HOPF-GALOIS EXTENSIONS

SANATH DEVALAPURKAR

Let \mathcal{C}_n be a K(n)-algebra in p-local stable homotopy theory. \mathcal{C}_n can then be considered as a wedge of the K(n)s, i.e., $\mathcal{C}_n = K(n) \vee K(n) \vee \cdots \vee K(n)$. Consider a morphism $K(n) \to \mathcal{C}_n$ - it is easy to see that any map $\mathcal{C}_n \bigwedge_{K(n)} \mathcal{C}_n \xrightarrow{\mathcal{C}_n \bigwedge_{K(n)} \beta} \mathcal{C}_n \bigwedge_{K(n)} \mathcal{C}_n \bigwedge_{K(n)} \mathcal{C}_n \xrightarrow{\mu \bigwedge_{K(n)} \mathcal{C}_n} \mathcal{C}_n \bigwedge_{K(n)} \mathcal{C}_n$ is always a weak equivalence, and the cofixed points of the K(n)-coaction on \mathcal{C}_n is always (weakly) equivalent to K(n), so that any map $K(n) \to \mathcal{C}_n$ is a K(n)-Hopf-Galois extension. That makes Hopf-Galois extensions of fields in p-local stable homotopy not very interesting.

But can we do something interesting with Morava E-theories, perhaps? Consider any set of maps $K(n) \to \mathbb{C}_n$ for $0 \le n \le i$ (where in each \mathbb{C}_n is wedged exactly k times, regardless of the choice of n), and wedge all of them together. We get a pattern (p.9 of my handwritten notes) which allows us to state that any map $E(i) \to E(i) \vee E(i) \vee \cdots \vee E(i)$, where the E(i)s are wedged (i + k)-times. More generally, we can state that any wedge A_i of K(n)-algebras from $0 \le n \le i$ (where the K(n)s can be wedged any number of times) is a Hopf-Galois extension of E(i), with essentially the same method of proof.

What we'd like to do is extend this to stable ∞ -categories, because they're in essence the ∞ -categorification of spectra. (This is the same reasoning used in my notes on K-theory and unital ∞ -operads ([Dev]).) So we'll first do soemthing simple and define Morava K-theories in the stable ∞ -context. Let **DeCat** denote the left adjoint to ∞ -categorification, and let \mathcal{C}_{∞} be a stable ∞ -category. If **DeCat**(\mathcal{C}_{∞}) is a Morava K-theory, then we call \mathcal{C}_{∞} a Morava K-theory in "p-local" Cat $_{\infty}^{\text{Ex}}$. The statements that hold for Morava K-theory also hold for this Morava K-theory. One can analogously define Morava E-theory, I guess, with similar statements holding true.

Maybe one can use Goerss-Hopkins Obstruction Theory to understand HG extensions for general \mathbf{E}_n -algebras, because we have HG extensions for \mathbf{E}_1 and \mathbf{E}_{∞} -algebras. I'm not sure, but I think the best person to ask would be Aaron Mazel-Gee. (I'm trying to develop my own kind of GHOsT, like what Aaron is trying to do/has already done, but I've just began.)

References

[Dev] Sanath Devalapurkar. K-theory and morita theory. Available upon request.

Date: December 2014.