�

=

1

2
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�
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) are the enter-of-mass position and momentum

in units of �
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, respetively. The fermioni oordinates an be expanded in a

similar manner, namely
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where the index r runs over integers in the untwisted R setor and over half-

integers in the untwisted NS setor. The non-trivial ommutation relations of

the raising and lowering operators are given by
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For ompat oordinates on a two torus, it is useful to de�ne omplex osillators,

e.g.
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The non-trivial ommutation relations then read (i; j = 1; 2; 3)

h

�

i

n

; �

j

m

i

=

h

~�

i

n

; ~�

j

m

i

= nÆ

n;�m

Æ

ij

; (A.8)

n

 

i

r

;  

j

s

o

=

n

~

 

i

r

;

~

 

j

s

o

= Æ

r;�s

Æ

ij

: (A.9)

The orientifold group ation is given by (� labels the non-ompat oordinates

in light one gauge and j = 2; 3 the seond and third torus)
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and analogously for the fermioni setors with the minus sign inluded as de-

sribed in setion 1.2.

The Hamiltonian is given by
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Appendix B

1-loop diagrams for O6-plane /

D6-brane interations

The tadpole anellation onditions are determined by omputing those diagrams

in the loop hannel whih orrespond to RR exhanges in the tree hannel. As

explained in setion 1.4, the relevant ontributions arise from the NSNS setor

with (�1)

F

insertion for the Klein bottle, R for the M�obius strip and NS with

(�1)

F

insertion for the annulus.

B.1 Lattie ontributions

On a torus with radii R

1;2

, only momenta along the 
R

3

invariant diretion and

windings perpendiular to the former one ontribute. In the loop hannel, the

general expression for the lattie ontribution is given by
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gives the general expression for the lattie ontribution in the tree hannel
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(B.1) and (B.3) are related via
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with  =

�

p

��

R

1

R

2

, t = 1=(�l) and � = 4 (2; 8) for the Klein bottle (annulus,

M�obius strip). The results for the di�erent tori are summarized in table B.1.

The result for the b type lattie an be reast in the notation introdued in
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Table B.1: The di�erent lattie ontributions for a two torus.
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Figure B.1: Two ways to parameterize the lattie with b = 1=2.

B.2 Osillator ontributions

The osillator ontributions an be expressed in terms of generalized Jaobi theta

funtions and the Dedekind eta funtion (q � e

�2�t
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B.2.1 Theta-funtion-identities

The upper argument � is only de�ned modulo Z, the lower argument � gives a

phase when shifted by 1,
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For �1=2 < � 6 1=2, the following produt expansion of a Jaobi theta funtion
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from whih the asymptoti behavior for t ! 1 an easily be read o�. For

D-branes at an angle �� 6= 0 on a two torus, one needs in partiular:
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Jaobi theta funtions and the Dedekind eta funtion have the following modular

transformation properties:
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For the loop { tree hannel orrespondene of the M�obius strip, the additional
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B.2.2 Osillator ontributions to loop diagrams in D6-brane

models

The osillator ontributions in the loop hannel in terms of generalized Jaobi

theta funtions are given by
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B.2.3 Osillator ontributions to tree diagrams in D6-brane

models

The osillator ontributions in the tree hannel read
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Appendix C

Boundary state approah for

O6-plane/D6-brane interations

C.1 Constrution of rossap states

A omprehensive introdution into the boundary state approah to D-branes is

given in [50℄ and referenes therein. Appendix A of [5℄ ontains the onstrution

of rossap states in related models.

C.1.1 Osillator part

Crossap states have to ful�ll

�
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(�; 0)� �

k
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3

X

i
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(� + �; 0)

�
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R

3

�

k

i = 0: (C.1)

Inserting the mode expansion (A.2), (A.3) gives the onstraints in terms of

bosoni osillators
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The onstraints for the fermioni osillators are (� = �1)
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A solution is provided by
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where r 2 Z(Z+

1

2

) in the RR (NSNS) setor, n 2 Z and j0; �i is the groundstate

whih depends on the spin struture � in the RR setor. The sums are meant to

ontain reation operators only. The vauum state ontains the momentum and

winding modes disussed in setion C.1.3.

C.1.2 Zero modes and GSO invariant states

We present the following disussion for the rossap states. The GSO projetions

on boundary states are ompletely analogous.

NSNS setor

In the NSNS setors, the GSO projetion on the groundstate is determined by

requiring tahyoni groundstates to be unphysial. Therefore, the GSO invariant

ombination is
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Untwisted RR setor
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the non-trivial ommutation relations are
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The rossap onditions from the zero modes in the RR setor on the groundstate

then read
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and the zero mode parts of the GSO projetions are given by
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the ation of the omplete GSO projetor an be rephrased as
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GSO invariant states are given by
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The total rossap state has to be invariant under the orbifold group (i.e. it

ontains the `omplete projetor'):
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C.1.3 Lattie part

From (C.1) we also obtain
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by inserting the mode expansion (A.2), (A.3). From this we an read o� that the

rossap state j
R

3

�

k

i is on�ned to a line on T

i

whih is tilted by the angle
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relative to the real axis. Finally, onditions on the momenta arise:
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Inserting p
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0

W for the ompat momenta, (C.15) indiates that on

eah T

i

, there are Kaluza-Klein momenta perpendiular and windings parallel to

the position of the rossap state.

C.2 Boundary states
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The osillator moding is the same as for the rossap. The NSNS vauum is

again independent of the spin struture �, and the vauum states ontain the

lattie ontributions.
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Using the analogous equations to (C.12), the GSO invariant boundary state

is given by

jB
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i =

M�1

X

k=0

j';�

k

i: (C.17)

Disrete momenta exist in the ompat diretions perpendiular to the position

of the boundary state while windings are parallel.

C.3 Tree hannel amplitudes

Using equation (C.13) and (C.17), the tree hannel amplitudes read
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As we mainly fous on omputing the RR exhange in this thesis, we will use

the abbreviation
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et. The normalizationsN
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are determined from

the Klein bottle and annulus amplitude via worldsheet duality. The following

equation holds
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(2l) ontains the osillator ontribution (for notation
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By modular transformation from the loop hannel, one reovers the orret result

for AB. But for AA or BB, the loop hannel amplitude gives (4
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+

~

L

2

B

) for

Z

4

and (

~

L

2

A

+ 9

~
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2

B

) for Z

6

as an be read o� from table B.1. This means that

only the AB-lattie is onsistent with worldsheet duality.



Appendix D

Chiral D6-brane spetra

In this appendix we list the fermioni groundstates of setion 2.2.1 and 3.1.2 and

the hiral spetrum for the D6-brane model in setion 2.3.2.
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Table D.1: Fermioni groundstates for the open string setor of D6-brane models.

The last but one olumn denotes the Z

2

eigenvalue of the orresponding massless

state. The last olumn denotes the Z

3

eigenvalue for D8-brane models where

� � e

2�i=3

.
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Chiral spetrum for interseting D6-branes, Ex. 2, Part 1

rep. multQ

1

Q

2

Q

3

Q
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Q
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Q
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U (3; 3; 1; 1; 1; 1) 4 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0

(1; 1; 3; 3; 1; 1) 4 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0

(3; 1; 1; 1; 1; 1) 4 �2 0 0 0 0 0 0 0 0 0 �2 0 �2 0 0 0

(1; 3; 1; 1; 1; 1) 4 0 �2 0 0 0 0 0 0 0 0 �2 0 2 0 0 0

(1; 1; 3; 1; 1; 1) 4 0 0 �2 0 0 0 0 0 0 0 0 �2 0 �2 0 0

(1; 1; 1; 3; 1; 1) 4 0 0 0 �2 0 0 0 0 0 0 0 �2 0 2 0 0
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�

3; 1; 1;

�
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�

2; 1) 2 1 0 0 0 �1 0 0 0 0 0 1 0 4 0 4 0

(

�

3; 1; 1; 1;

�

2; 1) 2 �1 0 0 0 �1 0 0 0 0 0 �1 0 2 0 4 0

(1; 3; 1; 1; 2; 1) 2 0 1 0 0 1 0 0 0 0 0 1 0 �4 0 �4 0

(1;

�

3; 1; 1; 2; 1) 2 0 �1 0 0 1 0 0 0 0 0 �1 0 �2 0 �4 0

(1; 1; 3; 1; 1;

�

2) 2 0 0 1 0 0 �1 0 0 0 0 0 1 0 4 0 4

(1; 1;

�

3; 1; 1;

�

2) 2 0 0 �1 0 0 �1 0 0 0 0 0 �1 0 2 0 4

(1; 1; 1; 3; 1; 2) 2 0 0 0 1 0 1 0 0 0 0 0 1 0 �4 0 �4

(1; 1; 1;

�

3; 1; 2) 2 0 0 0 �1 0 1 0 0 0 0 0 �1 0 �2 0 �4

12T (

�

3; 1; 1; 1; 1; 2) 1 �1 0 0 0 0 1 0 0 0 0 �1 0 �1�3 0 �4
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2) 1 0 �1 0 0 0 �1 0 0 0 0 �1 0 1 3 0 4
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3; 1; 2; 1) 1 0 0 �1 0 1 0 0 0 0 0 0 �1�3�1�4 0

(1; 1; 1;
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2; 1) 1 0 0 0 �1 �1 0 0 0 0 0 0 �1 3 1 4 0

13U (3; 1; 1; 1; 1; 1) 6 1 0 0 0 0 0 �1 0 0 0 4 0 1 0 �1 0

(

�

3; 1; 1; 1; 1; 1) 6 �1 0 0 0 0 0 0 1 0 0 �4 0 �1 0 �1 0

(1; 3; 1; 1; 1; 1) 6 0 1 0 0 0 0 0 �1 0 0 4 0 �1 0 1 0

(1;

�

3; 1; 1; 1; 1) 6 0 �1 0 0 0 0 1 0 0 0 �4 0 1 0 1 0

(1; 1; 3; 1; 1; 1) 6 0 0 1 0 0 0 0 0 �1 0 0 4 0 1 0 �1

(1; 1;

�

3; 1; 1; 1) 6 0 0 �1 0 0 0 0 0 0 1 0 �4 0 �1 0 �1

(1; 1; 1; 3; 1; 1) 6 0 0 0 1 0 0 0 0 0 �1 0 4 0 �1 0 1

(1; 1; 1;

�

3; 1; 1) 6 0 0 0 �1 0 0 0 0 1 0 0 �4 0 1 0 1

13

0

U (3; 1; 1; 1; 1; 1) 10 1 0 0 0 0 0 0 1 0 0 �2 0 1 0 �1 0

(

�

3; 1; 1; 1; 1; 1) 10 �1 0 0 0 0 0 �1 0 0 0 2 0 �1 0 �1 0

(1; 3; 1; 1; 1; 1) 10 0 1 0 0 0 0 1 0 0 0 �2 0 �1 0 1 0

(1;

�

3; 1; 1; 1; 1) 10 0 �1 0 0 0 0 0 �1 0 0 2 0 1 0 1 0

(1; 1; 3; 1; 1; 1) 10 0 0 1 0 0 0 0 0 0 1 0 �2 0 1 0 �1

(1; 1;

�

3; 1; 1; 1) 10 0 0 �1 0 0 0 0 0 �1 0 0 2 0 �1 0 �1

(1; 1; 1; 3; 1; 1) 10 0 0 0 1 0 0 0 0 1 0 0 �2 0 �1 0 1

(1; 1; 1;

�

3; 1; 1) 10 0 0 0 �1 0 0 0 0 0 �1 0 2 0 1 0 1
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Chiral spetrum for interseting D6-branes, Ex. 2, Part 2

rep. multQ

1

Q

2

Q

3

Q

4

Q

5

Q

6

Q

7

Q

8

Q

9

Q

10

~

Q

1

~

Q

2

~

Q

3

~

Q

4

~

Q

5

~

Q

6

13T (

�

3; 1; 1; 1; 1; 1) 3 �1 0 0 0 0 0 0 0 1 0 �1�3�1 0 0 1

(1;

�

3; 1; 1; 1; 1) 3 0 �1 0 0 0 0 0 0 0 1 �1�3 1 0 0 �1

(1; 1;

�

3; 1; 1; 1) 3 0 0 �1 0 0 0 1 0 0 0 �3�1 0 �1 1 0

(1; 1; 1;

�

3; 1; 1) 3 0 0 0 �1 0 0 0 1 0 0 �3�1 0 1 �1 0

13

0

T (

�

3; 1; 1; 1; 1; 1) 5 �1 0 0 0 0 0 0 0 0 �1 �1 3 �1 0 0 1

(1;

�

3; 1; 1; 1; 1) 5 0 �1 0 0 0 0 0 0 �1 0 �1 3 1 0 0 �1

(1; 1;

�

3; 1; 1; 1) 5 0 0 �1 0 0 0 0 �1 0 0 3 �1 0 �1 1 0

(1; 1; 1;

�

3; 1; 1) 5 0 0 0 �1 0 0 �1 0 0 0 3 �1 0 1 �1 0

23U (1; 1; 1; 1; 2; 1) 2 0 0 0 0 1 0 1 0 0 0 �3 0 �3 0 �3 0

(1; 1; 1; 1; 2; 1) 2 0 0 0 0 1 0 �1 0 0 0 3 0 �3 0 �5 0

(1; 1; 1; 1;

�

2; 1) 2 0 0 0 0 �1 0 0 1 0 0 �3 0 3 0 3 0

(1; 1; 1; 1;

�

2; 1) 2 0 0 0 0 �1 0 0 �1 0 0 3 0 3 0 5 0

(1; 1; 1; 1; 1; 2) 2 0 0 0 0 0 1 0 0 1 0 0 �3 0 �3 0 �3

(1; 1; 1; 1; 1; 2) 2 0 0 0 0 0 1 0 0 �1 0 0 3 0 �3 0 �5

(1; 1; 1; 1; 1;

�

2) 2 0 0 0 0 0 �1 0 0 0 1 0 �3 0 3 0 3

(1; 1; 1; 1; 1;

�

2) 2 0 0 0 0 0 �1 0 0 0 �1 0 3 0 3 0 5

23T (1; 1; 1; 1; 2; 1) 1 0 0 0 0 1 0 0 0 �1 0 0 3 �3 0 �4�1

(1; 1; 1; 1;

�

2; 1) 1 0 0 0 0 �1 0 0 0 0 �1 0 3 3 0 4 1

(1; 1; 1; 1; 1; 2) 1 0 0 0 0 0 1 �1 0 0 0 3 0 0 �3�1�4

(1; 1; 1; 1; 1;

�

2) 1 0 0 0 0 0 �1 0 �1 0 0 3 0 0 3 1 4

33

0

U (1; 1; 1; 1; 1; 1) 16 0 0 0 0 0 0 1 1 0 0 �6 0 0 0 0 0

(1; 1; 1; 1; 1; 1) 16 0 0 0 0 0 0 0 0 1 1 0 �6 0 0 0 0

(1; 1; 1; 1; 1; 1) 6 0 0 0 0 0 0 �2 0 0 0 6 0 0 0 �2 0

(1; 1; 1; 1; 1; 1) 6 0 0 0 0 0 0 0 �2 0 0 6 0 0 0 2 0

(1; 1; 1; 1; 1; 1) 6 0 0 0 0 0 0 0 0 �2 0 0 6 0 0 0 �2

(1; 1; 1; 1; 1; 1) 6 0 0 0 0 0 0 0 0 0 �2 0 6 0 0 0 2

33

0

T (1; 1; 1; 1; 1; 1) 8 0 0 0 0 0 0 �1 0 0 �1 3 3 0 0 �1 1

(1; 1; 1; 1; 1; 1) 8 0 0 0 0 0 0 0 �1 �1 0 3 3 0 0 1 �1

Table D.2: Chiral fermioni spetrum for (T

2

� T

4

=Z

2

)=
R

3

with

(n

1

; m

1

) = (1; 1), (n

2

; m

2

) = (1; 0), (n

3

; m

3

) = (4; 1) and lattie aaa in se-

tion 2.3.2. The resulting gauge group is SU(3)

4

� SU(2)

2

� U(1)

6

.



Appendix E

1-loop diagrams for

O8-plane/D8-brane interations

E.1 Lattie ontributions on (T

4

=Z

3

)=
R

1

The general form of the lattie sums on T

4

=Z

3

for one two torus in the loop

hannel is given by (� � R

2

=�

0

)

L

R

[�℄(t) �

X

m;n2Z

e

���t(m

2

+mn+n

2

)=�

: (E.1)

Using the Poisson resummation formula

X

x2�

f(x) =

1

vol(�)

X

p2�

�

~

f(p) (E.2)

for a d-dimensional lattie � and its dual lattie �

�

with the Fourier transform

~

f(p) =

R

R

d

dxe

2�ix�p

f(x) and de�ning t = 1=�l gives the lattie sums in the tree

hannel

L

R

[�℄(t) = l

2�

p

3�

�L

1=R

�

4�

3�

�

(l): (E.3)

For T

4

=Z

3

, we thus obtain

Klein bottle:

�

L

R

1

L

R

2

�

[1℄(t) =

64

3

l

2

!

�

L

1=R

1

L

1=R

2

�

[16=3℄(l); (E.4)

Annulus:

�

L

R

1

L

R

2

�

[2℄(t) =

4

3

l

2

!

�

L

1=R

1

L

1=R

2

�

[4=3℄(l); (E.5)

M�obius strip:

�

L

R

1

L

R

2

�

[2℄(t) =

64

3

l

2

!

�

L

1=R

1

L

1=R

2

�

[16=3℄(l); (E.6)

where ! � �

1

�

2

is the volume of the orbifold in units of �

0

.
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E.2 Osillator ontributions

Osillator ontributions to the 1-loop amplitudes an be expressed in terms of

generalized Jaobi theta funtions. The relevant formulas for untwisted setors

without insertions are the same as for models with O6-planes and D6-branes,

see (B.15), (B.16), (B.17) for the loop hannel and (B.19), (B.21), (B.23) for the

tree hannel. In addition, an insertion of �

k

in the trae leads to

Klein bottle: K

(k)

=

#

h

0

1

2

i

2

�

6

Y
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#

h
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+2kv
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h

1

2

1

2

+2kv

i
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(2t); (E.7)
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+kv
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M�obius strip: M

(k)
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): (E.9)

By modular transformation to the tree hannel, one obtains ontributions from

osillators in the �

k

twisted setor,

Klein bottle:

~

K

(k)

=

#

h

1

2

0
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2

�

6
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Annulus:

~

A

(k)

ab

=

#

h

1

2

0

i

�

3

#

h

1

2

�'

i

#

h

1

2

1

2

+�'

i

Y

i=2;3

#

h

1

2

�kv

i

0

i

#

h

1

2

�kv

i

1

2

i

(2l); (E.11)

M�obius strip:
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=
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Appendix F

Tree hannel results for

(T

2

� T

4

=Z

3

)=
R

1

F.1 Crossap states

The rossap onditions for the 
R

1

-model on T

4

=Z

3

where the reetion does

not at are given by (i = 2; 3)

�

X

i

L;R

(�; 0)��

k

X

i

R;L

(� + �; 0)

�

j
R

1

�

k

i = 0; (F.1)
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(�; 0)��
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R

1
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i = 0: (F.2)

Inserting the mode expansions (A.2), (A.3) gives the following onstraints on

T

4

=Z

3
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9
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>

>

>
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>

>

>

>

;

j
R

1

�

k

i = 0: (F.4)

The fermioni worldsheet oordinates provide a similar set of onstraints.

The set of equations (F.3) states that for k = 0 windings along all four

diretions of the orbifold our while for k 6= 0, only Kaluza-Klein momenta

and windings from the �rst two torus T

1

ontribute as disussed in the ase of

O6-planes in appendix C.1. The equations (F.4) are only mutually onsistent if
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r 2 Z+ 2kv

i

, s 2 Z� 2kv

i

. Using the notation n 2 Z , r 2 Z(+1=2) for the R

(NS) setor, the osillator onstraints an be rewritten as

�
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n+2kv
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A solution to these onstraints is provided by
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j0; �i: (F.7)

The dependene on the lattie is ontained in the groundstate j0; �i whih only

depends on � in the RR setor. The sums ontain reation operators only.

F.2 Boundary states

In order to reprodue the amplitudes obtained by modular transformation from

the loop hannel, a boundary state at angle �' on T

1

relative to the X

4

axis has
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to be of the form
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As for the rossap states, the groundstate j0; �i ontains Kaluza-Klein momen-

tum and winding eigenvalues from T

1

and windings from T

4

=Z

3

.

F.3 Zero modes and GSO invariant states for

the twisted setors

The GSO projetion for the untwisted setor is very similar to the one for models

with D6-branes disussed in appendix C.1.2. For models with D8-branes, it is

more appropriate to de�ne the worldsheet spinors  

i

�

for i = 2; 3 in the following

way,

 

i

�

=

1

p

2

�

 

i

0

+ i�

~

 

i

0

�

;  

i

�

=

1

p
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i

0

+ i�

~

 

i

0

�

:

Inserting this de�nition into the subsequent formulas in setion C.1.2 gives the

orret ommutation relations, rossap onditions and zero mode part of the

GSO projetion leading to the analogous superposition of states (F.7) and (F.8)

with di�erent spin strutures as listed at the end of setion C.1.2 involving

O6-planes and D6-branes.

Twisted RR setors

For k 6= 0, the zero mode onditions read
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The zero mode parts of the GSO projetion operators are now given by
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leads to the ation of the zero mode part of the GSO projetor on the ground-

states
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These relations arry over to the exited states. Thus,

j
R

1

�

k

;+i

RR

+ ij
R

1

�

k

;�i

RR

(F.16)

is invariant under P

GSO

de�ned in (1.35). The omputation diretly arries over

to the twisted boundary states.



Appendix G

Low energy spetrum for

(T

2

� T

4

=Z

3

)=
R

1

G.1 Bosoni states

The lightest mass eigenstates are distinguished by their � eigenvalues. De�ning

� � e

2�i=3

, the lightest bosoni states between D8

a

and D8

b

-branes at angle ��'

on T

1

are listed in the table G.1. The fermioni states an be extrated from

table D.1 by onsidering only states with k=M = 0.

Bosoni open states of T

2
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=Z

3

on T

2

state

�
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Table G.1: Bosoni open mass eigenstates of the (T

2

� T

4

=Z

3

)=
R

1

orientifold.
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G.2 Chiral spetra of examples 2a and 2b

In this appendix, we list the hiral spetra of the left-right symmetri examples

2a and 2b with interseting D8-branes in setion 3.4.3 and 3.4.4.

Chiral spetrum for interseting D8-branes, ex. 2a

mult. SU(3)� SU(2)
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00
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�
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1 (1; 2; 1; 8) 0 �1 0 0 0 0 �1 �1=4

1 (3; 1; 2; 1) 1 0 �1 0 0 �1=3 1=3 �1=4

�

2

1 (1; 1; 2; 8) 0 0 �1 0 0 0 1 �1=4

1 (3; 2; 1; 1) �1 �1 0 0 0 1=3 �1=3�1=4

AC�

0

2 (3; 1; 1; 1) 1 0 0 �1 0 �4=3 �2=3�1=2

2 (3; 1; 1; 1) �1 0 0 0 �1 4=3 2=3 �1=2

�

1

1 (1; 1; 1; 8) 0 0 0 1 0 1 0 1=2

1 (3; 1; 1; 1) �1 0 0 0 1 �2=3 2=3 1=2

�

2

1 (1; 1; 1; 8) 0 0 0 0 1 �1 0 1=2

1 (3; 1; 1; 1) 1 0 0 1 0 2=3 �2=3 1=2

BB

0

�

0

2 (1; 2; 2; 1) 0 1 1 0 0 0 0 1=2

�

1

1 (1; 1; 1; 1) 0 �2 0 0 0 0 �2 �1=2

�

2

1 (1; 1; 1; 1) 0 0 �2 0 0 0 2 �1=2

CC

0

�

0

2 (1; 1; 1; 1) 0 0 0 �1 �1 0 0 �1

�

1

1 (1; 1; 1; 1) 0 0 0 2 0 2 0 1

�

2

1 (1; 1; 1; 1) 0 0 0 0 2 �2 0 1

BC

0

�

0

2 (1; 2; 1; 1) 0 �1 0 �1 0 �1 �1 �3=4

2 (1; 1; 2; 1) 0 0 �1 0 �1 1 1 �3=4

�

1

1 (1; 2; 1; 1) 0 1 0 0 1 �1 1 3=4

�

2

1 (1; 1; 2; 1) 0 0 1 1 0 1 �1 3=4

Table G.2: Chiral fermioni spetrum for example 2a with interseting

D8-branes. The D8-brane on�guration and anomaly-free U(1) harges are

reorded in (3.54) and (3.55).



110 G. Chiral spetra of examples 2a and 2b

Chiral spetrum for interseting D8-branes, ex. 2b

mult. SU(3)� SU(2)

L

� SU(2)

R

� SO(8) Q

1

A

Q

1

B

Q

2

B

Q

1

C

Q

B�L

Q

0

AB�

0

2 (3; 2; 1; 1) �1 1 0 0 1=3 1

2 (3; 1; 2; 1) 1 0 1 0 �1=3 �1

�

1

1 (1; 2; 1; 8) 0 �1 0 0 0 �1

1 (3; 1; 2; 1) 1 0 �1 0 �1=3 1

�

2

1 (1; 1; 2; 8) 0 0 �1 0 0 1

1 (3; 2; 1; 1) �1 �1 0 0 1=3 �1

BB

0

�

0

2 (1; 2; 2; 1) 0 1 1 0 0 0

�

1

1 (1; 1; 1; 1) 0 �2 0 0 0 �2

�

2

1 (1; 1; 1; 1) 0 0 �2 0 0 2

BC�

0

2 (1; 2; 1; 1) 0 �1 0 1 �1 1

2 (1; 1; 2; 1) 0 0 �1 �1 1 �1

�

1

1 (1; 1; 2; 1) 0 0 1 �1 1 �3

�

2

1 (1; 2; 1; 1) 0 1 0 1 �1 3

Table G.3: Chiral fermioni spetrum for example 2b with interseting

D8-branes. The D8-brane on�guration is given in (3.56) and the anomaly-free

U(1) harges are spei�ed by (3.57).
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