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Abstract

Brane supersymmetry breaking and chiral fermions are discussed in the con-
text of intersecting D6- and D8-branes in compactifications of type II orientifolds.
The orientifold projection contains a reflection R; in ¢ internal coordinates which
leaves orientifold planes of space dimension (9 — ) invariant. In order to achieve
partial supersymmetry breaking, a four dimensional orbifold symmetry is im-
posed. The reflection R; is chosen such that it acts as complex conjugation on
an additional two torus. Cancellation of RR charges enforces the existence of D-
branes of the same dimensionality as the O-planes. The D-branes can either be
chosen to lie on top of the O-planes leading to local RR charge cancellation and
a N = 2 supersymmetric non-chiral spectrum or allowing for global RR charge
cancellation only, the D-branes can be chosen to lie at non trivial angles on the
two torus. The intersection points of two D-branes support chiral fermions in the
bifundamental representation of the gauge groups which are provided by fields
living on the worldvolume of the D-branes involved. These models have broken
supersymmetry in the open string sector while the closed string sector, which in
particular contains gravity, remains N = 2 supersymmetric.

The gauge groups and chiral spectra depend on the choice of the reflection
R; and the orbifold group. Several explicit examples with particle spectra close
to the standard model are given.

Cancellation of gauge anomalies, the stability of the models and phenomeno-
logical implications are discussed.
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Introduction

In this thesis, orientifold models of type II superstrings are investigated where
chiral fermions arise from supersymmetry breaking intersections of D-branes.

One of the major challenges of contemporary theoretical physics is the exis-
tence of two different theories which describe the known fundamental interactions
at different scales but so far cannot be implemented satisfactorily into a common
theory.

On the one hand, the standard model of particle physics is based on renor-
malizable quantum field theories. It describes earth based experiments, e.g. in
particle accelerators, at an impressive accuracy.

On the other hand, the general theory of relativity is a classical theory de-
scribing gravitational interactions which become dominant at long distances.
Including general relativity into quantum theories amounts to treating space
and time quantum mechanically. Several different approaches have been made,
which are reviewed in [102]. None of them is yet completely satisfactory, but
e.g. the semi-classical approach of considering quantum field theory in curved
space [17] is capable of predicting the Hawking radiation of a black hole. Addi-
tional applications of a quantized theory of gravity are expected to be relevant
for astrophysics and investigations on the early universe.

Further indications to look for a theory beyond the standard model arise
from the large amount of free parameters of the standard model which have
to be fixed experimentally and cannot be predicted from the theory itself. In
addition, astrophysical models require an extreme fine-tuning of parameters in
order to contain galaxies, stars and biological life. The spectrum and gauge
groups so far have no explanation from first principles, and last but not least the
standard model Higgs sector prediction still needs to be confirmed.

One step beyond the standard model can be made by introducing a symme-
try relating bosons and fermions, namely the supersymmetry. This theory has
the technical advantage of removing quadratic divergences in the scalar masses.
Furthermore, it offers the possibility of reducing the amount of free parameters
of particle physics because the gauge couplings unify at the so called GUT scale
and thus allow for embedding the standard model gauge groups into a single
GUT group. A review article on these topics is given by [89].

Another attempt for going beyond the standard model consists in Kaluza-
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8 Introduction

Klein theories [76, 78]. This ansatz assumes that gravity propagates in more
than four spacetime dimensions where the supplementary dimensions are taken
to be of finite size. This ansatz, however, seems to be inconsistent if there is
no underlying theory assumed. The need for string regularization schemes in
Kaluza-Klein theories has recently been discussed e.g. in [52].

A very promising candidate for a theory which contains both gravity and
gauge interactions is provided by string theory [58, 59, 86, 93, 94]. Interestingly,
it also offers a natural explanation for the other approaches to find a theory be-
yond the standard model. Fermions are implemented in string theory by intro-
ducing local supersymmetry on the worldsheet. Furthermore, superstring theory
is consistently defined only in ten dimensions which requires a mechanism of ‘hid-
ing dimensions’ as in the Kaluza-Klein theories to make it a viable candidate for
a phenomenologically appealing theory containing the known interactions. For
a recent review article on strings and extra dimensions see e.g. [47].

In fact, there does not only exist one single fermionic string theory. Five
different string theories are consistently defined in ten dimensions. These are
the heterotic theories with gauge groups SO(32) and Eg x Eg and the type ITA,
I[IB and type I theory. The heterotic theories and type I superstring theory
have N’ = 1 supersymmetry in D = 10 while the type ITA and IIB theory have
extended N = 2 supersymmetry. Except for the type ITA theory, all other ten
dimensional theories are chiral.

In the 1980’s, the main progress in string theory focused on the formulation of
the weakly coupled heterotic theories [61, 60, 62]. Compactifications on Calabi-
Yau manifolds [28, 109] and orbifolds [40, 41] leading to N = 1 supersymmetry in
four dimensions were considered. The breaking of gauge groups through Wilson
lines was e.g. considered in [73], and three family models with an extension of
the standard model gauge group were obtained [70, 46].

Besides the heterotic theories, also the ten dimensional type I superstring
is provided with a gauge group SO(32). The examination of this theory also
started in the 1980’s [103] with the discovery of orientifold planes. The compu-
tational tools for obtaining effective lower dimensional theories from orientifold
constructions were successively worked out in [99, 57, 66, 15, 16].

The picture of five distinct consistent string theories started to change dra-
matically with the discovery of a web of dualities which relates all theories. The
two type II theories and the two heterotic theories were e.g. found to be T-dual
to each other [38, 55]. Between the type I theory and the heterotic theory with
gauge group SO(32), S-duality has been conjectured which relates one theory at
strong coupling with the other one at weak coupling [111, 98]. Furthermore, the
low energy limit of the ten dimensional type IIA string theory at strong coupling
is given by eleven dimensional supergravity [110, 111], and the heterotic Eg x Eg
theory at strong coupling is described by eleven dimensional supergravity on an
interval with the two gauge factors confined to the ten dimensional walls [68, 67].
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Implications of this on the four dimensional theories have been considered e.g.
in [90, 91]. The conjectured web of dualities between the string theories and the
relations to eleven dimensional supergravity led to the assumption that all known
theories are special vacua of an underlying theory, called M-theory [111, 105].

In the recent years, a lot of progress has been made in the search for the
standard model from type II orientifold theories. A very important ingredient
is the role of the D-branes [95] which carry RR charges opposite to those of the
orientifold planes. The main computational tools were worked out in [54].

The Dp-branes can either be viewed as endpoints of open strings which have
Neumann boundary conditions along p spatial dimensions or as solitonic objects
which couple to the closed string modes. In the latter picture, further geometric
objects with couplings to closed strings are the orientifold planes. Associated to
both types of couplings are physical RR charges. For a theory to be consistent,
the total RR charge has to vanish. These are the ‘RR tadpole cancellation
conditions’. The constraints on four dimensional model building arising from
the RR charge cancellations are very restrictive in the supersymmetric case.

Various approaches of obtaining phenomenologically interesting models within
the supersymmetric framework include blowing-up of orbifold singularities [31,
92], locating D-branes at different points in the internal space, which is T-dual
to including non-trivial Wilson lines (see e.g. [36] for a model with discrete Wil-
son lines and [32] for continuous ones), and considering discrete values for the
NSNS antisymmetric tensor [14, 13, 113, 108, 3, 75] which reduces the rank of the
gauge group and has a T-dual description in terms of deformed compactification
lattices [24].

In orientifold compactifications it may make sense to go beyond the partial
supersymmetry breaking by orbifold symmetries to completely broken supersym-
metry. The reason is that supersymmetry may not be necessary to explain the
hierarchy between the Planck and the electroweak scale. In D-brane set-ups one
can sometimes keep the fundamental scale, the string scale M, at the weak scale
and obtain the Planck scale Mp by large compact extra dimensions [6, 7].

The supersymmetry breaking in the open string sector can be realized in
two different ways by D-branes while the closed string sectors are not affected.
One way is the inclusion of anti-D-branes in the models which carry RR charges
opposite to the D-branes. They also have the opposite GSO projection. That
is the reason why tachyonic scalar excitations from strings stretching between
D-branes and anti-D-branes occur for small distances of the D-branes. Many of
these models are unstable and undergo phase transitions [11, 107, 84, 5, 50, 101].

The other way to break supersymmetry in the open string sector is by al-
lowing for magnetic background fluxes on the worldvolume of the D-branes in
consistency with the RR charge cancellation conditions. These magnetic fluxes
also trigger the breaking of chiral and gauge symmetry. In a T-dual picture, the
various fluxes of different D-branes are replaced by intersection angles of lower di-
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mensional D-branes which wrap different cycles in the compact space. D-branes
at angles in orientifold theories have first been studied for the special case where
the D-branes wrap the same cycles as the orientifold planes leading to local RR
charge cancellation. The six dimensional set-ups were constructed in [20] and
the four dimensional models were worked out in [19, 18] for a single orbifold
group generator while my collaborators and me studied products of two orbifold
group generators in [49]. These models preserve N/ = 1 supersymmetry in the
corresponding dimension but turn out to have a non-chiral spectrum. In [21]
the relation between symmetric orbifolds in orientifold theories with D-branes
at angles and asymmetric orbifolds in ordinary type I theory with background
fluxes was discussed for six non compact dimensions. Subsequently, in [22, 23]
the chiral four dimensional spectrum for toroidal compactifications in orientifold
theories with D-branes at angles was computed. All these searches for chiral
fermions were derived from orientifold theories.

In [2, 1] four dimensional models were considered which descend from com-
pactifications of type II superstring theories without any orientifold projection.
The D-branes intersect on one, two or three tori while they are situated at an
orbifold fixed point in the remaining compact space. Phenomenological issues,
namely hierarchies of mass scales and Yukawa couplings as well as the stability
of the proton were first discussed in the context of type II theories. Further
attempts to derive the standard model from this class of intersecting D-branes
were performed in [9].

These theories differ from the orientifold theories in three relevant features.
First of all, compactifications of type II theories preserve an extended amount
of supersymmetry in the closed string sector. Secondly, type II theories do not
need D-branes for RR charge cancellation. If D-branes are introduced, a suitable
amount of anti-D-branes is necessary for charge cancellation. Thirdly, in orien-
tifold theories also the D-brane configurations have to be invariant under the
projections. This leads to the existence of mirror images under the orientifold
action which in turn restricts the total number of fermion generations to be even
in ordinary compactifications on rectangular tori. This problem does not arise
when considering the T-dual of a theory with a discrete NSNS background flux.
The tilted tori allow for an odd number of generations, and in [24] the first ex-
ample of a three generation model in four dimensions was given. In [71, 69] a
three generation model which has exactly the gauge group SU(3) x SU(2) xU(1)
was found based on purely toroidal compactifications. This kind of construction
contains a huge amount of free parameters, among others the numbers of identi-
cal D-branes and their wrapping numbers along all six compact directions which
are only fixed by four RR tadpole conditions and the requirement of obtaining
three generations. Therefore, it is relatively easy to engineer models with a stan-
dard model like chiral sector. However, the closed string sector as well as the
gauge sectors of toroidal orientifolds preserve N' = 4 supersymmetry. Partial
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supersymmetry breaking in the closed string and gauge sectors can be achieved
by orbifold compactifications. In [48] we pursued this ansatz for the special
case of four dimensional orbifolds plus an additional two torus. The RR charge
cancellation conditions in this class of models are far more restrictive than the
toroidal ones. In [27] further non-supersymmetric chiral orientifold models with
D6-branes and additional orbifold symmetries were examined. Another challenge
of non-supersymmetric models, namely the issue of stability, was first addressed
in [100] for the purely toroidal compactifications, and in [27, 26] it was proven
that all non-supersymmetric theories with D6-branes at angles, including those
where some moduli are frozen by an orbifold symmetry, suffer from a dilaton
tadpole. One possible way out of this dilemma is the construction of supersym-
metry preserving chiral type IT orientifolds with D6-branes at angles [35, 33, 34].
For a very special choice of the orbifold symmetry, it is possible to select the
non-trivial angles of D6-branes such that NV = 1 supersymmetry is preserved.
Further toroidal orientifold models with some locally preserved supersymmetries
at D6-brane intersections [30, 29] or a Pati-Salam GUT group [79] have also been
analyzed recently.

In the case of broken supersymmetry, this class of models is, however, not
suitable to solve the mass hierarchy problem concerning the electroweak and the
Planck scale since D6-branes at angles to not allow for large volume compacti-
fications. Only a ‘modest hierarchy problem’ which relates the weak scale and
the string scale in the TeV range can be explained in such models [30].

A more appropriate ansatz to handle the mass hierarchy problem is by con-
sidering orientifold models with lower dimensional intersecting D-branes with
common transversal directions. 1 presented the first of such D4-brane models
in [64] in the T-dual disguise of intersecting D8-branes with four common lon-
gitudinal compact dimensions. In [77] chiral spectra of models with intersecting
D4- and Db5-branes in oriented and unoriented theories were briefly discussed
without, however, solving the problem of the closed string tachyonic modes aris-
ing in D5-brane models. In [65] I extended the discussion of D8-brane models
to give some three generation models and discuss the stability.

The thesis is organized as follows.

Chapter 1 reviews the basic ingredients of orientifold constructions with D-
branes at angles.

In chapter 2, D6-brane models on four dimensional orbifolds times an ad-
ditional two torus are presented where the D6-branes intersect non-trivially on
this two torus. The tadpole cancellation conditions and generic chiral spectra are
computed. The generalized Green-Schwarz mechanism needed for U(1) anomaly
cancellation is commented on, and finally two examples are presented.

In chapter 3, models with D8-branes are considered. Tadpole and anomaly
cancellation are inspected and the chiral spectrum is computed. The problem of
stability of non-supersymmetric models is discussed in terms of NSNS tadpoles.
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Four examples are given, and phenomenological implications are discussed.
A summary and conclusions are given in chapter 4. Technical details of the
calculations are collected in the appendices A to G.

This thesis is based on

e [48]: S. Forste, G. Honecker and R. Schreyer, Non-supersymmetric orien-
tifolds with D-branes at angles, JHEP 06 2001, 004, hep-th/0105208,

e [65]: G. Honecker, Intersecting brane world models from D8-branes on
(T%xT*)Z3) /YR, type IIA orientifolds, JHEP 01 2002, 025, hep-th/0201037.

Chapter 1 collects basic ingredients of orientifold constructions and D-branes
at angles relevant for the following chapters. Chapter 2 is based on [48] and
chapter 3 on [65].



Chapter 1

Concept of D-branes at angles

1.1 Configuration in type II theories

1.1.1 Strings in constant backgrounds

Type Il superstring theories are consistently defined in ten spacetime dimensions.
The closed string is described by bosonic coordinates X*#(7, o) and their fermionic
superpartners W* (7, o) with the spacetime index g = 0...9. 7 is the time-like
parameter on the two dimensional worldsheet and o € [0,27) is the periodic
space-like worldsheet parameter. Open strings can be introduced into the theory
by imposing boundary conditions on X*(7,0) and W*(r,0) at ¢ = 0,7. The
bosonic part of the sigma-model action in the NS-R-formalism with trivial metric
on the worldsheet which describes the ten dimensional superstring theories is
then given by

1 1
Shos = / drdo (GuygaXMaaXV—I—EaﬁBuyaaX”@ng)-i-r / drA,0. X",
M oM

drod T

where OM is the boundary of the worldsheet M. The fields that appear in the
action (1.1) are the background metric G, and the antisymmetric tensor field
B,,, which both arise from the closed string NSNS sector, as well as the gauge
potential A, pertaining to the electro magnetic gauge field strength F),, localized
at the boundary oM.

The solution to the two dimensional equation of motion in the closed string
sector is given by equation (A.1) in appendix A together with the mode expansion
of the left- and right-moving parts (A.2) and (A.3) which depend in a trivial
background only on the light-cone coordinates oL = 7 4 0, respectively.

In the open string sector there exist two different kinds of boundary condi-
tions consistent with the equations of motion and (p + 1) dimensional Lorentz-
invariance (0 < p < 9) if we restrict to the flat non-compact case and consider
only trivial background fields, i.e. B,, =0, G, = 0, and A, = 0. Neumann

13



14 1. Strings in constant backgrounds

boundary conditions are then given by

Oy XH(1,0 =0) = 0, X*(1,0 =7) =0,
while Dirichlet conditions read

0, XH(1,0=0) =0, X"(r,0 =7) =0.

These conditions are solved by the same ansatz as for the closed string sec-
tor (A.2), (A.3) if one takes into account that Neumann conditions preserve the
momentum at the boundary, i.e. p* = 1(p/ +pl;) = 0, while Dirichlet conditions
fix the coordinates of the boundary to lie on a hypersurface, i.e. %(p‘z —ph) = 0.
In addition, left- and right moving raising- and lowering operators are identi-
fied via o + &",, = 0 for Neumann and o — &",, = 0 for Dirichlet boundary
conditions. An open string with Neumann boundary conditions along p spatial
coordinates defines a p dimensional hypersurface, the Dp-brane.

If we now consider type II superstring theories compactified on a two torus,
e.g. along the X*° directions with radii R; o, the left- and right moving momenta
are quantized in units of n/R; (n € Z, i = 1,2). In addition, strings can
wind around the compact directions, the corresponding winding modes being
quantized in units of mR;/a’ (m € Z).

In the compact theory, Neumann- and Dirichlet boundary conditions along
the direction X? are exchanged under T-duality,

. { Ko+ Xilor) 0 Xifo.) - i), "
' R, — R, = B '
which acts asymmetrically on the left- and right-moving sector.

For consistency of the space-time theory, the action (1.1) with generic back-
ground fields has to be invariant under gauge transformations of the potential,

§A, = ), (1.5)

which is trivially fulfilled since (1.5) only adds a total derivative to the integrand
of the boundary term. In addition, the antisymmetric tensor variation

0B, = 0,¢, — 0., (1.6)

leaves the bulk action invariant, but adds a surface term which has to be canceled
by a transformation of the open string gauge potential A,,,

§A, = —C,. (1.7)

The combination F,, = B,, + F,, is then the quantity which is invariant un-
der (1.6) in combination with (1.7).
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On the X*° plane with Fy5 = —F5q # 0 and G;; = 0,5, the boundary
conditions are modified:

(0, X* + Fu50,X°) (0 =0,7) = 0, (1.8)
(0,X° — Fus0,X*) (0 = 0,7) = 0. (1.9)

For a vanishing NSNS antisymmetric tensor background, Fy5 = Fjy5 has to obey
the Dirac quantization condition

(1.10)

with ¢, p € Z in order for the gauge field to be well defined on the two torus [8, 63].
This can be seen by choosing the gauge

A4 = Qy4,
As = az+ FysX?,

for a U(1) bundle. Going once around the X* direction of the two torus, the
gauge potential changes according to [88]

/

A"+ By, X7) = AL (XL X0) + 2 (9719,0) (X, X,

with the transition function g = ¢*™#X*) and 9(X?®) = FisR, X°/a/. In order for
g to be single-valued on the overlap of two fundamental cells of the two torus,
0(X° = R,) € Z is required which provides the quantization condition (1.10)
for p = 1. By generalizing to the Abelian component of a U(p) bundle over
the same torus, (1.10) is precisely recovered. The generalization to a non-trivial
NSNS antisymmetric tensor background is dealt with in section 1.2.

1.1.2 T-dual picture: D-branes at angles

Applying the T-duality transformation (1.4) along the X® direction exchanges
0, X° with 0,X° at the boundaries of the string worldsheet, and the quantiza-
tion condition on the background fluxes can be rephrased as Fy; = tan(mp) €
R,/R, - Q. The boundary conditions for D-branes with constant background
flux (1.8), (1.9) can then be rewritten as

9y (cos(mp) X* + sin(mp) X°) (o = 0,7) =0, (1.12)
O; (—sin(mp) X* + cos(mp) X°) (0 = 0,7) = 0, (1.13)

which describe a D-brane wrapping a l-cycle in the X*® plane at angle m¢
relative to the X* axis.



16 1. T-dual picture: D-branes at angles

The correspondence between the pictures of D-branes at angles and D-branes
with constant background fluxes can also be understood by comparing the cor-
responding fluctuation spectra of lower dimensional D-branes with those from
the Born-Infeld actions of space filling D-branes with fluxes [63].

So far, we have only considered open strings with both endpoints on the
same kind of D-brane. If the theory includes D-branes with different background
fluxes or in the T-dual language D-branes at a relative angle 7, then also strings
with endpoints on two different kinds of D-branes appear. Let us for simplicity
assume that one kind of D-branes wraps the 1-cycle along the X* direction on
a two torus. A string which begins on this D-brane will have the boundary
condition

0,X*(1,0) =0, 0. X°(7,0) = 0.

If the string ends on a D-brane which is rotated by an angle wy relative to the
first kind, it is subject to the conditions (1.12), (1.13) at 0 = w. The solution to
these conditions is given by

1 : 1 :
XY(r,0) = Z Eame_m”cos(ma)%— Z Edne_””cos(na), (1.15)

meZ+p nel—yp
1 , 1 ,
X%(r,0) = Z —aye " sin(mo) — Z —dape " sin(no),  (1.16)
meZ—+y m neZ—yp n

and neither windings nor momenta occur.

The argumentation can be extended to the fermionic sectors of the theory.
The two dimensional Dirac equation for closed strings has the solution (A.4) with
the mode expansions of the left- and right-moving parts given in (A.5) and (A.6).
In contrast to the bosonic variables, periodicity in the variable o and Lorentz
invariance still allow for two different periodicity conditions on the worldsheet,
namely

Ramond: UH(7,0 4 27) = UH(7,0),
Neveu-Schwarz: UH(7,0 + 27) = —UH(T,0),

which lead to integer oscillator modings in the R and half-integer ones in the
NS sector. One further subtlety in the fermionic sector is the occurrence of
different spin structures n = £1 [106] which require in the open string sector the
identifications

Neumann: ¥ + i, =0,
Dirichlet: * — ing*, = 0.
The fermionic oscillator moding for open strings stretching between D-branes

at angles changes completely analogous to the one for the bosonic coordinates.
One important consequence of this change is the fact that the R sector of a
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string with pure Neumann or Dirichlet boundary conditions has zero modes 1}
whereas for a string stretching between D-branes at angles my, the zero mode on
the corresponding two torus is replaced by creation- and annihilation operators
1/)1’17 where 7,7 parameterize the two torus on which the intersection occurs. The
appearance of zero modes in the spectrum signals a degeneracy of the ground-
state. While the R-sector groundstate of an open string on a stack of D9-branes
is eightfold degenerated, non-trivial angles on a two torus lead to a fourfold
degenerated R-groundstate of strings with endpoints on different D-branes, and
each further two torus with non-trivial angles reduces this degeneracy by a factor
of two. This means that non-trivial angles [12] or in the T-dual picture back-
ground fields [8, 4] break chiral symmetry. For a generic choice of backgrounds or
angles, supersymmetry is also broken and tachyonic modes appear in the spec-
trum. These effects will be worked out in detail in sections 2.2.1 and 3.1.2 for
intersecting D6- and D8-branes, respectively.

1.2 Orientifold projections

The concept of T-duality between background fields and angles and the break-
down of chiral and supersymmetry is independent of the particular superstring
theory under discussion. In type II theories, however, open strings and lower
dimensional Dp-branes are not required for consistency. This is in contrast to
type I superstring theory where a definite number of D-branes cancels the RR
charges arising from orientifold planes. The amount and dimensionality of D-
branes required for a consistent model depend on the particular orientifold group
of the model. One further appealing feature of type I string theory is the reduced
amount of supersymmetry rendering it potentially more interesting in view of
deriving the standard model from string theory.

Type I superstring theory is obtained from the type IIB theory by gauging
worldsheet parity € which acts on the closed string sector as follows [54]

Xio) & X0 ),
Q:< Vi(oy) — Whio-), (1.17)
V(o) — —Vi(oy)

The minus sign in the third line is required in order to obtain Qz/)“z/;“Q_l = Ib“l;”.
Otherwise, the graviton would be projected out by the additional symmetry.

In total, the ten dimensional type IIB superstring theory contains as massless
modes in the bosonic sector the metric G, an antisymmetric tensor B, and
the dilaton @ from the NSNS sector and a scalar x, a two-form B, and a
self-dual four-form D,,,, from the RR sector. The NS-R and R-NS sectors
provide two gravitini with spin 3/2 and two dilatini with spin 1/2 leading to
N = 2 supersymmetry in ten dimensions. Gauging worldsheet parity amounts
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to projecting out the modes with 2 eigenvalue —1. The remaining massless
fields are the metric, dilaton and RR two form in the bosonic sector and one
gravitino and dilatino in the fermionic sector since NS-R and R-NS states are
identified under €2. In the non-compact theory, the NSNS two-form B, is gauge
equivalent to B, = 0. It is completely projected out by €2. Upon compactifying
on a two torus, e.g. in the X*5 plane, however, the two-form is only defined up
to lattice shifts such that effectively, a quantized non-vanishing discrete value
b = 1/2 with Bys = €4500/ /Ry Ry remains possible [14, 13, 113, 3, 75] which
cannot be gauge transformed into By; = 0. Including a non-trivial background
NSNS antisymmetric tensor of rank r on a higher dimensional torus reduces the
rank of the gauge group arising from open string states by a factor of 27/2.

The T-duality transformation (1.4) along one coordinate X of the two torus
mentioned in section 1.1.2 maps the non-trivial value of the NSNS tensor to a
tilted shape of the compactification torus with trivial background fluxes [24].
This can be derived from expressing the metric and antisymmetric tensor back-
ground in terms of the Kdhler and complex moduli and performing the T-duality
transformation. The Kahler structure of the original rectangular two torus with
discrete NSNS background flux b = 0,1/2 and radii R; 5 along X*5 is given by

R\R
T=T +ily=b+i—-=,
o}
and the complex structure is given by
R
U=U + iUy =i—. (1.19)
Ry

The T-duality transformation exchanges the role of Kahler and complex struc-

ture,
1 1
T =—— U=——.
U’ T
The metric and the NSNS two form on a two torus are given in terms of the

Kahler and complex structure,

T2 1 U1 U1:0T2 1 0 CY, 0 1
G=>= =022 B=—T .
U2<U1 U12+U22> U2(0 U§>’ Rlel(—l 0)

Upon T-duality along X°, these quantities transform into

1 (R4 (bRY)? b(RL) )
G, = ! / 2 12 ) B, = 07
o ( b(RRy)? (R3)?

which for b = 1/2 describe the tilted torus shown in figure 1.1.

The orientifold projection €2 of the original theory with background fluxes
transforms under T-duality along ¢ coordinates into QYR; where R; is the reflec-
tion along these ¢ coordinates. In chapter 2 and 3 we will discuss the cases where
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Figure 1.1: Two tori in the T-dual picture admitting D-branes at angles. The
index prime on radii and basis vectors is omitted.

three and one compact coordinate, respectively, are T-dualized. In order to sim-
plify the notation and also in view of orbifold groups discussed in section 1.3, it
is convenient to introduce complex coordinates on the compact space

Z'=X'4iX® 72 =X°+4+iX",  ZP=X%+iX°. (1.23)

In terms of these complex coordinates, the reflection Rz acts then as complex
conjugation, .
Rs:Z2' =7, i=1,2,3 (1.24)

In the models discussed in chapter 3, the reflection only acts on one coordinate,
R 2P 7 (1.25)

From the definition (1.24) it is clear that only the real axes X*%8 are invariant
under the orientifold projection QR3. Similarly, according to (1.25) the real axis
X* and the four coordinates X%789 are invariant under QR,. Together with
the four non compact directions, 2R3 leaves six spatial plus one time direction
invariant. These are the orientifold six O6-planes. Similarly, for 2R, one obtains
O8-planes.

Consistency of the theory enforces the existence of D-branes of the same
dimensionality which can be rotated by angles m¢; relative to the QR,; invariant
axes as discussed in section 1.1.2. For QYR; to be a symmetry of the theory, also
the mirror images of rotated D-branes at angles —m¢; have to exist. The details
of the construction will be discussed in sections 2.1.2 and 2.1.3 in the context of
D6-branes. The argumentation directly carries over to the case of intersecting
D8-branes.

1.3 Orbifold groups

The ten dimensional type II superstring theories possess 32 supercharges. Torus
compactifications preserve all these charges, whereas moding out the worldsheet
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parity () in combination with some target space action preserves 16 of them.
Purely toroidal orientifold models thus give N' = 4 supersymmetry in four di-
mensions. In order to break half of the remaining supersymmetries, we incor-
porate an orbifold group action Z,; in the compactified models. The orbifold
generator © acts as a rotation on the compact coordinates,

O: 77 — i gl (1.26)

A Zy; rotation requires © = 1, and modular invariance of string theory requires
>_;vj = 0(mod 2). In the models discussed here, we restrict our attention to
orbifold groups which act non-trivially only on the second and third torus. The
four distinct allowed orbifolds which are listed in table 1.1 can be viewed as
different singular limits of compactifying on a smooth K3 manifold. The

Four dimensional orbifolds

Group (v, v3)
Lo (1/2,-1/2)
Zs (1/3,-1/3)
Z, (1/4,—1/4)
Lg (1/6,-1/6)

Table 1.1: The four orbifold limits of K3.

four dimensional orbifold groups listed in table 1.1 act symmetrically on left-
and right-moving sectors provided that the complex conjugation does not affect
these two tori. This will be the case in the models discussed in chapter 3.

If on the other hand we choose the reflection symmetry R3, the models are
T-dual to ordinary 2 orientifolds with an asymmetric orbifold action ©. In the
complex notation (1.23), T-duality along X7 can be rephrased as

T: 7 + 73, — 73 + 77,
and the orbifold action © becomes
O =TOT™': Z] + Z}, — *™i Z] + e~ *™i 7},

The T-dual picture can be used to study special classes of asymmetric orien-
tifolds [21]. For the orbifold group Zs, the T-dual version acts also symmetri-
cally, and one recovers the supersymmetric model discussed in [54]. The other
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six dimensional supersymmetric models of this kind have been studied in [20].
All six dimensional models are also reviewed in detail in [104].

For the heterotic theories, which are believed to be connected to open string
theories by a strong/weak coupling duality, similar observations have been made
in [82, 83].

Including the orbifold group Z,; produces additional O6-planes as can be
read off from the following sequence

omikv; i O mikv; 7 Rsy —mikv; I

This means that e.g. the hyperplane (X*, X* e ™/3X% ¢™/3X8) is invariant
under the combination of R with a Zs rotation on the second and third torus.

1.4 RR tadpole cancellation conditions

The O-planes can be viewed as sources and drains for closed strings. The re-
sulting tree channel interaction between two crosscaps, [;°dl{Cle™>"H|CY), is
represented by the Klein bottle amplitude diagram depicted in figure 1.2. The
interaction is mediated by the bosonic closed string sectors, namely the NSNS
and RR sectors. The tadpoles arising from the two different kinds of closed
strings propagating in the bulk cancel each other due to supersymmetry, but in
order to have a fully consistent theory, it is necessary that they also vanish sep-
arately. In the NSNS sector, this could be achieved by appropriately redefining
the vacuum as suggested in [44, 45]. The procedure can, however, not be applied
to the RR sector since there are conserved charges associated to the RR forms.
Instead, orientifold theories contain further interactions, namely scattering of a
closed string between an O-plane and a D-brane, [°dl ((Cle™>"#|B) + h.c.),
which has the Mobius strip as loop-channel diagram, and scattering between
two D-branes, [~ di(Ble *™#|B’), represented by the cylinder at tree level. For
consistency of the theory, the net RR charge of all three diagrams has to can-
cel. The contributions to the three diagrams can be directly calculated in the
boundary state formalism [97, 50, 74], but the normalizations of boundary |B)
and crosscap |C) states which determine the number of D-branes required can
be more easily read off when starting from the loop channel. Furthermore, in
the D8-brane models of chapter 3, the couplings of twisted closed strings to D-
branes and O-planes determine the action of the orientifold and orbifold group
on the Chan-Paton labels of open string states which can only be understood by
starting from the loop channel. In chapter 2 we will discuss how the boundary
state picture constrains the allowed compactification lattices.

The correspondence to the loop channel can be established by the two differ-
ent choices of parameter ranges on the worldsheet describing the Klein bottle.
The standard parameter range of a closed string is

0 <o < 2m, 0< 7 <27l (1.30)
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Figure 1.2: Tadpole diagrams: a) Klein bottle, b) Mé&bius strip, ¢) cylinder.
QYR;h; denote orientifold group elements, g denotes an orbifold group element.

The Klein bottle tree channel diagram is obtained by taking a double cover, i.e.
a torus with 0 < o < 27, 0 < 7 < 4xl, the periodic identifications ¢ ~ o + 27,
7 ~ 7+ 47l and a Z, identification

(1,0) ~ (4wl — 1,0 + ).

The two different fundamental regions respecting these symmetries are depicted
in figure 1.3. The diagram on the left hand side leads to the interpretation
of a tree channel interaction, whereas the diagram on the right hand side has
the interpretation of a 1-loop interaction with the closed string undergoing a
twist €2 on the worldsheet. For this, the role of o and 7 have to be exchanged,
and in order to obtain the standard parameter range of a closed string with
0 < 7 < 27t, a rescaling is needed which gives ¢ = 1/4[. In a similar manner,
by reparameterizing ¢ = 1/2[, the cylinder closed string tree diagram transforms
into an open string loop diagram. The Mobius strip also transforms into an open
string 1-loop diagram, but this time again a double cover of the fundamental
region is needed leading to the reparameterization ¢ = 1/8l.
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Figure 1.3: Triangulated versions of the tree channel Klein bottle diagram.

The RR charges of O-planes and D-branes can be extracted from the loop di-
agrams by computing the UV-limits of the following parts of the amplitudes [97]:

Klein bottle: Closed string NSNS states with P,.,QR;(—1)" insertion,
Mobius strip: Open string R states with —P,,,QR; insertion, (1.32)
Annulus/Cylinder: Open string NS states with P,(—1)" insertion,

where P,y = (14+© +...+O~1) /M projects onto states invariant under the
orbifold group, F is the worldsheet fermion number and the factor (—1) arises
from the GSO projection [56] which for our models is given by (1.35) in the
closed string sector, and the open string analog is obtained by restricting to e.g.
the left-movers only. The minus sign in the Mobius strip takes into account the
space time fermion number.

The periodicity and boundary conditions in the tree channel with the stan-
dard parameter range (1.30) on a generic bosonic worldsheet field ¢(7,0) in the
g-twisted sector (see figure 1.2) are as follows [54, 37]:

Klein bottle:  ¢(0,7 4+ 0) = QR;h16(0,0),
o(2rl, 4+ 0) = QR het (27, 0),
o(1,2m + 0) = go(7,0),
Mébius strip:  ¢(27l, 7 4+ 0) = QR;hé (271, 0),
o(1,2m + 0) = go(7,0).
For worldsheet fermions, a phase £1 from the GSO projection has to be included
as well [54].
For consistency of the boundary conditions, the Klein bottle has to fulfill
(QRZhl)Q = (QRZhg)Q = 92, (133)

and in the Mobius strip
(QR;h)* = ¢° (1.34)
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is required. The orbifold group element g denotes the twist sector of the closed
string propagating in the tree channel. Due to the choice of the orientifold group
{QR30*}, only untwisted closed strings couple to the O6-planes and D6-branes
in the models discussed in chapter 2, even though twisted closed string sectors
exist. This is in contrast to the D8-brane models discussed in chapter 3 where
all twist sectors couple to the O8-planes and D8-branes.

1.5 Low energy spectra

The physical states are given by those string excitations which are invariant
under the orbifold and orientifold action and the GSO projection.

1.5.1 Closed sector

The GSO projection in the explicit examples in chapter 2 and 3 is chosen to be

1+ (-)F1—(-DF
2 2

Pgso = (1.35)

where F and F' are left- and right-moving worldsheet fermion numbers, respec-
tively. i

The NSNS sector groundstate is odd under (—1)f" and even under (—1)%
and thus projected out. The reflection R; does not affect the non-compact
coordinates. Defining creation- and annihilation operators with complex indices
as in equation (A.7), we obtain the action of the orientifold group on bosonic
oscillators given in equation (A.10). The action on the fermionic sector can
be easily read off from this bearing in mind the minus sign of (1.17). The
orbifold group acts on the oscillators as defined in equation (1.26) with the
mode expansion (A.2), (A.3) inserted. The graviton and dilaton are massless
model independent states. They are represented by

(wﬁl/gdkuz + wimlﬁﬁm) 10) Nsns- (1.36)

In addition, model dependent vectors and scalars arise. The GSO projection
consistent with QR3 in the RR sector is given by (s; = £1/2)

(—1)F‘So, S1, S92, 83> = —6”“50781752753) ’80, S1, S92, 83>, (137)

(—1)F|80,51732,53> = eﬂi(so+sl+52+s3)|30,51782,S3>; (1.38)

while for QR,, the GSO projection onto the left moving sector is replaced by

wi(sg—s1+s2+s3

(—1)F\so,sl,32,sg> = —e )\30,81,82,33). (1.39)
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The action of the orbifold and orientifold group on the RR sector is given by
27“17.5’807 S1, 52, S3>7

R31|30,31782,33> — |507—317—32;—33>7

© : |sg, S1,52,83) — e

Rl : |80781782783> - |SO7_81782783>7

with ¢ listed in table 1.1 for the different four dimensional orbifold groups.
In the ©"-twisted sectors, the masses are given by

o 1, 1
7 MLR = Np,r + SRt Eyac — > (1.40)
with the state represented by
(0,0, £nwvy, £nwvs) NS,
qr.r = (1.41)
(%,%,%invg,%in%) R,
the oscillator number Ny, r and
1
e = 3 3 b1 o), (1.42)

where 0 < |nv;| < 1 is required. In the models with D6-branes, the orientifold
group action (2R3 preserves the twist sector, whereas in the D8-brane models
QQR; exchanges the ©" and the ©™" twisted sectors.

The NS-R sectors are mapped to the R-NS sectors under the orientifold
projection. Thus, the fermionic superpartners of the NSNS and RR sectors are
provided by an invariant superposition of NS-R and R-NS states.

1.5.2 Open sector

The open string groundstates for strings with both ends on the same type of
D-branes can be treated in the same way as one sector, e.g. the left moving one,
of the closed string.

In addition, strings between D,- and Dy-branes at angles appear. If the non-
trivial angles mp; appear only in the second and third torus with (mgy, mp3) =
+7n(ve, v3), the whole discussion of the previous section carries over. The oscil-
lator moding is then the same as for twisted closed strings and one can therefore
speak of ‘twisted open string sectors’.

If on the other hand the D-branes intersect on the first torus at an angle mp,
equations (1.41), (1.42) have to be modified as follows,

q(LLf}){ = QL,R + (07 25 07 0)7 (143)
E{f) = Byoe + 5 \90\(1 = lel)- (1.44)
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The representation of open D,-D; string states under the gauge group is deter-
mined by regarding the orbifold and orientifold group action,

T
QRO+ [N~ ORO" v, mn) (WGhdilitt) L (145)

OF : |1h, mn)N@D) s |OF ., mn) (7,(:))\7,(6“)71) , (1.46)
where the v matrices acting on the Chan-Paton labels A(*%) are determined by the
tadpole cancellation conditions and the requirement that they form a projective
representation of the orientifold group [54].

For example, applying two orientifold group elements one obtains

(OR:0°) (RO ) : [, mm) A& — 16", mn) (v Y ML)
(1.47)
with [ = k' — k for QR3 and [ = k + k' for QR,. D, is the R; image brane of
D,. Comparing (1.47) with (1.46) leads to 7" ~ 7§2a7’2);€T7§2a7)%k, up to a phase.
If the orbifold or orientifold action is a symmetry of the D-brane configura-
tion, i.e. it only acts as a phase on the corresponding mass eigenstates v, the
representations of the Chan-Paton labels A\(%?) are obtained from

T
D = () (kM)
XD = (O,

where pg (1), pr(¢0) € C are the phases obtained from the action of the orientifold
QOR;OF and orbifold ©F generator on the state ¢, respectively.

For all models discussed in this thesis, QR;0F is a symmetry of D,-D, strings
at R; invariant intersections as well as D.-D, strings if the stack of D.-branes is
located on top of an O-plane. The gauge group supported by such D.-branes is
therefore only a subgroup of U(N.). Furthermore, in chapter 2, a ©M/2 rotation
for M even preserves the D6-brane configurations whereas in chapter 3, each ©
rotation leaves the D8-brane positions invariant. The corresponding low energy
spectra are discussed in detail in section 2.3 for intersecting D6-branes and in
section 3.1.2 for D8-branes at angles.



Chapter 2

Orientifold models with
intersecting D6-branes

In this chapter, we present four dimensional orientifold compactifications of type
ITA superstring theory where we combine the worldsheet parity operator §2 with
a reflection R of half of the internal coordinates. In addition, we include the four
dimensional orbifold groups listed in table 1.1. On the one two torus which is
not affected by the orbifold projection, we allow for non-trivial angles of the D6-
branes which support chiral fermions at the intersection points. The maximal
rank of the gauge groups depends on the orbifold group under consideration.
These models have been studied in [48].

2.1 Amplitudes and RR tadpole cancellation

Cancellation of RR tadpoles gives constraints on the allowed number of identical
D6-branes and on the projection of the wrapped 1-cycles on the two torus onto
the QQR3 invariant plane.

The orientifold projection 2R3 acts as defined in section 1.2 and appendix A,
equation (A.10), on the oscillators. In addition, the orbifold groups of section 1.3
are moded out. At first, the Klein bottle amplitude is computed which gives an
RR tadpole. In section 2.1.2 and 2.1.3, the open string loop amplitudes needed
for RR charge conservation are successively computed. The strategy of determin-
ing the RR tadpoles consists of computing the loop channel expression of each
amplitude, then reparameterizing the worldsheet as explained in section 1.4 and
extracting the infrared divergent limit [ — oo. Imposing tadpole cancellation
amounts to summing over the contributions from the three contributing 1-loop
amplitudes and solving a quadratic equation.

The normalizations of boundary and crosscap states are obtained by matching
the direct tree channel calculation with the modular transformations of the loop
channel amplitudes. Imposing worldsheet duality in this class of models results

27
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in selecting out special orbifold lattices.

2.1.1 The Klein bottle amplitude

The loop channel expression of the Klein bottle amplitude is given by

o dt QRs3 S _or
K= 4(;/0 t—3Tchljsfd (TPOT,)PGSO (=1)°e™? tH) : (2.1)
where ¢ = V,/ (87a/)? is a constant factor appearing in all three loop amplitudes,
Vy is the regularized volume of non-compact momentum space,

1+04...+0M!
Py = i (2.2)

is the orbifold projector, Pgso is as defined in (1.35) with (—1)¥ and (—1) given
by (1.37) and (1.38), respectively, and S denotes the space time fermion number.
The Hamiltonian H is displayed in (A.11) with mode expansion (A.12). The
trace includes a sum over all lattice and oscillator contributions from untwisted
and twisted sectors. The tree channel RR exchange arises from the part of the
total loop channel Klein bottle amplitude (2.1) listed in (1.32).

In the following, we will discuss separately the first torus on which the orbifold
group acts trivially and then the second and third torus on which the rotation
acts.

In this chapter we mainly focus on the case of a trivial antisymmetric NSNS
tensor background in the T-dual picture. The generalization to a non-vanishing
background b = 1/2 on the first two torus is straightforward and will be used in
chapter 3.

Lattice contributions on 72

The torus lattice which is not subject to the orbifold projection can have the
two different (2R3 invariant shapes displayed in figure 1.1 corresponding to a
vanishing or non-trivial antisymmetric NSNS tensor background in the T-dual
picture with D9-branes. In this chapter, we use the terminology introduced in
section 1.2 of lattice orientations a and b relative to the O6-plane in the picture
of D6-branes at angles if not stated otherwise.
Untwisted closed strings can have Kaluza-Klein momenta which lie in the
dual lattice,
P = mléblk + mge_;, (23)

and winding modes in the lattice,

CYIW = n1€1 + leéé, (24)
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where m;, n; € Z and the €; (€;) are the basis vectors of the (dual) torus lattice.
Only states invariant under the orientifold group (2R3 contribute to the Klein
bottle amplitude. Kaluza-Klein momenta P are left invariant by the orienta-
tion reversal on the worldsheet, QPQ ! = P, while the winding directions of
the string are reversed, QWQ~! = —W. The reflection R3 maps momenta and
windings onto their complex conjugates on the two torus. Combining the orien-
tation reversal on the worldsheet with the reflection, the lattice contributions to
the Klein bottle amplitude in the tree channel transform as follows,

(OR3)PY(ORs)™ = PV,
(QR)WI(QRs) ™ = —WhL

Only QRj3 invariant Kaluza-Klein modes contribute. Therefore, only Kaluza-
Klein momenta along the direction of the O6-plane and windings perpendicular
to the same contribute on the first two torus. For the a type lattice, the contri-
butions to the trace are of the form

1

1 (P% —I—p%) =

o m? 1

o 2 2
i L
2R T aa

2

1

P4 2 W5 2
(P12 + (W)
where R;, Ry are the radii of the two torus as defined in figure 1.1.

By summing over all allowed momenta and windings m,n € Z, the lattice

contributions can be cast into a general expression of the form

LR R [a, 5] (t) = (Z eaﬂtmz/m> (Z eﬁﬂtn2p2>

meL neZ

with p; = R?/a’. The corresponding expressions for the Klein bottle amplitude
for both lattice orientations a and b representing the background b = 0,1/2,
respectively, in the T-dual picture are listed in table B.1.

Lattice contributions on 7*/Z,,

Lattice contributions on the orbifold only appear in the untwisted sector. The
compactification lattice has to be chosen such that it remains invariant under
the orbifold generator ©. For Z, and Z,, the SU(2)? lattice is mapped onto itself
under a rotation by e™/2. The two lattice orientations A and B consistent with
the reflection symmetry R3 are shown in figure 2.1. In fact, the Z, symmetry also
preserves rectangular a type lattices with R; # R, and the b type lattice with
apex angle 2« # /2 (see figure 1.1 for the definition of the lattice orientations
and figure B.1 for the definition of ). The tadpole cancellation conditions are,
however, independent of the variables R;, Ry and «. For simplicity, we utilize
the quadratic lattices.

If the orbifold group is chosen to be Zj or Zg, the SU(3) lattices depicted in
figure 2.2 are consistent with rotational and R3 symmetry. For the part of the
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A B

Figure 2.1: Solid circles denote Z, fixed points, empty circles the additional Z-
fixed points which are exchanged under a Z, rotation. For the A lattice, all
fixed points are R3 invariant. For the B lattice, the Z, fixed points 3 and 4 are
exchanged under Rs.

trace with trivial insertion, the lattice contributions are determined exactly in
the same way as for the two torus T} whereas for a ©F insertion, the momenta
and windings transform in the following way (j = 2, 3),

(AR;0%) P (QR,0F) L = ¢F2mikv; pid,
(QR30F)WH (OR,0F) 1 = —eF2miku i,

This means that Kaluza-Klein momenta which are rotated by ©~%/2 from the
real axes and windings rotated by the same angle from the imaginary axes of the
two tori Ty 3 contribute to the lattice sums. If © is a Z, or Z3 rotation, ©1/2 is
also a symmetry of the lattice, and therefore the Kaluza-Klein and winding sums
are identical to those with trivial insertion. The orbifold symmetry does not give
any constraint on the choice of orientations. All possible lattice combinations
AA, AB (which is equivalent to BA) and BB are allowed.

If on the other hand © is a Z, or Zg rotation, ©/2 interchanges the lattice
orientations A and B. Merely the lattice AB gives a consistent interpretation
of the Klein bottle amplitude in the tree channel. Only untwisted closed strings
interact with the crosscaps, and therefore only one kind of lattice contributions
on the four dimensional orbifold can appear. The AA and BB lattices lead to
a linear superposition of two lattice sums which is inconsistent with worldsheet
duality. This constraint is worked out in greater detail in appendix C.3.

The lattice contributions per two torus for all consistent models are listed in
table B.1.
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Figure 2.2: Solid circles denote Zs fixed points, empty circles the Z, fixed points.
A Z, rotation exchanges the Zs fixed points 2 and 3, a Z3 rotation permutes the
Zs fixed points 4,5,6. R3 exchanges 5,6 in the A lattice and 4,6 in the B lattice.

The loop channel amplitude

In order to extract the RR exchange in the tree channel, only the NSNS sector
with (—1)% insertion in the 1-loop channel needs to be evaluated. The non-

compact directions in light-cone gauge contribute a factor 19[(1] /2] /n(2t) for the

worldsheet, fermions and 1/5?(2t) for the worldsheet bosons. The definitions
of the Dedekind eta and generalized Jacobi theta functions are given in ap-
pendix B.2. Each complex compact set of oscillators from the untwisted sector
gives the same contribution. An insertion of ©F in the trace does not affect the
oscillator part because only Q7R3 invariant states o/a’/ and o/a’ contribute and
the phases cancel between left- and right-movers. Upon modular transformation,
this corresponds in the tree channel to no twisted sectors coupling to the cross-
caps. This result is consistent with the tree channel boundary conditions (1.33)
and (1.34) which for this class of models give the twist sectors (QR;0%)? = 1.

From (QR3)0d7 (QRs) ' = a7 follows that QRs preserves each twist sector.
Formally all twist sectors contribute to the trace, where one complex compact

dimension yields the oscillator part 19[32}/19[5?%] (2t) for nv; # 0. However,

the numerical result may be zero in special cases as happens for Z, twist sectors.

The last ingredients needed for evaluating the trace in (2.1) are the numbers
") of ©" fixed points which are invariant under the insertion QR;0%. These
fixed points are displayed in figure 2.1 for Z, and Z,4 and in figure 2.2 for Zj3 and
Zg. Since the lattice sums and oscillator contributions are invariant under the
insertions, only the total number x™ = >k x(™F) of @ fixed points enters the
computation.

In summary, the NSNS part with (—1)% insertion of the one loop Klein bottle
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amplitude yields

¢ paii
K=c /0 t—3£’f (/d%’;LgK +) X<">/c<n>> : (2.7)

n=1

where the oscillator contributions K™ are given in terms of Jacobi theta func-
tions in (B.15), £} denote lattice contributions arising from the i"* two torus
listed in table B.1 and the numbers x(™ can be easily read off from figures 2.1
and 2.2.

The tree channel amplitude

The modular transformation ¢ = 1/4[ leads to the RR exchange in the tree
channel,

M-1
N 0 o E\ -
K =ikl / 1Lk {£’§£§K(0) +4) sin? (%) IC(’“)} , (2.8)
0 k=1

where £ and K®) are given in (B.19) and (B.20), respectively. The lattice
sums L£F and constants ¢ arise from Poisson resummation of the £X, namely
L(t) = clL(1), and are listed explicitly in table B.1. The factor 4sin®(wk/M)
reflects the fact that only Z,; invariant states from the closed string sector prop-
agate in the tree channel [20]. In terms of crosscap states this can also be
rephrased as the appearance of the ‘complete projector’ as explained in detail in
appendix C.1.2, in particular formula (C.13).

The infrared limit [ — oo is obtained from the leading terms in the expansion
of lattice sums and oscillator contributions. The latter can be easily read off from
the product expansion of the Jacobi theta functions (B.9).

The Klein bottle amplitude can also be computed directly in the tree channel
by using the boundary state approach [97, 74, 50]. The detailed calculation is
given in appendices C.1 and C.3. The normalization of the crosscap state is
determined via worldsheet duality to be

KKK
Ne =/ 76612‘;\2;3 . (2.9)

2.1.2 The annulus amplitude

The RR tadpole can be canceled by including open strings in the theory. One
of the 1-loop amplitudes for open strings is the annulus. It is given by

1

 dt o
A = C/ t_3Tr0PeIl <§PoerGSO (—1)8 (& 2 tH) , (210)
0

where the trace includes all possible endpoints of open strings on different D6-
branes.
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Lattice contributions on 72

Let us first discuss the contributions to the one-loop amplitude from strings
starting and ending on the same stack of D6-branes. Since each D6-brane wraps
a 1l-cycle on T}, infinitely many parallel copies of the same stack of D6-branes
have to be considered. The situation is depicted in figure 2.3. On the rectangu-
lar torus, the length L, of the wrapped 1-cycle is determined by the wrapping
numbers (nq,m,) along (X%, X®) and the corresponding radii Ry, Ry, namely
L, = /(naR1)? + (mgRy)?. The ‘winding modes’ are quantized in units of the
distance of adjacent copies of the same D6,-brane,

8R1 R2
L, ’

oW = (2.11)

with s € Z. Furthermore, strings can move along the Neumann direction of the

D6,-brane,

r

P=— 2.12

La ) ( )
with » € Z. The lattice contributions to the trace then appear as
L=, e~ 2 M? wwith M? = P? 4 (o/'W)2. The results for the b type lattice
on 77 can be read off from table B.1. Alternatively, the wrapping numbers along
the basis vectors ey, ey (see figure 1.1) on a tilted torus can be replaced with
their projections onto the (X*, X5) directions, (n,, m, + bn,) with b = 1/2 for
the tilted torus and b = 0 for the rectangular one.

A 20

Ny

Y

Figure 2.3: Kaluza-Klein momenta and windings from open strings with
both endpoints on the same stack of D6;-branes with wrapping numbers
(nl,ml) = (2, ].)

Lattice contributions on 7*/Z,,

We restrict to the case where the D6-branes lie on top of the O6-planes along the
orbifold directions. The resulting D6-brane configurations are shown in figure 2.4
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for Zy and Z, and in figure 2.5 for Z3 and Zg symmetries. As on 77, momentum
and winding states are quantized in units of the inverse length of the 1-cycle and
the distance of parallel D6-branes on each two torus, respectively.

The loop and tree channel amplitudes

“T'wisted open strings’ are those strings with one endpoint located on a DG6-
brane which is the Z,, image of the other one, i.e. the position of the second
D6-brane is obtained by a ©™/2 rotation of the first one . The oscillators are
moded in analogy with (1.15), (1.16) on Ty 3 with ¢ = £n/M. Such D6-branes
can intersect multiply on the fundamental cell of the orbifold. The intersection
numbers XEZ) can be read off from figures 2.4 and 2.5.

The 1-loop amplitude for D6,-D6, strings reads

M—1

c dt n

Aw = N / &L {ﬁ{‘ﬁg“Agﬂgo) +3 X;)Ag;vo)} : (2.13)
0 n=1

with Agb ) given by (B.16) when i) [1;;] i, [1/2 ?1(¢) is replaced by ¥ [1/2} /P (t)
for Ay — 0. The number N, counts identical D6,-branes. The square appears
due to the separate counting of the endpoints ¢ = 0,7 of an open string. The
lattice contributions are again collected in table B.1. In equation (2.13) we have

A B

N .
\ 4

Figure 2.4: Supersymmetry preserving D6-brane configurations on 1 for Z,
(solid lines) and Z, (solid and dashed lines).

implicitly used the fact that the Chan-Paton representations of Z, elements
of the orbifold group have to be traceless as discussed below. A generic Z,
rotation interchanges the D6-brane positions on 753. Therefore, ©" insertions
give vanishing contributions to the annulus amplitude except for the special case
of a Z, rotation where D6-brane positions are mapped onto themselves. The
Zs rotation is accompanied by a non-trivial action on the Chan-Paton matrices
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Figure 2.5: Supersymmetry preserving D6-brane configurations on T? for Z;
(solid lines) and Zg (solid and dashed lines).

M) of open D6,-D6, strings which provides a prefactor tr(fyj“‘J/Q)tr(fyg’Jﬁ) in
the amplitude with ©/2 insertion. In order to avoid additional tadpoles from
twisted closed string modes propagating in the tree channel which cannot be
canceled by the Klein bottle, this prefactor has to vanish. This is exactly the
condition of traceless v matrices for Zy elements, the so called ‘twisted tadpole
cancellation condition’.

The modular transformation ¢t = 1/2[ leads to

N C . N 19[1[/)2]2
Ao =it |t ——
( )
s o 5 10 (2.14)
L3y [ (;] —|—4A§sin2 (%) [ k/M ] [ —k/M ] |
S A U
“ —5+k/M Lk/m |

where the argument of the Jacobi theta functions is 2{. Comparing this with the
result from the boundary state formalism, one obtains the normalization factor

for the boundary states
A A LA
[ceiiegics
=\ —. 2.15
N3 25 0] ( )

The details of boundary states for D6-branes are given in appendix C.2.
Having found the complete boundary and crosscap states, the calculation of

the remaining amplitudes becomes a straightforward task. Open strings stretch-

ing between D6,- and D6,-branes at an angle mAg are described by the shifted
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Y

Figure 2.6: Two types of D6-branes with wrapping numbers (ny,m;) = (2,1)
and (ng, ms) = (1, 2) intersecting multiply on the fundamental cell of the torus.

oscillator moding az4a, according to equations (1.15), (1.16) which transforms
into a phase in the tree channel. One further important ingredient is the fact
that D6-branes at angles can intersect multiply on the fundamental cell of the
two torus. This situation is depicted in figure 2.6. The intersection number I,
is given by

Iy = ngmy — mgny,. (2.16)

Formally, the intersection number can take negative values. In terms of physical
quantities, this means that the particles with support at the intersection locus
of the D6,- and D6,-branes transform under the conjugate representation.

The multiplicity of intersections leads to a replication of matter which needs
to be taken into account in computing the annulus amplitude in the loop channel.
The tree level cylinder amplitude from strings stretched between the branes D6,
and D6, intersecting at a relative angle mAp reads

. M-1
Aa = 55 NoNolapes's / dl {ﬁg‘,cg‘Ag?} +4Y sin? (”—AZ) Agy} . (2.17)
0 n=1

with A9 and A% defined in (B.21) and (B.22) respectively. The tadpole is
obtained from the asymptotic behavior on the rectangular (b = 0) and tilted
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(b=1/2) torus Ty,

o[ o)

AY 20 2 =2 ( nany == + (mq + bng) (my + bry) —= ) |
9
|:1/2+Agp:|
(2.18)

and similarly for fl((;g) with the asymptotic behavior of the Jacobi theta functions
belonging to the twisted oscillator contributions given by (B.10).

2.1.3 The Mobius strip amplitude

The Mobius strip amplitude in the 1-loop channel is given by the part of the
total 1-loop open string amplitude with 2R3 insertion,
< dt QR o
M=c t_?’TrOPen (T?’PoerGSO (—1)S € 2 tH) . (219)
0

As mentioned at the end of section 1.2, Q7R3 is only a symmetry of the theory if
each D6,-brane at angle 7wy relative to the X* axis is accompanied by its mirror
image under R3, a D6,-brane at angle —mp. For a D6,-brane with wrapping
numbers (n,, m,), the mirror image D6, is described by the wrapping numbers

(N, Mar ) = (Ngy, —Mg — 2b1,), (2.20)

where b = 0 and 1/2 belong to a rectangular and tilted torus, respectively. The
situation is depicted in figure 2.7 for the rectangular torus.

On T,3 the mirror image of a DG6,-brane rotated by O"2 from the QR;
invariant axis is a D6,-brane which is rotated by ©—"/2.

The open strings which are invariant under the insertion {0R3 in the Mobius
strip are those which have their endpoints on mirror D6-branes and are located
at (QR3 invariant intersection points. The number of (2R3 invariant intersections
on 7} is given by

I57% =2 (my +bny,) . (2.21)

The intersections on T3 for Zsy3 4 are all 2R3 invariant. For Zg, however, one
has to be more careful in counting the number of invariant intersections. For
further details see figure 2.5 and the comments belonging to figure 2.2.

The contributions of the Mobius strip to the RR exchange can be calculated
either from the open string R states in the 1-loop channel — with the oscillator
contributions for D6-branes at non-trivial angle wp on T} given by (B.17) and the
lattice sums for the 2R3 invariant positions listed in table B.1 — and perform-
ing a modular transformation or equivalently directly in the tree channel from
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Figure 2.7: A D6;-brane with (ny,m;) = (3,1) and its mirror image D6,/ on
a rectangular torus. Solid circles denote intersection points which are invariant
under 2R3, the empty circles form pairs under QR3.

the overlap of the corresponding boundary and crosscap states as explained in
appendix C.3. For a string with both endpoints on a stack of D6-branes aligned
with the X4-axis on T}, the RR part of the tree channel amplitude is given by

[”T

0

M o)
+4 Z sin ( ) " "
L

—~1/24n/M 1/2—n/M

LMLM

\ /

(2.22)
where the argument of the ¥ and n functions is 2/ — 5. Similarly, we obtain the
relevant contribution from a string starting on a D6,-brane at angle mp with
respect to the X*-axis on 7] and ending on its mirror image D6,

Y QR M M M M T
Ma__Z_QNI ) 63/ dl{ﬁ L' M —|—4Zs1n (M)M‘(I)}’

(2.23)
where 3% is the number of QRs-invariant intersections defined in (2.21). MY
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and MY are defined in (B.23) and (B.24), respectively.

In writing down the amplitudes, we have already used the fact that
tr (yg’gjygm)) = N,. This means that we can choose 74z, = T in agreement

with the supersymmetric models discussed in [20, 19, 49]. Furthermore, the
‘twisted tadpole cancellation condition’, i.e. no tadpoles from Z, insertions in
the loop channel, has implicitly been used.

Finally, the tree channel ‘complete projector condition’ constrains the rep-

resentation of the orientifold group to fulfill tr <,Yg—TM e M) =—N, for M
Rs%5 "Rsy
even.

2.1.4 Tadpole cancellation

The tadpole cancellation conditions are obtained by summing over all possible
open string configurations in the annulus and Mobius strip amplitude and taking
the limit [ — oo. The tadpole arising from the Klein bottle amplitude is canceled
provided that

16 (aaa),
Ly : ZNana: 8 (aab),
‘ 4 (abb),

Zs: > Nog= 4 (aAA aAB, aBB), (2.24)

a

Ly : ZNana: 8 (aAB),

Zg: Y Nana= 4 (aAB),

a

holds. For the b type 7} in the parameterization with R and « according to
figure B.1, one has to replace n, by n, + m, so as to obtain the projection onto
the (2R3 invariant axis.

If we want to include only D6-branes in the models, we are restricted to the
cases n, > 0 and m, > 0. n, < 0 would introduce anti-D6-branes, m, < 0 labels
mirror images and n, = 0 corresponds to D7-branes in the T-dual type I picture.
The requirement of including only D6-branes severely restricts the gauge groups.
In section 2.3 we give some explicit examples.



40 2. Spectrum

2.2 Spectrum and anomaly cancellation

2.2.1 Spectrum

The closed string spectrum is N' = 2 supersymmetric and non-chiral while the
open string sector contains N' = 2 supersymmetric non-chiral subsectors from
strings with both endpoints on the same stack of D6-branes or ©"/% rotated
ones as well as chiral non-supersymmetric subsectors from strings ending on
D6-branes at angles on 77.

Closed sector

The closed string sector consists of all states which are invariant under the ori-
entifold projection (A.10) and the orbifold action (1.26). The untwisted sector
contains the following massless states for all choices of Zy (s;, 5; = £1/2):

NSNS: () 1% + 47, 50", ,)|0)  graviton + dilaton,
(%/)’11/2@/331/2 + 1/)31/21/;’11/2)|0> 1 vector,
(?/)lil/z?/;;/z + 1/)31/21;’11/2)\0) 1 vector,
7/)21/27/;;_1/2’@ ; w51/2¢21/2\0> (i =1,2,3) 6 scalars,
(1551/21;51/2 + ¢31/21/331/2)|0> 1 scalar,
wzl/z@/}il/z + 1/)51/21/?1/2)“)) 1 scalar,
(7/)%1/27/;31/2 + ?/12/21;2/2)\0) 1 scalar,
RR: |0, 51, S2, S3) 1|50, 51, 52, §3)r ~ axion+ 3 scalars
Sp = S1,S2 = S3 + 1 vector (H = £1),
Sp = —81,89 = S3

S0, S1, S2, S3) 1|50, 51, S2, S3)r 2 scalars.

S0 = —S51,82 = —S53

Sp = 51,82 = —83 = —S59

In the RR sector, Q2R3 invariant states are of the form |sg, s1, 59, 3) 1|50, 51, S2, $3) R—

|50, =51, —82, —S3) 1|50, —S1, —S2, —S3)r. Only one term of the sum is listed
above.
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For Z,, additional untwisted states are invariant under the orbifold group,

NSNS: (1/131/21/351/2 + ¢31/277Z)§1/2)
(V2100210 T 921007 0)
(V1 o0 1 jp + 90 000 0)[0) (i = 2,3) 2 scalars,

|0) 1 scalar,
|

0) 1 scalar,

RR: |80,81782,83>L|§0,§1,§2,§3>R 2 scalars
So = —S1,82 = —S3 + 1 vector (H = £1) .
S = 81,82 = =83 = 52

The strategy of computing massless states in the twisted closed sectors is ex-
plained in section 1.5.1. For example, the orbifold Zs incorporates a © and a ©?
twisted sector. In the terminology of section 1.5.1, the tachyonic NSNS vacuum
in the © twisted sector is given by

|0>S\?SNS |0 07 37’%> |0 0 37 3>R

There exist four GSO invariant massless states in the NSNS sector,

79 (€] G)

Y2 6021 610) Vanss Y21 602160 S aws (2.26)
7 O @

V2 602 610) S ayss P2 602 1/6|o>§vm (2.27)

The QR 3 symmetry preserves the twist sector. The states in (2.26) are invariant
by themselves whereas the two states in (2.27) are mapped onto each other by
the orientifold symmetry. The ©? twisted NSNS states are constructed corre-
spondingly. In total, the © and ©? twisted NSNS sectors each contribute three
real scalars per Zs fixed point.

In the © twisted RR sector, the massless GSO invariant states are fourfold
degenerate due to the existence of zero modes along the non compact directions
and the first two torus 77,

The states |0> Lot ) and |0) (o2 pr0v1de real scalars which are identified under QR3

while the remaining states |0)RR %) and |0)RR Y form the two helicities of a massless
vector. QQR3 projects the vector out provided that the fixed point to which the
state is associated transforms trivially. The ©2 twisted RR states are obtained
along the same lines. Thus, for the BB type lattice, the © and ©? twisted RR
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sectors each contribute one real scalar per Zs fixed point. In each A type lattice,
the two non trivial Zj fixed points 2 and 3 of figure 2.2 are exchanged by the
QR3 symmetry giving rise to vectors. Again, the QR3 invariant superposition
of the NS-R and R-NS states provides the fermionic superpartners.

In Z, twisted sectors, the bosonic massless GSO invariant states are given by
(Si, §Z = :l:l/?)

NSNS: 0,0, s9, s3)1]0,0, 32, §3) &,
Sy = §3,52 = 53

RR: |50, 51, 0,0) 1|50, 51,0, 0) g
Sop = —S1,50 = §1

The exact spectrum again depends on the transformation properties of the fixed
points under R3. The construction of the Z, and Zg twisted sectors goes along
the same lines as the Zs twisted ones.

The complete massless closed spectra for all consistent four dimensional left-
right symmetric orbifolds with QR3 projection are listed below using N' = 1
terminology. They do, however, form the N' = 2 supergravity multiplet plus
N = 2 hyper- and vectormultiplets.

Closed string spectrum for Z,
Closed string spectrum for Z, untwisted || SUGRA + 8C + 3V
twist-sector AA AB BB O+ 063 16C
untwisted SUGRA + 11C + 4V ©? 19C + 1V
© 32C 28C+4V | 26C + 6V | | Closed string spectrum for Zg
Closed spectrum of Z; untwisted | SUGRA + 8C + 3V
untwisted SUGRA +8C + 3V 0+6° 4C
O +6? 28C 48V | 30C + 6V 36C 0%+ o 18C + 2V
CK 11C+ 1V

Open sector

The open string spectrum is subdivided into two parts. Strings with both end-
points on the same type of D6,-brane provide N/ = 2 non-chiral vector- and
hypermultiplets and support the gauge group. Strings ending on D6,- and
D6,-branes at angle wAg on T support chiral fermions and scalar pseudo-
superpartners whose masses depend on the intersection angle mAy.

The mass formula (1.40) applied to open strings stretching between D6-

branes at angle —7 < 7Ap < 7 on T} and OF rotated positions on T3 for
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the NS sector reads

o 1 k
—m’ = Nose + =(Ap +2— — 1), 2.2
ik 2( ® ) (2.28)

with the oscillator number N for a single creation operator ¢* given by

1/2+7Z u=0,0,
12FAp+7Z p=1,1,
0< N, € [2F B¢ a B (2.29)
1/2—k/M+Z p=2,3,
| 12+k/M+Z p=23.

The sector with k = 0 contains a tachyon 5, ,|0) with Em? = —Agp/2.

The lightest R sector states are massless. In table D.1, the chirality and Z,
eigenvalue of each groundstate are listed.

The representations under the gauge group are determined by the action of
the orientifold (1.45) and orbifold group (1.46) on the Chan-Paton indices. A
possible choice consistent with the tadpole cancellation conditions,

tr (10 oms) = N (2.30)

v, = 0 for M even,
the property of the orbifold generator (@M/2)? = 1,

(7?\/[/2)2 = ]Ia

and the constraint

tr (7?27;?%7?27%3%) =—N, (2.32)
is taken into account by
rngg = ][Na7 (233)
. 0 i1y, /2
T2 = _ : (2.34)
_Z]ING/Z 0

This agrees with the supersymmetric six dimensional model of [54] which is
obtained from the Zs model discussed here by taking the decompactification
limit of the two torus 7} in the T-dual picture with background fluxes. In the
picture with D6-branes at angles this limit is given by Ry, Riz — 00.

In addition to the action on the Chan-Paton indices, the transformation
properties of the mass eigenstates have to be taken into account. 2R3 maps
D6,-branes onto their images D6,,. Thus, generically a D6,-D6, string is mapped
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onto a D6y-D6, string, and constraints on the representations arise only for Q7R3
invariant configurations, namely for strings with both endpoints on D6,-branes
which are their own mirror image and for strings stretching between mirror
branes. The largest possible gauge group obtained from a stack of N, identical
D6,-branes is U(N,). If the brane position preserves some symmetry, only a
subgroup appears.

A general Z); rotation exchanges D6-brane positions on 15 3. For a Z3 sym-
metry, this gives the gauge group

Zs : [T vv.) T SO, (2.35)

mq 70 mq=0

where m, = 0 labels the position of QR3;0F invariant D6-branes on the rectan-
gular torus.
If the orbifold group is of even order, the Z, factor preserves the positions of

all D6-branes. The gauge group is reduced, U(N,) BN U(N,/2)%. One further
subtlety arises from the fact that in the special case of Z3 all D6-brane positions
on 153 are related by ©F rotations. This is not true in general. For Ly 46 two
separate orbits occur which are displaced by a ©/2 rotation. For example in fig-
ure 2.5, when taking the orbifold symmetry Zg, all solid lines denote D6-branes
which belong to the same orbit while all D6-branes along the dashed lines belong
to the other one. The computation of RR tadpole cancellation in section 2.1.4
has been performed in terms of identical D6-branes. The gauge group before im-
posing symmetry constraints is therefore U(N,)?. The Z, symmetry breaks the
group down to U(N,/2)*, and if the stack of D6,-branes with identical position
on T} is its own mirror image under QRj3, each factor U(N,/2)? corresponding
to one orbit on Ty 3 is further reduced to U(N,/2). The resulting gauge groups

are

Zoas: ] UWN/2' ] UNL/2)% (2.36)
mq 70 mq=0

All results in this section are obtained for a rectangular torus 7). They remain

true for D6,-branes on the tilted torus if one takes into account that the QRj3 in-

variant configuration is then given by the wrapping numbers (n,, my) = (2, —1)

in the basis of figure 1.1. By comparison with the tadpole cancellation condi-

tions (2.24), one can derive that the maximal rank of the gauge group is reduced

by considering the tilted torus or equivalently switching on a background field b

in the T-dual picture [14, 13, 113, 3, 75].

Further details of the open string spectra will be discussed in section 2.3.

2.2.2 Anomaly cancellation

The resulting spectra are free of non-Abelian gauge anomalies provided that the
tadpole cancellation conditions (2.24) are fulfilled. For details see section 2.3.
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The total gauge group generically contains several U(1) factors arising from the
decomposition U(N) — SU(N) x U(1) and from stacks with a single D6,-brane,
i.e. N, = 1. These U(1) factors contribute to mixed gauge and gravitational
anomalies. Only some specific linear combinations of U(1) factors are anomaly
free. The others should get a mass of the order of the string scale M by a
generalized Green-Schwarz mechanism involving closed string moduli [1, 81].

In the T-dual picture of D9,-branes with magnetic fluxes, the ten dimensional
RR field C5 and its dual Cg have the following worldvolume couplings to the
gauge fields [42, 85, 1, 71],

CeF2, CyF?,

D9, D9q

Upon dimensional reduction, one obtains four two forms (i # j # k # 4, 4,7,k =
1,2,3),

Bg — 02,

jokni
nln, By —/ Ce,
TjXTk(D9a)

and their four dimensional duals

1.2 30 __
nynan,C —/ Cs,
T1><T2><T3(D9a)

TLZCZ :/ OQ,
T;(D9)
2,3 —

with n} = n, depending on the specific stack of D9,-branes and n2?® = const.
universal factors for the class of models under consideration where non-trivial
fluxes are only implemented on 7). The prefactors n! arise from the pull-back
of the RR forms on the magnetized tori 7;.

Imposing an orbifold symmetry Z,; on T5 3 leaves B, By and their four di-
mensional duals C°, C*! invariant.

The effective worldvolume couplings in the models under consideration with
a rectangular 77 are of the form

0 2 0
na/ C"F;, ma/ By F,,
RL,3 RL3

Na C'F2, m/ By F,, (2.38)
R1.3

R1.3

where only the non-universal prefactors n, and m, arising from the pullback of a
RR form or a gauge field on the magnetized torus, respectively, have been listed.
The generalization to tilted tori is straightforward.
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The anomalous U(1) factors become massive due to the linear couplings to
RR fields in (2.38). In [71] it was pointed out that also anomaly free U(1)s
can have such couplings. Non-anomalous as well as anomalous U(1)s become
massive if they couple to RR fields linearly according to (2.38). In theories
with an arbitrary number of D6-branes, however, the number of massive U(1)
factors cannot exceed the number of RR forms involved in the Green-Schwarz
mechanism.

In order to obtain phenomenologically relevant models, one has to make sure
that the hypercharge does not get a mass in this way.

2.3 73 and Zs models

2.3.1 The Z3 case

In the Z3 orbifold, the gauge group generated by a stack of N, D6,-branes with
arbitrary wrapping numbers (n,,m,) is U(N,). For the QR invariant position
with (n4,m,) = (1,0) on the rectangular torus, the corresponding projection
condition breaks the gauge group down to SO(N,).

The lattice orientations A, B can be chosen independently on 753. The
tadpole cancellation condition (2.24) is not affected by this choice.

Strings with endpoints on different stacks of D6,- and D6,-branes transform
in the antifundamental of one gauge group and the fundamental of the other one,
(Fu, Fy). The orientifold symmetry QR3 maps a stack of D6,-branes onto their
images D6, while replacing the representations by their conjugates. Therefore,
a string with an endpoint on D6, and the other one on D6, transforms in the
bifundamental of the gauge groups, (F,, F}). The multiplicity of states is deter-
mined by the degeneracy of mass eigenstates, the intersection numbers I, on
Ty as defined in (2.16) and I, obtained from the wrapping numbers of mirror
branes (2.20) and finally the intersection number x on 753 which depends on
the choice of compactification lattices.

Strings with endpoints on mirror branes are subject to the 2R3 symmetry
provided that the intersection point is also a R3 fixed point. The mass eigenstates
are odd under 2R3, and inserting 7¢4,, = Ty, in (1.45) gives states in the
antisymmetric representation (A,). If the intersection points are exchanged by
QR 3, no projection condition emerges. (¥Rj3 then identifies strings at different
intersection points which accommodate both the antisymmetric and symmetric
representation (A,) + (S,).

The chiralities of fermionic states are given in table D.1. Only in the sectors
with non-trivial angles on all three tori, the chiral symmetry is broken. In the
case of Zs, two such sectors exist. This leads to an even number of copies of each
representation.

The generic spectrum for the Zs orbifold is listed in table 2.1. The QRj3
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symmetry leads to an identification of the D6,-D6, and D6y-D6, strings. The
D6,-D6, strings provide the anti-particles for the former ones. It can be ex-
plicitly checked that the spectrum is free of non-Abelian gauge anomalies if the
tadpole cancellation condition (2.24) is fulfilled. In order to do so, the follow-
ing relations between the cubic Casimir operators of the fundamental, adjoint
(Adj), symmetric and antisymmetric representation of SU(N) are useful,

Cs5(Adj) = 2NCs(F),
C3(S) = (N +4)Cs(F), (2.39)
C3(A) = (N —4)C(F).

Chiral fermionic spectrum for Z;
rep. mult.

aa’ (AL dmex

ad' | (Ag)r + (So)r | 2ma(ng —1)x

ab (Fo,Fy)1 2(ngmy — nyme)x

ab (Fo,Fo)L 2(ngmp + npMmg) X

Table 2.1: Generic chiral spectrum for (7% x T*/Z3)/QR3. x = 1,3,9 is the
intersection number on 753 for the lattices AA, AB, BB, respectively.

A 73 example

As we restrict our analysis to D6,-branes, the largest feasible gauge group which
respects the tadpole condition (2.24) and yields chiral fermions is U(3) x U(1).
We can split this group into SU(3) x U(1)%. Choosing the rectangular a torus
and the wrapping numbers (n;,m;) = (1,1), (n2,mg) = (1,2), out of the two
U(1)s the linear combination

3
Qnonan. - Ql - 5@2

is non anomalous. The D6-brane positions are depicted in figure 2.8. The re-
maining U(1) factor should become massive by the generalized Green-Schwarz
mechanism as explained in section 2.2.2. The resulting spectrum is displayed in
table 2.2 for the lattice aAA. A different lattice on T3 3 changes the spectrum
by an overall multiplicity x (see table 2.1).
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T, T, T3

Figure 2.8: D6-brane configuration of the (1% x T*/Z3)/QYR3 example. On T3
the D6-branes are evenly distributed among the three possible positions.

Chiral spectrum, Ex. 1

SU(3) x U(1)nonan. | mult.
11’ (3)s 4
12 (3) 52 2
12/ (3) 1/ 6

Table 2.2: Chiral fermionic spectrum for (72 x T*/Z3)/QYR3 with (ny,my) =
(1,1), (ng, mg) = (1,2) and lattice aA A. All states are left-handed.

2.3.2 The Z, case

Z, models are the most simple examples for T*/Z,; orbifolds where M is even.
In this case, the tadpole cancellation condition depends on the choice of the
orbifold lattice,

> xnaN, =16, (2.41)

where x = 1,2, 4 is the intersection number on 715 3 for the lattice choice aa, ab,
bb, respectively. The breaking pattern of the gauge group is
U(N,)? 22 U(N,/2)% x U(N,/2)? [223 U(N,/2)? for a stack of D6-branes which
are their own mirror branes| as explained in section 2.2.1 where the square arises
from the existence of two orbits on 753. A Zj, rotation maps each sector onto
itself while assigning a fixed parity £1 to each massless state. As listed in ta-
ble D.1, left-handed states are Z,-even and right-handed ones are Z,-odd in all
sectors with a non-vanishing angle on 77. Therefore, not only strings stretching
between D6-branes at non-vanishing angles on all three tori contribute to the
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chiral spectrum but also those which merely intersect on 7). This accounts for
the fact that the intersection number y explicitly enters the tadpole cancellation
condition (2.41) in contrast to the Zz models.

An alternative choice to (2.33) and (2.34) for the v matrices consistent with
the tadpole conditions (2.30) and (2.32) is given by

. 0 Iy, /2
Yors — )
Iy, /2 0
. Iy, /2 0
To =
0 —1y, /2

In this basis, the Chan-Paton labels of the gauge bosons are block-diagonal which
is convenient for determining the representations of chiral fermions.

The chiral part of the open string spectrum obtained by imposing YR 3 and
Z.5 invariance is listed in table 2.3.

If the model contains an 2R3 invariant stack of D6.-branes, the rank of the
gauge group supported by this collection is reduced as explained above. The
resulting chiral spectrum has to be modified accordingly. The relevant part is
displayed in table 2.4.

The analysis of the Z, and Zg cases is completely analogous to the Z, orb-
ifold. There exist two independent D6-brane orbits on 753 and a condition on
the Chan-Paton matrices, trygu/2 = 0, yielding the gauge group U(N,/2)* for
given (ng, my). Not only strings ending on D6-branes at non-trivial angles on all
three tori provide chiral fermions, but also strings with endpoints on D6-branes
of identical positions on 75 3 contribute to the chiral spectrum since Zy-even and
-odd states have opposite chirality. One additional subtlety enters the compu-
tation of the open spectrum in the case of Zg as the intersection points of ©
and ©%/2 rotated D6-branes on Ty 5 are permuted by the orbifold group. How-
ever, the tadpole conditions (2.24) already indicate that we cannot include the
standard model gauge group SU(3) x SU(2) x U(1) in Z4 or Zg without adding
anti-D6-branes. Therefore, we will not discuss these models in detail but close
this chapter by giving a Zy example which encloses SU(3) x SU(2) x U(1).

Models with anti-D-branes and spatial separation of parallel D-branes corre-
sponding to a Wilson line background in the T-dual picture will be discussed in
the context of D8-brane models in chapter 3.

A 7, example

If we choose not to include anti-D6-branes in our analysis, the standard model
gauge group can only be enclosed for the choice x =1 (cf. eq. (2.41)). Taking
the aaa lattice and the minimal possible choice of three stacks of D6-branes,
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namely

N1 :6, (nl,ml) == (]_ 1
N2 = 4, (TLQ,mQ) = (1,0), (242)
(4,1

we obtain the gauge group SU(3)* x SU(2)? x U(1)!°. The D6-brane positions
are depicted in figure 2.9. The second stack of D6y-branes is (2R3 invariant. In

T, Ty T3
SU(3)%
x° L/ ®) il z9
S
5 T 5 3
su@? = SN

Figure 2.9: D6-brane configuration of the Zj example. On T3 the D6-
branes with horizontal and vertical positions each accommodate the gauge group
SU(3)? x SU(2) x U(1)® (before the Green-Schwarz mechanism).

this case, the tadpole condition (2.41) has to be modified,

Ny
> + ;nal\f@ = 16, (2.43)

in order to avoid double counting for the strings with endpoints on the DG6o-
branes.

This is in agreement with the fact that models containing only stacks of
D6-branes with wrapping number (n,m) = (1,0) on the rectangular torus 7}
are in the decompactification limit of the T-dual two torus identical to the six
dimensional supersymmetric models considered in [54] for Z, and [20] for Zj;
leading to U(16)? and SO(8), respectively.

Due to the QR3 symmetry, the sector 1'2 provides the anti-particles for the
sector 12 just as the 23 and 23’ sectors belong together, whereas normally the
sector D6,-D6, contains the anti-particles for the sector D6,-D6,. Generically,
since I, + Iy is even, an even number of generations transforming under the
same gauge factors originates from the intersections of D6, and DG6,-branes,
half of them in the bifundamental and the other half in the antifundamental
of one and the fundamental of the other gauge factor. In the model defined
by (2.42), the 13 and 13’ sectors are of this kind whereas in the sector 12,
there exists a single particle in the (31,25) of SU(3); x SU(2),. However, as
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the complete spectrum is symmetrically distributed among the gauge factors
which are supported by a specific D6-brane configuration, the total number of
(3i,2;) representations of all possible SU(3); x SU(2); (i = 1,...4;5 = 1,2)
combinations is even. The complete chiral spectrum is listed in table D.2. The
model contains (at least) six non anomalous U(1) factors. A possible set of linear
combinations in terms of the original U(1) charges @; (¢ =1...10) is given by

Q1 = Qi1+ Q> —3Q7 —3Qs,

Q2 = Q3+ Qs—3Qy — 3Qu,

Qs = Q1 —Q»—3Qs, (2.44)
Qi = Q3—Qs—3Qs,

Qs = —4Q5+ Q7 — Qs,

Qs = —4Qs + Qo — Quo.

The charges are also listed in table D.2. The remaining anomalous U(1)s are
expected to become massive by the generalized Green-Schwarz mechanism.
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Chiral fermionic spectrum for Z,
rep. of U(&#)* x U(%)4 mult.
ad'U (Fo,F,, 1, 1)+ (1,1,F,, F,)L dmgn,
(A, 1,1,1) 4m,
(Ag+8,,1,1,1) 2mq(ng — 1)
aa'T (Fo, 1,1,F)p + (1,F,, Fo, 1)1 2Mang X
abU | (Fo,1,1,1;1,F, 1, 1), + (1,Fo, 1, 1;Fy, 1,1, 1), | 2(nemp — ngmyg)
+(1,1,F,, 1;1,1, 1, F)) + (1, 1,1, Fy; 1,1, Fy, 1),
(Fo, 1,1, 1;F, 1,1, 1)+ (1, Fe, 1, 1; 1, Fy, 1, D) | 2(ngmp — npma)
+(1,1,Fy, 11,1, Fy, D) + (1, 1,1, Fy; 1,1, 1, Fy)
abU | (Fo,1,1,1;F, 1,1, 1)+ (1, Fo, 1, 1; 1, Fy, 1, 1) | 2(ngmy + nymy,)
+(1,1,Fq, 1;1,1,Fp, 1), + (1,1, 1,F; 1,1, 1, Fy)
(Fo, 1,1, 1;1,Fy, 1, 1) + (1, Fe, 1, 1; Fy, 1,1, 1) | 2(ngmy + npmy)
+(1,1,F,, 1;1,1, 1, Fy) + (1, 1,1, Fg; 1,1, Fy, 1),
abT || (Fo,1,1,1; 1,1, Fy, 1) + (1, Fo, 1, 1,1, 1,1, Fy) | (namy — nema) X
+(1,1,Fq, ; Fy, 1,1,1,), + (1,1, 1, F; 1, Fy, 1,1)
abT || (Fo,1,1,1;1,1,1,F)p + (1,Fo, 1, 1; 1,1, Fp, 1) | (mame + npma)x
+(1,1,Fy, 1;1,Fy, 1,1, ) + (1,1, 1, Fo; Fy, 1,1, 1),

Table 2.3: Generic chiral spectrum for intersecting D6-branes and Zs, symme-
try. ‘U’ labels identical configurations on T3, “I"” denotes D6-branes which are
perpendicular on 75 3. Permutations of entries are abbreviated by underlining.
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Chiral fermionic spectrum with QR; invariant D6.-branes
rep. of U(%)? x U(&e)* mult.
cbU || (Fe, 1;Fy,1,1,1), + (1, F; 1,1, Fy, 1), 2y,
(Fe, 1;1,Fy, 1,1) + (1,F; 1,1, 1, Fy) 1, 2my,
(Fe,1;1,Fy, 1, 1), + (1,Fc; 1,1,1,Fy). 2my,
(Fe, 5Fy, 1,1, 1)+ (1,F.: 1,1, F,, 1), 2mp
T | (Fe, 1;1,1,Fy, 1) + (1, F; Fy, 1,1, 1, ) myx
(Fe, 1;1,1,1,Fy)p + (1,Fe; 1, Fy, 1, 1)), myx

Table 2.4: Modification of the chiral spectrum from intersecting D6-branes for
an QR invariant stack of D6.-branes with wrapping numbers (n.,m.) = (1,0)
on the rectangular torus. The orbifold symmetry is Z.
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Chapter 3

Orientifold models with
intersecting D8-branes

In this chapter, four dimensional orientifold models of type IIA theory on
T? x T*/Z3 with D8-branes at angles [65] are presented. The orientifold pro-
jection QR4 reflects one coordinate of the six dimensional compact space,

Ri: Zt —>71,

where
ZV =X 4+iX°

is the complex notation introduced in (1.23). In order to achieve partial su-
persymmetry breaking in the closed string sector, a Zs orbifold symmetry is
included

©: 77 = e™igl

with v = (0,1/3,—1/3). The sets of points which are left invariant under QR
constitute orientifold planes, which are extended along all non-compact direc-
tions and the four dimensional orbifold, but only along the X* axis on the first
two torus 77. Thus, they extend along eight spatial dimensions. In order to
cancel the RR charges of these O8-planes, an appropriate configuration of D8-
branes has to be added. In contrast to the D6-brane models of chapter 2, only
in case of a Zs symmetry the tadpole cancellation conditions are fulfilled by
including merely D8-branes. For the other four dimensional orbifolds, the Z,
subgroup produces additional tadpoles which can only be canceled by adding
D4-branes besides the D8-branes as can be seen by comparison with the super-
symmetric limits of these models [53]. Since they do not admit for large volume
compactifications, we restrict to the Zs case.

Performing a T-duality along the X° direction, D8-branes at angles on T}
correspond to D9-branes with non-trivial magnetic background flux F5 which is
quantized in terms of the radii of the two-torus as discussed in section 1.1.2. A

59
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tilted torus 7} in the angle picture again corresponds to a non-trivial constant
background NSNS two-form flux Bys in the T-dual picture. As in chapter 2,
due to the reflection symmetry Rq, each D§,-brane is accompanied by its mirror
image D8, with wrapping numbers given by (2.20), and two stacks of branes
D8, and D8, generically have several intersections within the fundamental cell
of the torus. The corresponding intersection numbers are as defined in (2.16).

In the class of models under consideration, the orbifold generator © pre-
serves the position of each D8,-brane while assigning different phases o’ (where
a = e?™/3 and j = 0,1,2) to the mass eigenstates. Therefore, a stack of N,
D8,-branes with identical positions is decomposed according to the different
eigenvalues of the Zs rotation, N, = N? + N! + N2 giving rise to the gauge
group

U(N) xU(Ng) x U (N7).

Particles which are supported at the intersection locus of two stacks of branes
D8, and D8, with Zj3 eigenvalue 1 transform as (FZ,FZ) whereas those with
eigenvalue o®! transform as (Fi,ﬁil). This is in contrast to the D6-brane
models where © exchanges the brane positions.

The gauge coupling constants of the U(N!) factors with support on a D8,-
brane are determined by the length L, of the 1-cycle on 7} which the D8,-branes
wrap [2]. The length of the cycle in terms of wrapping numbers and radii of the
two-torus 1) is given by the generalization of the one in section 2.1.2 to tilted
tori

Lo = /(1aR1)? + ((Mmq 4 bng) R2)2, (3.5)

with b = 0,1/2 corresponding to the rectangular and tilted torus, respectively.

The models with D8-branes do not only differ from those with D6-branes in
the action of the orbifold group but also in view of solving the mass hierarchy
problem. While in D6-brane models, the wrapped 3-cycles on T} x 153 are
chosen such that there does not exist any compact direction transverse to all
D6-branes, the D8-brane models admit a T-dual description in terms of D4-
branes for the orbifold group Zs. The latter have the transverse directions along
T3 in common. This admits for a large orbifold volume which might serve to
lower the string scale down to the TeV region and thus solve the mass hierarchy
problem [7, 6].

Some phenomenological aspects of the orientifold theories with intersecting
D8-branes are discussed at the end of this chapter in section 3.5.
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3.1 RR tadpoles and chiral spectra

3.1.1 RR tadpole cancellation

In this section, we derive the consistency conditions of the (1% x T*/Z3) /YR,
models which are determined by the requirement that all — untwisted and
twisted — RR charges of the O8-planes are canceled by those of the D8, -branes.
The computation of untwisted tadpoles in the tree channel is similar to the one
presented in chapter 2. The twisted tadpoles only occur in such classes of mod-
els where the reflection Ry commutes with the orbifold generator. As for the
D6-brane models, the tadpole cancellation conditions can be entirely expressed
in terms of the wrapping numbers n, corresponding to the projection of the
1-cycles on Tj onto the X*-axis and the number of identical D8,-branes N!.

The RR tadpole cancellation conditions are again computed along the lines
of section 1.4. In contrast to the models with D6-branes at angles [48] consid-
ered in chapter 2 and the supersymmetric [20, 19, 49] and non-supersymmetric
orientifolds in [27], the following relation holds

(QR.R)* = h2.

Therefore, twisted as well as untwisted closed strings propagate in the tree chan-
nel leading to untwisted and twisted tadpole cancellation conditions which have
to be fulfilled simultaneously.

At this point, we turn to the explicit calculation of the three 1-loop-amplitudes.
The direct calculation in the tree channel can be performed using the boundary
state approach. For this class of models, the relevant formulas are displayed in
appendix F. The normalizations of untwisted and twisted crosscap and bound-
ary states are fixed by worldsheet duality. In this class of models, there is no
further constraint on the lattices from the tree channel picture. The constraints
on N! arise from the action of the orbifold group on the Chan-Paton matrices of
the open strings and can only be derived by starting from the 1-loop amplitudes.

Klein bottle

The closed string 1-loop contributions to the RR exchange in the tree channel
are again obtained by computing the NSNS parts with (—1)% insertion where the
GSO projection (1.35) in this class of models is determined by (1.38) and (1.39).
The lattice contributions £, on T} where the reflection R acts are as discussed
in chapter 2 and [24, 48]. In addition, in the untwisted sector Kaluza-Klein
momenta arise along all directions of the orbifold whereas windings are projected
out by worldsheet parity. The explicit formulas for the lattice contributions of
the orbifold to the amplitudes are listed in appendix E.1. QR exchanges ©
and ©7! twisted sectors. Hence, in the 1-loop channel, only untwisted sectors
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contribute. The calculation of the contribution with T insertion goes completely
along the lines discussed in chapter 2 and [24, 48] yielding

dt
KY = 3 / — Ly Ly e (3.7)
0
where ¢ is the constant factor mentioned in section 2.1.1. LFLL is as given
n (E.4). Performing the modular transformation ¢ = 1/(4l) gives the contribu-
tion from the untwisted RR fields,
c 256 Iy

kv =¢ / WS LR LS SR, (3.8)

where R, 5 are the two radii of the first two-torus 77 and w is the dimensionless
volume of the orbifold 1% /Z.

In addition, ©%? insertions create tadpoles which are independent of the
internal volume of the orbifold,

KT = —/0 —E’CZIC (3.9)

The explicit expression of I*) in terms of generalized Jacobi-Theta functions is
given in formula (E.7). The lattice contributions £} are the same as in formula
(3.7), whereas the Kaluza-Klein momenta on 753 are not invariant under ©.
Transforming to the tree channel, the twisted Klein bottle is given by

KT = —16§/ dz—ﬁ’CZ/c (3.10)
0

where the contribution of the twisted oscillators K*) is listed in (E.10).

Annulus

The annulus amplitude is obtained from open strings stretching between branes
D8, and DS, at angle mAg,, on T7. The contributions from 77 have been dis-
cussed in detail in chapter 2 and [24, 48]. The computation of the trace with
trivial insertion is again completely analogous to the one performed there yield-
ing the untwisted RR tadpole of the annulus in the tree channel

. e
A = _NaNbIabg / dlw A LIL. (3.11)
0
N, labels the number of D8,-branes of identical position, I, is the intersection

number on T} defined in (2.16), £L{L4 is given in (E.5) and the oscillator contri-
bution is given by (2.18). The explicit dependence of the annulus tadpole on the
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orbifold volume w is due to the fact that D8,-branes have Neumann directions
along all four orbifold directions X% leading to Kaluza-Klein momenta P%?
in the loop channel.

In addition to the trivial insertion, each ©F insertion preserves the positions
of D8-branes. Kaluza-Klein momenta are projected out, and the Zs3 rotation acts
non-trivially on the Chan-Paton labels of open strings with endpoints on branes
D8,, D8, via the matrices 7&,, 7%, leading to

L € / Z tryftry, AW (3.12)

with A®) explicitly listed in (E.8). By modular transformation ¢ = 1/(21), one
arrives at the twisted RR tadpole contributions of the annulus,

2
~ c [ 1 ar . —1b 7
Al = —Iab§/ dl§ ,;1 trygtry, AR (3.13)

0

with A®) given by (E.11). Thus, the asymptotic behavior of the annulus ampli-
tudes is given by

U =00 4 & R RZ
— NN, — 14
A b3 3 /0 di (na sz + (ma + bna)(mb + bnb)R1> (3 )
2
— —= dl trypt ’ alb— o + 01y bny)— | .
A5 5 [ g (man o b+
(3.15)

The amplitudes /Nl,m from D8,-D8, strings develop the same asymptotics.

Mobius strip

The computation of the untwisted RR exchange in the tree channel arising from
the Mobius strip amplitude is again very similar to the case discussed in chap-
ter 2 and [24, 48|. Only strings stretching between mirror branes D8, and D8,
contribute. Their multiplicity is determined by the number of (2R; invariant
intersections I%" which is identical to (2.21). The Neumann directions on T 3
lead to lattice contributions from Kaluza-Klein momenta displayed in (E.6).
Therefore, also the untwisted RR exchange from the Mobius strip is linearly
proportional to the orbifold volume w.

The computation of the twisted RR tadpoles in the Mobius strip is also com-
pletely analogous to the annulus case. The Zj3 rotation acts non-trivially on the
Chan-Paton matrix of the D8,-D8, strings, lattice contributions are projected
out and the oscillator contributions in the tree channel are listed in (E.12). The
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corresponding loop channel oscillator contributions are given in (E.9). In sum-
mary, we obtain the asymptotic behavior

- 256 R Y
/\/lg [=og —g/o dl?R; Wngtr (’lezl ’yQRl) (3.16)
ME Iog %/ dl16na Z tr (’ymlsz’yQRlQ (3.17)

The traces in (3.17) can be transformed due to the requirement that the 7
matrices form a projective representation of the orientifold group as explained
in section 1.5.2, i.e.

a _ -1 _—T.,a _a
Ve+1 = SRy ToR K
with some phases ¢ ;.

RR tadpole cancellation

The RR tadpole cancellation conditions can be extracted from the asymptotic
behavior of the Klein bottle (3.8) and (3.10), the annulus (3.14) and (3.15) and
the M&bius strip (3.16) and (3.17) after summing over all possible open string
configurations.

The untwisted tadpole cancellation conditions are

[Znazva— 16] = 0, (3.19)

tr (fymlzf'ymzl) = N,. (3.20)

The twisted tadpole cancellation conditions split into the projection onto the X*
axis proportional to R;/Ry and onto the X® direction proportional to Ry/Ry,

2
% : Z ‘ Z(ma + bnyg) (tr'y,‘j — tr’y,‘j') ‘2 =0, (3.21)

k=1 a

R, a L
R—Q: ( 82+‘2a:na(tr’yk+trfyk>‘

k=1

N

- 2-8- Z Ng (czktr%“k + 52ktr7§,;)> =0. (3.22)

Condition (3.21) is trivially fulfilled if for mirror branes D8, and D8, the equa-
tion try? = try¢ holds. Furthermore, equation (3.22) gives a total square for
each twist sector k£ provided that cor, = ¢or = 1 and try,, € R. These conditions
fix the form of ~§,

74 = diag (][No, e2mils efgﬁi/?’) : (3.23)

Nl N2
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with N, = N} + N! + N? and N, = NZ.
Inserting (3.23) in (3.19) and (3.22) determines the RR tadpole cancellation
conditions entirely in terms of the wrapping numbers n, corresponding to the

projection of the 1-cycles onto the X* axis and the number of identical branes
N,

> nNp = 8, (3.24)
> nNy = 4 (3.25)

So far, we have only considered D8,-branes which are mapped to their mirror
image D8, under the reflection R,. A D8.-brane which is its own mirror image
contributes only half the amount to the tadpole cancellation conditions, i.e.

neNY

<+ D ngN! =38, (3.26)
ac
Ne
”TC +3 nN =4 (3.27)
ac

The wrapping numbers of the QR invariant D8 -brane are (n.,m.) = (1,0) for
vanishing background antisymmetric NSNS tensor field b and (n., m.) = (2, —1)
for b = 1/2 as in chapter 2. In the limit Ry, RLZ — oo where the T-dual two torus
T decompactifies, the supersymmetric six dimensional set-up is recovered which
for vanishing antisymmetric NSNS tensor, i.e. a single stack of D8 .-branes with
(ne,m.) = (1,0) and b = 0, is identical to the Zj orientifold in [53].

3.1.2 Chiral open spectrum

The computation of the closed string spectrum is analogous to the one pre-
sented in section 2.2.1 when taking into account the altered orientifold action
given by (A.10) on the oscillators. QR; invariant RR sector states are of the
form |80, S1, S92, 83>L|§0, 51, 52, §3>R — |§0, —51, 52, §3>L|80, —S81, S92, S3>R. The main
difference in the computation of the twisted sector contributions as compared to
the D6-brane models in section 2.2.1 arises from the fact that YR, exchanges
the © and ©? twisted sectors.

The closed string spectrum contains the N’ = 2 supergravity multiplet as
well as eleven hypermultiplets and ten tensor multiplets. The complete closed
string sector is A/ = 2 supersymmetric and non-chiral.

In order to determine the open string spectrum, we fix the Chan-Paton ma-
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trices
Tyo O 0
Yor, =r, = | 0 0 Iy |
0 ][Né 0

o _ d _ 1 omi/3  —2mi/3
76 = Vo = diag (]INg,eNé »En

in analogy to the supersymmetric case discussed in [53]. Open strings stretching
between D8,-branes of identical position then support the gauge groups

U(N?) x (U(ND)?.

In the case of an (2R invariant stack of D8 -branes, the gauge group is reduced
to
SO(N?) x U(N}).

The D8,-D8, and D8.-D8, sectors of open strings are again N’ = 2 supersym-
metric and non-chiral.

Finally, the sectors of strings stretching between D8, and D8y-branes at an-
gles TApg, are non-supersymmetric and chiral. This part of the spectrum gener-
ically contains tachyons since the mass formula (1.40) applied to open strings
for this class of models gives the following masses of states in the NS sector,

% JANZ |
Zmzb:Nosc—i' ;0 ’ _57
where N, can be read off from (2.29) by setting k/M = 0. Thus, the state
77Z)1A¢—1/2|0>N5N5 is tachyonic. A complete list of lightest NS states is given in
table G.1. In contrast to the models with D6-branes discussed in chapter 2,
mass eigenstates in the models with D8-branes have to be classified according to
their Zj eigenvalues. Tachyonic states only occur in the sectors with eigenvalue
1. In principle, this introduces the possibility of choosing the brane set-up,
i.e. the numbers N!, such that no chiral sector with trivial eigenvalue occurs.
However, the tadpole cancellation conditions (3.26), (3.27) constrain the models
severely. Furthermore, in contrast to the type IIB models examined in [1, 2, 9]
the orientifold projection 2R, enforces the existence of mirror branes. D8,-D8,
strings automatically include a sector containing tachyons which can be only
projected out completely by the QR symmetry in case of a single U(1), gauge
factor and the wrapping number n, = 1.

The R sector of D8-branes at angles provides chiral fermions. The ground-
state is fourfold degenerated as displayed in the table D.1. The degeneracy is
lifted by the Z3 symmetry. In summary, the chiral spectrum is listed in table 3.1.
For an QR invariant D8.-brane, the spectrum is slightly changed as displayed
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in table 3.2. As for D6-brane models, the sector D8,-D8, generically provides
the anti-particles of the D8,-D8§, sector, and the sector D8,-D8; is paired with
D8,-D8,. For ¢ = ¢, only the sectors D8.-D8, and D8.-D8, are present and
form a pair. RR tadpole cancellation ensures that the chiral spectrum is free of
purely non-Abelian gauge anomalies as can be explicitly checked using (2.39).
Mixed U(1) anomalies will have to be cured by a generalized Green-Schwarz
mechanism involving twisted RR fields from the closed string sector [43, 1, 81].

The chiral D8,-D8,/, D8,-D8, and D8,-D8; sectors with Zs eigenvalue 1 are
accompanied by a tachyonic scalar pseudo-superpartner. As already mentioned
in the previous paragraph, the D8,-D8, sector is only absent provided that
ne =1 and N2 = 1, N} = N? = 0, i.e. the D8,-brane accommodates a single
U(1), gauge factor.

Massless chiral fermionic spectrum on 7? x T*/Zs; with D8-branes
sector Zs multiplicity rep.
aa’ 1 2(2m, + (2b)n,) (A2 1,1) + (1,F}, F?)
(ng — 1)(2m, + (2b)ny) (A +S2 1,1) + 2(1,F}, F2)
a (2mq + (20)n4) (E., 17F 2+ (LA, 1)
na=l (2, + (2b)n,) 2(F°,1,F) + (1,A,. +S,,1)
o (2mq + (2b)14) (B R 1)+(1,1 KQ)
nazl(2m, + (2b)n,) 2F),FL 1)+ (1,1,A2+5)
ab 1 Z(namb — nyng) (F, FY) + (F,,F}) + (F2,F?)
« (namy — npmy) (FO,F,) + (F., F}) + (F2 F})
o’ (nammy — nyma) (FS, Fy) + (FL, Fy) + (F2, F,)
a1 | 2(ngmy + nymg + (2b)ngng) | (FY,FY) + (FLF;) + (F2,F)
a || (Ramy + nyma + (2b)nany) | (Fo,Fo) + (Fo, F,) + (F2,F))
o || (ngmy + npme + (2b)nany) | (Fo,F,) + (F.,F)) + (F2 F)

Table 3.1: Chiral spectrum from intersecting D8-branes. The sectors are classi-
fied by the Zj eigenvalue of the corresponding R groundstate.

3.2 Cancellation of mixed anomalies

The generic chiral open spectrum displayed in table 3.1 and 3.2 is free of purely
non-Abelian gauge anomalies, but yields mixed gravitational anomalies of the
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Chiral fermions for an (2R, invariant stack of D8_-branes
sector Zg || multiplicity rep.
b1 | 2n.(my + bny) (F.,FY) + (F.,Fl) + (F.,F?)
a | ne(my+bny) | (FLF,) + (FLE) + (B, FY)
o’ nc(mb + bnb) (F[c)7 Fg) + (Fia Fg) + (Ftlza F;)

Table 3.2: Modification of the chiral spectrum from intersecting D8-branes in-
volving an (2R invariant stack of D8 -branes.

form

U(1)ia = Guv : 6(28:0 — 61 — 0i2) (Mg + bng) NY (3.31)

as well as mixed gauge anomalies which for (i,a) # (j,b) are proportional to
Ul)ia — SU(N]):
{ (M + bna) iy (2010 — 0iy — 652) (2650 — 611 — 6;)  (3.32)
—3nq (my + brp) (05,0 — 0i2) (05,1 — 5j,2)}NéO2(Fg),

where Cy(F) = & "1 is the quadratic Casimir of the fundamental representation

2N
of SU(N).

Consistency of the models requires anomalous gauge fields to acquire a mass
and thus decouple from the effective low energy field theory. This is realized
by the Green-Schwarz mechanism which in models with K3 orbifold compactifi-
cations involves twisted sector fields [43]. The potential candidates are the RR

scalars 6C,g0) and two-forms 6C,g2) in six dimensions which belong to the twisted
hyper- and tensormultiplets, respectively. They arise from the Kaluza-Klein re-
duction of the ten-dimensional two form °C® and self-dual four form '°C® on
a vanishing supersymmetric two-cycle ¥; on the orbifold,

60152) _ / 100(4)7 60150) _ / 10(2) (3,33)
Xk Xk
The scalar has a dual four form in six dimensions,

60154):/ 10+(6)
P

Moding out the worldsheet parity amounts to mapping different cycles X5 onto
each other such that for the T*/Zs limit, k runs over nine distinct values.
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SU(N)
U(l)ia
—.. ...........................
(mg + bna)C’,g2> < an,(;))
SU(N;)

Figure 3.1: Green-Schwarz counter terms.

Reducing further down to four dimensions, the pullback of a closed RR sector
k-form on a multiply wrapped brane gives a (k — 2)-form times the wrapping
number along the QR invariant direction [1] of the T-dual picture,

ny By = / ‘oY, mBY = / S,
13(D%) 13(D%)

while integrating out the two form (F,)4s = (F, + B)4s = % on the torus

yields as prefactor m, + bn,. The resulting four dimensional couplings are of the
form

(mg + bng) / tr (YpAY) C’,(f) N Fos, nb/ tr ('y,l;/\?)\?) B,E;O)Fbﬂ- A F} (3.36)
RL3 R

1,3
fa / tr (veA) BE A Fy, (mp + by / tr (ALY OV Fy i A Fyy,
RL3 RL,3

where A{ is the Chan-Paton factor belonging to the gauge-field component Fj ;.

The expressions on the left hand side in (3.36) render the anomalous gauge
fields massive. Like for the D6-brane models in section 2.2.2, also anomaly free
U(1) factors might acquire a mass due to the linear couplings.

Combining the two couplings (3.36) of the scalars B,(go) and their dual two

forms C,(f), we obtain the Green-Schwarz diagram depicted in figure 3.1, similarly

for the dual pairs C’,go) and B,(f). These diagrams have the correct form to cancel
the mixed gauge anomalies (3.32). Similar diagrams exist which cancel the mixed
gravitational anomalies (3.31).

3.3 NSNS tadpoles

Apart from the RR tadpoles considered in section 3.1.1, non-supersymmetric
theories generically produce also NSNS tadpoles. In this section, we will follow
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the discussion of [27] in computing the NSNS tadpoles and deriving the effective
scalar potential for the closed string moduli. The analysis will be performed at
next to leading order in string perturbation theory, i.e. at open string tree level
e~®s where ®, is the dilaton of type I superstring theory in ten dimensions.

The massless NSNS sector fields of our model are the four-dimensional dilaton
as well as the internal metric and NSNS two form flux moduli. In our factorized
ansatz on 72 x T4/Z3, the moduli of 1} are the two radions R; and R;. The
two form flux b can only take discrete values. In addition, K3 has 80 moduli. In
the orbifold limit T*/Z3, these moduli are provided by eleven hyper- and nine
tensormultiplets where each of the nine orbifold fixed points contributes one
hyper- and one tensormultiplet. The remaining two hypermultiplets originate
from the untwisted closed string sector [53]. The twisted NSNS moduli at each
fixed point group into a triplet state pt (i = +,—,3, k = 1...9) under the
R-symmetry of T* associated to the complex structure and Kihler deformations
of the manifold and a singlet state bg)) which originates from the Kaluza-Klein
reduction of the ten dimensional Q odd form B® on ¥,. These states are listed
in table 3.3.

Twisted NSNS states on T*/Z;

state represented by

by ¢31/61/;§1/6|0>5\%N5 + w§1/61/~}%1/6|0>§\(?;’])\75
081600 as U260 610) Kok
At | 0207100 Vs + 0160 16l 0Nk
_wa/s&iyamg\?&vs B w31/61;§1/6‘0>§$523v5
Pr ¢%1/61;i1/610>5\%NS + ¢i1/61;31/6‘0>§$)523v5
Pr ¢§1/61;§1/6’0>5\%Ns + wi/a@/am)%%s

Table 3.3: Massless twisted NSNS states of the (T? x T*/Z3)/QR; orientifold.
The relation of the representations to the K3 moduli is explained in the text.

The NSNS triplet and the RR scalar of (3.33) provide the bosonic degrees
of freedom of a hypermultiplet, and the NSNS scalar together with the RR, two
form of (3.33) belong to a tensormultiplet at each orbifold fixed point [43] — for
a lucid description see also [10].

The computation of NSNS tadpoles is completely analogous to the one of the
RR tadpoles: they are extracted from the infrared divergences in the tree chan-
nel Klein bottle, annulus and Mobius strip amplitude. These three contributions
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lead to a sum of perfect squares which can be identified with the disc tadpoles
of the various NSNS moduli of the theory. The NSNS amplitudes can be de-
rived directly from the tree channel using the boundary states and crosscaps of
appendix F. The normalizations of NSNS states are determined by the fact that
for unbroken supersymmetry the NSNS tree channel amplitude of each diagram
cancels the corresponding RR amplitude. The Klein bottle diagram does not feel
the supersymmetry breaking. For the other two diagrams, the oscillator contri-
butions (E.11), (E.12) involving D8-branes at generic angles can be generalized
to

ool ] [T
AW, (1) 775 i M (3.37)
9 i ] 1:2,319 |:§_k7)t:|
3 TAY 2
NI
ME) 5 (—1)2+8) - I1 : (21+%). (3.38)
19- i i:2,319|:%+2kvi]

-1 1
PR 5 Tkv;

These are the analogous formulas to those which are valid for D6-branes in
toroidal compactifiactions derived in [22] (see also [80]). In (3.37) and (3.38)
a =0,1/2 corresponds to the RR and NSNS sectors, respectively, and § =
0,1/2 arises from the overlap of states with the same or opposite spin structures,
respectively. The lattice contributions remain the same as for the RR amplitudes
in section 3.1.1. Each NSNS amplitude has two contributions from the different
choices of the relative signs of the spin structures in the overlapping boundary
states and crosscaps. The tadpoles are again read off by summing over all D8-
brane configurations and taking the limit [ — oo.

In the QR orientifold model on 7% x T*/Z3, three different contributions to
the tadpoles arise at next to leading order. Two of them, the dilaton tadpole
and the tadpole of the complex structure on 7}, originate from the untwisted
part of the amplitudes. These contributions have the interpretation given in [27]
which we will briefly repeat here. Additionally, a third tadpole is generated by
the twisted moduli corresponding to the fixed points of T*/Zs.

In detail, the dilaton tadpole of the annulus amplitude arises from a single
dilaton vertex operator insertion on the disk. As observed in [95, 39, 96], this
tadpole can be obtained from computing the closed string exchange between
two D-branes at tree level. The coupling of the gravitational modes to a D-
brane is proportional to its effective four dimensional tension which in turn is
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proportional to the volume of the D-brane on the compact space.

The dilaton tadpole of the orientifold theory with D8-branes is therefore
obtained by evaluating all tadpole contributions and identifying the expression
which is proportional to the net tension of the D8-brane configuration — or more
precisely to the sum of all D8-brane tensions minus that of the O8-plane — with
the dilaton exchange. The remaining untwisted tadpoles belong to the untwisted
NSNS moduli of the theory, and the twisted ones arise from the twisted K3
moduli. The comparison with the field theory computation is presented further
below in this section.

In agreement with the general expectation and the expressions in [27] valid
for intersecting D6-branes, one finds for D8-branes at angles the dilaton tadpole

1

\/ Vol(T)

(®,)p = ( 3 N,Vol(D8,) — 16\/01(08)) , (3.39)

with

Vol(D8,) = wLy, = w/(naR1)? + ((me + bng)Ry)2,
VOI(O8) = WRl,

and the tadpole for the imaginary part of the complex structure U defined
in (1.19) on Tj is given by

! o (aR)? = ((mg + bna)Ry)® )
(u)p = T (Z N, T 16 Vi 1(08)> . (3.40)

In contrast to the type IIB models constructed in [1, 2], the real part of the com-
plex structure in the T-dual picture with background fields, i.e. the antisymmet-
ric NSNS two form, is not a modulus of the orientifold theory, and therefore we
only obtain a tadpole for the imaginary part. Defining u = /|Us| = \/Ry/Ro,
the dilaton and the complex structure tadpole can be cast into the form

a=1

(®,)p = Vo (i NoLo — 16u> , (3.41)

(uyp = ué% (\/c; (i N Lo — 16u)) , (3.42)

with

L,(U) = \/(nau)2 + ((mq + Ulna)%)z.

The formulas (3.41) and (3.42) reflect the fact that, regarding 7; where the
reflection R, acts, only the left-right symmetric states on 77 of the closed string
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Hilbert space, in this case the complex structure modulus, couple to the crosscaps
and boundary states whereas the left-right antisymmetric ones, here the Kahler
modulus, do not. In addition, we expect to find couplings to some moduli ¢, of
K3.

Comparing with the boundary (F.8) and crosscap (F.7) states which in par-
ticular contain a term of the form

0, 0% n)Nsns ~ exp{—in (1/131/61/21/6 + 77Z)31/67J)31/6) }|0>NSNS7

one may speculate that these moduli arise from the singlet states bg)) of table 3.3.
However, since neither the relative normalization of the twisted amplitudes as
compared to the untwisted ones nor the explicit field theory description of the
K3 part is known, we prefer to stick to the symbolic notation ¢y for the relevant
twisted NSNS moduli.

Indeed, a third tadpole arises from the twisted sector which can be cast into

the form
(or)p = (Ztr )L, —4u).
From oV oV oV
@ ~ ~n — ~N —
< 5>D 0@37 <U>D ou’ <901<;>D 0%

we can derive an ansatz for the scalar potential in the string frame of the form

V (s, U, ) (ZN Ly, — 16u + ¢y (Ztr 9L, —4u>> . (3.47)

This potential is computed only to non-trivial leading order in string theory
even though higher powers of the complex structure modulus occur. The ansatz
(3.47) for the scalar potential can be compared with the field theory expecta-
tion obtained from the Dirac-Born-Infeld action of a D9,-brane with constant
magnetic and electric background flux in the T-dual picture in the limit ¢, — 0,

Spo, = —T9/ dVze =\ /—det (G + F,), (3.48)
DY,

with the D9-brane tension Ty = (2m)"a/~ and the constant values on T}

(me +bng) o
n R1R2 '

G =1, (Fa)as = (B+ Fy) s =

In addition, to lowest order in the K3 moduli the relation

detG(K3) = vol(K3) =
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is valid. The dependence on the twisted sector modes ¢y in the orbifold limit
T*/Z3 seems to be much more complicated and will not be further pursued here.

The scalar potential (3.47) computed from string theory is unstable to lowest
order. This means that the minimum of the theory is not chosen in an appropri-
ate way and hints to an instability of the D8-brane configuration. In the T-dual
theory, the tilting of D8-branes towards the X* axis corresponds to the dynami-
cal decompactification to the six dimensional supersymmetric theory. A further
indication of the instability arises from the fact that it seems to be impossi-
ble within the framework of intersecting D8-branes to obtain a consistent chiral
theory which does not contain any tachyon at all as mentioned in section 3.1.2.

The problem of stability in the context of tachyons in a purely toroidal com-
pactification has also been addressed in [100]. The moduli in toroidal D6-brane
models with non-trivial intersection angles on all three tori can be chosen such
that no tachyonic states are present. But even in this case, NSNS tadpoles signal
an instability towards the decay to the supersymmetric vacuum [27].

3.4 Examples

In this section, we discuss four models in view of their phenomenological rele-
vance. The tadpole cancellation conditions (3.26), (3.27) severely restrict the
possible choices of gauge groups. For example, the GUT gauge group SU(5)
can only be obtained from N? = 5 if we restrict our attention to D8-branes
(i.e. we do not want to include anti-D8-branes), and we would have to introduce
at least two more stacks of D8-branes leading to exotic matter. Furthermore,
the generic spectrum in table 3.1 shows that only an even number of antisym-
metric representations of SU(N? = 5) can be engineered. Therefore, we will
not further pursue GUT models, but show two models which include the gauge
group SU(3) x SU(2) xU(1)y and two left-right symmetric models which contain
SU(3) x SU(2), x SU(2)g x U(1)p—y. In order to obtain a phenomenologically
appealing spectrum, we also include parallely displaced D6-branes and anti-D6-
branes. In all four models we choose the non-trivial background b = 1/2 as only
in this case an odd number of generations is achievable.

3.4.1 Example la: SU(3) x SU(2) x U(1)? and four gener-
ations

In the first example, we choose three different stacks of D8-branes,
N}lz3, (nA,mA) = (2,—1),

Ny =2, (ng,mg) = (4, —1), (3.51)
Nézl, (nc,mc) = (1,0)
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| —
/

SU(2)

Figure 3.2: Example la: D8-brane configuration on 7;. The shaded area em-
phasizes the fundamental cell of the torus. Solid lines denote D8-branes, dotted
lines denote their mirror images.

The D8-brane configuration on 7} is depicted in figure 3.2. The stack of DS8-
branes of type A is QR; invariant. Thus, the modified tadpole cancellation
conditions (3.26), (3.27) hold and the spectrum can be read off from tables 3.1
and 3.2. In this attempt, we only include D8-branes and require that quarks have
no tachyonic pseudo-superpartners. In addition, we want to avoid exotic matter
which would arise from additional stacks of D8-branes with non-Abelian gauge
groups. This fixes the numbers N} and N as well as the corresponding wrapping
numbers n4,np along the R, invariant direction. It also fixes the number of
quark generations to be even. The spectrum obtained from the setting (3.51) is
displayed in table 3.4 where we have also listed the original (") and anomaly-free
(Qy, Q) U(1) charges. The factor U(1);,4 which arises from the QR invariant
stack of D8-branes is anomaly-free by itself. In addition, there are two more
anomaly-free linear combinations,

o = Lo (3:5)
Y — 3 C CH .

0

where ()y can be interpreted as hypercharge for the left- and right-handed quarks
and leptons. The remaining anomalous U(1) factor acquires a mass by the
generalized Green-Schwarz mechanism as described in section 3.2 and decouples
from the effective theory. In the ACa’, BB'a’ and CC'a’ sectors, tachyonic
pseudo-superpartners occur, whereas all other sectors have either massless or
massive scalar partners transforming in the same representation.
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Chiral fermionic spectrum for example la

mult. | rep. of SU(3) x SU(2) | Q& | Q% | Q% | Q4| Qv | @
ABat 2 (3,2) 0|0 |—-1|-1|-1/3|-1/4
o? 2 (3,2) 0|0 |—-1| 1] 1/3 |-1/4

ACa? 2 (3,1) 1|00 |-1|2/3 1

2 (3,1) 0| 11]0 1 |-2/3] 1

ot 1 (3,1) 0 |—-1] 0 1| 4/3 | -1
o? 1 (3,1) —1] 0] 0 |-1]-4/3| -1
BCat 1 (1,2) -1, 0 | 1 0 -1 |-3/4
o? 1 (1,2) 0 |-1]1 0 1 —3/4
BC'at 3 (1,2) -1, 0 |—-1) 0 -1 |-5/4
o? 3 (1,2) 0O |—-1]—-1| 0 1 —5/4
BB'a° 4 (1,1,) 0|0 ] 2 0 0 1/2
6 (1,1,) + (1, 3,) 0] 0] 2 0 0 1/2

cC'a? 2 (1,1) 11110 0 0 2

Table 3.4: Chiral fermionic spectrum from intersecting D8-branes, example 1a.

3.4.2 Example 1b: SU(3) x SU(2) x U(1)* and four gener-
ations

The chiral fermion content of example la discussed in section 3.4.1 contains
a different number of particles and anti-particles , namely four candidates for
quarks and six candidates for anti-quarks, and also a different amount of quarks
and leptons. Bearing in mind the considerations made in engineering model 1la,
we modify the third type of D8-brane C such that the amount of quarks and
leptons matches. This can be achieved by

Ni = 3, (nA,mA) = (2, —1),
Ny =2, (ng,mp) = (4,—1), (3.53)
N, =1, (ne,me) = (2, 1),

if the stacks C' and A are parallely displaced. The separation of the D8-branes
serves to break SU(4) down to SU(3) x U(1). In the T-dual picture, distances



3. Example 2a: SU(3) x SU(2), x SU(2)r x SO(8) x U(1)® and three
generations 73

NN

SU(2)

SU(3)
Figure 3.3: Example 1b: D8-brane configuration on 7.

translate into Wilson lines. The D8-brane configuration is displayed in figure 3.3.
As one can easily see from this figure, locating the stack C at X° = Ry/4 and
taking into account lattice shifts gives again an R, invariant configuration.
In this case, we obtain four generations of quarks and leptons as well as several
exotic fermions. The complete spectrum is listed in table 3.5. In this case,

QY% becomes massive while Q1 and Qf are anomaly-free by themselves. The

1
linear combination )y = % + Q{ can be interpreted as the standard model

hypercharge.

3.4.3 Example 2a: SU(3) x SU(2), x SU(2)g x SO(8) x U(1)?
and three generations

So far, we have only managed to engineer an even number of generations of the
standard model gauge group even though we have switched on a non-trivial back-
ground field b. The following examples are chosen to be left-right symmetric and
contain three generations of left-handed quarks and leptons. We again choose the
SU(3) factor to arise from the QR invariant position and the SU(2), x SU(2)g
factors to be supported by D8-branes at non-trivial angles. In order to fulfill the
tadpole cancellation conditions (3.26), (3.27), an additional gauge group SO(8)
as well as an anti-D8-brane have to be included. The D8-brane configuration of

1Locating a D8 -brane at X° = Rs/4 is convenient, but not necessary. For m. + bn, =0,

equation (3.21) does not give any constraint on the 7 matrices. The second choice con-

sistent with the closure of the orbifold group is 4, = 'VEZIRl = Iy, and 7§ = %;17(;’ =

diag (]INCo,e?\?f/g, e;\ém/g) for ¢ # ¢. In this case, N! and N? can be chosen independently.
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Chiral fermionic spectrum for example 1b

mult. || rep. of SU(3) x SU(2) | Q% || QY | QL

ABa! 2 (3,2) -1 =110
o? 2 (3,2) -1} 110
BCa! 2 (1,2) -1 0 | -1
o? 2 (1,2) -1 0 | 1
BB'a’ | 10 (1,1,) 2 0] 0
6 (1, 3;) 2 0] 0

Table 3.5: Chiral fermionic spectrum from intersecting D8-branes, example 1b.

our first choice

N§ =8
} (na,ma) = (2,-1),
Ni=3
Nj =2, (ng,mp) = (1,0), (3.54)

N, =1, (nc,me¢) = (—1,0),

with a parallel displacement of the D8-branes B and anti-D8-brane C' is shown
in figure 3.4. The complete spectrum is listed in table G.2 in the appendix. It
contains three generations of quarks and leptons as well as their anti-particles.
In addition, it contains exotic matter transforming in the fundamental repre-
sentation of SO(8), a (2,2) of SU(2), x SU(2)g whose tachyonic partner could
be interpreted as a non-standard Higgs particle and several singlets of the non-
Abelian gauge groups. The anomaly-free U(1)s are given by

Qo1 = —3Q4+QL-
Q= Qi+ Qh-Qh (3.59)

1
Q" = 3 (Qp + Q% +2Q¢ +2Q7) ,

where (Qp_y, can be interpreted as Baryon - Lepton number occurring in left-right
symmetric models.

There are two facts which have to be taken care of when including anti-
D8-branes. On the one hand, the GSO projection in the D8-brane - anti-D8-
brane sector is opposite to the usual one and results in selecting the reverse



3. Example 2b: SU(3) x SU(2), x SU(2)g x SO(8) x U(1)? and three
generations 75

SU(Z)L X SU(2)R

SU(3) x SO(8)

Figure 3.4: Example 2a: D8-brane configuration on 77.

chirality. On the other hand, the QR projection in the R sector of the C'C’
strings selects the symmetric instead of the antisymmetric representation. Due
to the displacement of the stacks B and C, there will be no tachyons stretched
between parallel B-branes and anti-C-branes as long as the radii R, and R, are
chosen big enough.

In this example, tachyonic pseudo-superpartners wlA(p_l/Q |0) ysns occur in the
ABa®, BB'a’ and CC'a” sectors. In the ACa® and BC'al sectors, the reversed
GSO projection leaves the tachyonic groundstate |0) ysng invariant.

3.4.4 Example 2b: SU(3) x SU(2)x SU(2)g x SO(8) x U(1)*
and three generations

As a last example, we start with the same SU(3)x SU(2),, x.SU(2) i configuration
as in example 2a, but choose the anti-D8-brane C' to be QR; invariant and
parallely displaced relative to the SU(3) stack. The D8-brane positions resulting
from

Ny =8
} (nA,mA) = (2,—1),
Ni=3
N};,:Q, (ng,mp) = (1,0), (3.56)

NG =1, (ne,me) = (=2,1)

are displayed in figure 3.5. The complete chiral spectrum is listed in table G.3
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SU(Q)L X SU(2)R

SU(3) x SO(8)

Figure 3.5: Example 2b: D8-brane configuration on 7.

of appendix G.2, and the anomaly free U(1) factors are given by

Qo1 = —5Qi Qb (3:57)
@ = Qh-Qh+20k

In this case, the spectrum contains three generations of left- and right-handed
quarks and leptons beside some exotic matter. The GSO projection is reversed
in the AC and BC' sectors, and tachyons with the same representation of the
gauge group as the fermions appear in the ABa®, BB'a® and BCa® sectors.

3.5 Mass and gauge hierarchies

The D8-brane models discussed in this chapter have a dual description in terms
of intersecting D4-branes. Applying T-duality along all four directions X %9 of
the orbifold, the action of the orientifold becomes 2R 14 where 1, is the reflection
of all four T-dual coordinates I, : X%+ — — X% and the orbifold volume is
transverse to all D4-branes. Within this framework, the hierarchy between the
electro weak and the Planck scale can be explained by a large compact transverse
volume [112, 87, 7, 6, 72].

The effective ten dimensional Lagrangian of the orientifold theory contains
the relevant gravitational part [94]

310——— d"x V—G R10

where k* = L(27)"a* is the ten dimensional gravitational coupling constant,
As = e®s contains the dilaton ®, of type I superstring theory and R10) is the ten
dimensional curvature.
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The Dirac-Born-Infeld action of a Dp,-brane is given by [94]

1
Sop. = —T, / dp“:c)\— \/—det (G + B+ 2nd'F,), (3.59)
Dpq s

where
T, = (Qﬂ)fpa'*(pﬂ)/?

is the tension of a Dp-brane and a rescaling F, — 2na/F, as compared to (3.48)
has been performed in order to obtain the canonical normalization.

Upon dimensional reduction to four dimensions, the effective Lagrangian be-
comes

4 1 ‘/6 ‘/;9—3 2
where Vg is the complete compact volume and V), 5 is the compact (p — 3)
cycle wrapped by the Dp-brane. Identifying the coefficient of the curvature
with (167G y)~" where Gy is Newton’s constant and the coefficient of the field
strength with (4¢%)~! where g, is the four dimensional gauge coupling gives the
following results for D4-branes [2]

1 — M . RV Rlew 3.62
P 3 r’ ( )
VG V213 )\
4772 M,
giz = L, (3.63)

where R R, is the volume of the two torus T, w is the dimensionless volume
of the four dimensional orbifold as given in appendix E.1, L, is the length (3.5)
of the 1-cycle which the D4,-brane wraps on 17, and M, = 1/4/a’ is the string
scale.

In order not to obtain too small gauge couplings, the radii R;, R, may not
be chosen too large according to equation (3.63). The string scale M, can,
however, be lowered down to about 1 — 10 TeV by taking the orbifold volume
Vory = wa'? ~ O([10°(TeV)™1Y).

One further feature of the picture with D-branes at angles is the fact that
Yukawa couplings are exponentially suppressed in terms of the area A;;;, which
is bounded by the three types of D-branes involved [2],

The Higgs field H? and the two fermions F%, FF involved are located at the three
different vertices which the D-branes at angles generate.

As for the gauge couplings, in order to avoid too small Yukawa couplings,
the areas A;;;, may not become too large according to formula (3.64).
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Applying the relationship (3.63) to the examples discussed in section 3.4, we

obtain
/ 11
dQcb _ 24/1+ —— for examples 1a and 1b,
Q9 16 ut

1+ —-— for examples 2a and 2b,

where u = /Ry /Ry is as defined in section 3.3. These values are only valid at
tree level at the string scale M,. In order to make contact with the observed
data at the electroweak scale, the running of couplings as well as loop corrections
which might be large would have to be taken into account.
The qualitative behavior of Yukawa couplings (3.64) can be nicely read off
from figure 3.2 for example la. The sizes A;;; of the smallest triangular world-
R 11 1

sheets in units of #Rz are 1z, 16, 15 and i. There exist, however, also trilinear

couplings which arise from one single intersection point. The reason for this is

that in example la, two quark generations QlL’z are realized as (3,2) and the

other two Q>* as (3,2) in the AB sector. Couplings to Higgs scalars h from the
BB’ sector are allowed by regarding the quantum numbers. Since the position
of D8-branes A is chosen to be QR invariant, the intersection points of AB
are also intersection points of BB'. The same argumentation applies to leptonic
Yukawa couplings since the D8-brane positions of stacks B and C are chosen
such that the intersection loci of BC, BC" and C'C’" on the QR invariant axis
coincide.

The AB and BB’ sectors of example 1b are identical to those of example 1a.
Therefore, the same Yukawa couplings for the quark sector arise. The different
choice of the D8-brane C' results in leptons being located at the intersections of
stacks B and C' which do not coincide with any intersection point of the BB’
sector. As a result, all leptonic Yukawa couplings are suppressed in terms of a
non-vanishing worldsheet.

Let us now briefly comment on example 2b. In this case, all left handed
quarks QY (i = 1,2,3) are realized as (3,2;) while all right handed quarks Q7%
(j = 1,2,3) transform as (3,2x). All quarks arise from the AB sector where A is
the QR4 invariant stack of D8-branes. The BB’ sector can provide Higgs scalars
h in the (2;,2g) with U(1) charges Qp = Q% = £1. The quantum numbers
thus allow for trilinear couplings of the form hQ% Q% fori,j =1,2and i =j =3
since the third generation differs in the quantum numbers Qj, Q% from the other
two. In the same spirit, trilinear couplings hL’ L7, of a Higgs particle with two
leptons L, L{Q are allowed for 7,5 = 1,2 and ¢+ = 7 = 3. But in contrast to
the couplings involving quarks, the leptons arise from the BC sector which does
not have any common intersection point with the BB’ sector. Naively, one can
therefore speculate that quark and lepton masses are generated from couplings
to the same Higgs scalars h acquiring a vacuum expectation value, and that there
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will be a hierarchy of quark and lepton masses since the relevant worldsheets are
of the order Aygg = 0 and Ay, ~ (’)(sz). This naive interpretation, however,
has to be handled with care since not all types of couplings to Higgses might
occur, e.g. if only one type of scalar particles h with Q% = Q% = 1 exists and
no couplings hQQ are allowed.

The same arguments hold for example 2a since the AB and BB’ sectors are
the same as in example 2b, and also in this case no common intersection point
of BB' and BC’ exists. In addition, Yukawa couplings between quarks and
anti-quarks occur and are suppressed by the same mechanism as the leptonic

ones.
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Chapter 4

Summary and conclusions

In this thesis, supersymmetry breaking via D-branes at angles in orientifold
models of type II superstring theories is investigated. Two different classes of
models are discussed. In chapter 2, the orientifold projector is chosen such
that D6-branes are required to cancel the RR charges of the orientifold planes,
whereas in chapter 3 D8-branes are needed.

The orientifold projection contains a reflection R; of ¢ internal coordinates
leading to O(9 — i)-planes. The reflection can be rephrased as a complex conju-
gation of ¢ complex coordinates. The RR charge cancellation condition enforces
the existence of a suitable amount of D(9 — i)-branes and their mirror images
under the reflection. Partial supersymmetry breaking is achieved by the intro-
duction of a four dimensional orbifold. The action of the orbifold symmetry on
the Chan-Paton factors of the open string sector depends on the choice of the
orientifold projection.

In chapter 2, the orientifold projection (2R3 maps the orbifold generator ©
to its inverse,

OR300 = O 1OR;.

A generic Zj; generator rotates the positions of the D6-branes. Only a Zs ro-
tation maps D6-branes onto themselves while acting non-trivially on the Chan-
Paton labels of the open string states. The D6-branes are chosen to lie on top of
the O6-planes along the directions of the orbifold. Supersymmetry breaking is
achieved by allowing for non-trivial intersection angles of the D6-branes on the
additional two torus. The D6-branes support non-Abelian gauge groups on their
worldvolume, and at the intersection point of two D6-branes chiral fermions in
the bifundamental of the gauge groups are located.

We have explicitly shown the computation of the 1-loop closed and open
string amplitudes, namely the Klein bottle, Mobius strip and annulus. The tree
channel amplitudes have been obtained by modular transformation. In addition,
we have shown the direct computation in the tree channel by means of the
boundary state approach. The consistency of the two approaches, the worldsheet
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duality, gives additional constraints on the geometry of the compactification for
the D6-brane models. Two different orientations of the tori, the A and B type
lattices, are consistent with the reflection R3. The orbifold group acts non-
trivially on the zero mode contributions to the loop amplitudes. In order to
obtain the complete projector in the tree channel, only the combination AB for
the orbifold lattice is allowed in the case of a Z4 and Zg symmetry whereas no
constraints arise for Z, and Zs.

The tadpole cancellation conditions are given in equation (2.24). The analysis
is performed for a rectangular two torus corresponding to a trivial background in
the T-dual language but can easily be generalized to tilted tori or, equivalently,
a non-vanishing antisymmetric NSNS tensor background in the T-dual model.
The closed string spectrum is N/ = 2 supersymmetric in four dimensions. The
open string sector contains the N’ = 2 supersymmetric gauge fields with gauge
groups [48]

Z3 : Hma;éO U(Nll) Hmazo SO(Na)7
Z2,4,6 : Hma;ﬁo U(Na/2)4 Hmazo U(Na/Z)z-

The open sector also contains strings with endpoints on two different kinds of
D6-branes. These sectors provide chiral fermions in the bifundamental of the
two gauge groups supported on the worldvolume of the D6-branes. Since the
orbifold group Zj acts trivially on the Chan-Paton labels, each chiral fermion
is accompanied by a tachyon in the same representation. This situation is dif-
ferent for Zs46. The mass eigenstates differ in their Z, parity. Therefore, only
chiral fermions with even parity have tachyonic pseudo superpartners. We have
explicitly given examples for Z, and Zs3. Excluding anti-D-branes, for Zs the
maximal gauge group obtainable is SU(3) x U(1) if we require the presence of
chiral fermions. The resulting spectrum is listed in table 2.2. We have also
worked out an example for Zs which encloses the standard model gauge group
as well as several non-anomalous U (1) factors and some exotic matter. We have
argued that the anomalous U(1)s couple to untwisted closed string modes thus
becoming massive by a generalized Green-Schwarz mechanism. The anomaly
free U(1)s are displayed in equation (2.44), and the chiral spectrum is listed in
table D.2. However, in this framework we can neither obtain a three generation
model nor give an obvious solution to the hierarchy problem.

In chapter 3, the reflection is chosen to act only on one two torus. The orbifold
group affects the other tori. Therefore the orientifold and orbifold generators
commute,

QR0 = O QR,4.

RR charge cancellation requires D8-branes which wrap a 1-cycle on the two torus
and are extended along all four orbifold directions. In contrast to the models
discussed in chapter 2, the orbifold group acts non-trivially on the Chan-Paton
labels. While the reflection QR 5 enforces the existence of D6-branes for all kinds
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of four dimensional orbifolds, 2R, generically requires both D8- and D4-branes
at the same time. Only in the case of no Z, subsymmetry, i.e. a Zs orbifold,
consistent models with only D8-branes exist. In this case, the models are T-
dual to orientifolds with a different orientifold group generator {XR,1, and only
D4-branes where I, is the reflection along all transversal orbifold coordinates.
This kind of model offers the possibility of solving the mass hierarchy problem
by large transverse dimensions as suggested in [7, 6]. The generic RR tadpole
cancellation conditions (3.26), (3.27) do not only constrain the amount of D8-
branes with identical position, but determine also the action on the Chan-Paton
matrices which effectively decomposes a stack of N, D8, -branes into ¢ subsystems
N! with Z3 eigenvalues o’. The resulting gauge group is [65]

Zis H

Mg +bng#0

2

[Tvwd

1=0

I sowd) xuw,).

Ma+bng=0

As for the models with D6-branes, the loop and tree channel amplitudes rel-
evant for RR tadpole cancellation are calculated. In this class of models, world-
sheet duality does not give any additional constraints on the lattices. The generic
chiral spectrum is displayed in table 3.1. Only those mass eigenstates which have
trivial Zs eigenvalue have a tachyonic pseudo superpartner. Therefore, tachyons
can be partially projected out as compared to the models discussed in chapter 2.
The tadpole cancellation conditions are, however, very restrictive and therefore
any model with a phenomenologically interesting gauge group and chiral spec-
trum will contain a tachyon. We have argued that U(1) anomalies are canceled
by a generalized Green-Schwarz mechanism involving closed string modes from
the twisted sector. The instability of the model does not only manifest itself in
the appearance of a tachyon, but also in the existence of non-vanishing NSNS
tadpoles which we have computed to linear order in the moduli of the orbifold.
Furthermore, we have given two explicit examples of embedding the standard
model gauge group in this class of intersecting D8-brane scenarios. These exam-
ples lead to an even number of generations. A more promising ansatz consists
in considering left-right symmetric models with three generations. We have also
shown two examples of this type which comprise some exotic matter besides
the left-right symmetric extension of the standard model. The tachyons which
occur in the spectrum have the correct quantum numbers for being interpreted
as non-standard Higgs particles.

In summary, in this thesis model building from type IIA orientifolds preserv-
ing N/ = 2 supersymmetry in the gravity and gauge sectors with chiral fermions
from supersymmetry breaking intersections of D-branes have been investigated.
The set-up offers a rich variety of engineering different gauge groups and ob-
taining replication of generations from multiple D-brane intersections. We have
shown for the first time how to incorporate four dimensional chiral spectra from
D-branes at angles with a reduced amount of supersymmetry in the gauge and
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gravity sector. Furthermore, with this requirement we have succeeded in con-
structing models with a reduced amount of tachyons and shown that an inter-
pretation in terms of non-standard Higgs particles is appealing. In addition, we
have for the first time performed an orientifold construction with D-branes at
angles which admits for large transverse dimensions and is by this means capable
of solving the hierarchy problem.

Models with intersecting D-branes clearly still deserve to be further explored.
On the one hand, it will be interesting to consider the NSNS tadpoles beyond the
linear order in the orbifold moduli since they might play a role in stabilizing the
D8-brane models. In the T-dual models, locating D4-branes at different fixed
points in the transverse space might also lead to different models, and it would be
worthwhile to consider inflationary scenarios along the idea of intersecting D4-
branes in purely toroidal type IIA compactifications presented in [51] for explicit
orientifold models. Other possibilities of obtaining improved models consist in
considering more complicated orbifold and orientifold groups. A very recent
ansatz [25] uses even a different GSO projection leading to an orientifold of type
0’ string theory. Also in this case, non-trivial intersection angles of D6-branes are
accompanied by a non-vanishing dilaton tadpole. Therefore, another challenge
within intersecting D-brane model building consists in including the Fischler
Susskind mechanism [44] and exploring how it affects measurable quantities.



Appendix A

Notation and conventions

The bosonic closed string coordinates which solve the two dimensional equation
of motion can be decomposed into a left- and a right-moving part depending on
the light-cone coordinates of the worldsheet 0. =7 + 0,

XP(r,0) = X} (o) + Xh(o), (A1)

with the mode expansions

yn
Xi(oy) = %+—o++ Z g (A.2)
Xh(o_) = 7+—g +—Z O gine- (A.3)

n;ﬁO

where x# and p* = % (pYf + ply) are the center-of-mass position and momentum
in units of o/, respectively. The fermionic coordinates can be expanded in a
similar manner, namely

v(r,0) = V(o) + Vi(o-), (A4)
Vi(oy) = > de™r, (A.5)
Who) = 3t (A.6)

where the index 7 runs over integers in the untwisted R sector and over half-
integers in the untwisted NS sector. The non-trivial commutation relations of
the raising and lowering operators are given by

ok ar] = [ak,ar] = nd, —m™,

() = {9} =60,
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For compact coordinates on a two torus, it is useful to define complex oscillators,
e.g.
_ 1 )
ot = — (o' £ia). (A7)

V2

The non-trivial commutation relations then read (i,j = 1,2, 3)
|:afw az_n:| = |:O~5iu d%] - nénvfm(sij, (A8)
{ :;7 wg—} = { Ni: J’Z} - 57",7555- (Ag)

The orientifold group action is given by (x labels the non-compact coordinates
in light cone gauge and j = 2,3 the second and third torus)

(R (OR:) " =,
) O @RgeM@R) T =a (A0)
(AR5)0dT(QRs) ™ = a7, (AR)adI(QR) ™ = af7,

and analogously for the fermionic sectors with the minus sign included as de-
scribed in section 1.2.
The Hamiltonian is given by

H=H, + Hy, (A.11)

1
Hy, = ZP% + Z o, + Z rut, Oy

my, >0 ru>0

+ Z Oz;_kiozf% + Z ozi_liaz, (A.12)
ki >0 ;>0

+ ) st 0l )t + Ey
5;>0 t; >0

and similarly for Hr with energy and time measured in units of the string scale
o/. In the complex notation, these definitions carry over to the twisted sectors
where the oscillator indices are in Z + nwv; for bosons and R sector fermions and
in Z + % + nv; for NS sector fermions. The zero point energy for the moding
Z + v of a complex boson is given by

EY = ——+Zv(l—v) (A.13)

2
Bl = L % (l _ Z,) , (A.14)



Appendix B

1-loop diagrams for O6-plane /
D6-brane interactions

The tadpole cancellation conditions are determined by computing those diagrams
in the loop channel which correspond to RR exchanges in the tree channel. As
explained in section 1.4, the relevant contributions arise from the NSNS sector
with (—1) insertion for the Klein bottle, R for the Mdbius strip and NS with
(—1)* insertion for the annulus.

B.1 Lattice contributions

On a torus with radii R, 2, only momenta along the {YR3 invariant direction and
windings perpendicular to the former one contribute. In the loop channel, the
general expression for the lattice contribution is given by

Lo, B(t) = (Z e"‘”m2/m) (Z 65””2’32) , (B.1)
meZ ne”

where p; = R?/o/. Using the one dimensional Poisson resummation formula

z:eﬂr/lt(rwrb/%ri)2 _ \/EZ eﬂrtn2+bn (B2)

nez nes

gives the general expression for the lattice contribution in the tree channel

LR o B](t) = (Z e—mmzm) (Z e—ﬁmz/m> : (B.3)

meZ nez

(B.1) and (B.3) are related via

L7 2o, B)(t) = L[ g] (1), (B.4)
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with ¢ = \/’ZTB%’ t = 1/(kl) and k = 4 (2,8) for the Klein bottle (annulus,
Mébius strip). The results for the different tori are summarized in table B.1.

The result for the b type lattice can be recast in the notation introduced in

Ly 4 L3¢

)

a b A B A B

LR\ cRuR21 1)) LBE[1) cos? a, 4sin? o] |[CBE[1,1]|CBE[2, 2] LBE[4,3] | LBE][4/3,1]

LF\LBuR 4 4] L[4 cos? a, 1/ sin? o [LPR[4, 4]|CRR(2, 2)C5R(1,4/3] LBE[3, 4]

| 4R,/ R, 2/ tan a 4 2 2/V/3 2v/3

LA L CBR[2/L2, 2sin?(2a) /LA]LRE[2, 2| CBE[1, 1]ICRE[2, 3 /2]C R E[2/3,1/2]

LA LA LRR[L2 L2 /sin®(2a)] |[CRR[1,1]|L72[2, 2)CRR[1,4/3] LPR[3,4]

AL /(R Ry) L2 /sin(2a) 1 2 2/V/3 2V/3

LM LEGE2[2 2L /(2 cos? o), 8 sin® o|LEE[2, 2)|LBE[1, 4] LBE[2,6] | LBE][2/3,2]

LMILRUE2[4 4)|LRR[16 cos? o), 1/ sin® o [CRR[4, 4]\ LR[S, 2L R[4, 4/3] LBE[12, 4]

M| 4R /R, 4/tana 4 4 4/v/3 4v/3

Table B.1: The different lattice contributions for a two torus.
L,= \/nz + m2 + 2ngmg cos(2«) for D6-brane models on the b torus.
The definitions of £ and L, are given in the text in section 2.1.2.

The b type lattice is parameterized according to the right hand side of figure B.1.

section 1.2 with non-vanishing background b = 1/2 field in the T-dual picture
by replacing

tana = &
2R’
R? = R} + (Ry/2)?,
él = €, (B5)

€2 = €; — ez,

(n,m) = (n+ m,—m),

where the definitions are given in figure B.1.
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€2
€1
R -~ R
2c0
Ry
€2

Figure B.1: Two ways to parameterize the lattice with b = 1/2.

B.2 Oscillator contributions

The oscillator contributions can be expressed in terms of generalized Jacobi theta

functions and the Dedekind eta function (¢ = e=?™),
« n+a mi(n+o
19[ s }(t) = Y et f2gritnes, (B.6)
neZ
nt) = ¢ JJa-q"). (B.7)
n=1

B.2.1 Theta-function-identities

The upper argument « is only defined modulo Z, the lower argument [ gives a
phase when shifted by 1,

ﬂ[ﬁil}(t):e%mﬁ[g](t), 19[ 5 ](t):ﬁ[g}(t). (B.8)

For —1/2 < o < 1/2, the following product expansion of a Jacobi theta function
holds,

ur S
775 (t) _ eQwiana2/2—1/24 H [(1 + €2m'6qn—1/2+a) (1 + e—2m’ﬂqn—1/2—a):| 7

n=1

(B.9)
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from which the asymptotic behavior for ¢ — oo can easily be read off. For
D-branes at an angle 75 # 0 on a two torus, one needs in particular:

(B.10)

Jacobi theta functions and the Dedekind eta function have the following modular
transformation properties:

5l = el 1),
n(t) = %77 (%)

For the loop — tree channel correspondence of the Mdbius strip, the additional
identities for o € (—1, 0] are useful:

3] =R 3
19[751:(,5_3’):6mﬁ[%jf]ﬁ[%jﬁ}(%), (B.11)
o+ 3 2 2 2
0[5+§_ 0{%§Zﬁ}ﬁ[giﬁ}
o[z e[z ]e[?
[ g (- 3) _ M(g@, (B.12)
T ]

For % = 41, these lead to the modular transformations

ot L —(a+28) + 3
19[ ;1 (t_%)__iezm(a%)ﬁ[ ((;:;;))Jrl}@l;), (B.13)
0[;‘13 0[_(315)%5}

19[(%) 7 119[(%)] (

T T ) o
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B.2.2 Oscillator contributions to loop diagrams in D6-brane
models

The oscillator contributions in the loop channel in terms of generalized Jacobi
theta functions are given by

L
g 19[ +1 W] (nv; ki) ¢Z2 9 [ f+ ' ]
3 3 thvi
o]
< 1] 22| @), (B.16)
(nv;,kv;)EZ2 d
9 [ : } 19[5*2“”} (—20)° 9 [ Z” }
(n,k) - 2mip ¥ Vi
Ma e 773 1420 H L tnv;
19[2 } (nv; ki) ¢Z? 9 [ : ' ]
5= 3 tkv;

" [ : } -1y, (B.17)

(nv; kv;)EZ?

where

. . 1
5— { 1 if  (nv, kv;) €EZXZ+ 3, (B.18)

0 else.
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B.2.3 Oscillator contributions to tree diagrams in D6-brane
models

The oscillator contributions in the tree channel read

KO = T(21), (B.19)

S H I I
19[ —%jk/M }19[ Lk/m }

A9 = gt [A‘J (20), (B.21)

o 197[72] 19|:A;9:| 19[ Icl/M ] [ kZ/Ml] o), (B.22)
19[%%1@] [ —Lik/M ] [ —k/M }
R H T R
My = — ﬂ[ip} (213 (B.23)
Mb = 197[75] ﬁu ' i I "“/M} @i—1).  (B24)



Appendix C

Boundary state approach for
O6-plane/D6-brane interactions

C.1 Construction of crosscap states
A comprehensive introduction into the boundary state approach to D-branes is

given in [50] and references therein. Appendix A of [5] contains the construction
of crosscap states in related models.

C.1.1 Oscillator part
Crosscap states have to fulfill
(X} r(0,0) — O R3 X}, (0 +7,0)] [QR30%) = 0. (C.1)

Inserting the mode expansion (A.2), (A.3) gives the constraints in terms of
bosonic oscillators

(i + (~1)"a",) [R5 0%, ) =0,
(af + (=1)"e*™ ™6l )| QR3O n) = 0, (C.2)
(0} + (~1 e 61 ) |QR;0F, 1) = 0.

The constraints for the fermionic oscillators are (n = +£1)

(¥ + ine™™ " )| QR30F, ) = 0,
(0 + ine™ ™ TG ) QR 08, ) = 0, (C:3)
(0 +ine e T )| QR,0F, ) = 0.
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94 C. Zero modes and GSO invariant states

A solution is provided by

|QR30% 1) = Ngexp { - Z #a“nd“n — Z Z (_1)n6_2”ik”iai_ndi_n

n i€{1,2,3} n n
—1)n . L

. Z Z ( ) 627r7,kvi alndln

e n

1€{1,2,3} n
_ inze—iﬂrw/iﬂ/;i“ —in Z Ze—iﬂre—%rikvi i_ﬂj)ir

r €{1,2,3} r
— i Y el g o), (C.4)
€{1,2,3} r

where 7 € Z(Z+3) in the RR (NSNS) sector, n € Z and |0, ) is the groundstate
which depends on the spin structure 7 in the RR sector. The sums are meant to
contain creation operators only. The vacuum state contains the momentum and
winding modes discussed in section C.1.3.

C.1.2 Zero modes and GSO invariant states

We present the following discussion for the crosscap states. The GSO projections
on boundary states are completely analogous.

NSNS sector

In the NSNS sectors, the GSO projection on the groundstate is determined by
requiring tachyonic groundstates to be unphysical. Therefore, the GSO invariant
combination is

[OR30%) nons = [AR3O", +) nons — [OR30%, =) ysns- (C.5)

Untwisted RR sector
Defining (i = 1,2,3 and n = £1)
N
n \/5 0 0>
1

V2

the non-trivial commutation relations are

fwhoty = 1,
{wivt} = {uLui}=1

1

(vh+imdi),  vi=

v = (vh+indt) |
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The crosscap conditions from the zero modes in the RR sector on the groundstate
then read

vy

vy ¢ [ORs05 )0, =0, (C.6)

] RR
vy

and the zero mode parts of the GSO projections are given by

D" =]] vaur (C.7)

=TT @hvuny- TT o (0ot +u) (i — vl —0f),
1=2,3 i=1,2,3
9
(-7 =T vady (C8)
m=2
=TT st —we T o (v — vt + ok — o) (v — i — o +7)).
1=2,3 i=1,2,3
Defining
QR;0%, )0 = [( 11 w”) ( 11 wiwi) |QR30%,+)° | (C.9)
1=2,3 i=1,2,3

the action of the complete GSO projector can be rephrased as

(=DFIQR30%, +)rr = —(=1)F|QR30F, +) gr = —i|QR30%, =V gr, (C.10)
(—1)F|QR50%, =V rr = — (=) |QR30%, =) pr = i|QR30%, +)rr. (C.11)

GSO invariant states are given by

QR;0%) = |QR30") ysns + [QR30%) ki,
OR30") vsnvs = [QR30%, +)nsns — [QR30%, =) nsns, (C.12)
’QRg@k>RR - ’QRg@k, +>RR - Z‘QR;},@IC, _>RR-

The total crosscap state has to be invariant under the orbifold group (i.e. it
contains the ‘complete projector’):

IC) = Af |QR50%). (C.13)
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C.1.3 Lattice part

From (C.1) we also obtain

, . =1 - ;
(IZ . 627r7,kvi [ZEZ + _(sz _pZR)]> |QR3@k> =0 (014)

2
by inserting the mode expansion (A.2), (A.3). From this we can read off that the
crosscap state |QQR3;0F) is confined to a line on T} which is tilted by the angle
—mkuv; relative to the real axis. Finally, conditions on the momenta arise:

P |QOR30F)
(P, + i) [OR50")
(Pl + e*™*ip! )| QR O%)

0
0, (C.15)
0

Inserting pr p = P £+ o'W for the compact momenta, (C.15) indicates that on
each T;, there are Kaluza-Klein momenta perpendicular and windings parallel to
the position of the crosscap state.

C.2 Boundary states

Similarly to a crosscap state, the boundary state for a D6-brane at angle m¢ on
T, relative to the X* axis is given by

k. _ ,u ~u 2mip ~1
"P;@am—NBeXP { _E Oé § 6 Oé —nQ g
—2mikv; ~7, —2mip, 1 ~
— E g e ot a, g e al,a

i€{2,3} n

2mikv; ~z
- E E : —€ lafn —n

i€{2,3} n

- ”7 Z wurwu “7 Z €2Wiww£r1;£T

— i Z Ze 27rzkv1wz wz inzefmrigpwz?“djzr
T

i€{2,3} r

S DD DL %) (€.16)

€{2,3} T

|?—‘I

The oscillator moding is the same as for the crosscap. The NSNS vacuum is
again independent of the spin structure 7, and the vacuum states contain the
lattice contributions.
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Using the analogous equations to (C.12), the GSO invariant boundary state
is given by

|1B,) = Z_: |0, ©"). (C.17)

Discrete momenta exist in the compact directions perpendicular to the position
of the boundary state while windings are parallel.

C.3 Tree channel amplitudes

Using equation (C.13) and (C.17), the tree channel amplitudes read
Kiotar = Kgrr+Kysys = / di(Cle~*"|C),
0

Atotal = ARR"'ANSNS:/ dlZ(B¢|6727rlH|B(pf>, (C.18)

0 0.

Mot = Mg+ Mysys = / di Z ((Cle ™ |By) + h.c.) .
0
14

As we mainly focus on computing the RR exchange in this thesis, we will use
the abbreviation K = Kgzg etc. The normalizations Ng, N are determined from
the Klein bottle and annulus amplitude via worldsheet duality. The following
equation holds

NEZKOL LyLs for k = k',

4sin®(m(k — K')/MINZKEFIL, for k £ K,
(C.19)
where K*#) = KFE*)(2]) contains the oscillator contribution (for notation
see (B.19), (B.20)) and £; = £;({) denotes the lattice contribution for the two
torus 7; listed in table B.1. For Z,3, all |[QR;0%) are extended along the axes

of T, 3 in the case of the A lattice and diagonal to the axes for the B lattice.
Since the D6-branes lie on top of the O6-planes on 753 in our models, the
positions of the O6-planes can be read off from figures 2.4 and 2.5. All |QR;0%)
have the same relative orientation with respect to the tori 753, hence they all
provide the same lattice contribution. All choices AA, AB, BB lead to consis-
tent models. The situation is different for Z,¢. In these models, all \QR3@2k>
have the same orientation relative to the lattice while all |QR3;02**1) have the

other possible one. |QR3;0%) on the lattice A gives the same contribution as
|QR30%+1) on B and vice versa,

(QR30% e 2™H|OR,0F) = {

(C.20)

(QR30%|e2mH |OR,02) 2LaLE for AB,
+{QR;0%+ | 27H | OR @2k +1) L% + L% for AA/BB.
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By modular transformation from the loop channel, one recovers the correct result
for AB. But for AA or BB, the loop channel amplitude gives (4£% + £3) for
Z, and (L3 + 9L%) for Zg as can be read off from table B.1. This means that
only the AB-lattice is consistent with worldsheet duality.



Appendix D

Chiral D6-brane spectra

In this appendix we list the fermionic groundstates of section 2.2.1 and 3.1.2 and

the chiral spectrum for the D6-brane model in section 2.3.2.

Fermionic states on 1? x T/Zy,

| on 7% | on T'/Zy, | state

T
2 mass

chirality H

S

Ap =0

kE
£ =0

0) &

QMQ —| =

Yot510) k

R (P

HHQMQ

Ap =

Nl

0) &

Y0¢ol0)r

Ap #0

0)r

Yot5|0)k

Yotsl0)k

[

Y5510}k

HQQH

Ap #0

IND [

0)r

(o] | Jew] Feo) Neo) Hev)l | Heo) Nen) | Feo) Nev)l Bev) Hev) Hen) Rew) Nevl Ha]

w(()]wlwa’(»R

>
AS)

—~

| || | | 9| || =) || S| | | | | 9| | B

~—

Table D.1: Fermionic groundstates for the open string sector of D6-brane models.
The last but one column denotes the Z, eigenvalue of the corresponding massless
state. The last column denotes the Zj eigenvalue for D8-brane models where

a = e2mi/3,
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Chiral spectrum for intersecting D6-branes, Ex. 2, Part 1

mulf]Q1]Q2]Q5]Q4]|Q5]Qs [ Q7] Qs Q0| Q10| Q1 Q2| Q3] Q4| Q5 Qs

rep.

<t <t | < — —
< < < — —
[N — N — — —
[aN] — <+ N — o — — —
N N[~ o~ — — — N [N
— — — —
— —
— —
— —
— —
— —
— — —
N — — — —
[aN] — — — — —
N — — — — —
[aN] — — — — —
O N NN NN N NN NN [0 O 0o oo 28828322
e N W N Y e e e e i e e e T | ren T s T e S e N N S I T I N i S N ey
— o = e | o [ = = = NN N N NN o~ o e o o o o o e o o
R o N QS R S S D B [ S T S R RN R S S N S o T S o o o U I I
T~ T e e R~ -7 QR Nl e el i e [ S R T N et Rl e S B T TR Qs i R L RV T
— e o o e | I | o o o I o o = e = o o oA o o o o e — —
M =N = A== N = o N = = I = e o = I~ o~ =
37 — D = o~ = ,37 — 37507 S L e — _37 e I [ e S e S~ i A b A A
S N S e e S e e e N e e e e e e | N N e S S e e e e e e e e e e e e e S N
S = =) ~ - S
— — a [a] o A
— — — — — -
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Chiral spectrum for intersecting D6-branes, Ex. 2, Part 2
‘ H rep. bU1ﬂ‘Q1‘Q2‘Q3‘Q4“Q5 ‘QGHQ?‘ QS‘Q9‘Q10HQ1‘Qz‘@3‘@4‘@5‘é6
1373, 1, ;1,0 3 |-1o]oJofoJofolo]zlo [-1-3-1o0]o[1
(1,3,1,1;1,1)| 3 [ o|-1fo]ofo]ollo]o]o|1|-1-31|0]0]|-1
(1,1,3,1;1,1) 3 [ olo|-ofo]o|lt]o]o|o|-3-10-11]0
(1,1,1,3;1,1) 3 [ olo|o|-1fo]ollo]1]o]|0|-3-10]|1|-10
1371(3,1,1,1;1,1)| 5 |~1{o|o]ofo]ollo]o|o|-1|-13|-10]0]1
(1,3,1,1;1,1)| 5 | o|~1{o]ofo]ollo]o|-10|-13|1]0]0]|-1
(1,1,3,1;1,1) 5 |o|o|-1fo]olofo|=tlo|o|3|-1o0ol-11]0
(1,1,1,3;1,1) 5 [ o|o|o|-1fo]o|-1]0]o|o|3|-10|1|-1]0
23U ||(1,1,1,1;2, 1) 2 (0[O0 [0 |0| 1|01/ 0|0O]0O|=301]-30(=30
(L1,1,5;2, ) 2 |0[0[0|0{1]{0|=10|0]0|3][0]|=30|=50
(1,1,1,1;2,1) 2 o |o|o]o|=1lo]lo]1]o]|0|-30|3]0]3]0
(1,1,1,1;2,1) 2 [ o|o|o]o|=1/o]lo|=1]o]|0|3]|0|3|0]5]0
(1,1,1,1;1,2) 2 O[O [0 |0|O|1})O|O0O|1]0|0|=30]-30|-3
(1,1,1,1;1,2) 2 O[O [0 |0|O|1})0O|0|-1JO||0[3]0[=3/0|-5
(1,1,1,1;1,2), 2 | 0|0 |0|O| O |-1f0]O |01 [0|-30[3|0]3
(1,1,1,1;1,2) 2 [ ofo|o|ofo|-1lo]o|o|-1[o|3|0[3]0]5
23T |(L,1,1, 52,0 L |o]ojoloft|ofo|o|~1o]o|3]=3 0 4-1
(1,1,1,1;2,1) 1 |o|o|o]o|=1/ollo]o]o|-1]0|3|3|0]4]1
(1,1,1,1;1,2)) 1| ofofojofo|1]-1o0|o|o0o[3]|0]|0[-3-1-4
(1,1,1,1;1,2) 1 [ o|o|o]ofo|-1o|-1{0o]|0|3]|o|0o|3]|1]4
33'U|(1,1,1,1;1,1)[16 [ 0|0 |00 O|O|1[1]0|0O|-6/0[0][0]0]O0
(1,1,1,1;1,1)|16 | OO |O|O(fO[OfO|O|1]1[0]|-6{0[0]|0]O0
(1,1,1,1;1,1) 6 | O|0|0O[O(|O|O[=20]|0]06]0[0|0]|=2/0
(1,1,1,1;1,1) 6 [o|ofolollo|o]ol-2lo]o|l6lo]ojol2]0
(1,1,1,1;1,1) 6 [o|ofolollofo]olol-2ollo|l6|o]o|o0]|-2
(1,1,1,1;1,1) 6 | O|0|O[O(fO[0O|0O]0O]0O]|=2|0[6[|0]0]|0]2
337((L1, L, 1,0 8 [o]ojojofolol—1o]ol-1]3]3[0]0]-1]1
(1,1,1,1;1,1) 8 | O|0|0O[O||O[0|O|=1|—-10|3[3|0]0]|1]|-1
Table D.2:  Chiral fermionic spectrum for (T? x T*/Z,)/QYRs with
(n1,m1) = (1,1), (ng,me) = (1,0), (n3,ms) = (4,1) and lattice aaa in sec-

tion 2.3.2. The resulting gauge group is SU(3)* x SU(2)? x U(1)S.




Appendix E

1-loop diagrams for
O8-plane/D8-brane interactions

E.1 Lattice contributions on (1*/Z3)/QR,

The general form of the lattice sums on T*/Zs for one two torus in the loop
channel is given by (p = R*/d’)

L)ty = Y eomttmtmntnlp, (E.1)

m,neL

Using the Poisson resummation formula

> ) = oy 2 S0 (E2)

f9r a d-dimensional lattice I' and its dual lattice I'* with the Fourier transform
f(p) = [pa dwe*™? f(z) and defining ¢ = 1/kl gives the lattice sums in the tree

channel

LFa)(t) = l%pﬁlm [g‘—Z] (0). (E.3)

For T*/Z3, we thus obtain

Klein bottle:  (£™ £ [1](t) = 63—41% (CYm LYY [16/3)(1),  (E.A)
Annulus:  (£0L%) [2)(r) = %m (VR (43, (E5)
64

Mébius strip: ~ (£PL£™) [2](t) = Ezzw (cHPct’y 116/3](1),  (E.6)
where w = p1po is the volume of the orbifold in units of «’.
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E.2 Oscillator contributions

Oscillator contributions to the 1-loop amplitudes can be expressed in terms of
generalized Jacobi theta functions. The relevant formulas for untwisted sectors
without insertions are the same as for models with O6-planes and D6-branes,
see (B.15), (B.16), (B.17) for the loop channel and (B.19), (B.21), (B.23) for the
tree channel. In addition, an insertion of ©% in the trace leads to

0
Klein bottle: K® = 26 ) (E.7)

Annulus: A(]Z) =1

H : =~ ), (E.8)

L] o]
Mobius strip: M) — je2mie 772 ;Z H klvi (t — %) (E.9)
14207 .2 1
ool

By modular transformation to the tree channel, one obtains contributions from
oscillators in the ©F twisted sector,

0
Klein bottle: K% = H : (20), (E.10)

7,:2,319|:2 jk”i
o] w[ 2] e[
Annulus: flgz): [2} [AJ H [ " }(ZZ), (E.11)
I
a+Ae 2

Mobius strip: ME) =



Appendix F

Tree channel results for
(T? x T*)73)/QOR,4

F.1 Crosscap states

The crosscap conditions for the QR -model on T*/Z;3 where the reflection does
not act are given by (i = 2, 3)

(X} R(0,0) = O X} (0 +7,0)] [QR,©F) =0, (F.1)
X n(0,0) = O X (o + 7,0)] [2R,6F) = 0. (F2)

Inserting the mode expansions (A.2), (A.3) gives the following constraints on
T4/,

[p + 627r7,kv1pz ]
[p + 6—2mkvzp ]

[p 4 627”]%’])7' ’QRl@k> = 07 (F3)
[pR + 6727rzkv1pL:|
[OQZ“ + el (2kv; — ZfT
[ai + em( kal_s)dzg]
[QR.6F) = 0. (F.4)

=0 wi(2kv; — )
[047,, +e ’ )aT

|:C~YZT + emt wi(—2kv; — s)aZ:|

S

[

The fermionic worldsheet coordinates provide a similar set of constraints.

The set of equations (F.3) states that for £ = 0 windings along all four
directions of the orbifold occur while for £ # 0, only Kaluza-Klein momenta
and windings from the first two torus 7} contribute as discussed in the case of
O6-planes in appendix C.1. The equations (F.4) are only mutually consistent if

104



F. Boundary states 105

r € L+ 2kv;, s € Z — 2kv,;. Using the notation n € Z , r € Z(+1/2) for the R
(NS) sector, the oscillator constraints can be rewritten as

aiz v; + (_1)ndlnf v;

[ o et ] QR0 n) =0, (F.5)
Oy ok, + (_1) O i 9k,

wi—&—kai + Z.ne_mrd;ir—ﬂcvi
3’72kvi + ineim—rﬁ;ir+2kvi

QR 0%, 1) = 0. (F.6)

A solution to these constraints is provided by

QRO ) = NP exp { — Z %a‘ind‘in — Z (=1) al,al,

n
n n
n n _
B )" 1 1 (=" ; -7
n a_,0_, n O‘—n+2kv¢a—n+2kvi
n i€{2,3} n
no_
3 (=" ;
n a7n72kvia7n72kvi
i€{2,3} n

_ ”7 Z efim"wﬁTJ)ﬁr o ”7 Z efiﬂrwileiT
—1 n Z e_imnqu)zrqj)zr - “7 Z Z e_iﬂr¢ir+2kvi¢~)€r+2kvi

ie{2,3}

- ”7 Z Z eim—rwir72kvid~)ir72kvi } ’07 77> (F7)

i€{2,3} r

The dependence on the lattice is contained in the groundstate |0,n) which only
depends on 7 in the RR sector. The sums contain creation operators only.

F.2 Boundary states

In order to reproduce the amplitudes obtained by modular transformation from
the loop channel, a boundary state at angle 7o on T} relative to the X* axis has
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to be of the form

k. (k) Loy ou 1 2mip 1 =1
lp, ©%; ) = Ny exp - Eoz,na,n—g Semtal,an,
n
1 .
- 2mip 1 1
— E ne o, E g OLnJrzk% 7n+21w1
i€{2,3} n
- E E Oéfn 2]4:1)1 —n—2kv;
i€{2,3} n

- me“ﬂ/?“ —mZe”%l 9L,

- an 27”@77& 77Z)— _“7 Z ZI/J r+2kv1 T+2kv1

i€{2,3} r

- ”7 Z Z wir72kvid~)ir72kvi } ’07 77> (F8)

i€{2,3} T

As for the crosscap states, the groundstate |0,7) contains Kaluza-Klein momen-
tum and winding eigenvalues from T and windings from T*/Zs;.

F.3 Zero modes and GSO invariant states for
the twisted sectors

The GSO projection for the untwisted sector is very similar to the one for models
with D6-branes discussed in appendix C.1.2. For models with D8-branes, it is
more appropriate to define the worldsheet spinors z/); for + = 2, 3 in the following
way,

¥ = % (wh+indi). o= % (65 -+ ind}).

Inserting this definition into the subsequent formulas in section C.1.2 gives the
correct commutation relations, crosscap conditions and zero mode part of the
GSO projection leading to the analogous superposition of states (F.7) and (F.8)
with different spin structures as listed at the end of section C.1.2 involving
O6-planes and D6-branes.

Twisted RR sectors

For k # 0, the zero mode conditions read
vy
by ¢ QRO )Y = 0. (F.10)
¥y
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The zero mode parts of the GSO projection operators are now given by

= [ [ Veur (F.11)

=TT @+ ) = (04t 4ol 4ol) (plagt — gl —yl),
21

n=2,3

= [[v2dr (F.12)

S | (T B T s i N (% A, s
1 21

n=2,3

QR OF, —)0 [(Hw”)( vl)

n=2,3

Using
k
QR 0%, +)° (F.13)

leads to the action of the zero mode part of the GSO projector on the ground-
states

(~D)FIORO%, 1)° = —(~1)F|QR,0F, +)° = i|QR,OF, —)° | (F.14)
(-D)F|OR,0%, —)" = —(-1)F|QR,0",—)" = —i|OR©", +)° . (F.15)
These relations carry over to the excited states. Thus,

QR 0% +) ., +i|QROF, =), (F.16)

is invariant under Pggo defined in (1.35). The computation directly carries over
to the twisted boundary states.



Appendix G

Low energy spectrum for
(T2 x T*/Z3)JOR,

G.1 Bosonic states

The lightest mass eigenstates are distinguished by their © eigenvalues. Defining
o = e*™/3 the lightest bosonic states between D8, and D8,-branes at angle Ay
on 17 are listed in the table G.1. The fermionic states can be extracted from
table D.1 by considering only states with k/M = 0.

Bosonic open states of T2 x T*/Zj
on T? | state 2 mass? | Zs
Ap=0 1/1/1% 210) 0
¥h150) 0 |1
wif 2|0> 0 o
w%’f 210) 0 a’
Ap # 0| ", ,|0) Ap | 1
wlAcp—l 210) | —3Ap 1
wlfA(pfl 2100 | 3Ap 1
Vpl0) | 38¢ | o
Y21 50) Ay | o

Table G.1: Bosonic open mass eigenstates of the (T2 x T*/Z3) /YR, orientifold.
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109

G.2 Chiral spectra of examples 2a and 2b

In this appendix, we list the chiral spectra of the left-right symmetric examples

2a and 2b with intersecting D8-branes in section 3.4.3 and 3.4.4.

Chiral spectrum for intersecting D8-branes, ex. 2a

| Imult[|SU(3) x SU2); x SU(2)r x SOB8)[|Q1|QLQLQLQ2|Qs 1] @ | Q"
ABA|| 2 (3,2,1,1) —11/0(0|0| 1/3|5/3|1/4
2 (3,1,2,1) 110]1]0|0]|—-1/3]-5/3]1/4
ot 1 (1,2,1,8) 0|-10(0]0f) O | —-1|-1/4
1 (3,1,2,1) 1{0|-140|0|-1/3]1/3|-1/4
o? 1 (1,1,2,8) 010|=1{0]0| O 1 |-1/4
1 (3,2,1,1) —1-10]0|0| 1/3|-1/3—-1/4
ACQC|| 2 (3,1,1,1) 110[0|-10|—-4/3|—-2/3]—-1/2
2 (3,1,1,1) —1/0|0]0|-1|| 4/3 |2/3|-1/2
ot 1 (1,1,1,8) 0(0j0(1]0| 1 0 |1/2
1 (3,1,1,1) =100 [0 |1]-2/3]2/3|1/2
o? 1 (1,1,1,8) 0|{0|O0|O|1|) —-1] 0 |1/2
1 (3,1,1,1) 1{0(0]1|0|2/3|-2/3]1/2
BB'a®| 2 (1,2,2,1) Of1{1(0(0| O 0 [1/2
ol 1 (1,1,1,1) 0—=2(00]0f O | =2|-1/2
o? 1 (1,1,1,1) 010(=2/0]0| O 2 |-1/2
CC'a 2 (1,1,1,1) 010]0|=1|=1 O 0 | -1
ot 1 (1,1,1,1) 010(02]0| 2 0 1
o? 1 (1,1,1,1) 0(0j0(02| -21]0 1
BC'a’| 2 (1,2,1,1) 0|—-10|-1]0| -1 | —1|-3/4
2 (1,1,2,1) 010|-1/0]-1| 1 1 |-3/4
ol 1 (1,2,1,1) O|{1|0|O0|1| —-11] 1 |3/4
o? 1 (1,1,2,1) ojof1ry1jof 1 |—-113/4
Table G.2: Chiral fermionic spectrum for example 2a with intersecting
D8-branes. The D8-brane configuration and anomaly-free U(1) charges are

recorded in (3.54) and (3.55).



110 G. Chiral spectra of examples 2a and 2b

Chiral spectrum for intersecting D8-branes, ex. 2b
| [mult.] SU3) x SU(2) x SU2)r x SO(8) [|Q4]Q5|Q5/Qc]Q5 1| Q']
ABa’| 2 (3,2,1,1) 11100 1/3]1
2 (3,1,2,1) 1{0[1]0|-1/3]-1
al 1 (1,2,1,8) —1101]0 0 |—1
1 (3,1,2,1) 1(0|-1/0(-1/3]1
a? 1 (1,1,2,8) 0[—1/0 0
1 (3,2,1,1) —1|-11 00| 1/3 |-1
BB'a°| 2 (1,2,2,1) O[{1(1]0 0 |0
al 1 (1,1,1,1) 0(—2{0]0 0 |—2
a? 1 (1,1,1,1) 0[0(-2/0 0 |2
BCa®| 2 (1,2,1,1) O(—-1f0 |1y -1 1|1
2 (1,1,2,1) 00 |=1|—-1|| 1 |-1
al 1 (1,1,2,1) 010111 -3
a? 1 (1,2,1,1) 0]1 1] —-113

Table G.3: Chiral fermionic spectrum for example 2b with intersecting
D8-branes. The D8-brane configuration is given in (3.56) and the anomaly-free
U(1) charges are specified by (3.57).
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