
Spin Cobordism DeterminesReal K-TheoryMichael J. Hopkins1 Mark A. HoveyMIT and Yale UniversityCambridge, MA New Haven, CTJuly 25, 19951 IntroductionIt is a classic theorem of Conner and Floyd [CF] that complex bordism de-termines complex K-homology. That is, the mapMU�(X) 
MU� K� ! K�(X)induced by the Todd genus MU ! K is an isomorphism of K� modules forall spectra X. See [St] for descriptions of all the bordism theories used inthis paper. The Conner-Floyd theorem was later generalized by Landweberin his exact functor theorem [Lan]. Conner and Floyd also prove symplecticbordism determines real K-theory:MSp�(X) 
MSp� KO� ! KO�(X)is an isomorphism of KO� modules for all X.The maps MU ! K and MSp ! KO used by Conner and Floyd wereextended to maps MSpinc ! K and MSpin ! KO by Atiyah, Bott, andShapiro in [ABS]. Recall that Spin(n) is the 1-connected cover of SO(n) andSpinc(n) is another Lie group derived from Spin(n) and S1. The relevantproperty for our purpose is that a bundle is orientable with respect to KO(resp. K)-theory if and only if it is a Spin (resp. Spinc) bundle. Thus this isthe natural place to look for an isomorphism of Conner-Floyd type.1Partially supported by the NSF. 1



We should note, however, that Ochanine [Och] has proven thatMSU�(X) 
MSU� KO� ! KO�(X)is not an isomorphism. The problem is that the lefthand side is not a homol-ogy theory. There is no known exact functor theorem for any other bordismtheory except for those derived from MU.The purpose of the present paper is to proveTheorem 1 The mapsMSpin�(X)
MSpin� KO� ! KO�(X)and MSpinc�(X)
MSpinc� K� ! K�(X)induced by the Atiyah- Bott-Shapiro orientations are natural isomorphismsof KO� (resp. K�)-modules for all spectra X.Spanier-Whitehead duality then shows that Theorem 1 is also true incohomology, if we assume X is �nite.The real case of Theorem 1 �ts in with the general philosophy that at theprime 2, one should use covers of the orthogonal group to replace the unitarygroup: i.e., MSO, MSpin, MO< 8 >, etc. instead of MU. At odd primes,KO and K are essentially equivalent, as are MSO and MU. But at the prime2, KO is a more subtle theory than K, and MU cannot detect this, thoughTheorem 1 says MSpin can.There is another cohomology theory exciting much current interest: el-liptic cohomology [Lan2]. This theory is v2-periodic, unlike KO which isv1-periodic. (See [Rav] for a discussion of vn-periodic cohomology theories.)However, elliptic cohomology is currently only de�ned after inverting 2. Onethen applies the Landweber exact functor theorem to get elliptic cohomologyfrom MU. One might hope, in line with the philosophy above, that one couldde�ne elliptic cohomology at 2 by using a cover of the orthogonal group, mostlikely MO< 8 >. This idea is due to Ochanine [Och2]. It has been carriedout by Kreck and Stolz in [KS], but using MSpin. The resulting theory isnot v2-periodic at 2 however. Unfortunately, there is no known analog forMO< 8 > of the Anderson-Brown-Peterson splitting (see below) for MSpinwhich is crucial in our proof of Theorem 1.Our proof of Theorem 1 is very algebraic in nature. A hint that Theorem1 might be true is provided by a result of Baum and Douglas [BD]. They give2



a geometric de�nition of K (resp. KO)-homology using MSpinc (resp. Spin)manifolds. One might hope that their work could lead to a more geometricproof of Theorem 1, but we are currently unable to construct such a proof.Instead, we prove Theorem 1 by proving it after localizing at each prime.Essentially all of the work is at p = 2, where we have available the splitting ofMSpin and MSpinc due to Anderson, Brown, and Peterson [ABP]. We recallthis splitting in section 2. In section 3, we prove that Theorem 1 is equivalentto showing that L1MSpin (resp. L1MSpinc) determines KO (resp. K). HereL1 is K-theory localization. See [Rav] or [B] for a discussion of L1. Section 4contains a lemma, which is at the heart of our proof, giving conditions underwhich a ring spectrum R determines a module spectrum M, so thatR�(X) 
R� M� ! M�(X)is a natural isomorphism for all X. The essential idea is to resolve M as anR-module spectrum. We apply this lemma in section 5, completing the proofin the complex case. In the real case, however, the lemma only tells us thatMSpin^M(2n) determines KO^M(2n), where M(2n) is the mod 2n Moorespectrum and n > 1. Section 6 is devoted to showing that this is actuallyenough to prove Theorem 1. Finally, the last section discusses odd primes.In the real case, Theorem 1 is obvious at odd primes. The complex case is alittle more di�cult, but the classical method of Conner and Floyd works.The authors would like to thank Haynes Miller, Mark Mahowald, and HalSadofsky for many helpful discussions.2 The Anderson-Brown-Peterson SplittingThroughout this section, all spectra will be localized at 2 unless otherwisestated. We recall the work of Anderson, Brown, and Peterson [ABP] onMSpin and MSpinc. An exposition of their work containing the details ofthe MSpinc case can be found in [St]. In addition, an intensive study ofthe homological aspects of the Anderson-Brown-Peterson splitting has beencarried out by Giambalvo and Pengelley [GP].Let ko (resp. ku) denote the connective cover of the real (resp. complex)K-theory spectrum KO (resp. K). Also, let ko<2>denote the 2-connectivecover of ko. Let HZ/2Z denote the Z=2Z-Eilenberg-MacLane spectrum. An-derson, Brown, and Peterson construct an additive splitting of MSpin (resp.3



MSpinc) into a wedge of suspensions of ko, ko<2>, and HZ/2Z (resp. kuand HZ/2Z ).We will describe their results in the real case and later indicate the simpli-�cations that occur in the complex case. Let J be a partition: that is, a possi-bly empty multiset of positive integers, such as f1; 1; 2g. Let n(J) = Pj2J j,so that n(;) = 0 and n(f1; 1; 2g) = 4. Anderson, Brown, and Peterson con-struct maps �J : MSpin ! KO. If J = fng we denote �J by �n, and wedenote �;, which is the Atiyah-Bott-Shapiro orientation, by �0.These maps interact with the multiplication on MSpin and KO by ananalogue of the Cartan formula for the Steenrod squares. One way to describethis is as follows. Let P be the set of partitions, and consider the set offormal linear combinations Z[P ]. We can make this into a ring by de�ninga multiplication on the set of partitions by set union, and then into a Hopfalgebra by de�ning �(fng) = Pnk=0fn�kg
fkg. Suppose �(J) = PJ 0
J 00.Let � : MSpin ^MSpin ! MSpin and �0 : KO ^KO ! KOdenote the ring spectrum multiplications. Then the Cartan formula says that�J� = P�0(�J 0 ^ �J 00):Theorem 2 ([ABP]) 1. Suppose that 1 62 J . Then if n(J) is even, �Jlifts to the 4n(J)-fold connective cover of KO, �4n(J)ko: If n(J) is odd,�J lifts to the 4n(J)� 2-fold connective cover of KO, �4n(J)�4ko<2>.2. There exist a countable collection zk 2 H�(MSpin;Z=2Z) such thatY162J �J �Yk zk : MSpin ! Y162J;n(J)even �4n(J)ko� Y162J;n(J)odd �4n(J)�4ko<2>�Yk �deg zkHZ/2Zis a 2-local homotopy equivalence.Note that, though we have used the product symbol above, the productand the coproduct, i.e. the wedge, are the same in this case. Note as wellthat we use the same notation for �J and the lift of �J to a connective coverof KO. Let us denote the left inverse of �J arising from the above theorem by�J . Note that �J is only de�ned if 1 62 J , and if 1 62 I we have �I�J = �I;J �1.The fact that the �J with 1 2 J do not appear in this splitting, whereas they4



do appear in the Cartan formula, makes the real case more di�cult than thecomplex case.There is a similar splitting in the complex case, except partitions con-taining 1 are included, and every �J lifts to the 4n(J)-fold connnective coverof K, �4n(J)ku. The analogue of the Cartan formula remains true.Note that the above splitting is not a ring spectrum splitting, nor isit even a ko-module spectrum splitting, as a low-dimensional calculationveri�es. Mahowald has asked if the above splitting can be modi�ed to makeit into a ko-module spectrum splitting [Mah]. If so, the proof of Theorem 1could be made much simpler. However, Stolz has recently proven that thereis in fact no way to do this ([KS]). Perhaps this helps explain why our proofof Theorem 1 is so complicated.3 K-Theory LocalizationIn this section we study the K-theory localizations of MSpin and MSpinc. Letp 2 �8ko be the periodicity element, and let v = �0p 2 �8MSpin: We also usev for the complex analogue in �2MSpinc: Our main objective in this sectionis to show that v�1MSpin and v�1MSpinc are K-local, which will imply thatit su�ces to prove Theorem 1 after applying L1 . We will stick to the realcase, leaving the obvious modi�cations needed in the complex case to thereader.To prove this, we will need to understand multiplication by v. The fol-lowing two lemmas provide some of this understanding.Lemma 1 Let J be a partition. Then all �J(v) = 0 except for �0(v) = pand possibly �1(v) and �1;1(v). These latter two are both even as elementsof the appropriate homotopy group. Further, v maps to 0 under the forgetfulhomomorphism to MO.Proof: If 1 62 J and J 6= ;, the splitting shows �J(v) = 0: Stong showsin [St] that, if 1 2 J , �J lifts to the 4n(J)-connective cover of KO. Thus, fordimensional reasons, the compositionS0 ! ko �0! MSpin �J! KOwhere the �rst map is the unit, is null for J 6= ;: Recall that p denotes theperiodicity element, and denote the image of the Hopf map � by �. The image5



of the unit on positive dimensional homotopy groups is fpn�; pn�2jn � 0g:Indeed, it is clear that the image must be contained in this set, and suitableelements from the image of J hit these elements. So we have �J�0(pn�) = 0for all J 6= ;. But � is the image of � under the unit, so � � (�J�0pn) = 0.This can only happen if �J�0pn is even for all J 6= ;:In particular, �Jv is even for all J 6= ;: Anderson, Brown, and Peterson[ABP] show that ch(�J(x)
C) = pJx+ (higher terms), for x 2 MSpin�(X).Here pJx is the Pontrjagin class of x corresponding to J . Thus the pJv arealso even for J 6= ;: Since p2 and p1;1 = p21 determine oriented cobordism indimension 8, v goes to an even element in MSO8, and thus goes to zero inMO8. QEDOur plan for proving that v�1MSpin is K-local is based on Bous�eld'sidenti�cation of K-local spectra [B]. Let A : �8M(2) !M(2) be the Adamsmap on the mod 2 Moore spectrum. We will show that1 ^ A : MSpin ^ �8M(2) ! MSpin ^M(2)becomes a homotopy equivalence after inverting v. To do this we need thefollowing lemma.Lemma 2 Let I � ��(MSpin^M(2)) consist of those � with (�J ^ 1)� = 0for all J with 1 62 J . Then I is precisely the sub-MSpin�-module of v-torsionelements.Proof: First note that if (�J ^ 1)� = 0 for all J with 1 62 J , then infact (�J ^1)� = 0 for all J . This follows from the Anderson-Brown-Petersonsplitting. Indeed, such an � must factor through a wedge of HZ/2Z 's. SinceKO ^M(2) is K-local, any map from HZ/2Z to KO ^M(2) factors throughL1HZ/2Z which is contractible by the results of [AH]. This proves that(�J ^1)� = 0 before lifting �J to a cover of KO. But the map from a cover ofKO smashed with M(2) to KO smashed with M(2) is injective on homotopy,so in fact (�J ^ 1)� = 0 after lifting the �J as well.Now suppose � 62 I. Find a partition J 0 with 1 62 J 0 such that the powerof 2 dividing (�J 0 ^ 1)� is minimal (among J with 1 62 J .) Then, using thesplitting, we can write � = 2nX162J(�J ^ 1)(�J ) + �6



where �J 0 is not divisible by 2 and � 2 I. It is then easy to see using theprevious lemma and the Cartan formula that(�J 0 ^ 1)(v�) � 2np�J 0 mod 2n+1:Continuing in this way, we see that vi� is never 0.Conversely, suppose � 2 I. Consider the exact sequence of MSpin� mod-ules arising from the de�ning co�bration for M(2):MSpin� f! ��(MSpin ^M(2)) g! MSpin��1:These maps commute with the �J so �J(g�) = 0 for all J . Thus g� is inthe analog of I for MSpin. Anderson, Brown, and Peterson call this set I�;i.e. I� is the subset of MSpin� consisting of those classes 
 with �J
 = 0 forall J . Now I� is an ideal mapped monomorphically to MO� [ABP], and vmaps to 0 there, so g(v�) = vg(�) = 0. Hence there is a � with f(�) = v�.Then f(�J�) = (�J ^ 1)(v�) = 0 for all J . Since the kernal of f consists ofthe even elements, we must have �J� being even for all J . Thus � = 2
 + �where � 2 I�. Thus v2� = f(v�) = f(2v
) = 0. QEDNow we can proveTheorem 3 v�1MSpin and v�1MSpinc are K-local.Proof: According to Bous�eld [B], it su�ces to show that1 ^ A : ��(v�1MSpin ^M(2)) ! ��+8(v�1MSpin ^M(2))is an isomorphism. Since ��(v�1MSpin^M(2)) = v�1��(MSpin^M(2)), wemust prove the following two facts for � 2 ��(MSpin ^M(2)):1. If (1 ^A)� is v-torsion, so is �.2. There is a � and an n such that (1 ^A)� � vn� is v-torsion.Now 1 ^ A respects the Anderson-Brown-Peterson splitting, and on thehomotopy of a cover of KO smashed with M(2), 1 ^ A is multiplication byp. Thus we have(1 ^ A)(�J ^ 1)x = (�J ^ 1)(1 ^A)x = (�J ^ 1)(px):Using the splitting, write� �X162J(�J ^ 1)�J (mod I):7



Then (1 ^A)� �X162J(�J ^ 1)p�J (mod I):By the preceding lemma, this cannot be v-torsion unless each p�J = 0. Butmultiplication by p is injective, so each �J = 0 and � 2 I, so � is v-torsionas well.We now prove the second fact above. Again, write� �XJ (�J ^ 1)�J (mod I):Consider the exact sequence of MSpin� modules0 ! MSpin� 
 Z=2Z 1^f! ��(MSpin ^M(2)) 1^g! Tor(MSpin��1) ! 0:This sequence arises from the de�ning co�ber sequence for M(2), so f andg come from maps of spectra, which we also denote f and g. Note that(1 ^ f)(I�) � I and (1 ^ g)(I) � I�. Thus(1 ^ g)(�) �XJ (�J ^ 1)(1 ^ g)�J(mod I�):Since we are in a Z=2Z vector space, Lemma 1 and the Cartan formula implythat (1 ^ g)(v�) �XJ (�J ^ 1)(1 ^ g)p�J (mod I�):This is equivalent (mod I�) to (1 ^ g)(1 ^ A)PJ (�J ^ 1)�J . We saw in theproof of Lemma 2 that v annihilates I�. Thus(1 ^ g)(v2�) = (1 ^ g)(1 ^ A)vXJ (�J ^ 1)�J :If we let �0 = PJ (�J ^ 1)�J , we �nd that there is a � such that(1 ^ f)� = v2� � (1 ^A)v�0:Write � �XJ (�J ^ 1)�J(mod I�):Again, we are working mod 2, so(1 ^ f)(v�) �XJ (�J ^ 1)(1 ^ f)p�J � (1 ^A)(1 ^ f)�(mod I�):8



Thus (1 ^ f)(v�)� (1 ^ A)(1 ^ f)� is v-torsion. Hence we get thatv3� � (1 ^A)(v2�0 + (1 ^ f)�is v-torsion, completing the proof. QEDNote that if the Anderson-Brown-Peterson splitting could be made into ako-module spectrum splitting (which it can not be [KS]), Theorem 3 wouldbe obvious since then we would have v�1MSpin ' W162J KO: It can be shownusing [St] that the homotopy groups of v�1MSpin are what they should befor such an equivalence to hold.Corollary 1 For any ring spectrum R,(MSpin ^ R)�(X)
(MSpin ^ R)� (KO ^ R)� =(L1MSpin ^ R)�(X) 
(L1MSpin ^ R)� (KO ^ R)�:Also MSpinc�(X)
MSpinc� K� = L1MSpinc�(X)
L1MSpinc� K�:Proof: Since p is a unit in (KO ^ R )�,(L1MSpin ^ R)�(X) 
(L1MSpin ^ R)� (KO ^ R)� =(v�1(L1MSpin ^ R))�(X) 
(v�1(L1MSpin ^ R))� (KO ^ R)�:Similarly, (MSpin ^ R)�(X)
(MSpin ^ R)� (KO ^ R)� =(v�1( MSpin ^ R))�(X)
(v�1( MSpin ^ R))� (KO ^ R)�:Applying Theorem 3 and recalling that direct limits commute with smashingand applying L1, we getv�1(L1MSpin ^ R) ' v�1(L1MSpin) ^ R) ' L1(v�1MSpin) ^ R' v�1(MSpin) ^ R ' v�1(MSpin ^ R):QED9



4 Presentations of Module SpectraIn this section we prove a general lemma that is at the heart of our argument.Suppose R is a ring spectrum, M an R-module spectrum. There is a naturaltransformation FM : R�(X) 
R� M� ! M�(X)obtained as follows. Let f : Sm ! X ^ R be an element of R�(X), and letg : Sn !M an element of M�. Then FM(f 
 g) is the compositeSm+n = Sm ^ Sn ! X ^R ^M ! X ^M;where the last map is the structure map of M. There is a similar map incohomology. We want to know under what conditions FM is an isomorphism.The following lemma partially answers this question. The idea is to �nd apresentation of M as an R-module spectrum.Lemma 3 Suppose M, N, and P are R-module spectra with FP always sur-jective, and FN a natural isomorphism. Suppose there are R-module mapsd2 : P ! N and d1 : N ! M with d1d2 ' 0. Suppose in addition there aremaps s1 : M ! N and s2 : N ! P with d1s1 and s1d1 + d2s2 homotopyequivalences. Then FM is an isomorphism.Proof: The map d2 induces mapsR�(X)
R� P� ! R�(X)
R� N�and P�(X) ! N�(X) which we also denote by d2: The same is true for d1: Alsos2 induces a map N�(X) ! P�(X), which we also denote s2, and similarly fors1. Note that s2 does not induce a map R�(X)
R� N� ! R�(X) 
R� P� asit is not a map of R-module spectra. So we have the following commutativediagram. R�(X)
R� P� ! P�(X)FPR�(X)
R� N� ! N�(X)R�(X)
R� M� ! M�(X)FNFM## ##d2d1 d2d110



First we prove surjectivity. Since d1s1 : M�(X) ! M�(X) is an isomor-phism, d1 : N�(X) ! M�(X) is surjective. Since FN is an isomorphism,FMd1 = d1FN is also surjective. Therefore, FM is surjective.Now we prove injectivity. As we pointed out above, d1 : N�(X) !M�(X)is surjective. In particular, d1 : N� ! M� is surjective. Since the tensorproduct is right exact, d1 : R�(X) 
R� N� ! R�(X)
R� M� is also surjective.Now suppose x 2 R�(X)
R� M� has FM(x) = 0: By the above remark,there is a y 2 R�(X)
R� N� with d1(y) = x: Then d1FN(y) = FMd1(y) = 0:Since s1d1 + d2s2 : N�(X) ! N�(X) is an isomorphism, there is a z 2 N�(X)such that s1d1(z) + d2s2(z) = FN (y): Then we have0 = d1FN (y) = d1s1d1(z) + d1d2s2(z) = d1s1d1(z)since d1d2 = 0: Since d1s1 is an isomorphism we have d1(z) = 0: ThusFN(y) = d2s2(z):Since FP is surjective, there is a w 2 R�(X) 
R� P� with FP (w) = s2(z):Then FNd2(w) = d2FP (w) = d2s2(z) = FN(y):Since FN is an isomorphism, we have d2(w) = y. Thusx = d1(y) = d1d2(w) = 0and FM is injective. QED5 MSpin^M(2n) Determines KO ^M(2n)In this section, we apply Lemma 3 to obtain the result in the title of thissection. We also complete the proof of the complex case of Theorem 1. Allspectra are localized at 2.We start with the complex case. Take R = N = MSpinc, and let M = ku.Let d1 = �0 be the Atiyah-Bott-Shapiro orientation. Recall that �J denotesthe right inverse to �J coming from the Anderson-Brown-Peterson splitting.Let s1 = �0: Then d1 is an R-module map, d1s1 is a homotopy equivalence,and certainly FN is an isomorphism.Now let P = MSpinc ^ WJ 6=; S4n(J). Then FP is an isomorphism. De�nes2 to be 0 on the HZ/2Z summands of R and on the bottom ku summand11



corresponding to J = ;. On the other summands, de�ne s2 to be the com-posite�4n(I)ku '! ku ^ S4n(I) s1^1! MSpinc ^ S4n(I) ,! MSpinc ^ _J 6=; S4n(J):Let �J : S4n(J) ! �4n(J)ku denote the inclusion of the bottom cell. Thende�ne d2 as the compositeMSpinc ^ _J 6=;S4n(J) 1^W �J! MSpinc ^ _J 6=;�4n(J)ku1^W�J! MSpinc ^ MSpinc �! MSpinc:It is easy to see that d2 is a module map, and a diagram chase using theCartan formula shows that, for J 6= ;, �Jd2s2�J is a homotopy equivalence,and �Id2s2�J is 0 for I 6= J .Thus we get that the composite_J �4n(J)ku W �J! MSpinc d2s2+s1d1! MSpinc W�J! _J �4n(J)kuis a homotopy equivalence. The HZ/2Z summands prevent us from applyingthe main lemma right away. But L1HZ/2Z = 0 [AH], so if we apply L1,each of the maps W �J and W�J become homotopy equivalences.Thus we have proved the following:Theorem 4 L1MSpinc�(X)
L1MSpinc� L1ku� ! L1ku�(X)is a natural isomorphism of L1ku� modules.Invert the periodicity element on both sides of this isomorphism. Then,since p�1L1ku ' L1p�1ku ' L1K = K, we �nd thatL1MSpinc�(X)
L1MSpinc� K� ! K�(X)is a natural isomorphism. Combined with Corollary 1, this completes theproof of the complex case of Theorem 1.12



The idea above was to shift a ku summand down to a bottom summandof a shifted copy of MSpinc and then multiply by the bottom cell to shiftit back up. In the real case this works �ne for the ko summands but notfor the ko<2>summands. Even after applying L1, there is no bottom cell:�0L1ko<2> is Q=Z. However, if we smash with a Moore space M(2n) thenatural map ko<2>! ko induces a homotopy equivalenceL1ko<2> ^M(2n) ! L1ko ^M(2n):So, let N = R = L1MSpin ^M(2n) for some �xed n > 1. We need n > 1so that M(2n), and hence R, is a ring spectrum. Let M = L1ko ^M(2n).Note that M = KO ^M(2n): Indeed, the map between 2 adjacent connectedcovers of KO has �ber (a shifted copy of) HZ or HZ/2Z . L1 kills HZ/2Z andconverts HZ to HQ[AH]. Smashing with the Moore space then kills HQ. Letd1 = L1�0^M(2n), which we will just call �0, and let s1 = �0, using the sameconvention. Then d1 is an R-module map, d1s1 is a homotopy equivalence,and FN is an isomorphism.Let P = R ^(WJ 0 S4n(J 0)_WJ 00 S4n(J 00)�4), where J 0 runs through partitionswith 1 62 J 0 and n(J 0) even, and J 00 runs through partitions with 1 62 J 00 andn(J) odd. Then FP is an isomorphism.De�ne �J 0 : S4n(J 0) ! L1�4n(J 0)ko ^ M(2n) to be the inclusion of thebottom cell of �4n(J 0)ko smashed with the units of L1S0 and M(2n). Similarly,de�ne �J 00 : S4n(J 00)�4 ! L1�4n(J 00)�4ko<2> ^M(2n) as above followed bythe inverse of the homotopy equivalenceL1�4n(J 00)�4ko<2> ^M(2n) ! L1�4n(J 00)�4ko ^M(2n):We can then de�ne the R-module map d2 just as we did in the complex case.We de�ne s2 in the same way as in the complex case for the ko summands.That is, it is the compositeL1�4n(J 0)ko ^M(2n) s1^1! R ^ S4n(J 0) ,! P:Of course it is 0 on the bottom ko summand. On the ko<2> summands wejust precede the above composite with the homotopy equivalenceL1�4n(J 00)�4ko<2> ^M(2n) ! L1�4n(J 00)�4ko ^M(2n):Now we must check that d2s2+s1d1 induces an isomorphism on homotopygroups. Look at a particular summand, say a ko<2> summand. Moving13



the suspension coordinate outside has the e�ect of dividing by an appropriatepower of the periodicity element. Then s2 includes this in by �0. d2 thenmultiplies this by the bottom class of the ko<2> summand. We would likethis to simply multiply by the same power of the periodicity element, so thatd2s2 would just include the ko<2> summand. Unfortunately, the Cartanformula is a nontrivial sum because �J�0 may not be 0 on ��(L1ko^M(2n))if 1 2 J . However, the following lemma shows that it is always even.Lemma 4 Suppose � 2 ��L1ko^M(2n): Then �J�0� is divisible by 2 unlessJ = ;.Proof: The proof is modeled on the proof of Lemma 1 in section 3. AnAdams spectral sequence calculation shows that��(L1ko ^M(2n)) = Z=2nZ[�; �; q; p; p�1]=Lwhere L is an ideal of relations generated by�3; 2�; 2�; �2� � 2n�1q; �q; �q;andq2 � 4p:The degree of � is 1, that of � is 2, that of q is 4 and that of p is 8. ThecompositionL1S0 ^M(2n) ! L1ko ^M(2n) �0^1!  L1MSpin ^M(2n) �J^1! KO ^M(2n)where the �rst map is the unit, is null for J 6= ;. Now the image of the unitmap on homotopy contains the pn�,pn�2, pn�, pn��, and 2n�1pnq. Thereforeall these classes have �J�0 = 0. We deduce from this that the other classesmust have �J�0 even. Indeed, denote the Hopf map by � as well. Then�(�J�0pn) = �J�0(pn�) = 0, so �J�0pn must be even. A similar argumentusing 2 instead of � shows that �J�0pnq is even. QEDBy the lemma, if we look at the matrix for d2s2 + s1d1 in a particulardimension, it will have ones on the diagonal and even numbers everywhereelse. This matrix is in�nite dimensional because L1MSpin ^M(2n) is notlocally �nite. However, we are working over a bounded 2-torsion group, andin this case a map with such a matrix must be an isomorphism. Indeed,iterating such a map eventually prodeces the identity. Thus we have provedTheorem 5 The map(L1MSpin ^M(2n))�(X) 
(L1MSpin ^M(2n))� (KO ^M(2n))�14



! (KO ^M(2n))�(X)is an isomorphism for any n > 1.The results of section 3 then enable us to deduceCorollary 2 The map(MSpin ^M(2n))�(X) 
(MSpin^M(2n))� (KO ^M(2n))�! (KO ^M(2n))�(X)is an isomorphism for any n > 1.6 MSpin and MSpin^M(2n)In this section we �nish the proof of Theorem 1 in the real case. We needthe following two lemmas, both of which are presumably well-known. We donot assume our spectra are localized at 2 for these lemmas.Lemma 5 The identity map of a �nite torsion spectrum T has �nite order.Proof: Let DT denote the Spanier-Whitehead dual of T. Then self-mapsof T are in one to one correspondance with homotopy classes of T ^ DT.Now T ^ DT is clearly �nite, and a homology calculation shows that it istorsion. Thus all of its homotopy groups are �nite torsion. QEDLemma 6 If E is a homology theory such that E� has bounded torsion, then,for all �nite X, E�(X) also has bounded torsion.Proof: Induction on cells shows that the torsion-free part of ��(X) is�nitely generated. Taking a minimal set of such generators, we obtain aco�ber sequence ��1T f! l_k=1Snk g! X h! Twhere T is a �nite torsion spectrum. By the previous lemma,�m : T ! T isnull for some m. Consider the exact sequence in E-homology induced by theabove co�ber sequence. By hypothesis, there is an n so that if w 2 E�(WSnk )is torsion, then nw = 0. Suppose x 2 E�(X) is torsion, so Nx = 0 for some15



N . Then h�(mx) = 0, so there is a y 2 E�(WSnk ) such that g�y = mx. Weclaim that y is torsion. Indeed, Nx = 0 so g�(Ny) = 0. Thus Ny = f�z forsome z 2 E�(��1T ). But then mz = 0 so mNy = 0 and y is torsion. Thusny = 0 and therefore nmx = 0. QEDWe will also need the fact that MSpin�(X), after localizing at 2, has nononzero in�nitely 2-divisible elements for �nite X. This is true since MSpin�consists of �nitely generated abelian groups, so, by induction on cells, so doesMSpin�(X).Finally, we need the following lemma.Lemma 7 If X is �nite, there are no nonzero in�nitely 2-divisible elementsin MSpin�(X)
MSpin� KO� after localizing at 2.Proof: As above, consider the co�ber sequence_Snk g! X h! T f! _Snk+1;where T is a �nite torsion spectrum. Localize at 2. Then, for some n,�2n : T ! T is null. Applying MSpin�, we get the exact sequenceMSpin�(_Snk ) g! MSpin�(X) h! Ker f ! 0:Tensoring this with KO�, we get the exact sequenceKO�(_Snk) g! MSpin�(X)
MSpin� KO� h! Ker f 
MSpin� KO� ! 0:Let us rewrite this more economically in a �xed degree asM g! N h! P ! 0:Here P is all 2n torsion, and M is the 2-localization of a �nitely generatedgroup. Thus M 0 = M=Ker g is also the 2-localization of a �nitely generatedabelian group, and we have the short exact sequence0 !M 0 g! N h! P ! 0:Now suppose x 2 N is in�nitely 2-divisible, so that there is a sequence ofelements xm 2 N with x0 = x and 2xm = xm�1. Then h(xm) is also in�nitely2-divisible, but P is bounded 2-torsion, so h(xm) = 0. Thus xm = g(ym) forsome ym 2M 0. As g is injective, we have 2ym = ym�1 so each ym is in�nitely16



2-divisible. But M 0 is the 2-localization of a �nitely generated abelian group,so we must have ym = 0, and so x = 0. QEDWe can now complete the proof of Theorem 1 at the prime 2. It is easyto see that MSpin�(X)
MSpin� KO� ! KO�(X)is surjective: indeed, the isomorphismMSp�(X) 
MSp� KO� ! KO�(X)factors through MSpin�(X) 
MSpin� KO�, since the Atiyah- Bott-Shapiro ori-entation is an extension of MSp ! KO. So it su�ces to prove injectivity.Recall that p denotes the periodicity element in �8ko; v = �0(p): Then since�0 : MSpin� ! KO� is surjective in nonnegative degrees and �p is an iso-morphism on both sides, it su�ces to prove injectivity for elements of theform x 
 1, where x 2 MSpin�(X). We can also assume that X is (the 2-localization of) a �nite spectrum, since both homology functors and tensorproducts commute with direct limits.By the isomorphism of the proceeding section, it su�ces to prove thatthe image of x
 1 in(MSpin ^M(2n))�(X)
(MSpin^M(2n))� (KO ^M(2n))�is nonzero for some n. By the preceeding lemmas, we can choose q so largethat 2q does not divide x
1 2 MSpin�(X) 
MSpin� KO� nor x 2 MSpin�(X),and such that �2q kills the torsion in MSpin�(X):Suppose that x 
 1 becomes 0 after smashing with the mod 22q Moorespectrum. Then there is an i � 0 such thatvix = �y 2 (MSpin ^M(22q))�(X)where � 2 (MSpin^M(22q))� satis�es �0� = 0, and y 2 (MSpin^M(22q))�(X).Let � : M(22q) !M(2q) be the map which is an isomorphism on the bottomcell and �2q on the top cell. Then we can choose ring structures on ourMoore spectra such that � becomes a ring spectrum map [Oka]. Thus, in(MSpin ^M(2q))�(X), vix = ((1 ^ �)�)((1 ^ �)y), and �0(1 ^ �)� = 0:Now consider the universal coe�cient sequence0 ! MSpin�(X)
 Z=2nZ! (MSpin ^M(2n))�(X)! Tor(MSpin��1(X);Z=2nZ) ! 0:17



By choice of q, for n a multiple of q the right-hand group is justTor(MSpin��1(X)). Now, � induces a map between these sequences which is�2q, hence 0, on the right-hand groups. Thus,(1 ^ �)y 2 MSpin�(X)
 Z=2qZ:We can therefore lift (1 ^ �)y to y0 2 MSpin�(X). Similarly, we can lift(1 ^ �)� to �0 2 MSpin�. Then in MSpin�(X) we havevix = �0y0 + 2qz 2 MSpin�(X)and �0�0 = 2q�. Thus vix 
 1 = 2qz 
 1 + y0 
 2q�. Therefore, 2q dividesvix
 1 and hence x
 1. This is a contradiction, and concludes the proof ofTheorem 1 at the prime 2.7 Odd PrimesThe purpose of this section is to prove Theorem 1 at odd primes. In thissection all spectra are assumed to be localized at an odd prime p: There isnothing to prove in the real case, since at an odd prime MSpin ' MSp.We follow the method of proof used by Conner and Floyd [CF] to proveMU�(X) 
MU� K� ! K�(X)is an isomorphism. Their argument requires us to work in cohomology andto consider K� as a Z=2Z graded cohomology theory. After we are done,we can convert back to homology by using Spanier-Whitehead duality and alimit argument.Their proof has three steps, as follows.1. Prove that the mapG : MU�(X) 
MU� K� ! K�(X)is surjective by �nding a section K ! MU, as in Lemma 2.2. Prove that G is an isomorphism for all X if and only if G is an isomor-phism for the universal example X = MU.3. Prove that G is an isomorphism for X = MU.18



In the interest of economical notation, let us denote MSpinc by E. Wewant to follow this program forG : E�(X)
E� K� ! K�(X):The �rst two steps are the same as in Conner and Floyd. Since the Atiyah-Bott-Shapiro orientation extends the Todd genus, the composite of theirsection K ! MU with the natural map MU ! E will be a section forE ! K. Step 2 of their argument goes through verbatim from [CF], exceptthe universal example is now X = E.For Step 3 we must do a little more work. Recall from [St] that ��Eis evenly graded and torsion-free as a Z(p) module, as is H�(E;Z(p)). LetE(r) denote the r-skeleton of E in a minimal CW-decomposition. ThenH�(E(r);Z(p)) is also evenly graded and torsion-free. Therefore the Atiyah-Hirzebruch spectral sequence for E�(E(r)) collapses. The E1 term isH�(E(r);Z(p))
E�: This is a free E� module, so there is no room for moduleextensions and we haveE�(E(r)) = H�(E(r);Z(p))
 E�:The sequence H�(E(r);Z(p))
E� satis�es the Mittag-Le�er condition, sothere is no lim1 term and we haveE�(E) = lim E�(E(r)) = lim (H�(E(r);Z(p))
 E�)= lim (H�(E(r);Z(p)))
 E� = H�(E;Z(p)) 
 E�as E� modules. The third equality above holds because E� is a free Z(p)module. A similar argument showsK�(E) = H�(E;Z(p))
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