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Abstra
t

Brane supersymmetry breaking and 
hiral fermions are dis
ussed in the 
on-

text of interse
ting D6- and D8-branes in 
ompa
ti�
ations of type II orientifolds.

The orientifold proje
tion 
ontains a re
e
tion R

i

in i internal 
oordinates whi
h

leaves orientifold planes of spa
e dimension (9� i) invariant. In order to a
hieve

partial supersymmetry breaking, a four dimensional orbifold symmetry is im-

posed. The re
e
tion R

i

is 
hosen su
h that it a
ts as 
omplex 
onjugation on

an additional two torus. Can
ellation of RR 
harges enfor
es the existen
e of D-

branes of the same dimensionality as the O-planes. The D-branes 
an either be


hosen to lie on top of the O-planes leading to lo
al RR 
harge 
an
ellation and

a N = 2 supersymmetri
 non-
hiral spe
trum or allowing for global RR 
harge


an
ellation only, the D-branes 
an be 
hosen to lie at non trivial angles on the

two torus. The interse
tion points of two D-branes support 
hiral fermions in the

bifundamental representation of the gauge groups whi
h are provided by �elds

living on the worldvolume of the D-branes involved. These models have broken

supersymmetry in the open string se
tor while the 
losed string se
tor, whi
h in

parti
ular 
ontains gravity, remains N = 2 supersymmetri
.

The gauge groups and 
hiral spe
tra depend on the 
hoi
e of the re
e
tion

R

i

and the orbifold group. Several expli
it examples with parti
le spe
tra 
lose

to the standard model are given.

Can
ellation of gauge anomalies, the stability of the models and phenomeno-

logi
al impli
ations are dis
ussed.
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Introdu
tion

In this thesis, orientifold models of type II superstrings are investigated where


hiral fermions arise from supersymmetry breaking interse
tions of D-branes.

One of the major 
hallenges of 
ontemporary theoreti
al physi
s is the exis-

ten
e of two di�erent theories whi
h des
ribe the known fundamental intera
tions

at di�erent s
ales but so far 
annot be implemented satisfa
torily into a 
ommon

theory.

On the one hand, the standard model of parti
le physi
s is based on renor-

malizable quantum �eld theories. It des
ribes earth based experiments, e.g. in

parti
le a

elerators, at an impressive a

ura
y.

On the other hand, the general theory of relativity is a 
lassi
al theory de-

s
ribing gravitational intera
tions whi
h be
ome dominant at long distan
es.

In
luding general relativity into quantum theories amounts to treating spa
e

and time quantum me
hani
ally. Several di�erent approa
hes have been made,

whi
h are reviewed in [102℄. None of them is yet 
ompletely satisfa
tory, but

e.g. the semi-
lassi
al approa
h of 
onsidering quantum �eld theory in 
urved

spa
e [17℄ is 
apable of predi
ting the Hawking radiation of a bla
k hole. Addi-

tional appli
ations of a quantized theory of gravity are expe
ted to be relevant

for astrophysi
s and investigations on the early universe.

Further indi
ations to look for a theory beyond the standard model arise

from the large amount of free parameters of the standard model whi
h have

to be �xed experimentally and 
annot be predi
ted from the theory itself. In

addition, astrophysi
al models require an extreme �ne-tuning of parameters in

order to 
ontain galaxies, stars and biologi
al life. The spe
trum and gauge

groups so far have no explanation from �rst prin
iples, and last but not least the

standard model Higgs se
tor predi
tion still needs to be 
on�rmed.

One step beyond the standard model 
an be made by introdu
ing a symme-

try relating bosons and fermions, namely the supersymmetry. This theory has

the te
hni
al advantage of removing quadrati
 divergen
es in the s
alar masses.

Furthermore, it o�ers the possibility of redu
ing the amount of free parameters

of parti
le physi
s be
ause the gauge 
ouplings unify at the so 
alled GUT s
ale

and thus allow for embedding the standard model gauge groups into a single

GUT group. A review arti
le on these topi
s is given by [89℄.

Another attempt for going beyond the standard model 
onsists in Kaluza-

7
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Klein theories [76, 78℄. This ansatz assumes that gravity propagates in more

than four spa
etime dimensions where the supplementary dimensions are taken

to be of �nite size. This ansatz, however, seems to be in
onsistent if there is

no underlying theory assumed. The need for string regularization s
hemes in

Kaluza-Klein theories has re
ently been dis
ussed e.g. in [52℄.

A very promising 
andidate for a theory whi
h 
ontains both gravity and

gauge intera
tions is provided by string theory [58, 59, 86, 93, 94℄. Interestingly,

it also o�ers a natural explanation for the other approa
hes to �nd a theory be-

yond the standard model. Fermions are implemented in string theory by intro-

du
ing lo
al supersymmetry on the worldsheet. Furthermore, superstring theory

is 
onsistently de�ned only in ten dimensions whi
h requires a me
hanism of `hid-

ing dimensions' as in the Kaluza-Klein theories to make it a viable 
andidate for

a phenomenologi
ally appealing theory 
ontaining the known intera
tions. For

a re
ent review arti
le on strings and extra dimensions see e.g. [47℄.

In fa
t, there does not only exist one single fermioni
 string theory. Five

di�erent string theories are 
onsistently de�ned in ten dimensions. These are

the heteroti
 theories with gauge groups SO(32) and E

8

�E

8

and the type IIA,

IIB and type I theory. The heteroti
 theories and type I superstring theory

have N = 1 supersymmetry in D = 10 while the type IIA and IIB theory have

extended N = 2 supersymmetry. Ex
ept for the type IIA theory, all other ten

dimensional theories are 
hiral.

In the 1980's, the main progress in string theory fo
used on the formulation of

the weakly 
oupled heteroti
 theories [61, 60, 62℄. Compa
ti�
ations on Calabi-

Yau manifolds [28, 109℄ and orbifolds [40, 41℄ leading toN = 1 supersymmetry in

four dimensions were 
onsidered. The breaking of gauge groups through Wilson

lines was e.g. 
onsidered in [73℄, and three family models with an extension of

the standard model gauge group were obtained [70, 46℄.

Besides the heteroti
 theories, also the ten dimensional type I superstring

is provided with a gauge group SO(32). The examination of this theory also

started in the 1980's [103℄ with the dis
overy of orientifold planes. The 
ompu-

tational tools for obtaining e�e
tive lower dimensional theories from orientifold


onstru
tions were su

essively worked out in [99, 57, 66, 15, 16℄.

The pi
ture of �ve distin
t 
onsistent string theories started to 
hange dra-

mati
ally with the dis
overy of a web of dualities whi
h relates all theories. The

two type II theories and the two heteroti
 theories were e.g. found to be T-dual

to ea
h other [38, 55℄. Between the type I theory and the heteroti
 theory with

gauge group SO(32), S-duality has been 
onje
tured whi
h relates one theory at

strong 
oupling with the other one at weak 
oupling [111, 98℄. Furthermore, the

low energy limit of the ten dimensional type IIA string theory at strong 
oupling

is given by eleven dimensional supergravity [110, 111℄, and the heteroti
 E

8

�E

8

theory at strong 
oupling is des
ribed by eleven dimensional supergravity on an

interval with the two gauge fa
tors 
on�ned to the ten dimensional walls [68, 67℄.
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Impli
ations of this on the four dimensional theories have been 
onsidered e.g.

in [90, 91℄. The 
onje
tured web of dualities between the string theories and the

relations to eleven dimensional supergravity led to the assumption that all known

theories are spe
ial va
ua of an underlying theory, 
alled M-theory [111, 105℄.

In the re
ent years, a lot of progress has been made in the sear
h for the

standard model from type II orientifold theories. A very important ingredient

is the role of the D-branes [95℄ whi
h 
arry RR 
harges opposite to those of the

orientifold planes. The main 
omputational tools were worked out in [54℄.

The Dp-branes 
an either be viewed as endpoints of open strings whi
h have

Neumann boundary 
onditions along p spatial dimensions or as solitoni
 obje
ts

whi
h 
ouple to the 
losed string modes. In the latter pi
ture, further geometri


obje
ts with 
ouplings to 
losed strings are the orientifold planes. Asso
iated to

both types of 
ouplings are physi
al RR 
harges. For a theory to be 
onsistent,

the total RR 
harge has to vanish. These are the `RR tadpole 
an
ellation


onditions'. The 
onstraints on four dimensional model building arising from

the RR 
harge 
an
ellations are very restri
tive in the supersymmetri
 
ase.

Various approa
hes of obtaining phenomenologi
ally interesting models within

the supersymmetri
 framework in
lude blowing-up of orbifold singularities [31,

92℄, lo
ating D-branes at di�erent points in the internal spa
e, whi
h is T-dual

to in
luding non-trivial Wilson lines (see e.g. [36℄ for a model with dis
rete Wil-

son lines and [32℄ for 
ontinuous ones), and 
onsidering dis
rete values for the

NSNS antisymmetri
 tensor [14, 13, 113, 108, 3, 75℄ whi
h redu
es the rank of the

gauge group and has a T-dual des
ription in terms of deformed 
ompa
ti�
ation

latti
es [24℄.

In orientifold 
ompa
ti�
ations it may make sense to go beyond the partial

supersymmetry breaking by orbifold symmetries to 
ompletely broken supersym-

metry. The reason is that supersymmetry may not be ne
essary to explain the

hierar
hy between the Plan
k and the ele
troweak s
ale. In D-brane set-ups one


an sometimes keep the fundamental s
ale, the string s
aleM

s

, at the weak s
ale

and obtain the Plan
k s
ale M

P

by large 
ompa
t extra dimensions [6, 7℄.

The supersymmetry breaking in the open string se
tor 
an be realized in

two di�erent ways by D-branes while the 
losed string se
tors are not a�e
ted.

One way is the in
lusion of anti-D-branes in the models whi
h 
arry RR 
harges

opposite to the D-branes. They also have the opposite GSO proje
tion. That

is the reason why ta
hyoni
 s
alar ex
itations from strings stret
hing between

D-branes and anti-D-branes o

ur for small distan
es of the D-branes. Many of

these models are unstable and undergo phase transitions [11, 107, 84, 5, 50, 101℄.

The other way to break supersymmetry in the open string se
tor is by al-

lowing for magneti
 ba
kground 
uxes on the worldvolume of the D-branes in


onsisten
y with the RR 
harge 
an
ellation 
onditions. These magneti
 
uxes

also trigger the breaking of 
hiral and gauge symmetry. In a T-dual pi
ture, the

various 
uxes of di�erent D-branes are repla
ed by interse
tion angles of lower di-
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mensional D-branes whi
h wrap di�erent 
y
les in the 
ompa
t spa
e. D-branes

at angles in orientifold theories have �rst been studied for the spe
ial 
ase where

the D-branes wrap the same 
y
les as the orientifold planes leading to lo
al RR


harge 
an
ellation. The six dimensional set-ups were 
onstru
ted in [20℄ and

the four dimensional models were worked out in [19, 18℄ for a single orbifold

group generator while my 
ollaborators and me studied produ
ts of two orbifold

group generators in [49℄. These models preserve N = 1 supersymmetry in the


orresponding dimension but turn out to have a non-
hiral spe
trum. In [21℄

the relation between symmetri
 orbifolds in orientifold theories with D-branes

at angles and asymmetri
 orbifolds in ordinary type I theory with ba
kground


uxes was dis
ussed for six non 
ompa
t dimensions. Subsequently, in [22, 23℄

the 
hiral four dimensional spe
trum for toroidal 
ompa
ti�
ations in orientifold

theories with D-branes at angles was 
omputed. All these sear
hes for 
hiral

fermions were derived from orientifold theories.

In [2, 1℄ four dimensional models were 
onsidered whi
h des
end from 
om-

pa
ti�
ations of type II superstring theories without any orientifold proje
tion.

The D-branes interse
t on one, two or three tori while they are situated at an

orbifold �xed point in the remaining 
ompa
t spa
e. Phenomenologi
al issues,

namely hierar
hies of mass s
ales and Yukawa 
ouplings as well as the stability

of the proton were �rst dis
ussed in the 
ontext of type II theories. Further

attempts to derive the standard model from this 
lass of interse
ting D-branes

were performed in [9℄.

These theories di�er from the orientifold theories in three relevant features.

First of all, 
ompa
ti�
ations of type II theories preserve an extended amount

of supersymmetry in the 
losed string se
tor. Se
ondly, type II theories do not

need D-branes for RR 
harge 
an
ellation. If D-branes are introdu
ed, a suitable

amount of anti-D-branes is ne
essary for 
harge 
an
ellation. Thirdly, in orien-

tifold theories also the D-brane 
on�gurations have to be invariant under the

proje
tions. This leads to the existen
e of mirror images under the orientifold

a
tion whi
h in turn restri
ts the total number of fermion generations to be even

in ordinary 
ompa
ti�
ations on re
tangular tori. This problem does not arise

when 
onsidering the T-dual of a theory with a dis
rete NSNS ba
kground 
ux.

The tilted tori allow for an odd number of generations, and in [24℄ the �rst ex-

ample of a three generation model in four dimensions was given. In [71, 69℄ a

three generation model whi
h has exa
tly the gauge group SU(3)�SU(2)�U(1)

was found based on purely toroidal 
ompa
ti�
ations. This kind of 
onstru
tion


ontains a huge amount of free parameters, among others the numbers of identi-


al D-branes and their wrapping numbers along all six 
ompa
t dire
tions whi
h

are only �xed by four RR tadpole 
onditions and the requirement of obtaining

three generations. Therefore, it is relatively easy to engineer models with a stan-

dard model like 
hiral se
tor. However, the 
losed string se
tor as well as the

gauge se
tors of toroidal orientifolds preserve N = 4 supersymmetry. Partial
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supersymmetry breaking in the 
losed string and gauge se
tors 
an be a
hieved

by orbifold 
ompa
ti�
ations. In [48℄ we pursued this ansatz for the spe
ial


ase of four dimensional orbifolds plus an additional two torus. The RR 
harge


an
ellation 
onditions in this 
lass of models are far more restri
tive than the

toroidal ones. In [27℄ further non-supersymmetri
 
hiral orientifold models with

D6-branes and additional orbifold symmetries were examined. Another 
hallenge

of non-supersymmetri
 models, namely the issue of stability, was �rst addressed

in [100℄ for the purely toroidal 
ompa
ti�
ations, and in [27, 26℄ it was proven

that all non-supersymmetri
 theories with D6-branes at angles, in
luding those

where some moduli are frozen by an orbifold symmetry, su�er from a dilaton

tadpole. One possible way out of this dilemma is the 
onstru
tion of supersym-

metry preserving 
hiral type II orientifolds with D6-branes at angles [35, 33, 34℄.

For a very spe
ial 
hoi
e of the orbifold symmetry, it is possible to sele
t the

non-trivial angles of D6-branes su
h that N = 1 supersymmetry is preserved.

Further toroidal orientifold models with some lo
ally preserved supersymmetries

at D6-brane interse
tions [30, 29℄ or a Pati-Salam GUT group [79℄ have also been

analyzed re
ently.

In the 
ase of broken supersymmetry, this 
lass of models is, however, not

suitable to solve the mass hierar
hy problem 
on
erning the ele
troweak and the

Plan
k s
ale sin
e D6-branes at angles to not allow for large volume 
ompa
ti-

�
ations. Only a `modest hierar
hy problem' whi
h relates the weak s
ale and

the string s
ale in the TeV range 
an be explained in su
h models [30℄.

A more appropriate ansatz to handle the mass hierar
hy problem is by 
on-

sidering orientifold models with lower dimensional interse
ting D-branes with


ommon transversal dire
tions. I presented the �rst of su
h D4-brane models

in [64℄ in the T-dual disguise of interse
ting D8-branes with four 
ommon lon-

gitudinal 
ompa
t dimensions. In [77℄ 
hiral spe
tra of models with interse
ting

D4- and D5-branes in oriented and unoriented theories were brie
y dis
ussed

without, however, solving the problem of the 
losed string ta
hyoni
 modes aris-

ing in D5-brane models. In [65℄ I extended the dis
ussion of D8-brane models

to give some three generation models and dis
uss the stability.

The thesis is organized as follows.

Chapter 1 reviews the basi
 ingredients of orientifold 
onstru
tions with D-

branes at angles.

In 
hapter 2, D6-brane models on four dimensional orbifolds times an ad-

ditional two torus are presented where the D6-branes interse
t non-trivially on

this two torus. The tadpole 
an
ellation 
onditions and generi
 
hiral spe
tra are


omputed. The generalized Green-S
hwarz me
hanism needed for U(1) anomaly


an
ellation is 
ommented on, and �nally two examples are presented.

In 
hapter 3, models with D8-branes are 
onsidered. Tadpole and anomaly


an
ellation are inspe
ted and the 
hiral spe
trum is 
omputed. The problem of

stability of non-supersymmetri
 models is dis
ussed in terms of NSNS tadpoles.
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Four examples are given, and phenomenologi
al impli
ations are dis
ussed.

A summary and 
on
lusions are given in 
hapter 4. Te
hni
al details of the


al
ulations are 
olle
ted in the appendi
es A to G.

This thesis is based on

� [48℄: S. F�orste, G. Hone
ker and R. S
hreyer, Non-supersymmetri
 orien-

tifolds with D-branes at angles, JHEP 06 2001, 004, hep-th/0105208,

� [65℄: G. Hone
ker, Interse
ting brane world models from D8-branes on

(T

2

�T

4

=Z

3

)=
R

1

type IIA orientifolds, JHEP 01 2002, 025, hep-th/0201037.

Chapter 1 
olle
ts basi
 ingredients of orientifold 
onstru
tions and D-branes

at angles relevant for the following 
hapters. Chapter 2 is based on [48℄ and


hapter 3 on [65℄.



Chapter 1

Con
ept of D-branes at angles

1.1 Con�guration in type II theories

1.1.1 Strings in 
onstant ba
kgrounds

Type II superstring theories are 
onsistently de�ned in ten spa
etime dimensions.

The 
losed string is des
ribed by bosoni
 
oordinatesX

�

(�; �) and their fermioni


superpartners 	

�

(�; �) with the spa
etime index � = 0 : : : 9. � is the time-like

parameter on the two dimensional worldsheet and � 2 [0; 2�) is the periodi


spa
e-like worldsheet parameter. Open strings 
an be introdu
ed into the theory

by imposing boundary 
onditions on X

�

(�; �) and 	

�

(�; �) at � = 0; �. The

bosoni
 part of the sigma-model a
tion in the NS-R-formalism with trivial metri


on the worldsheet whi
h des
ribes the ten dimensional superstring theories is

then given by

S

bos

=

1

4��

0

Z

M

d�d�

�

G

��

�

�

X

�

�

�

X

�

+ �

��

B

��

�

�

X

�

�

�

X

�

�

+

1

2��

0

Z

�M

d�A

�

�

�

X

�

;

(1.1)

where �M is the boundary of the worldsheet M . The �elds that appear in the

a
tion (1.1) are the ba
kground metri
 G

��

and the antisymmetri
 tensor �eld

B

��

whi
h both arise from the 
losed string NSNS se
tor, as well as the gauge

potential A

�

pertaining to the ele
tro magneti
 gauge �eld strength F

��

lo
alized

at the boundary �M .

The solution to the two dimensional equation of motion in the 
losed string

se
tor is given by equation (A.1) in appendix A together with the mode expansion

of the left- and right-moving parts (A.2) and (A.3) whi
h depend in a trivial

ba
kground only on the light-
one 
oordinates �

�

= � � �, respe
tively.

In the open string se
tor there exist two di�erent kinds of boundary 
ondi-

tions 
onsistent with the equations of motion and (p + 1) dimensional Lorentz-

invarian
e (0 6 p 6 9) if we restri
t to the 
at non-
ompa
t 
ase and 
onsider

only trivial ba
kground �elds, i.e. B

��

= 0, G

��

= �

��

and A

�

= 0. Neumann

13
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boundary 
onditions are then given by

�

�

X

�

(�; � = 0) = �

�

X

�

(�; � = �) = 0;

while Diri
hlet 
onditions read

�

�

X

�

(�; � = 0) = �

�

X

�

(�; � = �) = 0:

These 
onditions are solved by the same ansatz as for the 
losed string se
-

tor (A.2), (A.3) if one takes into a

ount that Neumann 
onditions preserve the

momentum at the boundary, i.e. p

�

=

1

2

(p

�

L

+p

�

R

) = 0, while Diri
hlet 
onditions

�x the 
oordinates of the boundary to lie on a hypersurfa
e, i.e.

1

2

(p

�

L

� p

�

R

) = 0.

In addition, left- and right moving raising- and lowering operators are identi-

�ed via �

�

n

+ ~�

�

�n

= 0 for Neumann and �

�

n

� ~�

�

�n

= 0 for Diri
hlet boundary


onditions. An open string with Neumann boundary 
onditions along p spatial


oordinates de�nes a p dimensional hypersurfa
e, the Dp-brane.

If we now 
onsider type II superstring theories 
ompa
ti�ed on a two torus,

e.g. along the X

4;5

dire
tions with radiiR

1;2

, the left- and right moving momenta

are quantized in units of n=R

i

(n 2 Z, i = 1; 2). In addition, strings 
an

wind around the 
ompa
t dire
tions, the 
orresponding winding modes being

quantized in units of mR

i

=�

0

(m 2 Z).

In the 
ompa
t theory, Neumann- and Diri
hlet boundary 
onditions along

the dire
tion X

i

are ex
hanged under T-duality,

T :

�

X

i

L

(�

+

) +X

i

R

(�

�

)! X

i

L

(�

+

)�X

i

R

(�

�

);

R

i

! R

0

i

=

�

0

R

i

;

(1.4)

whi
h a
ts asymmetri
ally on the left- and right-moving se
tor.

For 
onsisten
y of the spa
e-time theory, the a
tion (1.1) with generi
 ba
k-

ground �elds has to be invariant under gauge transformations of the potential,

ÆA

�

= �

�

�; (1.5)

whi
h is trivially ful�lled sin
e (1.5) only adds a total derivative to the integrand

of the boundary term. In addition, the antisymmetri
 tensor variation

ÆB

��

= �

�

�

�

� �

�

�

�

(1.6)

leaves the bulk a
tion invariant, but adds a surfa
e term whi
h has to be 
an
eled

by a transformation of the open string gauge potential A

�

,

ÆA

�

= ��

�

: (1.7)

The 
ombination F

��

= B

��

+ F

��

is then the quantity whi
h is invariant un-

der (1.6) in 
ombination with (1.7).
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On the X

4;5

plane with F

45

= �F

54

6= 0 and G

ij

= Æ

ij

, the boundary


onditions are modi�ed:

�

�

�

X

4

+ F

45

�

�

X

5

�

(� = 0; �) = 0; (1.8)

�

�

�

X

5

�F

45

�

�

X

4

�

(� = 0; �) = 0: (1.9)

For a vanishing NSNS antisymmetri
 tensor ba
kground, F

45

= F

45

has to obey

the Dira
 quantization 
ondition

F

45

=

q

p

�

0

R

1

R

2

; (1.10)

with q; p 2 Z in order for the gauge �eld to be well de�ned on the two torus [8, 63℄.

This 
an be seen by 
hoosing the gauge

A

4

= a

4

;

A

5

= a

5

+ F

45

X

4

;

for a U(1) bundle. Going on
e around the X

4

dire
tion of the two torus, the

gauge potential 
hanges a

ording to [88℄

A

�

(X

4

+R

1

; X

5

) = A

�

(X

4

; X

5

) +

�

0

2�i

�

g

�1

�

�

g

�

(X

4

; X

5

);

with the transition fun
tion g = e

2�i�(X

5

)

and �(X

5

) = F

45

R

1

X

5

=�

0

. In order for

g to be single-valued on the overlap of two fundamental 
ells of the two torus,

�(X

5

= R

2

) 2 Z is required whi
h provides the quantization 
ondition (1.10)

for p = 1. By generalizing to the Abelian 
omponent of a U(p) bundle over

the same torus, (1.10) is pre
isely re
overed. The generalization to a non-trivial

NSNS antisymmetri
 tensor ba
kground is dealt with in se
tion 1.2.

1.1.2 T-dual pi
ture: D-branes at angles

Applying the T-duality transformation (1.4) along the X

5

dire
tion ex
hanges

�

�

X

5

with �

�

X

5

at the boundaries of the string worldsheet, and the quantiza-

tion 
ondition on the ba
kground 
uxes 
an be rephrased as F

45

= tan(�') 2

R

0

2

=R

1

� Q . The boundary 
onditions for D-branes with 
onstant ba
kground


ux (1.8), (1.9) 
an then be rewritten as

�

�

�


os(�')X

4

+ sin(�')X

5

�

(� = 0; �) = 0; (1.12)

�

�

�

� sin(�')X

4

+ 
os(�')X

5

�

(� = 0; �) = 0; (1.13)

whi
h des
ribe a D-brane wrapping a 1-
y
le in the X

4;5

plane at angle �'

relative to the X

4

axis.
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The 
orresponden
e between the pi
tures of D-branes at angles and D-branes

with 
onstant ba
kground 
uxes 
an also be understood by 
omparing the 
or-

responding 
u
tuation spe
tra of lower dimensional D-branes with those from

the Born-Infeld a
tions of spa
e �lling D-branes with 
uxes [63℄.

So far, we have only 
onsidered open strings with both endpoints on the

same kind of D-brane. If the theory in
ludes D-branes with di�erent ba
kground


uxes or in the T-dual language D-branes at a relative angle �', then also strings

with endpoints on two di�erent kinds of D-branes appear. Let us for simpli
ity

assume that one kind of D-branes wraps the 1-
y
le along the X

4

dire
tion on

a two torus. A string whi
h begins on this D-brane will have the boundary


ondition

�

�

X

4

(�; 0) = 0; �

�

X

5

(�; 0) = 0:

If the string ends on a D-brane whi
h is rotated by an angle �' relative to the

�rst kind, it is subje
t to the 
onditions (1.12), (1.13) at � = �. The solution to

these 
onditions is given by

X

4

(�; �) =

X

m2Z+'

1

m

�

m

e

�im�


os(m�) +

X

n2Z�'

1

n

~�

n

e

�in�


os(n�); (1.15)

X

5

(�; �) =

X

m2Z+'

1

m

�

m

e

�im�

sin(m�)�

X

n2Z�'

1

n

~�

n

e

�in�

sin(n�); (1.16)

and neither windings nor momenta o

ur.

The argumentation 
an be extended to the fermioni
 se
tors of the theory.

The two dimensional Dira
 equation for 
losed strings has the solution (A.4) with

the mode expansions of the left- and right-moving parts given in (A.5) and (A.6).

In 
ontrast to the bosoni
 variables, periodi
ity in the variable � and Lorentz

invarian
e still allow for two di�erent periodi
ity 
onditions on the worldsheet,

namely

Ramond: 	

�

(�; � + 2�) = 	

�

(�; �);

Neveu-S
hwarz: 	

�

(�; � + 2�) = �	

�

(�; �);

whi
h lead to integer os
illator modings in the R and half-integer ones in the

NS se
tor. One further subtlety in the fermioni
 se
tor is the o

urren
e of

di�erent spin stru
tures � = �1 [106℄ whi
h require in the open string se
tor the

identi�
ations

Neumann:  

�

r

+ i�

~

 

�

�r

= 0;

Diri
hlet:  

�

r

� i�

~

 

�

�r

= 0:

The fermioni
 os
illator moding for open strings stret
hing between D-branes

at angles 
hanges 
ompletely analogous to the one for the bosoni
 
oordinates.

One important 
onsequen
e of this 
hange is the fa
t that the R se
tor of a
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string with pure Neumann or Diri
hlet boundary 
onditions has zero modes  

�

0

whereas for a string stret
hing between D-branes at angles �', the zero mode on

the 
orresponding two torus is repla
ed by 
reation- and annihilation operators

 

i;i

�'

where i; i parameterize the two torus on whi
h the interse
tion o

urs. The

appearan
e of zero modes in the spe
trum signals a degenera
y of the ground-

state. While the R-se
tor groundstate of an open string on a sta
k of D9-branes

is eightfold degenerated, non-trivial angles on a two torus lead to a fourfold

degenerated R-groundstate of strings with endpoints on di�erent D-branes, and

ea
h further two torus with non-trivial angles redu
es this degenera
y by a fa
tor

of two. This means that non-trivial angles [12℄ or in the T-dual pi
ture ba
k-

ground �elds [8, 4℄ break 
hiral symmetry. For a generi
 
hoi
e of ba
kgrounds or

angles, supersymmetry is also broken and ta
hyoni
 modes appear in the spe
-

trum. These e�e
ts will be worked out in detail in se
tions 2.2.1 and 3.1.2 for

interse
ting D6- and D8-branes, respe
tively.

1.2 Orientifold proje
tions

The 
on
ept of T-duality between ba
kground �elds and angles and the break-

down of 
hiral and supersymmetry is independent of the parti
ular superstring

theory under dis
ussion. In type II theories, however, open strings and lower

dimensional Dp-branes are not required for 
onsisten
y. This is in 
ontrast to

type I superstring theory where a de�nite number of D-branes 
an
els the RR


harges arising from orientifold planes. The amount and dimensionality of D-

branes required for a 
onsistent model depend on the parti
ular orientifold group

of the model. One further appealing feature of type I string theory is the redu
ed

amount of supersymmetry rendering it potentially more interesting in view of

deriving the standard model from string theory.

Type I superstring theory is obtained from the type IIB theory by gauging

worldsheet parity 
 whi
h a
ts on the 
losed string se
tor as follows [54℄


 :

8

<

:

X

�

L

(�

+

) $ X

�

R

(�

�

);

	

�

L

(�

+

) ! 	

�

R

(�

�

);

	

�

R

(�

�

) ! �	

�

L

(�

+

):

(1.17)

The minus sign in the third line is required in order to obtain 
 

�

~

 

�




�1

=  

�

~

 

�

.

Otherwise, the graviton would be proje
ted out by the additional symmetry.

In total, the ten dimensional type IIB superstring theory 
ontains as massless

modes in the bosoni
 se
tor the metri
 G

��

, an antisymmetri
 tensor B

��

and

the dilaton � from the NSNS se
tor and a s
alar �, a two-form B

0

��

and a

self-dual four-form D

����

from the RR se
tor. The NS-R and R-NS se
tors

provide two gravitini with spin 3/2 and two dilatini with spin 1/2 leading to

N = 2 supersymmetry in ten dimensions. Gauging worldsheet parity amounts
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to proje
ting out the modes with 
 eigenvalue �1. The remaining massless

�elds are the metri
, dilaton and RR two form in the bosoni
 se
tor and one

gravitino and dilatino in the fermioni
 se
tor sin
e NS-R and R-NS states are

identi�ed under 
. In the non-
ompa
t theory, the NSNS two-form B

��

is gauge

equivalent to B

��

= 0. It is 
ompletely proje
ted out by 
. Upon 
ompa
tifying

on a two torus, e.g. in the X

4;5

plane, however, the two-form is only de�ned up

to latti
e shifts su
h that e�e
tively, a quantized non-vanishing dis
rete value

b = 1=2 with B

45

= �

45

b�

0

=R

1

R

2

remains possible [14, 13, 113, 3, 75℄ whi
h


annot be gauge transformed into B

45

= 0. In
luding a non-trivial ba
kground

NSNS antisymmetri
 tensor of rank r on a higher dimensional torus redu
es the

rank of the gauge group arising from open string states by a fa
tor of 2

r=2

.

The T-duality transformation (1.4) along one 
oordinate X

5

of the two torus

mentioned in se
tion 1.1.2 maps the non-trivial value of the NSNS tensor to a

tilted shape of the 
ompa
ti�
ation torus with trivial ba
kground 
uxes [24℄.

This 
an be derived from expressing the metri
 and antisymmetri
 tensor ba
k-

ground in terms of the K�ahler and 
omplex moduli and performing the T-duality

transformation. The K�ahler stru
ture of the original re
tangular two torus with

dis
rete NSNS ba
kground 
ux b = 0; 1=2 and radii R

1;2

along X

4;5

is given by

T = T

1

+ iT

2

= b + i

R

1

R

2

�

0

;

and the 
omplex stru
ture is given by

U = U

1

+ iU

2

= i

R

2

R

1

: (1.19)

The T-duality transformation ex
hanges the role of K�ahler and 
omplex stru
-

ture,

T

0

= �

1

U

; U

0

= �

1

T

:

The metri
 and the NSNS two form on a two torus are given in terms of the

K�ahler and 
omplex stru
ture,

G =

T

2

U

2

�

1 U

1

U

1

U

2

1

+ U

2

2

�

U

1

=0

=

T

2

U

2

�

1 0

0 U

2

2

�

; B =

�

0

R

1

R

2

T

1

�

0 1

�1 0

�

:

Upon T-duality along X

5

, these quantities transform into

G

0

=

1

�

0

�

R

2

1

+ (bR

0

2

)

2

b(R

0

2

)

2

b(R

0

2

)

2

(R

0

2

)

2

�

; B

0

= 0;

whi
h for b = 1=2 des
ribe the tilted torus shown in �gure 1.1.

The orientifold proje
tion 
 of the original theory with ba
kground 
uxes

transforms under T-duality along i 
oordinates into 
R

i

where R

i

is the re
e
-

tion along these i 
oordinates. In 
hapter 2 and 3 we will dis
uss the 
ases where
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b

x

4

x

4

x

5

x

5

b = 1=2

e

2

e

1

e

2

e

1

R

1

R

1

R

2

R

2

a

b = 0

Figure 1.1: Two tori in the T-dual pi
ture admitting D-branes at angles. The

index prime on radii and basis ve
tors is omitted.

three and one 
ompa
t 
oordinate, respe
tively, are T-dualized. In order to sim-

plify the notation and also in view of orbifold groups dis
ussed in se
tion 1.3, it

is 
onvenient to introdu
e 
omplex 
oordinates on the 
ompa
t spa
e

Z

1

= X

4

+ iX

5

; Z

2

= X

6

+ iX

7

; Z

3

= X

8

+ iX

9

: (1.23)

In terms of these 
omplex 
oordinates, the re
e
tion R

3

a
ts then as 
omplex


onjugation,

R

3

: Z

i

! Z

i

; i = 1; 2; 3: (1.24)

In the models dis
ussed in 
hapter 3, the re
e
tion only a
ts on one 
oordinate,

R

1

: Z

1

! Z

1

: (1.25)

From the de�nition (1.24) it is 
lear that only the real axes X

4;6;8

are invariant

under the orientifold proje
tion 
R

3

. Similarly, a

ording to (1.25) the real axis

X

4

and the four 
oordinates X

6;7;8;9

are invariant under 
R

1

. Together with

the four non 
ompa
t dire
tions, 
R

3

leaves six spatial plus one time dire
tion

invariant. These are the orientifold six O6-planes. Similarly, for 
R

1

one obtains

O8-planes.

Consisten
y of the theory enfor
es the existen
e of D-branes of the same

dimensionality whi
h 
an be rotated by angles �'

j

relative to the 
R

i

invariant

axes as dis
ussed in se
tion 1.1.2. For 
R

i

to be a symmetry of the theory, also

the mirror images of rotated D-branes at angles ��'

j

have to exist. The details

of the 
onstru
tion will be dis
ussed in se
tions 2.1.2 and 2.1.3 in the 
ontext of

D6-branes. The argumentation dire
tly 
arries over to the 
ase of interse
ting

D8-branes.

1.3 Orbifold groups

The ten dimensional type II superstring theories possess 32 super
harges. Torus


ompa
ti�
ations preserve all these 
harges, whereas moding out the worldsheet
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parity 
 in 
ombination with some target spa
e a
tion preserves 16 of them.

Purely toroidal orientifold models thus give N = 4 supersymmetry in four di-

mensions. In order to break half of the remaining supersymmetries, we in
or-

porate an orbifold group a
tion Z

M

in the 
ompa
ti�ed models. The orbifold

generator � a
ts as a rotation on the 
ompa
t 
oordinates,

� : Z

j

! e

2�iv

j

Z

j

: (1.26)

A Z

M

rotation requires �

M

= 1I, and modular invarian
e of string theory requires

P

j

v

j

= 0(mod 2). In the models dis
ussed here, we restri
t our attention to

orbifold groups whi
h a
t non-trivially only on the se
ond and third torus. The

four distin
t allowed orbifolds whi
h are listed in table 1.1 
an be viewed as

di�erent singular limits of 
ompa
tifying on a smooth K3 manifold. The

Four dimensional orbifolds

Group (v

2

; v

3

)

Z

2

(1=2;�1=2)

Z

3

(1=3;�1=3)

Z

4

(1=4;�1=4)

Z

6

(1=6;�1=6)

Table 1.1: The four orbifold limits of K3.

four dimensional orbifold groups listed in table 1.1 a
t symmetri
ally on left-

and right-moving se
tors provided that the 
omplex 
onjugation does not a�e
t

these two tori. This will be the 
ase in the models dis
ussed in 
hapter 3.

If on the other hand we 
hoose the re
e
tion symmetry R

3

, the models are

T-dual to ordinary 
 orientifolds with an asymmetri
 orbifold a
tion

^

�. In the


omplex notation (1.23), T-duality along X

5;7;9


an be rephrased as

T : Z

j

L

+ Z

j

R

! Z

j

L

+ Z

j

R

;

and the orbifold a
tion

^

� be
omes

^

� = T�T

�1

: Z

j

L

+ Z

j

R

! e

2�iv

j

Z

j

L

+ e

�2�iv

j

Z

j

R

:

The T-dual pi
ture 
an be used to study spe
ial 
lasses of asymmetri
 orien-

tifolds [21℄. For the orbifold group Z

2

, the T-dual version a
ts also symmetri-


ally, and one re
overs the supersymmetri
 model dis
ussed in [54℄. The other
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six dimensional supersymmetri
 models of this kind have been studied in [20℄.

All six dimensional models are also reviewed in detail in [104℄.

For the heteroti
 theories, whi
h are believed to be 
onne
ted to open string

theories by a strong/weak 
oupling duality, similar observations have been made

in [82, 83℄.

In
luding the orbifold group Z

M

produ
es additional O6-planes as 
an be

read o� from the following sequen
e

e

��ikv

j

Z

j

�

k

�! e

�ikv

j

Z

j

R

3

�! e

��ikv

j

Z

j

:

This means that e.g. the hyperplane (X

�

; X

4

; e

��i=3

X

6

; e

�i=3

X

8

) is invariant

under the 
ombination of R

3

with a Z

3

rotation on the se
ond and third torus.

1.4 RR tadpole 
an
ellation 
onditions

The O-planes 
an be viewed as sour
es and drains for 
losed strings. The re-

sulting tree 
hannel intera
tion between two 
ross
aps,

R

1

0

dlhCje

�2�lH

jCi, is

represented by the Klein bottle amplitude diagram depi
ted in �gure 1.2. The

intera
tion is mediated by the bosoni
 
losed string se
tors, namely the NSNS

and RR se
tors. The tadpoles arising from the two di�erent kinds of 
losed

strings propagating in the bulk 
an
el ea
h other due to supersymmetry, but in

order to have a fully 
onsistent theory, it is ne
essary that they also vanish sep-

arately. In the NSNS se
tor, this 
ould be a
hieved by appropriately rede�ning

the va
uum as suggested in [44, 45℄. The pro
edure 
an, however, not be applied

to the RR se
tor sin
e there are 
onserved 
harges asso
iated to the RR forms.

Instead, orientifold theories 
ontain further intera
tions, namely s
attering of a


losed string between an O-plane and a D-brane,

R

1

0

dl

�

hCje

�2�lH

jBi+ h:
:

�

,

whi
h has the M�obius strip as loop-
hannel diagram, and s
attering between

two D-branes,

R

1

0

dlhBje

�2�lH

jB

0

i, represented by the 
ylinder at tree level. For


onsisten
y of the theory, the net RR 
harge of all three diagrams has to 
an-


el. The 
ontributions to the three diagrams 
an be dire
tly 
al
ulated in the

boundary state formalism [97, 50, 74℄, but the normalizations of boundary jBi

and 
ross
ap jCi states whi
h determine the number of D-branes required 
an

be more easily read o� when starting from the loop 
hannel. Furthermore, in

the D8-brane models of 
hapter 3, the 
ouplings of twisted 
losed strings to D-

branes and O-planes determine the a
tion of the orientifold and orbifold group

on the Chan-Paton labels of open string states whi
h 
an only be understood by

starting from the loop 
hannel. In 
hapter 2 we will dis
uss how the boundary

state pi
ture 
onstrains the allowed 
ompa
ti�
ation latti
es.

The 
orresponden
e to the loop 
hannel 
an be established by the two di�er-

ent 
hoi
es of parameter ranges on the worldsheet des
ribing the Klein bottle.

The standard parameter range of a 
losed string is

0 6 � < 2�; 0 6 � < 2�l: (1.30)
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a)

b)

c)


R

i

h

1


R

i

h

2


R

i

h

g

g

g

a

a

b

Figure 1.2: Tadpole diagrams: a) Klein bottle, b) M�obius strip, 
) 
ylinder.


R

i

h

j

denote orientifold group elements, g denotes an orbifold group element.

The Klein bottle tree 
hannel diagram is obtained by taking a double 
over, i.e.

a torus with 0 6 � < 2�, 0 6 � < 4�l, the periodi
 identi�
ations � � � + 2�,

� � � + 4�l and a Z

2

identi�
ation

(�; �) � (4�l � �; � + �):

The two di�erent fundamental regions respe
ting these symmetries are depi
ted

in �gure 1.3. The diagram on the left hand side leads to the interpretation

of a tree 
hannel intera
tion, whereas the diagram on the right hand side has

the interpretation of a 1-loop intera
tion with the 
losed string undergoing a

twist 
 on the worldsheet. For this, the role of � and � have to be ex
hanged,

and in order to obtain the standard parameter range of a 
losed string with

0 6 � < 2�t, a res
aling is needed whi
h gives t = 1=4l. In a similar manner,

by reparameterizing t = 1=2l, the 
ylinder 
losed string tree diagram transforms

into an open string loop diagram. The M�obius strip also transforms into an open

string 1-loop diagram, but this time again a double 
over of the fundamental

region is needed leading to the reparameterization t = 1=8l.
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Figure 1.3: Triangulated versions of the tree 
hannel Klein bottle diagram.

The RR 
harges of O-planes and D-branes 
an be extra
ted from the loop di-

agrams by 
omputing the UV-limits of the following parts of the amplitudes [97℄:

Klein bottle: Closed string NSNS states with P

orb


R

i

(�1)

F

insertion,

M�obius strip: Open string R states with �P

orb


R

i

insertion, (1.32)

Annulus/Cylinder: Open string NS states with P

orb

(�1)

F

insertion,

where P

orb

=

�

1 + � + : : :+�

M�1

�

=M proje
ts onto states invariant under the

orbifold group, F is the worldsheet fermion number and the fa
tor (�1)

F

arises

from the GSO proje
tion [56℄ whi
h for our models is given by (1.35) in the


losed string se
tor, and the open string analog is obtained by restri
ting to e.g.

the left-movers only. The minus sign in the M�obius strip takes into a

ount the

spa
e time fermion number.

The periodi
ity and boundary 
onditions in the tree 
hannel with the stan-

dard parameter range (1.30) on a generi
 bosoni
 worldsheet �eld �(�; �) in the

g-twisted se
tor (see �gure 1.2) are as follows [54, 37℄:

Klein bottle: �(0; � + �) = 
R

i

h

1

�(0; �);

�(2�l; � + �) = 
R

i

h

2

�(2�l; �);

�(�; 2� + �) = g�(�; �);

M�obius strip: �(2�l; � + �) = 
R

i

h�(2�l; �);

�(�; 2� + �) = g�(�; �):

For worldsheet fermions, a phase �1 from the GSO proje
tion has to be in
luded

as well [54℄.

For 
onsisten
y of the boundary 
onditions, the Klein bottle has to ful�ll

(
R

i

h

1

)

2

= (
R

i

h

2

)

2

= g

2

; (1.33)

and in the M�obius strip

(
R

i

h)

2

= g

2

(1.34)



24 1. Closed se
tor

is required. The orbifold group element g denotes the twist se
tor of the 
losed

string propagating in the tree 
hannel. Due to the 
hoi
e of the orientifold group

f
R

3

�

k

g, only untwisted 
losed strings 
ouple to the O6-planes and D6-branes

in the models dis
ussed in 
hapter 2, even though twisted 
losed string se
tors

exist. This is in 
ontrast to the D8-brane models dis
ussed in 
hapter 3 where

all twist se
tors 
ouple to the O8-planes and D8-branes.

1.5 Low energy spe
tra

The physi
al states are given by those string ex
itations whi
h are invariant

under the orbifold and orientifold a
tion and the GSO proje
tion.

1.5.1 Closed se
tor

The GSO proje
tion in the expli
it examples in 
hapter 2 and 3 is 
hosen to be

P

GSO

=

1 + (�1)

F

2

1� (�1)

~

F

2

; (1.35)

where F and

~

F are left- and right-moving worldsheet fermion numbers, respe
-

tively.

The NSNS se
tor groundstate is odd under (�1)

F

and even under (�1)

~

F

and thus proje
ted out. The re
e
tion R

i

does not a�e
t the non-
ompa
t


oordinates. De�ning 
reation- and annihilation operators with 
omplex indi
es

as in equation (A.7), we obtain the a
tion of the orientifold group on bosoni


os
illators given in equation (A.10). The a
tion on the fermioni
 se
tor 
an

be easily read o� from this bearing in mind the minus sign of (1.17). The

orbifold group a
ts on the os
illators as de�ned in equation (1.26) with the

mode expansion (A.2), (A.3) inserted. The graviton and dilaton are massless

model independent states. They are represented by

�

 

�

�1=2

~

 

�

�1=2

+  

�

�1=2

~

 

�

�1=2

�

j0i

NSNS

: (1.36)

In addition, model dependent ve
tors and s
alars arise. The GSO proje
tion


onsistent with 
R

3

in the RR se
tor is given by (s

i

= �1=2)

(�1)

F

js

0

; s

1

; s

2

; s

3

i = �e

�i(s

0

�s

1

�s

2

�s

3

)

js

0

; s

1

; s

2

; s

3

i; (1.37)

(�1)

~

F

js

0

; s

1

; s

2

; s

3

i = e

�i(s

0

+s

1

+s

2

+s

3

)

js

0

; s

1

; s

2

; s

3

i; (1.38)

while for 
R

1

, the GSO proje
tion onto the left moving se
tor is repla
ed by

(�1)

F

js

0

; s

1

; s

2

; s

3

i = �e

�i(s

0

�s

1

+s

2

+s

3

)

js

0

; s

1

; s

2

; s

3

i: (1.39)
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The a
tion of the orbifold and orientifold group on the RR se
tor is given by

� : js

0

; s

1

; s

2

; s

3

i ! e

2�i~v�~s

js

0

; s

1

; s

2

; s

3

i;

R

3

: js

0

; s

1

; s

2

; s

3

i ! js

0

;�s

1

;�s

2

;�s

3

i;

R

1

: js

0

; s

1

; s

2

; s

3

i ! js

0

;�s

1

; s

2

; s

3

i;

with ~v listed in table 1.1 for the di�erent four dimensional orbifold groups.

In the �

n

-twisted se
tors, the masses are given by

�

0

4

m

2

L;R

= N

L;R

+

1

2

q

2

L;R

+ E

va


�

1

2

; (1.40)

with the state represented by

q

L;R

=

8

<

:

(0; 0;�nv

2

;�nv

3

) NS;

(

1

2

;

1

2

;

1

2

� nv

2

;

1

2

� nv

3

) R;

(1.41)

the os
illator number N

L;R

and

E

va


=

1

2

X

j=2;3

jnv

j

j(1� jnv

j

j); (1.42)

where 0 6 jnv

j

j < 1 is required. In the models with D6-branes, the orientifold

group a
tion 
R

3

preserves the twist se
tor, whereas in the D8-brane models


R

1

ex
hanges the �

n

and the �

�n

twisted se
tors.

The NS-R se
tors are mapped to the R-NS se
tors under the orientifold

proje
tion. Thus, the fermioni
 superpartners of the NSNS and RR se
tors are

provided by an invariant superposition of NS-R and R-NS states.

1.5.2 Open se
tor

The open string groundstates for strings with both ends on the same type of

D-branes 
an be treated in the same way as one se
tor, e.g. the left moving one,

of the 
losed string.

In addition, strings between D

a

- and D

b

-branes at angles appear. If the non-

trivial angles �'

i

appear only in the se
ond and third torus with (�'

2

; �'

3

) =

��n(v

2

; v

3

), the whole dis
ussion of the previous se
tion 
arries over. The os
il-

lator moding is then the same as for twisted 
losed strings and one 
an therefore

speak of `twisted open string se
tors'.

If on the other hand the D-branes interse
t on the �rst torus at an angle �',

equations (1.41), (1.42) have to be modi�ed as follows,

q

(')

L;R

= q

L;R

+ (0; '; 0; 0); (1.43)

E

(')

va


= E

va


+

1

2

j'j(1� j'j): (1.44)
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The representation of open D

a

-D

b

string states under the gauge group is deter-

mined by regarding the orbifold and orientifold group a
tion,


R

i

�

k

: j ;mni�

(a;b)

nm

! j
R

i

�

k

�  ;mni

�




(b)


R

i

k

�


(a)�1


R

i

k

�

T

nm

; (1.45)

�

k

: j ;mni�

(a;b)

nm

! j�

k

�  ;mni

�




(b)

k

�


(a)�1

k

�

nm

; (1.46)

where the 
 matri
es a
ting on the Chan-Paton labels �

(a;b)

are determined by the

tadpole 
an
ellation 
onditions and the requirement that they form a proje
tive

representation of the orientifold group [54℄.

For example, applying two orientifold group elements one obtains

�


R

i

�

k

�

�


R

i

�

k

0

�

: j ;mni�

(a;b)

nm

! j�

l

� ;mni

�




(b

0

)�T


R

i

k




(b)


R

i

k

0

�


(a)�1


R

i

k

0




(a

0

)


R

i

k

�

nm

;

(1.47)

with l = k

0

� k for 
R

3

and l = k + k

0

for 
R

1

. D

a

0

is the R

i

image brane of

D

a

. Comparing (1.47) with (1.46) leads to 


(a)

l

' 


(a

0

)�T


R

i

k




(a)


R

i

k

0

up to a phase.

If the orbifold or orientifold a
tion is a symmetry of the D-brane 
on�gura-

tion, i.e. it only a
ts as a phase on the 
orresponding mass eigenstates  , the

representations of the Chan-Paton labels �

(a;b)

are obtained from

�

(a;b)

= �

k

( )

�




(b)


R

i

k

�


(a)�1


R

i

k

�

T

;

�

(a;b)

= ~�

k

( )


(b)

k

�


(a)�1

k

;

where �

k

( ); ~�

k

( ) 2 C are the phases obtained from the a
tion of the orientifold


R

i

�

k

and orbifold �

k

generator on the state  , respe
tively.

For all models dis
ussed in this thesis, 
R

i

�

k

is a symmetry of D

a

-D

a

0

strings

at R

i

invariant interse
tions as well as D




-D




strings if the sta
k of D




-branes is

lo
ated on top of an O-plane. The gauge group supported by su
h D




-branes is

therefore only a subgroup of U(N




). Furthermore, in 
hapter 2, a �

M=2

rotation

for M even preserves the D6-brane 
on�gurations whereas in 
hapter 3, ea
h �

rotation leaves the D8-brane positions invariant. The 
orresponding low energy

spe
tra are dis
ussed in detail in se
tion 2.3 for interse
ting D6-branes and in

se
tion 3.1.2 for D8-branes at angles.



Chapter 2

Orientifold models with

interse
ting D6-branes

In this 
hapter, we present four dimensional orientifold 
ompa
ti�
ations of type

IIA superstring theory where we 
ombine the worldsheet parity operator 
 with

a re
e
tionR

3

of half of the internal 
oordinates. In addition, we in
lude the four

dimensional orbifold groups listed in table 1.1. On the one two torus whi
h is

not a�e
ted by the orbifold proje
tion, we allow for non-trivial angles of the D6-

branes whi
h support 
hiral fermions at the interse
tion points. The maximal

rank of the gauge groups depends on the orbifold group under 
onsideration.

These models have been studied in [48℄.

2.1 Amplitudes and RR tadpole 
an
ellation

Can
ellation of RR tadpoles gives 
onstraints on the allowed number of identi
al

D6-branes and on the proje
tion of the wrapped 1-
y
les on the two torus onto

the 
R

3

invariant plane.

The orientifold proje
tion 
R

3

a
ts as de�ned in se
tion 1.2 and appendix A,

equation (A.10), on the os
illators. In addition, the orbifold groups of se
tion 1.3

are moded out. At �rst, the Klein bottle amplitude is 
omputed whi
h gives an

RR tadpole. In se
tion 2.1.2 and 2.1.3, the open string loop amplitudes needed

for RR 
harge 
onservation are su

essively 
omputed. The strategy of determin-

ing the RR tadpoles 
onsists of 
omputing the loop 
hannel expression of ea
h

amplitude, then reparameterizing the worldsheet as explained in se
tion 1.4 and

extra
ting the infrared divergent limit l ! 1. Imposing tadpole 
an
ellation

amounts to summing over the 
ontributions from the three 
ontributing 1-loop

amplitudes and solving a quadrati
 equation.

The normalizations of boundary and 
ross
ap states are obtained by mat
hing

the dire
t tree 
hannel 
al
ulation with the modular transformations of the loop


hannel amplitudes. Imposing worldsheet duality in this 
lass of models results

27
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in sele
ting out spe
ial orbifold latti
es.

2.1.1 The Klein bottle amplitude

The loop 
hannel expression of the Klein bottle amplitude is given by

K = 4


Z

1

0

dt

t

3

Tr

U+T


losed

�


R

3

2

P

orb

P

GSO

(�1)

S

e

�2�tH

�

; (2.1)

where 
 = V

4

= (8��

0

)

2

is a 
onstant fa
tor appearing in all three loop amplitudes,

V

4

is the regularized volume of non-
ompa
t momentum spa
e,

P

orb

=

1 + �+ � � �+�

M�1

M

(2.2)

is the orbifold proje
tor, P

GSO

is as de�ned in (1.35) with (�1)

F

and (�1)

~

F

given

by (1.37) and (1.38), respe
tively, and S denotes the spa
e time fermion number.

The Hamiltonian H is displayed in (A.11) with mode expansion (A.12). The

tra
e in
ludes a sum over all latti
e and os
illator 
ontributions from untwisted

and twisted se
tors. The tree 
hannel RR ex
hange arises from the part of the

total loop 
hannel Klein bottle amplitude (2.1) listed in (1.32).

In the following, we will dis
uss separately the �rst torus on whi
h the orbifold

group a
ts trivially and then the se
ond and third torus on whi
h the rotation

a
ts.

In this 
hapter we mainly fo
us on the 
ase of a trivial antisymmetri
 NSNS

tensor ba
kground in the T-dual pi
ture. The generalization to a non-vanishing

ba
kground b = 1=2 on the �rst two torus is straightforward and will be used in


hapter 3.

Latti
e 
ontributions on T

2

The torus latti
e whi
h is not subje
t to the orbifold proje
tion 
an have the

two di�erent 
R

3

invariant shapes displayed in �gure 1.1 
orresponding to a

vanishing or non-trivial antisymmetri
 NSNS tensor ba
kground in the T-dual

pi
ture with D9-branes. In this 
hapter, we use the terminology introdu
ed in

se
tion 1.2 of latti
e orientations a and b relative to the O6-plane in the pi
ture

of D6-branes at angles if not stated otherwise.

Untwisted 
losed strings 
an have Kaluza-Klein momenta whi
h lie in the

dual latti
e,

P = m

1

~e

�

1

+m

2

~e

�

2

; (2.3)

and winding modes in the latti
e,

�

0

W = n

1

~e

1

+ n

2

~e

2

; (2.4)
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where m

i

; n

i

2 Z and the ~e

i

(~e

�

i

) are the basis ve
tors of the (dual) torus latti
e.

Only states invariant under the orientifold group 
R

3


ontribute to the Klein

bottle amplitude. Kaluza-Klein momenta P are left invariant by the orienta-

tion reversal on the worldsheet, 
P


�1

= P , while the winding dire
tions of

the string are reversed, 
W


�1

= �W . The re
e
tion R

3

maps momenta and

windings onto their 
omplex 
onjugates on the two torus. Combining the orien-

tation reversal on the worldsheet with the re
e
tion, the latti
e 
ontributions to

the Klein bottle amplitude in the tree 
hannel transform as follows,

(
R

3

)P

1;1

(
R

3

)

�1

= P

1;1

;

(
R

3

)W

1;1

(
R

3

)

�1

= �W

1;1

:

Only 
R

3

invariant Kaluza-Klein modes 
ontribute. Therefore, only Kaluza-

Klein momenta along the dire
tion of the O6-plane and windings perpendi
ular

to the same 
ontribute on the �rst two torus. For the a type latti
e, the 
ontri-

butions to the tra
e are of the form

1

4

�

p

2

L

+ p

2

R

�

=

�

0

2

(P

4

)

2

+

1

2�

0

(W

5

)

2

=

�

0

2

m

2

R

2

1

+

1

2�

0

n

2

R

2

2

;

where R

1

, R

2

are the radii of the two torus as de�ned in �gure 1.1.

By summing over all allowed momenta and windings m;n 2 Z, the latti
e


ontributions 
an be 
ast into a general expression of the form

L

R

1

;R

2

[�; �℄(t) �

 

X

m2Z

e

���tm

2

=�

1

! 

X

n2Z

e

���tn

2

�

2

!

with �

i

= R

2

i

=�

0

. The 
orresponding expressions for the Klein bottle amplitude

for both latti
e orientations a and b representing the ba
kground b = 0; 1=2,

respe
tively, in the T-dual pi
ture are listed in table B.1.

Latti
e 
ontributions on T

4

=Z

M

Latti
e 
ontributions on the orbifold only appear in the untwisted se
tor. The


ompa
ti�
ation latti
e has to be 
hosen su
h that it remains invariant under

the orbifold generator �. For Z

2

and Z

4

, the SU(2)

2

latti
e is mapped onto itself

under a rotation by e

�i=2

. The two latti
e orientations A and B 
onsistent with

the re
e
tion symmetryR

3

are shown in �gure 2.1. In fa
t, the Z

2

symmetry also

preserves re
tangular a type latti
es with R

1

6= R

2

and the b type latti
e with

apex angle 2� 6= �=2 (see �gure 1.1 for the de�nition of the latti
e orientations

and �gure B.1 for the de�nition of �). The tadpole 
an
ellation 
onditions are,

however, independent of the variables R

1

; R

2

and �. For simpli
ity, we utilize

the quadrati
 latti
es.

If the orbifold group is 
hosen to be Z

3

or Z

6

, the SU(3) latti
es depi
ted in

�gure 2.2 are 
onsistent with rotational and R

3

symmetry. For the part of the
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A B

R

1

3

24

1

4

2

3

R

R

R

Figure 2.1: Solid 
ir
les denote Z

4

�xed points, empty 
ir
les the additional Z

2

�xed points whi
h are ex
hanged under a Z

4

rotation. For the A latti
e, all

�xed points are R

3

invariant. For the B latti
e, the Z

2

�xed points 3 and 4 are

ex
hanged under R

3

.

tra
e with trivial insertion, the latti
e 
ontributions are determined exa
tly in

the same way as for the two torus T

1

whereas for a �

k

insertion, the momenta

and windings transform in the following way (j = 2; 3),

(
R

3

�

k

)P

j;j

(
R

3

�

k

)

�1

= e

�2�ikv

j

P

j;j

;

(
R

3

�

k

)W

j;j

(
R

3

�

k

)

�1

= �e

�2�ikv

j

W

j;j

:

This means that Kaluza-Klein momenta whi
h are rotated by �

�k=2

from the

real axes and windings rotated by the same angle from the imaginary axes of the

two tori T

2;3


ontribute to the latti
e sums. If � is a Z

2

or Z

3

rotation, �

1=2

is

also a symmetry of the latti
e, and therefore the Kaluza-Klein and winding sums

are identi
al to those with trivial insertion. The orbifold symmetry does not give

any 
onstraint on the 
hoi
e of orientations. All possible latti
e 
ombinations

AA, AB (whi
h is equivalent to BA) and BB are allowed.

If on the other hand � is a Z

4

or Z

6

rotation, �

1=2

inter
hanges the latti
e

orientations A and B. Merely the latti
e AB gives a 
onsistent interpretation

of the Klein bottle amplitude in the tree 
hannel. Only untwisted 
losed strings

intera
t with the 
ross
aps, and therefore only one kind of latti
e 
ontributions

on the four dimensional orbifold 
an appear. The AA and BB latti
es lead to

a linear superposition of two latti
e sums whi
h is in
onsistent with worldsheet

duality. This 
onstraint is worked out in greater detail in appendix C.3.

The latti
e 
ontributions per two torus for all 
onsistent models are listed in

table B.1.
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R

A B

1

2

3

4

56 6

4

5

2 3

1

R

R

R

Figure 2.2: Solid 
ir
les denote Z

3

�xed points, empty 
ir
les the Z

2

�xed points.

A Z

2

rotation ex
hanges the Z

3

�xed points 2 and 3, a Z

3

rotation permutes the

Z

2

�xed points 4,5,6. R

3

ex
hanges 5,6 in the A latti
e and 4,6 in the B latti
e.

The loop 
hannel amplitude

In order to extra
t the RR ex
hange in the tree 
hannel, only the NSNS se
tor

with (�1)

F

insertion in the 1-loop 
hannel needs to be evaluated. The non-


ompa
t dire
tions in light-
one gauge 
ontribute a fa
tor #

�

0

1=2

�

=�(2t) for the

worldsheet fermions and 1=�

2

(2t) for the worldsheet bosons. The de�nitions

of the Dedekind eta and generalized Ja
obi theta fun
tions are given in ap-

pendix B.2. Ea
h 
omplex 
ompa
t set of os
illators from the untwisted se
tor

gives the same 
ontribution. An insertion of �

k

in the tra
e does not a�e
t the

os
illator part be
ause only 
R

3

invariant states �

j

~�

j

and �

j

~�

j


ontribute and

the phases 
an
el between left- and right-movers. Upon modular transformation,

this 
orresponds in the tree 
hannel to no twisted se
tors 
oupling to the 
ross-


aps. This result is 
onsistent with the tree 
hannel boundary 
onditions (1.33)

and (1.34) whi
h for this 
lass of models give the twist se
tors (
R

3

�

k

)

2

� 1I.

From (
R

3

)�

j;j

r

(
R

3

)

�1

= ~�

j;j

r

follows that 
R

3

preserves ea
h twist se
tor.

Formally all twist se
tors 
ontribute to the tra
e, where one 
omplex 
ompa
t

dimension yields the os
illator part #

�

nv

i

1=2

�

=#

�

1=2+nv

i

1=2

�

(2t) for nv

j

6= 0. However,

the numeri
al result may be zero in spe
ial 
ases as happens for Z

2

twist se
tors.

The last ingredients needed for evaluating the tra
e in (2.1) are the numbers

�

(n;k)

of �

n

�xed points whi
h are invariant under the insertion 
R

3

�

k

. These

�xed points are displayed in �gure 2.1 for Z

2

and Z

4

and in �gure 2.2 for Z

3

and

Z

6

. Sin
e the latti
e sums and os
illator 
ontributions are invariant under the

insertions, only the total number �

(n)

=

P

k

�

(n;k)

of �

n

�xed points enters the


omputation.

In summary, the NSNS part with (�1)

F

insertion of the one loop Klein bottle
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amplitude yields

K = 


Z

1

0

dt

t

3

L

K

1

 

K

(0)

L

K

2

L

K

3

+

M�1

X

n=1

�

(n)

K

(n)

!

; (2.7)

where the os
illator 
ontributions K

(n)

are given in terms of Ja
obi theta fun
-

tions in (B.15), L

K

i

denote latti
e 
ontributions arising from the i

th

two torus

listed in table B.1 and the numbers �

(n)


an be easily read o� from �gures 2.1

and 2.2.

The tree 
hannel amplitude

The modular transformation t = 1=4l leads to the RR ex
hange in the tree


hannel,

~

K = 



K

1




K

2




K

3

Z

1

0

dl

~

L

K

1

(

~

L

K

2

~

L

K

3

~

K

(0)

+ 4

M�1

X

k=1

sin

2

�

�k

M

�

~

K

(k)

)

; (2.8)

where

~

K

(0)

and

~

K

(k)

are given in (B.19) and (B.20), respe
tively. The latti
e

sums

~

L

K

i

and 
onstants 


K

i

arise from Poisson resummation of the L

K

i

, namely

L(t) = 
l

~

L(l), and are listed expli
itly in table B.1. The fa
tor 4 sin

2

(�k=M)

re
e
ts the fa
t that only Z

M

invariant states from the 
losed string se
tor prop-

agate in the tree 
hannel [20℄. In terms of 
ross
ap states this 
an also be

rephrased as the appearan
e of the `
omplete proje
tor' as explained in detail in

appendix C.1.2, in parti
ular formula (C.13).

The infrared limit l!1 is obtained from the leading terms in the expansion

of latti
e sums and os
illator 
ontributions. The latter 
an be easily read o� from

the produ
t expansion of the Ja
obi theta fun
tions (B.9).

The Klein bottle amplitude 
an also be 
omputed dire
tly in the tree 
hannel

by using the boundary state approa
h [97, 74, 50℄. The detailed 
al
ulation is

given in appendi
es C.1 and C.3. The normalization of the 
ross
ap state is

determined via worldsheet duality to be

N

C

=

r





K

1




K

2




K

3

2M

: (2.9)

2.1.2 The annulus amplitude

The RR tadpole 
an be 
an
eled by in
luding open strings in the theory. One

of the 1-loop amplitudes for open strings is the annulus. It is given by

A = 


Z

1

0

dt

t

3

Tr

open

�

1

2

P

orb

P

GSO

(�1)

S

e

�2�tH

�

; (2.10)

where the tra
e in
ludes all possible endpoints of open strings on di�erent D6-

branes.
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Latti
e 
ontributions on T

2

Let us �rst dis
uss the 
ontributions to the one-loop amplitude from strings

starting and ending on the same sta
k of D6-branes. Sin
e ea
h D6-brane wraps

a 1-
y
le on T

1

, in�nitely many parallel 
opies of the same sta
k of D6-branes

have to be 
onsidered. The situation is depi
ted in �gure 2.3. On the re
tangu-

lar torus, the length L

a

of the wrapped 1-
y
le is determined by the wrapping

numbers (n

a

; m

a

) along (X

4

; X

5

) and the 
orresponding radii R

1

; R

2

, namely

L

a

=

p

(n

a

R

1

)

2

+ (m

a

R

2

)

2

. The `winding modes' are quantized in units of the

distan
e of adja
ent 
opies of the same D6

a

-brane,

�

0

W =

sR

1

R

2

L

a

; (2.11)

with s 2 Z. Furthermore, strings 
an move along the Neumann dire
tion of the

D6

a

-brane,

P =

r

L

a

; (2.12)

with r 2 Z. The latti
e 
ontributions to the tra
e then appear as

L

A

a

=

P

r;s

e

�2�t�

0

M

2

with M

2

= P

2

+ (�

0

W )

2

. The results for the b type latti
e

on T

1


an be read o� from table B.1. Alternatively, the wrapping numbers along

the basis ve
tors e

1

; e

2

(see �gure 1.1) on a tilted torus 
an be repla
ed with

their proje
tions onto the (X

4

; X

5

) dire
tions, (n

a

; m

a

+ bn

a

) with b = 1=2 for

the tilted torus and b = 0 for the re
tangular one.

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

x

5

x

4

N

1

W

P

Figure 2.3: Kaluza-Klein momenta and windings from open strings with

both endpoints on the same sta
k of D6

1

-branes with wrapping numbers

(n

1

; m

1

) = (2; 1).

Latti
e 
ontributions on T

4

=Z

M

We restri
t to the 
ase where the D6-branes lie on top of the O6-planes along the

orbifold dire
tions. The resulting D6-brane 
on�gurations are shown in �gure 2.4
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for Z

2

and Z

4

and in �gure 2.5 for Z

3

and Z

6

symmetries. As on T

1

, momentum

and winding states are quantized in units of the inverse length of the 1-
y
le and

the distan
e of parallel D6-branes on ea
h two torus, respe
tively.

The loop and tree 
hannel amplitudes

`Twisted open strings' are those strings with one endpoint lo
ated on a D6-

brane whi
h is the Z

M

image of the other one, i.e. the position of the se
ond

D6-brane is obtained by a �

n=2

rotation of the �rst one . The os
illators are

moded in analogy with (1.15), (1.16) on T

2;3

with ' = �n=M . Su
h D6-branes


an interse
t multiply on the fundamental 
ell of the orbifold. The interse
tion

numbers �

(n)

A


an be read o� from �gures 2.4 and 2.5.

The 1-loop amplitude for D6

a

-D6

a

strings reads

A

aa

=




4

N

2

a

Z

1

0

dt

t

3

L

A

1

(

L

A

2

L

A

3

A

(0;0)

aa

+

M�1

X

n=1

�

(n)

A

A

(n;0)

aa

)

; (2.13)

with A

(n;k)

ab

given by (B.16) when i#

�

�'

1=2

�

=#

�

1=2+�'

1=2

�

(t) is repla
ed by #

�

0

1=2

�

=�

3

(t)

for �' ! 0. The number N

a


ounts identi
al D6

a

-branes. The square appears

due to the separate 
ounting of the endpoints � = 0; � of an open string. The

latti
e 
ontributions are again 
olle
ted in table B.1. In equation (2.13) we have

BA

Figure 2.4: Supersymmetry preserving D6-brane 
on�gurations on T

4

for Z

2

(solid lines) and Z

4

(solid and dashed lines).

impli
itly used the fa
t that the Chan-Paton representations of Z

2

elements

of the orbifold group have to be tra
eless as dis
ussed below. A generi
 Z

M

rotation inter
hanges the D6-brane positions on T

2;3

. Therefore, �

n

insertions

give vanishing 
ontributions to the annulus amplitude ex
ept for the spe
ial 
ase

of a Z

2

rotation where D6-brane positions are mapped onto themselves. The

Z

2

rotation is a

ompanied by a non-trivial a
tion on the Chan-Paton matri
es
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B
A

Figure 2.5: Supersymmetry preserving D6-brane 
on�gurations on T

4

for Z

3

(solid lines) and Z

6

(solid and dashed lines).

�

(ab)

of open D6

a

-D6

b

strings whi
h provides a prefa
tor tr(


a

M=2

)tr(


b;�1

M=2

) in

the amplitude with �

M=2

insertion. In order to avoid additional tadpoles from

twisted 
losed string modes propagating in the tree 
hannel whi
h 
annot be


an
eled by the Klein bottle, this prefa
tor has to vanish. This is exa
tly the


ondition of tra
eless 
 matri
es for Z

2

elements, the so 
alled `twisted tadpole


an
ellation 
ondition'.

The modular transformation t = 1=2l leads to

~

A

aa

=




2

4

N

2

a




A

1




A

2




A

3

Z

1

0

dl

~

L

A

1

#

h

1=2

0

i

2

�

6

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

~

L

A

2

~

L

A

3

#

h

1=2

0

i

2

�

6

+ 4

M�1

X

k=1

sin

2

�

�k

M

�

#

h

1

2

k=M

i

#

h

1

2

�k=M

i

#

h

1

2

�

1

2

+k=M

i

#

h

1

2

1

2

�k=M

i

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

;

(2.14)

where the argument of the Ja
obi theta fun
tions is 2l. Comparing this with the

result from the boundary state formalism, one obtains the normalization fa
tor

for the boundary states

N

B

=

r





A

1




A

2




A

3

2

5

M

: (2.15)

The details of boundary states for D6-branes are given in appendix C.2.

Having found the 
omplete boundary and 
ross
ap states, the 
al
ulation of

the remaining amplitudes be
omes a straightforward task. Open strings stret
h-

ing between D6

a

- and D6

b

-branes at an angle ��' are des
ribed by the shifted
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Figure 2.6: Two types of D6-branes with wrapping numbers (n

1

; m

1

) = (2; 1)

and (n

2

; m

2

) = (1; 2) interse
ting multiply on the fundamental 
ell of the torus.

os
illator moding �

Z+�'

a

ording to equations (1.15), (1.16) whi
h transforms

into a phase in the tree 
hannel. One further important ingredient is the fa
t

that D6-branes at angles 
an interse
t multiply on the fundamental 
ell of the

two torus. This situation is depi
ted in �gure 2.6. The interse
tion number I

ab

is given by

I

ab

= n

a

m

b

�m

a

n

b

: (2.16)

Formally, the interse
tion number 
an take negative values. In terms of physi
al

quantities, this means that the parti
les with support at the interse
tion lo
us

of the D6

a

- and D6

b

-branes transform under the 
onjugate representation.

The multipli
ity of interse
tions leads to a repli
ation of matter whi
h needs

to be taken into a

ount in 
omputing the annulus amplitude in the loop 
hannel.

The tree level 
ylinder amplitude from strings stret
hed between the branes D6

a

and D6

b

interse
ting at a relative angle ��' reads

~

A

ab

=




2

3

N

a

N

b

I

ab




A

2




A

3

Z

1

0

dl

(

~

L

A

2

~

L

A

3

~

A

(0)

ab

+ 4

M�1

X

n=1

sin

2

�

�n

M

�

~

A

(n)

ab

)

; (2.17)

with

~

A

(0)

ab

and

~

A

(n)

ab

de�ned in (B.21) and (B.22) respe
tively. The tadpole is

obtained from the asymptoti
 behavior on the re
tangular (b = 0) and tilted
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(b = 1=2) torus T

1

,

~

A

(0)

ab

=

#

h

1=2

0

i

3

�

9

#

h

1=2

�'

i

#

h

1=2

1=2+�'

i

(2l)

l!1

�!

�8

I

ab

�

n

a

n

b

R

1

R

2

+ (m

a

+ bn

a

)(m

b

+ bn

b

)

R

2

R

1

�

;

(2.18)

and similarly for

~

A

(n)

ab

with the asymptoti
 behavior of the Ja
obi theta fun
tions

belonging to the twisted os
illator 
ontributions given by (B.10).

2.1.3 The M�obius strip amplitude

The M�obius strip amplitude in the 1-loop 
hannel is given by the part of the

total 1-loop open string amplitude with 
R

3

insertion,

M = 


Z

1

0

dt

t

3

Tr

open

�


R

3

2

P

orb

P

GSO

(�1)

S

e

�2�tH

�

: (2.19)

As mentioned at the end of se
tion 1.2, 
R

3

is only a symmetry of the theory if

ea
h D6

a

-brane at angle �' relative to the X

4

axis is a

ompanied by its mirror

image under R

3

, a D6

a

0

-brane at angle ��'. For a D6

a

-brane with wrapping

numbers (n

a

; m

a

), the mirror image D6

a

0

is des
ribed by the wrapping numbers

(n

a

0

; m

a

0

) = (n

a

;�m

a

� 2bn

a

); (2.20)

where b = 0 and 1=2 belong to a re
tangular and tilted torus, respe
tively. The

situation is depi
ted in �gure 2.7 for the re
tangular torus.

On T

2;3

the mirror image of a D6

a

-brane rotated by �

n=2

from the 
R

3

invariant axis is a D6

a

0

-brane whi
h is rotated by �

�n=2

.

The open strings whi
h are invariant under the insertion 
R

3

in the M�obius

strip are those whi
h have their endpoints on mirror D6-branes and are lo
ated

at 
R

3

invariant interse
tion points. The number of 
R

3

invariant interse
tions

on T

1

is given by

I


R

3

a

0

a

= 2 (m

a

+ bn

a

) : (2.21)

The interse
tions on T

2;3

for Z

2;3;4

are all 
R

3

invariant. For Z

6

, however, one

has to be more 
areful in 
ounting the number of invariant interse
tions. For

further details see �gure 2.5 and the 
omments belonging to �gure 2.2.

The 
ontributions of the M�obius strip to the RR ex
hange 
an be 
al
ulated

either from the open string R states in the 1-loop 
hannel | with the os
illator


ontributions for D6-branes at non-trivial angle �' on T

1

given by (B.17) and the

latti
e sums for the 
R

3

invariant positions listed in table B.1 | and perform-

ing a modular transformation or equivalently dire
tly in the tree 
hannel from
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��
��
��
��

�
�
�

�
�
�

x

4

x

5

N

1

0

N

1

Figure 2.7: A D6

1

-brane with (n

1

; m

1

) = (3; 1) and its mirror image D6

1

0

on

a re
tangular torus. Solid 
ir
les denote interse
tion points whi
h are invariant

under 
R

3

, the empty 
ir
les form pairs under 
R

3

.

the overlap of the 
orresponding boundary and 
ross
ap states as explained in

appendix C.3. For a string with both endpoints on a sta
k of D6-branes aligned

with the X

4

-axis on T

1

, the RR part of the tree 
hannel amplitude is given by

~

M

jj

= �




2

4

N

a




M

1




M

2




M

3

Z

1

0

dl

~

L

M

1

#

h

1=2

0

i

2

�

6

�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

~

L

M

2

~

L

M

3

#

h

1=2

0

i

2

�

6

+ 4

M�1

X

n=1

sin

2

�

�n

M

�

#

h

1=2

n=M

i

#

h

1=2

�n=M

i

#

h

1=2

�1=2+n=M

i

#

h

1=2

1=2�n=M

i

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(2.22)

where the argument of the # and � fun
tions is 2l �

i

2

. Similarly, we obtain the

relevant 
ontribution from a string starting on a D6

a

-brane at angle �' with

respe
t to the X

4

-axis on T

1

and ending on its mirror image D6

a

0

~

M

a

= �




2

2

N

a

I


R

a

0

a




M

2




M

3

Z

1

0

dl

(

~

L

M

2

~

L

M

3

~

M

(0)

a

+ 4

M�1

X

n=1

sin

2

�

�n

M

�

~

M

(n)

a

)

;

(2.23)

where I


R

3

a

0

a

is the number of 
R

3

-invariant interse
tions de�ned in (2.21).

~

M

(0)

a
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and

~

M

(n)

a

are de�ned in (B.23) and (B.24), respe
tively.

In writing down the amplitudes, we have already used the fa
t that

tr

�




a

0

�T


R

3




a


R

3

�

= N

a

. This means that we 
an 
hoose 


a


R

3

� 1I in agreement

with the supersymmetri
 models dis
ussed in [20, 19, 49℄. Furthermore, the

`twisted tadpole 
an
ellation 
ondition', i.e. no tadpoles from Z

2

insertions in

the loop 
hannel, has impli
itly been used.

Finally, the tree 
hannel `
omplete proje
tor 
ondition' 
onstrains the rep-

resentation of the orientifold group to ful�ll tr

�




a

0

�T


R

3

M

2




a


R

3

M

2

�

= �N

a

for M

even.

2.1.4 Tadpole 
an
ellation

The tadpole 
an
ellation 
onditions are obtained by summing over all possible

open string 
on�gurations in the annulus and M�obius strip amplitude and taking

the limit l!1. The tadpole arising from the Klein bottle amplitude is 
an
eled

provided that

Z

2

:

X

a

N

a

n

a

=

8

>

>

>

<

>

>

>

:

16 (aaa);

8 (aab);

4 (abb);

Z

3

:

X

a

N

a

n

a

=

4 (aAA; aAB; aBB);

Z

4

:

X

a

N

a

n

a

=

8 (aAB);

Z

6

:

X

a

N

a

n

a

=

4 (aAB)

;

(2.24)

holds. For the b type T

1

in the parameterization with R and � a

ording to

�gure B.1, one has to repla
e n

a

by n

a

+m

a

so as to obtain the proje
tion onto

the 
R

3

invariant axis.

If we want to in
lude only D6-branes in the models, we are restri
ted to the


ases n

a

> 0 and m

a

� 0. n

a

< 0 would introdu
e anti-D6-branes, m

a

< 0 labels

mirror images and n

a

= 0 
orresponds to D7-branes in the T-dual type I pi
ture.

The requirement of in
luding only D6-branes severely restri
ts the gauge groups.

In se
tion 2.3 we give some expli
it examples.
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2.2 Spe
trum and anomaly 
an
ellation

2.2.1 Spe
trum

The 
losed string spe
trum is N = 2 supersymmetri
 and non-
hiral while the

open string se
tor 
ontains N = 2 supersymmetri
 non-
hiral subse
tors from

strings with both endpoints on the same sta
k of D6-branes or �

n=2

rotated

ones as well as 
hiral non-supersymmetri
 subse
tors from strings ending on

D6-branes at angles on T

1

.

Closed se
tor

The 
losed string se
tor 
onsists of all states whi
h are invariant under the ori-

entifold proje
tion (A.10) and the orbifold a
tion (1.26). The untwisted se
tor


ontains the following massless states for all 
hoi
es of Z

M

(s

i

; ~s

i

= �1=2):

NSNS: ( 

�

�1=2

~

 

�

�1=2

+  

�

�1=2

~

 

�

�1=2

)j0i graviton + dilaton;

( 

�

�1=2

~

 

1

�1=2

+  

1

�1=2

~

 

�

�1=2

)j0i 1 ve
tor;

( 

�

�1=2

~

 

1

�1=2

+  

1

�1=2

~

 

�

�1=2

)j0i 1 ve
tor;

 

i

�1=2

~

 

i

�1=2

j0i ;  

i

�1=2

~

 

i

�1=2

j0i (i = 1; 2; 3) 6 s
alars;

( 

1

�1=2

~

 

1

�1=2

+  

1

�1=2

~

 

1

�1=2

)j0i 1 s
alar;

( 

2

�1=2

~

 

3

�1=2

+  

3

�1=2

~

 

2

�1=2

)j0i 1 s
alar;

( 

3

�1=2

~

 

2

�1=2

+  

2

�1=2

~

 

3

�1=2

)j0i 1 s
alar;

RR: js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

axion+ 3 s
alars

s

0

= s

1

; s

2

= s

3

+ 1 ve
tor (H = �1);

~s

0

= �~s

1

; ~s

2

= ~s

3

js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

2 s
alars:

s

0

= �s

1

; s

2

= �s

3

~s

0

= ~s

1

; ~s

2

= �~s

3

= �s

2

In the RR se
tor, 
R

3

invariant states are of the form js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

�

j~s

0

;�~s

1

;�~s

2

;�~s

3

i

L

js

0

;�s

1

;�s

2

;�s

3

i

R

. Only one term of the sum is listed

above.
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For Z

2

, additional untwisted states are invariant under the orbifold group,

NSNS: ( 

2

�1=2

~

 

3

�1=2

+  

3

�1=2

~

 

2

�1=2

)j0i 1 s
alar;

( 

2

�1=2

~

 

3

�1=2

+  

3

�1=2

~

 

2

�1=2

)j0i 1 s
alar;

( 

i

�1=2

~

 

i

�1=2

+  

i

�1=2

~

 

i

�1=2

)j0i (i = 2; 3) 2 s
alars;

RR: js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

2 s
alars

s

0

= �s

1

; s

2

= �s

3

+ 1 ve
tor (H = �1) :

~s

0

= ~s

1

; ~s

2

= �~s

3

= s

2

The strategy of 
omputing massless states in the twisted 
losed se
tors is ex-

plained in se
tion 1.5.1. For example, the orbifold Z

3

in
orporates a � and a �

2

twisted se
tor. In the terminology of se
tion 1.5.1, the ta
hyoni
 NSNS va
uum

in the � twisted se
tor is given by

j0i

(�)

NSNS

= j0; 0;

1

3

; �

1

3

i

L

j0; 0; �

1

3

;

1

3

i

R

:

There exist four GSO invariant massless states in the NSNS se
tor,

 

2

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

;  

3

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

; (2.26)

 

2

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

;  

3

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

: (2.27)

The 
R

3

symmetry preserves the twist se
tor. The states in (2.26) are invariant

by themselves whereas the two states in (2.27) are mapped onto ea
h other by

the orientifold symmetry. The �

2

twisted NSNS states are 
onstru
ted 
orre-

spondingly. In total, the � and �

2

twisted NSNS se
tors ea
h 
ontribute three

real s
alars per Z

3

�xed point.

In the � twisted RR se
tor, the massless GSO invariant states are fourfold

degenerate due to the existen
e of zero modes along the non 
ompa
t dire
tions

and the �rst two torus T

1

,

j0i

(�;1)

RR

= j

1

2

; �

1

2

; �

1

6

;

1

6

i

L

j�

1

2

; �

1

2

;

1

6

; �

1

6

i

R

;

j0i

(�;2)

RR

= j�

1

2

;

1

2

; �

1

6

;

1

6

i

L

j

1

2

;

1

2

;

1

6

; �

1

6

i

R

;

j0i

(�;3)

RR

= j

1

2

; �

1

2

; �

1

6

;

1

6

i

L

j

1

2

;

1

2

;

1

6

; �

1

6

i

R

;

j0i

(�;4)

RR

= j�

1

2

;

1

2

; �

1

6

;

1

6

i

L

j�

1

2

; �

1

2

;

1

6

; �

1

6

i

R

:

The states j0i

(�;1)

RR

and j0i

(�;2)

RR

provide real s
alars whi
h are identi�ed under 
R

3

while the remaining states j0i

(�;3)

RR

and j0i

(�;4)

RR

form the two heli
ities of a massless

ve
tor. 
R

3

proje
ts the ve
tor out provided that the �xed point to whi
h the

state is asso
iated transforms trivially. The �

2

twisted RR states are obtained

along the same lines. Thus, for the BB type latti
e, the � and �

2

twisted RR
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se
tors ea
h 
ontribute one real s
alar per Z

3

�xed point. In ea
h A type latti
e,

the two non trivial Z

3

�xed points 2 and 3 of �gure 2.2 are ex
hanged by the


R

3

symmetry giving rise to ve
tors. Again, the 
R

3

invariant superposition

of the NS-R and R-NS states provides the fermioni
 superpartners.

In Z

2

twisted se
tors, the bosoni
 massless GSO invariant states are given by

(s

i

; ~s

i

= �1=2):

NSNS: j0; 0; s

2

; s

3

i

L

j0; 0; ~s

2

; ~s

3

i

R

;

s

2

= s

3

; ~s

2

= ~s

3

RR: js

0

; s

1

; 0; 0i

L

j~s

0

; ~s

1

; 0; 0i

R

:

s

0

= �s

1

; ~s

0

= ~s

1

The exa
t spe
trum again depends on the transformation properties of the �xed

points under R

3

. The 
onstru
tion of the Z

4

and Z

6

twisted se
tors goes along

the same lines as the Z

3

twisted ones.

The 
omplete massless 
losed spe
tra for all 
onsistent four dimensional left-

right symmetri
 orbifolds with 
R

3

proje
tion are listed below using N = 1

terminology. They do, however, form the N = 2 supergravity multiplet plus

N = 2 hyper- and ve
tormultiplets.

Closed string spe
trum for Z

2

twist-se
tor AA AB BB

untwisted SUGRA+ 11C + 4V

� 32C 28C + 4V 26C + 6V

Closed spe
trum of Z

3

untwisted SUGRA+ 8C + 3V

�+�

2

28C + 8V 30C + 6V 36C

Closed string spe
trum for Z

4

untwisted SUGRA+ 8C + 3V

�+�

3

16C

�

2

19C + 1V

Closed string spe
trum for Z

6

untwisted SUGRA+ 8C + 3V

�+�

5

4C

�

2

+�

4

18C + 2V

�

3

11C + 1V

Open se
tor

The open string spe
trum is subdivided into two parts. Strings with both end-

points on the same type of D6

a

-brane provide N = 2 non-
hiral ve
tor- and

hypermultiplets and support the gauge group. Strings ending on D6

a

- and

D6

b

-branes at angle ��' on T

1

support 
hiral fermions and s
alar pseudo-

superpartners whose masses depend on the interse
tion angle ��'.

The mass formula (1.40) applied to open strings stret
hing between D6-

branes at angle �

�

2

< ��' <

�

2

on T

1

and �

k

rotated positions on T

2;3

for
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the NS se
tor reads

�

0

4

m

2

= N

os


+

1

2

(�'+ 2

k

M

� 1); (2.28)

with the os
illator number N

1

os


for a single 
reation operator  

�

given by

0 6 N

1

os


2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1=2 + Z � = 0; 0;

1=2��'+ Z � = 1; 1;

1=2� k=M + Z � = 2; 3;

1=2 + k=M + Z � = 2; 3:

(2.29)

The se
tor with k = 0 
ontains a ta
hyon  

1

�'�1=2

j0i with

�

0

4

m

2

= ��'=2.

The lightest R se
tor states are massless. In table D.1, the 
hirality and Z

2

eigenvalue of ea
h groundstate are listed.

The representations under the gauge group are determined by the a
tion of

the orientifold (1.45) and orbifold group (1.46) on the Chan-Paton indi
es. A

possible 
hoi
e 
onsistent with the tadpole 
an
ellation 
onditions,

tr

�




a

0

�T


R

3




a


R

3

�

= N

a

; (2.30)

tr


a

M=2

= 0 for M even;

the property of the orbifold generator (�

M=2

)

2

= 1I,

�




a

M=2

�

2

' 1I;

and the 
onstraint

tr

�




a

0

�T


R

3

M

2




a


R

3

M

2

�

= �N

a

(2.32)

is taken into a

ount by




a


R

3

= 1I

N

a

; (2.33)




a

M=2

=

0

�

0 i1I

N

a

=2

�i1I

N

a

=2

0

1

A

: (2.34)

This agrees with the supersymmetri
 six dimensional model of [54℄ whi
h is

obtained from the Z

2

model dis
ussed here by taking the de
ompa
ti�
ation

limit of the two torus T

1

in the T-dual pi
ture with ba
kground 
uxes. In the

pi
ture with D6-branes at angles this limit is given by R

1

;

1

R

2

!1.

In addition to the a
tion on the Chan-Paton indi
es, the transformation

properties of the mass eigenstates have to be taken into a

ount. 
R

3

maps

D6

a

-branes onto their images D6

a

0

. Thus, generi
ally a D6

a

-D6

b

string is mapped
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onto a D6

b

0

-D6

a

0

string, and 
onstraints on the representations arise only for 
R

3

invariant 
on�gurations, namely for strings with both endpoints on D6

a

-branes

whi
h are their own mirror image and for strings stret
hing between mirror

branes. The largest possible gauge group obtained from a sta
k of N

a

identi
al

D6

a

-branes is U(N

a

). If the brane position preserves some symmetry, only a

subgroup appears.

A general Z

M

rotation ex
hanges D6-brane positions on T

2;3

. For a Z

3

sym-

metry, this gives the gauge group

Z

3

:

Y

m

a

6=0

U(N

a

)

Y

m

a

=0

SO(N

a

); (2.35)

where m

a

= 0 labels the position of 
R

3

�

k

invariant D6-branes on the re
tan-

gular torus.

If the orbifold group is of even order, the Z

2

fa
tor preserves the positions of

all D6-branes. The gauge group is redu
ed, U(N

a

)

Z

2

�! U(N

a

=2)

2

. One further

subtlety arises from the fa
t that in the spe
ial 
ase of Z

3

all D6-brane positions

on T

2;3

are related by �

k

rotations. This is not true in general. For Z

2;4;6

two

separate orbits o

ur whi
h are displa
ed by a �

1=2

rotation. For example in �g-

ure 2.5, when taking the orbifold symmetry Z

6

, all solid lines denote D6-branes

whi
h belong to the same orbit while all D6-branes along the dashed lines belong

to the other one. The 
omputation of RR tadpole 
an
ellation in se
tion 2.1.4

has been performed in terms of identi
al D6-branes. The gauge group before im-

posing symmetry 
onstraints is therefore U(N

a

)

2

. The Z

2

symmetry breaks the

group down to U(N

a

=2)

4

, and if the sta
k of D6

a

-branes with identi
al position

on T

1

is its own mirror image under 
R

3

, ea
h fa
tor U(N

a

=2)

2


orresponding

to one orbit on T

2;3

is further redu
ed to U(N

a

=2). The resulting gauge groups

are

Z

2;4;6

:

Y

m

a

6=0

U(N

a

=2)

4

Y

m

a

=0

U(N

a

=2)

2

: (2.36)

All results in this se
tion are obtained for a re
tangular torus T

1

. They remain

true for D6

a

-branes on the tilted torus if one takes into a

ount that the 
R

3

in-

variant 
on�guration is then given by the wrapping numbers (n

a

; m

a

) = (2;�1)

in the basis of �gure 1.1. By 
omparison with the tadpole 
an
ellation 
ondi-

tions (2.24), one 
an derive that the maximal rank of the gauge group is redu
ed

by 
onsidering the tilted torus or equivalently swit
hing on a ba
kground �eld b

in the T-dual pi
ture [14, 13, 113, 3, 75℄.

Further details of the open string spe
tra will be dis
ussed in se
tion 2.3.

2.2.2 Anomaly 
an
ellation

The resulting spe
tra are free of non-Abelian gauge anomalies provided that the

tadpole 
an
ellation 
onditions (2.24) are ful�lled. For details see se
tion 2.3.
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The total gauge group generi
ally 
ontains several U(1) fa
tors arising from the

de
omposition U(N)! SU(N)�U(1) and from sta
ks with a single D6

a

-brane,

i.e. N

a

= 1. These U(1) fa
tors 
ontribute to mixed gauge and gravitational

anomalies. Only some spe
i�
 linear 
ombinations of U(1) fa
tors are anomaly

free. The others should get a mass of the order of the string s
ale M

s

by a

generalized Green-S
hwarz me
hanism involving 
losed string moduli [1, 81℄.

In the T-dual pi
ture of D9

a

-branes with magneti
 
uxes, the ten dimensional

RR �eld C

2

and its dual C

6

have the following worldvolume 
ouplings to the

gauge �elds [42, 85, 1, 71℄,

Z

D9

a

C

6

F

2

a

;

Z

D9

a

C

2

F

4

a

:

Upon dimensional redu
tion, one obtains four two forms (i 6= j 6= k 6= i, i; j; k =

1; 2; 3),

B

0

2

= C

2

;

n

j

a

n

k

a

B

i

2

=

Z

T

j

�T

k

(D9

a

)

C

6

;

and their four dimensional duals

n

1

a

n

2

a

n

3

a

C

0

=

Z

T

1

�T

2

�T

3

(D9

a

)

C

6

;

n

i

a

C

i

=

Z

T

i

(D9

a

)

C

2

;

with n

1

a

� n

a

depending on the spe
i�
 sta
k of D9

a

-branes and n

2;3

a

� 
onst:

universal fa
tors for the 
lass of models under 
onsideration where non-trivial


uxes are only implemented on T

1

. The prefa
tors n

i

a

arise from the pull-ba
k

of the RR forms on the magnetized tori T

i

.

Imposing an orbifold symmetry Z

M

on T

2;3

leaves B

0

2

; B

1

2

and their four di-

mensional duals C

0

; C

1

invariant.

The e�e
tive worldvolume 
ouplings in the models under 
onsideration with

a re
tangular T

1

are of the form

n

a

Z

R

1;3

C

0

F

2

a

; m

a

Z

R

1;3

B

0

2

F

a

;

n

a

Z

R

1;3

C

1

F

2

a

; m

a

Z

R

1;3

B

1

2

F

a

; (2.38)

where only the non-universal prefa
tors n

a

and m

a

arising from the pullba
k of a

RR form or a gauge �eld on the magnetized torus, respe
tively, have been listed.

The generalization to tilted tori is straightforward.
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The anomalous U(1) fa
tors be
ome massive due to the linear 
ouplings to

RR �elds in (2.38). In [71℄ it was pointed out that also anomaly free U(1)s


an have su
h 
ouplings. Non-anomalous as well as anomalous U(1)s be
ome

massive if they 
ouple to RR �elds linearly a

ording to (2.38). In theories

with an arbitrary number of D6-branes, however, the number of massive U(1)

fa
tors 
annot ex
eed the number of RR forms involved in the Green-S
hwarz

me
hanism.

In order to obtain phenomenologi
ally relevant models, one has to make sure

that the hyper
harge does not get a mass in this way.

2.3 Z

3

and Z

2

models

2.3.1 The Z

3


ase

In the Z

3

orbifold, the gauge group generated by a sta
k of N

a

D6

a

-branes with

arbitrary wrapping numbers (n

a

; m

a

) is U(N

a

). For the 
R

3

invariant position

with (n

a

; m

a

) = (1; 0) on the re
tangular torus, the 
orresponding proje
tion


ondition breaks the gauge group down to SO(N

a

).

The latti
e orientations A, B 
an be 
hosen independently on T

2;3

. The

tadpole 
an
ellation 
ondition (2.24) is not a�e
ted by this 
hoi
e.

Strings with endpoints on di�erent sta
ks of D6

a

- and D6

b

-branes transform

in the antifundamental of one gauge group and the fundamental of the other one,

(F

a

;F

b

). The orientifold symmetry 
R

3

maps a sta
k of D6

a

-branes onto their

images D6

a

0

while repla
ing the representations by their 
onjugates. Therefore,

a string with an endpoint on D6

a

0

and the other one on D6

b

transforms in the

bifundamental of the gauge groups, (F

a

;F

b

). The multipli
ity of states is deter-

mined by the degenera
y of mass eigenstates, the interse
tion numbers I

ab

on

T

1

as de�ned in (2.16) and I

a

0

b

obtained from the wrapping numbers of mirror

branes (2.20) and �nally the interse
tion number � on T

2;3

whi
h depends on

the 
hoi
e of 
ompa
ti�
ation latti
es.

Strings with endpoints on mirror branes are subje
t to the 
R

3

symmetry

provided that the interse
tion point is also aR

3

�xed point. The mass eigenstates

are odd under 
R

3

, and inserting 


a


R

3

= 1I

N

a

in (1.45) gives states in the

antisymmetri
 representation (A

a

). If the interse
tion points are ex
hanged by


R

3

, no proje
tion 
ondition emerges. 
R

3

then identi�es strings at di�erent

interse
tion points whi
h a

ommodate both the antisymmetri
 and symmetri


representation (A

a

) + (S

a

).

The 
hiralities of fermioni
 states are given in table D.1. Only in the se
tors

with non-trivial angles on all three tori, the 
hiral symmetry is broken. In the


ase of Z

3

, two su
h se
tors exist. This leads to an even number of 
opies of ea
h

representation.

The generi
 spe
trum for the Z

3

orbifold is listed in table 2.1. The 
R

3



2. The Z

3


ase 47

symmetry leads to an identi�
ation of the D6

a

-D6

b

and D6

b

0

-D6

a

0

strings. The

D6

b

-D6

a

strings provide the anti-parti
les for the former ones. It 
an be ex-

pli
itly 
he
ked that the spe
trum is free of non-Abelian gauge anomalies if the

tadpole 
an
ellation 
ondition (2.24) is ful�lled. In order to do so, the follow-

ing relations between the 
ubi
 Casimir operators of the fundamental, adjoint

(Adj), symmetri
 and antisymmetri
 representation of SU(N) are useful,

C

3

(Adj) = 2NC

3

(F);

C

3

(S) = (N + 4)C

3

(F); (2.39)

C

3

(A) = (N � 4)C

3

(F):

Chiral fermioni
 spe
trum for Z

3

rep. mult.

aa

0

(A

a

)

L

4m

a

�

aa

0

(A

a

)

L

+ (S

a

)

L

2m

a

(n

a

� 1)�

ab (F

a

;F

b

)

L

2(n

a

m

b

� n

b

m

a

)�

ab

0

(F

a

;F

b

)

L

2(n

a

m

b

+ n

b

m

a

)�

Table 2.1: Generi
 
hiral spe
trum for (T

2

� T

4

=Z

3

)=
R

3

. � = 1; 3; 9 is the

interse
tion number on T

2;3

for the latti
es AA, AB, BB, respe
tively.

A Z

3

example

As we restri
t our analysis to D6

a

-branes, the largest feasible gauge group whi
h

respe
ts the tadpole 
ondition (2.24) and yields 
hiral fermions is U(3) � U(1).

We 
an split this group into SU(3) � U(1)

2

. Choosing the re
tangular a torus

and the wrapping numbers (n

1

; m

1

) = (1; 1), (n

2

; m

2

) = (1; 2), out of the two

U(1)s the linear 
ombination

Q

nonan:

= Q

1

�

3

2

Q

2

is non anomalous. The D6-brane positions are depi
ted in �gure 2.8. The re-

maining U(1) fa
tor should be
ome massive by the generalized Green-S
hwarz

me
hanism as explained in se
tion 2.2.2. The resulting spe
trum is displayed in

table 2.2 for the latti
e aAA. A di�erent latti
e on T

2;3


hanges the spe
trum

by an overall multipli
ity � (see table 2.1).
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x

9

�

�

U(1) SU(3)

T

1

T

2

T

3

x

4

x

5

x

6

x

8

x

7

Figure 2.8: D6-brane 
on�guration of the (T

2

� T

4

=Z

3

)=
R

3

example. On T

2;3

the D6-branes are evenly distributed among the three possible positions.

Chiral spe
trum, Ex. 1

SU(3)� U(1)

nonan:

mult.

11

0

(3)

2

4

12 (3)

�5=2

2

12

0

(3)

�1=2

6

Table 2.2: Chiral fermioni
 spe
trum for (T

2

� T

4

=Z

3

)=
R

3

with (n

1

; m

1

) =

(1; 1), (n

2

; m

2

) = (1; 2) and latti
e aAA. All states are left-handed.

2.3.2 The Z

2


ase

Z

2

models are the most simple examples for T

4

=Z

M

orbifolds where M is even.

In this 
ase, the tadpole 
an
ellation 
ondition depends on the 
hoi
e of the

orbifold latti
e,

X

a

�n

a

N

a

= 16; (2.41)

where � = 1; 2; 4 is the interse
tion number on T

2;3

for the latti
e 
hoi
e aa, ab,

bb, respe
tively. The breaking pattern of the gauge group is

U(N

a

)

2

Z

2

�! U(N

a

=2)

2

� U(N

a

=2)

2

[


R

3

�! U(N

a

=2)

2

for a sta
k of D6-branes whi
h

are their own mirror branes℄ as explained in se
tion 2.2.1 where the square arises

from the existen
e of two orbits on T

2;3

. A Z

2

rotation maps ea
h se
tor onto

itself while assigning a �xed parity �1 to ea
h massless state. As listed in ta-

ble D.1, left-handed states are Z

2

-even and right-handed ones are Z

2

-odd in all

se
tors with a non-vanishing angle on T

1

. Therefore, not only strings stret
hing

between D6-branes at non-vanishing angles on all three tori 
ontribute to the
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hiral spe
trum but also those whi
h merely interse
t on T

1

. This a

ounts for

the fa
t that the interse
tion number � expli
itly enters the tadpole 
an
ellation


ondition (2.41) in 
ontrast to the Z

3

models.

An alternative 
hoi
e to (2.33) and (2.34) for the 
 matri
es 
onsistent with

the tadpole 
onditions (2.30) and (2.32) is given by




a


R

3

=

0

�

0 1I

N

a

=2

1I

N

a

=2

0

1

A

;




a

�

=

0

�

1I

N

a

=2

0

0 �1I

N

a

=2

1

A

:

In this basis, the Chan-Paton labels of the gauge bosons are blo
k-diagonal whi
h

is 
onvenient for determining the representations of 
hiral fermions.

The 
hiral part of the open string spe
trum obtained by imposing 
R

3

and

Z

2

invarian
e is listed in table 2.3.

If the model 
ontains an 
R

3

invariant sta
k of D6




-branes, the rank of the

gauge group supported by this 
olle
tion is redu
ed as explained above. The

resulting 
hiral spe
trum has to be modi�ed a

ordingly. The relevant part is

displayed in table 2.4.

The analysis of the Z

4

and Z

6


ases is 
ompletely analogous to the Z

2

orb-

ifold. There exist two independent D6-brane orbits on T

2;3

and a 
ondition on

the Chan-Paton matri
es, tr


�

M=2

= 0, yielding the gauge group U(N

a

=2)

4

for

given (n

a

; m

a

). Not only strings ending on D6-branes at non-trivial angles on all

three tori provide 
hiral fermions, but also strings with endpoints on D6-branes

of identi
al positions on T

2;3


ontribute to the 
hiral spe
trum sin
e Z

2

-even and

-odd states have opposite 
hirality. One additional subtlety enters the 
ompu-

tation of the open spe
trum in the 
ase of Z

6

as the interse
tion points of �

and �

3=2

rotated D6-branes on T

2;3

are permuted by the orbifold group. How-

ever, the tadpole 
onditions (2.24) already indi
ate that we 
annot in
lude the

standard model gauge group SU(3)� SU(2)� U(1) in Z

4

or Z

6

without adding

anti-D6-branes. Therefore, we will not dis
uss these models in detail but 
lose

this 
hapter by giving a Z

2

example whi
h en
loses SU(3)� SU(2)� U(1).

Models with anti-D-branes and spatial separation of parallel D-branes 
orre-

sponding to a Wilson line ba
kground in the T-dual pi
ture will be dis
ussed in

the 
ontext of D8-brane models in 
hapter 3.

A Z

2

example

If we 
hoose not to in
lude anti-D6-branes in our analysis, the standard model

gauge group 
an only be en
losed for the 
hoi
e � = 1 (
f. eq. (2.41)). Taking

the aaa latti
e and the minimal possible 
hoi
e of three sta
ks of D6-branes,



50 2. The Z

2


ase

namely

N

1

= 6; (n

1

; m

1

) = (1; 1);

N

2

= 4; (n

2

; m

2

) = (1; 0); (2.42)

N

3

= 2; (n

3

; m

3

) = (4; 1);

we obtain the gauge group SU(3)

4

� SU(2)

2

� U(1)

10

. The D6-brane positions

are depi
ted in �gure 2.9. The se
ond sta
k of D6

2

-branes is 
R

3

invariant. In

x

4

SU(3)

4

U(1)

4

�

T

1

T

2

T

3

x

5

x

6

x

7

x

9

x

8

�

SU(2)

2

Figure 2.9: D6-brane 
on�guration of the Z

2

example. On T

2;3

the D6-

branes with horizontal and verti
al positions ea
h a

ommodate the gauge group

SU(3)

2

� SU(2)� U(1)

5

(before the Green-S
hwarz me
hanism).

this 
ase, the tadpole 
ondition (2.41) has to be modi�ed,

N

2

2

+

X

a6=2

n

a

N

a

= 16; (2.43)

in order to avoid double 
ounting for the strings with endpoints on the D6

2

-

branes.

This is in agreement with the fa
t that models 
ontaining only sta
ks of

D6-branes with wrapping number (n;m) = (1; 0) on the re
tangular torus T

1

are in the de
ompa
ti�
ation limit of the T-dual two torus identi
al to the six

dimensional supersymmetri
 models 
onsidered in [54℄ for Z

2

and [20℄ for Z

3

leading to U(16)

2

and SO(8), respe
tively.

Due to the 
R

3

symmetry, the se
tor 1

0

2 provides the anti-parti
les for the

se
tor 12 just as the 23 and 23

0

se
tors belong together, whereas normally the

se
tor D6

a

0

-D6

b

0


ontains the anti-parti
les for the se
tor D6

a

-D6

b

. Generi
ally,

sin
e I

ab

+ I

a

0

b

is even, an even number of generations transforming under the

same gauge fa
tors originates from the interse
tions of D6

a

and D6

b

-branes,

half of them in the bifundamental and the other half in the antifundamental

of one and the fundamental of the other gauge fa
tor. In the model de�ned

by (2.42), the 13 and 13

0

se
tors are of this kind whereas in the se
tor 12,

there exists a single parti
le in the (3

1

; 2

2

) of SU(3)

1

� SU(2)

2

. However, as
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the 
omplete spe
trum is symmetri
ally distributed among the gauge fa
tors

whi
h are supported by a spe
i�
 D6-brane 
on�guration, the total number of

(3

i

; 2

j

) representations of all possible SU(3)

i

� SU(2)

j

(i = 1; : : : 4; j = 1; 2)


ombinations is even. The 
omplete 
hiral spe
trum is listed in table D.2. The

model 
ontains (at least) six non anomalous U(1) fa
tors. A possible set of linear


ombinations in terms of the original U(1) 
harges Q

i

(i = 1 : : : 10) is given by

~

Q

1

= Q

1

+Q

2

� 3Q

7

� 3Q

8

;

~

Q

2

= Q

3

+Q

4

� 3Q

9

� 3Q

10

;

~

Q

3

= Q

1

�Q

2

� 3Q

5

; (2.44)

~

Q

4

= Q

3

�Q

4

� 3Q

6

;

~

Q

5

= �4Q

5

+Q

7

�Q

8

;

~

Q

6

= �4Q

6

+Q

9

�Q

10

:

The 
harges are also listed in table D.2. The remaining anomalous U(1)s are

expe
ted to be
ome massive by the generalized Green-S
hwarz me
hanism.
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Chiral fermioni
 spe
trum for Z

2

rep. of U(

N

a

2

)

4

� U(

N

b

2

)

4

mult.

aa

0

U (F

a

;F

a

; 1; 1)

L

+ (1; 1;F

a

;F

a

)

L

4m

a

n

a

(A

a

; 1; 1; 1)

L

4m

a

(A

a

+ S

a

; 1; 1; 1)

L

2m

a

(n

a

� 1)

aa

0

T (F

a

; 1; 1;F

a

)

L

+ (1;F

a

;F

a

; 1)

L

2m

a

n

a

�

abU (F

a

; 1; 1; 1; 1;F

b

; 1; 1)

L

+ (1;F

a

; 1; 1;F

b

; 1; 1; 1)

L

2(n

a

m

b

� n

b

m

a

)

+(1; 1;F

a

; 1; 1; 1; 1;F

b

)

L

+ (1; 1; 1;F

a

; 1; 1;F

b

; 1)

L

(F

a

; 1; 1; 1;F

b

; 1; 1; 1)

L

+ (1;F

a

; 1; 1; 1;F

b

; 1; 1)

L

2(n

a

m

b

� n

b

m

a

)

+(1; 1;F

a

; 1; 1; 1;F

b

; 1)

L

+ (1; 1; 1;F

a

; 1; 1; 1;F

b

)

L

ab

0

U (F

a

; 1; 1; 1;F

b

; 1; 1; 1)

L

+ (1;F

a

; 1; 1; 1;F

b

; 1; 1)

L

2(n

a

m

b

+ n

b

m

a

)

+(1; 1;F

a

; 1; 1; 1;F

b

; 1)

L

+ (1; 1; 1;F

a

; 1; 1; 1;F

b

)

L

(F

a

; 1; 1; 1; 1;F

b

; 1; 1)

L

+ (1;F

a

; 1; 1;F

b

; 1; 1; 1)

L

2(n

a

m

b

+ n

b

m

a

)

+(1; 1;F

a

; 1; 1; 1; 1;F

b

)

L

+ (1; 1; 1;F

a

; 1; 1;F

b

; 1)

L

abT (F

a

; 1; 1; 1; 1; 1;F

b

; 1)

L

+ (1;F

a

; 1; 1; 1; 1; 1;F

b

)

L

(n

a

m

b

� n

b

m

a

)�

+(1; 1;F

a

; 1;F

b

; 1; 1; 1; )

L

+ (1; 1; 1;F

a

; 1;F

b

; 1; 1)

L

ab

0

T (F

a

; 1; 1; 1; 1; 1; 1;F

b

)

L

+ (1;F

a

; 1; 1; 1; 1;F

b

; 1)

L

(n

a

m

b

+ n

b

m

a

)�

+(1; 1;F

a

; 1; 1;F

b

; 1; 1; )

L

+ (1; 1; 1;F

a

;F

b

; 1; 1; 1)

L

Table 2.3: Generi
 
hiral spe
trum for interse
ting D6-branes and Z

2

symme-

try. `U ' labels identi
al 
on�gurations on T

2;3

, `T ' denotes D6-branes whi
h are

perpendi
ular on T

2;3

. Permutations of entries are abbreviated by underlining.
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Chiral fermioni
 spe
trum with 
R

3

invariant D6




-branes

rep. of U(

N




2

)

2

� U(

N

b

2

)

4

mult.


bU (F




; 1;F

b

; 1; 1; 1)

L

+ (1;F




; 1; 1;F

b

; 1)

L

2m

b

(F




; 1; 1;F

b

; 1; 1)

L

+ (1;F




; 1; 1; 1;F

b

)

L

2m

b

(F




; 1; 1;F

b

; 1; 1)

L

+ (1;F




; 1; 1; 1;F

b

)

L

2m

b

(F




; 1;F

b

; 1; 1; 1)

L

+ (1;F




: 1; 1;F

b

; 1)

L

2m

b


bT (F




; 1; 1; 1;F

b

; 1)

L

+ (1;F




;F

b

; 1; 1; 1; )

L

m

b

�

(F




; 1; 1; 1; 1;F

b

)

L

+ (1;F




; 1;F

b

; 1; 1; )

L

m

b

�

Table 2.4: Modi�
ation of the 
hiral spe
trum from interse
ting D6-branes for

an 
R

3

invariant sta
k of D6




-branes with wrapping numbers (n




; m




) = (1; 0)

on the re
tangular torus. The orbifold symmetry is Z

2

.



54 2. The Z

2


ase



Chapter 3

Orientifold models with

interse
ting D8-branes

In this 
hapter, four dimensional orientifold models of type IIA theory on

T

2

� T

4

=Z

3

with D8-branes at angles [65℄ are presented. The orientifold pro-

je
tion 
R

1

re
e
ts one 
oordinate of the six dimensional 
ompa
t spa
e,

R

1

: Z

1

! Z

1

;

where

Z

1

= X

4

+ iX

5

is the 
omplex notation introdu
ed in (1.23). In order to a
hieve partial su-

persymmetry breaking in the 
losed string se
tor, a Z

3

orbifold symmetry is

in
luded

� : Z

j

! e

2�iv

j

Z

j

;

with v = (0; 1=3;�1=3). The sets of points whi
h are left invariant under 
R

1


onstitute orientifold planes, whi
h are extended along all non-
ompa
t dire
-

tions and the four dimensional orbifold, but only along the X

4

axis on the �rst

two torus T

1

. Thus, they extend along eight spatial dimensions. In order to


an
el the RR 
harges of these O8-planes, an appropriate 
on�guration of D8-

branes has to be added. In 
ontrast to the D6-brane models of 
hapter 2, only

in 
ase of a Z

3

symmetry the tadpole 
an
ellation 
onditions are ful�lled by

in
luding merely D8-branes. For the other four dimensional orbifolds, the Z

2

subgroup produ
es additional tadpoles whi
h 
an only be 
an
eled by adding

D4-branes besides the D8-branes as 
an be seen by 
omparison with the super-

symmetri
 limits of these models [53℄. Sin
e they do not admit for large volume


ompa
ti�
ations, we restri
t to the Z

3


ase.

Performing a T-duality along the X

5

dire
tion, D8-branes at angles on T

1


orrespond to D9-branes with non-trivial magneti
 ba
kground 
ux F

45

whi
h is

quantized in terms of the radii of the two-torus as dis
ussed in se
tion 1.1.2. A

55
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tilted torus T

1

in the angle pi
ture again 
orresponds to a non-trivial 
onstant

ba
kground NSNS two-form 
ux B

45

in the T-dual pi
ture. As in 
hapter 2,

due to the re
e
tion symmetry R

1

, ea
h D8

a

-brane is a

ompanied by its mirror

image D8

a

0

with wrapping numbers given by (2.20), and two sta
ks of branes

D8

a

and D8

b

generi
ally have several interse
tions within the fundamental 
ell

of the torus. The 
orresponding interse
tion numbers are as de�ned in (2.16).

In the 
lass of models under 
onsideration, the orbifold generator � pre-

serves the position of ea
h D8

a

-brane while assigning di�erent phases �

j

(where

� � e

2�i=3

and j = 0; 1; 2) to the mass eigenstates. Therefore, a sta
k of N

a

D8

a

-branes with identi
al positions is de
omposed a

ording to the di�erent

eigenvalues of the Z

3

rotation, N

a

= N

0

a

+N

1

a

+N

2

a

, giving rise to the gauge

group

U

�

N

0

a

�

� U

�

N

1

a

�

� U

�

N

2

a

�

:

Parti
les whi
h are supported at the interse
tion lo
us of two sta
ks of branes

D8

a

and D8

b

with Z

3

eigenvalue 1 transform as (F

i

a

;F

i

b

) whereas those with

eigenvalue �

�1

transform as (F

i

a

;F

i�1

b

). This is in 
ontrast to the D6-brane

models where � ex
hanges the brane positions.

The gauge 
oupling 
onstants of the U(N

i

a

) fa
tors with support on a D8

a

-

brane are determined by the length L

a

of the 1-
y
le on T

1

whi
h the D8

a

-branes

wrap [2℄. The length of the 
y
le in terms of wrapping numbers and radii of the

two-torus T

1

is given by the generalization of the one in se
tion 2.1.2 to tilted

tori

L

a

=

p

(n

a

R

1

)

2

+ ((m

a

+ bn

a

)R

2

)

2

; (3.5)

with b = 0; 1=2 
orresponding to the re
tangular and tilted torus, respe
tively.

The models with D8-branes do not only di�er from those with D6-branes in

the a
tion of the orbifold group but also in view of solving the mass hierar
hy

problem. While in D6-brane models, the wrapped 3-
y
les on T

1

� T

2;3

are


hosen su
h that there does not exist any 
ompa
t dire
tion transverse to all

D6-branes, the D8-brane models admit a T-dual des
ription in terms of D4-

branes for the orbifold group Z

3

. The latter have the transverse dire
tions along

T

2;3

in 
ommon. This admits for a large orbifold volume whi
h might serve to

lower the string s
ale down to the TeV region and thus solve the mass hierar
hy

problem [7, 6℄.

Some phenomenologi
al aspe
ts of the orientifold theories with interse
ting

D8-branes are dis
ussed at the end of this 
hapter in se
tion 3.5.
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3.1 RR tadpoles and 
hiral spe
tra

3.1.1 RR tadpole 
an
ellation

In this se
tion, we derive the 
onsisten
y 
onditions of the (T

2

� T

4

=Z

3

)=
R

1

models whi
h are determined by the requirement that all | untwisted and

twisted | RR 
harges of the O8-planes are 
an
eled by those of the D8

a

-branes.

The 
omputation of untwisted tadpoles in the tree 
hannel is similar to the one

presented in 
hapter 2. The twisted tadpoles only o

ur in su
h 
lasses of mod-

els where the re
e
tion R

1


ommutes with the orbifold generator. As for the

D6-brane models, the tadpole 
an
ellation 
onditions 
an be entirely expressed

in terms of the wrapping numbers n

a


orresponding to the proje
tion of the

1-
y
les on T

1

onto the X

4

-axis and the number of identi
al D8

a

-branes N

i

a

.

The RR tadpole 
an
ellation 
onditions are again 
omputed along the lines

of se
tion 1.4. In 
ontrast to the models with D6-branes at angles [48℄ 
onsid-

ered in 
hapter 2 and the supersymmetri
 [20, 19, 49℄ and non-supersymmetri


orientifolds in [27℄, the following relation holds

(
R

1

h)

2

= h

2

:

Therefore, twisted as well as untwisted 
losed strings propagate in the tree 
han-

nel leading to untwisted and twisted tadpole 
an
ellation 
onditions whi
h have

to be ful�lled simultaneously.

At this point, we turn to the expli
it 
al
ulation of the three 1-loop-amplitudes.

The dire
t 
al
ulation in the tree 
hannel 
an be performed using the boundary

state approa
h. For this 
lass of models, the relevant formulas are displayed in

appendix F. The normalizations of untwisted and twisted 
ross
ap and bound-

ary states are �xed by worldsheet duality. In this 
lass of models, there is no

further 
onstraint on the latti
es from the tree 
hannel pi
ture. The 
onstraints

on N

i

a

arise from the a
tion of the orbifold group on the Chan-Paton matri
es of

the open strings and 
an only be derived by starting from the 1-loop amplitudes.

Klein bottle

The 
losed string 1-loop 
ontributions to the RR ex
hange in the tree 
hannel

are again obtained by 
omputing the NSNS parts with (�1)

F

insertion where the

GSO proje
tion (1.35) in this 
lass of models is determined by (1.38) and (1.39).

The latti
e 
ontributions L

1

on T

1

where the re
e
tion R

1

a
ts are as dis
ussed

in 
hapter 2 and [24, 48℄. In addition, in the untwisted se
tor Kaluza-Klein

momenta arise along all dire
tions of the orbifold whereas windings are proje
ted

out by worldsheet parity. The expli
it formulas for the latti
e 
ontributions of

the orbifold to the amplitudes are listed in appendix E.1. 
R

1

ex
hanges �

and �

�1

twisted se
tors. Hen
e, in the 1-loop 
hannel, only untwisted se
tors



58 3. RR tadpole 
an
ellation


ontribute. The 
al
ulation of the 
ontribution with 1I insertion goes 
ompletely

along the lines dis
ussed in 
hapter 2 and [24, 48℄ yielding

K

U

=




3

Z

1

0

dt

t

3

L

K

1

L

K

2

L

K

3

K

(0)

; (3.7)

where 
 is the 
onstant fa
tor mentioned in se
tion 2.1.1. L

K

2

L

K

3

is as given

in (E.4). Performing the modular transformation t = 1=(4l) gives the 
ontribu-

tion from the untwisted RR �elds,

~

K

U

=




3

Z

1

0

dl

256

3

R

1

R

2

!

~

L

K

1

~

L

K

2

~

L

K

3

~

K

(0)

; (3.8)

where R

1;2

are the two radii of the �rst two-torus T

1

and ! is the dimensionless

volume of the orbifold T

4

=Z

3

.

In addition, �

1;2

insertions 
reate tadpoles whi
h are independent of the

internal volume of the orbifold,

K

T

=




3

Z

1

0

dt

t

3

L

K

1

2

X

k=1

K

(k)

: (3.9)

The expli
it expression of K

(k)

in terms of generalized Ja
obi-Theta fun
tions is

given in formula (E.7). The latti
e 
ontributions L

K

1

are the same as in formula

(3.7), whereas the Kaluza-Klein momenta on T

2;3

are not invariant under �.

Transforming to the tree 
hannel, the twisted Klein bottle is given by

~

K

T

= �16




3

Z

1

0

dl

R

1

R

2

~

L

K

1

2

X

k=1

~

K

(k)

; (3.10)

where the 
ontribution of the twisted os
illators

~

K

(k)

is listed in (E.10).

Annulus

The annulus amplitude is obtained from open strings stret
hing between branes

D8

a

and D8

b

at angle ��'

ab

on T

1

. The 
ontributions from T

1

have been dis-


ussed in detail in 
hapter 2 and [24, 48℄. The 
omputation of the tra
e with

trivial insertion is again 
ompletely analogous to the one performed there yield-

ing the untwisted RR tadpole of the annulus in the tree 
hannel

~

A

U

ab

= �N

a

N

b

I

ab




3

Z

1

0

dl

1

6

!

~

A

(0)

~

L

A

2

~

L

A

3

: (3.11)

N

a

labels the number of D8

a

-branes of identi
al position, I

ab

is the interse
tion

number on T

1

de�ned in (2.16),

~

L

A

2

~

L

A

3

is given in (E.5) and the os
illator 
ontri-

bution is given by (2.18). The expli
it dependen
e of the annulus tadpole on the
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orbifold volume ! is due to the fa
t that D8

a

-branes have Neumann dire
tions

along all four orbifold dire
tions X

6:::9

leading to Kaluza-Klein momenta P

6:::9

in the loop 
hannel.

In addition to the trivial insertion, ea
h �

k

insertion preserves the positions

of D8-branes. Kaluza-Klein momenta are proje
ted out, and the Z

3

rotation a
ts

non-trivially on the Chan-Paton labels of open strings with endpoints on branes

D8

a

, D8

b

via the matri
es 


a

�

k

; 


b

�

k

leading to

A

T

ab

=

I

ab

4




3

Z

1

0

dt

t

3

2

X

k=1

tr


a

k

tr


�1;b

k

A

(k)

; (3.12)

with A

(k)

expli
itly listed in (E.8). By modular transformation t = 1=(2l), one

arrives at the twisted RR tadpole 
ontributions of the annulus,

~

A

T

ab

= �I

ab




3

Z

1

0

dl

1

2

2

X

k=1

tr


a

k

tr


�1;b

k

~

A

(k)

; (3.13)

with

~

A

(k)

given by (E.11). Thus, the asymptoti
 behavior of the annulus ampli-

tudes is given by

~

A

U

ab

l!1

�! N

a

N

b

4

3

!




3

Z

1

0

dl

�

n

a

n

b

R

1

R

2

+ (m

a

+ bn

a

)(m

b

+ bn

b

)

R

2

R

1

�

; (3.14)

~

A

T

ab

l!1

�! �




3

Z

1

0

dl

2

X

k=1

tr


a

k

tr


�1;b

k

�

n

a

n

b

R

1

R

2

+ (m

a

+ bn

a

)(m

b

+ bn

b

)

R

2

R

1

�

:

(3.15)

The amplitudes

~

A

aa

from D8

a

-D8

a

strings develop the same asymptoti
s.

M�obius strip

The 
omputation of the untwisted RR ex
hange in the tree 
hannel arising from

the M�obius strip amplitude is again very similar to the 
ase dis
ussed in 
hap-

ter 2 and [24, 48℄. Only strings stret
hing between mirror branes D8

a

and D8

a

0


ontribute. Their multipli
ity is determined by the number of 
R

1

invariant

interse
tions I


R

1

a

0

a

whi
h is identi
al to (2.21). The Neumann dire
tions on T

2;3

lead to latti
e 
ontributions from Kaluza-Klein momenta displayed in (E.6).

Therefore, also the untwisted RR ex
hange from the M�obius strip is linearly

proportional to the orbifold volume !.

The 
omputation of the twisted RR tadpoles in the M�obius strip is also 
om-

pletely analogous to the annulus 
ase. The Z

3

rotation a
ts non-trivially on the

Chan-Paton matrix of the D8

a

-D8

a

0

strings, latti
e 
ontributions are proje
ted

out and the os
illator 
ontributions in the tree 
hannel are listed in (E.12). The
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orresponding loop 
hannel os
illator 
ontributions are given in (E.9). In sum-

mary, we obtain the asymptoti
 behavior

M

U

a

l!1

�! �




3

Z

1

0

dl

256

3

R

1

R

2

!n

a

tr

�




�1;a

0


R

1




T;a


R

1

�

; (3.16)

M

T

a

l!1

�!




3

Z

1

0

dl16n

a

R

1

R

2

2

X

k=1

tr

�




�1;a

0


R

1

k




T;a


R

1

k

�

: (3.17)

The tra
es in (3.17) 
an be transformed due to the requirement that the 


matri
es form a proje
tive representation of the orientifold group as explained

in se
tion 1.5.2, i.e.




a

k+l

= 


�1

k+l




�T;a

0


R

1

l




a


R

1

k

with some phases 


k+l

.

RR tadpole 
an
ellation

The RR tadpole 
an
ellation 
onditions 
an be extra
ted from the asymptoti


behavior of the Klein bottle (3.8) and (3.10), the annulus (3.14) and (3.15) and

the M�obius strip (3.16) and (3.17) after summing over all possible open string


on�gurations.

The untwisted tadpole 
an
ellation 
onditions are

"

X

a

n

a

N

a

� 16

#

2

= 0; (3.19)

tr

�




�1;a

0


R

1




T;a


R

1

�

= N

a

: (3.20)

The twisted tadpole 
an
ellation 
onditions split into the proje
tion onto the X

4

axis proportional to R

1

=R

2

and onto the X

5

dire
tion proportional to R

2

=R

1

,

R

2

R

1

:

2

X

k=1

�

�

�

X

a

(m

a

+ bn

a

)

�

tr


a

k

� tr


a

0

k

�

�

�

�

2

= 0; (3.21)

R

1

R

2

:

2

X

k=1

�

8

2

+

�

�

�

X

a

n

a

�

tr


a

k

+ tr


a

0

k

�

�

�

�

2

� 2 � 8 �

X

a

n

a

�




2k

tr


a

2k

+ ~


2k

tr


a

0

2k

��

= 0: (3.22)

Condition (3.21) is trivially ful�lled if for mirror branes D8

a

and D8

a

0

the equa-

tion tr


a

k

= tr


a

0

k

holds. Furthermore, equation (3.22) gives a total square for

ea
h twist se
tor k provided that 


2k

= ~


2k

= 1 and tr


2k

2 R. These 
onditions

�x the form of 


a

�

,




a

�

= diag

�

1I

N

0

a

; e

2�i=3

N

1

a

; e

�2�i=3

N

2

a

�

; (3.23)
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with N

a

= N

0

a

+N

1

a

+N

2

a

and N

1

a

= N

2

a

.

Inserting (3.23) in (3.19) and (3.22) determines the RR tadpole 
an
ellation


onditions entirely in terms of the wrapping numbers n

a


orresponding to the

proje
tion of the 1-
y
les onto the X

4

axis and the number of identi
al branes

N

i

a

,

X

a

n

a

N

0

a

= 8; (3.24)

X

a

n

a

N

1

a

= 4: (3.25)

So far, we have only 
onsidered D8

a

-branes whi
h are mapped to their mirror

image D8

a

0

under the re
e
tion R

1

. A D8




-brane whi
h is its own mirror image


ontributes only half the amount to the tadpole 
an
ellation 
onditions, i.e.

n




N

0




2

+

X

a6=


n

a

N

0

a

= 8; (3.26)

n




N

1




2

+

X

a6=


n

a

N

1

a

= 4: (3.27)

The wrapping numbers of the 
R

1

invariant D8




-brane are (n




; m




) = (1; 0) for

vanishing ba
kground antisymmetri
 NSNS tensor �eld b and (n




; m




) = (2;�1)

for b = 1=2 as in 
hapter 2. In the limit R

1

;

1

R

2

!1 where the T-dual two torus

T

1

de
ompa
ti�es, the supersymmetri
 six dimensional set-up is re
overed whi
h

for vanishing antisymmetri
 NSNS tensor, i.e. a single sta
k of D8




-branes with

(n




; m




) = (1; 0) and b = 0, is identi
al to the Z

3

orientifold in [53℄.

3.1.2 Chiral open spe
trum

The 
omputation of the 
losed string spe
trum is analogous to the one pre-

sented in se
tion 2.2.1 when taking into a

ount the altered orientifold a
tion

given by (A.10) on the os
illators. 
R

1

invariant RR se
tor states are of the

form js

0

; s

1

; s

2

; s

3

i

L

j~s

0

; ~s

1

; ~s

2

; ~s

3

i

R

� j~s

0

;�~s

1

; ~s

2

; ~s

3

i

L

js

0

;�s

1

; s

2

; s

3

i

R

. The main

di�eren
e in the 
omputation of the twisted se
tor 
ontributions as 
ompared to

the D6-brane models in se
tion 2.2.1 arises from the fa
t that 
R

1

ex
hanges

the � and �

2

twisted se
tors.

The 
losed string spe
trum 
ontains the N = 2 supergravity multiplet as

well as eleven hypermultiplets and ten tensor multiplets. The 
omplete 
losed

string se
tor is N = 2 supersymmetri
 and non-
hiral.

In order to determine the open string spe
trum, we �x the Chan-Paton ma-
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tri
es




a


R

1

= 


a

0


R

1

=

0

B

B

B

�

1I

N

0

a

0 0

0 0 1I

N

1

a

0 1I

N

1

a

0

1

C

C

C

A

;




a

�

= 


a

0

�

= diag

�

1I

N

0

a

; e

2�i=3

N

1

a

; e

�2�i=3

N

1

a

�

in analogy to the supersymmetri
 
ase dis
ussed in [53℄. Open strings stret
hing

between D8

a

-branes of identi
al position then support the gauge groups

U(N

0

a

)�

�

U(N

1

a

)

�

2

:

In the 
ase of an 
R

1

invariant sta
k of D8




-branes, the gauge group is redu
ed

to

SO(N

0




)� U(N

1




):

The D8

a

-D8

a

and D8




-D8




se
tors of open strings are again N = 2 supersym-

metri
 and non-
hiral.

Finally, the se
tors of strings stret
hing between D8

a

and D8

b

-branes at an-

gles ��'

ab

are non-supersymmetri
 and 
hiral. This part of the spe
trum gener-

i
ally 
ontains ta
hyons sin
e the mass formula (1.40) applied to open strings

for this 
lass of models gives the following masses of states in the NS se
tor,

�

0

4

m

2

ab

= N

os


+

�'

ab

2

�

1

2

;

where N

os



an be read o� from (2.29) by setting k=M � 0. Thus, the state

 

1

�'�1=2

j0i

NSNS

is ta
hyoni
. A 
omplete list of lightest NS states is given in

table G.1. In 
ontrast to the models with D6-branes dis
ussed in 
hapter 2,

mass eigenstates in the models with D8-branes have to be 
lassi�ed a

ording to

their Z

3

eigenvalues. Ta
hyoni
 states only o

ur in the se
tors with eigenvalue

1. In prin
iple, this introdu
es the possibility of 
hoosing the brane set-up,

i.e. the numbers N

i

a

, su
h that no 
hiral se
tor with trivial eigenvalue o

urs.

However, the tadpole 
an
ellation 
onditions (3.26), (3.27) 
onstrain the models

severely. Furthermore, in 
ontrast to the type IIB models examined in [1, 2, 9℄

the orientifold proje
tion 
R

1

enfor
es the existen
e of mirror branes. D8

a

-D8

a

0

strings automati
ally in
lude a se
tor 
ontaining ta
hyons whi
h 
an be only

proje
ted out 
ompletely by the 
R

1

symmetry in 
ase of a single U(1)

a

gauge

fa
tor and the wrapping number n

a

= 1.

The R se
tor of D8-branes at angles provides 
hiral fermions. The ground-

state is fourfold degenerated as displayed in the table D.1. The degenera
y is

lifted by the Z

3

symmetry. In summary, the 
hiral spe
trum is listed in table 3.1.

For an 
R

1

invariant D8




-brane, the spe
trum is slightly 
hanged as displayed
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in table 3.2. As for D6-brane models, the se
tor D8

a

0

-D8

b

0

generi
ally provides

the anti-parti
les of the D8

a

-D8

b

se
tor, and the se
tor D8

a

-D8

b

0

is paired with

D8

a

0

-D8

b

. For 
 = 


0

, only the se
tors D8




-D8

b

and D8




-D8

b

0

are present and

form a pair. RR tadpole 
an
ellation ensures that the 
hiral spe
trum is free of

purely non-Abelian gauge anomalies as 
an be expli
itly 
he
ked using (2.39).

Mixed U(1) anomalies will have to be 
ured by a generalized Green-S
hwarz

me
hanism involving twisted RR �elds from the 
losed string se
tor [43, 1, 81℄.

The 
hiral D8

a

-D8

a

0

, D8

a

-D8

b

and D8

a

-D8

b

0

se
tors with Z

3

eigenvalue 1 are

a

ompanied by a ta
hyoni
 s
alar pseudo-superpartner. As already mentioned

in the previous paragraph, the D8

a

-D8

a

0

se
tor is only absent provided that

n

a

= 1 and N

0

a

= 1; N

1

a

= N

2

a

= 0, i.e. the D8

a

-brane a

ommodates a single

U(1)

a

gauge fa
tor.

Massless 
hiral fermioni
 spe
trum on T

2

� T

4

=Z

3

with D8-branes

se
tor Z

3

multipli
ity rep.

aa

0

1 2(2m

a

+ (2b)n

a

) (A

0

a

; 1; 1) + (1;F

1

a

;F

2

a

)

(n

a

� 1)(2m

a

+ (2b)n

a

) (A

0

a

+ S

0

a

; 1; 1) + 2(1;F

1

a

;F

2

a

)

� (2m

a

+ (2b)n

a

) (

�

F

0

a

; 1;

�

F

2

a

) + (1;A

1

a

; 1)

n

a

�1

2

(2m

a

+ (2b)n

a

) 2(

�

F

0

a

; 1;

�

F

2

a

) + (1;A

1

a

+ S

1

a

; 1)

�

2

(2m

a

+ (2b)n

a

) (

�

F

0

a

;

�

F

1

a

; 1) + (1; 1;A

2

a

)

n

a

�1

2

(2m

a

+ (2b)n

a

) 2(

�

F

0

a

;

�

F

1

a

; 1) + (1; 1;A

2

a

+ S

2

a

)

ab 1 2(n

a

m

b

� n

b

m

a

) (

�

F

0

a

;F

0

b

) + (

�

F

1

a

;F

1

b

) + (

�

F

2

a

;F

2

b

)

� (n

a

m

b

� n

b

m

a

) (F

0

a

;

�

F

1

b

) + (F

1

a

;

�

F

2

b

) + (F

2

a

;

�

F

0

b

)

�

2

(n

a

m

b

� n

b

m

a

) (F

0

a

;

�

F

2

b

) + (F

1

a

;

�

F

0

b

) + (F

2

a

;

�

F

1

b

)

ab

0

1 2(n

a

m

b

+ n

b

m

a

+ (2b)n

a

n

b

) (F

0

a

;F

0

b

) + (F

1

a

;F

2

b

) + (F

2

a

;F

1

b

)

� (n

a

m

b

+ n

b

m

a

+ (2b)n

a

n

b

) (

�

F

0

a

;

�

F

2

b

) + (

�

F

1

a

;

�

F

1

b

) + (

�

F

2

a

;

�

F

0

b

)

�

2

(n

a

m

b

+ n

b

m

a

+ (2b)n

a

n

b

) (

�

F

0

a

;

�

F

1

b

) + (

�

F

1

a

;

�

F

0

b

) + (

�

F

2

a

;

�

F

2

b

)

Table 3.1: Chiral spe
trum from interse
ting D8-branes. The se
tors are 
lassi-

�ed by the Z

3

eigenvalue of the 
orresponding R groundstate.

3.2 Can
ellation of mixed anomalies

The generi
 
hiral open spe
trum displayed in table 3.1 and 3.2 is free of purely

non-Abelian gauge anomalies, but yields mixed gravitational anomalies of the
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Chiral fermions for an 
R

1

invariant sta
k of D8




-branes

se
tor Z

3

multipli
ity rep.


b 1 2n




(m

b

+ bn

b

) (

�

F

0




;F

0

b

) + (

�

F

1




;F

1

b

) + (F

1




;F

2

b

)

� n




(m

b

+ bn

b

) (F

0




;

�

F

1

b

) + (F

1




;

�

F

2

b

) + (

�

F

1




;

�

F

0

b

)

�

2

n




(m

b

+ bn

b

) (F

0




;

�

F

2

b

) + (F

1




;

�

F

0

b

) + (

�

F

1




;

�

F

1

b

)

Table 3.2: Modi�
ation of the 
hiral spe
trum from interse
ting D8-branes in-

volving an 
R

1

invariant sta
k of D8




-branes.

form

U(1)

i;a

� g

��

: 6 (2Æ

i;0

� Æ

i;1

� Æ

i;2

) (m

a

+ bn

a

)N

i

a

(3.31)

as well as mixed gauge anomalies whi
h for (i; a) 6= (j; b) are proportional to

U(1)

i;a

� SU(N

j

b

)

2

:

n

(m

a

+ bn

a

)n

b

(2Æ

i;0

� Æ

i;1

� Æ

i;2

) (2Æ

j;0

� Æ

j;1

� Æ

j;2

) (3.32)

�3n

a

(m

b

+ bn

b

) (Æ

i;1

� Æ

i;2

) (Æ

j;1

� Æ

j;2

)

o

N

i

a

C

2

(F

j

b

);

where C

2

(F) =

N

2

�1

2N

is the quadrati
 Casimir of the fundamental representation

of SU(N).

Consisten
y of the models requires anomalous gauge �elds to a
quire a mass

and thus de
ouple from the e�e
tive low energy �eld theory. This is realized

by the Green-S
hwarz me
hanism whi
h in models with K3 orbifold 
ompa
ti�-


ations involves twisted se
tor �elds [43℄. The potential 
andidates are the RR

s
alars

6

C

(0)

k

and two-forms

6

C

(2)

k

in six dimensions whi
h belong to the twisted

hyper- and tensormultiplets, respe
tively. They arise from the Kaluza-Klein re-

du
tion of the ten-dimensional two form

10

C

(2)

and self-dual four form

10

C

(4)

on

a vanishing supersymmetri
 two-
y
le �

k

on the orbifold,

6

C

(2)

k

=

Z

�

k

10

C

(4)

;

6

C

(0)

k

=

Z

�

k

10

C

(2)

: (3.33)

The s
alar has a dual four form in six dimensions,

6

C

(4)

k

=

Z

�

k

10

C

(6)

:

Moding out the worldsheet parity amounts to mapping di�erent 
y
les �

k

onto

ea
h other su
h that for the T

4

=Z

3

limit, k runs over nine distin
t values.
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(m

a

+ bn

a

)C

(2)

k

$ n

b

B

(0)

k

U(1)

i;a

SU(N

j

b

)

SU(N

j

b

)

Figure 3.1: Green-S
hwarz 
ounter terms.

Redu
ing further down to four dimensions, the pullba
k of a 
losed RR se
tor

k-form on a multiply wrapped brane gives a (k � 2)-form times the wrapping

number along the 
R

1

invariant dire
tion [1℄ of the T-dual pi
ture,

n

b

B

(0)

k

=

Z

T

1

(D9

b

)

6

C

(2)

k

; n

b

B

(2)

k

=

Z

T

1

(D9

b

)

6

C

(4)

k

;

while integrating out the two form (F

a

)

45

= (F

a

+B)

45

=

(m

a

+bn

a

)�

0

n

a

R

1

R

2

on the torus

yields as prefa
tor m

a

+ bn

a

. The resulting four dimensional 
ouplings are of the

form

(m

a

+ bn

a

)

Z

R

1;3

tr (


a

k

�

a

i

)C

(2)

k

^ F

a;i

; n

b

Z

R

1;3

tr

�




b

k

�

b

i

�

b

j

�

B

(0)

k

F

b;i

^ F

b;j

;(3.36)

n

a

Z

R

1;3

tr (


a

k

�

a

i

)B

(2)

k

^ F

a;i

; (m

b

+ bn

b

)

Z

R

1;3

tr

�




b

k

�

b

i

�

b

j

�

C

(0)

k

F

b;i

^ F

b;j

;

where �

a

i

is the Chan-Paton fa
tor belonging to the gauge-�eld 
omponent F

a;i

.

The expressions on the left hand side in (3.36) render the anomalous gauge

�elds massive. Like for the D6-brane models in se
tion 2.2.2, also anomaly free

U(1) fa
tors might a
quire a mass due to the linear 
ouplings.

Combining the two 
ouplings (3.36) of the s
alars B

(0)

k

and their dual two

forms C

(2)

k

, we obtain the Green-S
hwarz diagram depi
ted in �gure 3.1, similarly

for the dual pairs C

(0)

k

and B

(2)

k

. These diagrams have the 
orre
t form to 
an
el

the mixed gauge anomalies (3.32). Similar diagrams exist whi
h 
an
el the mixed

gravitational anomalies (3.31).

3.3 NSNS tadpoles

Apart from the RR tadpoles 
onsidered in se
tion 3.1.1, non-supersymmetri


theories generi
ally produ
e also NSNS tadpoles. In this se
tion, we will follow
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the dis
ussion of [27℄ in 
omputing the NSNS tadpoles and deriving the e�e
tive

s
alar potential for the 
losed string moduli. The analysis will be performed at

next to leading order in string perturbation theory, i.e. at open string tree level

e

��

s

where �

s

is the dilaton of type I superstring theory in ten dimensions.

The massless NSNS se
tor �elds of our model are the four-dimensional dilaton

as well as the internal metri
 and NSNS two form 
ux moduli. In our fa
torized

ansatz on T

2

� T

4

=Z

3

, the moduli of T

1

are the two radions R

1

and R

2

. The

two form 
ux b 
an only take dis
rete values. In addition, K3 has 80 moduli. In

the orbifold limit T

4

=Z

3

, these moduli are provided by eleven hyper- and nine

tensormultiplets where ea
h of the nine orbifold �xed points 
ontributes one

hyper- and one tensormultiplet. The remaining two hypermultiplets originate

from the untwisted 
losed string se
tor [53℄. The twisted NSNS moduli at ea
h

�xed point group into a triplet state �

i

k

(i = +;�; 3, k = 1 : : : 9) under the

R-symmetry of T

4

asso
iated to the 
omplex stru
ture and K�ahler deformations

of the manifold and a singlet state b

(0)

k

whi
h originates from the Kaluza-Klein

redu
tion of the ten dimensional 
 odd form B

(2)

on �

k

. These states are listed

in table 3.3.

Twisted NSNS states on T

4

=Z

3

state represented by

b

(0)

k

 

2

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

+  

2

�1=6

~

 

2

�1=6

j0i

(�

2

)

NSNS

+ 

3

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

+  

3

�1=6

~

 

3

�1=6

j0i

(�

2

)

NSNS

�

3

k

 

2

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

+  

2

�1=6

~

 

2

�1=6

j0i

(�

2

)

NSNS

� 

3

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

�  

3

�1=6

~

 

3

�1=6

j0i

(�

2

)

NSNS

�

+

k

 

2

�1=6

~

 

3

�1=6

j0i

(�)

NSNS

+  

3

�1=6

~

 

2

�1=6

j0i

(�

2

)

NSNS

�

�

k

 

3

�1=6

~

 

2

�1=6

j0i

(�)

NSNS

+  

2

�1=6

~

 

3

�1=6

j0i

(�

2

)

NSNS

Table 3.3: Massless twisted NSNS states of the (T

2

� T

4

=Z

3

)=
R

1

orientifold.

The relation of the representations to the K3 moduli is explained in the text.

The NSNS triplet and the RR s
alar of (3.33) provide the bosoni
 degrees

of freedom of a hypermultiplet, and the NSNS s
alar together with the RR two

form of (3.33) belong to a tensormultiplet at ea
h orbifold �xed point [43℄ | for

a lu
id des
ription see also [10℄.

The 
omputation of NSNS tadpoles is 
ompletely analogous to the one of the

RR tadpoles: they are extra
ted from the infrared divergen
es in the tree 
han-

nel Klein bottle, annulus and M�obius strip amplitude. These three 
ontributions
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lead to a sum of perfe
t squares whi
h 
an be identi�ed with the dis
 tadpoles

of the various NSNS moduli of the theory. The NSNS amplitudes 
an be de-

rived dire
tly from the tree 
hannel using the boundary states and 
ross
aps of

appendix F. The normalizations of NSNS states are determined by the fa
t that

for unbroken supersymmetry the NSNS tree 
hannel amplitude of ea
h diagram


an
els the 
orresponding RR amplitude. The Klein bottle diagram does not feel

the supersymmetry breaking. For the other two diagrams, the os
illator 
ontri-

butions (E.11), (E.12) involving D8-branes at generi
 angles 
an be generalized

to

~

A

(k)

ab

! (�1)

2(�+�)

#

h

�

�

i

�

3

#

h

�

�'+�

i

#

h

1

2

1

2

+�'

i

Y

i=2;3

#

h

��kv

i

�

i

#

h

1

2

�kv

i

1

2

i

(2l); (3.37)

~

M

(k)

a

! (�1)

2(�+�)

#

h

�

�

i

�

3

#

h

�

'+�

i

#

h

1

2

1

2

+'

i

Y

i=2;3

#

h

�+2kv

i

�+kv

i

i

#

h

1

2

+2kv

i

1

2

+kv

i

i

(2l +

i

2

): (3.38)

These are the analogous formulas to those whi
h are valid for D6-branes in

toroidal 
ompa
ti�a
tions derived in [22℄ (see also [80℄). In (3.37) and (3.38)

� = 0; 1=2 
orresponds to the RR and NSNS se
tors, respe
tively, and � =

0; 1=2 arises from the overlap of states with the same or opposite spin stru
tures,

respe
tively. The latti
e 
ontributions remain the same as for the RR amplitudes

in se
tion 3.1.1. Ea
h NSNS amplitude has two 
ontributions from the di�erent


hoi
es of the relative signs of the spin stru
tures in the overlapping boundary

states and 
ross
aps. The tadpoles are again read o� by summing over all D8-

brane 
on�gurations and taking the limit l!1.

In the 
R

1

orientifold model on T

2

� T

4

=Z

3

, three di�erent 
ontributions to

the tadpoles arise at next to leading order. Two of them, the dilaton tadpole

and the tadpole of the 
omplex stru
ture on T

1

, originate from the untwisted

part of the amplitudes. These 
ontributions have the interpretation given in [27℄

whi
h we will brie
y repeat here. Additionally, a third tadpole is generated by

the twisted moduli 
orresponding to the �xed points of T

4

=Z

3

.

In detail, the dilaton tadpole of the annulus amplitude arises from a single

dilaton vertex operator insertion on the disk. As observed in [95, 39, 96℄, this

tadpole 
an be obtained from 
omputing the 
losed string ex
hange between

two D-branes at tree level. The 
oupling of the gravitational modes to a D-

brane is proportional to its e�e
tive four dimensional tension whi
h in turn is
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proportional to the volume of the D-brane on the 
ompa
t spa
e.

The dilaton tadpole of the orientifold theory with D8-branes is therefore

obtained by evaluating all tadpole 
ontributions and identifying the expression

whi
h is proportional to the net tension of the D8-brane 
on�guration | or more

pre
isely to the sum of all D8-brane tensions minus that of the O8-plane | with

the dilaton ex
hange. The remaining untwisted tadpoles belong to the untwisted

NSNS moduli of the theory, and the twisted ones arise from the twisted K3

moduli. The 
omparison with the �eld theory 
omputation is presented further

below in this se
tion.

In agreement with the general expe
tation and the expressions in [27℄ valid

for interse
ting D6-branes, one �nds for D8-branes at angles the dilaton tadpole

h�

s

i

D

=

1

p

Vol(T

6

)

 

K

X

a=1

N

a

Vol(D8

a

)� 16Vol(O8)

!

; (3.39)

with

Vol(D8

a

) = !L

a

= !

p

(n

a

R

1

)

2

+ ((m

a

+ bn

a

)R

2

)

2

;

Vol(O8) = !R

1

;

and the tadpole for the imaginary part of the 
omplex stru
ture U de�ned

in (1.19) on T

1

is given by

hui

D

=

1

p

Vol(T

6

)

 

K

X

a=1

N

a

(n

a

R

1

)

2

� ((m

a

+ bn

a

)R

2

)

2

L

a

� 16Vol(O8)

!

: (3.40)

In 
ontrast to the type IIB models 
onstru
ted in [1, 2℄, the real part of the 
om-

plex stru
ture in the T-dual pi
ture with ba
kground �elds, i.e. the antisymmet-

ri
 NSNS two form, is not a modulus of the orientifold theory, and therefore we

only obtain a tadpole for the imaginary part. De�ning u =

p

jU

2

j =

p

R

1

=R

2

,

the dilaton and the 
omplex stru
ture tadpole 
an be 
ast into the form

h�

s

i

D

=

p

!

 

K

X

a=1

N

a

L

a

� 16u

!

; (3.41)

hui

D

= u

�

�u

 

p

!

 

K

X

a=1

N

a

L

a

� 16u

!!

; (3.42)

with

L

a

(U) =

r

(n

a

u)

2

+ ((m

a

+ U

1

n

a

)

1

u

)

2

:

The formulas (3.41) and (3.42) re
e
t the fa
t that, regarding T

1

where the

re
e
tion R

1

a
ts, only the left-right symmetri
 states on T

1

of the 
losed string
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Hilbert spa
e, in this 
ase the 
omplex stru
ture modulus, 
ouple to the 
ross
aps

and boundary states whereas the left-right antisymmetri
 ones, here the K�ahler

modulus, do not. In addition, we expe
t to �nd 
ouplings to some moduli '

k

of

K3.

Comparing with the boundary (F.8) and 
ross
ap (F.7) states whi
h in par-

ti
ular 
ontain a term of the form

j';�

2

; �i

NSNS

� exp

n

�i�

�

 

2

�1=6

~

 

2

�1=6

+  

3

�1=6

~

 

3

�1=6

�o

j0i

NSNS

;

one may spe
ulate that these moduli arise from the singlet states b

(0)

k

of table 3.3.

However, sin
e neither the relative normalization of the twisted amplitudes as


ompared to the untwisted ones nor the expli
it �eld theory des
ription of the

K3 part is known, we prefer to sti
k to the symboli
 notation '

k

for the relevant

twisted NSNS moduli.

Indeed, a third tadpole arises from the twisted se
tor whi
h 
an be 
ast into

the form

h'

k

i

D

=

 

X

a

tr(


a

)L

a

� 4u

!

:

From

h�

s

i

D

�

�V

��

s

; hui

D

�

�V

�u

; h'

k

i

D

�

�V

�'

k

;

we 
an derive an ansatz for the s
alar potential in the string frame of the form

V (�

s

; U; '

k

) = e

��

s

 

K

X

a=1

N

a

L

a

� 16u+ '

k

 

K

X

a=1

tr(


a

)L

a

� 4u

!!

: (3.47)

This potential is 
omputed only to non-trivial leading order in string theory

even though higher powers of the 
omplex stru
ture modulus o

ur. The ansatz

(3.47) for the s
alar potential 
an be 
ompared with the �eld theory expe
ta-

tion obtained from the Dira
-Born-Infeld a
tion of a D9

a

-brane with 
onstant

magneti
 and ele
tri
 ba
kground 
ux in the T-dual pi
ture in the limit '

k

! 0,

S

D9

a

= �T

9

Z

D9

a

d

10

xe

��

s

p

�det (G+ F

a

); (3.48)

with the D9-brane tension T

9

= (2�)

�9

�

0�5

and the 
onstant values on T

1

G = 1I

2

; (F

a

)

45

= (B + F

a

)

45

=

(m

a

+ bn

a

)

n

a

�

0

R

1

R

2

:

In addition, to lowest order in the K3 moduli the relation

detG(K3) = vol(K3) = !
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3

and four generations

is valid. The dependen
e on the twisted se
tor modes '

k

in the orbifold limit

T

4

=Z

3

seems to be mu
h more 
ompli
ated and will not be further pursued here.

The s
alar potential (3.47) 
omputed from string theory is unstable to lowest

order. This means that the minimum of the theory is not 
hosen in an appropri-

ate way and hints to an instability of the D8-brane 
on�guration. In the T-dual

theory, the tilting of D8-branes towards the X

4

axis 
orresponds to the dynami-


al de
ompa
ti�
ation to the six dimensional supersymmetri
 theory. A further

indi
ation of the instability arises from the fa
t that it seems to be impossi-

ble within the framework of interse
ting D8-branes to obtain a 
onsistent 
hiral

theory whi
h does not 
ontain any ta
hyon at all as mentioned in se
tion 3.1.2.

The problem of stability in the 
ontext of ta
hyons in a purely toroidal 
om-

pa
ti�
ation has also been addressed in [100℄. The moduli in toroidal D6-brane

models with non-trivial interse
tion angles on all three tori 
an be 
hosen su
h

that no ta
hyoni
 states are present. But even in this 
ase, NSNS tadpoles signal

an instability towards the de
ay to the supersymmetri
 va
uum [27℄.

3.4 Examples

In this se
tion, we dis
uss four models in view of their phenomenologi
al rele-

van
e. The tadpole 
an
ellation 
onditions (3.26), (3.27) severely restri
t the

possible 
hoi
es of gauge groups. For example, the GUT gauge group SU(5)


an only be obtained from N

0

a

= 5 if we restri
t our attention to D8-branes

(i.e. we do not want to in
lude anti-D8-branes), and we would have to introdu
e

at least two more sta
ks of D8-branes leading to exoti
 matter. Furthermore,

the generi
 spe
trum in table 3.1 shows that only an even number of antisym-

metri
 representations of SU(N

0

a

= 5) 
an be engineered. Therefore, we will

not further pursue GUT models, but show two models whi
h in
lude the gauge

group SU(3)�SU(2)�U(1)

Y

and two left-right symmetri
 models whi
h 
ontain

SU(3)�SU(2)

L

� SU(2)

R

�U(1)

B�L

. In order to obtain a phenomenologi
ally

appealing spe
trum, we also in
lude parallely displa
ed D6-branes and anti-D6-

branes. In all four models we 
hoose the non-trivial ba
kground b = 1=2 as only

in this 
ase an odd number of generations is a
hievable.

3.4.1 Example 1a: SU(3)� SU(2)� U(1)

3

and four gener-

ations

In the �rst example, we 
hoose three di�erent sta
ks of D8-branes,

N

1

A

= 3; (n

A

; m

A

) = (2;�1);

N

0

B

= 2; (n

B

; m

B

) = (4;�1); (3.51)

N

1

C

= 1; (n

C

; m

C

) = (1; 0):
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x

4

U(1)� U(1)

SU(2)

SU(3)

x

5

Figure 3.2: Example 1a: D8-brane 
on�guration on T

1

. The shaded area em-

phasizes the fundamental 
ell of the torus. Solid lines denote D8-branes, dotted

lines denote their mirror images.

The D8-brane 
on�guration on T

1

is depi
ted in �gure 3.2. The sta
k of D8-

branes of type A is 
R

1

invariant. Thus, the modi�ed tadpole 
an
ellation


onditions (3.26), (3.27) hold and the spe
trum 
an be read o� from tables 3.1

and 3.2. In this attempt, we only in
lude D8-branes and require that quarks have

no ta
hyoni
 pseudo-superpartners. In addition, we want to avoid exoti
 matter

whi
h would arise from additional sta
ks of D8-branes with non-Abelian gauge

groups. This �xes the numbersN

1

A

andN

0

B

as well as the 
orresponding wrapping

numbers n

A

; n

B

along the R

1

invariant dire
tion. It also �xes the number of

quark generations to be even. The spe
trum obtained from the setting (3.51) is

displayed in table 3.4 where we have also listed the original (Q

i

a

) and anomaly-free

(Q

Y

;

~

Q) U(1) 
harges. The fa
tor U(1)

1;A

whi
h arises from the 
R

1

invariant

sta
k of D8-branes is anomaly-free by itself. In addition, there are two more

anomaly-free linear 
ombinations,

Q

Y

=

Q

1

A

3

+Q

1

C

�Q

2

C

; (3.52)

~

Q =

Q

0

B

4

+Q

1

C

+Q

2

C

;

where Q

Y


an be interpreted as hyper
harge for the left- and right-handed quarks

and leptons. The remaining anomalous U(1) fa
tor a
quires a mass by the

generalized Green-S
hwarz me
hanism as des
ribed in se
tion 3.2 and de
ouples

from the e�e
tive theory. In the AC�

0

, BB

0

�

0

and CC

0

�

0

se
tors, ta
hyoni


pseudo-superpartners o

ur, whereas all other se
tors have either massless or

massive s
alar partners transforming in the same representation.
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2

and four generations

Chiral fermioni
 spe
trum for example 1a

mult. rep. of SU(3)� SU(2) Q

1

C

Q

2

C

Q

0

B

Q

1

A

Q

Y

~

Q

AB�

1

2 (3; 2) 0 0 �1 �1 �1=3 �1=4

�

2

2 (3; 2) 0 0 �1 1 1=3 �1=4

AC�

0

2 (3; 1) 1 0 0 �1 2=3 1

2 (3; 1) 0 1 0 1 �2=3 1

�

1

1 (3; 1) 0 �1 0 1 4=3 �1

�

2

1 (3; 1) �1 0 0 �1 �4=3 �1

BC�

1

1 (1; 2) �1 0 1 0 �1 �3=4

�

2

1 (1; 2) 0 �1 1 0 1 �3=4

BC

0

�

1

3 (1; 2) �1 0 �1 0 �1 �5=4

�

2

3 (1; 2) 0 �1 �1 0 1 �5=4

BB

0

�

0

4 (1; 1

a

) 0 0 2 0 0 1=2

6 (1; 1

a

) + (1; 3

s

) 0 0 2 0 0 1=2

CC

0

�

0

2 (1; 1) 1 1 0 0 0 2

Table 3.4: Chiral fermioni
 spe
trum from interse
ting D8-branes, example 1a.

3.4.2 Example 1b: SU(3)� SU(2)� U(1)

2

and four gener-

ations

The 
hiral fermion 
ontent of example 1a dis
ussed in se
tion 3.4.1 
ontains

a di�erent number of parti
les and anti-parti
les , namely four 
andidates for

quarks and six 
andidates for anti-quarks, and also a di�erent amount of quarks

and leptons. Bearing in mind the 
onsiderations made in engineering model 1a,

we modify the third type of D8-brane C su
h that the amount of quarks and

leptons mat
hes. This 
an be a
hieved by

N

1

A

= 3; (n

A

; m

A

) = (2;�1);

N

0

B

= 2; (n

B

; m

B

) = (4;�1); (3.53)

N

1

C

= 1; (n

C

; m

C

) = (2;�1);

if the sta
ks C and A are parallely displa
ed. The separation of the D8-branes

serves to break SU(4) down to SU(3) � U(1). In the T-dual pi
ture, distan
es
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SU(3)

SU(2)

U(1)

Figure 3.3: Example 1b: D8-brane 
on�guration on T

1

.

translate into Wilson lines. The D8-brane 
on�guration is displayed in �gure 3.3.

As one 
an easily see from this �gure, lo
ating the sta
k C at X

5

= R

2

=4 and

taking into a

ount latti
e shifts gives again an 
R

1

invariant 
on�guration.

1

In this 
ase, we obtain four generations of quarks and leptons as well as several

exoti
 fermions. The 
omplete spe
trum is listed in table 3.5. In this 
ase,

Q

0

B

be
omes massive while Q

1

A

and Q

1

C

are anomaly-free by themselves. The

linear 
ombination Q

Y

=

Q

1

A

3

+ Q

1

C


an be interpreted as the standard model

hyper
harge.

3.4.3 Example 2a: SU(3)�SU(2)

L

�SU(2)

R

�SO(8)�U(1)

3

and three generations

So far, we have only managed to engineer an even number of generations of the

standard model gauge group even though we have swit
hed on a non-trivial ba
k-

ground �eld b. The following examples are 
hosen to be left-right symmetri
 and


ontain three generations of left-handed quarks and leptons. We again 
hoose the

SU(3) fa
tor to arise from the 
R

1

invariant position and the SU(2)

L

�SU(2)

R

fa
tors to be supported by D8-branes at non-trivial angles. In order to ful�ll the

tadpole 
an
ellation 
onditions (3.26), (3.27), an additional gauge group SO(8)

as well as an anti-D8-brane have to be in
luded. The D8-brane 
on�guration of

1

Lo
ating a D8




-brane at X

5

= R

2

=4 is 
onvenient, but not ne
essary. For m




+ bn




= 0,

equation (3.21) does not give any 
onstraint on the 
 matri
es. The se
ond 
hoi
e 
on-

sistent with the 
losure of the orbifold group is 






R

1

= 





0


R

1

= 1I

N




and 





�

= 


�1;


0

�

=

diag

�

1I

N

0




; e

2�i=3

N

1




; e

�2�i=3

N

2




�

for 
 6= 


0

. In this 
ase, N

1




and N

2





an be 
hosen independently.
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L

� SU(2)

R

� SO(8)� U(1)

3

and three

generations

Chiral fermioni
 spe
trum for example 1b

mult. rep. of SU(3)� SU(2) Q

0

B

Q

1

A

Q

1

C

AB�

1

2 (3; 2) �1 �1 0

�

2

2 (3; 2) �1 1 0

BC�

1

2 (1; 2) �1 0 �1

�

2

2 (1; 2) �1 0 1

BB

0

�

0

10 (1; 1

a

) 2 0 0

6 (1; 3

s

) 2 0 0

Table 3.5: Chiral fermioni
 spe
trum from interse
ting D8-branes, example 1b.

our �rst 
hoi
e

N

0

A

= 8

N

1

A

= 3

o

(n

A

; m

A

) = (2;�1);

N

1

B

= 2; (n

B

; m

B

) = (1; 0); (3.54)

N

1

C

= 1; (n

C

; m

C

) = (�1; 0);

with a parallel displa
ement of the D8-branes B and anti-D8-brane C is shown

in �gure 3.4. The 
omplete spe
trum is listed in table G.2 in the appendix. It


ontains three generations of quarks and leptons as well as their anti-parti
les.

In addition, it 
ontains exoti
 matter transforming in the fundamental repre-

sentation of SO(8), a (2; 2) of SU(2)

L

� SU(2)

R

whose ta
hyoni
 partner 
ould

be interpreted as a non-standard Higgs parti
le and several singlets of the non-

Abelian gauge groups. The anomaly-free U(1)s are given by

Q

B�L

= �

1

3

Q

1

A

+Q

1

C

�Q

2

C

;

Q

0

= �

2

3

Q

1

A

+Q

1

B

�Q

2

B

; (3.55)

Q

00

=

1

4

�

Q

1

B

+Q

2

B

+ 2Q

1

C

+ 2Q

2

C

�

;

where Q

B�L


an be interpreted as Baryon - Lepton number o

urring in left-right

symmetri
 models.

There are two fa
ts whi
h have to be taken 
are of when in
luding anti-

D8-branes. On the one hand, the GSO proje
tion in the D8-brane - anti-D8-

brane se
tor is opposite to the usual one and results in sele
ting the reverse
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SU(3)� SO(8)

U(1)� U(1)

SU(2)

L

� SU(2)

R

Figure 3.4: Example 2a: D8-brane 
on�guration on T

1

.


hirality. On the other hand, the 
R

1

proje
tion in the R se
tor of the CC

0

strings sele
ts the symmetri
 instead of the antisymmetri
 representation. Due

to the displa
ement of the sta
ks B and C, there will be no ta
hyons stret
hed

between parallel B-branes and anti-C-branes as long as the radii R

1

and R

2

are


hosen big enough.

In this example, ta
hyoni
 pseudo-superpartners  

1

�'�1=2

j0i

NSNS

o

ur in the

AB�

0

, BB

0

�

0

and CC

0

�

0

se
tors. In the AC�

0

and BC

0

�

0

se
tors, the reversed

GSO proje
tion leaves the ta
hyoni
 groundstate j0i

NSNS

invariant.

3.4.4 Example 2b: SU(3)�SU(2)

L

�SU(2)

R

�SO(8)�U(1)

2

and three generations

As a last example, we start with the same SU(3)�SU(2)

L

�SU(2)

R


on�guration

as in example 2a, but 
hoose the anti-D8-brane C to be 
R

1

invariant and

parallely displa
ed relative to the SU(3) sta
k. The D8-brane positions resulting

from

N

0

A

= 8

N

1

A

= 3

o

(n

A

; m

A

) = (2;�1);

N

1

B

= 2; (n

B

; m

B

) = (1; 0); (3.56)

N

1

C

= 1; (n

C

; m

C

) = (�2; 1)

are displayed in �gure 3.5. The 
omplete 
hiral spe
trum is listed in table G.3
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SU(3)� SO(8)

SU(2)

L

� SU(2)

R

U(1)

Figure 3.5: Example 2b: D8-brane 
on�guration on T

1

.

of appendix G.2, and the anomaly free U(1) fa
tors are given by

Q

B�L

= �

1

3

Q

1

A

�Q

1

C

; (3.57)

Q

0

= Q

1

B

�Q

2

B

+ 2Q

1

C

:

In this 
ase, the spe
trum 
ontains three generations of left- and right-handed

quarks and leptons beside some exoti
 matter. The GSO proje
tion is reversed

in the AC and BC se
tors, and ta
hyons with the same representation of the

gauge group as the fermions appear in the AB�

0

, BB

0

�

0

and BC�

0

se
tors.

3.5 Mass and gauge hierar
hies

The D8-brane models dis
ussed in this 
hapter have a dual des
ription in terms

of interse
ting D4-branes. Applying T-duality along all four dire
tions X

6;:::;9

of

the orbifold, the a
tion of the orientifold be
omes 
R

1

I

4

where I

4

is the re
e
tion

of all four T-dual 
oordinates I

4

: X

6;:::;9

! �X

6;:::;9

, and the orbifold volume is

transverse to all D4-branes. Within this framework, the hierar
hy between the

ele
tro weak and the Plan
k s
ale 
an be explained by a large 
ompa
t transverse

volume [112, 87, 7, 6, 72℄.

The e�e
tive ten dimensional Lagrangian of the orientifold theory 
ontains

the relevant gravitational part [94℄

S

10

= �

1

2�

2

Z

d

10

x

p

�G

1

�

2

s

R

(10)

+ : : : ;

where �

2

=

1

2

(2�)

7

�

04

is the ten dimensional gravitational 
oupling 
onstant,

�

s

= e

�

s


ontains the dilaton �

s

of type I superstring theory and R

(10)

is the ten

dimensional 
urvature.
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The Dira
-Born-Infeld a
tion of a Dp

a

-brane is given by [94℄

S

Dp

a

= �T

p

Z

Dp

a

d

p+1

x

1

�

s

p

�det (G+B + 2��

0

F

a

); (3.59)

where

T

p

= (2�)

�p

�

0�(p+1)=2

is the tension of a Dp-brane and a res
aling F

a

! 2��

0

F

a

as 
ompared to (3.48)

has been performed in order to obtain the 
anoni
al normalization.

Upon dimensional redu
tion to four dimensions, the e�e
tive Lagrangian be-


omes

S

4

= �

Z

d

4

x

p

�G

 

1

2�

2

V

6

�

2

s

R +

V

p�3

(2�)

p�2

p

�

p�3

4�

s

F

2

a

+ : : :

!

;

where V

6

is the 
omplete 
ompa
t volume and V

p�3

is the 
ompa
t (p � 3)


y
le wrapped by the Dp-brane. Identifying the 
oeÆ
ient of the 
urvature

with (16�G

N

)

�1

where G

N

is Newton's 
onstant and the 
oeÆ
ient of the �eld

strength with (4g

2

a

)

�1

where g

a

is the four dimensional gauge 
oupling gives the

following results for D4-branes [2℄

1

p

G

N

=M

P

=

p

R

1

R

2

!

p

2�

3

�

s

�

0

; (3.62)

4�

2

g

2

a

=

M

s

�

s

L

a

; (3.63)

where R

1

R

2

is the volume of the two torus T

1

, ! is the dimensionless volume

of the four dimensional orbifold as given in appendix E.1, L

a

is the length (3.5)

of the 1-
y
le whi
h the D4

a

-brane wraps on T

1

, and M

s

= 1=

p

�

0

is the string

s
ale.

In order not to obtain too small gauge 
ouplings, the radii R

1

; R

2

may not

be 
hosen too large a

ording to equation (3.63). The string s
ale M

s


an,

however, be lowered down to about 1 � 10 TeV by taking the orbifold volume

V

orb

� !�

02

� O([10

9

(TeV)

�1

℄

4

).

One further feature of the pi
ture with D-branes at angles is the fa
t that

Yukawa 
ouplings are exponentially suppressed in terms of the area A

ijk

whi
h

is bounded by the three types of D-branes involved [2℄,

Y

ijk

= exp (�A

ijk

) : (3.64)

The Higgs �eld H

i

and the two fermions F

j

R

; F

k

L

involved are lo
ated at the three

di�erent verti
es whi
h the D-branes at angles generate.

As for the gauge 
ouplings, in order to avoid too small Yukawa 
ouplings,

the areas A

ijk

may not be
ome too large a

ording to formula (3.64).
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Applying the relationship (3.63) to the examples dis
ussed in se
tion 3.4, we

obtain

�

QCD

�

2

= 2

r

1 +

1

16

1

u

4

for examples 1a and 1b;

�

QCD

�

2

=

1

2

r

1 +

1

4

1

u

4

for examples 2a and 2b;

where u =

p

R

1

=R

2

is as de�ned in se
tion 3.3. These values are only valid at

tree level at the string s
ale M

s

. In order to make 
onta
t with the observed

data at the ele
troweak s
ale, the running of 
ouplings as well as loop 
orre
tions

whi
h might be large would have to be taken into a

ount.

The qualitative behavior of Yukawa 
ouplings (3.64) 
an be ni
ely read o�

from �gure 3.2 for example 1a. The sizes A

ijk

of the smallest triangular world-

sheets in units of

R

1

R

2

�

0

are

1

48

;

1

16

;

1

12

and

1

4

. There exist, however, also trilinear


ouplings whi
h arise from one single interse
tion point. The reason for this is

that in example 1a, two quark generations Q

1;2

L

are realized as (3; 2) and the

other two Q

3;4

L

as (3; 2) in the AB se
tor. Couplings to Higgs s
alars h from the

BB

0

se
tor are allowed by regarding the quantum numbers. Sin
e the position

of D8-branes A is 
hosen to be 
R

1

invariant, the interse
tion points of AB

are also interse
tion points of BB

0

. The same argumentation applies to leptoni


Yukawa 
ouplings sin
e the D8-brane positions of sta
ks B and C are 
hosen

su
h that the interse
tion lo
i of BC, BC

0

and CC

0

on the 
R

1

invariant axis


oin
ide.

The AB and BB

0

se
tors of example 1b are identi
al to those of example 1a.

Therefore, the same Yukawa 
ouplings for the quark se
tor arise. The di�erent


hoi
e of the D8-brane C results in leptons being lo
ated at the interse
tions of

sta
ks B and C whi
h do not 
oin
ide with any interse
tion point of the BB

0

se
tor. As a result, all leptoni
 Yukawa 
ouplings are suppressed in terms of a

non-vanishing worldsheet.

Let us now brie
y 
omment on example 2b. In this 
ase, all left handed

quarks Q

i

L

(i = 1; 2; 3) are realized as (3; 2

L

) while all right handed quarks Q

j

R

(j = 1; 2; 3) transform as (3; 2

R

). All quarks arise from the AB se
tor where A is

the 
R

1

invariant sta
k of D8-branes. The BB

0

se
tor 
an provide Higgs s
alars

h in the (2

L

; 2

R

) with U(1) 
harges Q

1

B

= Q

2

B

= �1. The quantum numbers

thus allow for trilinear 
ouplings of the form hQ

i

L

Q

j

R

for i; j = 1; 2 and i = j = 3

sin
e the third generation di�ers in the quantum numbers Q

1

B

; Q

2

B

from the other

two. In the same spirit, trilinear 
ouplings hL

i

L

L

j

R

of a Higgs parti
le with two

leptons L

i

L

, L

j

R

are allowed for i; j = 1; 2 and i = j = 3. But in 
ontrast to

the 
ouplings involving quarks, the leptons arise from the BC se
tor whi
h does

not have any 
ommon interse
tion point with the BB

0

se
tor. Naively, one 
an

therefore spe
ulate that quark and lepton masses are generated from 
ouplings

to the same Higgs s
alars h a
quiring a va
uum expe
tation value, and that there
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will be a hierar
hy of quark and lepton masses sin
e the relevant worldsheets are

of the order A

hQQ

= 0 and A

hLL

� O(

R

1

R

2

�

0

). This naive interpretation, however,

has to be handled with 
are sin
e not all types of 
ouplings to Higgses might

o

ur, e.g. if only one type of s
alar parti
les h with Q

1

B

= Q

2

B

= 1 exists and

no 
ouplings hQQ are allowed.

The same arguments hold for example 2a sin
e the AB and BB

0

se
tors are

the same as in example 2b, and also in this 
ase no 
ommon interse
tion point

of BB

0

and BC

0

exists. In addition, Yukawa 
ouplings between quarks and

anti-quarks o

ur and are suppressed by the same me
hanism as the leptoni


ones.
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Chapter 4

Summary and 
on
lusions

In this thesis, supersymmetry breaking via D-branes at angles in orientifold

models of type II superstring theories is investigated. Two di�erent 
lasses of

models are dis
ussed. In 
hapter 2, the orientifold proje
tor is 
hosen su
h

that D6-branes are required to 
an
el the RR 
harges of the orientifold planes,

whereas in 
hapter 3 D8-branes are needed.

The orientifold proje
tion 
ontains a re
e
tion R

i

of i internal 
oordinates

leading to O(9� i)-planes. The re
e
tion 
an be rephrased as a 
omplex 
onju-

gation of i 
omplex 
oordinates. The RR 
harge 
an
ellation 
ondition enfor
es

the existen
e of a suitable amount of D(9 � i)-branes and their mirror images

under the re
e
tion. Partial supersymmetry breaking is a
hieved by the intro-

du
tion of a four dimensional orbifold. The a
tion of the orbifold symmetry on

the Chan-Paton fa
tors of the open string se
tor depends on the 
hoi
e of the

orientifold proje
tion.

In 
hapter 2, the orientifold proje
tion 
R

3

maps the orbifold generator �

to its inverse,


R

3

� = �

�1


R

3

:

A generi
 Z

M

generator rotates the positions of the D6-branes. Only a Z

2

ro-

tation maps D6-branes onto themselves while a
ting non-trivially on the Chan-

Paton labels of the open string states. The D6-branes are 
hosen to lie on top of

the O6-planes along the dire
tions of the orbifold. Supersymmetry breaking is

a
hieved by allowing for non-trivial interse
tion angles of the D6-branes on the

additional two torus. The D6-branes support non-Abelian gauge groups on their

worldvolume, and at the interse
tion point of two D6-branes 
hiral fermions in

the bifundamental of the gauge groups are lo
ated.

We have expli
itly shown the 
omputation of the 1-loop 
losed and open

string amplitudes, namely the Klein bottle, M�obius strip and annulus. The tree


hannel amplitudes have been obtained by modular transformation. In addition,

we have shown the dire
t 
omputation in the tree 
hannel by means of the

boundary state approa
h. The 
onsisten
y of the two approa
hes, the worldsheet

81
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duality, gives additional 
onstraints on the geometry of the 
ompa
ti�
ation for

the D6-brane models. Two di�erent orientations of the tori, the A and B type

latti
es, are 
onsistent with the re
e
tion R

3

. The orbifold group a
ts non-

trivially on the zero mode 
ontributions to the loop amplitudes. In order to

obtain the 
omplete proje
tor in the tree 
hannel, only the 
ombination AB for

the orbifold latti
e is allowed in the 
ase of a Z

4

and Z

6

symmetry whereas no


onstraints arise for Z

2

and Z

3

.

The tadpole 
an
ellation 
onditions are given in equation (2.24). The analysis

is performed for a re
tangular two torus 
orresponding to a trivial ba
kground in

the T-dual language but 
an easily be generalized to tilted tori or, equivalently,

a non-vanishing antisymmetri
 NSNS tensor ba
kground in the T-dual model.

The 
losed string spe
trum is N = 2 supersymmetri
 in four dimensions. The

open string se
tor 
ontains the N = 2 supersymmetri
 gauge �elds with gauge

groups [48℄

Z

3

:

Q

m

a

6=0

U(N

a

)

Q

m

a

=0

SO(N

a

);

Z

2;4;6

:

Q

m

a

6=0

U(N

a

=2)

4

Q

m

a

=0

U(N

a

=2)

2

:

The open se
tor also 
ontains strings with endpoints on two di�erent kinds of

D6-branes. These se
tors provide 
hiral fermions in the bifundamental of the

two gauge groups supported on the worldvolume of the D6-branes. Sin
e the

orbifold group Z

3

a
ts trivially on the Chan-Paton labels, ea
h 
hiral fermion

is a

ompanied by a ta
hyon in the same representation. This situation is dif-

ferent for Z

2;4;6

. The mass eigenstates di�er in their Z

2

parity. Therefore, only


hiral fermions with even parity have ta
hyoni
 pseudo superpartners. We have

expli
itly given examples for Z

2

and Z

3

. Ex
luding anti-D-branes, for Z

3

the

maximal gauge group obtainable is SU(3) � U(1) if we require the presen
e of


hiral fermions. The resulting spe
trum is listed in table 2.2. We have also

worked out an example for Z

2

whi
h en
loses the standard model gauge group

as well as several non-anomalous U(1) fa
tors and some exoti
 matter. We have

argued that the anomalous U(1)s 
ouple to untwisted 
losed string modes thus

be
oming massive by a generalized Green-S
hwarz me
hanism. The anomaly

free U(1)s are displayed in equation (2.44), and the 
hiral spe
trum is listed in

table D.2. However, in this framework we 
an neither obtain a three generation

model nor give an obvious solution to the hierar
hy problem.

In 
hapter 3, the re
e
tion is 
hosen to a
t only on one two torus. The orbifold

group a�e
ts the other tori. Therefore the orientifold and orbifold generators


ommute,


R

1

� = �
R

1

:

RR 
harge 
an
ellation requires D8-branes whi
h wrap a 1-
y
le on the two torus

and are extended along all four orbifold dire
tions. In 
ontrast to the models

dis
ussed in 
hapter 2, the orbifold group a
ts non-trivially on the Chan-Paton

labels. While the re
e
tion 
R

3

enfor
es the existen
e of D6-branes for all kinds
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of four dimensional orbifolds, 
R

1

generi
ally requires both D8- and D4-branes

at the same time. Only in the 
ase of no Z

2

subsymmetry, i.e. a Z

3

orbifold,


onsistent models with only D8-branes exist. In this 
ase, the models are T-

dual to orientifolds with a di�erent orientifold group generator 
R

1

I

4

and only

D4-branes where I

4

is the re
e
tion along all transversal orbifold 
oordinates.

This kind of model o�ers the possibility of solving the mass hierar
hy problem

by large transverse dimensions as suggested in [7, 6℄. The generi
 RR tadpole


an
ellation 
onditions (3.26), (3.27) do not only 
onstrain the amount of D8-

branes with identi
al position, but determine also the a
tion on the Chan-Paton

matri
es whi
h e�e
tively de
omposes a sta
k ofN

a

D8

a

-branes into i subsystems

N

i

a

with Z

3

eigenvalues �

i

. The resulting gauge group is [65℄

Z

3

:

Y

m

a

+bn

a

6=0

"

2

Y

i=0

U(N

i

a

)

#

Y

m

a

+bn

a

=0

SO(N

0

a

)� U(N

1

a

):

As for the models with D6-branes, the loop and tree 
hannel amplitudes rel-

evant for RR tadpole 
an
ellation are 
al
ulated. In this 
lass of models, world-

sheet duality does not give any additional 
onstraints on the latti
es. The generi



hiral spe
trum is displayed in table 3.1. Only those mass eigenstates whi
h have

trivial Z

3

eigenvalue have a ta
hyoni
 pseudo superpartner. Therefore, ta
hyons


an be partially proje
ted out as 
ompared to the models dis
ussed in 
hapter 2.

The tadpole 
an
ellation 
onditions are, however, very restri
tive and therefore

any model with a phenomenologi
ally interesting gauge group and 
hiral spe
-

trum will 
ontain a ta
hyon. We have argued that U(1) anomalies are 
an
eled

by a generalized Green-S
hwarz me
hanism involving 
losed string modes from

the twisted se
tor. The instability of the model does not only manifest itself in

the appearan
e of a ta
hyon, but also in the existen
e of non-vanishing NSNS

tadpoles whi
h we have 
omputed to linear order in the moduli of the orbifold.

Furthermore, we have given two expli
it examples of embedding the standard

model gauge group in this 
lass of interse
ting D8-brane s
enarios. These exam-

ples lead to an even number of generations. A more promising ansatz 
onsists

in 
onsidering left-right symmetri
 models with three generations. We have also

shown two examples of this type whi
h 
omprise some exoti
 matter besides

the left-right symmetri
 extension of the standard model. The ta
hyons whi
h

o

ur in the spe
trum have the 
orre
t quantum numbers for being interpreted

as non-standard Higgs parti
les.

In summary, in this thesis model building from type IIA orientifolds preserv-

ing N = 2 supersymmetry in the gravity and gauge se
tors with 
hiral fermions

from supersymmetry breaking interse
tions of D-branes have been investigated.

The set-up o�ers a ri
h variety of engineering di�erent gauge groups and ob-

taining repli
ation of generations from multiple D-brane interse
tions. We have

shown for the �rst time how to in
orporate four dimensional 
hiral spe
tra from

D-branes at angles with a redu
ed amount of supersymmetry in the gauge and
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gravity se
tor. Furthermore, with this requirement we have su

eeded in 
on-

stru
ting models with a redu
ed amount of ta
hyons and shown that an inter-

pretation in terms of non-standard Higgs parti
les is appealing. In addition, we

have for the �rst time performed an orientifold 
onstru
tion with D-branes at

angles whi
h admits for large transverse dimensions and is by this means 
apable

of solving the hierar
hy problem.

Models with interse
ting D-branes 
learly still deserve to be further explored.

On the one hand, it will be interesting to 
onsider the NSNS tadpoles beyond the

linear order in the orbifold moduli sin
e they might play a role in stabilizing the

D8-brane models. In the T-dual models, lo
ating D4-branes at di�erent �xed

points in the transverse spa
e might also lead to di�erent models, and it would be

worthwhile to 
onsider in
ationary s
enarios along the idea of interse
ting D4-

branes in purely toroidal type IIA 
ompa
ti�
ations presented in [51℄ for expli
it

orientifold models. Other possibilities of obtaining improved models 
onsist in


onsidering more 
ompli
ated orbifold and orientifold groups. A very re
ent

ansatz [25℄ uses even a di�erent GSO proje
tion leading to an orientifold of type

0' string theory. Also in this 
ase, non-trivial interse
tion angles of D6-branes are

a

ompanied by a non-vanishing dilaton tadpole. Therefore, another 
hallenge

within interse
ting D-brane model building 
onsists in in
luding the Fis
hler

Susskind me
hanism [44℄ and exploring how it a�e
ts measurable quantities.



Appendix A

Notation and 
onventions

The bosoni
 
losed string 
oordinates whi
h solve the two dimensional equation

of motion 
an be de
omposed into a left- and a right-moving part depending on

the light-
one 
oordinates of the worldsheet �

�

= � � �,

X

�

(�; �) = X

�

L

(�

+

) +X

�

R

(�

�

); (A.1)

with the mode expansions

X

�

L

(�

+

) =

x

�

2

+

p

�

L

2

�

+

+

i

p

2

X

n6=0

�

�

n

n

e

in�

+

; (A.2)

X

�

R

(�

�

) =

x

�

2

+

p

�

R

2

�

�

+

i

p

2

X

n6=0

~�

�

n

n

e

in�

�

; (A.3)

where x

�

and p

�

=

1

2

(p

�

L

+ p

�

R

) are the 
enter-of-mass position and momentum

in units of �

0

, respe
tively. The fermioni
 
oordinates 
an be expanded in a

similar manner, namely

	

�

(�; �) = 	

�

L

(�

+

) + 	

�

R

(�

�

); (A.4)

	

�

L

(�

+

) =

X

r

 

�

r

e

i��

+

; (A.5)

	

�

R

(�

�

) =

X

r

~

 

�

r

e

i��

�

; (A.6)

where the index r runs over integers in the untwisted R se
tor and over half-

integers in the untwisted NS se
tor. The non-trivial 
ommutation relations of

the raising and lowering operators are given by

[�

�

n

; �

�

m

℄ = [~�

�

n

; ~�

�

m

℄ = nÆ

n;�m

Æ

��

;

f 

�

r

;  

�

s

g =

n

~

 

�

r

;

~

 

�

s

o

= Æ

r;�s

Æ

��

:
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For 
ompa
t 
oordinates on a two torus, it is useful to de�ne 
omplex os
illators,

e.g.

�

1;1

=

1

p

2

�

�

4

� i�

5

�

: (A.7)

The non-trivial 
ommutation relations then read (i; j = 1; 2; 3)

h

�

i

n

; �

j

m

i

=

h

~�

i

n

; ~�

j

m

i

= nÆ

n;�m

Æ

ij

; (A.8)

n

 

i

r

;  

j

s

o

=

n

~

 

i

r

;

~

 

j

s

o

= Æ

r;�s

Æ

ij

: (A.9)

The orientifold group a
tion is given by (� labels the non-
ompa
t 
oordinates

in light 
one gauge and j = 2; 3 the se
ond and third torus)

(
R

i

)�

�

r

(
R

i

)

�1

= ~�

�

r

;

(
R

i

)�

1;1

r

(
R

i

)

�1

= ~�

1;1

r

; (A.10)

(
R

3

)�

j;j

r

(
R

3

)

�1

= ~�

j;j

r

; (
R

1

)�

j;j

r

(
R

1

)

�1

= ~�

j;j

r

;

and analogously for the fermioni
 se
tors with the minus sign in
luded as de-

s
ribed in se
tion 1.2.

The Hamiltonian is given by
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; (A.11)

with (i; j = 1; 2; 3)
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and similarly for H

R

with energy and time measured in units of the string s
ale

�

0

. In the 
omplex notation, these de�nitions 
arry over to the twisted se
tors

where the os
illator indi
es are in Z+ nv

i

for bosons and R se
tor fermions and

in Z +

1

2

+ nv

i

for NS se
tor fermions. The zero point energy for the moding

Z+ � of a 
omplex boson is given by
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and for a 
omplex fermion by
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Appendix B

1-loop diagrams for O6-plane /

D6-brane intera
tions

The tadpole 
an
ellation 
onditions are determined by 
omputing those diagrams

in the loop 
hannel whi
h 
orrespond to RR ex
hanges in the tree 
hannel. As

explained in se
tion 1.4, the relevant 
ontributions arise from the NSNS se
tor

with (�1)

F

insertion for the Klein bottle, R for the M�obius strip and NS with

(�1)

F

insertion for the annulus.

B.1 Latti
e 
ontributions

On a torus with radii R

1;2

, only momenta along the 
R

3

invariant dire
tion and

windings perpendi
ular to the former one 
ontribute. In the loop 
hannel, the

general expression for the latti
e 
ontribution is given by
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where �
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. Using the one dimensional Poisson resummation formula
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gives the general expression for the latti
e 
ontribution in the tree 
hannel
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(B.1) and (B.3) are related via
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with 
 =

�

p

��

R

1

R

2

, t = 1=(�l) and � = 4 (2; 8) for the Klein bottle (annulus,

M�obius strip). The results for the di�erent tori are summarized in table B.1.

The result for the b type latti
e 
an be re
ast in the notation introdu
ed in
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Table B.1: The di�erent latti
e 
ontributions for a two torus.
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+ 2n
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m

a


os(2�) for D6-brane models on the b torus.

The de�nitions of L

A

a

and L

a

are given in the text in se
tion 2.1.2.

The b type latti
e is parameterized a

ording to the right hand side of �gure B.1.

se
tion 1.2 with non-vanishing ba
kground b = 1=2 �eld in the T-dual pi
ture

by repla
ing
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(~n; ~m) = (n+m;�m);

where the de�nitions are given in �gure B.1.
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Figure B.1: Two ways to parameterize the latti
e with b = 1=2.

B.2 Os
illator 
ontributions

The os
illator 
ontributions 
an be expressed in terms of generalized Ja
obi theta

fun
tions and the Dedekind eta fun
tion (q � e

�2�t

),
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B.2.1 Theta-fun
tion-identities

The upper argument � is only de�ned modulo Z, the lower argument � gives a

phase when shifted by 1,
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For �1=2 < � 6 1=2, the following produ
t expansion of a Ja
obi theta fun
tion

holds,
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from whi
h the asymptoti
 behavior for t ! 1 
an easily be read o�. For

D-branes at an angle �� 6= 0 on a two torus, one needs in parti
ular:

#

h

1

2

�

i

#

h

1

2

� +

1

2

i

(2l)

l!1

�! �

1

tan(��)

: (B.10)

Ja
obi theta fun
tions and the Dedekind eta fun
tion have the following modular

transformation properties:
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For the loop { tree 
hannel 
orresponden
e of the M�obius strip, the additional

identities for � 2 (�1; 0℄ are useful:
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For
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= 4l, these lead to the modular transformations
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B.2.2 Os
illator 
ontributions to loop diagrams in D6-brane

models

The os
illator 
ontributions in the loop 
hannel in terms of generalized Ja
obi

theta fun
tions are given by
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B.2.3 Os
illator 
ontributions to tree diagrams in D6-brane

models

The os
illator 
ontributions in the tree 
hannel read
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Appendix C

Boundary state approa
h for

O6-plane/D6-brane intera
tions

C.1 Constru
tion of 
ross
ap states

A 
omprehensive introdu
tion into the boundary state approa
h to D-branes is

given in [50℄ and referen
es therein. Appendix A of [5℄ 
ontains the 
onstru
tion

of 
ross
ap states in related models.

C.1.1 Os
illator part

Cross
ap states have to ful�ll
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Inserting the mode expansion (A.2), (A.3) gives the 
onstraints in terms of

bosoni
 os
illators
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The 
onstraints for the fermioni
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A solution is provided by
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where r 2 Z(Z+

1

2

) in the RR (NSNS) se
tor, n 2 Z and j0; �i is the groundstate

whi
h depends on the spin stru
ture � in the RR se
tor. The sums are meant to


ontain 
reation operators only. The va
uum state 
ontains the momentum and

winding modes dis
ussed in se
tion C.1.3.

C.1.2 Zero modes and GSO invariant states

We present the following dis
ussion for the 
ross
ap states. The GSO proje
tions

on boundary states are 
ompletely analogous.

NSNS se
tor

In the NSNS se
tors, the GSO proje
tion on the groundstate is determined by

requiring ta
hyoni
 groundstates to be unphysi
al. Therefore, the GSO invariant
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Untwisted RR se
tor
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The 
ross
ap 
onditions from the zero modes in the RR se
tor on the groundstate

then read
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and the zero mode parts of the GSO proje
tions are given by
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Y

i=1;2;3

1

2i

�

 

i

+

+  

i

�

+  

i

+

+  

i

�

��

 

i

+

+  

i

�

�  

i

+

�  

i

�

�

;

(�1)

~

F

=

9

Y

m=2

p

2

~

 

m

0

(C.8)

=

Y

�=2;3

1

i

( 

�

+

�  

�

�

) �

Y

i=1;2;3

1

2i

�

 

i

+

�  

i

�

+  

i

+

�  

i

�

��

 

i

+

�  

i

�

�  

i

+

+  

i

�

�

:

De�ning

j
R

3

�

k

;�i

0

RR

�

" 

Y

�=2;3

 

�

�

! 

Y

i=1;2;3

 

i

�

 

i

�

!#

j
R

3

�

k

;+i

0

RR

; (C.9)

the a
tion of the 
omplete GSO proje
tor 
an be rephrased as

(�1)

F

j
R

3

�

k

;+i

RR

= �(�1)

~

F

j
R

3

�

k

;+i

RR

= �ij
R

3

�

k

;�i

RR

; (C.10)

(�1)

F

j
R

3

�

k

;�i

RR

= �(�1)

~

F

j
R

3

�

k

;�i

RR

= ij
R

3

�

k

;+i

RR

: (C.11)

GSO invariant states are given by

j
R

3

�

k

i = j
R

3

�

k

i

NSNS

+ j
R

3

�

k

i

RR

;

j
R

3

�

k

i

NSNS

= j
R

3

�

k

;+i

NSNS

� j
R

3

�

k

;�i

NSNS

; (C.12)

j
R

3

�

k

i

RR

= j
R

3

�

k

;+i

RR

� ij
R

3

�

k

;�i

RR

:

The total 
ross
ap state has to be invariant under the orbifold group (i.e. it


ontains the `
omplete proje
tor'):

jCi =

M�1

X

k=0

j
R

3

�

k

i: (C.13)
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C.1.3 Latti
e part

From (C.1) we also obtain

�

x

i

� e

2�ikv

i

[x

�

i

+

1

2

(p

�

i

L

� p

�

i

R

)℄

�

j
R

3

�

k

i = 0 (C.14)

by inserting the mode expansion (A.2), (A.3). From this we 
an read o� that the


ross
ap state j
R

3

�

k

i is 
on�ned to a line on T

i

whi
h is tilted by the angle

��kv

i

relative to the real axis. Finally, 
onditions on the momenta arise:

p

�

j
R

3

�

k

i = 0;

(p

i

L

+ e

2�ikv

i

p

�

i

R

)j
R

3

�

k

i = 0; (C.15)

(p

i

R

+ e

2�ikv

i

p

�

i

L

)j
R

3

�

k

i = 0:

Inserting p

L;R

= P � �

0

W for the 
ompa
t momenta, (C.15) indi
ates that on

ea
h T

i

, there are Kaluza-Klein momenta perpendi
ular and windings parallel to

the position of the 
ross
ap state.

C.2 Boundary states

Similarly to a 
ross
ap state, the boundary state for a D6-brane at angle �' on

T

1

relative to the X

4

axis is given by

j';�

k

; �i = N

B
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n

�

X

n

1

n

�

�
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�
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�
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�
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�
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�
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�
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r
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�
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�
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�
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e
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j0; �i: (C.16)

The os
illator moding is the same as for the 
ross
ap. The NSNS va
uum is

again independent of the spin stru
ture �, and the va
uum states 
ontain the

latti
e 
ontributions.
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Using the analogous equations to (C.12), the GSO invariant boundary state

is given by

jB

'

i =

M�1

X

k=0

j';�

k

i: (C.17)

Dis
rete momenta exist in the 
ompa
t dire
tions perpendi
ular to the position

of the boundary state while windings are parallel.

C.3 Tree 
hannel amplitudes

Using equation (C.13) and (C.17), the tree 
hannel amplitudes read

~

K

total

=

~

K

RR

+

~

K

NSNS

=

Z

1

0

dlhCje

�2�lH

jCi;

~

A

total

=

~

A

RR

+

~

A

NSNS

=

Z

1

0

dl

X

';'

0

hB

'

je

�2�lH
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'

0

i; (C.18)

~

M
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=

~
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RR

+

~

M

NSNS

=

Z

1

0

dl

X

'

�

hCje

�2�lH

jB

'

i+ h:
:

�

:

As we mainly fo
us on 
omputing the RR ex
hange in this thesis, we will use

the abbreviation

~

K �

~

K

RR

et
. The normalizationsN

C

;N

B

are determined from

the Klein bottle and annulus amplitude via worldsheet duality. The following

equation holds

h
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je

�2�lH
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�
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(
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(C.19)

where

~

K

(k�k

0

)

�

~

K

(k�k

0

)

(2l) 
ontains the os
illator 
ontribution (for notation

see (B.19), (B.20)) and

~

L

i

�

~

L

i

(l) denotes the latti
e 
ontribution for the two

torus T

i

listed in table B.1. For Z

2;3

, all j
R

3

�

k

i are extended along the axes

of T

2;3

in the 
ase of the A latti
e and diagonal to the axes for the B latti
e.

Sin
e the D6-branes lie on top of the O6-planes on T

2;3

in our models, the

positions of the O6-planes 
an be read o� from �gures 2.4 and 2.5. All j
R

3

�

k

i

have the same relative orientation with respe
t to the tori T

2;3

, hen
e they all

provide the same latti
e 
ontribution. All 
hoi
es AA, AB, BB lead to 
onsis-

tent models. The situation is di�erent for Z

4;6

. In these models, all j
R

3

�

2k

i

have the same orientation relative to the latti
e while all j
R

3

�

2k+1

i have the

other possible one. j
R

3

�

2k

i on the latti
e A gives the same 
ontribution as

j
R

3

�

2k+1

i on B and vi
e versa,

h
R

3

�

2k

je

�2�lH

j
R

3

�

2k

i

+h
R

3

�

2k+1

je

�2�lH

j
R

3

�

2k+1

i

)

�!

(

2

~

L

A

~

L

B

for AB;
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+
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for AA/BB:

(C.20)
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By modular transformation from the loop 
hannel, one re
overs the 
orre
t result

for AB. But for AA or BB, the loop 
hannel amplitude gives (4

~

L

2

A

+

~

L

2

B

) for

Z

4

and (

~

L

2

A

+ 9

~

L

2

B

) for Z

6

as 
an be read o� from table B.1. This means that

only the AB-latti
e is 
onsistent with worldsheet duality.



Appendix D

Chiral D6-brane spe
tra

In this appendix we list the fermioni
 groundstates of se
tion 2.2.1 and 3.1.2 and

the 
hiral spe
trum for the D6-brane model in se
tion 2.3.2.

Fermioni
 states on T

2

� T

4

=Z

M

on T

2

on T

4

=Z

M

state

�

0

4

mass

2


hirality Z

2

(Z

3

)

�' = 0

k
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= 0 j0i

R

0 L + 1

 

0

0

 

1

0

j0i
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0 R + 1

 

0

0
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0
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0 R � �

 

0

0

 

3

0

j0i

R

0 R � �
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0

j0i
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�' = 0 0 <
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M
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j0i

R
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1

0

j0i

R

0 R +

�' 6= 0
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= 0 j0i
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0 L + 1

 

0

0

 

2

0

j0i

R
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0

0

 

3

0

j0i

R

0 R � �
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2

0

 

3

0

j0i

R

0 L + 1

�' 6= 0 0 <

k

M

6

1

2

j0i

R

0 L +

 

0

0

 

1

��'

j0i

R

�' (R) (+)

Table D.1: Fermioni
 groundstates for the open string se
tor of D6-brane models.

The last but one 
olumn denotes the Z

2

eigenvalue of the 
orresponding massless

state. The last 
olumn denotes the Z

3

eigenvalue for D8-brane models where

� � e

2�i=3

.
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Chiral spe
trum for interse
ting D6-branes, Ex. 2, Part 1

rep. multQ

1

Q

2

Q

3

Q

4

Q

5

Q

6

Q

7

Q

8

Q

9

Q

10

~

Q

1

~

Q

2

~

Q

3

~

Q

4

~

Q

5

~

Q

6

11

0

U (3; 3; 1; 1; 1; 1) 4 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0

(1; 1; 3; 3; 1; 1) 4 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0

(3; 1; 1; 1; 1; 1) 4 �2 0 0 0 0 0 0 0 0 0 �2 0 �2 0 0 0

(1; 3; 1; 1; 1; 1) 4 0 �2 0 0 0 0 0 0 0 0 �2 0 2 0 0 0

(1; 1; 3; 1; 1; 1) 4 0 0 �2 0 0 0 0 0 0 0 0 �2 0 �2 0 0

(1; 1; 1; 3; 1; 1) 4 0 0 0 �2 0 0 0 0 0 0 0 �2 0 2 0 0

11

0

T (

�

3; 1; 1;

�

3; 1; 1) 2 �1 0 0 �1 0 0 0 0 0 0 �1�1�1 1 0 0

(1;

�

3;

�

3; 1; 1; 1) 2 0 �1�1 0 0 0 0 0 0 0 �1�1 1 �1 0 0

12U (3; 1; 1; 1;

�

2; 1) 2 1 0 0 0 �1 0 0 0 0 0 1 0 4 0 4 0

(

�

3; 1; 1; 1;

�

2; 1) 2 �1 0 0 0 �1 0 0 0 0 0 �1 0 2 0 4 0

(1; 3; 1; 1; 2; 1) 2 0 1 0 0 1 0 0 0 0 0 1 0 �4 0 �4 0

(1;

�

3; 1; 1; 2; 1) 2 0 �1 0 0 1 0 0 0 0 0 �1 0 �2 0 �4 0

(1; 1; 3; 1; 1;

�

2) 2 0 0 1 0 0 �1 0 0 0 0 0 1 0 4 0 4

(1; 1;

�

3; 1; 1;

�

2) 2 0 0 �1 0 0 �1 0 0 0 0 0 �1 0 2 0 4

(1; 1; 1; 3; 1; 2) 2 0 0 0 1 0 1 0 0 0 0 0 1 0 �4 0 �4

(1; 1; 1;

�

3; 1; 2) 2 0 0 0 �1 0 1 0 0 0 0 0 �1 0 �2 0 �4

12T (

�

3; 1; 1; 1; 1; 2) 1 �1 0 0 0 0 1 0 0 0 0 �1 0 �1�3 0 �4

(1;

�

3; 1; 1; 1;

�

2) 1 0 �1 0 0 0 �1 0 0 0 0 �1 0 1 3 0 4

(1; 1;

�

3; 1; 2; 1) 1 0 0 �1 0 1 0 0 0 0 0 0 �1�3�1�4 0

(1; 1; 1;

�

3;

�

2; 1) 1 0 0 0 �1 �1 0 0 0 0 0 0 �1 3 1 4 0

13U (3; 1; 1; 1; 1; 1) 6 1 0 0 0 0 0 �1 0 0 0 4 0 1 0 �1 0

(

�

3; 1; 1; 1; 1; 1) 6 �1 0 0 0 0 0 0 1 0 0 �4 0 �1 0 �1 0

(1; 3; 1; 1; 1; 1) 6 0 1 0 0 0 0 0 �1 0 0 4 0 �1 0 1 0

(1;

�

3; 1; 1; 1; 1) 6 0 �1 0 0 0 0 1 0 0 0 �4 0 1 0 1 0

(1; 1; 3; 1; 1; 1) 6 0 0 1 0 0 0 0 0 �1 0 0 4 0 1 0 �1

(1; 1;

�

3; 1; 1; 1) 6 0 0 �1 0 0 0 0 0 0 1 0 �4 0 �1 0 �1

(1; 1; 1; 3; 1; 1) 6 0 0 0 1 0 0 0 0 0 �1 0 4 0 �1 0 1

(1; 1; 1;

�

3; 1; 1) 6 0 0 0 �1 0 0 0 0 1 0 0 �4 0 1 0 1

13

0

U (3; 1; 1; 1; 1; 1) 10 1 0 0 0 0 0 0 1 0 0 �2 0 1 0 �1 0

(

�

3; 1; 1; 1; 1; 1) 10 �1 0 0 0 0 0 �1 0 0 0 2 0 �1 0 �1 0

(1; 3; 1; 1; 1; 1) 10 0 1 0 0 0 0 1 0 0 0 �2 0 �1 0 1 0

(1;

�

3; 1; 1; 1; 1) 10 0 �1 0 0 0 0 0 �1 0 0 2 0 1 0 1 0

(1; 1; 3; 1; 1; 1) 10 0 0 1 0 0 0 0 0 0 1 0 �2 0 1 0 �1

(1; 1;

�

3; 1; 1; 1) 10 0 0 �1 0 0 0 0 0 �1 0 0 2 0 �1 0 �1

(1; 1; 1; 3; 1; 1) 10 0 0 0 1 0 0 0 0 1 0 0 �2 0 �1 0 1

(1; 1; 1;

�

3; 1; 1) 10 0 0 0 �1 0 0 0 0 0 �1 0 2 0 1 0 1
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Chiral spe
trum for interse
ting D6-branes, Ex. 2, Part 2

rep. multQ

1

Q

2

Q

3

Q

4

Q

5

Q

6

Q

7

Q

8

Q

9

Q

10

~

Q

1

~

Q

2

~

Q

3

~

Q

4

~

Q

5

~

Q

6

13T (

�

3; 1; 1; 1; 1; 1) 3 �1 0 0 0 0 0 0 0 1 0 �1�3�1 0 0 1

(1;

�

3; 1; 1; 1; 1) 3 0 �1 0 0 0 0 0 0 0 1 �1�3 1 0 0 �1

(1; 1;

�

3; 1; 1; 1) 3 0 0 �1 0 0 0 1 0 0 0 �3�1 0 �1 1 0

(1; 1; 1;

�

3; 1; 1) 3 0 0 0 �1 0 0 0 1 0 0 �3�1 0 1 �1 0

13

0

T (

�

3; 1; 1; 1; 1; 1) 5 �1 0 0 0 0 0 0 0 0 �1 �1 3 �1 0 0 1

(1;

�

3; 1; 1; 1; 1) 5 0 �1 0 0 0 0 0 0 �1 0 �1 3 1 0 0 �1

(1; 1;

�

3; 1; 1; 1) 5 0 0 �1 0 0 0 0 �1 0 0 3 �1 0 �1 1 0

(1; 1; 1;

�

3; 1; 1) 5 0 0 0 �1 0 0 �1 0 0 0 3 �1 0 1 �1 0

23U (1; 1; 1; 1; 2; 1) 2 0 0 0 0 1 0 1 0 0 0 �3 0 �3 0 �3 0

(1; 1; 1; 1; 2; 1) 2 0 0 0 0 1 0 �1 0 0 0 3 0 �3 0 �5 0

(1; 1; 1; 1;

�

2; 1) 2 0 0 0 0 �1 0 0 1 0 0 �3 0 3 0 3 0

(1; 1; 1; 1;

�

2; 1) 2 0 0 0 0 �1 0 0 �1 0 0 3 0 3 0 5 0

(1; 1; 1; 1; 1; 2) 2 0 0 0 0 0 1 0 0 1 0 0 �3 0 �3 0 �3

(1; 1; 1; 1; 1; 2) 2 0 0 0 0 0 1 0 0 �1 0 0 3 0 �3 0 �5

(1; 1; 1; 1; 1;

�

2) 2 0 0 0 0 0 �1 0 0 0 1 0 �3 0 3 0 3

(1; 1; 1; 1; 1;

�

2) 2 0 0 0 0 0 �1 0 0 0 �1 0 3 0 3 0 5

23T (1; 1; 1; 1; 2; 1) 1 0 0 0 0 1 0 0 0 �1 0 0 3 �3 0 �4�1

(1; 1; 1; 1;

�

2; 1) 1 0 0 0 0 �1 0 0 0 0 �1 0 3 3 0 4 1

(1; 1; 1; 1; 1; 2) 1 0 0 0 0 0 1 �1 0 0 0 3 0 0 �3�1�4

(1; 1; 1; 1; 1;

�

2) 1 0 0 0 0 0 �1 0 �1 0 0 3 0 0 3 1 4

33

0

U (1; 1; 1; 1; 1; 1) 16 0 0 0 0 0 0 1 1 0 0 �6 0 0 0 0 0

(1; 1; 1; 1; 1; 1) 16 0 0 0 0 0 0 0 0 1 1 0 �6 0 0 0 0

(1; 1; 1; 1; 1; 1) 6 0 0 0 0 0 0 �2 0 0 0 6 0 0 0 �2 0

(1; 1; 1; 1; 1; 1) 6 0 0 0 0 0 0 0 �2 0 0 6 0 0 0 2 0

(1; 1; 1; 1; 1; 1) 6 0 0 0 0 0 0 0 0 �2 0 0 6 0 0 0 �2

(1; 1; 1; 1; 1; 1) 6 0 0 0 0 0 0 0 0 0 �2 0 6 0 0 0 2

33

0

T (1; 1; 1; 1; 1; 1) 8 0 0 0 0 0 0 �1 0 0 �1 3 3 0 0 �1 1

(1; 1; 1; 1; 1; 1) 8 0 0 0 0 0 0 0 �1 �1 0 3 3 0 0 1 �1

Table D.2: Chiral fermioni
 spe
trum for (T

2

� T

4

=Z

2

)=
R

3

with

(n

1

; m

1

) = (1; 1), (n

2

; m

2

) = (1; 0), (n

3

; m

3

) = (4; 1) and latti
e aaa in se
-

tion 2.3.2. The resulting gauge group is SU(3)

4

� SU(2)

2

� U(1)

6

.



Appendix E

1-loop diagrams for

O8-plane/D8-brane intera
tions

E.1 Latti
e 
ontributions on (T

4

=Z

3

)=
R

1

The general form of the latti
e sums on T

4

=Z

3

for one two torus in the loop


hannel is given by (� � R

2

=�

0

)

L

R

[�℄(t) �

X

m;n2Z

e

���t(m

2

+mn+n
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)=�

: (E.1)

Using the Poisson resummation formula

X

x2�

f(x) =

1

vol(�)

X

p2�

�

~

f(p) (E.2)

for a d-dimensional latti
e � and its dual latti
e �

�

with the Fourier transform

~

f(p) =

R

R

d

dxe

2�ix�p

f(x) and de�ning t = 1=�l gives the latti
e sums in the tree


hannel

L

R

[�℄(t) = l

2�

p

3�

�L

1=R

�

4�

3�

�

(l): (E.3)

For T

4

=Z

3

, we thus obtain

Klein bottle:

�

L

R

1

L

R

2

�

[1℄(t) =

64

3

l

2

!

�

L

1=R

1

L

1=R

2

�

[16=3℄(l); (E.4)

Annulus:

�

L

R

1

L

R

2

�

[2℄(t) =

4

3

l

2

!

�

L

1=R

1

L

1=R

2

�

[4=3℄(l); (E.5)

M�obius strip:

�

L

R

1

L

R

2

�

[2℄(t) =

64

3

l

2

!

�

L

1=R

1

L

1=R

2

�

[16=3℄(l); (E.6)

where ! � �

1

�

2

is the volume of the orbifold in units of �

0

.
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E.2 Os
illator 
ontributions

Os
illator 
ontributions to the 1-loop amplitudes 
an be expressed in terms of

generalized Ja
obi theta fun
tions. The relevant formulas for untwisted se
tors

without insertions are the same as for models with O6-planes and D6-branes,

see (B.15), (B.16), (B.17) for the loop 
hannel and (B.19), (B.21), (B.23) for the

tree 
hannel. In addition, an insertion of �

k

in the tra
e leads to

Klein bottle: K

(k)

=

#

h

0

1

2

i

2

�

6

Y

i=2;3

#

h

0

1

2

+2kv

i

i

#

h

1

2

1

2

+2kv

i

i

(2t); (E.7)
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= i

#
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2

i

�
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#

h
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1
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i
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2

+�'

1

2

i

Y

i=2;3

#

h

0

1

2

+kv

i

i

#

h

1

2

1

2

+kv

i

i

(t); (E.8)

M�obius strip: M
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a

= ie
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�

3

#

h

1

2

+2'
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(t�
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): (E.9)

By modular transformation to the tree 
hannel, one obtains 
ontributions from

os
illators in the �

k

twisted se
tor,

Klein bottle:

~

K

(k)

=

#

h

1

2

0

i

2

�

6

Y

i=2;3

#

h

1

2

�2kv

i

0

i

#

h

1

2

�2kv

i

1

2

i

(2l); (E.10)

Annulus:

~
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(k)
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=

#
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1

2
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i

�
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2

�'

i
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h

1

2

1

2

+�'

i
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#

h

1

2

�kv

i

0

i

#

h

1

2

�kv

i

1

2

i

(2l); (E.11)

M�obius strip:

~

M

(k)

a

=

#

h

1

2

0

i

�

3

#

h

1

2

'

i

#
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1

2

1

2

+'

i

(2l �

i

2

)

Y
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#

h
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1
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#
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2
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i
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i

#

h

1

2

�kv

i

1

2

i

#

h

�kv

i

0

i

(4l):
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Appendix F

Tree 
hannel results for

(T

2

� T

4

=Z

3

)=
R

1

F.1 Cross
ap states

The 
ross
ap 
onditions for the 
R

1

-model on T

4

=Z

3

where the re
e
tion does

not a
t are given by (i = 2; 3)

�

X

i

L;R

(�; 0)��

k

X

i

R;L

(� + �; 0)

�

j
R

1

�

k

i = 0; (F.1)

h

X

i

L;R

(�; 0)��

k

X

i

R;L

(� + �; 0)

i

j
R

1

�

k

i = 0: (F.2)

Inserting the mode expansions (A.2), (A.3) gives the following 
onstraints on

T

4

=Z

3

�

p

i

L

+ e

2�ikv

i

p

i

R

�

h

p

i

L

+ e

�2�ikv
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p
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�
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+ e

2�ikv
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L

�
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p
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�2�ikv

i

p

i

L

i

9

>

>

>

>

=

>

>

>

>

;

j
R

1

�

k

i = 0; (F.3)

�

�

i

r

+ e
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�r

�

h

�

i

s
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i
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~�

i
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i

�

~�
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�r

+ e
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i
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�
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~�
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�i(�2kv
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�

i

s

i

9

>

>

>

>

=

>

>

>

>

;

j
R

1

�

k

i = 0: (F.4)

The fermioni
 worldsheet 
oordinates provide a similar set of 
onstraints.

The set of equations (F.3) states that for k = 0 windings along all four

dire
tions of the orbifold o

ur while for k 6= 0, only Kaluza-Klein momenta

and windings from the �rst two torus T

1


ontribute as dis
ussed in the 
ase of

O6-planes in appendix C.1. The equations (F.4) are only mutually 
onsistent if
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r 2 Z+ 2kv

i

, s 2 Z� 2kv

i

. Using the notation n 2 Z , r 2 Z(+1=2) for the R

(NS) se
tor, the os
illator 
onstraints 
an be rewritten as

�

�

i

n+2kv

i

+ (�1)

n

~�

i

�n�2kv
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�
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�
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j
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A solution to these 
onstraints is provided by

j
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j0; �i: (F.7)

The dependen
e on the latti
e is 
ontained in the groundstate j0; �i whi
h only

depends on � in the RR se
tor. The sums 
ontain 
reation operators only.

F.2 Boundary states

In order to reprodu
e the amplitudes obtained by modular transformation from

the loop 
hannel, a boundary state at angle �' on T

1

relative to the X

4

axis has
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to be of the form

j';�
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As for the 
ross
ap states, the groundstate j0; �i 
ontains Kaluza-Klein momen-

tum and winding eigenvalues from T

1

and windings from T

4

=Z

3

.

F.3 Zero modes and GSO invariant states for

the twisted se
tors

The GSO proje
tion for the untwisted se
tor is very similar to the one for models

with D6-branes dis
ussed in appendix C.1.2. For models with D8-branes, it is

more appropriate to de�ne the worldsheet spinors  

i

�

for i = 2; 3 in the following

way,

 

i

�

=

1

p

2

�

 

i

0

+ i�

~

 

i

0

�

;  

i

�

=

1

p

2

�

 

i

0

+ i�

~

 

i

0

�

:

Inserting this de�nition into the subsequent formulas in se
tion C.1.2 gives the


orre
t 
ommutation relations, 
ross
ap 
onditions and zero mode part of the

GSO proje
tion leading to the analogous superposition of states (F.7) and (F.8)

with di�erent spin stru
tures as listed at the end of se
tion C.1.2 involving

O6-planes and D6-branes.

Twisted RR se
tors

For k 6= 0, the zero mode 
onditions read
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=
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j
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RR

= 0: (F.10)
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The zero mode parts of the GSO proje
tion operators are now given by
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leads to the a
tion of the zero mode part of the GSO proje
tor on the ground-

states

(�1)
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These relations 
arry over to the ex
ited states. Thus,

j
R

1

�

k

;+i

RR

+ ij
R

1

�

k

;�i

RR

(F.16)

is invariant under P

GSO

de�ned in (1.35). The 
omputation dire
tly 
arries over

to the twisted boundary states.



Appendix G

Low energy spe
trum for

(T

2

� T

4

=Z

3

)=
R

1

G.1 Bosoni
 states

The lightest mass eigenstates are distinguished by their � eigenvalues. De�ning

� � e

2�i=3

, the lightest bosoni
 states between D8

a

and D8

b

-branes at angle ��'

on T

1

are listed in the table G.1. The fermioni
 states 
an be extra
ted from

table D.1 by 
onsidering only states with k=M = 0.

Bosoni
 open states of T

2

� T

4

=Z

3

on T

2

state

�

0

4

mass

2

Z

3

�' = 0  

�

�1=2

j0i 0 1

 

1;

�

1

�1=2

j0i 0 1

 

2;

�

3

�1=2

j0i 0 �

 

�

2;3

�1=2

j0i 0 �

2

�' 6= 0  

�

�1=2

j0i

1

2

�' 1

 

1

�'�1=2

j0i �

1

2

�' 1

 

�

1

��'�1=2

j0i

3

2

�' 1

 

2;

�

3

�1=2

j0i

1

2

�' �

 

�

2;3

�1=2

j0i

1

2

�' �

2

Table G.1: Bosoni
 open mass eigenstates of the (T

2

� T

4

=Z

3

)=
R

1

orientifold.
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G.2 Chiral spe
tra of examples 2a and 2b

In this appendix, we list the 
hiral spe
tra of the left-right symmetri
 examples

2a and 2b with interse
ting D8-branes in se
tion 3.4.3 and 3.4.4.

Chiral spe
trum for interse
ting D8-branes, ex. 2a

mult. SU(3)� SU(2)

L

� SU(2)

R

� SO(8) Q

1

A

Q

1

B

Q

2

B

Q

1

C

Q

2

C

Q

B�L

Q

0

Q

00

AB�

0

2 (3; 2; 1; 1) �1 1 0 0 0 1=3 5=3 1=4

2 (3; 1; 2; 1) 1 0 1 0 0 �1=3 �5=3 1=4

�

1

1 (1; 2; 1; 8) 0 �1 0 0 0 0 �1 �1=4

1 (3; 1; 2; 1) 1 0 �1 0 0 �1=3 1=3 �1=4

�

2

1 (1; 1; 2; 8) 0 0 �1 0 0 0 1 �1=4

1 (3; 2; 1; 1) �1 �1 0 0 0 1=3 �1=3�1=4

AC�

0

2 (3; 1; 1; 1) 1 0 0 �1 0 �4=3 �2=3�1=2

2 (3; 1; 1; 1) �1 0 0 0 �1 4=3 2=3 �1=2

�

1

1 (1; 1; 1; 8) 0 0 0 1 0 1 0 1=2

1 (3; 1; 1; 1) �1 0 0 0 1 �2=3 2=3 1=2

�

2

1 (1; 1; 1; 8) 0 0 0 0 1 �1 0 1=2

1 (3; 1; 1; 1) 1 0 0 1 0 2=3 �2=3 1=2

BB

0

�

0

2 (1; 2; 2; 1) 0 1 1 0 0 0 0 1=2

�

1

1 (1; 1; 1; 1) 0 �2 0 0 0 0 �2 �1=2

�

2

1 (1; 1; 1; 1) 0 0 �2 0 0 0 2 �1=2

CC

0

�

0

2 (1; 1; 1; 1) 0 0 0 �1 �1 0 0 �1

�

1

1 (1; 1; 1; 1) 0 0 0 2 0 2 0 1

�

2

1 (1; 1; 1; 1) 0 0 0 0 2 �2 0 1

BC

0

�

0

2 (1; 2; 1; 1) 0 �1 0 �1 0 �1 �1 �3=4

2 (1; 1; 2; 1) 0 0 �1 0 �1 1 1 �3=4

�

1

1 (1; 2; 1; 1) 0 1 0 0 1 �1 1 3=4

�

2

1 (1; 1; 2; 1) 0 0 1 1 0 1 �1 3=4

Table G.2: Chiral fermioni
 spe
trum for example 2a with interse
ting

D8-branes. The D8-brane 
on�guration and anomaly-free U(1) 
harges are

re
orded in (3.54) and (3.55).
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Chiral spe
trum for interse
ting D8-branes, ex. 2b

mult. SU(3)� SU(2)

L

� SU(2)

R

� SO(8) Q

1

A

Q

1

B

Q

2

B

Q

1

C

Q

B�L

Q

0

AB�

0

2 (3; 2; 1; 1) �1 1 0 0 1=3 1

2 (3; 1; 2; 1) 1 0 1 0 �1=3 �1

�

1

1 (1; 2; 1; 8) 0 �1 0 0 0 �1

1 (3; 1; 2; 1) 1 0 �1 0 �1=3 1

�

2

1 (1; 1; 2; 8) 0 0 �1 0 0 1

1 (3; 2; 1; 1) �1 �1 0 0 1=3 �1

BB

0

�

0

2 (1; 2; 2; 1) 0 1 1 0 0 0

�

1

1 (1; 1; 1; 1) 0 �2 0 0 0 �2

�

2

1 (1; 1; 1; 1) 0 0 �2 0 0 2

BC�

0

2 (1; 2; 1; 1) 0 �1 0 1 �1 1

2 (1; 1; 2; 1) 0 0 �1 �1 1 �1

�

1

1 (1; 1; 2; 1) 0 0 1 �1 1 �3

�

2

1 (1; 2; 1; 1) 0 1 0 1 �1 3

Table G.3: Chiral fermioni
 spe
trum for example 2b with interse
ting

D8-branes. The D8-brane 
on�guration is given in (3.56) and the anomaly-free

U(1) 
harges are spe
i�ed by (3.57).



Bibliography

[1℄ G. Aldazabal, S. Fran
o, L. E. Ib�a~nez, R. Rabad�an, and A. M. Uranga,

D = 4 
hiral string 
ompa
ti�
ations from interse
ting branes, J. Math.

Phys. 42 (2001), 3103{3126, hep-th/0011073.

[2℄ G. Aldazabal, S. Fran
o, L. E. Ib�a~nez, R. Rabad�an, and A. M. Uranga,

Interse
ting brane worlds, JHEP 02 (2001), 047, hep-ph/0011132.

[3℄ C. Angelantonj, Comments on open-string orbifolds with a non-vanishing

B

ab

, Nu
l. Phys. B566 (2000), 126{150, hep-th/9908064.

[4℄ C. Angelantonj, I. Antoniadis, E. Dudas, and A. Sagnotti, Type-I strings

on magnetised orbifolds and brane transmutation, Phys. Lett.B489 (2000),

223{232, hep-th/0007090.

[5℄ C. Angelantonj, R. Blumenhagen, and M. R. Gaberdiel, Asymmetri
 ori-

entifolds, brane supersymmetry breaking and non-BPS branes, Nu
l. Phys.

B589 (2000), 545{576, hep-th/0006033.

[6℄ I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, New

dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys.

Lett. B436 (1998), 257{263, hep-ph/9804398.

[7℄ N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, The hierar
hy problem

and new dimensions at a millimeter, Phys. Lett. B429 (1998), 263{272,

hep-ph/9803315.

[8℄ C. Ba
has, A way to break supersymmetry, (1995), hep-th/9503030.

[9℄ D. Bailin, G. V. Kraniotis, and A. Love, Standard-like models from inter-

se
ting D4-branes, (2001), hep-th/0108131.

[10℄ P. Bain and M. Berg, E�e
tive a
tion of matter �elds in four-dimensional

string orientifolds, JHEP 04 (2000), 013, hep-th/0003185.

[11℄ T. Banks and L. Susskind, Brane - antibrane for
es, (1995),

hep-th/9511194.

111



112 BIBLIOGRAPHY

[12℄ M. Berkooz, M. R. Douglas, and R. G. Leigh, Branes interse
ting at angles,

Nu
l. Phys. B480 (1996), 265{278, hep-th/9606139.

[13℄ M. Bian
hi, A note on toroidal 
ompa
ti�
ations of the type I superstring

and other superstring va
uum 
on�gurations with 16 super
harges, Nu
l.

Phys. B528 (1998), 73{94, hep-th/9711201.

[14℄ M. Bian
hi, G. Pradisi, and A. Sagnotti, Toroidal 
ompa
ti�
ation and

symmetry breaking in open string theories, Nu
l. Phys. B376 (1992), 365{

386.

[15℄ M. Bian
hi and A. Sagnotti, On the systemati
s of open string theories,

Phys. Lett. B247 (1990), 517{524.

[16℄ M. Bian
hi and A. Sagnotti, Twist symmetry and open string Wilson lines,

Nu
l. Phys. B361 (1991), 519{538.

[17℄ N. D. Birrell and P. C. W. Davies, Quantum �elds in 
urved spa
e, Cam-

bridge, Uk: Univ. Pr. ( 1982) 340p.

[18℄ R. Blumenhagen, L. G�orli
h, and B. K�ors, A new 
lass of supersymmetri


orientifolds with D-branes at angles, (1999), hep-th/0002146.

[19℄ R. Blumenhagen, L. G�orli
h, and B. K�ors, Supersymmetri
 4D orien-

tifolds of type IIA with D6-branes at angles, JHEP 01 (2000), 040,

hep-th/9912204.

[20℄ R. Blumenhagen, L. G�orli
h, and B. K�ors, Supersymmetri
 orientifolds

in 6D with D-branes at angles, Nu
l. Phys. B569 (2000), 209{228,

hep-th/9908130.

[21℄ R. Blumenhagen, L. G�orli
h, B. K�ors, and D. L�ust, Asymmetri
 orbifolds,

non
ommutative geometry and type I string va
ua, Nu
l. Phys. B582

(2000), 44{64, hep-th/0003024.

[22℄ R. Blumenhagen, L. G�orli
h, B. K�ors, and D. L�ust, Non
ommutative 
om-

pa
ti�
ations of type I strings on tori with magneti
 ba
kground 
ux, JHEP

10 (2000), 006, hep-th/0007024.

[23℄ R. Blumenhagen, L. G�orli
h, B. K�ors, and D. L�ust, Magneti
 
ux

in toroidal type I 
ompa
ti�
ation, Forts
h. Phys. 49 (2001), 591{598,

hep-th/0010198.

[24℄ R. Blumenhagen, B. K�ors, and D. L�ust, Type I strings with F- and B-
ux,

JHEP 02 (2001), 030, hep-th/0012156.



BIBLIOGRAPHY 113

[25℄ R. Blumenhagen, B. K�ors, and D. L�ust, Moduli stabilization for interse
t-

ing brane worlds in type 0' string theory, (2002), hep-th/0202024.

[26℄ R. Blumenhagen, B. K�ors, D. L�ust, and T. Ott, Interse
ting brane worlds

on tori and orbifolds, (2001), hep-th/0112015.

[27℄ R. Blumenhagen, B. K�ors, D. L�ust, and T. Ott, The standard model from

stable interse
ting brane world orbifolds, Nu
l. Phys. B616 (2001), 3{33,

hep-th/0107138.

[28℄ P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Va
uum 
on-

�gurations for superstrings, Nu
l. Phys. B258 (1985), 46{74.

[29℄ D. Cremades, L. E. Ib�a~nez, and F. Mar
hesano, Interse
ting brane models

of parti
le physi
s and the Higgs me
hanism, (2002), hep-th/0203160.

[30℄ D. Cremades, L. E. Ib�a~nez, and F. Mar
hesano, SUSY quivers, interse
ting

branes and the modest hierar
hy problem, (2002), hep-th/0201205.

[31℄ M. Cveti�
, L. L. Everett, P. Langa
ker, and J. Wang, Blowing-up the four-

dimensional Z

3

orientifold, JHEP 04 (1999), 020, hep-th/9903051.

[32℄ M. Cveti�
 and P. Langa
ker, D = 4 N = 1 type IIB orientifolds with


ontinuous Wilson lines, moving branes, and their �eld theory realization,

Nu
l. Phys. B586 (2000), 287{302, hep-th/0006049.

[33℄ M. Cveti�
, G. Shiu, and A. M. Uranga, Chiral four-dimensional N = 1

supersymmetri
 type IIA orientifolds from interse
ting D6-branes, Nu
l.

Phys. B615 (2001), 3{32, hep-th/0107166.

[34℄ M. Cveti�
, G. Shiu, and A. M. Uranga, Chiral type II orientifold 
onstru
-

tions as M theory on G

2

holonomy spa
es, (2001), hep-th/0111179.

[35℄ M. Cveti�
, G. Shiu, and A. M. Uranga, Three-family supersymmetri
 stan-

dard like models from interse
ting brane worlds, Phys. Rev. Lett. 87 (2001),

201801, hep-th/0107143.

[36℄ M. Cveti�
, A. M. Uranga, and J. Wang, Dis
rete Wilson lines in N = 1

D = 4 type IIB orientifolds: A systemati
 exploration for Z

6

orientifold,

Nu
l. Phys. B595 (2001), 63{92, hep-th/0010091.

[37℄ A. Dabholkar, Le
tures on orientifolds and duality, (1997),

hep-th/9804208.

[38℄ J. Dai, R. G. Leigh, and J. Pol
hinski, New 
onne
tions between string

theories, Mod. Phys. Lett. A4 (1989), 2073{2083.



114 BIBLIOGRAPHY

[39℄ S. P. de Alwis, A note on brane tension and M-theory, Phys. Lett. B388

(1996), 291{295, hep-th/9607011.

[40℄ L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Strings on orbifolds,

Nu
l. Phys. B261 (1985), 678{686.

[41℄ L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Strings on orbifolds. 2,

Nu
l. Phys. B274 (1986), 285{314.

[42℄ M. R. Douglas, Branes within branes, (1995), hep-th/9512077.

[43℄ M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons,

(1996), hep-th/9603167.

[44℄ W. Fis
hler and L. Susskind, Dilaton tadpoles, string 
ondensates and s
ale

invarian
e, Phys. Lett. B171 (1986), 383.

[45℄ W. Fis
hler and L. Susskind, Dilaton tadpoles, string 
ondensates and s
ale

invarian
e. 2, Phys. Lett. B173 (1986), 262.

[46℄ A. Font, L. E. Ib�a~nez, H. P. Nilles, and F. Quevedo, Yukawa 
ouplings in

degenerate orbifolds: Towards a realisti
 SU(3)�SU(2)�U(1) superstring,

Phys. Lett. 210B (1988), 101.

[47℄ S. F�orste, Strings, branes and extra dimensions, Forts
h. Phys. 50 (2002),

221{403, hep-th/0110055.

[48℄ S. F�orste, G. Hone
ker, and R. S
hreyer, Orientifolds with branes at angles,

JHEP 06 (2001), 004, hep-th/0105208.

[49℄ S. F�orste, G. Hone
ker, and R. S
hreyer, Supersymmetri
 Z

N

�Z

M

orien-

tifolds in 4D with D-branes at angles, Nu
l. Phys. B593 (2001), 127{154,

hep-th/0008250.

[50℄ M. R. Gaberdiel, Le
tures on non-BPS Diri
hlet branes, Class. Quant.

Grav. 17 (2000), 3483{3520, hep-th/0005029.

[51℄ J. Gar
ia-Bellido, R. Rabad�an, and F. Zamora, In
ationary s
enarios from

branes at angles, JHEP 01 (2002), 036, hep-th/0112147.

[52℄ D. M. Ghilen
ea, H. P. Nilles, and S. Stieberger, Divergen
es in Kaluza-

Klein models and their string regularization, (2001), hep-th/0108183.

[53℄ E. G. Gimon and C. V. Johnson, K3 orientifolds, Nu
l. Phys. B477 (1996),

715{745, hep-th/9604129.

[54℄ E. G. Gimon and J. Pol
hinski, Consisten
y 
onditions for orientifolds and

D-manifolds, Phys. Rev. D54 (1996), 1667{1676, hep-th/9601038.



BIBLIOGRAPHY 115

[55℄ A. Giveon, M. Porrati, and E. Rabinovi
i, Target spa
e duality in string

theory, Phys. Rept. 244 (1994), 77{202, hep-th/9401139.

[56℄ F. Gliozzi, J. S
herk, and D. I. Olive, Supersymmetry, supergravity theories

and the dual spinor model, Nu
l. Phys. B122 (1977), 253{290.

[57℄ J. Govaerts, Quantum 
onsisten
y of open string theories, Phys. Lett.

B220 (1989), 77.

[58℄ M. B. Green, J. H. S
hwarz, and E. Witten, Superstring theory. Vol. 1:

Introdu
tion, Cambridge, Uk: Univ. Pr. (1987) 469 P. (Cambridge Mono-

graphs On Mathemati
al Physi
s).

[59℄ M. B. Green, J. H. S
hwarz, and E. Witten, Superstring theory. Vol. 2:

Loop amplitudes, anomalies and phenomenology, Cambridge, Uk: Univ.

Pr. (1987) 596 P. (Cambridge Monographs On Mathemati
al Physi
s).

[60℄ D. J. Gross, J. A. Harvey, E. J. Martine
, and R. Rohm, Heteroti
 string

theory 1. The free heteroti
 string, Nu
l. Phys. B256 (1985), 253.

[61℄ D. J. Gross, J. A. Harvey, E. J. Martine
, and R. Rohm, The heteroti


string, Phys. Rev. Lett. 54 (1985), 502{505.

[62℄ D. J. Gross, J. A. Harvey, E. J. Martine
, and R. Rohm, Heteroti
 string

theory. 2. the intera
ting heteroti
 string, Nu
l. Phys. B267 (1986), 75.

[63℄ A. Hashimoto and IV Taylor, W., Flu
tuation spe
tra of tilted and inter-

se
ting D-branes from the Born-Infeld a
tion, Nu
l. Phys. B503 (1997),

193{219, hep-th/9703217.

[64℄ G. Hone
ker, Non-supersymmetri
 orientifolds with D-branes at angles,

(2001), hep-th/0112174.

[65℄ G. Hone
ker, Interse
ting brane world models from D8-branes on (T

2

�

T

4

=Z

3

)=
R

1

type IIA orientifolds, JHEP 01 (2002), 025, hep-th/0201037.

[66℄ P. Ho�rava, Strings on world sheet orbifolds, Nu
l. Phys. B327 (1989), 461.

[67℄ P. Ho�rava and E. Witten, Eleven-dimensional supergravity on a manifold

with boundary, Nu
l. Phys. B475 (1996), 94{114, hep-th/9603142.

[68℄ P. Ho�rava and E. Witten, Heteroti
 and type i string dynami
s from eleven

dimensions, Nu
l. Phys. B460 (1996), 506{524, hep-th/9510209.

[69℄ L. E. Ib�a~nez, Standard model engineering with interse
ting branes, (2001),

hep-ph/0109082.



116 BIBLIOGRAPHY

[70℄ L. E. Ib�a~nez, J. E. Kim, H. P. Nilles, and F. Quevedo, Orbifold 
ompa
ti-

�
ations with three families of SU(3)� SU(2)� U(1)

n

, Phys. Lett. B191

(1987), 282{286.

[71℄ L. E. Ib�a~nez, F. Mar
hesano, and R. Rabad�an, Getting just the standard

model at interse
ting branes, JHEP 11 (2001), 002, hep-th/0105155.

[72℄ L. E. Ib�a~nez, C. Mu~noz, and S. Rigolin, Aspe
ts of type I string phe-

nomenology, Nu
l. Phys. B553 (1999), 43{80, hep-ph/9812397.

[73℄ L. E. Ib�a~nez, H. P. Nilles, and F. Quevedo, Orbifolds and Wilson lines,

Phys. Lett. B187 (1987), 25{32.

[74℄ N. Ishibashi and T. Onogi, Open string model building, Nu
l. Phys. B318

(1989), 239.

[75℄ Z. Kakushadze, Geometry of orientifolds with NS-NS B-
ux, Int. J. Mod.

Phys. A15 (2000), 3113{3196, hep-th/0001212.

[76℄ T. Kaluza, On the problem of unity in physi
s, Sitzungsber. Preuss. Akad.

Wiss. Berlin (Math. Phys. ) K1 (1921), 966{972.

[77℄ H. Kataoka and M. Shimojo, SU(3) � SU(2) � U(1) 
hiral models from

interse
ting D4/D5 branes, (2001), hep-th/0112247.

[78℄ O. Klein, Quantum theory and �ve-dimensional theory of relativity. (in

german and english), Z. Phys. 37 (1926), 895{906.

[79℄ C. Kokorelis, GUT model hierar
hies from interse
ting branes, (2002),

hep-th/0203187.

[80℄ B. K�ors, Open strings in magneti
 ba
kground �elds, Forts
h. Phys. 49

(2001), 759{867.

[81℄ Z. Lalak, S. Lavigna
, and H. P. Nilles, String dualities in the pres-

en
e of anomalous U(1) symmetries, Nu
l. Phys. B559 (1999), 48{70,

hep-th/9903160.

[82℄ J. Lauer, J. Mas, and H. P. Nilles, Duality and the role of nonperturbative

e�e
ts on the world sheet, Phys. Lett. B226 (1989), 251.

[83℄ J. Lauer, J. Mas, and H. P. Nilles, Twisted se
tor representations of dis
rete

ba
kground symmetries for two-dimensional orbifolds, Nu
l. Phys. B351

(1991), 353{424.

[84℄ A. Lerda and R. Russo, Stable non-BPS states in string theory: A peda-

gogi
al review, Int. J. Mod. Phys. A15 (2000), 771{820, hep-th/9905006.



BIBLIOGRAPHY 117

[85℄ M. Li, Boundary states of D-branes and Dy-strings, Nu
l. Phys. B460

(1996), 351{361, hep-th/9510161.

[86℄ D. L�ust and S. Theisen, Le
tures on string theory, Le
t. Notes Phys. 346

(1989), 1{346.

[87℄ J. D. Lykken, Weak s
ale superstrings, Phys. Rev. D54 (1996), 3693{3697,

hep-th/9603133.

[88℄ N. S. Manton, The S
hwinger model and its axial anomaly, Annals Phys.

159 (1985), 220{251.

[89℄ H. P. Nilles, Supersymmetry, supergravity and parti
le physi
s, Phys. Rept.

110 (1984), 1.

[90℄ H. P. Nilles, M. Ole
howski, and M. Yamagu
hi, Supersymmetry break-

ing and soft terms in M-theory, Phys. Lett. B415 (1997), 24{30,

hep-th/9707143.

[91℄ H. P. Nilles, M. Ole
howski, and M. Yamagu
hi, Supersymmetry breakdown

at a hidden wall, Nu
l. Phys. B530 (1998), 43{72, hep-th/9801030.

[92℄ J. Park, R. Rabad�an, and A. M. Uranga, Orientifolding the 
onifold, Nu
l.

Phys. B570 (2000), 38{80, hep-th/9907086.

[93℄ J. Pol
hinski, String theory. Vol. 1: An introdu
tion to the bosoni
 string,

Cambridge, UK: Univ. Pr. (1998) 402 p.

[94℄ J. Pol
hinski, String theory. Vol. 2: Superstring theory and beyond, Cam-

bridge, UK: Univ. Pr. (1998) 531 p.

[95℄ J. Pol
hinski, Diri
hlet-branes and Ramond-Ramond 
harges, Phys. Rev.

Lett. 75 (1995), 4724{4727, hep-th/9510017.

[96℄ J. Pol
hinski, TASI le
tures on D-branes, (1996), hep-th/9611050.

[97℄ J. Pol
hinski and Y. Cai, Consisten
y of open superstring theories, Nu
l.

Phys. B296 (1988), 91.

[98℄ J. Pol
hinski and E. Witten, Eviden
e for heteroti
 - type I string duality,

Nu
l. Phys. B460 (1996), 525{540, hep-th/9510169.

[99℄ G. Pradisi and A. Sagnotti, Open string orbifolds, Phys. Lett.B216 (1989),

59.

[100℄ R. Rabad�an, Branes at angles, torons, stability and supersymmetry, Nu
l.

Phys. B620 (2002), 152{180, hep-th/0107036.



118 BIBLIOGRAPHY

[101℄ R. Rabad�an and A. M. Uranga, Type IIB orientifolds without untwisted

tadpoles, and non- BPS D-branes, JHEP 01 (2001), 029, hep-th/0009135.

[102℄ C. Rovelli, Strings, loops and others: A 
riti
al survey of the present ap-

proa
hes to quantum gravity, (1997), gr-q
/9803024.

[103℄ A. Sagnotti, Open strings and their symmetry groups, Talk presented at the

Cargese Summer Institute on Non- Perturbative Methods in Field Theory,

Cargese, Fran
e, Jul 16-30, 1987.

[104℄ R. S
hreyer, Supersymmetri
 orientifolds with D-branes at angles, (2001),

Ph.D. thesis.

[105℄ J. H. S
hwarz, The power of M theory, Phys. Lett. B367 (1996), 97{103,

hep-th/9510086.

[106℄ N. Seiberg and E. Witten, Spin stru
tures in string theory, Nu
l. Phys.

B276 (1986), 272.

[107℄ A. Sen, Non-BPS D-branes in string theory, Class. Quant. Grav. 17 (2000),

1251{1256.

[108℄ G. Shiu and S. H. H. Tye, TeV s
ale superstring and extra dimensions,

Phys. Rev. D58 (1998), 106007, hep-th/9805157.

[109℄ A. Strominger and E. Witten, New manifolds for superstring 
ompa
ti�-


ation, Commun. Math. Phys. 101 (1985), 341.

[110℄ P. K. Townsend, The eleven-dimensional supermembrane revisited, Phys.

Lett. B350 (1995), 184{187, hep-th/9501068.

[111℄ E. Witten, String theory dynami
s in various dimensions, Nu
l. Phys.

B443 (1995), 85{126, hep-th/9503124.

[112℄ E. Witten, Strong 
oupling expansion of Calabi-Yau 
ompa
ti�
ation, Nu
l.

Phys. B471 (1996), 135{158, hep-th/9602070.

[113℄ E. Witten, Toroidal 
ompa
ti�
ation without ve
tor stru
ture, JHEP 02

(1998), 006, hep-th/9712028.


