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1 Introduction

It is a classic theorem of Conner and Floyd [CF] that complex bordism de-
termines complex K-homology. That is, the map

induced by the Todd genus MU — K is an isomorphism of K, modules for
all spectra X. See [St] for descriptions of all the bordism theories used in
this paper. The Conner-Floyd theorem was later generalized by Landweber
in his exact functor theorem [Lan]. Conner and Floyd also prove symplectic
bordism determines real K-theory:

MSp, (X) @msp, KO — KO, (X)

is an isomorphism of KO, modules for all X.

The maps MU — K and MSp — KO used by Conner and Floyd were
extended to maps MSpin® — K and MSpin — KO by Atiyah, Bott, and
Shapiro in [ABS]. Recall that Spin(n) is the 1-connected cover of SO(n) and
Spin®(n) is another Lie group derived from Spin(n) and S*. The relevant
property for our purpose is that a bundle is orientable with respect to KO
(resp. K)-theory if and only if it is a Spin (resp. Spin®) bundle. Thus this is
the natural place to look for an isomorphism of Conner-Floyd type.
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We should note, however, that Ochanine [Och] has proven that

is not an isomorphism. The problem is that the lefthand side is not a homol-
ogy theory. There is no known exact functor theorem for any other bordism
theory except for those derived from MU.

The purpose of the present paper is to prove

Theorem 1 The maps
MSpin, (X) @mspin, KOx — KO(X)

and

MSpZTLC*(X) ®M5pmc* K, — [X;(X)

induced by the Atiyah- Bott-Shapiro orientations are natural isomorphisms
of KO. (resp. K.)-modules for all spectra X .

Spanier-Whitehead duality then shows that Theorem 1 is also true in
cohomology, if we assume X is finite.

The real case of Theorem 1 fits in with the general philosophy that at the
prime 2, one should use covers of the orthogonal group to replace the unitary
group: i.e., MSO, MSpin, MO< 8 >, etc. instead of MU. At odd primes,
KO and K are essentially equivalent, as are MSO and MU. But at the prime
2, KO is a more subtle theory than K, and MU cannot detect this, though
Theorem 1 says MSpin can.

There is another cohomology theory exciting much current interest: el-
liptic cohomology [Lan2]. This theory is ve-periodic, unlike KO which is
vi-periodic. (See [Rav] for a discussion of v,-periodic cohomology theories.)
However, elliptic cohomology is currently only defined after inverting 2. One
then applies the Landweber exact functor theorem to get elliptic cohomology
from MU. One might hope, in line with the philosophy above, that one could
define elliptic cohomology at 2 by using a cover of the orthogonal group, most
likely MO< 8 >. This idea is due to Ochanine [Och2]. It has been carried
out by Kreck and Stolz in [KS], but using MSpin. The resulting theory is
not wvy-periodic at 2 however. Unfortunately, there is no known analog for
MO< 8 > of the Anderson-Brown-Peterson splitting (see below) for MSpin
which is crucial in our proof of Theorem 1.

Our proof of Theorem 1 is very algebraic in nature. A hint that Theorem
1 might be true is provided by a result of Baum and Douglas [BD]. They give
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a geometric definition of K (resp. KO)-homology using MSpin® (resp. Spin)
manifolds. One might hope that their work could lead to a more geometric
proof of Theorem 1, but we are currently unable to construct such a proof.

Instead, we prove Theorem 1 by proving it after localizing at each prime.
Essentially all of the work is at p = 2, where we have available the splitting of
MSpin and MSpin® due to Anderson, Brown, and Peterson [ABP]. We recall
this splitting in section 2. In section 3, we prove that Theorem 1 is equivalent
to showing that L;MSpin (resp. L1MSpin®) determines KO (resp. K). Here
Ly is K-theory localization. See [Rav] or [B] for a discussion of Ly. Section 4
contains a lemma, which is at the heart of our proof, giving conditions under
which a ring spectrum R determines a module spectrum M, so that

R.(X) @r, M. — M..(X)

is a natural isomorphism for all X. The essential idea is to resolve M as an
R-module spectrum. We apply this lemma in section 5, completing the proof
in the complex case. In the real case, however, the lemma only tells us that
MSpinAM (2") determines KOAM (2"), where M(2") is the mod 2" Moore
spectrum and n > 1. Section 6 is devoted to showing that this is actually
enough to prove Theorem 1. Finally, the last section discusses odd primes.
In the real case, Theorem 1 is obvious at odd primes. The complex case is a
little more difficult, but the classical method of Conner and Floyd works.
The authors would like to thank Haynes Miller, Mark Mahowald, and Hal

Sadofsky for many helpful discussions.

2 The Anderson-Brown-Peterson Splitting

Throughout this section, all spectra will be localized at 2 unless otherwise
stated. We recall the work of Anderson, Brown, and Peterson [ABP] on
MSpin and MSpin®. An exposition of their work containing the details of
the MSpin® case can be found in [St]. In addition, an intensive study of
the homological aspects of the Anderson-Brown-Peterson splitting has been
carried out by Giambalvo and Pengelley [GP].

Let ko (resp. ku) denote the connective cover of the real (resp. complex)
K-theory spectrum KO (resp. K). Also, let ko <2>denote the 2-connective
cover of ko. Let HZ /2Z denote the Z /2Z-Filenberg-MacLane spectrum. An-

derson, Brown, and Peterson construct an additive splitting of MSpin (resp.



MSpin®) into a wedge of suspensions of ko, ko<2>, and HZ/2Z (resp. ku
and HZ/2Z ).

We will describe their results in the real case and later indicate the simpli-
fications that occur in the complex case. Let J be a partition: that is, a possi-
bly empty multiset of positive integers, such as {1,1,2}. Let n(J) =3¢, 7,
so that n(0) = 0 and n({1,1,2}) = 4. Anderson, Brown, and Peterson con-
struct maps 7/ : MSpin — KO. If J = {n} we denote 7/ by 7", and we
denote 7, which is the Atiyah-Bott-Shapiro orientation, by #°.

These maps interact with the multiplication on MSpin and KO by an
analogue of the Cartan formula for the Steenrod squares. One way to describe
this is as follows. Let P be the set of partitions, and consider the set of
formal linear combinations Z[P]. We can make this into a ring by defining
a multiplication on the set of partitions by set union, and then into a Hopf
algebra by defining A({n}) = Y7 o{n—k}@{k}. Suppose A(J) =3 J'@J".
Let

¢ MSpin A MSpin — MSpin ~ and  p' : KO A KO — KO

denote the ring spectrum multiplications. Then the Cartan formula says that
u= (7" A7),

Theorem 2 ([ABP]) 1. Suppose that 1 & J. Then if n(J) is even, 7’/
lifts to the 4n(J)-fold connective cover of KO, X" ko, If n(J) is odd,
7 lifts to the 4n(J) — 2-fold connective cover of KO, S ~4fo <2 >,

2. There exist a countable collection z, € H*(MSpin; Z/2Z) such that

H 7! % sz : MSpin — H 27D Lo

1¢J k 1¢Jn(J)even

< JI ="V *ko<2> x [[ % * HZ/2Z
1¢J,n(J)odd k

is a 2-local homotopy equivalence.

Note that, though we have used the product symbol above, the product
and the coproduct, i.e. the wedge, are the same in this case. Note as well
that we use the same notation for 77 and the lift of 77 to a connective cover
of KO. Let us denote the left inverse of 77 arising from the above theorem by
p’. Note that p/ is only defined if 1 ¢ J, and if 1 & I we have nlp’/ = §; ;- 1.
The fact that the 7/ with 1 € J do not appear in this splitting, whereas they



do appear in the Cartan formula, makes the real case more difficult than the
complex case.

There is a similar splitting in the complex case, except partitions con-
taining 1 are included, and every 77 lifts to the 4n(.J)-fold connnective cover
of K, ¥¥ky. The analogue of the Cartan formula remains true.

Note that the above splitting is not a ring spectrum splitting, nor is
it even a ko-module spectrum splitting, as a low-dimensional calculation
verifies. Mahowald has asked if the above splitting can be modified to make
it into a ko-module spectrum splitting [Mah]. If so, the proof of Theorem 1
could be made much simpler. However, Stolz has recently proven that there
is in fact no way to do this ([KS]). Perhaps this helps explain why our proof
of Theorem 1 is so complicated.

3 K-Theory Localization

In this section we study the K-theory localizations of MSpin and MSpin°®. Let
p € mgko be the periodicity element, and let v = p°p € 7gsMSpin. We also use
v for the complex analogue in moMSpin®. Our main objective in this section
is to show that v~!MSpin and v~'MSpin® are K-local, which will imply that
it suffices to prove Theorem 1 after applying L; . We will stick to the real
case, leaving the obvious modifications needed in the complex case to the
reader.

To prove this, we will need to understand multiplication by v. The fol-
lowing two lemmas provide some of this understanding.

Lemma 1 Let J be a partition. Then all 7/(v) = 0 except for x°(v) = p
and possibly 7' (v) and 7' (v). These latter two are both even as elements
of the appropriate homotopy group. Further, v maps to 0 under the forgetful
homomorphism to MO.

Proof: If 1 ¢ J and J # 0, the splitting shows 77 (v) = 0. Stong shows
in [St] that, if 1 € J, 77 lifts to the 4n(J)-connective cover of KO. Thus, for
dimensional reasons, the composition

0 o0 o
S® — ko — MSpin — KO

where the first map is the unit, is null for J # (). Recall that p denotes the
periodicity element, and denote the image of the Hopf map n by a. The image



of the unit on positive dimensional homotopy groups is {p"«, p"a?|n > 0}.
Indeed, it is clear that the image must be contained in this set, and suitable
elements from the image of J hit these elements. So we have 77/p%(p"a) = 0
for all J # 0. But « is the image of 5 under the unit, so 5 - (7/p%") = 0.
This can only happen if 77p°p" is even for all J # 0.

In particular, 7/v is even for all J # (. Anderson, Brown, and Peterson
[ABP] show that ch(77(z) @ C) = pyz+ (higher terms), for + € MSpin*(X).
Here pjx is the Pontrjagin class of x corresponding to J. Thus the pjv are
also even for J # . Since p; and p;; = p; determine oriented cobordism in
dimension 8, v goes to an even element in MSOg, and thus goes to zero in
MOs. QED

Our plan for proving that v='MSpin is K-local is based on Bousfield’s
identification of K-local spectra [B]. Let A : ¥¥M(2) — M (2) be the Adams

map on the mod 2 Moore spectrum. We will show that
LA A:MSpin A X¥M(2) — MSpin A M(2)

becomes a homotopy equivalence after inverting v. To do this we need the
following lemma.

Lemma 2 Let [ C 7. (MSpin A M(2)) consist of those o with (77 A 1)a =0
for all J with 1 & J. Then I is precisely the sub-MSpin, -module of v-torsion
elements.

Proof: First note that if (77 A 1)a = 0 for all J with 1 ¢ J, then in
fact (7 A1)a = 0 for all J. This follows from the Anderson-Brown-Peterson
splitting. Indeed, such an o must factor through a wedge of HZ/2Z ’s. Since
KO AM(2) is K-local, any map from HZ/2Z to KO AM(2) factors through
L1HZ /27 which is contractible by the results of [AH]. This proves that
(77 Al)a = 0 before lifting 77/ to a cover of KO. But the map from a cover of
KO smashed with M(2) to KO smashed with M (2) is injective on homotopy,
so in fact (77 A 1)a = 0 after lifting the 77 as well.

Now suppose a € I. Find a partition J’ with 1 ¢ J’ such that the power
of 2 dividing (77" A 1)a is minimal (among J with 1 ¢ .J.) Then, using the
splitting, we can write

a=2"3 (p N1)(as) + 8

1¢J



where «ay is not divisible by 2 and g € [I. It is then easy to see using the
previous lemma and the Cartan formula that

(77" A1) (va) = 2"pary mod 27T

Continuing in this way, we see that via is never 0.
Conversely, suppose a € I. Consider the exact sequence of MSpin, mod-
ules arising from the defining cofibration for M (2):

MSpin, J, T(MSpin A M(2)) 2 MSpin,_,.

These maps commute with the 7/ so 7/(ga) = 0 for all J. Thus ga is in
the analog of I for MSpin. Anderson, Brown, and Peterson call this set I,;
i.e. I, is the subset of MSpin, consisting of those classes v with 77~ = 0 for
all J. Now [, is an ideal mapped monomorphically to MO, [ABP], and v
maps to 0 there, so g(va) = vg(a) = 0. Hence there is a # with f(5) = va.
Then f(773) = (7 A1)(va) = 0 for all J. Since the kernal of f consists of
the even elements, we must have 773 being even for all J. Thus 3 = 2v + 6
where § € I.. Thus v’a = f(vf) = f(2vy) =0. QED

Now we can prove
Theorem 3 v~ 'MSpin and v='MSpin® are K-local.
Proof: According to Bousfield [B], it suffices to show that
LA A7 (v""MSpin A M(2)) — meys(v "MSpin A M (2))

is an isomorphism. Since 7.(v™'MSpin A M(2)) = v~ 7. (MSpin A M (2)), we
must prove the following two facts for a € 7.(MSpin A M (2)).

L. If (1 A A)ar is v-torsion, so is a.
2. There is a # and an n such that (1 A A)f — v™« is v-torsion.

Now 1 A A respects the Anderson-Brown-Peterson splitting, and on the
homotopy of a cover of KO smashed with M(2), 1 A A is multiplication by
p. Thus we have

(1A AP A L) = (o7 ALY(LA A)e = (7 A 1)(po).
Using the splitting, write

a=Y (p" A)as(mod I).
1¢J



Then
(LA A)a=>(p! Al)pas(mod I).
1¢J
By the preceding lemma, this cannot be v-torsion unless each pay; = 0. But
multiplication by p is injective, so each ay = 0 and « € I, so « is v-torsion
as well.
We now prove the second fact above. Again, write

a=>(p’ AN)ay(mod I).

Consider the exact sequence of MSpin, modules
0 — MSpin, ® Z/2Z Y 7, (MSpin A M(2)) ¥ Tor(MSpin,_,) — 0.

This sequence arises from the defining cofiber sequence for M(2), so f and
g come from maps of spectra, which we also denote f and ¢. Note that

(LA f)(L) €T and (1 Ag)(I) C I.. Thus

(LA g)(a) = 2o A L)(LA g)ay(mod L),

Since we are in a Z/2Z vector space, Lemma 1 and the Cartan formula imply
that

(1 A g)(va) = S(p” AL)(L A g)pas(mod L.).

This is equivalent (mod L) to (1 A g)(1 A A);(p? A 1)ay. We saw in the
proof of Lemma 2 that v annihilates .. Thus

(1Ag)(v2a)=(1Ag) (1A A Z(p‘] Alay.

If we let o/ = 3,(p? A 1)ay, we find that there is a 3 such that
(1A f)f=via—(1AApd.

Write
B=> (p" A1)Bs(mod L).
J

Again, we are working mod 2, so

(LA D)©B) = 30" AD(LA P)pss = (LA AYLA f)f(mod L),

J



Thus (1 A f)(v8) — (1 A A)(L A f)3 is v-torsion. Hence we get that
v’a— (1A AW + (1A F)B

is v-torsion, completing the proof. QED

Note that if the Anderson-Brown-Peterson splitting could be made into a
ko-module spectrum splitting (which it can not be [KS]), Theorem 3 would
be obvious since then we would have v~ 'MSpin ~ Vigs KO. It can be shown
using [St] that the homotopy groups of v"'MSpin are what they should be
for such an equivalence to hold.

Corollary 1 For any ring spectrum R,
(MSpin A R).(X) D gassyin 1), (KO A R), =

(LaMSpin A R)(X) @ tysssyin n ), (KO A R)..

Also
MSpZTLC*(X) ®M5pmc* K, = LlMSpZTLC*(X) ®L1M5pin°* K..

Proof: Since p is a unit in (KO A R ).,
(L1MSpin A R) (X) @(z,Mspin A r), (KO A R), =

(U_I(LlMSpiH A R’))*(X) ®(U_1(L1M5pin/\ R)), (KO A R’)*

Similarly,
(MSpin A R)_(X) @mspin A ), (KO AR), =

(v™H( MSpin A R)),(X) @(=1( mspin 1 By, (KO A R),.

Applying Theorem 3 and recalling that direct limits commute with smashing
and applying Ly, we get

v~ (L1 MSpin A R) ~ v~ (L;MSpin) A R) ~ L;(v"'"MSpin) A R

~ v~ (MSpin) A R ~ v (MSpin A R).QED



4 Presentations of Module Spectra

In this section we prove a general lemma that is at the heart of our argument.
Suppose R is a ring spectrum, M an R-module spectrum. There is a natural
transformation

Far: Ru(X) ®@r, M, — M..(X)

obtained as follows. Let f: S™ — X A R be an element of R.(X), and let
g:S" — M an element of M.. Then Fy(f ® g) is the composite

STt = §MmAST - XARAM — X A M,

where the last map is the structure map of M. There is a similar map in
cohomology. We want to know under what conditions Fy; is an isomorphism.
The following lemma partially answers this question. The idea is to find a
presentation of M as an R-module spectrum.

Lemma 3 Suppose M, N, and P are R-module spectra with Fp always sur-
jective, and Frn a natural isomorphism. Suppose there are R-module maps
dy : P — N and dy : N — M with didy ~ 0. Suppose in addition there are
maps s1 : M — N and sy : N — P with disy and s1dy 4+ dasy homotopy
equivalences. Then Fyy is an isomorphism.

Proof: The map d; induces maps
and P.(X) — N.(X) which we also denote by dy. The same is true for d;. Also

s induces a map N.(X) — P.(X), which we also denote sz, and similarly for
s1. Note that sy does not induce a map R.(X) ®@r, N. — R.(X) @r, P. as
it is not a map of R-module spectra. So we have the following commutative
diagram.

R.(X) @p, P. ZP.(X)
dQl dQl
R.(X) @r, N, 5N, (X)
dll dll
R.(X) @r, M, 2 M, (X)
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First we prove surjectivity. Since dysy : M.(X) — M.(X) is an isomor-
phism, d; : N.(X) — M.(X) is surjective. Since Fx is an isomorphism,
Fydy = di Fiy is also surjective. Therefore, £ is surjective.

Now we prove injectivity. As we pointed out above, dy : N.(X) — M.(X)
is surjective. In particular, dy : N, — M, is surjective. Since the tensor
product is right exact, d; : R.(X) ®@g, Ni. — R.(X) @g, M. is also surjective.

Now suppose @ € R.(X) @gr, M. has Fy(xz) = 0. By the above remark,
there is a y € R.(X) @g, N with di(y) = 2. Then d1 Fn(y) = Fumdi(y) = 0.
Since sydy + dzs2 : No(X) — N.(X) is an isomorphism, there is a z € N,(X)
such that s1dy(z) + d2s2(2) = Fn(y). Then we have

0= leN(y) == dlSldl(Z) + dldQSQ(Z) = dlSldl(Z)

since didy = 0. Since dys; is an isomorphism we have dy(z) = 0. Thus
Fn(y) = dasa(2).
Since Fp is surjective, there is a w € R.(X) @g, P. with Fp(w) = s3(2).
Then
Fndy(w) = doFp(w) = daysa(z) = Fn(y).

Since Fiy is an isomorphism, we have dy(w) = y. Thus
T = dl(y) = dldg(w) =0

and Fyy is injective. QFED

5 MSpin A M(2") Determines KO A M(2")

In this section, we apply Lemma 3 to obtain the result in the title of this
section. We also complete the proof of the complex case of Theorem 1. All
spectra are localized at 2.

We start with the complex case. Take R = N = MSpin©, and let M = ku.
Let d; = 7° be the Atiyah-Bott-Shapiro orientation. Recall that p’ denotes

the right inverse to 77

coming from the Anderson-Brown-Peterson splitting.
Let s; = p° Then d; is an R-module map, d;s; is a homotopy equivalence,
and certainly Fly is an isomorphism.

Now let P = MSpin® AV ;4 S4J) Then Fp is an isomorphism. Define

33 to be 0 on the HZ/2Z summands of R and on the bottom ku summand
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corresponding to J = (. On the other summands, define s, to be the com-
posite

S Dy 5 fu A D B MSpin® A 540 s MSpin© A \/ §4).
J#0

Let 7 : §40) — 24 Ly denote the inclusion of the bottom cell. Then

define dy as the composite

LJ
MSpin® A \/ §7 Y MSpine A \/ 540 ke
J£0 J#£D

J
1/\M>p MSpin® A MSpin® 5 MSpin©.

It is easy to see that dy is a module map, and a diagram chase using the
Cartan formula shows that, for J # 0, 77dys5p7 is a homotopy equivalence,
and wldysep? is 0 for I # J.

Thus we get that the composite

J 7'["]
\/ 24”(‘])ku \/_/; MSlec d252i>51 dy MSlec \/_> \/ 24”(‘])ku
J J

is a homotopy equivalence. The HZ/2Z summands prevent us from applying
the main lemma right away. But L;HZ/2Z = 0 [AH], so if we apply L4,
each of the maps \/ p” and \/ 7/ become homotopy equivalences.

Thus we have proved the following:

Theorem 4
Ly MSpin (X)) @1, mspine, L1ku, — Liku(X)
is a natural isomorphism of Liku, modules.

Invert the periodicity element on both sides of this isomorphism. Then,
since p~tLiku ~ Lip~tku ~ LK = K, we find that

LIMSplnc*(X) ®L1MSpin°* K* - K*(X)

is a natural isomorphism. Combined with Corollary 1, this completes the
proof of the complex case of Theorem 1.

12



The idea above was to shift a ku summand down to a bottom summand
of a shifted copy of MSpin® and then multiply by the bottom cell to shift
it back up. In the real case this works fine for the ko summands but not
for the ko <2 >summands. Even after applying L4, there is no bottom cell:
mol1ko<2>is Q/Z. However, if we smash with a Moore space M(2") the
natural map ko<2> — ko induces a homotopy equivalence

Liko<2> A M(2") — Liko A M(2").

So, let N = R = L;MSpin A M(2") for some fixed n > 1. We need n > 1
so that M(2"), and hence R, is a ring spectrum. Let M = Liko A M(2").
Note that M = KO AM(2"). Indeed, the map between 2 adjacent connected
covers of KO has fiber (a shifted copy of) HZ or HZ/2Z . L4 kills HZ/2Z and
converts HZ to HQ[AH]. Smashing with the Moore space then kills HQ. Let
dy = Lyw® AM(2"), which we will just call 7%, and let s; = p°, using the same
convention. Then d; is an R-module map, d;s; is a homotopy equivalence,
and Fly is an isomorphism.

Let P = R A(Vy S vV, ST =4) where J' runs through partitions
with 1 € J" and n(.J’) even, and J” runs through partitions with 1 & J” and
n(J) odd. Then Fp is an isomorphism.

Define 7" : §420") — [, 24 ko A M(2") to be the inclusion of the
bottom cell of 4"/ ko smashed with the units of L;.5° and M(2"). Similarly,
define (7" ;. S =4 [ 94 ko < 2> A M(2") as above followed by
the inverse of the homotopy equivalence

LS4 0 <25 A M(27) — LS04 ko A M(27).

We can then define the R-module map ds just as we did in the complex case.
We define s, in the same way as in the complex case for the ko summands.
That is, it is the composite

LS o A M(27) 5T R A 54U — P,

Of course it is 0 on the bottom ko summand. On the ko< 2> summands we
just precede the above composite with the homotopy equivalence

LS4 0 <25 A M(27) — LS04 ko A M(27).

Now we must check that dys,+ s1d; induces an isomorphism on homotopy
groups. Look at a particular summand, say a ko<2> summand. Moving

13



the suspension coordinate outside has the effect of dividing by an appropriate
power of the periodicity element. Then s, includes this in by p°. dy then
multiplies this by the bottom class of the ko <2 > summand. We would like
this to simply multiply by the same power of the periodicity element, so that
dysy would just include the ko<2> summand. Unfortunately, the Cartan
formula is a nontrivial sum because 7/ p® may not be 0 on m.(L1ko A M(2"))
if 1 € J. However, the following lemma shows that it is always even.

Lemma 4 Suppose a € m.LikoAM(2"). Then 7/ p°a is divisible by 2 unless
J=10.

Proof: The proof is modeled on the proof of Lemma 1 in section 3. An
Adams spectral sequence calculation shows that

m(Liko A M(27)) = Z/2"Z[y, 3,4, p,p'] /L
where L is an ideal of relations generated by

n°,20,28,0°8 — 2" q,nq, Bq,andg® — 4p.

The degree of n is 1, that of g is 2, that of ¢ is 4 and that of p is 8. The
composition

LiSO A M(2") — Liko A M(27) "2 LiMSpin A M(27) 41 KO A M(2")

where the first map is the unit, is null for J # (). Now the image of the unit
map on homotopy contains the p™n,p"n?, p"3, p"nf3, and 2"~ 1p"q. Therefore
all these classes have 77/p° = 0. We deduce from this that the other classes
must have 77/p° even. Indeed, denote the Hopf map by 5 as well. Then
n(7?p°p") = 7/ p°(p"n) = 0, so 7/ p°p" must be even. A similar argument
using 2 instead of 5 shows that 77/p°p"¢q is even. QED

By the lemma, if we look at the matrix for dysy + s1d; in a particular
dimension, it will have ones on the diagonal and even numbers everywhere
else. This matrix is infinite dimensional because L;MSpin A M(2") is not
locally finite. However, we are working over a bounded 2-torsion group, and
in this case a map with such a matrix must be an isomorphism. Indeed,
iterating such a map eventually prodeces the identity. Thus we have proved

Theorem 5 The map

(LiMSpin A M(27)) (X)) @1y mspin n mr(2my), (KO A M(2M)),
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— (KO A M(2")).(X)

is an isomorphism for any n > 1.
The results of section 3 then enable us to deduce

Corollary 2 The map

(MSpin N M(27)) (X)) @(mspin a M(2ny), (KO N M(27))

— (KO A M(2")).(X)

is an isomorphism for any n > 1.

6 MSpin and MSpin A M(2")

In this section we finish the proof of Theorem 1 in the real case. We need
the following two lemmas, both of which are presumably well-known. We do
not assume our spectra are localized at 2 for these lemmas.

Lemma 5 The identity map of a finite torsion spectrum T has finite order.

Proof: Let DT denote the Spanier-Whitehead dual of T. Then self-maps
of T are in one to one correspondance with homotopy classes of T A DT.
Now T A DT is clearly finite, and a homology calculation shows that it is
torsion. Thus all of its homotopy groups are finite torsion. Q£ D

Lemma 6 [f E is a homology theory such that E, has bounded torsion, then,
for all finite X, E.(X) also has bounded torsion.

Proof: Induction on cells shows that the torsion-free part of 7.(X) is
finitely generated. Taking a minimal set of such generators, we obtain a
cofiber sequence

where T is a finite torsion spectrum. By the previous lemma, xm : T — T'is
null for some m. Consider the exact sequence in E-homology induced by the
above cofiber sequence. By hypothesis, there is an n so that if w € E.(\ 5")
is torsion, then nw = 0. Suppose x € F.(X) is torsion, so Nx = 0 for some
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N. Then h.(ma) =0, so there is a y € E.(V S™) such that g.y = ma. We
claim that y is torsion. Indeed, Na = 0 so ¢g.(Ny) = 0. Thus Ny = f.z for
some z € E (X7!'T). But then mz = 0 so mNy = 0 and y is torsion. Thus
ny = 0 and therefore nmz = 0. QED

We will also need the fact that MSpin, (X)), after localizing at 2, has no
nonzero infinitely 2-divisible elements for finite X. This is true since MSpin,
consists of finitely generated abelian groups, so, by induction on cells, so does

MSpin,(X).

Finally, we need the following lemma.

Lemma 7 If X is finite, there are no nonzero infinitely 2-divisible elements
in MSpin (X)) @ umspin, KOs after localizing at 2.

Proof: As above, consider the cofiber sequence
\/ 5 L x By o\ gt

where T is a finite torsion spectrum. Localize at 2. Then, for some n,
x2" :T"— T is null. Applying MSpin,, we get the exact sequence

MSpin, (\/ S™) 5 MSpin, (X) 2 Ker f—0.
Tensoring this with KO., we get the exact sequence
KO.(\/ 5™) % MSpin, (X) @mspin, KO. % Ker f @uspin, KO. — 0.
Let us rewrite this more economically in a fixed degree as
M5 NP

Here P is all 2" torsion, and M is the 2-localization of a finitely generated
group. Thus M’ = M/Ker ¢ is also the 2-localization of a finitely generated
abelian group, and we have the short exact sequence

0-M NP0

Now suppose = € N is infinitely 2-divisible, so that there is a sequence of
elements x,, € N with g = x and 22, = 2,,—1. Then h(x,,) is also infinitely
2-divisible, but P is bounded 2-torsion, so h(x,,) = 0. Thus z,, = ¢(y,,) for
some y,, € M'. As g is injective, we have 2y,, = y,,_1 so each y,, is infinitely
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2-divisible. But M’ is the 2-localization of a finitely generated abelian group,
so we must have y,, =0, and so z = 0. QFED
We can now complete the proof of Theorem 1 at the prime 2. It is easy
to see that
MSpin, (X) @mspin, KO — KO, (X)

is surjective: indeed, the isomorphism
MSp, (X) @msp, KO — KO, (X)

factors through MSpin, (X') @mspin, KO, since the Atiyah- Bott-Shapiro ori-
entation is an extension of MSp — KO. So it suffices to prove injectivity.
Recall that p denotes the periodicity element in wgko, v = p°(p). Then since
7% 1 MSpin, — KO, is surjective in nonnegative degrees and xp is an iso-
morphism on both sides, it suffices to prove injectivity for elements of the
form @ @ 1, where © € MSpin,(X). We can also assume that X is (the 2-
localization of) a finite spectrum, since both homology functors and tensor
products commute with direct limits.

By the isomorphism of the proceeding section, it suffices to prove that
the image of © @ 1 in

(MSpin A M(27)) (X) @mspina m(2ny), (KOAM(27)),

is nonzero for some n. By the preceeding lemmas, we can choose ¢ so large
that 27 does not divide + @1 € MSpin (X) @wmspin, KO« nor & € MSpin, (X),
and such that x27? kills the torsion in MSpin, (X).

Suppose that x @ 1 becomes 0 after smashing with the mod 22? Moore
spectrum. Then there is an ¢ > 0 such that

vz = ay € (MSpin A M(2%)).(X)

where a € (MSpinAM (2%7)), satisfies 7%« = 0, and y € (MSpinAM (227)).(X).
Let A : M(2%7) — M (2%) be the map which is an isomorphism on the bottom
cell and x27 on the top cell. Then we can choose ring structures on our
Moore spectra such that A becomes a ring spectrum map [Oka]. Thus, in
(MSpin A M(29)).(X), v’z = (1 A N)a)((1 A N)y), and 7°(1 A N)a = 0.

Now consider the universal coefficient sequence
0 — MSpin (X) ® Z/2"Z — (MSpin A M(2")).(X)

— Tor(MSpin,_,(X),Z/2"Z) — 0.
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By choice of ¢, for n a multiple of ¢ the right-hand group is just
Tor(MSpin,_;(X)). Now, X induces a map between these sequences which is
x 2, hence 0, on the right-hand groups. Thus,

(LA XNy € MSpin, (X) ® Z/2Z.

We can therefore lift (1 A Ay to 3y’ € MSpin (X). Similarly, we can lift
(LA XNa to o' € MSpin,. Then in MSpin, (X) we have

v'e = o'y’ 4 272 € MSpin, (X)

and 7%/ = 278. Thus v’z @1 =272 @ 1 + 4’ @ 273. Therefore, 27 divides
viz @1 and hence z @ 1. This is a contradiction, and concludes the proof of
Theorem 1 at the prime 2.

7 0Odd Primes

The purpose of this section is to prove Theorem 1 at odd primes. In this
section all spectra are assumed to be localized at an odd prime p. There is
nothing to prove in the real case, since at an odd prime MSpin ~ MSp.

We follow the method of proof used by Conner and Floyd [CF] to prove

is an isomorphism. Their argument requires us to work in cohomology and
to consider K* as a Z/2Z graded cohomology theory. After we are done,
we can convert back to homology by using Spanier-Whitehead duality and a
limit argument.

Their proof has three steps, as follows.

1. Prove that the map
G MU (X) @mus K* — K*(X)
is surjective by finding a section K — MU, as in Lemma 2.

2. Prove that G is an isomorphism for all X if and only if G is an isomor-
phism for the universal example X = MU.

3. Prove that GG is an isomorphism for X = MU.

18



In the interest of economical notation, let us denote MSpin® by E. We
want to follow this program for

G E(X) Op K — K(X).

The first two steps are the same as in Conner and Floyd. Since the Atiyah-
Bott-Shapiro orientation extends the Todd genus, the composite of their
section K — MU with the natural map MU — E will be a section for
E — K. Step 2 of their argument goes through verbatim from [CF], except
the universal example is now X = E.

For Step 3 we must do a little more work. Recall from [St] that 7.E
is evenly graded and torsion-free as a Z(,) module, as is H*(E;Z,)). Let
E(r) denote the r-skeleton of E in a minimal CW-decomposition. Then
H*(E(r); Zy) is also evenly graded and torsion-free. Therefore the Atiyah-
Hirzebruch spectral sequence for E*(E(r)) collapses. The E* term is
H*(E(r); Z(;)) @ E. This is a free E* module, so there is no room for module
extensions and we have

E*(E(r)) = H*(E(r); Zg)) @ E*.

The sequence H*(E(r); Z(,)) ® E” satisfies the Mittag-Leffler condition, so

there is no lim' term and we have
E*(E) = lim E*(E(r)) = lim (H*(E(r); Z(p)) @ EY)

= lim (H*(E(r); Z(»))) @ E* = H*(E; Z(,)) @ E*

as E* modules. The third equality above holds because E* is a free Z,
module. A similar argument shows

KY(E) = H*(E; Z(,)) ® K
as K* modules. Thus G is an isomorphism for X = E, and the proof of
Theorem 1 is complete.
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