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Introduction

Michael Hopkins taught a course (Math 256y) on spectra and stable homotopy theory
at Harvard in Fall 2012. These are my “live-TEXed” notes from the course.

Conventions are as follows: Each lecture gets its own “chapter,” and appears in the
table of contents with the date.

Of course, these notes are not a faithful representation of the course, either in the
mathematics itself or in the quotes, jokes, and philosophical musings; in particular, the
errors are my fault. By the same token, any virtues in the notes are to be credited
to the lecturer and not the scribe. Thanks to Emily Riehl and Arnav Tripathy for
pointing out several mistakes.

Please email corrections to amathew@college.harvard.edu.
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Lecture 1
9/5

§1 Administrative announcements

This is a class taught by Michael Hopkins, whose office in 508. Office hours are Wednes-
days 3-4. After this class, we’ll be in room 507. That makes me happy, because I’m
taller than everyone in that class. There will be no class meeting on Monday, September
10, 2012. In local coordinates, Monday.

I’ve had a sense that people are interested in learning about more classical and
computational topics. As in the course outline, I want to roughly focus this on a story
about computations of the homotopy groups of spheres. I’ll outline that story a little
today. We’re going to use this to segue into other classical topics in the subject.

I put down that 231br was a prerequisite for this class. We’re going to use tools
like the Steenrod algebra, Serre classes, etc. I don’t want to lose anyone, since they
weren’t covered in the last semester of 231br.

§2 Introduction

There are three classical theorems in homotopy theory.

1. The Hopf invariant one problem. What’s that? Start with a map f : S2n−1 → Sn;
the Hopf invariant is defined by forming the mapping cone X = Sn ∪f e2n, and

the cohomology H̃∗(X) = Z when ∗ = n, 2n and zero otherwise. These are
definite spheres, so we choose definite generators

x ∈ Hn(X), y ∈ H2n(X),

then we can look at the cup product structure. We have that x2 = H(f)y where
H(f) ∈ Z. That number H(f) depends only on the homotopy class of f , and it’s
called the Hopf invariant of f .

The Hopf invariant was first introduced by Hopf, although he didn’t call it the
Hopf invariant, I think. He used it to show that the map S3 → S2 that he
constructed was not homotopic to the constant map. In other words, he used it
to show that the homotopy groups of spheres were not the homology groups.

The problem of understanding for which n does there exist a map f : S2n−1 → Sn

with Hopf invariant one was a big one. It got kicked around a lot, and was
regarded as one of the most important problems in algebraic topology until Adams
solved it in the late 1950s.

1.1 Theorem (Adams). There exists a map f : S2n−1 → Sn with Hopf invariant
one only when n = 2, 4, 8.

This was related to many other questions. It was related to the existence of
division algebra structures on euclidean space Rm, and other things. Adams’s
papers explain the implications of his theorem. It’s one of those papers whose
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Lecture 1 Spectra and stable homotopy theory notes

title is the main theorem, it’s called “On the non-existence of elements of Hopf
invariant one.”

Adams’s original proof used the Adams spectral sequence and was quite illumi-
nating. Later on Atiyah and Adams gave a much simpler proof, although I think
a lot of people who work with this stuff think that the simpler proof doesn’t really
give you the reason.

2. The vector field problem. What is the maximum number of linearly inde-
pendent vector fields on a sphere Sn−1? In a first course on algebraic topology,
you prove that an even sphere has no nonvanishing vector fields (the hairy ball
theorem). It’s an application of the notion of a degree of a map. Odd spheres are
harder. S1 has one, S3 has three, S7 has seven, but the remaining odd spheres
are more mysterious.

This problem was also solved by Adams.

1.2 Theorem (Adams). Sn−1 has ρ(n) − 1 linearly independent vector fields,
but not ρ(n). Here ρ(n) is the Radon-Hurwitz number: if n = (2a+ 1)2b and
b = c+ 4d, d ∈ [0, 3], then

ρ(n) = 2c + 8d.

Later we’ll try to understand ρ(n) better. Today it will play no role.

We’ll spend some time discussing how the vector field problem is solved. Adams
solved it by studying K-theory, and it was one of the first applications. That’ll
be a unit in the class.

3. The third of these classical problems in algebraic topology was the Kervaire
invariant problem. I’m going to say more about this from the point of view of
homotopy theory in a little bit, but this is a problem that originates in differential
topology. In which dimensions n does there exist a smooth stably framed manifold
with Kervaire invariant one?

1.3 Theorem (Hill, Hopkins, Ravenel). Only when n = 2, 6, 14, 30, 62, and pos-
sibly 126, can there exist such a manifold.

I won’t say much about our solution to the problem, but I’d like to put it up as
one of the classic three problems.

These were really the three long-lasting and hallmark questions in homotopy theory,
and there were several reasons for wanting to know the answer. In its original incarna-
tion, it had to do with detecting maps of spheres, although it connected to questions
about multiplications on Rn and other structures. The vector fields of spheres prob-
lem is “almost” a recreational problem. It might help to know that S5 has 2 and not
3 linearly independent vector fields, but it’s hard to know what to do with it. The
Kervaire invariant problem occurred as a thorn in surgery theory and an issue people
couldn’t really get around, but people got good at avoiding it. It still plays a certain
role, though.
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Lecture 1 Spectra and stable homotopy theory notes

I bring them up because they all get united in some basic questions about the
homotopy groups of spheres, and the goal of the course is to flesh out this story as
much as I can. How do these come together?

§3 The EHP sequence

There’s something called the EHP sequence, first invented by Whitehead but really
developed by James. For this, we localize everything at 2. James showed:

1.4 Theorem (James). There is an exact sequence

πk(S
n)→ πk+1(Sn+1)→ πk+1(S2n+1)→ πk−1(Sn)→ πk(S

n+1)→ πk(S
2n+1)→ . . . .

We’d like to think of this as an exact couple. If you know about exact couples and
spectral sequences,

πkS
n E // πk+1S

n+1

Hxxppppppppppp

πk+1S
2n+1

P

eeKKKKKKKKKK

Here are the maps:

• E is the first letter for the German word for suspension. It suspends a map
f : Sk → Sn to Σf : Sk+1 → Sn+1.

• H is a bit of a surprise. See below.

Let’s note that when k + 1 < 2n, the groups πk+1S
2n+1 are zero, and we get

that πkS
n → πk+1S

n+1 is an isomorphism. Note that this is precisely the Freudenthal
suspension theorem. If you’re going around calculating the homotopy groups of spheres,
you’re going to get the same thing a lot.

1.5 Definition. The stable range is when k+ 1 ≤ 2n and πk(S
n) is the same as the

colimit lim−→πk+j(S
n+j). These colimits are called the stable homotopy groups of

spheres.

So once you are in the stable range, the homotopy groups stabilize. That’s one
little lesson on which we’ll expand on a great deal later in the course.

What happens when πk+1S
2n+1 first appears and is nonzero? Let’s take k + 1 =

2n+ 1, so that π2n+1(S2n+1) = Z. The exact sequence runs

π2n(Sn)
E→ π2n+1(Sn+1)

H→ π2n+1(S2n+1) ' Z.

The surprising thing is that this is precisely the Hopf invariant.

1.6 Theorem. The map π2n+1(Sn+1) → π2n+1(S2n+1) ' Z is precisely the Hopf
invariant.
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In particular, the exact sequence of James generalizes the Hopf invariant! It’s
not at all obvious how the Hopf invariant would lead to an exact sequence involving
stabilization. This is a wonderful surprise, and it starts to tell you how you might
generalize the Hopf invariant to maps of spheres in different dimensions. It also tells
you about the role that the Hopf invariant might play. Hopf invariant one is equivalent
to:

1. H : π2n+1(Sn+1)→ π2n+1(S2n+1) is a surjection.

2. It tells you when the map P out of π2n+1(S2n+1) is zero.

The idea of using the EHP sequence is to somehow start the homotopy groups of
S1 plus a little extra and then inductively calculate the higher homotopy groups of
spheres. I haven’t explained how you might get organized to think this way—we’ll
talk about it in the next couple of lectures. But you want to imagine that it is a
way to make conjectures (about this long exact sequence) that will help calculate the
homotopy groups of spheres. The first real calculations of the homotopy groups of
spheres were done by Toda, using this sequence. Understanding what carrying out
what this calculational program requires will occupy us for parts of this course.

Let’s now describe the other two maps in the EHP sequence in this special dimen-
sional case.

• H is secretly the Hopf invariant (or a generalization thereof).

• The map P : π2n+1(S2n+1) → π2n−1(Sn) has the property that 1 goes to the
Whitehead product of [ι, ι] (here ι ∈ πn(Sn) is the identity). That’s some
magic element in π2n−1(Sn).

Let’s review what this is. Given a map f : Sa+1 → Sn and g : Sb+1 → Sn,
then we can combine them to get a map Sa+1 ∨ Sb+1 → Sn. There is a nice map
Sa+b+1 → Sa+1∨Sb+1 by looking at the cell decomposition of Sa+1×Sb+1, which
starts with Sa+1 ∨ Sb+1 ∪p ea+b+2 where p is an attaching map

p : Sa+b+1 → Sa+1 ∨ Sb+1;

it’s the attaching map for the next cell in the product. One can give a formula
for it.

So, given maps f : Sa+1 → Sn and g : Sb+1 → Sn, we can form a new map

Sa+b+1 p→ Sa+1 ∨ Sb+1 f∨g→ Sn,

which is the Whitehead product [f, g] (which makes the homotopy groups of
spheres into a graded Lie algebra). That’s what this means.

Let’s recapitulate where we got. We are imagining that we can use this EHP
sequence to calculate all the homotopy groups of spheres. What problems do we have
when carrying this out? One is to understand what the image of the Hopf map in
the EHP sequence; that’s the Hopf invariant one problem. The next problem is, when
the Hopf invariant one doesn’t exist, to understand the image of P : π2n+1(S2n+1) →
π2n−1(Sn). There are two questions that arise.
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1. For which k is [ι, ι] ∈ π2n−1(Sn) in the image of Ek? How divisible is it by E?
This is a natural problem if you try to turn this into an exact couple.

2. Is [ι, ι] divisible by two? That is, does [ι, ι] generate a summand of this group
π2n−1(Sn)?

These are two fundamental issues to deal with while carrying out this exact sequence.
Here are the theorems.

1.7 Theorem (Toda(?)). [ι, ι] is in the image of Ek if and only if the n−1 (this might
be n instead) sphere has k linearly independent vector fields.

In particular, the vector field problem has an important role in understanding the
EHP sequence. This is a really important part of this course. We’re going to see that
it is the true meaning of the vector fields on spheres problem, and it explains why the
solution works the way it does.

1.8 Theorem (To be stated later fully). The Whitehead square [ι, ι] is divisible by 2
in π2n−1(Sn) under the following conditions:

1. When n is even, this is a version of the Hopf invariant one problem (to be ex-
plained another time; it’s because the Hopf invariant of [ι, ι] is divisible by 2).

2. When n is even, this is equivalent to the Kervaire invariant problem.

Anyway, the organizational principle is that all these hallmark problems in algebraic
topology are all aspects of the EHP sequence. Another theme that I hope to cover
in the course is the following. In the metastable range, the EHP sequence also gives
information on the homotopy groups: it turns the metastable homotopy of the sphere
into the stable homotopy of RP∞. All these problems have a manifestation in terms of
the stable homotopy groups of RP∞. Moreover, this picture leads to an understanding
of the image of J in the EHP sequence, which might appear later in this course.

Lecture 2
9/7

(Reminder: no class on Monday.)
So, last time I gave this overview of what I want to do in the course, relating these

computational questions about the homotopy groups of spheres to classical problems
in algebraic topology. One of our goals is to really flesh out that relationship. Today,
and on Wednesday, I’d like to spell out how James constructed this EHP sequence.
We’ll play around with various aspects of it for a while.

§1 Suspension and loops

Let’s recall what the EHP sequence is. It is a long exact sequence (2-locally)

πkS
n → πk+1S

n+1 → πk+1S
2n+1 → . . . ,

9
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which we’d like to derive from a fibration sequence. In other words, we’d like to con-
struct a fibration F → X → B whose long exact sequence in homotopy groups was
exactly this. In order to do this, we’d need to get at least one of the maps here via
spaces. This looks hard, because any map Sn+1 → S2n+1 is nullhomotopic!

However, observe that
πk+1S

n+1 = πkΩS
n+1,

where Ω means “loop space:” the space of maps ω : [0, 1] → X with ω(0) = ω(1) =
∗. I assume you know this, but recall that there is another construction called Σ
(“suspension”) of a pointed space. These functors (on the category of pointed spaces)
are adjoint: we have

Hom(A,ΩX) = Hom(ΣA,X),

which is true at the point-set level as well as at the homotopy level. So, observe that
there is an isomorphism,

Hom(ΣA,ΣA)→ Hom(A,ΩΣA)

and the identity ΣA → ΣA corresponds to an adjunction map ι : A → ΩΣA. Here ι
is a canonical map, and we even know what it is: a ∈ A goes to the path γa which at
time t is the point (a, t) ∈ ΣA. So we can get formulas, but maybe it’s not so useful
for now.

Let’s take A = Sn, now. Then ΣA = Sn+1 and we have a natural map

Sn → ΩSn+1,

arising from the above induction. That induces a map

πk(S
n)→ πk(ΩS

n+1) ' πk+1(Sn+1).

I leave it to you to check that this map is precisely the suspension map E. In particular,
one of the maps (E) in the EHP sequence comes from a map of spaces.

§2 Homotopy fibers

Now we might guess that we can get the EHP sequence from taking the homotopy fiber
of the map Sn → ΩSn+1.

2.1 Definition. Given X → B, we define the homotopy fiber to be the pull-back
X ×B PB: in other words, it is the space of pairs (γ, x) such that γ is a path in B
(starting from the basepoint) and x ∈ X, and such that γ ends at the image of x.

In particular, if F is the homotopy fiber of X → B, we get a long exact sequence
from the “fiber sequence” F → X → B. So anytime we run into a map in homotopy
theory, we can get a long exact sequence. We might thus hope to study the homotopy
fiber F of Sn → ΩSn+1, and we’d then get a long exact sequence

πkF → πk(S
n)→ πk+1(Sn+1)→ πk−1(F )→ . . . .

10
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That’s not too bad, but remember that we want to show (for the EHP sequence) that
πk−1F ' πk+1S

2n+1. This tells us that we expect that

F ' Ω2S2n+1.

That would give us the right homotopy groups. We could calculate the rather compli-
cated homology of Ω2S2n+1 and the homology of F (via the Serre spectral sequence),
but it’s tough to write down a map, and it’s not how James did it. We will later see
that this is true, but not a viable approach for understanding the EHP sequence.

§3 Shifting the sequence

I also remind you that when you cook up a fibration sequence

F → X → B,

then we can extend it by forming the homotopy fiber of F → X, and so forth: we
extend the fiber sequence

· · · → ΩX → ΩB → F → X → B,

and the whole thing keeps continuing. We could get a long exact sequence out of any
triple here, so we could get a long exact sequence in lots of different ways.

We’re staring at the sequence

Ω2S2n+1 → Sn → ΩSn+1,

or at least, we hope to get that. But maybe the fiber sequence is a shift of something
else. Maybe where we are is in a different place in the sequence, and instead maybe we
have a map

ΩSn+1 → ΩS2n+1

whose fiber is Sn. That would give us the homotopy fiber sequence we desire.
That’s what James did. James produced a very interesting map

ΩSn+1 → ΩS2n+1,

and showed that the homotopy fiber of that had the mod 2 homology of Sn. From there,
it was fairly easy to get the EHP sequence. I’ll remind you of some of the apparatus
that goes into that.

§4 The James construction

Our first task that we have to solve though, is to produce the James map ΩSn+1 →
ΩS2n+1 and then to say something about the homotopy fiber. This is the sort of story
of the rest of this lecture, and Wednesday’s lecture. It’s to understand something
about loop spaces and the rest of that. I was a student of Ioan James (I had two thesis
advisors, Ioan James and Mark Mahowald). James came up with a way of describing
the loop space of a suspension, and he told me about it.

11
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Here’s a bit of the history. Marston Morse, using Morse theory, understood the
homology of ΩSn+1, H∗(ΩS

n+1). Nowadays you can do it with the Serre spectral
sequence. But you can also do it by using Morse theory to give a cell decomposition of
ΩSn+1 with a cell decomposition in each multiple of n. That is,

ΩSn+1 ' Sn ∪ e2n ∪ e3n ∪ . . . .

E. Pitcher showed that the first attaching map S2n−1 → Sn is precisely the Whitehead
product. Thus, what is the mapping cone of the Whitehead product look like?

Question. What does the mapping cone of the Whitehead product [ι, ι] ∈ π2n−1(Sn)
look like?

We might as well calculate its cohomology ring structure, and thus the Hopf in-
variant. But we might also understand a little better what the geometry of this space
ΩSn+1 is. Our goal, for reasons I haven’t really motivated, is to produce an interesting
map out of ΩSn+1. The better we can understand these attaching maps, the better
our chance of making such a map. We can start by understanding the mapping cone
of the Whitehead square.

If you look at what the space means, it gives you a good idea. What is the definition
of the Whitehead product again? We’re supposed to take the map

S2n−1 → Sn ∨ Sn ∇→ Sn,

where S2n−1 → Sn ∨ Sn has the property that its mapping cone is Sn × Sn (that’s
the description of the Whitehead product in the previous lecture). In particular, the
mapping cone of the Whitehead product is what you get by taking Sn × Sn (a torus)
and folding two axes together (that is, crushing Sn ∨ Sn to Sn).

Anyway, we have
Hn(Sn × Sn) = Za⊕ Zb,

and H2n(Sn × Sn) = ab. Observe that x ∈ Hn(Sn;Z) pulls back to a + b in Sn × Sn
and consequently x2 goes to (a+ b)2. Now,

(a+ b)2 = a2 + b2 + ab+ ba = ab+ ba = (1 + (−1)n)ab.

In particular, the Hopf invariant is,

H([ι, ι]) =

{
0 if n is even

0 if n is odd
.

That’s something I claimed in the previous lecture, in relation to the question of di-
viding the Whitehead square by two.

The geometric description was a little cumbersome, but the algebra is easier. Sn∪[ι,ι]

e2n is the quotient of all pairs α, β modulo the relation (a, ∗) = a, (∗, b) = b. That’s
supposed to remind you of forming formal products of an element in the sphere with
another element in the sphere, with the basepoint the identity. That inspired James
to look at the rest of the whole free associative monoid on the sphere. In other words,

12
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Pitcher’s result is the beginning of writing down the whole free associative monoid on
the sphere.

Motivated by this, James produced for a pointed space (X, ∗) a space JX which is
the free associative monoid on X with ∗ the identity.

2.2 Definition. The James construction JX is the free associative topological
monoid on X with ∗ the unit.

§5 Relation with the loopspace on a suspension

The James construction turned out to be an extremely important construction. What
James did was to relate this to the loopspace of a suspension of X. If we could make
ΩΣX into a monoid, then the adjunction map

X → ΩΣX

would extend uniquely to a map of monoids

JX → ΩΣX.

We’d like to say that ΩΣX is a topological monoid under catenation of loops, and then
the map (of topological monoids!) JX → ΩΣX is “formal.” That’s good, and we’ll
calculate the homology of both sides and show that it’s a homology isomorphism.

Let’s stop and think about this statement. The space ΩΣX is a complicated space:
it doesn’t come to you with a cell decomposition. Once you have the Serre spectral
sequence, you can say something about the homology, but it doesn’t have much geo-
metric context. However, JX can be built by an explicit construction: a quotient of a
disjoint union of products of X modulo some explicit relations. You can use combina-
torial methods to understand JX, and to produce maps from it. It gives you a lot of
insight into what ΩΣX looks like.

Back in the 50s when James did this, JX looks like a free monoid, and you can
manipulate it using the methods of combinatorial group theory (collecting words and
so forth); many of the original means of analyzing this space used them. Once the basic
theorems were proved, topologists found sneakier and quicker ways of proving them. I
have a different motivation in mind, so I’ll give a quicker proof than the more classical
combinatorial ones, although there’s still some value in going back and looking at them.
There was an era when learning about ΩΣX was learning about commutators, but now
we handle it with different techniques.

My goal is to tell you what’s wrong with the above sketched argument, and then
to calculate the homology of ΩΣX.

§6 Moore loops

The argument in the previous section is wrong. In producing JX → ΩΣX, we have a
problem: loop concatenation on ΩΣX is homotopy associative, not literally associative
on the nose. So ΩΣX is not a topological monoid.

13
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Given paths f, g, h ∈ ΩY for a space Y (say ΣX), and if we write ∗ for loop
concatenation, then the path f ∗ g ∈ ΩY is defined as

(f ∗ g)(t) =

{
f(2t) 0 ≤ t ≤ 1/2

g(2t− 1) 1/2 ≤ t ≤ 1
.

So in particular, (f ∗ g) ∗ h and f ∗ (g ∗ h) are basically the same path but traversed at
different speeds. So the loop multiplication is not actually associative.

That looks like a problem, but fortunately it’s only a minor problem. There are
lots of ways of remedying this. Later on in the course we are going to study n-fold
loop spaces, and in order to understand the relations this little trick I’m going to
now introduce won’t be enough. The idea is that a loop space is not just homotopy
associative, but infinitely homotopy associative, and there are general strictification
results.

But here there’s a trick, due to Moore. We will define a space ΩmX ⊂ Map([0,∞], X)×
(0,∞).

2.3 Definition. ΩmX (the space of Moore loops) consists of all pairs (f, t) such that
f(0) = ∗ and f(s) = ∗ for s ≥ t.

This is just a fancy way of avoiding the rescaling involved in the previous con-
struction. If you don’t have to rescale, then the rescaling involved previously becomes
unnecessary, and we can get associativity on the nose.

I leave it to you to produce a map ΩX ⊂ ΩmX which is a homotopy equivalence.
I also leave the following to you:

2.4 Proposition. ΩmX is an associative topological monoid.

(Given (f1, t1) and (f2, t2), you form their product by first running f1 from 0 to t1
and f2 from t1 to t1 + t2.) This is a great trick, and I think a really good technical
trick that saved a lot of technical headaches. Every loop space is homotopy equivalent
to a monoid.

In particular, we get a map

X → ΩX → ΩmX,

and consequently a map of monoids

JX → ΩmΣX.

That’s an important map.
Our goal is:

2.5 Theorem. The map JX → ΩmΣX is a homology isomorphism.

Let’s think a little about the homology of JX. Fix a field k, and write H∗ for
homology with coefficients in k. The tensor product will mean over that field. The
James construction is coming to us filtered : it’s got the basepoint ∗, and then X, and

14
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then J2X (all words of length ≤ 2), and then J3X, and so forth. In general, JnX is a
quotient of Xn, or more accurately a quotient of

∗ tX tX2 t · · · tXn/ ∼,

modulo an appropriate equivalence relation ∼. Anyway, it corresponds to words of
length ≤ n, and there is a filtration

∗ ⊂ X ⊂ J2X ⊂ J3X ⊂ · · · ⊂ JnX ⊂ · · · ⊂ JX.

In general, we can write JnX as a quotient of Jn−1X ×X.
Anyway, you should try to work the following out:

2.6 Theorem. H∗(JX) is the tensor algebra T (H̃∗(X)).

To see this, you should use the Künneth theorem, since we have field coefficients.

Lecture 3
9/12

§1 Recap of the James construction

So, last time I described the James construction JX (for (X, ∗) a pointed space),
which was the free associative monoid on X with the basepoint as the unit. We could
describe JX =

⊔
n≥0X

n/ ∼, modulo a suitable equivalence relation: (x1, . . . , xn) =
(x1, . . . , x̂i, . . . xn) with the ith coordinate removed if xi = ∗. Now JX is filtered, and
let JnX denote

⊔
i≤nX

n/ ∼, so words of length ≤ n.
We had a filtration

J0X ⊂ J1X ⊂ J2X ⊂ . . . ,

where JnX/Jn−1X ' X∧n, as is easily seen. From this, it is fairly easy to calculate the
homology of JX.

Let’s assume field coefficients throughout, so that H∗(X×Y ) ' H∗(X)⊗H∗(Y ). So
let’s see. The one thing is that H∗(JX) is an algebra, as JX is a monoid. It contains
H̃∗(X); that is, there is a map

H̃∗(X)→ H∗(JX),

via the map X → JX. Let T (V ) =
⊕
V ⊗i denote the tensor algebra on a vector space

V . This extends to a map
T (H̃∗(X))→ H∗(JX),

because H∗(JX) is an algebra.

3.1 Theorem. T (H̃∗(X))→ H∗(JX) is an isomorphism.

Proof. Let V = H̃∗(JX). We can filter T (V ) via subspaces TnV =
⊕

i≤n V
⊗i. We get

maps
TnV → H∗(JnX),

15
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which are compatible as n varies. In fact, we have a diagram

Tn−1(V )

��

// H∗(Jn−1V )

��
Tn(V )

��

// H∗(JnX)

��
V ⊗n // H∗(JnX, Jn−1X) ' V ⊗n

,

and assuming a mild topology condition to get H∗(JnX,Jn−1X) ' H̃∗(JnX/Jn−1X) '
H̃∗(X

∧n).
Let’s look at this diagram. We want to prove that Tn(V )→ H∗(JnX) is an isomor-

phism. We can prove this by induction on n; when n = 1 it is obvious. If we assume
that Tn−1(V )→ H∗(Jn−1X) is an isomorphism, and we know that the bottom map is
an isomorphism, we can use the long exact sequence of a pair. Now use the long exact
sequence in homology to work up on n (observe that the map H∗(JnX) → V ⊗n is a
surjection just by the diagram, so it’s really a short exact sequence). N

Remark. Alternatively, one could run a spectral sequence argument on the filtered
space JX, although it doesn’t seem to make things easier. Note that we’ll review
spectral sequences in a couple of days, so till then we’ll do a few arguments the long
way.

§2 The homology on ΩΣX

We have a canonical map
X 7→ ΩΣX,

which gives a map
H̃∗(X)→ H∗(ΩΣX),

and the target is an algebra, so that if V = H̃∗(X) as before, we get a map

T (V )→ H∗(ΩΣX).

3.2 Theorem. The map T (V )→ H∗(ΩΣX) above is an isomorphism.

Proof. This would be relatively easy to do with the Serre spectral sequence for the path
loop fibration. But I want to use this for a couple of different purposes. Let’s study
ΩΣX by studying the fibration

ΩΣX → PΣX → ΣX,

where PΣX is the space of (based) paths in ΣX. We could work out the homology of
ΩΣX from the homology of ΣX and that of the (contractible) PΣX.

But I’d like to extract a picture from this. Imagine the suspension of X: it splits into
a positive cone C+X ⊂ ΣX and a negative cone C−X ⊂ ΣX, which are (contractible)
open sets whose intersection is homotopy equivalent to X: for instance, C+X∩C−X =
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(−ε, ε) × X. Now one of the first things you do when you learn the Mayer-Vietoris
sequence is to use this to calculate the homology of ΣX.

Consider the evaluation map (evaluation at 1)

p : PΣX → ΣX,

whose fiber is ΩΣX. Consider the inverse images p−1(C+X) and p−1(C−X). We write

P±ΣX = p−1(C±X).

That leads to a diagram which we are going to study. We will study H∗(ΩΣX) using
the diagram

P+ ∩ P−

��

// P+ΣX

��
P−ΣX // PΣX

.

Now we’ll study the Mayer-Vietoris sequence for this diagram. Let’s look at these
spaces and try to understand their homotopy type.

Consider P+ΣX: this consists of the space of paths γ such that γ(0) = ∗ and
γ(1) ∈ C+X. The path starts at the basepoint, can go anywhere, but has to land in
the positive cone. Note that C+X is contractible. In other words, we have a pullback

P+ΣX

��

// PΣX

��
C+X // ΣX

,

and note that it is also a homotopy pull-back. Since C+X is contractible, we find that

P+ΣX ' ΩΣX.

We could very easily provide a homotopy equivalence by taking a loop that extends in
the positive cone and extending it on any homotopy that contracts the positive cone
onto the base point. Similarly,

P−ΣX ' ΩΣX.

The last thing to understand is P+ΣX ∩ P−ΣX. To get this, we have a homotopy
pullback

P+ ∩ P−

��

// PΣX

��
X // ΣX

.

However, X → ΣX is nullhomotopic (it’s the inclusion of the equator), so the homotopy
pull-back is the same as one would have gotten by taking the constant map X → ΣX.
In particular, we get for the pull-back a homotopy equivalence

P+ ∩ P− ' X × ΩΣX.

17
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Maybe you’re not used to these ideas, so let me tell you what you’d have to do

to actually prove this. Choose a homotopy X × [0, 1]
H→ X from the inclusion to the

constant map. We have a diagram

E

��

// PΣX

��
X × [0, 1]

H // ΣX

,

where E is the pull-back. We could include X ×{t} in X × [0, 1] for any t, a homotopy
equivalence. In particular, the map Et → E is a homotopy equivalence,

Et

��

// E

��

// PΣX

��
X × {t} // X × [0, 1]

H // ΣX

,

and now you compare Et for t = 0, 1: these maps are respectively the inclusionX → ΣX
and the constant map. In particular, the two E0, E1 are just X × ΩΣX and P+ ∩ P−.
I’m not using anything very deep, but it’d probably be a good idea to really try to
understand this argument. I’m not using anything deep, but I’m using a pretty good
fluency in the notion of a fibration.

OK, so now I want to put up something here. We’ve been studying the diagram

P+ ∩ P−

��

// P+

��
P− // PΣX

,

and we can now write down what these spaces are homotopy equivalent to:

X × ΩΣX

��

// ΩΣX

��
ΩΣX // ∗

.

This is a homotopy pushout square.
Here’s a subtlety: there’s something to think through. I’m going to advertise this

as an exercise. But this is an important little point, about principle bundles over
suspensions. I went through this quickly, but there was a choice to be made, and I
went through it sufficiently quickly that you probably didn’t notice the choice. The
nullhomotopies of X → ΣX involved running through either C+X or C−X; let’s choose
C+X. In other words, let’s use the contractibility of C+X rather than that of C−X.

Exercise: With the choice of C+ contractibility, the horizontal map in the above
diagram (P+ ∩ P−)→ P+

X × ΩΣX → ΩΣX

is the projection map, while the vertical map P+ ∩ P− → P−

X × ΩΣX → ΩΣX

18
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is the twisting map (where X goes into ΩΣX and then you multiply: X × ΩΣX →
ΩΣX × ΩΣX → ΩΣX). This is something important to understand.

Finally, after all this, we’d like to study this diagram using the Mayer-Vietoris
sequence in reduced homology. In particular, we get that the map

H̃∗(X × ΩΣX)→ H̃∗(ΩΣX)⊕ H̃∗(ΩΣX),

is an isomorphism, where one of the two maps H̃∗(X ×ΩΣX)→ H̃∗(ΩΣX) come from
projection and the other comes from the action map.

The projection map H̃∗(X × ΩΣX) → H̃∗(ΩΣX) has a section (coming from the
section ΩΣX → X × ΩΣX from the basepoint). Consider a diagram

0 // H̃∗(ΩΣX)

��

// H̃∗(ΩΣX)

��

H̃∗(X × ΩΣX) //

��

H̃∗(ΩΣX)⊕ H̃∗(ΩΣX)

��
0 // C // H̃∗(ΩΣX)

.

Note that H̃∗(X×ΩΣX) ' H̃∗(X)⊕H̃∗(ΩΣX)⊕
(
H̃∗(X)⊗ H̃∗(ΩΣX)

)
. In particular,

the map H̃∗(ΩΣX)→ H̃∗(X × ΩΣX) is the inclusion of a factor, and we find that

C = H̃∗(X)⊕
(
H̃∗(X)⊗ H̃∗(ΩΣX)

)
.

We find that that’s isomorphic to H̃∗(ΩΣX). Moreover, the map

C → H̃∗(ΩΣX)

comes from both the inclusion and the twisting map.
This may not seem like much, but we find that H∗(ΩΣX) is an algebra which

has this recursive property that we’ve just seen. For instance, we could just do this:
substitute the identity into itself! We could abstract upon this.

3.3 Lemma. Let A be an augmented algebra (with augmentation ideal A) and consider
a map V → A with the property that

V ⊕ (V ⊗A) ' A.

This implies that A ' T (V ).

This lemma implies the result. We could prove this lemma purely algebraically, or
substitute the identity into itself. We get that

V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗A) ' A,

and in the limit, we get the desired form of A.
The conclusion is that H∗(ΩΣX) is the tensor algebra on H̃∗(X), as in the theorem.

N

3.4 Corollary. The map JX → ΩΣX is an isomorphism in homology.

By the Hurewicz theorem, we find that the map JX → ΩΣX is a weak equivalence.
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§3 To be fixed later

I would like to finish today by deducing a different, topological statement, out of this.
We calculated this without using very much. We got this identity and this recursive
relation, but we never had to think about what anything really looked like. This is
usually a clue that there is a more geometric statement that implies this. This is
probably a general rule in math. There’s a more fundamental geometric statement.

This geometric statement was originally proved by using this construction JX and
the equivalence JX ' ΩΣX. I’m going to deduce it from a diagram, a trick due to
Ganea. Let’s consider again the diagram

X × ΩΣX

��

// ΩΣX

��
ΩΣX // ∗

.

Consider the mapping cones of both maps. Since the map is a homotopy pushout, the
mapping cones are homotopy equivalent.

The mapping cone Cone(X × ΩΣX
π2→ ΩΣX) is ΣΩΣX. We’ll deduce from this.

Let X+ = X t ∗ where ∗ is a new basepoint, so that (X × Y )+ = X+ ∧ Y . The smash
product commutes with taking mapping cones. The mapping cone of X+ → S0 is ΣX.
Now smash with Y+ to get a new cofiber sequence,

X+ ∧ Y+ → Y+ → ΣX ∧ Y+.

So in particular, we have a cofiber sequence

(X × Y )+ → Y+ → ΣX ∧ Y+.

That implies that the cone of X × ΩΣX → ΩΣX is homotopy equivalent to ΣX ∧
(ΩΣX)+. In particular,

ΩΣX ' S1 ∧X ∧ (ΩΣX)+.

I’m out of time, so let me just say: technical basepoint issues. That tells me that
X ∧ S1. Anyway, that’s X ∧ Σ(ΩΣX+), and now we’re in a position of substituting
this identity.

3.5 Corollary (James splitting). ΣΩΣX ' Σ
∨∞
j=1X

∧j.

We’re going to play a lot with this in the next class.

Lecture 4
9/14

I keep digging and found some resources which I’ll put up on the website on the weekend.
I’ll attend to it this weekend and hopefully put up a problem set.

We were trying to set up the EHP sequence and just consider that as a device for
calculating the homotopy groups of spheres, but we’ll primarily consider the questions
that arise in doing so. Let me remind you what we did in the last class.

20



Lecture 4 Spectra and stable homotopy theory notes

§1 Recap

I looked at the path loop fibration

ΩΣX → PΣX → ΣX = C+X ∪X C−X,

where C+X,C−X were contractible. We saw that the pull-back P+ΣX = PΣX ×ΣX

C+X was ΩΣX. We saw that there was a commutative homotopy pushout square

X × ΩΣX

��

// ΩΣX

��
ΩΣX // ∗

and there’s something like this for general principal bundles. The two mapsX×ΩΣX →
ΩΣX came from projection and a map we called τ . We used this diagram in a couple
of ways:

1. First, we used it to calculate H∗(ΩΣX).

2. Next, we used it to analyze the homotopy type. Consider the mapping cones of
both rows, we get a map

ΣX+ ∧ ΩΣX → ΣΩΣX

of mapping cones, which is an equivalence, since the diagram was homotopy
cocartesian. Since ΣX+∧ΩΣX = X+∧ΣΩΣX, we iterate this over and over and
get the James splitting

ΣΩΣX ' Σ
∨
n≥1

X∧n.

There are some good things about the way I did this and some bad things. In the
problem set, I’m going to ask you a lot of questions about this—I’ll give you a flavor of
them in a minute. However, I haven’t been very explicit about what these maps are.
There’s some work to unpack everything.

§2 James-Hopf maps

We understand what ΣΩΣX → Σ
∨
n≥1X

∧n does in homology.

4.1 Definition. The James-Hopf maps (which generalize the Hopf invariant) come
from taking this splitting

ΣΩΣX → Σ
∨
n≥1

X∧n
p→ ΣX∧n

and then taking the adjoint map

ΩΣX → ΩΣX∧n,

which is called the James-Hopf map.
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It’s related to the Hopf invariant when n = 2 and X a sphere. On Monday I’ll start
to explain how that works, but you might puzzle it out yourself.

4.2 Example. Here is an example of a little exercise. I plan to put this on the
imaginary problem set with a little coaching, but it’s worth thinking about even at this
point. Let’s try to understand something about this map. Consider the map

ΩΣX → ΩΣX ∧X.

Recall that [A,ΩΣX] = [ΣA,ΣX]. Moreover, [A,ΩΣX∧X] = [ΣA,ΣX∧X]. Somehow,
given a map

ΣA→ ΣX

we get a map
ΣA→ ΣX ∧X.

There’s some construction which produces this map, which we haven’t thought of
yet. An exercise would be to describe this construction, which is not a very easy thing
to do given what I’ve told you so far.

4.3 Example. Here’s another exercise. Given f : ΣA → ΣX, define H(f) : ΣA →
ΣX ∧X by the construction of the James-Hopf. Show that H(f) = 0 iff the following
diagram commutes:

Recall that ΣA is a cogroup object in the homotopy category, via the “throttle”
map ψA : ΣA→ ΣA ∨ ΣA.

ΣA

ψA

��

f // ΣX

ψA

��
ΣA ∨ ΣA

f∨f // ΣX ∨ ΣX

.

I’ll either give a more guided exercise or come back and tell you about it. But note
that something nontrivial has already happened with this James splitting: we get new
maps out of old maps that we wouldn’t have been able to think about before. This is
part of the way of life that we’re going to go over the next week.

You can think of the commutativity of the above diagram as the first obstruction
to f : ΣA→ ΣX being a suspension.

§3 The induced map in homology

The rest of the talk today will be on the induced map in homology

H∗(ΩΣX)→ H∗(ΩΣX∧n).

You might think this isn’t a very hard problem. We saw that

H∗(ΩΣX) = T (H̃∗(X))

and
H∗(ΩΣX∧n) = T (H̃∗(X)⊗n).
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You might think that such a map is determined by where the algebra generators go,
i.e. by what happens to H̃∗(X). Because, after all, these are the algebra generators for
H∗(ΩΣX). However, this might fail: you might not think that the map

H∗(ΩΣX)→ H∗(ΩΣX∧n)

is an algebra map. In fact, it is not an algebra map. The map

ΩΣX → ΩΣX∧n

is not a loop map, so the map on homologies is not necessarily an algebra. The
James-Hopf maps are maps between loop spaces which are not loop maps.

But that’s OK. There’s still something which we can do. We could look at the map
in cohomology

H∗(ΩΣX∧n)→ H∗(ΩΣX),

which is a ring homomorphism: that would be good, as we could leverage information
in low dimensions to information in high dimensions. As such, we need to understand
the ring structure in H∗(ΩΣY ) for a space Y . We’d like to study the multiplicative
structure via homology.

§4 Coalgebras

If I have a space A, and I look at the diagonal map

A→ A×A,

the Künneth formula and pull-back gives the ring structure H∗(A)⊗H∗(A)→ H∗(A).
If I want to study the map on homology, I look at the induced map

H∗(A)→ H∗(A)⊗H∗(A).

This makes homology into a coalgebra.

4.4 Definition. A coalgebra is a vector space V with a comultiplication V → V ⊗V
and a counit V

ε→ k which satisfy coassociativity and comultiplicativity.

The commutative diagrams you have to write down for a coalgebra are the opposite
of the diagrams you have to write down for an algebra.

Note as such that the map

H∗(ΩΣX)→ H∗(ΩΣX∧n)

is a map of coalgebras. Any map of spaces gives me a map of coalgebras, and from
that, we can usually work out the effect of the map in homology. I want to do this
explicitly in the case X = Sm.

So I need to be able to understand the coalgebra structure here. What is the
coproduct map

H∗(ΩΣX)→ H∗(ΩΣX)⊗2?
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The first fact is that the diagonal map ΩΣX
∆→ ΩΣX is a loop map. Therefore, the

coproduct map is a ring homomorphism. And hence, you might think it’s determined
by what it does on H̃∗(X), the generators. In fact, it is determined by what it does on
the generators. How can we figure out what it does on the algebra generators? That’s
kind of easy too, because this diagram commutes:

X

��

// X ×X

��
ΩΣX // ΩΣX × ΩΣX

,

and in particular the effect on the generators is given by the coproduct on H∗(X) itself.
If we knew the cohomology ring of X, we could determine the coproduct on H∗(X),
and then we could determine everything for ΩΣX.

4.5 Example. Let X = Sn. I’ll break it into even and odd in a moment. Then

H̃∗(X) ' k

in degree ∗ = n and zero otherwise (where we use coefficients in the field k). Let’s call
xn ∈ H̃∗(Sn) the generator. The coproduct in xn has to be

xn 7→ xn ⊗ 1 + 1⊗ xn,

because that’s the only possibility. In fact, xn maps to something in the group H̃n(Sn×
Sn), which is free on xn ⊗ 1, 1 ⊗ xn, and after projecting on each factor we have to
get xn again. Something more general happens in a space which is a suspension: the
coproduct is always of this form.

We have
H∗(ΩΣSn) = T (H̃∗(S

n)) = k[xn].

It’s not actually commutative if I think about graded commutativity. If I think of n
odd, then the ring is not graded commutative.

Now the coproduct is
xn 7→ xn ⊗ 1 + 1⊗ xn,

and consequently
xkn 7→ (xn ⊗ 1 + 1⊗ xn)k.

I’m supposed to expand this out. You might think that that’s the sum
∑

i+j=n

(
n
j

)
xin⊗

xjn, but that’s not necessarily true. For instance,

(xn ⊗ 1 + 1⊗ xn)2 = x2
n ⊗ 1 + 1⊗ x2

n + (1⊗ xn)(xn ⊗ 1) + (xn ⊗ 1)(1⊗ xn),

and there is a sign trick that happens: we get

(xn ⊗ 1 + 1⊗ xn)2 = x2
n ⊗ 1 + (1 + (−1)n)(xn ⊗ xn) + 1⊗ x2

n.

If you want to avoid the sign issue, you can either work with n even or take k = F2.
For the heck of it, let’s suppose n is even. Then H∗(ΩS

n+1) is a polynomial algebra
k[xn] with

xkn 7→
∑
i+j=k

(
k

i

)
xin ⊗ xjn = (xn ⊗ 1 + 1⊗ xn)k.
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When n is even, 2n is also even, and we want to focus on the first James-Hopf map,
that is the map

ΩSn+1 → ΩS2n+1.

We have H∗(ΩS
n+1) ' k[xn] and H∗(ΩS

2n+1) = k[y2n]. Observe that

xn 7→ 0, x2
n 7→ y2n

because the following diagram commutes:

Sn × Sn

��

// Sn ∧ Sn

��
ΩS2n+1 // ΩΣSn ∧ Sn.

In general, for X a space, we have a commutative square:

Xk

��

// X∧k

��
ΩΣX // ΩΣX∧k

,

which is easy to deduce. Taking higher iterated maps is much more complicated.
For example, we find

x3
n 7→ 0 ∈ H3n(ΩS2n+1) = 0.

However,
x4
n 7→ λy2

2n.

In order to figure out what λ is, we figure out the comultiplication. Under the comul-
tiplication,

x4
n 7→ x4

n ⊗ 1 + 4x3
n ⊗ xn + 6x2

n ⊗ x2
n + 4xn ⊗ x3

n + 1⊗ x4
n.

This map goes to
λy2

2n ⊗ 1 + 6y2n ⊗ y2n + λ⊗ y2
2n.

However, the coproduct ∆(λy2
2n) can be expanded to

∆(λy2
2n) = λy2

2n ⊗ 1 + 2λy2n ⊗ y2n + λ(1⊗ y2
2n),

and from this we get
λ = 3.

4.6 Example. Let’s now try an arbitrary element x2k
n , which has to go to λyk2n, and our

goal is to determine λ. The strategy is to go all the way to the k-fold comultiplication.
That’s going to go to (this is a little confusing for the coalgebra)

∆k(xkn) = (xn ⊗ 1 · · · ⊗ 1 + 1⊗ xn ⊗ 1⊗ · · · ⊗ 1 + . . . )k.
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That turns out to be the better thing to look at. I want to wrap this up: there are all
kinds of monomials in here, but the interesting ones to compare are where xn occurs
squared and y2n does. So let’s compare the coefficient of

x2
n ⊗ x2

n · · · ⊗ x2
n, y2n ⊗ · · · ⊗ y2n.

The first thing is
(

2k
2 2...2

)
(where there are k two’s), so

(2k)!

2k
.

The coefficient on the other side is

λ

(
k

1 1 . . . 1

)
= λk!,

so that

λ =
(2k)!

2kk!
= 1× 3× · · · × (2k − 1).

The important point for us is that λ is odd. Next class, we will exploit that and finally
establish the fibration sequence defining the EHP sequence.

Lecture 5
9/17

I struggled today: there are two thorny topics to get through. I thought I had a nice
way of avoiding the Serre ss in one, but I don’t. In any event, I’m going to need to use
spectral sequences throughout the course. So I’ll explain what the issue is, and give you
a quick overview of the Serre spectral sequence. We’re going to need that technique in
the future.

§1 Recap

OK, so let me remind you where we are, and the next thing we’re proving. I produced
this map

ΩΣX → ΩΣX ∧X,

and a lot of the fun’s going to begin when we start to analyze this map, called the
James-Hopf map. We were particularly interested in it when X was a sphere Sn. In
the last lecture, we calculated the homology of both sides, and showed that this was a
decent map. I emphasized the case when n was even.

1. H∗(ΩΣSn) ' k[xn], H∗(ΩΣS2n) = k[y2n].

2. The map
k[xn]→ k[y2n]

is not a ring homomorphism, but we saw that xjn 7→ 0 if j is odd and

x2j
n 7→ (odd)yj2n.
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§2 Goals

Let F be the homotopy fiber of ΩΣSn → ΩΣS2n. The adjunction map Sn → ΩΣSn

factors through F . We want to show that the map

H∗(S
n)→ H∗(F )

is an isomorphism, whenever we are localized at 2. By the mod 2 Hurewicz theorem,
we find that there is an equivalence

π∗(S
n)(2) ' π∗(F )(2).

Even if I could trick this out and prove the result without the Serre ss, most people
(including me) prove the mod C Hurewicz theorem using the Serre ss. Apparently tom
Dieck does these theorems without the Serre ss.

If you don’t mind, maybe you’ll humor me and I’ll take you through a little of the
analysis of this fibration and why you really need spectral sequences.

Let’s consider something more general. Suppose we have a fibration X → B and a
space F → X. Consider two situations:

1. This is a fiber sequence F → X → B and B is connected. We’re also going to
suppose that we have a map H∗(X) → H∗(F ) which splits the map H∗(F ) →
H∗(X). The conclusion is that the composite

H∗(X)
∆→ H∗(X)⊗H∗(X)→ H∗(B)⊗H∗(F )

is an isomorphism.

This is a typical result you might prove with the Serre ss. We’re not quite in this
situation with the James-Hopf maps, but we’re almost are, since we don’t yet
know that Sn is the homotopy fiber of the James-Hopf map ΩΣSn → ΩΣS2n.

Let’s try to prove this.

(a) Suppose first X ' F×B. This should be easy, and it is: it’s a matter of pure
algebra. It’s easiest to state and prove this in the language of cohomology
rather than cohomology. So let’s work in cohomology, since products are
easier to think about than coproducts. I have a vector space map

p : H∗(F )→ H∗(F ×B) ' H∗(F )⊗H∗(B)

by the Künneth formula, and I have a ring homomorphism

H∗(B)→ H∗(F ×B), a 7→ 1⊗ a.

We know that H0(B) = k and that the first map is a splitting, so that the
composite

H∗(F )
p→ H∗(F )⊗H∗(B)→ H∗(F × ∗)

is the identity. So in particular,

p(x) = x⊗ 1 +
∑

x′i ⊗ x′′i , dimx′′i > 0.
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I want to conclude that the map

H∗(F )⊗H∗(B)→ H∗(F )⊗H∗(B), x⊗ b 7→ x⊗ b+
∑

x′i ⊗ x′′i b

is an isomorphism. But that’s pretty easy: it’s almost the identity map. If
we filter H∗(B) by degree, then this map is an isomorphism (in fact, the
identity) on the associated graded. I just want to emphasize that I’m doing
something here where there is a filtration on the cohomology of B. So that’s
fairly straightforward.

(b) ??

2. Here’s the other situation. The situation we’re actually in is:

5.1 Theorem. We have a map f : X → B with homotopy fiber Ff , and with B
simply connected. We also have a map F → X whose composite with f is null,
which gives us a map

F → Ff

We have a map of vector spaces

H∗(X)→ H∗(F )

splitting the map H∗(F ) → H∗(X). Also, we have that the map H∗(X) →
H∗(X)⊗H∗(X)→ H∗(F )⊗H∗(B) is an isomorphism. The conclusion is that

H∗(F )→ H∗(Ff )

is an isomorphism.

It seems we have to use the Serre ss here. This is the thing I want, and that’s
the situation we’re in with the James-Hopf maps. Once we’ve done this, we will
have established the EHP sequence, a 2-local fiber sequence

Sn → ΩSn+1 → ΩS2n+1.

Proof. The first place in an algebraic topology course where you encounter a spectral
sequence but are not told about it is in the cellular chain complex. Let B be a CW
complex. Then you introduce the cellular chains on B. We have

Ccell
n (B) = Hn(B(n), B(n−1)),

and we have a differential

Hn(B(n), B(n−1))→ Hn−1(B(n−1))→ Hn−1(B(n−1), B(n−2)),

and you prove (almost axiomatically) that the homology of B is the homology of this
cellular complex. All you need is excision, the calculation of the homology of spheres,
and the long exact sequence of a pair. In fact, this chain complex, it’s not always
pointed out, is a bit of a funny one. There isn’t a natural way to relate this to the
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singular chain complex. If you know about the AHSS, you’ll know that there can’t be a
functorial relationship between cellular and singular chains. It’s a bit strange: you use
this in the first semester to calculate, but it’s relating to homology in a special case.
It’s a special case of a spectral sequence.

I want to try the same thing. Consider a Serre fibration X → B, and suppose that
B is a CW complex. I’m reminding you of what the quickest way to explain the Serre
ss. I also know that, from lecturing on it, it’s not the quickest way of constructing
it actually. This is just a quick way to think about it. So for instance, the Serre ss
doesn’t really require B to be a CW complex, and it’s easier to construct in terms of
singular than cellular homology.

What I want to do is to look at the n-skeleton B(n) and form the pull-back,

X [n]

��

// X

��
B(n) // B

,

where X [n] is not to be confused with the n-skeleton of X. Let’s try to use this method
for calculating the homology of B and use that to calculate the homology of X. We
need to understand

H∗(X
[n], X [n−1])

to start with, which isn’t so bad: it’s a pull-back of the pair (B(n), B(n−1)). Sitting
over it I have (X [n], X [n−1]). By excision or relative homeomorphism, the homology of
(B(n), B(n−1) is the same as the disjoint union of a bunch of pairs (Dn, Sn−1), one for
each n-cell of B. There’s a map of pairs⊔

(Dn, Sn−1)→ (B(n), B(n−1))

which is an isomorphism of homology. Pulling back the fibration over X, we get
something homotopy equivalent to a direct sum of copies of H∗(F ×Dn, F × Sn−1).

I can write this more functorially. The homology of H∗(X
[n], X [n−1]) is the set

of cellular n-chains in B, tensored with the homology of F . I can write that more
canonically as

H∗(X
[n], X [n−1]) ' Ccell

n (B)⊗H∗(F ),

and the reason that this ends up being a bit of a hand-wavy approach is this fact which
requires a tough proof: when B is simply connected, the connecting homomorphism

H∗(X
[n], X [n−1])→ H∗(X

[n−1])→ H∗(X
[n−1], X [n−2])

is the cellular chain map of Ccell
n (B) tensored with the identity. There’s even a statement

when B is not simply connected. Then we get this long exact sequence for the triple

X [n−2] ⊂ X [n−1] ⊂ X [n]

and from there we can calculate H∗(X
[n], X [n−2]). Inductively, we could try to calcu-

late H∗(X
[n], X [n−k]) and in the end, what you’re doing is working with the spectral

sequence. That’s one way of thinking about what a spectral sequence is.
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Now I’m going to speed up and tell you how this works out. This will probably be
very hard to follow if you’ve never seen spectral sequences before — I’m just going to
get through it. So what’s a spectral sequence? A spectral sequence is a sequence of
groups

(Er, dr)

where Er is an abelian group (usually bigraded) and dr : Er → Er is a differential.
There are isomorphisms

Er+1 ' H(Er, dr).

In the case of the Serre spectral sequence, the theorem about the Serre spectral sequence
is that there is a spectral sequence (which organizes all these long exact sequences):

5.2 Theorem (Serre). Suppose F → X → B is a Serre fibration with B simply
connected. Then there is a spectral sequence

Ep,q2 ' Hp(B,Hq(F )) =⇒ Hp+q(X).

In fact, Ep,q1 ' Ccell
∗ (B)⊗H∗(F ) and d1 = dcell when B is a CW complex.

Usually when you draw one of these spectral sequences, you just draw a bigraded
group where in position p, q you have Hp(B;Hq(F )). The Er term measures the homol-
ogy H∗(X

[n], X [n−r]) (for all n). The sense in which I say “measures” is a more subtle
aspect of a spectral sequence. There are a lot of ways in which people use spectral se-
quences, sometimes the E2 page tells you the entire answer, or sometimes the evolution
of the spectral sequence is of interest. In the latter case, you need to understand what
the notion “measures” means. We’ll come back to these aspects of spectral sequences
later in the course.

A spectral sequence at this level of generality is only a marginally useful notion:
usually there’s a mechanism that produces the differentials dr. You don’t just get a
sequence of random new terms every time. In the Serre spectral sequence, there are
two gradings, and the differentials respect the grading. We have:

dr : Ep,qr → Ep−r,q+r−1
r .

These groups are being related to Hp+q(X), and the total degree of the differential is
always −1, just like in the chain complex. One thing that even those of us who are
making mistakes made sure of was that dr had degree −1.

What does this notion of “convergence” mean? If I’m in a given box (bigraded
piece), after a while the groups stabilize because we are in a first quadrant spectral
sequence. As you move through the spectral sequence, you’re replacing each term by
the kernel of d mod the image of d, and each box gets replaced by a subquotient.
Eventually they reach a stationary value, because the kernel of the zero map is the
whole thing, and the image of the zero map is zero. In other words,

Ep,qr , r � 0

is fixed, and we write that as Ep,q∞ . The “convergence” now means that Hn(X) has a
filtration with associated graded

⊕
p+q=nE

p,q
∞ .
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At any rate, let’s look at how this works in the situation that we were in, in the
last minute. I have a map X → B with homotopy fiber Ff and a space I called F . We
had a map H∗(X)→ H∗(F ) which was a section, and which gave us an isomorphism

H∗(X) ' H∗(F )⊗H∗(B).

We wanted to conclude that H∗(F ) → H∗(Ff ) was an isomorphism. I think I’m not
going to be able to spell out all the intracies of this in just five minutes. If you’ve
played with the Serre ss, you’ll understand this argument. If not, it’s a good argument
to get yourself acquainted with some of the formalities.

Notice that the map
H∗(X)→ H∗(B)

has to be surjective, because H∗(X) → H∗(F ) ⊗ H∗(B) was an isomorphism. This
means that all the differentials out of H∗(B) in the bottom row must be zero. Therefore,
for instance, H1X is formed from H1B and H1Ff . Or in other words,

H∗(B)⊗H∗(Ff ) ' H∗(X) in degrees ≤ 1.

This is enough to imply that H1(F ) → H1(Ff ) is an isomorphism. That’s enough to
tell us that there are no differentials which can come out of the second row. And you
can run the argument over and over with 1 replaced by 2, and keep going. I know
that was very quick. If you’re familiar with the Serre ss, you’ve probably seen that.
But I wanted to contrast this with the other situation we were in. This was proved
by induction on the homology degree of F , which is hard to access without the Serre
ss. N

Lecture 6
9/19

§1 The EHPss

We still have a lot of analysis to do just to set up the EHP sequence, but I want to
take a minute in today’s class and explain how one uses it to inductively calculate the
homotopy groups of spheres. The idea was to use this as a question-generating device
and then we’d scurry off and do other things. We need to organize the EHP sequence.

The EHP sequence is a (2-localized) collection of long exact sequences

. . . πkS
n → πk+1S

n+1 → πk+1S
2n+1 → . . . ;

there’s a whole bunch of these, as n varies over the spheres. These together form
an exact couple and hence a spectral sequence. I want to get into what this spectral
sequence looks like. There’s a sort of recursive aspect to the spectral sequence that
enables you to make a lot of caclulations. I’ll do that today; it’s rather nice.

Let’s write this as an exact couple.

π∗S
n

$$JJ
JJJ

JJJ
JJ

// π∗+1S
n+1

xxqqqqqqqqqq

π∗S
2n+1

,
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where the “E1” term is π∗S
2n+1 (the homotopy groups of odd spheres) and the abut-

ment is the colimit of the maps on the “D terms,” lim−→πn+kS
n, the stable homotopy

groups of spheres. You don’t really use this as a method of starting with the homotopy
groups of odd spheres and calculating the stable homotopy groups of spheres. Instead
it’s the process of the spectral sequence which enables you to make calculations and
which reveals a very beautiful story which we’re going to get to.

Before we go forward, we have to make a bunch of decisions of how to draw these
things on the page.

§2 The spectral sequence for a double complex

Let’s first talk about an easier type of spectral sequence, and that’s the spectral se-
quence of a double chain complex. I’m going to suppose I have a chain complex which
starts

�� �� ��
C20

��

C21
oo

��

C22
oo

��
C10 C11
oo C12

oo

C00 C01
oo C02

oo

which means that the maps are differentials and the maps square to zero. I’m not
giving these names because that would be a drag. Out of this you make a total chain
complex. It’s like

C00 ← C10 ⊕ C10 ← C20 ⊕ C11 ⊕ C02 . . . .

In general,

Tot(C)n =
⊕
i+j=n

Cij

and the differentials come from the vertical and horizontal differentials, but you have
to alternate the sign.

Alright, now, out of a double chain complex there is a spectral sequence. You make
a spectral sequence out of a double chain complex by filtering it. So we would take
our double chain complex Cij . We’d just take the first n columns and cut it off there;
there’s a sub double complex. Given C••, we have

FnC•• ⊂ C••
where Fn consists of the first n columns. Then we have a filtration on C•• and Fn/Fn−1

is just the nth column, as a chain complex. That gives a long exact sequence of
homology groups. For instance, we have an exact couple

H∗(F∗)

%%LLLLLLLLLL
// H∗(F∗+1)

xxqqqqqqqqqq

H∗(Ccol)

,
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and thus we get a spectral sequence starting (in E1) with the homologies of the columns,
and converging to H∗(Tot(C••).

The spectral sequence of a double chain complex is a really good example to think
about. The Serre ss can be constructed as an ss of a double chain complex. I want to
talk about this because even if you don’t know about spectral sequence, the process
of the spectral sequence gives an algorithm for computing the homology of the total
chain complex, and it’s possible to understand that algorithm.

OK, so let’s imagine that we know the E1 page of this spectral sequence. That is,
we know the homologies of each of the columns. Let’s suppose we have an element in
the homology of one of these columns, so an element in the E1 page of the ss. Say
(n, k) dimensions. We can represent x by an element x in Cn which is a cycle, with
respect to the vertical differential.

Over here, let’s imagine the double chain complex itself.
What happens to x under the total differential? There’s a vertical and a horizontal

component. The horizontal component might be nonzero, though the vertical element
is zero. That gives an element d1x in the chain complex. Back here, with our friends
running the spectral sequence, the element d1x is a cycle in Cn−1,k, because these
diagrams are supposed to commute. So d1x represents a homology class, which I’ll call
d1x, in Hk(Cn−1,∗). If that’s not zero, that’s a differential and we have to replace the
group in the spectral sequence by the homology of this differential and we don’t learn
anything more about spectral sequences.

To go further, suppose that d1x = 0 ∈ H∗(Cn−1,∗). That doesn’t mean that d1x = 0,
just that d1x is a boundary. We can find a class c1 whose vertical differential is d1x.
So we can choose a c1 ∈ Cn−1,k+1 such that the vertical differential of c1 is the same
as d1x. Now let’s look at the total differential of c1: it has vertical and horizontal
components. The horizontal component dhor(c1) is a cycle, and it represents another
homology class in Hk+1(Cn−2,∗) which I’m going to call d2x.

So this is the basic process. There were some choices involved. I could have added
to this any element which went to zero there, and that’s exactly what happens in a
spectral sequence. I’m going to stop with this story, but the idea is that one can
continue this process over and over. So this is the algorithm that the spectral sequence
is doing. You can learn about the great applications of the Serre ss, but those are
mostly where the ss collapses. But if you want to deal with a ss where not much
collapses, like the EHPss...

Note also that we could use this strategy to get a spectral sequence for computing
the homology of FnC••.

OK. So that’s a bit of advice about learning spectral sequences. It’s good if you get
lost, a little bit—I recommend really thinking through this algorithm and understand-
ing at which point are things well-defined. All those little questions are informative to
think through.

§3 Back to the EHPss

OK. So, the EHP sequence. We got one problem straight off the bat. And that is,
I want to think of π∗S

n as the homology of a chain complex. There’s actually—well,
we’ll come back to that later—a way, but let’s just imagine that we can do that. So
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π∗S
n = H∗Fn and these Fn chain complexes sit inside each other

Fn ⊂ Fn+1 ⊂ . . .

and H∗(lim−→Fn) = πs∗S
0.

One problem is the index. πkS
n isn’t the kth homology of some chain complex

because then the map would have to raise degrees. Let’s imagine

πn+k(S
n) = Hk(Fn)

for a chain complex Fn. Then, if I were drawing it like this, we would get a spectral
sequence where the E1 term would be H∗(Fn/Fn−1) which would be the homotopy
groups of an odd sphere. The E1 term would be πn+k(S

2n−1).
Let’s make a chart and try to imagine what this spectral sequence looks like. In a

given column, I’m supposed to write down the homotopy groups of odd spheres. In the
first vertical column, we’d have (from bottom to top) π1S

1, π2S
1, . . . ,, and then we’d

get the homotopy groups of S3, starting with π2S
3. The groups π2k+1(S2k+1) are on

the diagonal. Wait, is this right? There was some debate in class.
Anyway, the first differential goes

πn+k(S
2n−1)→ πn+k−2(S2n−3).

I have something messed up in the way I indexed this. Topologists rewrite the indices
a little differently anyway. What’s supposed to happen is that the d1 is supposed to
go horizontally. However you do this, there’s a problem. It’s not a bad problem, but if
you’re analyzing a spectral sequence like this and it’s not going to collapse and there’s
really something going on, you want to be able to assess visually what the situation is.
Given an element, I want to know what the possible differentials are on an element,
and what the possible groups contributing to a given group. The problem with this
indexing is that everything happens on a diagonal.

Topologists, starting with Adams, reindex these things. It’s just a linear change
of coordinates in the plane. We use Adams indexing. In the Adams indexing, you
arrange things so that all the groups in a given column contribute to the same group
that you’re computing in the total complex. My point, which I’m going to be rushing
through in the next few minutes, is to show you the recursive nature of the sequence.
The differentials go over from one column to the next. This requires a “shearing” of the
coordinate system. I’m going to rewrite the EHP ss in a way that works with Adams
indexing, and we’ll talk a little about what the spectral sequence is telling you.

What the spectral sequence tells you is that you can calculate the homotopy groups
of a given sphere by truncating the spectral sequence at a given column. If you truncate
the homotopy groups at the first m columns, then—as in the Fm’s—you can compute
the homotopy of Sm. You can already see that there’s an opportunity for feeding the
information back into itself.

What I want to do in the last ten minutes is to start going through a chart which
you can find in Ravenel’s green book. Holds up a copy. This is proof that the book
used to be green, but if you buy it now it’s going to be red. It’s a red shift. In the free
version that you download, it’s on page 27. It’s in the first chapter. Ravenel Adams
indexes this.
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(to be added)
One can use this to show:

π∗(S
2n+1)⊗Q =

{
0 if ∗ > 2n+ 1

Q if ∗ = 2n+ 1
.

The whole spectral sequence can inductively shown to be basically zero after tensoring
with Q. On the other hand, when ∗ = 2n, we get something a little more complicated.
More generally,

π∗(S
2n)⊗Q =

{
Q if ∗ = 2n, 4n− 1

0 otherwise
.

We’re going to pick this up much more carefully next time.

Lecture 7
9/21

§1 A fix

So, I want to continue going through the EHP sequence and how it’s used to calculate.
I want to explain this chart that’s in Ravenel’s book. First let me clear up something I
got confused about in the last lecture. So I was imagining we were looking at a double
chain complex C••, which I drew as if on a piece of graph theory. I filtered that, calling
FpC the pth piece. We got an exact couple,

H∗(Fp−1(C)) // H∗(FpC)

wwooooooooooo

H∗(Fp/Fp−1)

hhQQQQQQQQQQQQ

,

and the thing H∗(Fp/Fp−1) is the E1 term of the spectral sequence. I had said that
Fp/Fp−1 is exactly the pth column Cp∗, and that’s true, but that column’s not put in
the degree you’re seeing it. For instance, Cp0 has total degree zero. The pth homology
of Fp/Fp−1 is contributed to by the group Cp0. So

H∗(Fp/Fp−1) ' H∗(Cp∗)

is true, but with a shift of degrees.
In fact,

Hk(Fp/Fp−1) ' Hk+p(Cp,∗).

So that was my mistake—I forgot that there was a change in degrees, and if you make
that you’ll get the standard conventions in a spectral sequence.
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§2 The EHP sequence

I’m now going to follow Ravenel’s indexing. So recall: we’re taking the sequence of
homotopy groups of spheres. We consider the exact couple

πp+k(S
p) // πp+1+k(S

p+1)

vvmmmmmmmmmmmm

πp+1+k(S
2p+1)

ggOOOOOOOOOOOO

given by the EHP sequence (2-locally). The E1 term of this spectral sequence is the
homotopy groups of odd spheres. The E∞ page corresponds to the stable homotopy
groups of spheres.

If you truncate this spectral sequence, you get a spectral sequence converging to
the homotopy groups of any sphere.

Let’s put this together in a chart, and I’m going to index it in the way homotopy
theory people index it: I’m going to follow the Adams indexing convention rather than
the Serre one.

We place the homotopy groups of the odd spheres in the rows. Let’s start with the
knowledge that πn(Sn) = Z.

Abutment: πsk(S
0) Z

n
S1 1 Zλ0

S3 2 Z
S5 3 Z
S7 4 Z
S9 5 Z
S11 6 Z

Below the diagonal, everything is zero, and we don’t know what the stuff above
the diagonal is at this point. We will calculate it recursively. The truncated spectral
sequence would go for instance, from π∗S

1⊕π∗S3⊕π∗S5⊕π∗S9 and it would converge
to π∗S

4. This sets up an amazing recursive relationship between the homotopy groups
of spheres and lets you calculate very far.

It’s much easier if I write down generators of groups than groups. So instead of
writing down Z’s, let’s call the generators λi. So let’s change this to:

Abutment: πsk(S
0) Z

n
S1 1 λ0 0 0 0 0 0
S3 2 λ1

S5 3 λ2

S7 4 λ3

S9 5 λ4

S11 6 λ5

In the last class, we worked out the diagonal differentials d1. I’ll just remind you
what that was. These are maps

π2n+1(S2n+1) → π2n−1(S2n−1)
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which sends the generator to the Hopf invariant of the Whitehead product, i.e. 2 if n
is even and zero if n is odd. So every other d1 is multiplication by 2 on the λi. That is,

d1(λ2) = 2λ1

and so forth. After this differential hits, we know that the first stable homotopy groups
of spheres is Z/2, and we even know something about π3(S2). We learn the following:

1. πst1 (S0) = Z/2.

2. π3(S2) = Z, π4(S3) = Z/2, and then we’re in the stable range. (This we learn
from the truncation of the spectral sequence.) This is a bit confusing. If we
want to read of π∗(S

3) from this spectral sequence, we take the E∞ page of the
truncated spectral sequence, and look at the various columns.

So we’ve learned something. We know the next stable group. And that means
we can continue writing down the spectral sequence. Let’s try to start filling in
holes here. We’re using the spectral sequence to go back and calculate the E1 term.
Abutment: πsk(S

0) Z Z/2
n

S1 1 λ0 0 0 0 0 0
S3 2 λ1 Z/2
S5 3 λ2 Z/2
S7 4 λ3 Z/2
S9 5 λ4 Z/2
S11 6 λ5 Z/2

Now we get a bunch of maps between Z/2’s which are differentials d1 in the EHPss.
The standard name for the generator of πs1(S0) = Z/2 is η. What I’d like to say that
the maps Z/2→ Z/2 are zero. We run into a funny question.

Question. Let’s say I have a map α : Sn+k → Sn, so α ∈ πn+k(S
n). The set of maps

between spheres of the same dimension is the integers. Given an integer d, we can do
two things with α:

1. Compose with the degree d map Sn+k → Sn+k.

2. Compose with the degree d map Sn → Sn.

You might think that those are the same. But they’re not. The first map, by
definition of addition, is dα. The second map is not necessarily dα. Let me just give
you a simple example where this is not the case.

7.1 Example. Consider the Hopf map H : S3 → S2. Compose with the degree d map
S2 → S2. How do we make the diagram commute?

S3

H
��

? // S3

H
��

S2 d // S2

.

37



Lecture 7 Spectra and stable homotopy theory notes

We might think that S3 → S3 should be d. But that’s not the case. Look at the
mapping cones; we get an endomorphism of the mapping cone CP2. It sends the
generator in degree two to d times it, so it multiples the top generator by d2. So the ?
map should be multiplication by d2!

So that raises a question:

Question. What does the degree d map Sn → Sn (on the wrong side) do in the
homotopy groups of spheres?

We need to take this information to leverage that into the differentials.
Anyway, the differentials

d1 : Z/2→ Z/2

in the portion of the spectral sequence thus drawn are all zero. I want to name these
generators rather than labeling groups. There’s something good to do here, but let’s
think about what the classes are. What do I know about it from this spectral sequence.
Let’s call it g.

Abutment: πsk(S
0) Z Z/2

n
S1 1 λ0 0 0 0 0 0
S3 2 λ1 g
S5 3 λ2 Z/2
S7 4 λ3 Z/2
S9 5 λ4 Z/2
S11 6 λ5 Z/2

g corresponds to some element in πst2 (S0). The first place I see it, though, is on the
2-sphere. So it’s actually in the image of π4(S2). It’s not in the image of π3(S1) = 0.
We give a name to that. We say that S2 is the sphere of origin of g. That means
that it comes from the sphere S2 but from no smaller sphere.

Let’s imagine we have some element in πn+k+1(Sn+1) and we have the maps

πn+k(S
n)→ πn+k+1(Sn+1)→ πstk (S0).

Suppose some element x ∈ πn+k+1(Sn+1) and n + 1 is the sphere of origin of the
stabilization. That means that it’s not in the image of πn+k(S

n) and in particular it
has a nontrivial Hopf invariant in πn+k+1(S2n+1). That’s what not desuspending
further means.

So what is the Hopf invariant of the class in π4(S2) that we just called g? It is
nonzero, since g doesn’t desuspend. The Hopf invariant is just ... There’s a map from
π4(S2) → π4(S3). That comes from the spectral sequence. An element in π4(S2)
defines an element of πs2 and you look at the preimage in the E1 page?? That’s also
the Hopf invariant.

We’re calling the generator of π1 λ1 or λ1 mod 2. In fact you’re making an algebra
called the λ1 algebra. So we write for g λ1λ1. When I write down λ1λ1, the first thing
writes down the sphere of origin and the second thing is the Hopf invariant. I know
this is hard to understand. (At least, the scribe of these notes is completely confused.)
In general, for a sequence I,

λkλI
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means an element with sphere of origin the k + 1 sphere and Hopf invariant λI . So
λ1λ1 means that the sphere of origin is the 2-sphere and the Hopf invariant is λ1.

Abutment: πsk(S
0) Z Z/2

n
S1 1 λ0 0 0 0 0 0
S3 2 λ1 λ1λ1

S5 3 λ2 λ2λ1

S7 4 λ3 λ3λ1

S9 5 λ4 λ4λ1

S11 6 λ5 λ5λ1

The generator of πs2(S0) has sphere of origin S2 and Hopf invariant λ1. Anyway,
when we continue this, and assume that the differentials are zero, we learn

πst2 = Z/2.

And what about the generator? We learn that the sphere of origin is the 2-sphere
again. The Hopf invariant is the element we’re calling λ1λ1. So the next elements are
λ1λ1λ1, λ2λ1λ1, λ3λ1λ1, and so forth. I claim, once we analyze wrong-way composition,
that all the differentials on these triple products are zero. So that means that we get
three cyclic groups of order Z/2 in πs3.

Ravenel uses slightly different notation for the λ-notation, and it actually comes
from something called the λ-algebra. I guess I wanted to tell you something. In fact
πs3 = Z/8. Its generator is λ3. Twice the generator is λ2λ1 and λ1λ1λ1 is four times
it. That’s weird. We can go and feed this back into the calculation, which will tell us
about further groups.

Anyway, we learn that π6(S2) ' Z/4.
Abutment: πsk(S

0) Z Z/2
n

S1 1 λ0 0 0 0 0 0
S3 2 λ1 λ1λ1 λ1λ1λ1

S5 3 λ2 λ2λ1 λ2λ1λ1

S7 4 λ3 λ3λ1 λ3λ1λ1

S9 5 λ4 λ4λ1

S11 6 λ5 λ5λ1

Let’s turn to other things. If λn is a permanent cycle of the spectral sequence, then
that represents an element with sphere of origin on the n+1 sphere and Hopf invariant
one. So the question of which λn’s never have a differential come out of them is the
Hopf invariant one problem. If we’re just looking down the diagonals, the question of
when the differentials are zero or not is precisely the existence of Hopf invariant one
problem.

So we get to the question:

Question. When is there an element of Hopf invariant one?

Later in the course we’ll see that λ1, λ3, λ7 are permanent cycles. For instance, we
implicitly used this to see that λ3 was a permanent cycle. But look, here’s a place
where there’s definitely not an element of Hopf invariant one: π11(S6). So λ5 has to
support a differential. If I look it up in my crystal ball, λ5 is going to hit λ3λ1.
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In order to go further in this, we need to understand what the differentials of the
λi are. The amazing thing is that that’s a problem you can completely solve.

Question. What are the differentials out of the λi?

I want to translate that into a question about the homotopy groups of spheres. λn
wants to be an element of π2n+1(Sn+1) which hits 1 in π2n+1(S2n+1). If it doesn’t hit
one, then 1 must go to the Whitehead square in π2n−1(Sn) which must be nonzero.
What’s the differential? We have to find the sphere of origin of the Whitehead square.
We want to write this as an element of πm+n−1(Sm). And then take the Hopf invariant
of that. So anyway, the differentials on the λ’s, if you think this through, are equivalent
to:

Question. Differentials on the λ’s are equivalent to understanding what the sphere of
origin of the Whitehead square [ιn, ιn] is, and understanding what the Hopf invariant
is?

The really cool thing is that it’s equivalent to answering the vector fields problem.
So that’s going to be the bulk of what we do over the next month or so—explain how
this problem is related to the vector fields problem.

Lecture 8
9/24

We’ve gotten pretty far. We talked about the EHP sequence and how it could be used
to recursively compute the homotopy groups of spheres. I was describing this spectral
sequence and I used it to generate a series of questions. I want to talk now how we
answer some of these questions.

We drew this spectral sequence:
Abutment: πsk(S

0) Z Z/2
n

S1 1 λ0 0 0 0 0 0
S3 2 λ1 λ1λ1

S5 3 λ2 λ2λ1

S7 4 λ3 λ3λ1

S9 5 λ4 λ4λ1

S11 6 λ5 λ5λ1

We got that the initial differentials were λ2 7→ 2λ1, λ4 7→ 2λ3 where the other
differentials on the diagonal were zero. We had this recursive method of filling in this
table. We could calculate the differentials that λ2 → 2λ1, and we wanted to conclude
something about the differential of λ2λ1.

8.1 Example. So let’s review this notation. If λ3, an element in π7(S4) survives this
spectral sequence, it represents an element in πs3(S0) whose sphere of origin is the 4-
sphere. The Hopf invariant lands in π7S

7 and if λ3 survived, it would be an element
of Hopf invariant one.
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This is pretty tedious. You encounter, in the end, problems that you can’t solve.
Homotopy theory developed over the years by people looking at these tedious calcula-
tions and finding something systematic in them. We’re going to do that in this semester.
I’m going to trace a thread through several aspects of homotopy theory that come out
of this tedious calculation. In the end, we still don’t know all the homotopy groups
of spheres. We know large pieces, but it’s still tedious and anecdotal, and there’s still
room for new people to find new patterns and new conceptual frameworks. But it’s
amazing how much comes out of really trying to understand this. I’ll put some things
on the problem set to help you come to grips with how this information is displayed.
After this we’re going to do stable homotopy for about a month, and then return to
this with a lot more information at our disposal. It’s a good idea to understand this
much of the chart, but we’re going to be coming back to this later with a different
conceptual framework.

The differentials on λi are the Hopf invariants of the Whitehead squares. Now we
wanted to claim that the d1’s of the λkλ1 are all zero.

8.2 Theorem. d1(λkλ1) = 0 for all k.

We want to understand what the question to understand this. This differential on,
say, λ2λ1, goes from the homotopy groups of the 5-sphere to the homotopy groups of
the 3-sphere. We have a map

π6S
3 → π6S

5 ' Z/2 ' Z/2 {η}

and that goes around by the P map to π4(S2), and then that comes around by the
H map to π4(S2) to π4(S3) ' Z/2 and generated by the suspension of η. So η is the
generator of πs1(S0) ' πn+1(Sn), n ≥ 3. What are these maps?

The first thing we need to do is to understand these things as maps between spaces.
Let’s try to realize this as a map between spaces. We have a map S2 → ΩS3 → ΩS5,
and I’m interested in the connecting homomorphism: the map which shifts degrees and
goes back to S2. So let’s back this fibration one more time, using the Barratt-Puppe
sequence to get a fibration sequence

Ω2S5 → S2 → ΩS3.

The map Ω2S5 → S2 is kind of amazing: it’s hard to thing about such a map. There are
a lot of interesting things happening in this map. That gives us the P map π6(S5)→
π4(S2). Then we have the H map π4(S2)→ π4(S3). The H map is induced by a map
ΩS2 → ΩS3. In the end, we’re looking at some map

Ω3S5 → ΩS2 → ΩS3,

and that composite map is the map we want to understand. Specifically, we’d like
to understand what this map is doing in π3. That is the question of what the first
differential d1(λ2λ1) is. This is a hard thing to understand. These maps are complicated
and the spaces are unintuitive. It’s difficult to know in general how to calculate the
effect of this map on homotopy groups.
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Well, let’s look at the bottom cell. There is an adjunction map S2 ↪→ Ω3S5, and
there is a suspension map S2 → ΩS3. We have a commutative square:

S2

2
��

// Ω3S5

��
S2 // ΩS3

.

Why is it multiplication by 2? We need to know the effect in π2 of Ω3S5 → ΩS3 and
the map between the two spaces was P followed by H. P sends the generator to the
Whitehead square and H sends the thing to the Hopf invariant.

Next, the map π3(S2)� π4(S3) ' π6(S5). Our element η here actually comes back
to the 2-sphere and it’s generated by the Hopf map. Let η ∈ π3(S2) be the Hopf map.
And you see, the question of calculating this map is the following question: what is

S3 → S2 2→ S2, and I showed you at the end of this class is multiplication by four.
That means in the ss that the differential d1 is multiplication by four, hence zero.

The theme of this lecture is to explore this question:

Question. What is S3 → S2 2→ S2?

Let’s ask a more gneeral question.

Question. Say I have a map α : Sn+k → Sn. Consider multiplication by 2, Sn → Sn.
What is [2] ◦ α? It’s not 2α; so what is that?

I want to solve this by answering an even more general question. How do I get the
degree two identity? I take the degree two map as the sum of the identity map with
itself. So let’s ask this question even more generally. The more general question is this.
Let’s consider maps between two spaces that always form a group. So let’s consider
the following situation.

I have a map
α : ΣA→ ΣX,

and two maps f, g : ΣX ⇒ Y . Out of those two maps I can form the sum.

Question. How to express (f + g)∗α in terms of f∗α, g∗α and other things?

The answer to this question is only involved in this lecture, but it’s worth knowing.

What is f + g? You take ΣX → ΣX ∨ΣX
(f,g)→ Y . The comultiplication ∇ : ΣX →

ΣX ∨ ΣX is the map which crushes the middle copy of X. So in other words, if ι1, ι2
are two inclusion maps ΣX → ΣX ∨ ΣX, then

ΣX → ΣX ∨ ΣX

is the sum ι1 + ι2. In other words:

Question. What is ΣA→ ΣX → ΣX ∨ ΣX?
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This is the universal example. Since ΣA→ ΣX is not a suspension map, we can’t
say that the universal example asks for replacing ΣA by ΣX.

Let’s continue with this a little bit. What if ΣA → ΣX was a suspension? Then
the map is the sum of the two inclusions. So if α is a suspension, then

(f + g)∗α = f∗α+ g∗α.

It looks like it’s hard to get somewhere. However, let’s adjoint over. If we adjoint over,
we can map

A→ ΩΣX → Ω(ΣX ∨ ΣX)

and I could also ask what the composite is. That’ll eventually give us the formula.
The miracle is that Ω(ΣX ∨ΣX) is a space you can say something about. There’s

the Hilton-Milnor decomposition of Ω(ΣX ∨ΣY ). That will answer this question. My
whole goal today was just to explain what its role is in this story. We’re not going to
meet it again, I don’t think, after this lecture. But it’s a very important classical piece
of homotopy theory. In a way, it’s kind of a background motivation for things that are
coming.

All right, let’s think about this space Ω(ΣX ∨ ΣY ). The homology of ΩΣX is, as
we saw, a tensor algebra on the homology of X. So the homology of Ω(ΣX ∨ ΣY ) is
a tensor algebra on H̃∗(X)⊕ H̃∗(Y ). We’ll get some idea of what this looks like if we
think about what a tensor algebra does to a direct sum. Let me just start by writing
down a few terms. The tensor algebra on H̃∗(X)⊕ H̃∗(Y ) is

k+H̃∗(X)⊕H̃∗(X)⊗2⊕H̃∗(Y )⊕H̃∗(X)⊗H̃∗(Y )⊕H̃∗(Y )⊗H̃∗(Y )⊕H̃∗(Y )⊗H̃∗(X) . . . .

I just want to do some algebra. This algebra will point us to an answer. The first bit,
the bit that looks like T (H̃∗(X)), is the homology of ΩΣX. The next thing looks like
T (H̃∗(Y )). Also, there’s a piece that starts out as T (H̃∗(X)⊗ H̃∗(Y )). That is, we get
a decomposition

T (H̃∗(X)⊕ H̃∗(Y )) ' T (H̃∗(X))⊗ T (H̃∗(Y ))⊗ T (H̃∗(X ∧ Y ))⊗ . . . .

This is getting a little hard to tex. This is a piece of algebra. Roughly speaking, we get
a decomposition of T (H̃∗(X) ⊕ H̃∗(Y )) as a big tensor product of big tensor algebras
of things gotten from tensoring things together.

Can I realize that by maps of spaces? In fact I can, because we can certainly
map X → Ω(ΣX ∨ ΣY ), and certainly map Y in. That extends to a map ΩΣX →
Ω(ΣX ∨ ΣY ). If I have two maps Z1 → Ω(ΣX ∨ ΣY ), Z2 → Ω(ΣX ∨ ΣY ), I can get
a map fro their product because loop spaces are monoids. So if I want to get tensor
algebras going in, I just need to map things like X∧s ∧ Y ∧s in. In fact, X ∧ Y maps
into Ω(ΣX ∨ ΣY ) by taking commutators of the two maps. Part of the Hilton-Milnor
theorem is that this winds up continuing.

8.3 Theorem (Hilton-Milnor theorem). There is a decomposition of Ω(ΣX ∨ ΣY ) '
ΩΣY × ΩΣY × ΩΣ(X ∧ Y )× . . . .
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I haven’t really given a proof of the Hilton-Milnor theorem, or a statement of it.
But I’m going to give you an instruction kit for figuring out the correct statement and
proof. The idea is that this is a matter of combinatorics. If I could write T (V ⊕W ) as
a tensor algebra on tensor algebras on V, V ⊗• and similarly for W , then I could realize
that easily by taking maps like this easily and forming commutators and stuff. What I
hope that this has at least compelled you to see is that it involves two things: making
maps and combinatorics of free associative algebras. And that’s the thing. That winds
up giving you this decomposition.

Let’s assume something simple. But this is the way to remember this statement.
Let’s say I have a tensor algebra T{x, y}. My goal is to write that as a big tensor
product of other algebras. There’s a trick here. What do we know about a tensor
algebra? A tensor algebra is the universal enveloping algebra of the of a Lie algebra,
the free Lie algebra on x, y. If you give this a Hopf algebra structure by making x, y
primitive, then this Lie algebra is precisely the Lie algebra L {x, y} of primitives. What
do we know about enveloping algebras of Lie algebras? We have the Poincaré-Birkhoff-
Witt theorem.

8.4 Theorem (PBW). If L is a Lie algebra and U is the universal enveloping algebra,
then and I take U � k and filter by the augmentation ideal and look at the associated
graded, then that’s just the symmetric algebra on L.

Up to associated graded, this U is a polynomial algebra. And so that lets me write
U as a tensor product, since a symmetric algebra is always a tensor product. Let’s take
an example.

8.5 Example. Let L be a free Lie algebra on two variables. This has a basis x, y, [x, y], [x, [x, y]], . . . .
You can map the symmetric algebra on all these into the enveloping algebra of L: it’s
not an algebra map though.

So up to associated graded, a tensor product is a tensor algebra is a tensor product
of polynomial algebras. I’m just going to say this and I’m going to put it together
next time. The Hilton-Milnor theorem says that Ω(ΣX ∨ΣY ) is a big product, over a
basis for the free Lie algebra on two variables, of copies of ΩΣ(X∧i ∧ Y ∧j). To do it
properly, I’d have to go into the combinatorics of free Lie algebras. In the beginning
of class next time, I’ll answer the original question.

Lecture 9
9/26

§1 Hilton-Milnor again

OK, let’s continue. I was sort of telling you about the Hilton-Milnor decomposition.
I don’t want to dwell on it too long. I just want you to understand that there’s a
problem that’s more or less solvable, at least through a range of dimensions. Let me
tell you what the consequence of the Hilton-Milnor theorem is.

Let’s suppose that we have a map α : ΣA→ ΣX, and we have two maps

f, g : ΣX → Y,
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and we want a formula for (f + g)∗α. Of course, f + g is the composite of the maps

ΣX
∇→ ΣX ∨ ΣX

f,g→ Y,

and of course, we could figure it out if we knew this symbol ∇∗α. We decided we would
approach this problem by taking the adjoint maps,

A→ ΩΣX → Ω(ΣX ∨ ΣX).

Hilton-Milnor tells us that the space Ω(ΣX∨ΣX) can be written as an infinite product
of things. It starts out looking like

ΩΣX × ΩΣX × ΩΣ(X ∧X)× (1 +O(X∧3)),

as long as we’re having fun with terms of analysis. I.e., let’s imagine that X is n− 1-
connected. Then O(X∧3) means something which is at least 3n − 3 connected. So
if X = Sn, then this infinite product would be an infinite product of loopspaces of
spheres of increasing connectivity.

If
dimA < 2n− 1,

then this map only sees the first part, the map into ΩΣX × ΩΣX. We get a series of
maps from A into each of these terms in the product, you see. If dimA < 3n − 1, we
see only the first three factors, and so on. What does that tell us about our original
map ΣA → ΣX ∨ ΣX. Let’s remember again how the H-M theorem works. We had
an equivalence of Ω(ΣX ∨ ΣX) with something else.

The maps of the H-M theorem come as follows. ΣX goes into ΣX ∨ ΣX into two
different ways, and ΣX(∧X) → ΣX ∨ ΣX (the Whitehead product of the first two
factors). Then we take loops on all these maps and multiply them together. That gives
the various factors. My interest in this was just to inform you about how something
works without getting bogged down in details. However, the question is something
topologists know how to answer, and it’s a nice answer.

We had this map
α : ΣA→ ΣX,

and we’re going over here to ΣX ∨ΣX. Let’s suppose that dimA < 3n− 1. Then, out
of this, we get three maps from A into the first three factors, and if we adjoint them
back, we get there maps

ΣA→ ΣX,ΣA→ ΣX, ΣA→ ΣX ∧X.

By chasing the diagrams around, or by projecting off of each factors, the first two maps
are the original inclusion maps, and the third map is the James-Hopf invariant. I’m
claiming these two things are the same.

Namely, we can get a map ΣA → ΣX ∧ X in two different ways. One is via the
Hilton-Milnor decomposition, as we’ve just seen. The other definition of the Hopf
invariant of α : ΣA→ ΣX was

A→ ΩΣX 7→ ΣA→ ΣΩΣX → Σ
∨
X∧n =⇒ ΣA→ ΣX ∧X.
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These two give the same thing. I won’t get into these things. My goal was to give
you the beginning of the answer to this question. The Hopf invariant comes up as the
quadratic term that comes up here, and there are “generalized” Hopf invariants which
give us higher terms. The other terms can be expressed as James-Hopf maps.

The final answer in this range of dimensions is our final formula:

∇∗α = (i1)∗α+ (i2)∗α+ [i1, i2]∗H(α).

So we have to follow the Hopf invariant ΣA → ΣX ∧ X followed by the Whitehead
product ΣX ∧ X → σX ∨ ΣX. Anyway, notice that this is non-linear. This is kind
of the theme of the course. The first two terms are in the stable range, the third
is in the “metastable” range. What we’re studying in the unstable homotopy theory
is focusing on the metastable part. That’s ultimately what makes these connections
between vector fields on spheres and desuspending the Whitehead product.

If we go back to our original problem here, if we had maps

f, g : ΣX → Y,

then we find that

(f + g)∗α = f∗α+ g∗α+ [f, g]∗H(α) + . . . .

9.1 Example. Let’s do an example, and reconstruct a formula we already know. Let’s
take the Hopf map η : S3 → S2 and compose this with the degree two map S2 → S2.
What is the composite S3 → S2? We calculated using the mapping cone and cup
products that it would be 4η. As I pointed out in the last class, 2 = 1 + 1,

2 ◦ η = (1 + 1) ◦ η = η + η +H(η) ◦ [ι, ι] = η + η + 2η = 4η,

since [ι, ι] = 2η and H(η) = 1. And that’s what we knew it to be.

We could do this with other maps as well. The importance of the Hilton-Milnor
theorem is to understand the addition in the wrong variable when you’re studying
maps between suspensions. There’s a book on this. Note that when we study the EHP
sequence, we discover new elements in the homotopy groups of spheres through their
Hopf invariants, which makes this formula very useful.

§2 Hopf invariant one problem

We know what the Hopf invariant is. The question is:

Question. For which n does there exist a map

α : S2n−1 → Sn,

with Hopf invariant one?

There are lots of definitions. In this case, let’s define the Hopf invariant of α by
taking the mapping cone Sn ∪α e2n, look at the cohomology of this. If n ≥ 2, this has
a basis xn, x2n in degrees n, and 2n. Then

x2
n = H(α)x2n.

This problem was solved by Adams. The theorem is:
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9.2 Theorem (Adams). Only when n = 2, 4, 8 does there exist a map α of Hopf
invariant one.

This would also make sense with mod 2 cohomology, and I could have added n = 1
to this list for the degree two map of the sphere S1 → S1. But the thing I want to
discuss is the case n ≥ 2.

Now I could just give you the K-theory proof, and I will explain that. There’s a
lot of things to be learned from how one approaches this problem. In a way, Adams’s
original proof, which I won’t talk about, gave a lot more information about what’s
going on with this Hopf invariant. I’m going to try to give similar information when I
discuss the K-theory proof.

Adams’s theorem uses K-theory. I’m going to have to review some things about
Adams operations in K-theory. So let’s discuss the K-theoretic proof.

§3 The K-theoretic proof (after Atiyah-Adams)

So let K be K-theory. If you don’t know about K-theory, I don’t really have time in
this course to really develop it, but you can look at Hatcher’s book “Vector bundles
and K-theory.” Let me just tell you some basic facts.

1. To every space X, we have a ring K0(X). There’s a graded ring K∗(X) and
this is a contravariant functor from spaces to graded rings, and it’s a generalized
cohomology theory, meaning the Eilenberg-Steenrod axioms are satisfied, except
for the dimension axiom. I have a long exact sequence for a pair, I have excision,
and so forth, it’s just that the cohomology of the point is a little different.

2. If X is a finite CW complex, then K0(X) is the Grothendieck group completion
of the set of (complex) vector bundles on X. Vector bundles form a monoid under
Whitney sum, and the group completion is the smallest group receiving a map
out of that monoid. That becomes a ring under tensor product of vector bundles.

3. There’s a lot to say. On complex projective space CPn, we have the tautological
line bundle L. CPn is the space of complex lines in Cn+1 and over it you have
the tautological line bundle. In particular, an important element is when n = 1.
Let’s look at CP1 = S2 and we want to look at a particular element, 1− L. So

1− L ∈ K0(S2),

which restricts to zero on a point (since L restricted to a point is one), and 1−L
really lives in reduced K-theory.

4. K-theory satisfies Bott periodicity. And that says that for any X, multiplica-
tion by the element 1− L ∈ S2 defines a map

K̃0(S2)⊗ K̃n(X)→ K̃n(S2 ∧X) ' K̃n−2(X)

is an isomorphism. (Also, K̃0(S2) = Z.) The K-groups are periodic with period
2. In some sense, K̃n(X) only depends on n mod 2, but we’re going to introduce
some other structure which will break that symmetry.
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5. The amazing thing about K-theory is that the fact that it is a cohomology theory
lets you make a lot of calculations. I’ll try to summarize these things as gently
as I can.

Let me give you some examples of calculations of K-groups. We know that

K0(∗) = Z,

because a vector bundle over a point is just a vector space. So the monoid of vector
bundles over a point is N, and the group completion of that is the integers.

Something that requires proof is that

K−1(∗) = 0.

This, plus Bott periodicity, implies that

Kn(∗) =

{
Z if n is even

0 if n is odd
.

That tells us the K-groups of all spheres. We get

K̃0(S2n) = Z, K̃0(S2n+1) = 0.

We also want to know something about the ring structure, but let’s leave that for
the time being. So I could deduce something from this. Some version of this is going
to come up later. I want to work out the ring

K0(CP2) =?.

Let’s imagine that we are going to do this by induction on 2. We’re going to study
this inductively on 2, so we’re going to start the induction when 2 is one. Let’s look at
K0(CP1) = K0(S2) = Z ⊕ K̃0(S2) = Z ⊕ Z. But we know a little more about it. We
know that the generator of the first Z is 1 and the generator of the second Z is 1− L,
by Bott periodicity. So I could also say that

K0(S2) = Z⊕ Z,

generated by 1, L. For geometric purposes, if you want to think about K-theory as
telling something about vector bundles, this is a good basis. However, 1, 1 − L is a
better basis for homotopy theory.

Let’s work out the ring structure. What is L2? Well, L2 has to be a sum of a multiple
of 1 and a multiple of L, and in the basis 1, L it’s a little harder to understand. In the
second basis, it’s easier. Let me point out something.

9.3 Lemma. Let E is a multiplicative cohomology theory and a, b ∈ Ẽ0(ΣX), then
a ∪ b = 0.
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The reason for that is that we can split our suspension ΣX into the union C+X ∪
C−X, with intersection X. Then

Ẽ0(ΣX) = E0(ΣX,C+X) = E0(ΣX,C−X).

So a ∪ b ∈ E0(ΣX,C+X ∪ C−X) = E0(ΣX,ΣX) = 0. Over here, we can apply
1− L ∈ K̃0(S2) has to square to zero. That means

1− 2L+ L2 = 0, so L2 = 2L− 1,

which is not easy to see (you can find a geometric argument for it, though).
I guess I’m going to wrap this up by talking about the K-theory of CP2. So in the

K-theory of CP2, let’s look at this sequence

CP1 ↪→ CP2 � S4,

so that we get an exact sequence

· · · → K̃0(S4)→ K̃0(CP2)→ K̃0(CP1)→ . . . .

We’ve calculated the two extreme groups, and the sequence is actually short exact
because K̃odd(S4) = K̃odd(S2) = 0. We find

K̃odd(CP2) = 0,

and there is a short exact sequence

0→ Z→ K̃0(CP2)→ Z→ 0,

so that K̃0(CP2) = Z⊕ Z. So

K0(CP2) = Z⊕ Z⊕ Z.

What I’m going to claim is a consequence of the definitions and Bott periodicity.
But you have to get yourself organized. The fact is, K0(CP2) has a basis given by
1, 1 − L, (1 − L)2. The element (1 − L)3 = 0. If you’re not familiar with K-theory,
this would be a good thing to think through. The other reason this identification is
important is to take the map

K̃0(S4)→ K0(CP2)

and the first thing is Z generated by the square of the Bott periodicity class. It maps
over to (1 − L)2 ∈ K0(CP2). Note in particular that these generators of K0(CP2)
are sums of one-dimensional line bundles. This is an example of something called the
splitting principle in K-theory. We’ll come back and use the splitting principle later.
It’s how you make all calculations with things like Adams operations.
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Lecture 10
9/28

§1 Splitting principle

I’m kind of giving you a crash course in K-theory, and describing some of the ideas hat
go into the K-theory proof of Hopf invariant one. Last time I did a bunch of things
very quickly, and there’s something in K-theory that I’m going to make use of called
the splitting principle.

10.1 Proposition. If X is a finite CW complex, and V a vector bundle over X. Then
there exists a map p : P → X such that the following happens:

1. K0(P ) is a free module of finite rank over K0(X).

2. V is pulled back under p to a sum of line bundles on P .

So as far as K-theory is concerned, if you’re willing to pass to finite rank free
modules, you can pretend that any vector bundle is a sum of one-dimensional vector
bundles. This is proved in two steps.

The first thing is the projective bundle formula. That’s the following. Let

V → X

be a vector bundle. Let P(V ) → X be associated projective bundle space. If V is a
family of vector spaces parametrized by X, then the fiber P(V )x is the projective space
P(Vx). If the dimension of V is n, then the map P(V )→ X is a fiber bundle with fiber
CPn−1. On P(V ), there is a one-dimensional bundle denoted L → P(V ). The fiber of
L over a point in P(V ) (which is a point in X and a line ` ⊂ Vx) is precisely the line
`. In other words, all I’m doing is something we talked about for complex projective
space, and we’re regarding this P(V ) as a family of complex projective spaces.

So anyway, that line bundle L gives an element z = [1−L] ∈ K0(P(V ). What’s the
projective bundle formula?

K0(P(V )) ' K0(X)
{

1, z, z2, . . . , zn−1
}
.

There are lots of ways of proving this. You could imagine proving it with the Atiyah-
Hirzebruch spectral sequence, which we haven’t talked about yet. It’s easier to prove
this directly.

Proof. Observe first that there’s always a map K0(X)
{

1, z, . . . , zn−1
}
→ K0(P(V )). I

want to regard both sides as functors of (X,V). This map is a natural transformation.
If X is a union of two spaces X = U1 ∪ U2, then both sides give a long Mayer-Vietoris
sequence. That’s just because K-theory does, and so this direct sum of n copies of
K-theory does, and because if X = U1 ∪ U2, then P(V ) = P(V |U1) ∪ P(V |U2). So both
sides have a Mayer-Vietoris sequence.

Finally, when X is contractible, the map is an isomorphism. That’s just the com-
putation we did in the previous class, the computation of K0(CPn−1). At this point
it’s a standard argument. You finish by induction through a cell decomposition, or by
choosing a nice covering and using a partition of unity or something like that. N

50



Lecture 10 Spectra and stable homotopy theory notes

When X is not a finite cell complex, you have to use the Milnor exact sequence.
The more machinery you use, the easier it is to see this theorem. In equivariant K-
theory, there’s a group acting on everything, I think there isn’t really a good proof
of the result. There’s some little bit of index theory needed to prove this result in
equivariant K-theory. This is pretty easy, but be warned: in equivariant K-theory the
analogous theorem is a little harder. The projective bundle formula is very important
and lets you do all kinds of things. Note that it was really formal.

Back on the projective bundle, let’s call p : P(V ) → X. I can take the original
bundle V → X and pull it back along p. Over each fiber in P(V ), I have a specified
line. So

p∗V ' L⊕ V,dimV = dimV − 1.

On the projective space of a vector space, the tautological bundle sits inside the constant
vector bundle, and in algebraic topology, short exact sequences of bundles split (e.g.
by use of a metric or partition of unity). So by iterating this process and applying it
to V, we can get the splitting principle.

Remark. You could do this in one go by taking the bundle of flags of a vector bundle.

There’re an awful lot of things that the splitting principle is used for. The use I
want to make of it is the following. We’re going to use it for computations and other
things, but this is a very general construction that always works and for a given X there
might be easier splittings sitting around. The consequence I want is the following:

10.2 Corollary. If T1, T2 : K → K are additive natural transformations, and for all
line bundles L, T1([L]) = T2([L]), then T1 = T2.

Slightly more generally:

10.3 Corollary. If T1, T2 : K → E are additive natural transformations and E∗(X) ↪→
E∗(P(V )) for all X,V as before, and for all line bundles L, T1([L]) = T2([L]), then
T1 = T2.

That’s just a diagram chase. Given a class [V ] ∈ K(X), choose P → X such that
V pulls back to a sum of line bundles. We have a diagram:

K(P ) // E(P )

K(X)

OO

// E(X)

OO
,

by naturality, which lets us conclude that T1([V ]) = T2([V ]) as desired.

10.4 Example. Other than E = K, we could take H∗(X;Q[u±1]) '
⊕

nH
∗+2n(X;Q)

where |u| = 2, so that E is complex-orientable. Another class of examples is the
complex-orientable theories E, those multiplicative cohomology theories for which there
exists z ∈ Ẽ2(CP∞) such that

z|
Ẽ2(CP1)

is the generator of Ẽ2(S2) ' E0(S0). I’ll come back in the course and discuss complex-
oriented E. You’ll see why I want to do that in just a second.
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The splitting principle is a really nice thing. If I want to check that two natural
transformations are equal, then you can just check on the classes of line bundles.

Remark. It’s even better. You only have to check on the universal line bundle on
CP∞, just by naturality. Every line bundle is pulled back from the universal line bundle
on CP∞.

That’s half of how you use the splitting principle. The other half is the following.
I might want to describe a natural transformation by giving its values on line bundles.
I’d like a condition that would guarantee that it was defined more generally. I’ll just
tell you. In fact, K(X) doesn’t just inject into K(P ), but this map is faithfully flat,
and we have an equalizer diagram

K(X)→ K(P )⇒ K(P )⊗K(X) K(P ).

Anyway, this was supposed to be a crash course in K-theory. I want to tell you
about two interesting natural transformations from K-theory to ordinary cohomology.

§2 The Chern character

The Chern character goes

ch : K∗(X)→ H∗(X;Q[u±1]), |u| = −2.

It’s characterized by the properties:

1. It’s a ring homomorphism.

2. The Chern character of a line bundle L is

euc1 = 1 + uc1 +
uc2

1

2!
+ . . . ,

where c1 is the first Chern class of L. (Objection about the infinite sum.) This
is always a little bit of a funny thing, and I never know how to think about it.
We have

H∗(CP∞) = lim←−H
∗(CPn) = lim←−Z[x]/(xn+1),

and when you take the inverse limit in the category of graded rings, you get
a polynomial rather than a power series ring. So as a graded ring, you can
also think of it as a power series ring. Secretly, every time we talk about a
cohomology theory, we mean to take the inverse limit over finite subcomplexes
(modulo the Milnor sequence). So when I write H∗(X;Q[u±1]), then I really
mean an appropriate inverse limit of graded rings.

If you don’t know what the first Chern class is but know that line bundles are
pulled back from maps into CP∞, then you pull the (well, one of them) generator
of H2(CP∞) back to it.
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§3 The Adams operations

For k ∈ Z, we have the Adams operation:

1. These are maps Ψk : K(X)→ K(X) (really K0(X)) which are additive.

2. They satisfy Ψk(L) = L⊗k, and therefore are multiplicative.

We’re going to do a lot with Adams operations. They are the first things we are going
to use to get new information about homotopy groups. Let me set up how these things
are going to be used. I want to put these things together, and to connect these things
to the Hopf invariant. We’re going to check other properties of the Adams operations
in a minute, but let’s look at these two properties.

What’s the operation Ψ2(V )? If V is a sum of line bundles L1 ⊕ · · · ⊕ Ln, then

Ψ2(V ) = L2
1 + · · ·+ L2

n.

There are some other things I could form out of V . I could take

2∧
V =

∑
i<j

LiLj .

There is also
Sym2V =

∑
i≤j

LiLj ,

and

Sym2V ⊕
2∧
V ' V ⊗2.

But notice that if we subtract these things, we get

Sym2(V )−
2∧

(V ) = Ψ2(V ) =
∑

L2
i .

Let me just say also that
Ψ2(V ) = V ⊗2 mod 2.

On K-theory, as follows from all this, we find that:

10.5 Theorem. Ψ2(x) ≡ x2 mod 2 for x ∈ K0(X).

That’s one fact we get from this.

§4 Chern character and the Hopf invariant

The other thing has to do with the Chern character. Suppose now that I have a map

f : S2m−1 → Sm, m even,

and we can form the mapping cone Cf = Sm ∪ e2m, which maps to S2m by crushing
the bottom cell. We get the Barratt-Puppe sequence

S2m−1 → Sm → Sm ∪ e2m → S2m,
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and for both K-theory and cohomology, we get a little short exact sequence of groups

0→ K̃0(S2m)→ K̃0(Sm ∪ e2m)→ K̃0(Sm)→ 0.

The outside groups are Z. We can also get the same thing if we take the sum of all the
even cohomology groups. We get a ses

0→ H̃0(S2m,Q[u±1])→ H̃0(Sm ∪ e2m,Q[u±1])→ H̃0(Sm,Q[u±1]→ 0,

and these fit into a commutative diagram. The claim is that you can use K-theory to
get the Hopf invariant just as well. We have a commutative diagram:

0 // K̃0(S2m)

��

// K̃0(Sm ∪ e2m)

��

// K̃0(Sm) //

��

0

0 // H̃0(S2m,Q[u±1]) // H̃0(Sm ∪ e2m,Q[u±1]) // H̃0(Sm,Q[u±1] // 0

Now if x is the generator of K0(S2n), then x is pulls back under the crushing map
CPn → S2n to (1−L)n. This goes under the Chern character to (1−euc1)n. Expanding
out and using cn+1

1 = 0, we get for this (−uc1)n for the Chern character. So ch sends a

generator of K̃0(S2m) to the integral generator of Heven(S2m,Q[u±1]). That means if I
start with a generator in K̃0(S2m) and lift it to some ã ∈ K̃0(Sm ∪ e2m) and calculate
the Chern character

ã2 = H(f)b

(these notes are getting messy; I need to fix them).
Conclusion: the Hopf invariant, at least up to sign, can be calculated either using

K-theory or cohomology. So that’s a rather simple point. It appeared to depend on
a lucky definition of the Chern character, but the Chern character is really defined to
send generators to generators on spheres.

Lecture 11
8/1

§1 The e-invariant

Today I want to present the Atiyah-Adams proof of Hopf invariant one. I want to make
a little more of a story out of it to set us up for things that we’re going to do later.

There’s a general method of showing that a map of spheres isn’t trivial. You start
with a map

f : Sn+k−1 → Sn,

and consider the mapping cone Sn ∪ en+k. Suppose we have a cohomology theory E
and one of two things happens:

1. Either f is induces a nonzero homomorphism in E∗-cohomology.

2. Or E∗(f) = 0.
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If it’s nonzero, then f is not null. The classic example is if E is ordinary cohomology
and the map is the “E-degree.” If E∗(f) is zero, then we have a short exact sequence:

0→ E∗(Sn+k)→ E∗(Sn ∪ en+k)→ E∗(Sn)→ 0,

and if E is a multiplicative cohomology theory, then this is a split exact sequence.
The middle term is non-canonically the sum of those two. It’s split in the category of
E∗(∗)-modules. But we can often equip E with extra structure. You can look for extra
structure on E∗(X) and try to regard this as a sequence in a different category. If
you think about this, you already do this in the first semester of an algebraic topology
course. You might study the attaching map of a cell in CP2 and prove that it is not
null by remembering that you have a cup product. One of the first things that you do
is to introduce a cup product, and you can look at these as algebras rather than just
as modules.

This is the beginning of a great idea that was systematically exploited first by
Adams, then by many other people. This is the beginning of the information you see
in the Adams spectral sequence. This wasn’t the first instance of the ASS, but it’s the
easiest one and you can get a good feeling for what’s going on from looking at it.

We’re going to take E as K-theory and the enhanced structure will be the Adams
operations. Eventually, we’re going to focus on showing that a certain structure that
can’t exist. First I want to talk about the general algebraic structure.

OK, so since K-theory is concentrated in even degrees, life will be easier if n, k are
even. Let’s change the situation a bit and double all the degrees, and so for a cofiber
sequence

S2(n+k)−1 → S2n → S2n ∪ e2(n+k) → S2(n+k),

and since K-theory is concentrated in even degrees, the degree of f in K-theory is
automatically zero and we get an exact sequence

0→ K̃0(S2(n+k))→ K̃0(S2n ∪ e2(n+k))→ K̃0(S2n)→ 0.

So we have that short exact sequence. Now the outermost groups are the inte-
gers. Also, we know that the Adams operation Ψl on K̃0(S2n) by ln and it acts on
K̃0(S2(n+k)) by ln+k. We can regard this as an exact sequence in some category of
abelian groups with Adams operations. We’ll denote these two objects by Z(n) and
Z(n+ k).

What did we produce? We produced an element e(f) (“e” for extension) in
Ext1(Z(n),Z(n+ k)) where the Ext is in the category of abelian groups together with
Adams operations. The K-theory functor takes values in this category of “abelian
groups with Adams operations” (where “Adams operations” is defined below).

11.1 Definition. An abelian group with Adams operations is an abelian group
A together with morphisms Ψl : A → A, l ∈ Z which commute with each other and
satisfy ΨlΨk = Ψkl.

If we wanted to be really careful, we might restrict the category further. For
instance, the K-theory functor doesn’t give an arbitrary group with Adams operations.
Remember the Chern character, which mapped the K0(X) into

⊕
nH

2n(X;Q) and
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was an isomorphism mod torsion.1 You can check from the splitting principle that the
Adams operations on

⊕
H2n(X;Q) are given by Ψl = ln on H2n. In other words, the

action of the Adams operations is semisimple on rational K-theory and the grading of
the cohomology can be extracted from them. In other words, if A comes out of the
K-theory of some space, then A⊗Q is a big sum of copies of Q(n).

There are a lot of situations in which it’s easier to define K-theory than cohomology,
for instance it can be defined for associative algebras. A lot of people have studied this
formula in different types of cohomology that come up in algebraic geometry.

If we were really to stop and to be careful about what category this Ext was living
in, then we would at least consider abelian groups with the property that when you
tensor with the rationals the action becomes semisimple.

§2 Ext’s in the category of groups with Adams operations

How do we calculate this group? What is Ext1(Z(n),Z(n + k))? We’re going to do a
little with this answer as we move forward. I’m not going to do the entire calculation
as we move forward. Let’s imbed that group in a short exact sequence.

We have a map
Z(n+ k)→ Q(n+ k)→ Q/Z(n+ k),

which gives a long exact sequence of these Ext groups. There is a long exact sequence,

Hom(Z(n),Q(n+k))→ Hom(Z(n),Q/Z(n+k))→ Ext1(Z(n),Z(n+k))→ Ext1(Z(n),Q(n+k)).

The thing we’re interested in is that we’re split between two groups which are rational.

11.2 Lemma. When k 6= 0, both the outside groups are zero. That is, Hom(Z(n),Q(n+
k)) and Ext1(Z(n),Q(n+ k)) are zero.

Proof. The hom assertion is kind of obvious. Namely, 1 would have to go to some
assertion a ∈ Q(n+k), and thus ln would have to go to ln+ka which is a contradiction.
So the Hom group is clearly zero. What about the Ext group? For the Ext group, it’s
equivalent to take Ext1(Q(n),Q(n+ k)). This requires a bit of justification.

Let’s not get bogged down. I was deliberately a little vague about the category, and
we’ll clarify this later on for some of the further calculations. We have a short exact
sequence

0→ Q(n+ k)→ E → Q(n)→ 0,

and let’s choose a basis e1, e2 such that e1 is the image of the basis element of Q(n+k)
and e2 projects to a generator of Q(n). Then

Ψl =

[
ln+k ∗

0 ln

]
,

and we can find a unique new basis by choosing an eigenvector for ln+k which maps to
the generator of Q(n) and that splits the sequence. So you need a little linear algebra.
Note that the Ψl commute so can be simultaneously diagonalized. The fact that they
commute is important for running this proof. N

1Because ch is a natural transformation of homology theories which is an isomorphism on the
spheres.
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I wanted some of these things in our minds for later use. So the question is, we now
know that this Ext group can be described as

Hom(Z(n),Q/Z(n+ k)) ' Ext1(Z(n),Z(n+ k)).

That tells us something right away. Whatever this is, this is a subgroup of Q/Z,
consisting of things compatible with the Adams operations. So we find that this group
is cyclic.

But what is this group? A homomorphism Z(n) → Q/Z(n + k) is determined by
where it sends 1, to some element x ∈ Q/Z(n + k). What does x have to satisfy in
order for the map to be a homomorphism? For all n,

(ln+k − ln)x = 0 ∈ Q/Z,

which is what it takes to make the diagram commute. Or equivalently, the denomi-
nator must divide all the numbers ln+k − ln. In other words, we find that this group
Ext1(Z(n),Z(n+ k)) is cyclic of order

g.c.d.(ln(lk − 1)).

What is this greatest common divisor?
That turns out to have a rather nice answer. We’re going to explore this as time

goes on. But I want to get to the Hopf invariant one thing, but I suggest: if you’ve
never studied this stuff, it would do you good if you tried to actually answer this
question—before I tell you the answer in the next lecture. It has a beautiful answer.

Let’s simplify this a little, though. I might as well work one prime at a time. Let’s
localize everything at 2 for instance. I want to localize at 2. I just want to take l = 3j

and look at what numbers we get. Now I want to know, what’s the largest power of 2
that divides

ln(lk − 1) = 3nj(3kj − 1).

for all l? (Here n, k are fixed.) We’re going to see that this solves the Hopf invariant
problem.

Obviously, this is equivalent to finding the largest power of 2 that divides all the
numbers 3kj − 1. Let’s look at numbers of the form 3m − 1. If m is odd, then we can
write this as (3 − 1)(1 + 3 + · · · + 3m−1) and the second term has an odd number of
terms, so 3m− 1 is divisible by one power of 2, at most. So when m is odd, the largest
power of 2 dividing 3m − 1 is just 2.

What happens when m is even? Let’s think about 32m−1 now, and that’s the case
as

9m − 1 = (1 + 8)m − 1 = 8m+

(
m

2

)
82 + . . . .

There’s a little thing to check. You have to check that the remaining terms are highly
divisible. But we have to claim that this turns out to be 8m(odd number) so that

(32m − 1) = 2v2(8m) × odd number.
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If you go back, you find that if we localize at 2 and consider l = 3j , we find our answer
is: {

2 if k is odd

3 + v2(j) if k is even.

That’s the 2-power part of the g.c.d. of all these numbers 3nj(3kj − 1), over all j. This
is something we need to know for several reasons. So this gives us an upper bound on
the size of this Ext group. If I just look at the power of 2 in the denominator, this
gives us a bound on that group. I really want to explain this proof of Hopf invariant
one, even in five minutes.

Lecture 12
10/3

§1 Hopf invariant one

I meant to do the non-existence of elements of Hopf invariant one last time. Let’s do
that now, and I’ll discuss it from a couple of different points of view. I’m going to
suppose we have a map

f : S4n−1 → S2n

and we’re supposing that the Hopf invariant of f is one. Actually, we just need to
suppose that it is odd. I mentioned that using the Chern character, we could calculate
the Hopf invariant in K-theory and get the same answer. We get a short exact sequence
in K-theory

0→ K̃0(S4n)→ K̃0(S2n ∪ e4n)→ K̃0(S2n)→ 0

which was some extension

0→ Z(2n)→ E → Z(n)→ 0

in the category of abelian groups with Adams operations.
Call the generator of Z(2n) b, and choose some element a ∈ E which projects to a

generator of Z(2n). We have
a2 = H(f)b,

for H(f) the Hopf invariant of f .
We recall also that

Ψ2(a) ≡ a2 ≡ H(f)b mod 2.

What is Ψ2(a) really? Well, that’s a multiple of a plus a multiple of b. That multiple
of a has to hit 2na in Z(n). So

Ψ2(a) = 2na+mb

and we know, by reducing mod 2, that m is odd and m ≡ H(f) mod 2.
All these groups are localized at 2, so we might as well divide by m and assume

m = 1. I’m just doing that so I have one fewer symbol in my notation. So we have

Ψ2(a) = 2na+ b.
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Here’s how the Atiyah-Adams argument goes. I’m going to give it, because it is
quite simple, and then I’m going to reflect on it. So we also have an action of Ψ3. So

Ψ3(a) = 3na+ rb.

Now we use the fact that these commute. Let’s calculate Ψ2(Ψ3(a)). We get

Ψ2(Ψ3(a)) = Ψ2(3na+ rb) = 3n(2na+ b) + r22nb.

Also,
Ψ3(Ψ2(a)) = 2n(3na+ rb) + 32nb.

The coefficients of a match up (as 6n). We’re supposed to get

6na+ (3n + 22nr)b = 6na+ (2nr + 32n)b.

I get the following equation. I get that

(22n − 2n)r = (32n − 3n),

and again, we’re localized at 2. So we get

2n(odd)r = 3n(3n − 1),

and in order for this to have a solution, 2n must divide 3n− 1. And that turns out not
to happen very often. We worked out the power of 2 dividing this.

If n is odd, then 3n − 1 = 2(odd) so n = 1 is the only possibility. If n = 2k is even,
then 32k − 1 = 8k(odd) as we checked. So we have to have that

22k | 8k,

and that’s not going to happen very often—in fact, let’s just check when that happens.
That happens for k = 1, and k = 2, but we don’t make it for k ≥ 3. Why is that? Just
look at the 2-adic valuation of each side. On the left we get 2k and on the right we get
3 + v2(k). So that only happens when k < 3.

12.1 Theorem. There can only exist maps of Hopf invariant one in the dimensions
S3 → S2, S7 → S4, S15 → S7.

That’s nice, that’s quite, that’s clever; if you only want to know the answer to
Hopf invariant one this is good. We’re going to come back and say more about Hopf
invariant one. Let me just tell you how to think a bit more systematically about what’s
going on here. Remember I talked about this e-invariant that we could define. There’s
something traditionally called the e-invariant and I’m slightly modifying it, so let’s call
it the ẽ-invariant.

12.2 Definition. The ẽ-invariant is the Ext1(Z(n),Z(2n)) in the category of groups
with Adams operations.
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We determined that this Ext1 was a cyclic group of some order. The Hopf invariant
one thing is saying somehow something about the order. I’m just going to reproduce
more or less the same calculation but put this in more or less the same context.

I only want to consider Ψ2, Ψ3. These are generating monoids. This is like Ext over
the algebra Z[t1, t2]. How do I calculate an Ext group like that? In general, I would
calculate Ext in this category as the cohomology of a certain complex. In other words,
Ext(M,N) can be calculated by taking the complex

Hom(M,N)

ΨM
3 −ΨN

3
��

ΨM
2 −ΨN

2// Hom(M,N)

ΨM
3 −ΨN

3
��

Hom(M,N)
ΨM

2 −ΨN
2// Hom(M,N)

(add this stuff)
If I have two modules over a polynomial ring M,N , and M is free as an abelian

group, then you can compute Ext1
Z[t](M,N) by resolving M by M ⊗ Z[t]. There’s a

little bit more of a story here, and I should tell it in a proper context. Let me come
back. This was calculating the Ext groups in the category of modules over a polynomial
ring in two variables.

Anyway, I could also calculate Ext just with Ψ2, or just with Ψ3.
Alright, let’s do the one we’re looking at. I want to calculate

Ext1(Z(n),Z(2n)).

What does that diagram work out to be? It looks like

Z
−(32n−3n)
��

−(22n−2n)// Z
−(32n−3n)
��

Z
−(22n−2n)// Z

Everything is implicitly localized at 2.
The Ext group we calculate out by taking the 1st cohomology of this complex. Well,

we can compute this by taking the horizontal cokernels. We get the map

Z/2n 3n−1→ Z/2n

and the kernel of that map is the Ext group. How do I calculate the element that I’m
looking at? Well, let’s break this into a couple of e-invariants.

I’ll call this temporarily the e2-invariant, which will be an element of Ext1
Ψ2

(Z(n),Z(2n))
and an element e3 ∈ ExtΨ3(Z(n),Z(2n)). How do I calculate these? If you think about
it, you calculate e2 of a sequence

0→ Z(2n)→ E → Z(n)→ 0

you choose an element a hitting 1 in Z(n), call the image of 1 in E b, and evaluate
Ψ2(a) = 2na+ e2b. If you think about the definition, that is the number e2.
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Our assumption on Hopf invariant one was that Ψ2(a) = 2na + (odd)b. So e2 is a
generator of Ext1. But then—I’m just repeating the same calculation—the generator
of this group doesn’t go to zero there. That does not extend to an element of Ext1 over
the polynomial ring in two variables. I’ve just restated this calculation in a slightly
richer algebraic context.

There are things to learn from this. This element of Hopf invariant one is trying
to live here (points) in this Ext1 term, but it doesn’t live here. That’s an important
thing in homotopy theory. I’ll come back and expand on this sometime later. There’s
something more important to understand here. The picture is that there is an element
which is something which wants to be an element of the homotopy groups of spheres,
but supports a differential.

What I really wanted to do today—I wanted to expand slightly on the Atiyah-
Adams argument and expand on this argument—was to turn to calculating these Ext
groups, over all the Adams operations. And again, I haven’t honestly formulated the
correct category for Ext. I want to start doing that now.

Let’s go back to the thing I was talking about Monday. We studied

ExtAdams/ops(Z(m),Z(n)).

When m 6= n, that was the same as

HomAdams(Z(m),Q/Z(n))

and that’s certainly a subgroup of Q/Z. We were trying to work out the order of
that subgroup. So we figured out, by an elementary calculation, that a fraction p/q
(reduced) is in this subgroup if and only if

q | km − kn, ∀k.

So we need to figure out the g.c.d. of all these numbers. We need some mechanism for
calculating that. That’s kind of a cool problem, and I think it’s kind of cool that it has
a solution. It has a solution that’s expressed in two different, very elegant ways. I’m
going to talk about one of them today.

So the first thing I want to do is to study this problem one prime at a prime. I
might as well try the following: for each prime l, let’s figure out the largest power of l
dividing km − kn. Equivalently, we’re calculating

HomAdams(Z(m), (Q/Z)l(n)).

I don’t want to over-motivate this. If we sat down and tried to solve this problem, you
would discover this next move yourself. But it’s useful to know. I want to separate
these Adams operations into those relatively prime to l and into l itself.

For k relatively prime to l, there’s this action Ψk : (Q/Z)l ' (Q/Z)l. It’s an
isomorphism. Moreover,

Hom((Q/Z)l, (Q/Z)l) = Zl
is the l-adic numbers. The number-theory thing you can check is that for (k, l) = 1, the
action of k 7→ Ψk gives me a function from the integers prime to l into Aut((Q/Z)l(n)),
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and that extends a continuous action of Z∗l . This is the thing that makes this problem
a little easier to solve. So what is the structure of Z∗l ?

The group Z∗l maps to (Z/l)∗ with kernel the 1-units, 1 + lZl. Two things happen.

1. If l is odd, then (Z/l)∗ is cyclic of order l− 1. The kernel 1 + lZl is a pro-l-group
and it’s isomorphic for l odd (by the logarithm) to the Zl. So there’s a short
exact sequence

0→ Zl → Z∗l → Z/(l − 1)→ 0

which splits. The l − 1st roots of unity are in Z∗l . There are a lot of ways of
making this split. Anyway,

Z∗l ' (Z/l − 1)× Zl.

2. When l = 2, the structure is a little different. Then the 2-adic units are isomorphic
to Z/2× Z2.

It makes the story a little easier to tell if you work with the l-adics. Now, the
point is that we can phrase this question somewhat differently. The largest power of l
dividing kn − km, (k, l) = 1 is also the largest power of l dividing λn − λm where λ is
a topological generator for Z∗l (at least when l is odd). Class is almost over, so I just
want to look at this. What is that number? So now λn − λm = λn(1− λm−n) and call
the number 1− λm−n = k.

What happens? I’m just supposed to take λk and figure out how close to 1 it is. If
l − 1 - k, then λk ≡ 1 mod l. Suppose k = lr(l − 1), then the power of l is that one.
We’re out of time. I’m going to put these ideas together in the next class.

Lecture 13
10/5

Let me just start today by correcting the mistake made yesterday and slightly reex-
plaining something I did. We were looking at maps S2(n+k)−1 → S2n, and we wanted
to understand these. The e-invariant of this was an element of a cyclic group of
order gcd(mn+k −mn)m∈N. I described how you calculate that, but I think I made it
a little complicated.

Let’s just look at an example and get some ideas. Let’s say we are looking at a map
S9 → S6. In that case, we want the greatest common divisor of the numbers m5−m3,
or m3(m2 − 1). If you’re trying to compute this, you might start writing down some
numbers.

1. If m = 3, I get 27× 8.

2. If m = 5, then we get 53(24). That tells us that the g.c.d must divide 24.

3. If m = 7, then we get 73(72 − 1), and that doesn’t improve the g.c.d.
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Now we get the idea that the g.c.d. in this case is probably 24. So what are we doing
when we check that? Now we have some number m and want to look at m3(m2 − 1)
and we want to check that this is divisible by 24. There are two cases. One is where
m is prime to 2, 3, so that m ∈ (Z/24)∗. So it’s equivalent to saying that m2 ≡ 1
mod 24. That’s easy to check. That’s also equivalent to saying that m2 ≡ 1 mod 3
and mod 8. That’s equivalent to saying that (Z/3)∗ has exponent two and (Z/8)∗ has
exponent two. If you pursue this, and I won’t, you can see just by thinking about it
naively that this reduces to a question about the structure of the units in (Z/pj)∗ for
some j.

Or equivalently, the structure of the group Z∗p of p-adic units, which is where we
arrived last time. What was it that I had said wrong last time? I was writing (for λ
the topological generator of 1 + pZp)

Zp/(λj − 1), p > 2

and the claim is:

1. This is zero if (p− 1) - j.

2. If j = pi(p− 1)m with (m, p) = 1, then this is cyclic of order Z/pi+1.

I left it to you to work this out.
Now notice that I sort of left off something with the 24 business at the start. What

about the case of m dividing 2 or 3? When m = 2, we get 23(22 − 1) = 24, so we’re
also good, and if m = 3, then that’s the one I started with. But those numbers 2, 3 are
slightly different, because they’re not units mod 24.

In general, the two factors of the expression

m3(m2 − 1)

play two different roles. To explain that, let’s try to understand what happens under
suspension.

§1 Suspension

Given
f : S2(n+k)−1 → S2n

I suspend it twice. Then I get Σ2f : S2(n+1+k)−1 → S2(n+1). Let’s ask a question:
What happens to the e-invariant of f?
To answer the question, recall that the e-invariant was defined by looking at the

short exact sequence

0→ Z(n+ k)→ K̃0(S2n ∪ e2(n+k))→ Z(n)→ 0.

We take a generator 1 ∈ Z(n+ k) mapping to b in K̃0(S2n ∪ e2(n+k)), we take a in the
middle hitting the generator of Z(n + k), and we study how Ψm(a) = mna + e(f)b.
(Sort of: e(f) is really an extension class.)
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Now, when we suspend, we get a new exact sequence

0→ Z(n+ 1 + k)→ K̃0(S2(n+1) ∪ e2(n+1+k))→ Z(n+ 1)→ 0,

and we can take the generators of the middle group to be the double suspensions σa, σb
of a, b previously defined.

Let’s make some remarks about double suspension. The double suspension map
goes

K̃0(X)→ K̃2(S2 ∧X)
Bott' K̃0(S2 ∧X)

and this map sends a bundle to its multiple by 1− L. In other words, Ψm of a double
suspension σx is mσΨmx. That is,

Ψm(σx) = mσ(Ψmx).

So Ψm does not commute with suspension: it does so up to this factor.
So we find from this:

Ψm(σa) = mσΨm(a) = mσ(mna+ e(f)b) = mn+1(σ(a)) +me(f)σ(b).

(Note: e(f) should really be em(f) here, and be a function of m.)
Anyway, the point is:

13.1 Proposition. e(σf) is the image of e(f) under the map

Ext1
Adams(Z(n),Z(n+ k))→ Ext1

Adams(Z(n+ 1),Z(n+ 1 + k))

given by tensoring an extension with Z(1).

Here’s what I wanted to say about this. If you play through the calculations, the
e-invariant is in some cyclic group of order gcdmn(mk−1). When I suspend it, then we
change it to gcdmn+1(mk − 1). This number is coming as a product of two relatively
prime things. What you’re supposed to come away from this saying is that mk − 1
has to do with stable homotopy theory and all the unstable information is contained
in the first factor mn. This little discussion was supposed to arrive at this very simple
observation.

Let’s just illustrate this for a second. We were looking at something in the 3-stem.
We were looking at something of the form S2(n+2)−1 → S2n and I was thus looking at
the gcd of the numbers mn(m2− 1). I picked n ≥ 3 and in that case the g.c.d. was 24.
But if n = 2, then the g.c.d of the numbers mn(m2 − 1) for m prime to 2, 3 is still 24.
If I put in m = 2, then I get 22(3) = 12. So the e-invariant is not the generator.

Conclusion: if I have a map S7 → S4, then the e-invariant of f must have order 12.
If I went down to S5 → S2, then the e-invariant would have order 6. There are factors
of two that we are losing because we are looking at complex and not real K-theory.
We’re going to revisit this in a couple of weeks. The point is that the mk − 1 is telling
you stable stuff, and the factor mn is telling you about the sphere of origin.

Ultimately this is going to feed in and tell us some properties of the EHP sequence.
Here’s an interesting reality check. We know for which k a map like this is in the

stable range. We know that a stable range S2(n+k)−1 → S2n happens when k < n and
that corresponds to something about the g.c.d. of these numbers, which you might try
to check.
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§2 The J-homomorphism

We need more maps between spheres. The most understandable part of the homotopy
groups of spheres is the image of the J-homomorphism. I’m going to start with the
special orthogonal group SO(n). Given a linear map Rn → Rn which is an isomorphism,
I can form a map Sn → Sn by taking one-point compactifications. This gives a map

SO(n)→ ΩnSn.

These fit inside each other; there are commutative diagrams:

SO(n)

��

// ΩnSn

E

��
SO(n+ 1) // Ωn+1Sn+1

.

We can then go to the limit. We get a map

lim−→SO(n) = SO → lim−→ΩnSn
def
= QS0.

We get a map
πj(SO)→ πj(QS

0) = πsj (S
0).

Alternatively, we get a map

K̃O
0
(Sj+1)→ πsj (S

0).

We know theKO-groups of spheres, and we don’t know the homotopy groups of spheres.
Amazingly, one knows exactly the image of the map. The image is a summand, it
represents the only part of the homotopy groups of spheres which is nontrivial but still
really understandable. I want to spend the next week talking about this map and how
Adams analyzed it. Then we’re going to start talking about vector fields on spheres.

There’s another thing about the J-homomorphism that we’re going to exploit, and
that comes back to this picture. We had this map

H : ΩSn+1 → ΩS2n+1

which had the property that if we localize at 2, the homotopy fiber is Sn. Looping
n+ 1 times gives a map: Ωn+1Sn+1 → Ωn+1S2n+1. We have a commutative diagram,

SO(n)

��

// ΩnSn

E

��
SO(n+ 1) //

��

Ωn+1Sn+1

H

��
SO(n+ 1)/SO(n) ' Sn // Ωn+1S2n+1

.

The bottom map is the adjoint to the identity S2n+1 → S2n+1.
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So there’s something better. There’s the stable J-homomorphism, but there are
all these unstable J-homomorphisms which fit together with the EHP sequence. The
J-homomorphism is even better. I get an EHP style spectral sequence for the SO(n)
groups mapping to the usual EHP spectral sequence and in the end it converges to
the stable J-homomorphism. In this course, we’re going to use this to get a lot of
information. It’s going to tell us a lot about the EHP sequence. By the end of the
course, we’ll have understand Mahowald’s picture of how the image of J behaves in
the EHP sequence. It’s a picture that represents the most complicated calculation that
you can do that most people can understand. It makes a pretty picture and it’s what
inspired the development of chromatic homotopy theory. This will take us about a
month to get on board, and we’re still going to have time to talk about chromatic stuff.

Anyway, we talked about this P map which connects around. It’s a map

Ωn+2S2n+1 → ΩnSn

and there’s a map
ΩSn → SO(n).

This fibration SO(n) → SO(n + 1) → Sn gives a definite map Sn−1 → SO(n − 1)
and it maps to ΩnSn so we get a map Sn−1 → ΩnSn which is the Whitehead product.
There’s a lot of beautiful geometry going on here.

The last thing I’ll say about this is, what is this fibration SO(n)→ SO(n+1)→ Sn?
What’s the fiber over a point in Sn? Given a point in Sn, the fiber over that point
is all orthonormal bases of the orthogonal complement, appropriately oriented. That’s
the same thing as the set of all oriented orthonormal bases of the tangent space of Sn

at that point. So this bundle SO(n) → SO(n + 1) → Sn is the bundle of oriented
orthonormal frames of Sn. Anything that you do in this kind of homotopy theory can
be expressed in terms of the tangent bundle of the sphere or the frame bundle. What
it often buys you is that there’s some really weird elementary way of describing some
question about stable homotopy theory in terms of the geometry of the sphere. Some
of these are interesting, some go kind of nowhere. For instance the question of dividing
the Whitehead square by 2 on the sphere is equivalent to asking, if I have the bundle of
pairs of orthonormal vectors over the sphere, when is there a homotopy of the identity
to the self-map which switches the two vectors? Starting in the next lecture, we’ll
investigate this J-homomorphism. Once the tangent bundle to the sphere is in there,
lots of questions about homotopy groups of spheres will have formulations in terms of
geometry. The vector fields on spheres question is related to the sphere of origin of the
Whitehead product.

Lecture 14
10/10

§1 Vector fields problem

I introduced the J-homomorphism last time. There are a number of things to say
about it, but I think that if we talk about the vector fields problem first, some of those
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things might come out more naturally. So we’ll start with the vector fields problem.
This is the vector fields problem.

Question. What is the maximum number of linearly independent vector fields on a
sphere Sn−1?

Let’s just think about this. What is a vector field on a sphere? The sphere sits
inside euclidean space,

Sn−1 ↪→ Rn

and a vector field is just a continuous way of assigning a tangent vector to the sphere
at each point. A vector field is a function

v : Sn−1 → Rn

such that v(x) is tangent to the sphere at x at each x ∈ Sn−1. The tangent space at x
is the orthogonal complement of x in Rn. So a vector field is a function

v : Sn−1 → Rn

with the property that
v(x) ⊥ x, ∀x ∈ Sn−1.

Of course, a sequence {v1, . . . , vk} is linearly independent if the sequence you get
by evaluating at any x ∈ Sn−1 is linearly independent in each tangent space. So for
instance, a single vector field is linearly independent if and only if the vector field never
vanishes. So just coded in the statement the vector fields have to nowhere vanish.

Now, if I have a linearly independent set v1, . . . , vk of linearly independent vector
fields, we can use Gram-Schmidt to make them orthonormal. We can get a new linearly
independent set of vector fields v1, . . . , vk which are orthonormal. We could ask in the
vector fields problem for the maximum number of orthonormal vector fields on the
n− 1-sphere.

Let’s turn this into a homotopy theory question. What are we asking now? Let’s
look at the orthonormal case. I’m sending

x 7→ v1, . . . , vk

such that vi ⊥ x and the vi are orthonormal. In other words, the sequence x, v1, . . . , vk
is orthonormal. It’s also the same thing as saying that v1, . . . , vk, x is orthonormal. We
can phrase that in terms of a mapping problem.

Let me define:

14.1 Definition. The Stiefel manifold Vn,` is the space of orthonormal `-frames in
Rn. As a set, it is the set of all sequences v1, . . . , v` ∈ Rn which are orthonormal. I
want to make this into a space, and we can think of it as imbedded in the space of n×`
matrices. It is the space of n× ` matrices such that the colums are orthonormal.

14.2 Example. The Stiefel manifold Vn,n is the set of n-by-n matrices whose columns
are orthonormal, so that’s O(n).
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There are a lot of other ways of writing this.

14.3 Example. Vn,` is the homogeneous space O(n)/O(n − `). That’ll play more of
a role when we start talking in more detail about Stiefel manifolds. It’s a little bit
obvious when you think about it, but we’ll come back to it in a couple of days.

So this is a space, and I’m going to claim various things about the point-set topology
about it. They’re all very believable, but the details are important for various claims
I’m going to make, in particular for various claims I’m going to make about the J-
homomorphism. I’m going to give you detailed proofs in the next lecture or the one
after that.

So we have a map

p : Vn,k+1 → Sn−1, (v1, . . . , vk+1) 7→ vk+1.

This map is a fiber bundle. It’ll be actually important for us later to really prove that
— to write down a local trivialization. What’s the fiber? What are we asking over
here? We’re saying:

14.4 Proposition. Sn−1 has k linearly independent vector fields if and only if the map
Vn,k+1 → Sn−1 has a section.

We’re going to come back and do a lot more with these Stiefel manifolds. But since
this is a fiber bundle, having a section is the same is the same as having a section up
to homotopy, and that’s some statement about πn−1 of this space. The real story of
the vector fields manifold is revealed by the topology of these Stiefel manifolds. But
we’ll come back and discuss that later.

So let’s look at some examples of vector fields.

14.5 Example. The circle S1 has one vector field which nowhere vanishes. If I wanted
to write down a formula for it, the vector at x ∈ S1 could be ix: we could use the
complex numbers to get a perpendicular vector at x.

14.6 Example. Similarly, S2n−1 has a vector field: I get that by thinking of S2n−1 ⊂
Cn and sending a vector x to the orthogonal vector ix (so we get a 2-frame x, ix).

That tells us that odd spheres have nowhere vanishing vector fields. You probably
learned in the first semester of algebraic topology that S2n has no nowhere vanishing
vector fields. That’s usually proved very early in the course, and I want to come back
and tell you the real secret of that proof once we understand a little more about Stiefel
manifolds.

14.7 Example. S3 ⊂ H (the quaternions). I could use quaternionic multiplication to
send

x 7→ (ix, jx, kx)

which gives three vector fields on S3.

14.8 Example. More generally, by regarding S4n−1 ⊂ Hn, we find that S4n−1 has
linearly independent three vector fields.
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Finally, there are the octonions O of Cayley numbers. As a vector space,

O ' R8

with the structure of a division algebra by octonionic multiplication. The easiest way
to describe the multiplication here is to draw a picture of the Fano plane. You label
the vertices of the Fano plane e1 up to e7. And then you have to put a cyclic ordering
on the vertices in every one of the lines. A basis for the octonions is 1, e1, . . . , e7 and
the rule is that any three in the line multiply like the quaternions, and e2

i = −1. It’s
easy then to check that this is a division algebra. If you multiply an element by its
conjugate, you get something nonzero. The multiplication is nonassociative, but the
table is pretty easy to write down.

We can use this to give S7 seven vector fields.

14.9 Example. S7 has seven vector fields sending

x 7→ e1x, . . . , e7x

and more generally S8k−1 has seven vector fields, by thinking S8k−1 ⊂ Ok and sending
a vector x 7→ (e1x, . . . , e7x).

These are the easy vector fields. There are two things here. Algebra is sort of good.
Algebra told us that if we had a bunch of vector fields on one sphere, we get them on
lots of spheres. You can prove that in topology and it uses an important map.

14.10 Proposition. If Sn−1 has (at least) k linearly independent orthonormal vector
fields, then Sn`−1 also does.

Proof. The idea is this. Let’s induct on `. Write

Rn` ' Rn × Rn(`−1)

and the unit sphere Sn`−1 ⊂ Rn`. That comes to us as the join of two other spheres:
Sn`−1 and Sn−1. We can write

z = cos θx+ sin θy, x ∈ Sn−1, y ∈ Sn(`−1)−1.

The idea is that if there are k vector fields on each of the two spheres in the join, I can
take the linear combination with cos θ and sin θ of them.

Namely, if v1, . . . , vk are vector fields on Sn−1 and w1, . . . , wk are vector fields on
Sn(`−1)−1. Then sending

(cos θx+ sin θy) 7→ (cos θvi, sin θwi)

gives k vector fields on Sn`−1.
N

Ioan James thought about this and realized there was an interesting map going on.
I really like this map, although it got subsumed by later technology. You can use this
map to give a simple proof of the Adams conjecture. James called this the intrinsic
join. That’s a map

Vn,` ∗ Vm,` → Vn+m,`.

It does just what I said—it’s just this same formula.
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14.11 Definition. Recall that X ∗Y is X×Y ×[0, 1]/ ∼ where the equivalence relation
is that X × Y × {0} is crushed to X and X × Y × {1} is crushed to Y .

This homeomorphism
Sn−1 ∗ Sm−1 ' Sm+n−1

sends (x, y, θ) 7→ (x cos θ, y sin θ). Joining with S0 is the unreduced suspension and
the join has the homotopy type of the suspension of the smash product. Anyway, it’s
an important construction. James’s intrinsic join construction generalizes the above
homeomorphism to the Stiefel manifolds.

Thinking in terms of this map, I could even state a more general theorem.

14.12 Proposition. Suppose Sn−1, Sm−1 have k linearly independent vector fields.
Then Sm+n−1 has k linearly independent vector fields.

Proof. We have sections of the fibrations

Vn,k+1 → Sn−1, Vm,k+1 → Sm−1

by assumption. Then we take the intrinsic join of these two sections. You can check
easily that this gives a section of the fibration

Vn+m,k+1 → Sm+n−1.

N

Anyway, the point is: once we got the vector field on the circle, we got it on any
odd sphere. Once we had those seven vector fields S7, we got seven vector fields on
S8k−1. We got this from homotopy theory, and we didn’t need algebra.

Now we want to talk about the vector fields problem. We have to construct vector
fields, and we have to show that they are no more. The homotopy theory picture does
two things. It shows us that there is an upper bound on the number of the vector fields,
and it connects the problem to the EHP sequence. There’s an awful lot in the story
of these Stiefel manifolds. For the rest of the lecture today and in the next lecture, I
want to talk about constructing vector fields.

§2 Constructing vector fields

There’s kind of a nice way to motivate this. It takes a lot of leaps of faith, but there’s
a good lesson in that. If you were faced with the problem of constructing vector fields,
you would study the examples we’ve discussed and try to imitate that construction.
But you also can imagine it’s hard to think up such algebras. A vector field, you might
picture, is something topological. But there’s a lesson here: when you’re trying to
think up an example and you don’t know what’s going on, imagine that you might be
lucky and a lot of convenient accidental things will happen. What are some convenient
things that might happen?

To every point in the sphere Sn−1, we want vector fields v1(x), . . . , vk(x) and these
are supposed to be orthonormal. In the case of the complex numbers, we used the
module structure

C⊗ V → V
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to produce vector fields.
Here are two assumptions that happen in the cases we’ve studied:

1. x 7→ vi(x) is actually a linear transformation Rn → Rn. We’re just looking at
values on the sphere. This is a good way to try to think of examples. So we want
the property that any unit vector gets sent to something perpendicular to it. So
we want k such linear transformations.

So we want linear transformations T : Rn → Rn such that Tx ⊥ x for all x. It’s
also natural to guess that the way this happens is T 2 = −1. We want maps

e1, . . . , ek : Rn → Rn

satisfying e2
i = −1. I guess I’m not going to have time to motivate this. This gives a

map from Rk ⊗ Rn → Rn given by taking linear combinations. It’s natural to express
this condition without referring to a basis. For every u ∈ Rk, I get a transformation
Tu of Rn → Rn. It’s natural to assume that for every unit vector u, T 2

u = −I. I’m
running out of time so I’m going to leave this as an exercise, but the exercise is that
this implies

e1e2 = −e2e1.

There’s a better way of saying this. These are natural assumptions that you might
look for if these vector fields were introduced in an easy way. This motivates introducing
the Clifford algebra.

14.13 Definition. The Clifford algebra Cln(R) is the algebra, not necessarily com-
mutative, generated by elements e1, . . . , en subject to the relation

e2
i = −1, eiej = −ejei, i 6= j.

The basic fact is that if the Clifford algebra Clk(R) has a representation on Rn,
that implies that Sn−1 has k vector fields. The beautiful thing about this is that you
can construct the maximum number of vector fields once you work out the structures
of these Clifford algebras. Given Rn, you can find the largest Clifford algebra that acts
on it, and then find the maximum number of vector fields.

Lecture 15
10/12

§1 Clifford algebras

We’re continuing to talk about the vector field problem, and just the aspect of con-
structing vector fields. Last time I discussed a way of constructing vector fields, and I
said something a little funny. The basic thing was, I introduced these Clifford algebras
Clk.

15.1 Definition. The Clifford algebra Clk is the tensor algebra T (e1, . . . , ek) modulo
the relations e2

i = −1, eiej + ejei = 0.
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We saw that if Clk acts on Rn, then Sn−1 has k linearly independent vector fields.

15.2 Example. Look at Cl1 = R[e]/(e2 = −1) ' C. If the complex numbers act on a
vector space, then multiplication by i gives the sphere one vector field.

I gave some sort of motivation for doing this.

Remark. Is there a relationship between the Clifford algebra and the octonions? You
might think Cl8 has something to do with the octonions. But the Clifford algebras
are associative and the octonions aren’t. But we’re going to work out Cl8 and that
has to do with the octonions. It’s this thing called trialty. I’ll say something about
that. Spin8 has these three irreducible representations and when you tensor two of
them, you get the third plus something else. This gives a multiplication law related to
the octonions. As far as this story goes, though, the use of the octonions to construct
vector fields on the spheres is mostly tangential.

We also saw last time that choosing k vector fields on Sn−1 was equivalent to
choosing a sequence in the fibration

Vk,n−1 → Vk+1,n → Sn−1.

Observe that k-framings up to homotopy can be classified when we know πn−1(Vk,n−1)
if we know that there exists a k-frame (that is, a section).

Today, we’ll figure out what the number of vector fields that you can get from
Clifford algebras, and our job will later be to prove that that is the maximal number.
So I motivated this a little bit. I want to generalize this. One way I motivated this was
that the action of Clk gave transformations

e1, . . . , ek : Rn → Rn

with e2
i = −1 and we could extend this linearly and get a map

Rk × Rn → Rn

which is bilinear. The assumption that we made was that there was a coordinate-free
way of describing this. For any v ∈ Rk, we could get a map

v : Rn → Rn

and we could ask the question whether if it’s a unit vector, then v2 = −1. Or more
generally, by replacing any v by v/ ‖v‖, we would want

v2 = −‖v‖2 .

That’s what gave us the relation that the ei, ej anticommute: we used the relation
(e1 + e2)2 = −2.

That motivates a general construction of Clifford algebras, which is worth noting.

15.3 Definition. Suppose V is a vector space over a field k. Suppose V is equipped
with a quadratic function q : V → k, i.e. a function with the properties:
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1. q(λx) = λ2q(x) for x ∈ V, λ ∈ k.

2. The function (x, y)
def
= q(x+ y)− q(x)− q(y) is bilinear.

An example is v.v on euclidean space.
If V is a vector space with a quadratic form q, we can define a Clifford algebra,

which is the free associative algebra on V , T (V ), modulo the relation v2 = −q(v) for
v ∈ V . That is,

Cl(V, q)
def
= T (V )/(v2 = −q(v)).

There are a lot of conventions about what to do. Some people put a factor of two
in the relations, which is no harm as long as you’re not in characteristic 2. I’m saying
this because Clifford algebras are extremely important in all kinds of places in math.

§2 Z/2-graded algebras

There’s really a lot to think about when learning Clifford algebras. They really come
up in an amazing number of places. I just wanted to say something a little more general
about them. Doing it at this level of generality points out something you’d like to see
about them.

15.4 Example. Suppose given two quadratic spaces (V, q), (W, q′). Then we can form
a new quadratic space (V ⊕W, q′′) where

q′′(v, w)
def
= q(v) + q′(w).

In other words, I’m making the orthogonal sum. You’d like that the Clifford algebras
do something nice. You’d like to say

Cl(V ⊕W, q′′) ' Cl(V, q)⊗ Cl(W, q′).

That’s almost right. There are some indications that this would be right. If V has
basis e1, . . . , ek then Cl(V ) has basis eI for I ⊂ {1, 2, . . . , k} and we take for eI the
product in increasing order of elements. That’s easy to check from the rules. One has

dim Cl(V ) = 2k, k = dimV.

So if V has basis e1, . . . , ek and W has basis f1, . . . , fl, then the Clifford algebra on
V ⊕W will have basis given by all the products

eIfJ , I ⊂ {1, 2, . . . , k} , J ⊂ {1, 2, . . . , l}

and the tensor product Cl(V ) ⊗ Cl(W ) will have the same basis. That makes it look
like they’re the same. But they’re not. There’s a subtlety here.

They have the same basis, but the multiplication isn’t the same. In Cl(V ⊕W ),
say e1, f1 anticommute because e1 ⊥ f1. But in Cl(V )⊗ Cl(W ),

e1 ⊗ f1 = (e1 ⊗ 1)(1⊗ f1) = (1⊗ f1)(e1 ⊗ 1).

So that’s the thing that goes wrong. Anticommutativity versus commutativity.

73



Lecture 15 Spectra and stable homotopy theory notes

There’s a nice way to correct this and make the statement true. The way to fix
this is to regard Cl(V ) as a Z/2-graded algebra. We let |ei| = 1. That makes sense,
because the relation

e2
i = −q(ei)

is homogeneous for the Z/2-grading. If I do everything in the world of Z/2-graded
vector spaces, we can still form the tensor product. Given Z/2 graded vector spaces
X,Y , we grade

X ⊗ Y, |x⊗ y| = |x|+ |y| mod 2.

However, we want the symmetry of the symmetric monoidal structure to have the
Milnor structure. The canonical isomorphism

X ⊗ Y ' Y ⊗X

sends
x⊗ y 7→ (−1)|x||y|y ⊗ x.

That affects what you mean by the tensor product of Z/2-graded algebras. If A,B are
Z/2-graded algebras, so is A⊗B, but beware. When I multiply

(a1 ⊗ b1)(a2 ⊗ b2),

I have to move things past each other. We set:

(a1 ⊗ b1)(a2 ⊗ b2)
def
= (−1)|b1||a2|(a1a2 ⊗ b1b2).

This is precisely the sign convention we encountered before.
We have, in fact:

15.5 Proposition. As Z/2-graded algebras,

Cl(V ⊕W ) ' Cl(V )⊗ Cl(W ).

§3 Working out Clifford algebras

It’s important to know this, and the compelling reason for making them Z/2-graded
is to be able to do this. Once you start working with them, you realize that there
are all kinds of important reasons for working with the grading. However, I want
to identify these Clifford algebras with algebras with we know, in terms of ordinary
tensor products. Today, though, we’ll be mixing both Z/2-graded and ordinary tensor
products.

Temporarily, starting now, I’ll write ⊗̂ for the graded tensor product, and
⊗ for the ungraded one. Both can be used to produce legitimate algebras
but ⊗̂ is the one that we used above.

OK, so let’s work out these Clifford algebras.

15.6 Definition. As before, write Cln for Cl(Rn) for the usual norm square quadratic
form. We’ll write Cl′n for Cl(Rn) with the quadratic form q′(v) = −|v|2.
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Let’s make a little table below. For instance, Cl1 ' C with a funny Z/2-grading
with i in degree 1. Cl′1 ' R[e]/(e2 = 1) ' R× R where e = (1,−1).

What about the next one, Cl2? That’s

Cl2 = R[e1, e2]/(e2
1 = −1, e2

2 = −1, e1e2 = −e2e1) ' H,

where e1 = i, e2 = j, e1e2 = k. Again, there’s a funny grading. Next,

Cl′2 ' R[e1, e2]/(e2
1 = 1, e2

2 = 1, e1e2 = −e1e2).

This takes a little working out. In the ordinary reals, I can solve the quadratic equations
x2 = 1. I don’t have two anticommuting solutions, though. If I send e1 to the matrix

e1 =

[
0 1
1 0

]
, e2 =

[
1 0
0 −1

]
and these give an isomorphism

Cl′2 ' R(2).

Notation: If K = R,C,H, we let K(n) to be the algebra of n-by-n matrices over K.
You can keep going, but at this point there’s a convenient little trick you can use. If

you were sitting down trying to work out these algebras, you’d be able to do it. When
you here this argument, it’ll go by a little quick. But it’s probably worth just playing
around with these algebras and discover the rest of the table. Don’t be intimidated by
my prestidigitious use of clever identities—you too could figure this out.

Here’s a very useful lemma.

15.7 Lemma. Cl′n+2 ' Cln ⊗ Cl′2. This is the ordinary tensor product. Moreover,
Cln+2 ' Cl′n ⊗ Cl2.

Proof. We have to use that, and the proof is totally straightforward. I just have to tell
you the map. Let’s map

Cl′n+2 → Cln ⊗ Cl′2

by sending

e′1 7→ 1⊗ e′1, e′2 7→ 1⊗ e′2, e′n 7→ en−2 ⊗ e′1e′2 (n ≥ 2).

You have to check that the identities hold: that each square to −1 and each anticom-
mutes. It’s really important that I don’t mean ⊗̂ here. These are just ordinary tensor
products here. You just have to check the relations. You would have figured this out
if you were playing around enough and looking for patterns. N

That lets me move from one side of this table to the other. We can continue the
first four rows from this lemma. But then we need another lemma.

15.8 Lemma. A(n)⊗ A(m) ' A(nm). Also, H⊗ C ' M2(C) = C(2) (this is part of
knowing about semisimple algebras).
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Proof. Here’s a way of seeing the last thing. H acts on itself on the left. It acts on R4,
if you like. That commutes with the right action. So we can restrict the right action to
C ⊂ H and we could restrict the right multiplication to the complex numbers C. That
means that H left acts on R4 C-linearly. That gives a map

H→M2(C)

and I can just extend it to a map

C⊗H→M2(C)

and now you just count dimensions and check that it’s an isomorphism. This is sur-
prising when you see it, but it’s part of a whole story about simple algebras and the
Artin-Wedderburn theorem. N

Finally, we need to know:

15.9 Lemma. H⊗H ' R(4).

Proof. That’s because we have an action of H ⊗ H on R4 (given by left and right
multiplication) and that gives a map

H⊗H→ R(4)

which is an isomorphism. N

Finally, we can now fill out the rest of the table.
n Cln Cl′n
0 R R
1 C R⊕ R
2 H R(2)
3 H⊕H C(2)
4 H(2) H(2)
5 C(4) H(2)⊕H(2)
6 R(8) H(4)
7 R(8)⊕ R(8) C(8)
8 R(16) R(16)
9 C(16)
10 H(16)
11 H(16)⊕H(16)

Let’s plug this identity into itself. We get

Cl′n+4 ' Cln+2 ⊗ Cl′2 ' Cl′n ⊗ Cl2 ⊗ Cl′2 ' Cl′n ⊗ Cl′4.

We get the identities

Cl′n+4 ' Cl′n ⊗ Cl′4, Cln+4 ' Cln ⊗ Cl4.

That also implies
Cln+8 ' Cln ⊗ Cl8, Cl′n+8 ' Cl′n ⊗ Cl′8.
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But by tensoring with Cl8,Cl′8 just puts 16-by-16 matrices over everything. So the
basic structure is eight-fold periodicity. I’m not going to drive this all the way home
today, but let’s just do an example.

How many vector fields can we get on S7? We need the largest k so that Clk acts
on R8. Well, H(2) has an eight-dimensional real representation, C(4) has an eight-
dimensional representation, and even R(8)⊕R(8) does. That gives a representation of
Cl7 on R8 and that’s the biggest one that acts. That gives 7 vector fields on S7.

What about 15? How many vector fields do we get on 15? Now I want to look for
16-dimensional representations. Looking at the table, we can get 8 vector fields on S15

but can’t get any further via Clifford algebras.

Lecture 16
10/15

§1 Radon-Hurwitz numbers

There are two things I want to do today. First, I’d like to collect this thing about
vector fields. Last time we talked about Clifford algebras. We made this table of the
Clifford algebras:

n Cln Cl′n
0 R R
1 C R⊕ R
2 H R(2)
3 H⊕H C(2)
4 H(2) H(2)
5 C(4) H(2)⊕H(2)
6 R(8) H(4)
7 R(8)⊕ R(8) C(8)
8 R(16) R(16)
9 C(16)
10 H(16)
11 H(16)⊕H(16)

That’s what they worked out to be. We had the isomorphism

Cln+8 ' Cln(16),

and then you can work them all out, and find out how many vector fields you can
produce on a sphere using them.

For Rn, we wanted to know the largest value of m such that Clm acts on Rn. That
gives us m vector fields on Sn−1. That’s the thing we want to figure out. Or in other
words, given a Clifford algebra, we’d like to know the smallest vector space it acts on.
Let’s figure that out. Let’s make a table of the smallest representations of the Clifford
algebras:
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n Cln Dimension of the smallest rep
0 R 1
1 C 2
2 H 4
3 H⊕H 4
4 H(2) 8
5 C(4) 8
6 R(8) 8
7 R(8)⊕ R(8) 8
8 R(16) 16
9 C(16) 32
10 H(16) 64
We want to reverse this information and find the find the largest ` such

that Cl` acts on Rn.
Notice that the smallest representation of a Clifford algebra has dimension a power

of 2. So we are going to want to write

n = 2jm,m odd.

The Clifford algebra we want is going to be the largest Clifford algebra acting on a
2j-dimensional vector space. We have this basic list of Clifford algebra representations,
and each time we move up by eight, then the minimal Clifford algebra representation
bumps up by 4.

So let’s distinguish j mod 4. Let’s write j = 4r + s, s ∈ [0, 3], so

n = 24r+sm, m odd.

1. If s = 0, then n is a multiple of sixteen. We have ` = 8r (the best Clifford
algebra).

2. If s = 1, then it’s going to be ` = 8r + 1.

3. If s = 2, then it’s going to be ` = 8r + 3.

4. If s = 3, ` = 8r + 7.

Summary: The Clifford algebra construction constructs an action of Cl` on Rn,
or ` vector fields on Sn−1, where ` is as above.

16.1 Definition. We write ρ(n) for the number ` constructed above. These are the
Radon-Hurwitz numbers. That is, if n = 24r+sm, m odd and 0 ≤ s ≤ 3, then

ρ(n) =


8r s = 0

8r + 1 s = 1

8r + 3 s = 2

8r + 7 s = 3

,

and we can write this as 8r + 2s − 1.
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Now we need to figure out how we are going to prove that there are no more vector
fields. We have to find these Radon-Hurwitz numbers in algebraic topology. That’s
kind of a remarkable story.

We’ve proved:

16.2 Proposition. There are at least ρ(n) linearly independent vector fields on Sn−1.

§2 Algebraic topology of the vector field problem

So we’re going to leave these Clifford algebras for now, and return to them later as we
get more geometry under our belts. We want to find a way of getting an upper bound
on the number of vector fields. We were looking at these Stiefel manifolds Vk+1,n+1

and the fibration
Vk+1,n+1 → Sn

and we wanted to know if it had a section. A section was equivalent to Sn having k
vector fields. So we’d like to understand when a section exists.

One thing we might do is to apply homology and to see if we have a section in
homology. If that wasn’t enough, we could try to study Steenrod operations. That’s
what Whitehead and James did, and that gives an upper bound on the number of
vector fields. But it’s not the best. This method thinks that all the S2n−1-spheres are
parallelizable.

We could also studyK-theory and Adams operations and try to understand whether
there’s a section in K-theory. That turns out to give the right answer, the right upper
bound. So we want to study this, and to calculate the K-theory of these spaces with
Adams operations.

Goal: Compute
KO∗(Vk+1,n+1)→ KO∗(S

n)

with the action of Adams operations, and see if there’s a section. Note that we’ve
written KO-homology and used KO-theory, not K-theory.

§3 The homology of Stiefel manifolds

The first thing I want to do is to get an idea of this space Vk+1,n+1. To start with, we
want to understand its homology. Let’s take the extreme case. Consider Vn+1,n+1 =
O(n+ 1). As a topological space, that is two copies of SO(n+ 1), so we might as well
try to understand SO(n+ 1). More generally,

Vk+1,n+1 = O(n+ 1)/O(n− k) = SO(n+ 1)/SO(n− k),

and so we might as well study the special orthogonal group rather than the orthogonal
one.

Let’s start with SO(n + 1): the group of oriented orthogonal isomorphisms of Rn
with itself. There is a fibration

SO(n)→ SO(n+ 1)→ Sn
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where the last map sends an orthogonal matrix T to Ten+1 (where en+1 is the last
basis vector). This is a fiber bundle. Just to get an idea, let’s imagine that there is
a section. There isn’t one, but imagine we had one. Then we could take that section
and SO(n)→ SO(n+ 1) and multiply them to get a map

SO(n)→ Sn → SO(n+ 1)

and that would be a homeomorphism. We could repeat with n replaced by n − 1 and
we would find that SO(n+ 1) ' Sn×Sn−1× · · · ×S1. (If I had used O instead of SO,
it would go all the way down till S1.) There’s no reason to think that this is true, but
if it were, we would get

H∗(SO(n+ 1);Z/2) ' H∗(Sn;Z/2)⊗ · · · ⊗H∗(S1;Z/2).

I’m telling you this because if you ever forget what things look like, this is a good way
to remember it.

Let’s just continue this fantasy world with the Stiefel manifolds. We have that
SO(n+ 1) acts on Vk+1,n+1 because that’s a homogeneous space for that group. That
makes H∗(Vk+1,n+1;Z/2) into a module over the homology H∗(SO(n + 1);Z/2) (the
Pontryagin ring). If you go through this same argument and imagine that all of these
fiber bundles had sections, you can get a description of this Stiefel manifold using the
group action. What we would get, if we continued this analysis (imagining that we
had these sections and that SO(n+ 1) = SO(n)× Sn = SO(n− 1)× Sn × Sn−1), we
would find that the homogeneous space SO(n+ 1)/SO(n− k) = Sn−k × · · · × Sn. So
we would get

H∗(Vk+1,n+1;Z/2) ' E[xn, . . . , xn−k].

This is in fact true, and our aim now is to modify the incorrect argument above
and to describe some things that actually do work. We don’t actually have these
sections. However, we do have sections like that away from a point. So if I were to
take

SO(n+ 1)→ Sn,

I don’t have a section here, but I do have a section here away from a given point. I
do have a section, say, over a disk. How can I make such a section? Well, that’s part
of just saying it’s a fiber bundle which must be trivial over a contractible space. Let’s
do it explicitly. The map SO(n + 1) → Sn sends a matrix T 7→ Ten+1. We need to
find a continuous way of making an orthogonal transformation that takes e1 to a given
vector v (away from one point in Sn).

Here’s one way of doing this. Draw an n-sphere Sn with basepoint en+1 and remove
the point −en+1. Given any other vector v ∈ Sn, we can take the 2-plane spanned by
the two vectors v, en+1. Choose a transformation on the plane spanned by v, en+1 which
rotates en+1 into v, in the plane spanned by these two vectors, and the identity map on
the complement. It’s not defined at the point v = −en+1. There’s another place where
they’re not linearly independent, where v = en+1, where we just take the identity map.
This gives a continuous section

Sn \ {−en+1} → SO(n+ 1).
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Now I’m going to say something without proof. This tells me that we have the map
p : SO(n + 1) → Sn and we can write Sn = Sn \ {−en+1} ∪ {−en+1}. Over the open
set Sn \{−en+1}, there’s a section of p and the fiber bundle looks like SO(n)× (Sn \∗)
and over {−en+1} the fiber looks like SO(n). So we can write

SO(n+ 1) = Dn × SO(n) t ∗ × SO(n)

as sets, not as spaces. This in particular gives a map Dn → SO(n+ 1). Now I can
iterate this by applying to SO(n).

Or another way of saying this—we don’t have sections over spheres, but we do have
sections over interiors of disks. We have a whole bunch of maps

D1
0, D

2
0, . . . ,→ SO(n+ 1).

For every subset S ⊂ {0, 1, 2, . . . , n}, we can define a map∏
i∈S

Di
0 → SO(n+ 1).

The theorem about these is that:

16.3 Theorem. These maps are the interiors of a cell decomposition of SO(n+ 1).

If you haven’t seen this before, it’s probably coming by in a blur. The point is, we
were imagining these SO(n + 1) as a product of spheres. This isn’t true, but the cell
decomposition is similar to what it would have been if it were a product of spheres.

I just want to summarize something about these Stiefel manifolds. The last thing
is, if we wanted to prove our homology calculation, we’d need to calculate the cellular
differential in this cell complex. We need to know something more about how these
cells are connected. There’s a nice picture here. Let me go back to this little fantasy
story. We wrote that if SO(n+ 1)→ Sn has a section, then SO(n+ 1) ' SO(n)× Sn.
But that doesn’t happen (except when n = 1, 3, 7). However, if it has a homology
section, then the homology of SO(n + 1) is still H∗(SO(n);Z/2) ⊗ H∗(Sn;Z/2). So
it’s the same type argument, you could compare it with the Serre spectral sequence for
instance.

There’s an important map I wanted to get on the board today. Let me put up the
map, and then we’ll call it a day and answer these questions. As we said, if it had a
homology section, I could get the same decomposition of the homology. Let me put up
this important map. There’s a way of getting a section in homology that tells you a
great deal. One way of getting such a section would be to find a space X → Sn which
is an iso on Hn and then find a lift

SO(n+ 1)

��
X //

99tttttttttt
Sn

.

We will take X = RPn, where RPn → Sn is the collapse map. This is the key to
understanding the topology of these manifolds. The point is that a rotation is the
product of two reflections, and a reflection is determined by a line through the origin.
That’s supposed to motivate the following map:
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16.4 Definition. The map RPn → SO(n + 1) sends a line ` to reflection through
the hyperplane perpendicular to `, composed with reflection through the hyperplane
perpendicular to en+1.

Now, the way I’ve set it up, the diagram we want commutes. On the interior of the
top cell of RPn, it’s actually the map I wrote down earlier. I’ll come back to that next
time.

Lecture 17
10/17

§1 The map RPn → SO(n + 1)

In the last class, I was trying to tell you a little about the topology of SO(n + 1). I
made a slightly bad convention, which I will change at this point. I told you a way of
remembering what its homology looks like and made an argument that its homology
actually was of that form. Let me review this now. The important thing about this is
the map

RPn ↪→ SO(n+ 1).

You get this, first, by mapping

RPn → O(n+ 1),

by sending a line ` to the linear operator R` which is −1 on ` and 1 on the orthogonal
complement, i.e.

R` = (−1)` ⊕ 1`⊥ .

That has determinant −1, so the map lands in O(n+ 1). Then we multiply that with
a fixed reflection through another line.

Here’s the change of notation.

17.1 Definition. Let `0 be the line through the first coordinate vector e1.

Therefore, we have:

17.2 Definition. The map RPn → SO(n + 1) sends a line ` to R` ◦ R`0 , where R
denotes the rotation operators as above.

Remark. There are complex and quaternionic analogs of this. In the complex analog,
we get a map

CPn × S1 → U(n+ 1)

sending a line ` and λ to R`,λ = λ|` ⊕ 1|`⊥ (or rather R`,λ ◦ R−1
`0,λ

). So this actually
factors through a map

CPn ∧ S1 → U(n+ 1).

With the quaternions, it’s more complex as they don’t commute.
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One of the reasons is that I’ve switched to the first basis vector, rather than the
last basis vector, is that it isn’t compatible with the choice of other special orthogonal
groups. With the choice that we’ve now made, we have commutative diagrams:

RPn−1

��

// SO(n)

��
RPn //

��

SO(n+ 1)

��
RPn/RPn−1 ' // Sn

and you can check that the bottom map is a homeomorphism. This gives you a map
in homology, that is, a homology section of SO(n + 1) → Sn. That lets you write
H∗(SO(n+ 1);Z/2) as a tensor product of the homology of spheres.

In fact, the argument gives a decomposition of SO(n + 1) into cells, and the cells
are attached as they are for RPn. I’m just going to tell you some results. I’m pretty
sure something like this is written down in Hatcher’s book.

Let’s try to say something about Vk+1,n+1 = SO(n + 1)/SO(n − k), the Stiefel
manifolds. Note that we also get a commutative diagram:

RPn−k−1

��

// SO(n− k)

��
RPn //

��

SO(n+ 1)

��
RPn/RPn−k−1 // Vk+1,n+1

.

Now RPn has a zero-cell, a one-cell, and so on, all the way up to an n-cell. RPn−k−1

has all the cells up to n − k − 1. The quotient space that you get is what you get by
crushing those bottom cells: it has a basepoint, and cells from n − k up to n. That
space has another name.

17.3 Definition. RPn/RPn−k−1 is written as RPnn−k (the subquotient of RP∞ with
cells in the range of dimensions from n − k to n). It is called a stunted projective
space. This plays an important role with the Stiefel manifolds.

If you go through the inductive argument last time, we get:

17.4 Theorem. The map RPn → SO(n+ 1) gives an isomorphism of rings,

•∧
H∗(RPn;Z/2) ' H∗(SO(n+ 1);Z/2).

It’s also true that you get a cell decomposition of SO(n + 1), by induction on n.
The idea is that SO(n+ 1) = SO(n)× (Sn \ ∗) t SO(n).
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Remark. There’s a pretty easy explanation for why the elements square to zero. We’ll
come back to this next time.

All we really need to know is that a monomial basis for
∧
H∗(RPn;Z/2) goes to a

basis for H∗(SO(n+ 1)). Anyway, the same type of reasoning gives a map∧
H∗(RPnn−k)→ H∗(Vk+1,n+1;Z/2)

by mapping to H∗(SO(n + 1);Z/2) first and mapping down. This is an isomorphism
of modules over H∗(SO(n + 1);Z/2). There isn’t an obvious ring structure on the
homology of Stiefel manifolds.

Remark. Another way to organize this inductive calculation is to use the long exact
sequence of SO(n), SO(n + 1). Namely, if we know the homology of SO(n), then we
can calculate

H∗(SO(n+ 1);SO(n)) = H∗(SO(n)×Dn, SO(n)× Sn−1).

In fact, we have a homeomorphism

SO(n+ 1)/SO(n) ' (SO(n)×Dn)/(SO(n)× Sn−1).

More generally, if we have a fiber bundle p : E → X and A ↪→ X with pull-back
EA → A, then we can calculate E/EA by the following.

Consider a diagram:

EA

��

// E

p

��
A // X

A′

OO

// X ′

OO

.

If (X ′, A′) → (X,A) is a relative homeomorphism, then E/EA ' E′/E′A. This is a
kind of standard trick for analyzing fiber bundles over CW complexes.

Anyway, we can now use the Künneth formula to calculate H∗(SO(n+1), SO(n)) '
H∗(SO(n)×Dn, SO(n)× Sn−1) which we can calculate by the Künneth theorem. We
get this long exact sequence. One checks that H∗(SO(n+1))→ H∗(SO(n+1), SO(n))
is a surjection and the long exact sequence of H∗(SO(n))-modules actually splits. We
get

H∗(SO(n+ 1) ' H∗(SO(n))⊕ bnH∗(SO(n)), |bn| = n.

This gives the desired computation.

§2 The vector field problem

I want to do something else. Let’s go back to the vector fields problem. Consider S15

again. We saw, from Clifford algebras, that S15 has eight vector fields. We aim to
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prove that there are no more. If we translate that into the theory of Stiefel manifolds,
it means that we take the fibration

V8,16 → V9,16 → S15

and the theory of Clifford algebras produces a section of this fibration. We think that
there are not nine though, so V10,16 → S15 should not admit a section.

We know something about the homology of these spaces. We know thatH∗(V9,16;Z/2)
is an exterior algebra on the homology of the stunted projective space RP15

7 . This is
slightly inconvenient for reasons you’ll see in a moment. I want to use some implica-
tions that we had before. I used James’s intrinsic join construction to show that S15

has eight vector fields, which implies that S16k−1 has eight vector fields for any k.
I want to take k = 3. If S15 has nine vector fields, James’s intrinsic join construction

shows again that S47 has nine vector fields.
So I want to look at the map

V10,48 → S47

and show that it does not have a section.

Beginning of a proof. The homology H∗(V9,48;Z/2) is an exterior algebra E(H∗(RP47
39))

and H∗(V10,48;Z/2) is an exterior algebra E(H∗(RP47
38)).

The first thing is the same as H∗(RP47
39) and the second is the same as H∗(RP47

38),
through dimension 79. We’re only interested in those spaces through dimension 47. So
what we learn is S47 has eight vector fields if and only if the map

RP47
39 → S47

has a section, and S47 has nine vector fields if and only if the map

RP47
38 → S47

has a section. That’s a problem you can actually solve. There are a lot of things you
can say here. The point is, through a big range of dimensions, a Stiefel manifold is just
a stunted projective space. You’ll see it come back as telling us a big part of the EHP
sequence. N
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Lecture 18
10/19

§1 Spheres with one vector field

In the previous lecture, we studied a map RPn ↪→ SO(n + 1), which was compatible
with the inclusions:

RPn−1

��

// SO(n)

��
RPn // SO(n+ 1)

��
RPn/RPn−1 // Sn

.

This also gave us inclusions RPnn−k
def
= RPn/RPn−k−1 → Vk+1,n+1. These two maps led

to cell decompositions to both spaces, and led to a computation of the homology. Even
though there isn’t a natural algebra structure, we have

H∗(Vk+1,n+1;Z/2) ' E(H∗(RPnn−k;Z/2))

for E meaning the exterior algebra.
This is kind of a fundamental picture; it’s going to be the crux of what we do in

class. In this class, we’re going to try to see what this has to do with the vector field
problem. We did some examples in the last class, and we’re going through many more
examples today. With solved problems like the vector fields problem, you can just
read the solution, but you miss something if you don’t put yourself in the position of
someone who was faced with solving the problem.

Let’s first ask about spheres having one vector field. Now that’s saying we are
looking at V2,n+1 → Sn and we want to know if that has a section. What does this
space look like? V2,n+1 has an n-cell and an n− 1-cell (which comes from the stunted
projective space). Then it has the product of those two cells, which is in dimension
2n− 1.

Remark. A more refined statement is that the cellular chain complex of RPnn−k is the
exterior algebra on the cellular chain complex on Vk+1,n+1. I really want to think of
this.

For most values of n, we have 2n− 1 > n. As long as n > 1, we have this. So what
are we asking. We have a map

RPnn−1 → Sn

and that map sends the top cell to the top cell. We’re asking whether there exists a
map in the opposite direction. As long as n > 1, we’re asking whether there is a map
back. That’s because if we had a section Sn → Vk+1,n+1, it would be homotopic to a
map into the n-skeleton, so we only need to pay attention to that skeleton.
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I know something about the cellular chains on RPn. If I draw the cellular chain
complex of RPn, it looks like

Z 2→ Z 0→ Z 2→ Z . . . .

If we look at what’s happening in homology, the cellular complex of RPnn−1 is{
Z 2→ Z n even

Z 0→ Z n odd
.

We learn right away that there isn’t a section when n is even, because there isn’t
a section in homology. This is the hairy ball theorem: S2n doesn’t have a nowhere
vanishing vector field.

We also know that S1 has one, thanks to the complex numbers. Similarly, odd
spheres do, thanks to the complex numbers. So S2n+1 has one.

Let’s say a little more: what is the homotopy type of this stunted projective space?
RPnn−1 is the mapping cone of a map

Sn−1 → Sn−1

which is degree two when n is even, and 0 when n is odd. That’s from our calculation
of the cellular chain complex. We learn:

1. When n is even, RPnn−1 = Sn−1 ∪2 e
n.

2. When n is odd, Sn−1 ∨ Sn.

So the latter thing alone lets us say that odd spheres have one vector field.
There’s one more thing I want to say about this. I’m setting up the trivial case of

something that’s going to get more sophisticated as we get going. These little stunted
projective spaces with two cells come only in two varieties, either the attaching map is
2 or it’s zero. A weird corollary:

18.1 Corollary. Σ2RPnn−1 ' RPn+2
n+1.

In other words, these stunted projective spaces are periodic in n.
This is a reason I like to draw real projective spaces, I draw little lines like this

which indicate the attaching map on each subquotient (sorry, can’t TEX these!).

§2 Spheres with more than one vector field

Now you have the odd spheres. Let’s think about the odd spheres:

S1, S3, S5, S7, S9,

and we know that S1 has one, S3 has three, S5 has at least one, S7 has seven, and S9

has at least one, and S11 has (at least) three. The first sphere we don’t know anything
about is the 5-sphere. One question is whether the five-sphere has two vector fields.
Let’s consider the map

V3,6 → S5
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and we want to know whether this has a section. We have

RP5
3 ↪→ V3,6

and RP5
3 → S5 by the collapse map. Then V3,6 has a bunch of things in higher dimen-

sions. The Stiefel manifolds start looking like the stunted projective spaces and then
have a bunch of much higher-dimension cells.

(It’s a little surprising to have a complex with so many high-dimension cells which
can map via a degree one map to S5.)

So we have a little copy of RP5
3 sitting inside V3,6. We know that the 4-cell is

attached to the 3-cell by the degree 2 map. We know that if we kill the bottom cell,
there’s a splitting.

Let’s think about what this RP5
3 looks like. I know that there’s a map and cofiber

sequence

S4 f→ RP4
3 → RP5

3

where the map S4 → RP4
3 comes from the double cover S4 → RP4 followed by crushing.

So we get an element
f ∈ π4(RP4

3).

So again, we’re interested whether there is a section S5 → RP5
3.

Claim: S5 has two vector fields if and only if f is zero.
One direction is easy: if f = 0, then the map f is null, and RP5

3 ' RP4
3 ∨S5. So we

have a section S5 → RP5
3.

The interesting direction is the other one. Here’s a way to argue that. Suppose I
had a section S5 → RP5

3. Let’s look at the sequence

RP4
3 → RP5

3 → S5

and note that we’re in the stable range, by the Freudenthal suspension theorem. In a
range of dimensions, there’s a long exact sequence of homotopy groups:

π5(RP3
5)→ π5(S5)→ π4(RP4

3)→ π4(RP5
3)

and if we had two vector fields, the first map in the sequence is a split surjection. This
means that π5(S5)→ π4(RP4

3) is zero, and this map sends the generator to f . So f = 0.
Anyway, let me say it this way. Suppose I have a cofiber sequence

Sn−1 f→ X → X ∪ en → Sn

and suppose I have a section Sn → X ∪ en. If we’re in the stable range (i.e. X is about
n/2 connected). Then TFAE:

1. The section exists.

2. f = 0.

3. X ∪ en = X ∨ Sn in a manner compatible with this cofiber sequence.
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If you work with these, you say that the top cell splits off, or the attaching map
was zero. You need to be in the stable range to guarantee this.

We want to understand the possibilities of f . So we’d like to understand:

Question. What is π4(RP4
3)?

Again, let’s use the cofiber sequence

S3 2→ S3 → RP4
3

and we get a long exact sequence of homotopy groups in the range we care about. We
get a map

π4(S3)
2→ π4(S3)→ π4(RP4

3)→ π3(S3)
2→ π3(S3).

Since we’re in the stable range, we can do this. We find that the map π4(S3)→ π4(RP4
3)

is an isomorphism, and there are two possibilities for the map f and RP5
3.

1. Either the attaching map S4 → RP4
3 is nontrivial and factors through the bottom

cell.

2. Or the attaching map is zero.

So the question of whether this attaching map is zero is equivalent to whether S5 has
two vector fields.

How could we possibly tell what that map might be? To solve the vector field
problem, we have to figure out whether this map is not the zero map. Actually, there
is an idea that we can try. The nontrivial map S4 → S3 is the suspension of the
Hopf map, which has Hopf invariant one. So we might try to measure something using
the Hopf invariant, except that we’ve suspended things and we can’t yet say anything
about the Hopf invariant once we’ve suspended everything.

I want you to understand what’s at stake and what the picture is here. As I
said, there are only two possibilities. We’d need to make some calculation about this
projective space to decide how the cells were attached. The original method was to use
Steenrod operations. You can calculate Sq2 on the class in H3(RP5

3;Z/2) and check
that it’s not zero. Then you could conclude. Alternatively, we can compute the e-
invariant of this map and find that it’s not zero. So in any case, what I learn is that
the attaching map is not zero, and there is only one vector field on S5. We’ll do this
later.

§3 James periodicity

There’s another thing, which has an interesting explanation and which we’ll find a
better explanation for a little later. So we know from this that S5 does not have two
vector fields (I’m telling you this). We noticed last time that there was a kind of
periodiicty in the RPnn−1 was periodic of period 2. There’s a generalization of that fact,
which we’ll have a better understanding of a little bit later. This was originally called
James periodicity.
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Roughly, it states that RPnn−k is “periodic” in n with period 2somepower and the power
is a little complicated to say. The power is related to the Radon-Hurwitz number. In
other words, for some m,

RPn+m
n+m−k ' ΣmRPnn−k.

For instance,
RPnn−2

is periodic in n, with period 4.
Anyway, remember this argument: if the five-sphere had two vector fields, so would

S6n−1 for all n. For instance, S11 would. That makes you think that the little piece
RP5

3 would be related to RP11
9 . At least, we know that if one has a top cell that splits

off, so does the other. I’ll explain this.
The picture that we’re supposed to get from this: in the stable range, Sn has k

vector fields, but not k+1, if and only if the attaching map for the top cell in RPnn−k−1

(i.e., Sn−1 → RPn−1
n−k−1) factors through the bottom cell, but is not zero.

One thing that’s really remarkable is that we’re constantly using here the notion
of a CW complex, and the notion of skeleta. These discoveries came soon after the
discovery of CW complexes and the work on the vector fields problem came soon after
Whitehead invented CW complexes. You wouldn’t be able to do this at all without
this idea.

Lecture 19
10/22

§1 A loose end

So we’re still talking about the algebraic topology of Stiefel manifolds and the vector
field problem. There was something I did last time, and I think I made it a little more
complicated than it needed to be. We were studying the following: we had a map

f : A→ X

and a cofiber sequence
A→ X → X ∪ CA→ ΣA

and we supposed that there was a section of X ∪ CA→ ΣA. In this case, we have an
equivalence

X ∪ CA ' X ∨ ΣA.

Under convenient conditions (in particular, in the stable range), this is equivalent to
saying that f is null. I gave a proof of that, but it’s a little easier to continue the Puppe
sequence one more step

A→ X → X ∪ CA→ ΣA
−f→ ΣX

and observe that if ΣA sits inside as a summand of X ∪ CA, we get that ΣA
−f→ ΣX

is null (namely, in this case we factor ΣA → ΣX as ΣA → X ∪ CA → ΣA → ΣX
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and the composite of two maps in a cofibration sequence is null). If X → ΩΣX is an
equivalence through the dimension of A, then we can conclude that f is null. I just
wanted to reinforce that this is the better way to organize it.

§2 Stiefel manifolds and the intrinsic join

Here’s the deal. I want to take this argument that if Sn−1 has k vector fields, then so
does Smn−1 for each m. We had a homotopy-theoretic argument based on the James’s
intrinsic join. This is a map

Vk,n ∗ Vk,m → Vk,n+m

(where ∗ means join) and the map sends a frame in Rm and a frame in Rn and an
angle θ to a frame in Rm+n. That is, given a pair of k-frames (f1, f2) and an angle θ
to (cos θ)f1 + (sin θ)f2. So you take the two frames f1, f2 and rotate them through the
angle θ.

These maps are compatible when n, k change. The following diagram commutes:

Vk,n ∗ Vk,m

��

// Vk,n+m

��
Sn−1 ∗ Sm−1 ' // Sn+m−1

.

More generally, we get a commutative diagram:

Vk,n ∗ Vk,m

��

// Vk,n+m

��
V ′k,n ∗ Vk′,m

' // Vk′,n+m

for k′ ≤ k. We’d like to know what the intrinsic join does in homology. There is a
pretty complicated argument in James’s paper, but one can use these diagrams to give
a simpler one.

To see this, let’s review the homology of the join. We have a functorial isomorphism

Sn−1 ∗ Sm−1 ' Sn+m−1

and we learn that
Ccell
∗ (X ∗ Y ) = ΣCcell

∗ (X)⊗ Ccell
∗ (Y ).

In fact, if you think about this, one has a homotopy equivalence

X ∗ Y ' Σ(X ∧ Y ).

If I use field coefficients, we get

H̃∗(X ∗ Y ) = Σ
(
H̃∗(X)⊗ H̃∗(Y )

)
.

Notation: If x ∈ Hk(X), y ∈ Hl(Y ), I’ll write x ∗ y for the corresponding element
in Hk+l−1(X ∗ Y ).
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Here’s the thing about the effect in homology of James’s map. Let bi ∈ Hi(RPba)
be the nonzero homology class of some stunted projective space, a ≤ i ≤ b. Again, we
have a diagram

RPn−1
n−k ∗ RP

m−1
m−k

��
Vk,m ∗ Vk,m // Vk,m+n

19.1 Proposition (To be proved later). Under the intrinsic join, the James map sends
the class bn−1 ∗ bi goes over to the class bi+n (under RPn+m−1

n+m−k → Vk,m+n).

The Stiefel manifold Vk,n has classes from n− k to n− 1 and the manifold Vk,m has
classes in dimensions from m − k to m − 1 (and higher product classes). There’s the
join of these things, which maps from the Stiefel manifold Vk,n+m which starts from
n+m− 1 and goes down to n+m− k. All of these are strings of exactly k cells. The
point is that the top cell joined with one string of k cells matches the k cells in Vk,n+m.
That’s what this statement is saying. In fact, it’s symmetric. We’ll later see that this
map looks like the dual of the cup product map in cohomology.

It’s not as good when we don’t use the top cell.
We have this cell decomposition of Stiefel manifolds, and we’re just trying to learn

about the vector fields problem. This is way more information we need, but it’ll serve
us well when we get back into the EHP sequence. Sometimes there’s a map of a sphere
into the Stiefel manifold which hits the top cell.

§3 James periodicity

Suppose that Sn−1 has k− 1 vector fields. In that case, we have this map Vk,n → Sn−1

which has a section. Now that gives a section Sn−1 ∗ Vk,m → Vk,n ∗ Vk,m → Vk,n+m. At
least in homology, we have a commutative diagram:

Sn−1 ∗ RPm−1
m−k

'
��

// RPn+m−1
n+m−1

��
Sn−1 ∗ Vk,m // Vk,n+m

.

I say in homology, because I don’t know that there is such a commutative diagram in
the homotopy category. However, most of the time, that actually happens in homotopy
as well. The dimension of Sn−1 ∗RPm−1

m−k has dimension m+n−1. This Stiefel manfiold

Vk,n+m can be described as RPn+m−1
n+m−k ∪ cells where the cells have dimension at least

n+m− k + n+m− k + 1 = 2n+ 2m− 2k + 1 and higher.

Remark. If Z is a CW complex of dimension ≤ l and A→ X is l− 1-connected, then
we have a surjection [Z,A]→ [Z,X], and if dimZ < l, it’s a bijection. Over here, we’re
saying that the pair (Vk,n+m,RPn+m−1

n+m−k) is highly connected.

Actually, let’s work it out.
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What I claim is, most of the time, the map

Sn−1 ∗ RPm−1
m−k → Vk,n+m

actually factors through a map into RPn+m−1
n+m−k. This is going to happen when

2n+ 2m− 2k + 1 > n+m− 1.

So equivalently, if
n+m > 2k − 2.

Here n was fixed, and m is larger. So one m > 2k − 2− n (which happens most of the
time: 2k − 2 − n is probably negative since Sn−1 had k vector fields), then the above
diagram actually commutes up to homotopy, and in particular we get an equivalence

ΣnRPm−1
m−k ' RPn+m−1

n+m−k

as we talked about earlier. That’s James periodicity.
You can do better than I’ve done, and we will do better a little later, but this

is something we noticed just by looking at stunted projective spaces by hand in low
dimensions. Let me just say it in a slightly less cumbersome way: it just says that
if Sn−1 has k − 1 vector fields, then we get length k stunted projective spaces (i.e.,
those with k cells) are periodic (with period n). This was kind of a miracle in its
day. We’re soon going to have a much more elegant explanation for James periodicity.
This explanation is so geometric, though, that it’s worth remembering, and there’s
something nice that’s going to come out of this in a second.

So we’ve constructed a bunch of vector fields on spheres, so we can prove examples
of James periodicity. It’s a little bit technical because there are a lot of numbers
to process. I could do some actual numerical examples, or I could get on to more
conceptual things. Let’s do a reality check.

In the last class, we learned that RPnn−1 is periodic with period 2, that is, we had
equivalences

Σ2RP``−1 ' RP`+2
`+1.

How could we get that here? We could take n = 2, k = 2 and use the fact that S1 has
one vector field. We could use the fact that S3 has three vector fields to get

Σ4RPnn−4 ' RPn+4
n .

The reason that sort of tells us something is that the issue of a sphere having so many
vector fields had to do with the top cell of these stunted projective spaces split off.
This turns out to be a stable problem, because of James periodicity.

Remark. We could do that as well for stunted complex projective spaces. (To be
returned to later.)

There’s something even better that comes out. Let’s go back to the situation and
reverse the roles of the two spheres. We had this map

Sn−1 ∗ Vk,m → Vk,n+m
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and sitting inside Vk,n+m was this stunted projective space RPn+m−1
n+m−k where this map

RPn+m−1
n+m−k → Vk,n+m

was an `-equivalence, for ` = 2(n+m−k). This is when Sn−1 has k−1 vector fields. Last
time, when we thought this through, we just paid attention to the stunted projective
space. We note that Sn−1 ∗ Vk,m has dimension n+ d where d is independent of n. On
the other hand, we have 2(n + m − k)-connectivity for the map RPn+m−1

n+m−k → Vk,n+m.
For a given k and N , we can find a sphere Sn−1 with n > N such that Sn−1 has k − 1
vector fields. So playing around with this, we can assume n� 0.

By taking n � 0, we may assume that the dimension of that join Sn−1 ∗ Vk,m is
smaller than the connectivity of the pair (Vk,n+m,RPn+m−1

n+m−k). That’s because we have
a dimension n+ constant versus 2n+ constant connectivity. For n� 0, we produce a
map

Sn−1 ∗ Vk,m → RPn+m−1
n+m−k

which has the property that the composite

Sn−1 ∗ RPm−1
m−k → Sn ∗ Vk,n → RPn+m−1

n+m−k

is a homotopy equivalence (James periodicity).
The consequence of this is a very beautiful fact:

19.2 Corollary (James). Stably, we have a splitting

Sn ∧ Vk,m ' Sn ∧ RPm−1
m−k ∨ anotherspace.

That stunted projective space, living inside the Stiefel manifold, breaks off after you
suspend it a bunch of times. This even applies when k = m. When k = m, this implies
that a big suspension of SO(m) is homotopy equivalent to a big suspension RPm−1

wedge another space. There are some neat uses of this. I was really fascinated by this
when I was a graduate student, and there was a lot of speculation about whether there
was a further decomposition. The homology of SO(m) is an exterior algebra and as a
result, it was believed that the decomposition of Σ∞SO(m) went for all these exterior
pieces. Haynes Miller proved this. “Stable splittings of Stiefel manifolds” is the paper.

That’s the end of my little tour of the homotopy theory of Stiefel manifolds, but a
lot of arguments—which are not very widely known—can be used to prove things like
the Adams conjecture. That’s the easiest proof of the Adams conjecture I know, but
I’ve never seen it written down anywhere. Some of us who like to think about motivic
homotopy theory use analogs of these maps in motivic homotopy theory. They work
in many other contexts. You have to be careful where your join coordinate lives. I
kind of want to advertise these because they are beautiful applications of the theory of
CW complexes. These are some theorems that never became that widely known, but
they’re extremely useful theorems that work in much broader contexts than this one.

Lecture 20
10/24

I still owe you the computation of the intrinsic join in homology, and I’ll say a little
about that today. I keep finding myself hampered by the fact that I’m not working in
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the stable homotopy category. I want to explain today the basics of stable homotopy
insofar as I’ll use them in the near future.

§1 Stable homotopy

So we’ve seen that a lot of our problems that we’re looking at don’t change if we
suspend a few times. We’ve seen that if dimA < 2connectivity(X), then the map

[A,X]→ [ΣA,ΣX]

is a bijection. Then ΣA has dimension dimA+ 1 and the connectivity of X bumps up
by 1. So the condition gets easier and easier after suspending. This condition is always
eventually met, if A is a finite-dimensional CW complex and X is arbitrary. In other
words, we can define:

{A,X} = lim−→
n

[ΣnA,ΣnA],

and the system actually stabilizes at some finite stage. If dimA = d, then dim ΣnA =
d+ n, while the connectivity of ΣnX is n− 1, so we need n large enough such that

d+ n < 2(n− 1),

and that’s the same as saying
n > d+ 2.

A lot of times, you’re in that range. In this range, good things happen: for instance,
cofiber and fiber sequences are the same.

§2 The Spanier-Whitehead category

This is probably actually good enough for our purposes. Any model for stable homotopy
theory that you produce has to contain the Spanier-Whitehead category. This is what
you need to start with, and there are a lot of ways of embellishing it to have good
properties.

• The objects are finite pointed CW complexes X.

• The maps {X,Y } def
= lim−→n

[ΣnX,ΣnY ].

Some simple things that happen (I’m assuming you know about the Freudenthal
suspension theorem):

1. If A ⊂ X is a subcomplex and I look at X/A, then the following happens. We
have two long exact sequences: I can stick this in either variable and get along
exact sequence. The easier one is, for any Y , I get a long exact sequence

{X/A, Y } → {X,Y } → {A, Y } ,

and this is exact. But it’s also true in the other variable. For any Z, we have a
long exact sequence

{Z,A} → {Z,X} → {Z,X/A} .
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The first statement is true at any stage, and the second is only true after a
sufficiently high suspension. The point is that the map

ΣnA→ fiber(ΣnX → Σn(X/A))

is an equivalence through a large range of dimensions (about 2n). You can work
out that number, say, from the Serre spectral sequence. I’m going to leave it
to you to do that.

2. In both cases, we can extend the sequence to an infinite exact sequence in both
directions. So for instance, let’s take the first one. It extends in one direction
obviously, because we just take the Barratt-Puppe sequence

A→ X → X/A→ ΣA→ ΣX → . . . ,

and map that into Y , and even at every stage, I get a long exact sequence. Taking
colimits, I get

{A, Y } ← {X,Y } ← {X/A, Y } ← {ΣA, Y } ← {ΣX,Y } ← . . . .

We can extend in both dimensions, though, because we’ve rigged things such that

{A, Y } ' {ΣA,ΣY } ,

sort of by definition of the colimit. When we move into the right-hand direc-
tions, we were suspending the first variable, and when we move in the left-hand
directions.

3. The same thing is going to happen with the other sequence. Now these are going
to go in the normal direction. In the other sequence, we would have

{Z,A} → {Z,X} → {Z,X/A} → {Z,ΣA} → . . .

and we can extend it in the other direction by suspending Z instead of A. For
instance, we could continue the sequence:

{ΣZ,X} → {ΣZ,X/A} → {Z,A} → {Z,X} → {Z,X/A} → {Z,ΣA} → . . . .

This is a little inconvenient to suspend in one variable one way and to suspend
in the other variable the other way. This is inconvenient, because you’re treating
the variables separately, while these long exact sequences are great.

It’s therefore nice to be able to add new objects to the Spanier-Whitehead category.
We’re going to add objects Σ−nA,n > 0. In order for this to make sense, we have to
define maps into and out of it. We set{

Σ−nA,X
}

= {A,ΣnX}

and similarly {
Z,Σ−nA

}
= {ΣnZ,A} .
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It’s more convenient to add these objects. If I introduce these formal desuspensions of
objects and define the objects like this, then I can rewrite my sequences like

· · · → {Z,ΣmA} → {Z,ΣmX} → {Z,Σm(X/A)} →
{
Z,Σm+1A

}
→ . . .

and that’s true for all integers m. The other sequence would have worked out the
same. The Spanier-Whitehead category works out a little better when you introduce
these formal desuspensions.

§3 Spanier-Whitehead duality

The reason Spanier-Whitehead introduced the category was because of Spanier-Whitehead
duality. In the Spanier-Whitehead category, the operation X ∧Y makes sense: we use
the smash product spaces. If you think through the definition, you can arrange things
so that

Σ−nX ∧ Σ−mY = Σ−n−m(X ∧ Y ).

So you can extend to the formal desuspensions. This makes the Spanier-Whitehead
category into a symmetric monoidal category. The unit is the sphere S0.

In a symmetric monoidal category like this, we say that:

20.1 Definition. (This would work in any symmetric monoidal category; I’m in the
Spanier-Whitehead category.) A dual of X is an object Y equipped with maps

X ∧ Y → S0, S0 → Y ∧X

such that the following composite:

X ∧ S0 → X ∧ Y ∧X → S0 ∧X

is the tautological equivalence. Similarly, I require that

S0 ∧ Y → Y ∧X ∧ Y → Y ∧ S0

be the tautological equivalence.

If Y is a dual of X, then here’s a simple proposition:

20.2 Proposition. If Y is a dual of X, then I can make the following maps. Given
any W,Z, I can consider

{Z ∧ Y,W} ∧X→ {Z ∧ Y ∧X,W ∧X} →
{
Z ∧ S0,W ∧X

}
and this composite map is an isomorphism.

It’s like vector space duality. It’s supposed to remind you of what happens in vector
spaces. A map Z ⊗ Y into W is the same as maps Z →W ⊗ Y ∨, in vector spaces.

Another easy reuslt:

20.3 Proposition. If Y is a dual of X, then X is a dual of Y .
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That’s because it is a symmetric monoidal category, and you can commute all of
these.

I keep talking about “a” dual, but the dual is unique up to unique isomorphism.
This first proposition tells me what functor it represents. We know that

{Y, ·} '
{
S0, · ∧X

}
,

and this determines Y in terms of X, uniquely up to unique isomorphism in the Spanier-
Whitehead category.

I want to write this dual as a functor.

20.4 Definition. If X is in the Spanier-Whitehead category, I’m going to write DX
for the Spanier-Whitehead dual of X (assuming it exists).

If I have a map X1
f→ X2 and if I know that the duals of both terms exist, then I

get a map
Df : DX2 → DX1.

That just follows because I know what functors are being represented and corepresented
by the duals, so it’s standard category theory. In fact,

{DX2,DX1} '
{
S0, X2 ∧ DX1

}
' {X1, X2} ,

and we take the map corresponding to f at the end.
So if the dual exists, then D is a contravariant functor from the Spanier-Whitehead

category to itself.

20.5 Definition. SW will denote the Spanier-Whitehead category.

In fact, once we’ve seen that the dual exists, we’ll have:

20.6 Proposition. D : SW → SW is a contravariant functor which squares to the
identity.

Let’s note first that the dual of the sphere is the minus sphere, i.e.

DSn ' S−n = Σ−nS0.

So every sphere has a dual. If we have a cofiber sequence

A→ X → X/A,

and if A,X have duals, then X/A has a dual and it’s going to be forced to fit into the
cofiber sequence

DA← DX ← D(X/A),

and that says that D(X/A) is the desuspension of the cofiber of the map DX → DA.
So we have the duals for the sphere, and we get it from things that we can build

from spheres and cofiber sequences. We thus get:

20.7 Proposition. Every X has a dual.

I’m kind of breezing through this. You can read about this in Hatcher or in the
exercises in Spanier’s book, which have an excellent discussion of duals. Every X has
a dual, but this hasn’t helped us very much yet. We have another result:

20.8 Proposition. D(X ∧ Y ) ' DX ∧ DY for X,Y ∈ SW.
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§4 Formulas for DX

This is very useful on its own, but it helps a lot if you know what the dual is. You
start getting somewhere when you learn what the dual is.

Suppose X is a CW complex and I can imbed X ↪→ Sn. Let’s even suppose that
that this extends to a CW decomposition of the sphere. I’m going to suppose that
Sn \X is a finite CW complex (up to deformation retraction). What I’m picturing is,
for instance, that Sp+q−1 \ Sp−1 ' Sq−1. This is a really important picture, and I’m
going to keep coming back to it in other guises. That’s a typical example.

Let A ⊂ Sn \X be a finite subcomplex which is a deformation retract of Sn \X.
You want to place these in the sphere, by possibly moving things up to a homotopy,

that:

1. No point of A is antipodal to any point of X. Here A ⊂ Sn \ X is homotopy
equivalent to it.

2. Then you get a map A ∗X → Sn by sending (a, x, t) to the γxa (t) where γxa is the
unique geodesic joining a to x.

3. Alexander duality ends up implying that X and A end up becoming Spanier-
Whitehead duals. In fact,

A ∗X ' Σ(A ∧X),

and I have a map from that to Sn. That gives a map in the Spanier-Whitehead
category,

A ∧ Σ−(N−1)X → S0.

This, you can check, makes Σ−(N−1)X into the dual of A.

4. Notice that you apparently also need to provide a map A∧Σ−(N−1)X → S0, but
you only really need to provide one map. Given a map X ∧Y → S0, that already
gives me a transformation

{Z,W ∧X} → {Z ∧ Y,W ∧X ∧ Y } → {Z ∧ Y,W}

and if that map is an isomorphism, then X and Y are duals, and the other map
(i.e., S0 → Y ∧ X) is given to us from this isomorphism. That is, the map
S0 → Y ∧X is isomorphic under that isomorphism from {Y, Y } and we take the
one corresponding to the identity.

You can read about this in Hatcher’s book. My goal today was to summarize the
basic properties of Spanier-Whitehead duality. This last piece isn’t formal, but it’s a
consequence of Alexander duality. In the next class, I’m going to give you Atiyah’s
formula for the dual, and I want to use that to think about lots of duals. I’m going to use
Thom complexes of vector bundles, and I’ll introduce it very briefly next time. Spanier-
Whitehead duality mixes with the theory of Thom complexes in a very beautiful way,
and I’ll explain that in the next class.
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Lecture 21
10/26

§1 Thom complexes

We were talking about stable homotopy theory and the Spanier-Whitehead cate-
gory. I want to describe some natural objects in that category, and those are Thom
complexes.

Suppose I have a space X and a vector bundle V → X. There are a couple of
different definitions we can give of the Thom complex.

21.1 Definition. Suppose X is compact, e.g., a finite CW complex. Then the Thom
complex XV of V → X is the one-point compactification of V (i.e., of the total space).

For more general X, XV is defined as the direct limit of XV
α as Xα ⊂ X runs

through the compact subspaces. As a set, it still is the same (one extra point), but the
topology is a little different.

We’ll use this form of the definition today, but if X is paracompact, you can choose
a (positive-definite) metric on V , and let B(V ) be the unit ball bundle in V , and let
S(V ) be the unit sphere. Then we could define

XV = B(V )/S(V ).

Alternative notation. An alternative notation for the Thom complex, when there
are other superscripts, is Thom(X,V ).

21.2 Example. Suppose V = X × Rn is trivial. Using the second definition, we find
that

XV = X ×Dn/(X × Sn−1) = X+ ∧ Sn.

(Here X+ is X with a disjoint basepoint.) Notice that if X is a cell complex, and if
I were to draw a “picture” of it, then we notice that the cells of the Thom complex
are the same cells as the cells of X, but now starting in dimension n. There’s another
thing that’s important to think about. We don’t imagine that X started out with
a basepoint. It can, but you get more uniform statements if you don’t regard X as
starting out with a basepoint but do regard XV as having a basepoint.

There’s a one-to-one correspondence between the cells of X+ and those of the Thom
complex. In particular, we have an isomorphism in cohomology, which is just the
suspension isomorphism,

H∗(X) ' H̃∗+n(XV ).

Remark. As said above, XV has a canonical basepoint, for any V (as a one-point
compactification or quotient).

Now let’s imagine that X is a CW complex, and let’s imagine that we attached a
cell. So start with some space A, which sits inside X = A ∪f em. Suppose we have
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some vector bundle V → X. Let VA be the restriction to A. We have a map of Thom
complexes

AVA → XV ,

and we’d like to ask what the quotient space XV /AVA is. Notice, however, that we
have this pushout diagram:

Sm−1

��

// Dm

��
A // X

,

and I have this vector bundle V sitting over X. At this point it’s going to be a drag to
give V different names, so I’m going to use the same symbol for the pull-backs of V .

I’m taking the one-point compactification of V and modding out everything that
lives over A. That’s the same thing as pulling back V to Dm, taking the Thom complex,
and crushing the sphere. So

XV /AV = (Dm)V /(Sm−1)V .

Now V |Dm ' Dm × Rn, and we already worked out what that Thom complex is. If I
further restrict to the boundary sphere, it’s still trivial. So we can calculate that

(Dm)V /(Sm−1)V = Dm
+ ∧ Sn/Sm−1

+ ∧ Sn ' (Dm/Sm−1) ∧ Sn.

Let me make a slightly more general statement:

21.3 Proposition. If I take V |X(m), then (X(m))V /(X(m−1))V is a wedge over the
m-cells

∨
m−cells S

m ∧ Sn.

If you think about this a little more, you learn that:

21.4 Proposition. (X(m))V is the skeleton filtration of a CW decomposition of XV ,
which has one m+ n-cell for every m-cell of X.

This argument also shows that we get an isomorphism on the cellular chains:

21.5 Proposition. There is an isomorphism Ccell
∗ (X) with the C̃∗+n(XV ) as graded

abelian groups.

However, this isomorphism isn’t an isomorphism of complexes, as it doesn’t gen-
erally commute with the differential dcell. The identifications we made depending on
trivializations of vector bundles over spheres, and those could be done in different ways.
But nevertheless, it leads one to look for an isomorphism,

H∗(X) ' H̃∗+dimV (XV ),

or
H∗(X) ' H̃∗+dimV (XV ).

Under convenient conditions, there is such an isomorphism.
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§2 The Thom isomorphism

We first have to define something. Suppose V → X is a vector bundle over X of
dimension n.

21.6 Definition. A Thom class for V is an element U ∈ Hn(XV ) with the property
that, for each x ∈ X, the map

SVx ' {x}V → XV ,

(where the Thom complex of V |{x} is the one-point compactification SVx , for Vx the

fiber over x), carries U to a generator of Hn(SVx).

The Thom isomorphism theorem, which is quite easy to prove, is that:

21.7 Proposition. If U is a Thom class for V , then multiplication by U induces an
isomorphism

H∗(X) ' H̃∗+dimV (XV ) ' H∗+dimV (B(V ), S(V )),

of modules over H∗(X).

We note that the cohomology of (B(V ), S(V )) is a module over H∗(X), because
B(V ) is homotopy equivalent to X. The proof is very easy—here’s a sketch.

1. Check for trivial bundles (which is easy).

2. Show by induction on j that if X = W1 ∪ · · · ∪Wj , where each Wi is open and
V |Wi is trivial, then it’s true for X. That’s a very simple argument using the
Mayer-Vietoris sequence. If you know it for j − 1, cover it by the union of the
first j − 1 and the last one, and use the Mayer-Vietoris sequence for X and for
the Thom complex, and the five-lemma.

3. A limiting argument, if X is paracompact.

You can easily figure this out. But we’ll probably come back to the Thom isomor-
phism for other cohomology theories a little bit later.

§3 Examples

I wanted to do some examples of Thom complexes, because these are really important.
First, I want to generalize one thing. Here’s another observation.

21.8 Proposition. Let V be a vector bundle on X. XV⊕Rm ' Sm ∧ XV . More
generally, let V → X, and W → Y be vector bundles. Form the external Whitney sum
V ⊕W → X × Y . Then

(X × Y )V⊕W ' XV ∧ Y W .

This is almost immediate from the definition. The first assertion is a special case
of the second with Y = ∗.

The point is that adding a trivial bundle just suspends the Thom complex. This
means that we can define the Thom complex of a virtual bundle. Let ξ be a virtual
bundle.
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21.9 Definition. If ξ is a virtual bundle (in KO0(X), which is the group completion
of the monoid of real vector bundles on X) on the finite CW complex X, then we can
define a Thom complex Xξ in the Spanier-Whitehead category SW (i.e, the form
including the formal desuspensions).

Namely, suppose ξ = V −W where V,W are finite-dimensional bundles over X.
Choose a vector bundle W ′ such that W ⊕ W ′ is trivial, so choose an isomorphism
W ′ ⊕W ' RN . Then

V +W ′ − RN = V −W = ξ,

so we define the Thom complex

Xξ = Σ−NXV⊕W ′ .

I’m going to use this a lot. It’s convenient to be able to talk about Thom spectra,
or Thom complexes of virtual vector bundles, but you have to imagine them in the
stable homotopy category.

Here are some examples.

21.10 Example. Let V = kL where L is the tautological line bundle RPn. What is
Thom(RPn, kL)? There are two ways to work this out, and they correspond to the
two different definitions of the Thom complex. One of them is to notice this little fact
about projective spaces. Here RPn is all the lines through the origin in Rn+1.

Let’s say I have a line through the origin in Rn+1+k but not a “vertical” line, i.e.
not in Rk. In this case, such a line is a point in RPn+k \ RPk−1. A line that’s not a
vertical line will pass the “vertical line test,” and will be the graph of its projection to
Rn+1. It shows that

RPn+k \ RPk−1 → RPn

is a bundle, and in fact this bundle is
⊕k L∗. Since I’m over the reals, I can write this

as
⊕k L (if I were over the complex numbers, I’d have to introduce conjugates). The

Thom complex Thom(RPn, kL) is the one-point compactification of the total space. To
calculate this, we can imbed the vector bundle (the total space) in a compact space,
and then crush the complement. We have

kL ↪→ RPn+k \ RPk−1,

so that the complement of kL in RPn+k is RPk−1. So we can assert

Thom(RPn, kL) = RPn+k/RPk−1 = RPn+k
k ,

i.e. we get the stunted projective spaces studied earlier.

21.11 Example. This extends our definition for stunted projective spaces. We can
construct Thom(RPn, kL) when k < 0, and we can use this to define virtual stunted
projective spaces in SW. In other words, we can define RPba for a, b ∈ Z, and b ≥ a.

We’re going to build a lot on this Monday, but let me just do one another example
which will play an important role.
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21.12 Example. There is another important vector bundle on RPn, which is the
tangent bundle. I’m going to describe this for you. This description also would
work for any Grassmannian. Now RPn is the space of lines in Rn+1. Choose a point,
i.e. a line ` ⊂ Rn+1. A little infinitesimal movement of that line ` is the graph of a
homomorphism `→ `⊥, just as before. This tells you that

TRPn = Hom(L,L⊥),

where L ⊂ Rn+1×RPn, and the quotient of that imbedding is the quotient L⊥. If you
hom L into the sequence

0→ L→ Rn+1 × RPn → L⊥ → 0,

you get a sequence that goes

0→ Hom(L,L)→ Hom(L,Rn+1)→ Hom(L,L⊥)→ 0.

Since Hom(L,L) is trivial, you get that

Hom(L,L⊥) ' Ln+1.

If you put this together, you find that the tangent bundle to RPn plus a trivial bundle
is (n+ 1) copies of L, L⊕(n+1). Equivalently,

TRPn = (n+ 1)L− 1.

Let’s now look at

(RPn)−TRP
n

= Σ(RPn)−(n+1)L = ΣRP−1
−(n+1).

You’re supposed to have this picture of the cells of real projective space, but you’re
allowed to extend them to negative dimensions. In the next section, we’ll identify this
with the Spanier-Whitehead dual of RPn+, and that gives a useful relationship between
stutnted projective spaces and Spanier-Whitehead duality. We’ll come back to that in
the next lecture.

Lecture 22
10/31

§1 Spanier-Whitehead duality

In the last class, we talked about Spanier-Whitehead duality. Spanier-Whitehead
duality has a lot of important aspects to it. It’s useful to be able to figure out the
Spanier-Whitehead dual of something is. Last class, I showed that if K ⊂ Sn ⊃ L are
disjoint (with no antipodal points) and the inclusion

L ⊂ Sn \K

104



Lecture 22 Spectra and stable homotopy theory notes

is a homotopy equivalence, then L and K are Spanier-Whitehead duals. In this situa-
tion, you get a map

K ∗ L ' Σ(K ∧ L)→ Sn

so you get a map
S−n ∧ S1K ∧ L→ S0,

which makes S1−n ∧ L ' DK. It’s of low importance to keep track of the suspensions,
at the beginning. If you look at the cells and where they are, you can figure out what
the shift had to be. If you’re learning about these things for the first time, I would
advise ignoring these indices, for now.

I want to tell you a beautiful formula of Atiyah for the Spanier-Whitehead dual of
a manifold with boundary. Let M be a smooth, compact manifold with boundary ∂M .
The boundary might be empty. You’ll see that even if we’re interested only in closed
manifolds, it’s important to include the case of a nonempty boundary. We choose an
imbedding

M ↪→ DN

with the property that ∂M ⊂ SN−1, and nothing other than the boundary goes into
SN−1. In other words, it’s an imbedding of manifolds with boundary (M,∂M) →
(DN , SN−1). This gives me an imbedding

M/∂M ↪→ DN/SN−1 ' SN .

If the boundary happened to be empty, a case which I allowed, then M/∂M = M t ∗
(when you mod out by something you add a point and identify everything in that set
to the point), and what we have is that

M ⊂ SN \ {∞} , ∗ → {∞} .

So we’re going to get a formula for D(M/∂M). As we saw, it is SN \ (M/∂M).
What is that? It definitely doesn’t contain ∞, the point at infinity. In fact,

SN \ (M/∂M) = Int(DN ) \ (M \ ∂M).

Now the boundary of a manifold has a little collar neighborhood that looks like ∂M ×
[0, 1], and if I remove the boundary, that’s homotopy equivalent to shrinking it down
to the edge of that collar neighborhood. So that’s homotopy equivalent to M , i.e.

M \ ∂M ∼M.

Let’s call M0 = M \ ∂M .
Choose a tubular neighborhood V of (M,∂M) ⊂ DN . We note that Int(DN )\M0 '

Int(DN ) \ V . Now Int(DN ) ' RN . So we have a manifold M0 imbedded in RN and
we’re interested in understanding the complement. Now notice that RN/(Rn \ V ) is
the Thom space Thom(M0, V ). We have a cofiber sequence

RN \ V → RN → RN/RN \ V
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so that the suspension of (RN\V ) is homotopy equivalent to RN/(RN\V ) = Thom(M0,M).
So

Σ(RN \ V ) ' Thom(M0, V ).

So V is a trivial N -dimensional bundle minus TM . So

Thom(M,V ) = SN ∧ Thom(M,−TM).

There are a bunch of indices to go get straight here. We figured out the complement
of the sphere, which is related to the Spanier-Whitehead dual by some amount of
suspension. If you work out all these numbers, we learn that up to suspension,

22.1 Theorem. If M is a compact manifold with boundary ∂M , then

D(M/∂M) = Thom(M,−TM).

This is a really important fact, and this is used in all kinds of places. For instance,
here’s a use of it. If you have a Thom class in TM , then so does −TM , and then I
have a Thom isomorphism

H̃k(M) ' H̃k−dimM (Thom(M,−TM))
D' H̃d−k(M,∂M).

This is Poincaré duality, relating the cohomology and homology of M . Formu-
lated like this, it tells you that having Poincaré duality is equivalent to having a Thom
isomorphism for −TM . It also tells you that if you have a transformation of coho-
mology theories, it’ll be as compatible with Poincaré duality as it is with the Thom
isomorphism. That’s something for which there are good formulas. That’s a really
useful point. If you’re learning about the index theorem, this thing is really useful to
internalize. It’s part of the story about the index theorem, which tells you that some
number computed by analytic means is equal to some number computed by topological
means. The topological story is very related to this.

Atiyah formulated this in terms of manifolds with boundary, and it lets you get
a slightly more general result. Suppose M is closed, ∂M = ∅. Suppose V → M is
a vector bundle. Then the disk bundle D(V ) is a manifold with boundary S(V ) (the
sphere bundle). What does Atiyah’s theorem tell us in this case? In this case, the
theorem tells us that

D(Thom(M,V )) = D(D(V )/S(V )) = Thom(D(V ),−TD(V )).

Let’s figure out what the last thing is. In D(V ), we have a manifold homotopy equiv-
alent to M , and the tangent bundle to the disk bundle corresponds to TM ⊕ V . So
the Thom complex of the disk bundle with coefficients in −TD(V ), that’s homotopy
equivalent to

Thom(M,−TM − V ).

The conclusion here is:

22.2 Corollary.
D(MV ) = M−TM−V .

I could have put both of these together and handled the case where M had a
boundary as well, but I’ll leave that to you. That’s a variation on this.
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§2 Application to vector fields

Now I want to bring all this home. I want to apply it to our vector fields problem.
There’s one more piece of the puzzle that has to come in before we have a really robust
tool to work with. Let’s do an example.

22.3 Example. We checked before that TRPn ⊕ R is (n+ 1)L for L the tautological
bundle. Atiyah’s formula tells us that

D(RPn+) = Thom(−nL) = ΣRP−1
−(n+1).

We don’t know anything about that yet. We could identify this with a different stunted
projective space using James periodicity but we don’t know that yet. Remember, the
last statement is basically a definition.

22.4 Example. More generally, suppose I wanted the Spanier-Whitehead dual of
RPnn−k. That’s the Spanier-Whitehead dual of Thom(RPk, (n − k)L). What is that?
By Atiyah’s formula, we get

D
(

Thom(RPk, (n− k)L)
)

= Thom(RPk; 1−(k+1)L−(n−k)L) = Thom(RPk, 1−(n+1)L),

which is
ΣRP−(n−k+1)

−(n+1) .

What we’re learning is, for all a, b,

DRPba = ΣRP−a−1
−b−1 .

This is sort of a formal statement — we haven’t yet identified these things with
projective spaces. We’re going to use real K-theory to get a different proof of James
periodicity, and that will give us a way to turn these things into more useful statements
for us.

There’s one more thing I want to tell you, which has to do with the Spanier-
Whitehead dual of a manifold. Let M be a closed manifold, sitting inside RN . We
can do the Pontryagin-Thom construction, and we can collapse everything outside a
tubular neighborhood to a point, which gives a map

SN → Thom(M,ν),

for ν the normal bundle. Up to a suspension, this is the Spanier-Whitehead dual of
M . Now I can also map Thom(M,ν) out to SN . Pick any point in M , and collapse
everything outside a neighborhood of it to a point. This gives a map Thom(M,ν)→ SN

and the composite
SN → Thom(M,ν)→ SN

has degree one. If you want, it’s the Pontryagin-Thom collapse map about a point in
Thom(M,ν).

Remark. If I have N ⊂ M ⊂ RN , the Pontryagin-Thom collapse goes in the reverse
direction,

SN → Thom(M,νM )→ Thom(N, νN ).
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The conclusion of this is, what are these Thom(M,ν)? If M is connected, and
d-dimensional, then M has a zero-cell, which is the basepoint, and then it has a bunch
of cells up to in dimension d and has a single d cell. The Thom complex just shifts
the cells, so that has cells in dimension N − d and all the way up to an N -cell. These
maps show that the top cell is unattached. The top cell of Thom(M,νM ) splits
off, as there’s a map from a sphere in, and a sphere out. The Thom complex is SN∨
something else. I’m going to say this in a more colloquial way because it’ll be useful
for us in the vector fields problem.

In Σ∞+ M , the bottom cell splits off. If I take the Spanier-Whitehead dual DΣ∞+ M ,
the top cell splits off. That’s also Thom(M,−TM), so the top cell of the Thom
complex has to split off. This is a really important thing about the Thom complex
about −TM . It comes with a canonical map from a sphere to it which is the dual of
the tautological map from M to a ∗. The relevance of this will become clearer in the
next lecture, but I’ll remind you that the vector field problem was equivalent to asking
that the top cell split off in a stunted projective space. Ultimately this is all going to
relate to real K-theory and Radon-Hurwitz numbers.

Lecture 23
11/1

We ended last time with the Atiyah duality theorem.

23.1 Theorem. If M is a manifold with boundary, then D(M/∂M) is M−TM . For a
closed manifold M , the dual of a Thom complex MV is M−TM−V .

The second case reduced to the manifold-with-boundary case. If M is a manifold-
with-boundary and V is a vector bundle on M , we have a more general statement

D(MV /∂MV ) = M−TM−V .

These are very useful for stunted projective spaces. But they only tell some of the
story.

§1 Real K-theory

Let X be a finite CW complex.

23.2 Definition. KO0(X) is the Grothendieck group of real vector bundles on X.

You try to make this into a cohomology theory. You can define

K̃O
−n

(X) = K̃O
0
(Sn ∧X),

which gets us negative KO-groups. The real version of the periodicity theorem is as
follows:

23.3 Theorem (Bott periodicity). K̃O
m

(X) ' K̃O
m−8

(X).
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The periodicity isomorphism is induced by multiplication by a class u in K̃O
0
(S8) =

K̃O
−8

(S0), constructed from Clifford algebras. It’s important to understand this class.
I’ll give you a couple of constructions of it because it’s important to understand what
it is. But I’d rather make a more systematic discussion.

Here are some other facts about KO:

1. K̃O
0
(X) is homotopy classes of pointed maps [X,Z×BO]. HereBO = lim−→BO(n),

and BO(n) can be described as the limit lim−→N→∞Grn(RN ). Bott periodicity gives
you the homotopy groups of Z×BO.

2. In fact,

πn(Z×BO) = K̃O
0
(Sn)

is given by the following table:
n 0 1 2 3 4 5 6 7 8

K̃O
0
(Sn) Z Z/2 Z/2 0 Z 0 0 0 Z

The groups repeat mod 8. There’s a song for them. We will write KOn for these
groups, and we can also write them as πnKO if we build a spectrum for KO-
theory.

We get the Atiyah-Hirzebruch spectral sequence. That goes from

H∗(X;π∗KO) =⇒ KO∗X.

I deliberately didn’t write down how the indices work. I could write down the general
formula, but I’d rather instead point out the two situations when you use this. You
don’t have to remember this if you remember how the Serre ss works.

....
Another way of saying this is that KO0(X) is built from

⊕
nH

n(X;πnKO). By
built from, I mean in the sense of a spectral sequence. KO0(X) has a filtration whose
associated graded is a subquotient of that.

I want to do some examples here, but there’s one other thing I want to point out.
Suppose X is finite and V is a vector bundle over X. Then the Thom complex XV ,
regarded as a stable object (or an object in SW), depends only on the underlying
equivalence class of V in KO0(X). If I add a bunch of trivial bundles to V , that will
just suspend this. That is, XV⊕Rn

= Sn ∧XV . Also, V1 ' V2 in KO0(X) if and only
if V1 ⊕ Rn ' V2 ⊕ Rn. To say that they’re equivalent in KO-theory means that I can
add some vector bundle to them to get them to be isomorphic, i.e. V1 ⊕W ' V2 ⊕W .
Now add some other bundle to W that makes it trivial.

If I work in reduced KO-theory, then I get the same Thom complex up to suspen-
sion. In other words, XV depends, up to suspension, only on the class of V − dimV ∈
K̃O

0
(X). If V,W are identified in K̃O

0
(X), then V ⊕RN 'W ⊕RM for some M,N .

§2 Examples

Let’s do an example with X = RP8 = RP8
0. Take X = RP8. We’ve seen that

RPn+8
n = Thom(RP8, nL).
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Modulo suspensions, that only depends on n(L − 1) ∈ K̃O
0
(RP8). Now what do we

know about K̃O
0
(RP8). You’d use the AHSS. If you wanted the spectral sequence for

reduced KO-theory, you’d put in reduced cohomology everywhere rather than coho-
mology.

(spectral sequence to be filled in later.)

Remark. When you run the spectral sequence for KO0(X), you only get Z/2’s down
the diagonal, never Z’s. When you right this down, you just put in Z/2’s in each of
the spots where you have Z/2’s in KOn.

We don’t yet know what happens: it might be a bloodbath. There might be a ton
of differentials. But we know from this that

K̃O
0
(RP8)

has order at most 16. If we combine that with this, this implies that

RPn+8
n

depends only on n modulo 16.
I could replace 8 by any number. For more general values of 8, this gives James

periodicity. In fact, just saying it this way, “the order of the KO-group is at most this
number,” you get exactly the same James periodicity as you get from Clifford algebras.
In fact, you get the same periods from this crude method as the periods that come from
Clifford algebras. (Remember, when we had vector fields on spheres, we got a James
periodicity result.) I think this is really the way to think about James periodicity. It’s
sort of the most direct way to think about it. The Thom complex (RP8)nL depends
only on n modulo the order of this KO-group, and that gives you the periodicity.

There’s something else that comes out of this. We got vector fields out of Clifford
algebras, and we can also get vector fields out of this. By Atiyah’s results,

D(RP8
+) = RP−1

−9,

and for this thing, we know that the top cell splits off. That happens in the Spanier-
Whitehead dual of any smooth manifold. But this only depends on these numbers mod
16. So we find that the top cell of RP15

7 splits off, stably. That implies that S15 has
eight vector fields.

23.4 Corollary. S15 has eight vector fields.

23.5 Example. This more generally implies that S16n−1 has eight vector fields. We
might be able to do better when n is even.

We also got that out of Clifford algebras.
I’ll tell you in a minute what these KO-groups work out to be. But we haven’t used

very much. We’ve used Bott periodicity, and we’ve used this stuff about KO-theory,
but we haven’t tried to calculate: we just got an upper bound. And we found a method
of constructing vector fields on spheres just from Atiyah duality and KO-theory, and
we got the same number of vector fields on spheres as we did with Clifford algebras.
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Let’s just do one more and see if we can guess the general pattern. Let’s try RP10.

I’m just going to run through the same kind of stuff. K̃O
0
(RP10) is going to have order

at most 64, but the same AHSS argument. That tells me that RPn+10
n depends only

on n mod 64. That gives some sort of James periodicity for 11-cell stunted projective
spaces. And what about vector fields?

We know that
D(RP10) = RP−1

−11,

and that only depends on the numbers mod 64. Here again the top cell splits off, so
we can 64 to each of these numbers. So in RP63

53, the top cell splits off. That implies
that S63 has ten vector fields. That is also the same number that we would get from
Clifford algebras. (Wait, is this right?)

I actually am going to give you a homework problem right now. So far, I picked
projective spaces that ended on a Z/2 in the AHSS. What if I did something like

RP5,RP6,RP7? If we looked at K̃O
0
(RP5), we’d find that it has at most 8 elements.

The same thing is true for RP6 and the same is true for RP7.
Here we would learn that

RPn+5
n

depends only on n mod 8. Here would learn that RPn+6
n only depends on n mod 8,

and same for RPn+7
n . The last statement implies the ones before it; it is the strongest.

The same thing would be true with vector fields. The first one would tell me that
S8n−1 has five vector fields, the second one would tell me that S8n−1 has six vector
fields, and the third one would tell me seven vector fields. So we get better results if
we take the projective space that ends right when possible.

There are several statements coming together here: we can construct vector fields
using Clifford algebras, and using real projective spaces. It turns out that we get the
same number. I want to put a couple of statements together. I’ll prove this next time.

23.6 Proposition. K̃O
0
(RPn) is cyclic of the order given by the E2 page of the AHSS:

there aren’t differentials in an out of there. It’s generated by L−1 for L the tautological
bundle.

If you put this together, we have the following proposition:

23.7 Proposition. If (L − 1) has order m in K̃O
0
(RPn), then Sm−1 has n vector

fields.

We also learn:

23.8 Proposition. If Cln acts on Rm, then Sm−1 has n vector fields.

I can rewrite the first proposition by saying that mL = Rm stably. The question
I want to leave you with, which I am going to put on the problem set, is: what is the
relationship between these? Can you go from one to the other? What is the relationship
between?

• mL = Rm on RPn
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• Cln acts on Rm.

It’s easy to get a number which is off by a factor of two, and there’s a trick to improve
it. This is kind of miraculous. The reason that KO-theory solves the vector fields
problem is because they are giving exactly the same number.

Lecture 24
11/5

Today, I want to describe the calculation of the K-theory of some stunted projective
spaces. I was just rereading Adams’s discussion of this—and I recommend going to
Adams’s paper “Vector fields on spheres” if you want to see some version of these
details written up—but I think that the best way to engage with it is to use some of
the techniques I’m going to talk about today and to put it together yourself. There
are a lot of ways to do this calculation, and it’s important to do it from these points
of view. So let’s begin.

§1 Outline

Our goal is to calculate K̃O
0
(RPmn ). I’m going to give you some techniques, and we’ll

put the answer together.
Here are some tools:

• The Atiyah-Hirzebruch spectral sequence

H∗(X,KO∗(∗)) =⇒ KO∗(X).

There’s also an analog for complex K-theory, and there are the various maps
between them. There is a map

K0(X)→ KO0(X)

which sends a vector bundle V to its realification. Then there’s the mapKO(X)→
K(X) which complexifies a vector bundle.

• Note that the composite

K(X)→ KO(X)→ K(X)

sends V 7→ V ⊗R C. The complex structure comes from the second factor of C,
and this is V ⊕ V .

• The composite KO(X)→ K(X)→ KO(X) is multiplication by 2.

This is how you make all these calculations in homotopy theory—make maps to
things that you know how to calculate.
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§2 K∗(CPn)

Let’s start with some spaces that we know. The first thing is the complex K-theory
of CPn. The AHSS for this is rather simple. It’s got Z’s in every other degree (add a
drawing) and zeros everywhere else: there is a checkerboard pattern and consequently
no possible differentials. I already made this calculation, and I did something about a
projective bundle formula when I talked about Adams’s splitting principle.

So the spectral sequence runs

H∗(CPn;K∗(∗)) = H∗(CPn,Z[u±1]) = K∗[u
±1] =⇒ K∗(CPn).

There is a little thing that we want to check here. We want to check that if we take
the class of 1−LC (where LC is the tautological bundle) corresponds to x. This is kind
of an easy statement to believe—what else could it be? But it really is something you
need to check, and it gets at the heart of how you use the AHSS. You could prove that
by naturality. We could compare the spectral sequence to the case of CP1, and let’s
even take reduced cohomology. That looks like H̃∗(CP1,K∗(∗)) =⇒ K̃∗(CP1) and
the generator in H2 (times u−1) has to correspond to the generator in K0.

Notation: L is the tautological bundle over RPn, and LC is the tautological
bundle over CPn.

What does this mean homotopy-theoretically? Homotopy-theoretically, it means
that we have a map CPn → BU , and that when we restrict to the 2-skeleton, the class
CP1 → BU is the generator of π2(BU). I’ll come back and expand on this a little bit
later. It’s important to remember what it means for a cohomology theory to represent
an element in the AHSS. We’re going to meet this in a little bit.

So this easily gets that K0(CPn) has a basis 1, x, . . . , xn, and there’s one more
assertion here: why does xn+1 = 0? We’ve talked about this. I’ll just remind you: let’s
consider the pull-back

CPn → (CPn)∧(n+1)

and the class xn+1 is pulled back by x⊗· · ·⊗x. However, CPn → (CPn)∧(n+1) is trivial
(because CPn is n-dimensional and the smash product is (n + 1)-connected). So that
takes care of K0(CPn).

§3 K0(RP2n)

We have a map RP2n → CPn (in fact, RP2n+1 → CPn), creating a diagram of spectral
sequences

H∗(CPn,K∗)

��

=⇒ // K∗(CPn)

��
H∗(RP2n,K∗)

=⇒ // K∗(RP2n)

.

This map is nontrivial in H2. If you like, this map corresponds to the nontrivial
cohomology class in H2(RP2n;Z), giving a map RP2n → CP∞ which we restrict to the
appropriate skeleton.

What do the two spectral sequences look like? For CPn, we have Z’s in even degrees
and zero everywhere else. For RP2n, we get a bunch of Z’s and Z/2’s in a lot of places.
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So we get a similar checkerboard pattern. Once again, there are no possible differentials
and the AHSS collapses. So we find that K(CPn)→ K(RP2n) is surjective. Moreover,
K̃(RP2n) has a filtration whose associated graded is this sum of Z/2’s. Let’s look at
these Z/2’s and try to get some information about them. Notice that under this map
RP2n → CPn, the bundle LC pulls back to L⊗ C.

Let’s write w = 1−L⊗C. If I look in this spectral sequence here, there’s a generator
α in this group H2(RPn;Z) = Z/2. Then the remaining classes are α, α2, . . . . Here α
represents 1 − L ⊗ C, so those αm represent (1 − L ⊗ C)m. What do we learn from
that? We learn from that K̃0(RP2n) has a decreasing filtration

0 ⊂ · · · ⊂ K̃0(RP2n)

whose associated graded is a sum of Z/2’s. Moreover, each of the Z/2’s are generated
by the classes of wm.

Now
w2 = 1− 2L⊗ C + L2 ⊗ C = 2− 2L = 2w.

That tells us that w2 = 2w and tells us how to solve the extension problem.

24.1 Corollary. K̃0(RP2n) = Z/2n generated by w.

§4 K̃O(RPn)

Now we want to move on discuss KO-theory. I’m going to say a few more words about
it and leave stunted projective spaces to you. Let’s again look at the AHSS for RP8.

(draw this)
This spectral sequence doesn’t fit the checkerboard pattern — there are possible

differentials. If you just read Adams’s paper, you’ll never know what the differentials
are, and it turns out there are differentials. It’s worth working this out. If you’re just
interested in KO0, though, there are no differentials that either come in or leave out
the line. All the group extensions turn out to correspond from multiplication by 2, and
from there you can work out the KO-theory of any stunted projective space.

There are some things that are easy to tell right away. I’m going to change notation
and let α be 1 − L. It’s easy to check that the first class is represented by α. You
have to know something about the KO-groups of a point—and the second thing is
represented by α2. We need to know the ring structure of KO∗(∗) for this.

24.2 Proposition. KO∗ is generated by 1, η ∈ π1KO,h ∈ π4KO, β ∈ π8KO. Here
η3 = 0, h2 = 4β, and β is invertible.

Unfortunately we can’t use the spectral sequence quite as we did for complex K-
theory. We know one thing from this. We know that K̃O(RP8) has at most 24 = 16
elements. We can map that to K̃(RP8), and we just checked that it was cyclic of order

24 generated by 1−L⊗C, so α comes down to the generator. It follows that K̃O(RP8)
has to have exactly 16 elements. Therefore

K̃O(RP8)→ K̃(RP8)
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is surjective and therefore an isomorphism, by counting. That tells us that

K̃O
0
(RP8) = Z/24,

generated by this class α.

The same argument would have worked for K̃O
0
(RP8k). This has at most 24k

elements and K̃0(RP8k) is cyclic of that order, generated by 1− L⊗ C. Therefore the
map is surjective and therefore an isomorphism. This exact same argument will work
as long as the KO-theory has the same number of Z/2’s as complex K-theory. This
exact same argument would show, and this is how Adams does it, that the KO-theory
of RP8k+1,RP8k+2,RP8k is a cyclic group of the same order as the K-theory. So we get
those real projective spaces.

I’m going to stop at this point and let you think about it. We could also learn from

the α, α2 thing that K̃O
0
(RP2) = Z/4. For RP8k ⊂ RP8k+2, note that the cofiber is

a stunted projective space RP8k+2
8k+1 which in turn is an appropriate suspension of RP2.

You can use these sequences to get things about these groups. I’m going to let you
play around with it. You’ll learn more if you try to get these next groups.

24.3 Exercise. Can you compute K̃O
n
(RPba) in general?

I concentrated on K̃O
0
, and the reason for that will become clear next lecture. I

didn’t do any of those stunted ones, but I could those from the long exact sequences
and things. I’ll just warn you: the answer is a bit unwieldy. It’s really doable, though.

Let me just tell you the way to remember how this works.

24.4 Theorem. No differentials affect the part of the AHSS that converges to K̃O
0
(RPba).

The Z/2’s always assemble into a single cyclic group. The only way you can not get a
Z/2 is if you get an RPm4k, which provides a Z in H4k(·,KO4k).

That’s in K̃O
0
—I haven’t said a word about the other KO-groups.

I want to go back to one of these examples where we produced these vector fields

on spheres. We saw that K̃O
0
(RP8) = Z/24. So the dual of RP8 was RP−1

−9 and we can
add sixteen to that, so that gives us after suspending RP15

7 whose top cell splits off.
That gives us that S15 has eight vector fields. But we could ask whether it can have
nine? I’ll pick this up next time.

Lecture 25
11/7

I want to move into the next step of discussing the vector fields problem. We’ve learned
a lot about Stiefel manifolds and Thom complexes, and just to keep the discussion
concrete, let’s stick with the specific example we’ve been discussing.

We’ve seen, in two ways, that S15 has eight vector fields. The question is, does it
have nine? We produced vector fields in two different ways:

1. Clifford algebras.
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2. The order of the reduced tautological line bundle on projective space.

The conjecture was that eight is the best possible.
There are a couple of ways in which we can ask this question. We have an equivalent

formulation. If we look at RP15
7 , then the top cell splits off. The question is, how about

RP15
6 ?
In terms of the cells, RP15

6 has cells from dimension 15 to 6, and the cells are
connected by attaching maps. We know that the attaching map from the top cell isn’t
attached to cells fourteen through seven and the question is whether it’s attached to
the bottom cell. The question is, what is this attaching map?

To clarify, we have an attaching map S14 → RP14
6 which factors as a map of spaces

S14 → RP14 → RP14
6

where the first is the double cover. The composite to RP14
7 isn’t unique, so we can

factor the map through S6, which is not unique. The map S14 → S6 is only well-
defined modulo something, and when I say whether it’s zero, I mean whether it’s zero
after I take S14 → RP14

6 . There is not a definite canonical map S14 → S6.
For the EHP sequence, we want our hands on this map S14 → S6. If you go back

and think about it, there is extra data specified. We have an explicit construction of
eight vector fields on S15. This means that we have an explicit way of splitting
of the top cell, which means we have an explicit splitting off of the top cell, and that
means we should get a canonical factorization and a canonical map S14 → S6. Today,
we’re going to talk about how you get this map.

I’m going to describe this map to you using homotopy theory, but it occurs to
me, as I explain it to you, that there’s an explicit construction using Clifford algebras,
and there must be an explicit factorization using Clifford algebras. It’s possibly an
interesting thing to think about.

There’s another thing that all the classical stuff about vector fields does. There
are many places where people convert the problem into the Spanier-Whitehead dual
problem. I know one of really good reason to do it, and I’ll explain that later. This
isn’t the point. I’m just going to say that there are a lot of maneuvers where you switch
the problem to the Spanier-Whitehead dual, and it makes one calculation much more
doable. But in principle, looking at something or its dual is just a formal maneuver
and it shouldn’t really advance you towards to the solution.

With that said, I want to look at the dual problem.

Question. Does the top cell of RP15
6 split off?

That’s equivalent to the dual problem:

Question. Does the bottom cell of D(RP15
6 ) split off?

The duality stuff (Atiyah duality) tells you that D(RP15
6 ) is, up to a suspension,

RP−7
−16. In general, we had the formula

D(Mν) = M−TM−ν ,
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and we had
RPba = (RPb−a)aL,

where the tangent bundle of RPb−a was stably easy to work out.
So we want to know whether the bottom cell of this thing splits off, and this

is Thom(RP9,−16L). Let’s ask ourselves about this Thom complex, because that’s
where we are going to learn something.

What do we know about K̃O
0
(RP9)? If we remember the AHSS, we got a bunch

of Z/2’s lining up, and we found that it was Z/32. Meanwhile K̃O
0
(RP8) = Z/16. So

remember that 16L is trivial on the 8-skeleton, and it’s in the highest filtration of the
AHSS. The way I want to use the trivialization of 16L|RP8 is to observe the following.

We have a map

RP9 16(1−L)→ BO,

and since that is trivial on RP8, we get a factorization of S9. That has to be the
nontrivial element of π9(BO). There’s something you need to use about the definition
of the spectral sequence. We get a commutative diagram:

RP9

��

16(1−L)// BO

S9

ξ
<<yyyyyyyyy

.

This commutative diagram gives us a diagram of Thom complexes,

Σ16RP−7
−16 → (S9)ξ = (S0 ∪f e9)

We also know that the map RP9 → S9 is nonzero in HZ/2 in dimensions zero and
nine. So the above map of Thom complexes is an isomorphism in HZ/2 in the same
coefficients in appropriate degrees.

Now, if we dualize everything, and suspend as necessary, we get the dual of the
cone on f mapping into the dual of the stunted projective space. So we get a map

D((S9)ξ)→ RP15
6

up to suspension. This dual, suitably suspended, is S6 ∪Df e15, mapping into RP15
6 .

So we have a map of a two-cell complex in hitting the bottom and top cells. So the
(stable) attaching map of the top cell of RP15

6 comes from the attaching map of this
two-cell complex followed by the map into RP14

6 . In other words, the stable attaching
map

S14 → RP14
6

factors as
S14 Df→ S6 → RP14

6

and this thing with the Atiyah-Hirzebruch SS produces an explicit example of the
attaching map.
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Adams knew about this, but he doesn’t talk about this in the vector fields paper.
In that paper, he doesn’t discuss S14 → S6, only the composite into RP14

6 . He writes
that he knows about it and it appears many years later in his J(X) papers.

We have a general question of what this map Df is. Then we have a dual question
of how this works for arbitrary spheres. Let me tell you what the general question you
meet is.

Question. We have a map RPn crush→ Sn
ξ→ BO, where ξ : Sn → BO is the generator.

(In order for this group to be nonzero, let’s assume n ≡ 0, 1, 2, 4 mod 8.) The general
thing we would meet is this situation.

The question is about ξ. We look at the Thom complex Σ(Sn)ξ = S0∪f en and the
question is what f is in terms of ξ, and then what is Df in terms of ξ.

Let’s first do the question about Df . I think this is quite easy to figure out. The
second question applies to any map.

Question. For f : Sn−1 → S0 any map in πn−1(S0), what is Df : S0 → Sn−1 (also an
element of πn−1(S0))?

I think Df = f . I remember what we used to always say, we used to say “What
else could it be?” and that was a good proof back in the day. Of course, it could be
(−1)nf or something like that. It could be something random. But I think it is pretty
easy. The thing is, this is a natural transformation. The dual is a functor. Let’s come
back to that, though.

The real thing about today’s lecture is, what is f in terms of ξ? And this is the
important thing. The answer to the first question is that f is the J-homomorphism
applied to ξ where

J : πn(BO)→ πn−1(S0).

Let me remind you about the definition of this map. HereO(n) acts on n-dimensional
euclidean space, so

J : O(n)→ LinIso(Rn,Rn)→ Map∗(S
n, Sn) = ΩnSn

That gives me a map πkO(n) → πk(Ω
nSn) = πk+m(Sm). It’s trivial to check that

if I go into O(n + 1), this map corresponds to suspension. In the limit, I get a map
πk(O)→ πk(S

0). That’s the J-homomorphism.

25.1 Proposition. If ξ is a vector bundle over Sn classified by some map Sn
ξ→ BO,

then the Thom complex is S0 ∪Jξ en.

This turns out to be extremely important. For a random map of spheres, to show
that it’s nontrivial, I have to make some computation in the mapping cone. The point
is, when a map is in the image of J , I can understand the mapping cone and its
cohomology in terms of the Thom isomorphism. So this is a really important thing to
know.

There’s probably just enough time to prove this.
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Remark. Let me go back and say the previous thing a little more honestly. The
problem is, the basepoint of ΩnSn is the constant map at the basepoint. Here ΩnSn

has many path components for each degree and O(n) goes into the path component of
the paths of degree one. So O(n) → ΩnSn isn’t basepoint-preserving the way I
wrote it because I didn’t land in the component containing the basepoint.
I landed instead in the component of maps of degree one. I really get a map

O(n)→ Ωn
±1S

n

landing in maps of degree ±1. The basepoint in O(n), the identity, goes to the identity
map of Sn.

So in reality, we should modify the map by subtracting off (in some group model
for ΩnSn) the identity map. So let’s define J : O(n)→ ΩnSn as this map, when you
subtract off the identity.

Lecture 26
11/9

A reminder: there’s no class next week.

§1 Thom complexes and the J-homomorphism

I ended last class talking about the J-homomorphism. We considered the following.
There is a map

ξ : Sk+1 → BO(n)

classifying the n-dimensional bundle ξ over Sk+1. We want to form the Thom complex
Thom(Sk+1, ξ) of that. Now I’m working unstably, so that’s of the form Sn∪f en+k+1 for
some map f : Sn+k → Sn. The claim was that f is given by the J-homomorphism. We
adjoint this over, and ξ gives a map Sk → O(n) (because πk+1(BO(n)) ' πk(O(n))).
Let’s call that map

σξ : Sk → O(n).

The claim was that:

26.1 Proposition. f = J(σξ) where J is the map πk(O(n))→ πn+k(S
n) described in

the last class.

Recall that this comes from the map

O(n)→ Ωn
1S

n −1→ Ωn
0S

n.

First, I’d like to give you a proof of this.

Proof. We have to think about what the relationship between σξ and the vector bundle
ξ. If you think this through, I’m just going to tell you the answer. I’m just going to
let you check the answer. Given a map

τ : Sk → O(n),
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called the clutching function or twisting function, you make a vector bundle over
Sk+1 as follows: we take two copies of the disk Dk+1

+ , Dk+1
− which fit together along Sk

to make the sphere Sk+1. For instance,

Dk+1
+

could be the upper hemisphere, and Dk+1
− is the lower hemisphere. Our vector bundle

(from τ) over Sk+1 is constructed as follows. You take

Dk+1
+ tDk+1

− × Rn/ ∼

where ∼ refers to the equivalence relation (a+, v) ' (a−, τ(a)v) for a ∈ Sk. In other
words, you fit the two disks along the Sk to make Sk+1. The vector bundle is trivialized
over each top disk, and the gluing along the boundary is done using this twisting
function. This construction in general describes a vector bundle over the suspension
of any space. Today I’m going to discuss this construction and many different ways of
looking at it.

How do we build the Thom complex? The Thom complex of a vector bundle V is
D(V )/S(V ). I want to write this vector bundle as a pushout because I want a formula
for this. Our vector bundle looks like a pushout

Sk × Rn

(a,v)7→(a,τ(a)v)

��

(a,v) 7→(a,v)// Dk+1
+ × Rn

��
Dk+1
− × Rn // ξ

.

I would have a similar diagram for the disk bundle and a similar diagram for the sphere
bundle. I would also have a similar diagram for the disk bundle modulo the sphere
bundle.

Sk × (D(Rn)/S(Rn))

(a,v)7→(a,τ(a)v)
��

(a,v) 7→(a,v)// Dk+1
+ × (D(Rn)/S(Rn))

��
Dk+1
− × (D(Rn)/S(Rn)) // D(ξ)/S(ξ)

.

We’d like to understand the homotopy type of D(ξ)/S(ξ), and in particular it as a CW
complex. So this is actually a pushout diagram, but I can also think of it as a double
mapping cylinder if I replace the disks by points. I could also write this as a homotopy
pushout or a double mapping cylinder

(Sk t ∗) ∧ Sn

(a,v) 7→(a,τ(a)v)

��

(a,v)7→(a,v) // Sn

��
Sn // Thom(ξ)

.

The horizontal map is projection and the vertical map is derived from τ . We already
see our J-homomorphism coming into the picture.
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Let’s extend the columns down and form the Barratt-Puppe sequence. Before I
do that, notice that the map (Sk t ∗) ∧ Sn → Sn has a section. This kind of gives a
cell decomposition of the Thom space. It says I have two n-cells and they are glued
together. You can derive the proposition from that. I’ll leave it as an exercise to finish
it from this diagram. It isn’t a very hard or deep fact. It’s a matter of staring at this.
A point is that the two Sn’s that come into the cell decomposition get identified. N

§2 The Thom isomorphism in K-theory

Where does this place us? We made this long argument, and we eventually came to
the following situation. We had some stunted projective space, and we had a map from
a Thom complex into a stunted projective space. And what we found was, we had to
understand attaching maps of cells in Thom complexes. We’re going to understand the
attaching maps by calculating K-theory and Adams operations. So to go further, we
need to understand the K-theory (or KO-theory) of a Thom complex, and we need to
understand the Adams operations.

I haven’t even talked about the Thom isomorphism in KO-theory, and that’s one
of the things I want to talk about today. Let’s start with the case of K-theory.

Let V be a complex vector bundle of complex dimension n over the space X. We
want to construct a natural Thom class in K-theory. We’d like to construct

U ∈ K̃0(XV ),

and by Thom class, it means that for every x ∈ X, the restriction map

K̃0(XV )→ K̃0({x}Vx ) ' K̃0(V +
x ) ' Z

restricts to a generator. I want one of these which is natural, and which sends sums
to products, and things like that. I probably ought to talk about that. I’m going to
summarize most of this without proving things.

There are two really natural ways of making this Thom class. One construction
just deduces it from the projective bundle formula. That’s because we can identify
Thom(X,V ) with P(V ⊕1)/P(V ). That’s because the lines through the origin in V ⊕1
that do not lie in V determine uniquely a point of V . In other words, given a line ` in
V ⊕ 1, and look at where it intersects the single line 1. It’s at a point (1, v). The lines
that are in V correspond to the point at ∞ in the Thom complex. So anyway,

XV = P(V ⊕ 1)/P(V ).

We could make the class there, because we know that we have this tautological line
bundle L over P(V ). By the projective bundle formula,

K̃0(P(V ⊕ 1)) = K0(X) {1, x, . . . , xn}

where x = 1− L. Similarly,

K̃0(P(V )) = K0(X)
{

1, x, . . . , xn−1
}
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and the map between them is the obvious map. Therefore,

K̃0(P(V ⊕ 1)/P(V )) ' K0(X) {xn}

and this is the Thom isomorphism. This xn is the Thom class we want, and we have
the Thom isomorphism. Moreover, we get that multiplication by U = xn gives an
isomorphism

xn : K0(X) ' K̃0(XV ).

We could do a lot of calculations with this. But if we only work with K-theory, we’ll
miss all those Z/2’s. We’ll be off by factors of two if we use complex K-theory. So
we also need to understand the Thom isomorphism in KO-theory. That is different to
a different, rather beautiful construction of the Thom class. This is the simplest way,
given what we know, to get the Thom isomorphism, and it’s really good for making
calculations. But we need a little more.

§3 Difference bundles

There’s another description, which Atiyah calls the difference bundle construction.
Given A ⊂ X, we want to describe classes in K̃0(X,A). To do this, suppose given a
vector bundle over X, say V . It’s often going to be the trivial bundle. I have a map

τ : V → V

such that over A, τ is an isomorphism. Then this data gives a class in K̃0(X,A).
Intuitively, what I’m looking at is the difference V − V . Let me just give you a

construction. You’re supposed to imagine that you have two copies of V sitting on X
and you “glue them together” on A, and that’s like a clutching function. This is almost
in the situation of a clutching construction.

26.2 Definition. By excision we have K̃0(X,A) ' K̃0(X ∪A X,X).
First let’s make a vector bundle over X ∪A X. To do this, I have these two copies

of X glued together at A. I glue together two copies of V by τ on A. So if X1, X2 are
the two copies of X, then we take

V/X1 t V/X2/(v/a1 = τ(v)/a2).

So we’re gluing two copies of V along A by τ . This gives me a vector bundle V τ

on X tA X which restricts to V on each copy of X. So we define the element in
K̃0(X tA X,X) to be V τ − V (where V refers to the bundle on X tA X obtained by
gluing V by the identity).

Let’s do an example. Here’s a really good example.

26.3 Example. Let’s take X = C (parametrized by λ), and V trivial. We define the
map τ which sends (λ, v) 7→ (λ, λv). That’s an isomorphism as long as long as λ 6= 0.
This defines an element in K̃0(C,C \ {0}) ' K̃0(CP1). Strictly speaking, we need A to
be excisive, which C \ {0} is not, so we should take C \D1(0) or something. We can
do this because everything is homotopy invariant.

The question is which vector bundle I have. The answer is, this is a construction
of L− 1. There are a variety of conventions in here which we’ll need to commit to. In
particular, this is the generator of K̃0(CP1).
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Let me just indicate a variation on this, and then I’m going to stop. This thing
is supposed to be multiplicative. The generator of K̃0(C2,C2 \ {0}) is supposed to be
the square of the Bott element. What would happen if I actually tried to square this?
Then what you really see, if you tensor these two constructions together, is a chain
complex. You’re supposed to think of this thing over C defined earlier as a little chain
complex C → C and when you multiply them, you’re supposed to tensor the chain
complex with itself. Then I get a four-term chain complex

C→ C⊕ C→ C

over C2. This four-term chain complex is acyclic away from zero. There’s a similar
construction to get vector bundles from these—I refer you to Atiyah-Bott-Shapiro.

I want to say this in a coordinate-free way. Suppose I have a complex vector space
W . I’m now going to make a chain complex of trivial bundles. Form a (trivial) vector
bundle over W with W ×

∧•W . We make this into a chain complex of vector bundles
sending (w, η) 7→ w ∧ η. That’s a generalization of this construction. This defines the
generator of the K-theory of W,W \ {0}. The nice thing about this description is that
it can be applied fiberwise in a vector bundle over a space X. If W is now a vector
bundle over X (for π : W → X) with fibers Wx, we can do this same construction. We
can take W × π∗

∧•W and make that into a chain complex in the same manner. This
gives an element U ∈ K̃0(W,W \ {0}) which reproduces the previous construction at
each fiber.

Lecture 27
11/19

So I realized to some horror that there’s only today and four more classes. I think
I need to go a little more quickly. Anyway, last time I was talking about the Thom
isomorphism in K-theory, which I talked about, and I was about to do it in KO-
theory, and I got into this impromptu lecture about this stuff. It’s harder than it looks
to pull off. Anyway, I think what I’d be better off doing is just to summarize how the
calculations go. I was explaining all that to get the conventions nailed down.

Let me remind you where we were, and describe how the vector field problem gets
solved, and discuss the image of J , all today.

§1 Solution of the vector fields problem

I find it easier to go through with a particular numerical example. We could do the
general case if we wanted. Let me remind you of the setup. Start with RP8. This will
be a “typical” case. We have

K̃O(RP8) = Z/24,

as we know from the Atiyah-Hirzebruch spectral sequence. The dual of RP8
+ is RP−1

−9

and the top cell of this splits off. We can add 16 to everything so that is, up to
suspension, RP15

7 . This implies that S15 has eight vector fields. We have to be in the
range where this approximates a certain Stiefel manifold, but this is just to illustrate
the general method.
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We want to show that S15 does not have nine vector fields. We try to repeat the
argument with RP9. We know that K̃O(RP9) = Z/32. You’re always doing this. In

the vector fields problem, you’re always looking at n such that K̃O(RPn) is Z/2a and

K̃O(RPn+1) = Z/2a+1. You’re always looking at that one, because for a fixed power of
2, you’re finding the largest value of n with that KO-theory. If you go back and think
about it, you’ll remember it.

Now the dual of RP9
+ is RP−1

−10 and again, the top cell splits off. But we want to
show that the top cell of RP15

6 does not split off. There’s a lot of monkeying around
with Spanier-Whitehead duality at this point. You can show this, but the thing is to
make a calculation in KO-homology. It’s easier to work with KO-cohomology for us,
though, which takes us to the dual.

I’m not going to use this at the moment, but we also saw that there is a map

S6 ∪f e15 → RP15
6

which is a monomorphism in homology. The attaching map comes from the generator
image of the J-homomorphism. The attaching map goes all the way from the top cell
to the bottom cell.

This isn’t so convenient. The more convenient thing is to work with the dual. This
thing is equivalent to showing that the bottom cell of D(RP15

6 ) does not split off. This
boils down to something easier. Namely, we want

D(Thom(RP9,−16L) = RP15
6 .

Remember the general formula: D(RPba) = RP−a−1
−b−1 , up to suspension. Anyway, let’s

just use that formula. We get

D(RP15
6 ) = RP−7

−16,

and we can add 32 to everything to get RP25
16. This is the Thom complex of 16L over

RP9. The general thing that you get when all is said and done is:
We have some K̃O(RPn) = Z/2a and K̃O(RPn+1) = Z/2a+1. We’re at an n where

when we increase n, we increase the size of the KO-group. The general case is, we’re
trying to show that the bottom cell of the Thom complex of RP2a+n+1

2a does not split
off. For some reason, when you work in KO-cohomology, this is the easier problem to
work with.

We need to think about what K̃O(RP25
16) looks like. We have a map

RP25 → RP25
16,

and RP25 ↪→ RP∞. We know the KO-theory of the projective spaces and the map and
we want to understand the third one. When we look at the AHSS for RP25

16, there’s
nothing until dimension 16, and then ....

Use the fact that there are no differentials in the spectral sequence, as you can see
by comparing it with the AHSS for RP25.

We find two things:

• K̃O(RP25
16) maps to K̃O(S16) = Z and that map is onto, and the kernel, which is

K̃O(RP25
17), is cyclic of order 32.
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• If I look at the spectral sequence, I find that the image of K̃O(RP25
16)→ K̃O(RP25)

is cyclic of order 64. Alternatively, use the half-exact sequence that you get from
the cofiber sequence

RP15 → RP25 → RP25
16.

Now, if RP25
16 = S16 ∨ RP25

17, then the Z would be generated by a class x with
Ψ3(x) = 38x. I didn’t get around to this, but the Adams operations also exist in KO-
theory. There are unique ones which are compatible with complexification. There’s a
formula for the Adams operations in terms of the exterior powers and operations on
vector spaces and you can make those formulas in terms of the reals. Also, Ψk(L) = Lk

for a line bundle, which is L if k is odd.
In the map K̃O(RP25

16) → K̃O(RP25), the generator of the Z summand hits a
generator of the image. So the generator maps to something of order 26. Here’s the
thing that is surprisingly easy. You might think that all the money is in calculating Ψ3

on this. But the point is that K̃O(RP25) is cyclic generated by L− 1 and Ψ3(L− 1) =

L− 1, so that Ψ3 acts as the identity on K̃O(RPn) for any n. So over in the image,
we find that if the bottom cell splits off, the generator of the image would be killed by
38 − 1, which is (1 + 8)4 − 1 = 32(odd number). That’s a contradiction because the
generator has order 64.

I think the only way to understand this better is to pick another example and play
with it. The important things to come to grips with — this argument works in general
— I think, is to recognize when the KO-groups of real projective spaces change. The
thing to do is to think about this argument, but to keep track of when the order of the
KO-group changes, and in our case, for the existence of the vector fields problem, you
want one before it changes, and for the non-existence, you want just after it changes.
If you’re trying to understand this better, I’d recommend trying to use these issues.
But the takeaway is — and this is what Adams did — is that we can use KO-theory
and Adams operations to show that certain cells don’t split off.

In the course of this vector fields problem, we wound up learning (and I’m going to
say this in a different way) that the solution to the vector field problem tells us that
the stable attaching maps of the n-cell in RPn “goes down” by the Radon-Hurwitz
number and attaches by the generator of the image of J , which is nonzero. So, for
example, we know that S15 has eight vector fields. That’s the appropriate Radon-
Hurwitz number. It doesn’t have nine, though. So that means that the stable attaching
map S14 → RP14 → RP15 factors through RP6 and no further, and the composite
S14 → RP6 → S6 (the obstruction to going down further) is the generator of the image
of J .

§2 Adams’s work on the image of J

If you’re not trying to understand all the details of the calculation and you still want to
follow the rest of the course, the point is that we understand the stable attaching maps
in RP∞, and that will be in the next couple of lectures. What I wanted to do, and I
only have time to barely start it, is to discuss the image of the J-homomorphism. This
is another very beautiful thing that Adams solved using essentially these methods.
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I’m just going to give you a summary and a guide to how the calculations work
after break. We’re studying the J-homomorphism, which goes

πnBO → πsn−1S
0.

What Adams did was to determine the image of this map. Adams showed:

• The image is a summand.

• The Z/2’s (when n = 8k + 1, 8k + 2) go in via a split injection.

• When n = 4k, it’s cyclic of order the denominator of B2k/4k. When I say
denominator, I say denominator when you reduce it in lowest terms. Recall that
Bn is the nth Bernoulli number. It’s defined by the identity

x

ex − 1
=

∞∑
n=0

Bnx
n

n!
.

I want to show how the Bernoulli numbers come up. This represents the only part
of the homotopy groups of spheres that is really computable, and amazingly, it tells us
the attaching maps of the cells in RP∞.

So there are two parts to this: the Bernoulli number part, and the Z/2 part.
We’ve already shown that the image of the generators are nontrivial—that’s what this
argument shows. But in fact, the situation when n = 8k + 1, 8k + 2 is in fact kind
of interesting. I’m going to leave this as an exercise, although a rather challenging
exercise from what we’ve learned so far, although it’s possible to do this exercise given
what we’ve done in class.

27.1 Exercise (Challenging exercise). Show that n = 8k + 2, the following happens:
The map Z/2 ' πnBO → πsn−1S

0 → πn−1KO ' Z/2 is an isomorphism.

Lecture 28
11/26

So I actually put a problem set up. It’s on the course website. The last two problems
are harder than the other ones, and I didn’t work out the last one. I’m pretty sure you
can’t. I saw this problem in one of Adams’s J(X)-papers and he says “presumably this
is true.” I kind of like anyone who’s an undergraduate or who needs a grade to actually
turn in the problem set. In the problem set, I just hit a few things which I think are
main topics of the course, although some of the stuff I’m going to do this last week is
not there.

§1 The e-invariant

I want to talk about the e-invariant and the J-homomorphism in this term. So the
first thing is the e-invariant. There are two convenient ways of defining this, one due
to Adams and one due to Toda. Adams says that they’re probably equivalent.
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28.1 Definition. The e-invariant is a map

e : π2n−1S
0 → Q/Z

from an odd stable homotopy group of spheres to Q/Z.
Start with a map

f : S2n−1 → S0

and form the mapping cone S0∪f e2n and look at the exact sequence in K-theory. You
get a short exact sequence

0→ K̃0(S2n)→ K̃0(S0 ∪f e2n)→ K̃0(S0)→ 0

and you can also apply the Chern character to go to rational cohomology.

0 // K̃0(S2n)

ch
��

// K̃0(S0 ∪f e2n)

ch
��

// K̃0(S0)

ch
��

// 0

0 // H̃ev(S2n) // H̃ev(S0 ∪ e2n) // H̃ev(S0) // 0

where the vertical maps are rational isomorphisms. Note that the bottom sequence is
canonically split as

0→ Q→ Q⊕Q→ Q→ 0.

Choose a ∈ K̃0(S0 ∪ e2n) which hits the generator 1 ∈ K̃0(S0) = Z. We look at the
Chern character ch(a) ∈ H̃0(S0)⊕ H̃2n(S2n). Its component in the first thing is 1 and
the component in the second piece is ẽ. The e-invariant can be defined as

ẽ/Z

or
ẽ/(im(K̃0(S2n)

ch→ H̃even)

and it’s easy to see that is well-defined, because a is well-defined modulo K̃0(S2n). You
can also think of this in terms of rational K-theory and the splitting in terms of the
eigenspaces of the Adams operations (which is the splitting of rational cohomology).

This is one definition of the e-invariant. Here’s a variation. We could look at
the same sequence in KO-theory. We could do the same thing, and tensor with the
rationals. Then what we get is

eR(f) ∈ H̃2n(S2n)/K̃O
0
(S2n).

We want n to be even here, see the next paragraph. If 2n ≡ 4 mod 8, the group in
question is Q/2Z. If n ≡ 0 mod 8, the group in question is Q/Z. That’s because the

map from K̃O
0
(S2n) → K̃0(S2n) is an isomorphism if 2n ≡ 0 mod 8 while hits 2Z if

2n ≡ 4 mod 8.
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Remark. Recall that

K̃O(X)→ K̃(X)
ch→ Heven(X;Q)

and the KO-theory lands in the cohomology of X in degrees a multiple of 4.

So that’s the e-invariant, and that’s the thing which we want to understand how to
compute. It’s difficult to do this in general. It’s difficult to say something about the
K-theory of a random 2-cell complex. However, when the map is in the image of the
J-homomorphism, then we can say something about it. There’s a complex version and
a real version.

The complex version goes

πm−1U = πmBU ' K̃0(Sm)→ πm−1(S0).

There’s also a real version which goes

πm−1O → πmBO → K̃O
0
(Sm)→ πm−1(S0).

These are related. These maps take vector spaces, real or complex, and turn them into
spheres by taking the one-point compactification. Of course, doing that doesn’t depend
on any complex structure. So we have a factorization of the complex J-homomorphism
through the real one and the map U → O.

What happens here is that πm−1U alternates between being Z and 0: if m is
even, then we get Z. If m is odd, then we get 0. The homotopy groups of O go
Z/2, 0,Z, 0, 0, 0,Z. The map U → O is the opposite of the map defined previously, and
the composite is multiplication by 2. That is,

Z ' πm−1U → πm−1O ' Z

is an isomorphism when m ≡ 4 mod 8 and is multiplication by 2 when m ≡ 0 mod 8.
(You get this by looking at the composite.) It’s easier to say everything in terms of
complex K-theory. When m ≡ 0 mod 8, we’ll get something that’s off by a factor of
two. The cost of working with complex rather than real K-theory is an overall factor
of two. We’ll just work with it, though. That is, we’ll compute

π2m−1U → π2m−1S
0 e→ Q/Z.

(Remember this is zero when m is odd.) It’s twice the value of the real e-invariant eR
on the generator of KO J-homomorphism.

Let x2n ∈ π2nBU be the generator, so that we can think of it as a virtual complex
vector bundle over S2n. If f = J(x2n) ∈ π2n−1(S0), we want to calculate e(f). In order
to do that, we need to know about the K-theory of S0 ∪f e2n. Geometrically, we know
that it is

Thom(S2n, x2n)

where x2n is regarded as a virtual vector bundle. That’s the thing about the image
of J—the mapping cones that you form are Thom complexes. We can take for our
class a ∈ K̃0(S0 ∪f e2n) the K-theory Thom class in this Thom complex. In order to
calculate the e-invariant, we need to know:
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Question. What is ch(U) where U is a Thom class in K-theory?

This is part of a very beautiful story that kind of has to do with Grothendieck’s
original invention of K-theory and its relation to cycles, and Atiyah-Hirzebruch’s defi-
nition of K-theory, and the index theorem. The answer to this question was one of the
reasons K-theory was set up in the first place. I’m going to have to skip some details.

Let’s recall the K-theory Thom isomorphism, which is an isomorphism

K0(X) ' K̃0(XV )

where V → X is a complex vector bundle on X. This makes sense for virtual bundles, as
well. In fact, it’s an isomorphism of modules overK0(X). The Thom class U ∈ K̃0(XV )
is a choice of generator. If I have two different Thom classes U,U ′, they “differ” by a
unit in K0(X)—meaning U = χU ′ where χ ∈ K0(X)∗. That’s true for any cohomology
theory. The same remarks apply to the sum H̃even(·;Q) cohomology theory, rational
even periodic cohomology.

So take UK ∈ K̃0(XV ), and take its Chern character ch(UK) ∈ H̃even(XV ). There’s
also the rational cohomology Thom class UH . The two of them differ by a unit. There’s
some unit χ = χ(V ) ∈ Heven(X)∗ that measures the difference between ch(UK) and
the rational cohomology Thom class. So

ch(UK) = χ(V )UH .

What’s UH? If dimC V = n, then UH is the ordinary cohomology generator in
H2n(XV ). There’s a canonical choice of Thom classes in cohomology for complex
vector bundles. We also saw earlier that there was a canonical choice of Thom classes
in K-theory for complex vector bundles — that’s UK . So make these canonical choices.
That gives meaning to all these symbols and to χ(V ).

Now these Thom classes have some canonical properties. If I have two spaces X,Y
and vector bundles V,W over X,Y , then the Thom complex of V ⊕W over X×Y (the
“Whitney sum”) is the smash product of the Thom complexes XV ∧ Y W . Under this
isomorphism, the homology and K-theory Thom classes are multiplicative. This means
that χ is exponential. It’s also a stable, and — this is trivial to check — χ(1) = 1.
So

χ : K0(X)→ Heven(X)

and it is called a stable exponential characteristic class, because of all this. That
is, χ(V ⊕W ) = χ(V )χ(W ), etc. By the splitting principle, χ is determined by what it
does on line bundles.

So what does χ do on line bundles? In order to talk about this, we have to get
straight some conventions. Let L be the tautological line bundle over CP∞. There’s the
zero section CP∞ ↪→ (CP∞)L which is a homotopy equivalence, since the unit sphere
bundle of CP∞ is contractible. For various reasons, the convention that works out right
is that under this map

K̃0((CP∞)L)→ K̃(CP∞)

the Thom class UK(L) goes back to 1 − L. There’s a good way of remembering this.
For any vector bundle V , the Thom class is supposed to pull back to the total exterior
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power of V . So that’s the general formula, and whatever conventions you make, this
has to be true, or certain things you want to be multiplicative don’t. You don’t get to
make this up. This forces a whole bunch of other conventions on you.

We want this to map under the Chern character to the generator x of H2(S2) under
restriction. We need to define

ch(L) = e−x = ec1(L), x ∈ H2(S2;Z).

This is all make-work for the sign police, anyway — we’re not going to be able to hang
on to it. So the Chern character of the Thom class is 1− e−x.

What is the ordinary cohomology? We know that UH = x. So we get that

χ(L) =
1− e−x

x
.

For those of you who are anticipating the appearance of Bernoulli numbers, this is
almost there, but not quite. Just hang in there.

Next, we need to calculate what is χ(x2n). There are several ways to do this. I
know of two approaches to this. We need to work out the splitting principle. We need
to take the virtual bundle x2n on S2n and we need to find a space mapping to this such
that this becomes a sum of line bundles.

• You can map S2 × · · · × S2 to it, where it pulls back to
∏

(1− Li).

• You can also pull-back to CPn: there’s a map CPn → S2n and it pulls back to
(1− L)n. You can use either of these approaches. I have a particular reason for
liking the first reason better, since it generalizes, although it’s possible that the
algebra works for the second case.

Lecture 29
11/28

The goal is to start with the generator

x2n ∈ K̃0(S2n)

and we can think of that as a map

S2n → BU

and to calculate the Chern character of the Thom class.
Let UK ∈ K̃0(Thom(S2n, x2n)) be the Thom class, which we constructed explicitly

earlier. We’d like to calculate the Chern character ch(UK), because that will give the
e-invariant

e(J(x2n)).

As we saw,
ch(UK) = χ(x2n)UH
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where UH is the homology Thom class and χ(x2n) is the stable exponential character-
istic class and was determined by its values on line bundles. So

χ(L) =
1− e−x

x
, −x = c1(L)

for a line bundle L.
To calculate χ(x2n), we need to write x2n as a sum of line bundles, after sum

pull-back. To do this, form the pull-back

S2 × · · · × S2 → S2 ∧ · · · ∧ S2 → S2n

where there are n factors. Then x2n pulls back to
∏

(1−Li) where Li is the tautological
bundle on the ith factor.

I’d like to calculate this. Let’s write g(x)
def
= 1−e−x

x . For some low values of n, we’d
like to calculate this. When n = 2,

χ(x2) = χ(1− L) =
1

g(x)
∈ Q[x]/x2 = H∗(S2;Q).

The expression is x
1−e−x = 1 + 1

2x. So that’s something.
What’s the next one going to be? Let’s just do one more. What happens to x4?

That’s χ(1− L1 − L1 + L1L2). This is a sum of line bundles, so that’s

g(x1 + x2)

g(x1)g(x2)

where x1 = c1(L1), x2 = c1(L2). Note that the first Chern class is additive, c1(L1L2) =
x1 + x2. So we can expand this as

1 + ex1x2 + higher terms

and that e is the e-invariant.
It takes a little while to get used to such an expression. If I had to figure out χ(x6),

I’d have
g(x1 + x2)g(x2 + x3)g(x2 + x3)

g(x1)g(x2)g(x3)g(x1 + x2 + x3)
= 1 + ex1x2x3 + . . .

Somehow we have to get used to what this is doing algebraically. If this was plus
instead of times, it would be g(x1 + x2) − g(x1) − g(x2), which kills linear functions.
The second term would kill quadratic functions. If you want to see one exploitation
of it, you can look at my ICM talk on the theorem of the cube in algebraic topology.
Anyway, as I said, it’s easier to think about if I took the log. So let’s take the log and
turn it into addition.

So we might as well take the logarithm — the natural log — and compute the
e-invariant. So

logχ(x2n) = e1x1x2 . . . xn.

Instead of working with g, let’s work with the log of g. We’re trying to figure out what
this does. So we have this operator. I’m just going to state something and let you
prove it. I want to take the log of g, and let

f(x) = log g(x).
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Now we’re interested in the following expression, which we might call δn. We’re inter-
ested in

δnf(x1, . . . , xn) = 0−(f(x1) + . . . f(xn))+(f(x1 + x2) + . . . )−(f(x1 + x2 + x3) + . . . )±· · ·+(−1)nf(x1+· · ·+xn).

We want to figure out δnf . It starts out with x1 . . . xn and we’d like to figure out the
coefficient. There’s a pretty simple inductive formula for this. It’s easy to see that this
is some constant times x1x2 . . . xn plus higher terms, because if any of the xi = 0, then
the whole thing is zero.

We have:

δnf(x1, . . . , xn) = (δn−1f)(x1, . . . , xn−1+xn)−(δn−1f)(x1, . . . , xn−1)−(δn−1f)(x1, . . . , xn−2, xn).

If I take
δf(x, y) = f(x+ y)− f(x)− f(y)

then I’m iterating it in the last variable, but since it’s symmetric I can iterate it in any
other variable.

So obviously δn is linear. If h(x) = xk, then you can explicitly what all of these
things are. We already know that

δnh = 0, k < n.

If k = n, it’s n!x1 . . . xn. That’s really trivial to check. If you take the definition, the
only place to get an x1 . . . xn is the last one.

The answer to our question “What is the e-invariant e(x2n)?” is “the number cn
you get by writing log g(x) =

∑
cm

xm

m! .” So that’s what we have eto figure out. Now

this gets fairly easy. So what was our g(x)? It was 1−e−x

x . Therefore

d log g(x) =
e−x

1− e−x
− 1

x
=

1

ex − 1
− 1

x
.

The 1
x just cancels. Remember the definition of the Bernoulli numbers now,

x

ex − 1
=
∑

Bn
xn

n!

and these are the things that go into writing down formulas for 1k + · · ·+ nk. So this
thing d log g(x) here, if we forget the 1

x constant term, that’s equal to

∑ Bn
n

xn−1

(n− 1)!

so that

log g(x) =
∑ Bn

n

xn

n!
.

If you play around with this, you can see that after the first one, odd Bernoulli numbers
are all zero. But that’s okay, right. We know that the J-homomorphism on half of the
classes is zero anyway, because it factors through KO-theory.

The conclusion is:
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29.1 Proposition. The e-invariant of x2n is Bn
n .

So that’s pretty good. That gets us somewhere. There’s a little bit more to the
story though – this isn’t quite the expression that comes up in algebraic topology.
There are a couple of things we need to modify. So x2n ∈ π2nBU mapping to π2n−1S

0.
That factored through π2nBO. We’re mapping out of π2n−1S

0 using the e-invariant.
So we have a diagram

π2nBU

��

// π2nBO

yyrrrrrrrrrr

π2n−1S
0

e

��
Q/Z

and we observe
e(x2n) = 0, n odd.

In dimension 8k + 4, the map π8k+4BU → π8k+4BO is an isomorphism, but in
dimensions 8k, the map is multiplication by 2 π8kBU → π2kBO. We should really use
KO-theory rather than K. If you follow the definitions, you get another factor of 2. If
you put all these together, you learn:

29.2 Proposition. The KO-invariant eR on J of the generator of π4kBO is B2k
4k ∈

Q/Z.

That’s the magic expression. This number comes up a lot. The denominator of this
number comes up in the order of the image of J and the numerator comes up in the
number of exotic spheres. So these numbers are very important in topology.

You can do the same thing for KO-theory and the associated power series is

ex/2 − e−x/2

x
= e1/2x

(
1− e−x

x

)
.

There’s a lot more to the story. I’m just going to tell you how this winds up

working out. So we have this map π4kBO ' K̃O
0
(S4k) → π4k−1S

0 and the image of
the generator was relevant to us: it had to do with the vector field problem and the
sphere of origin problem. I just wanted to tell you more about this map. We had maps

π4kBO → π4k−1S
0 e→ Q/Z

and we worked out the image of the composite. Now there are some things to check.
We’ve at least shown that the image of the generator factors through a cyclic group of
order the denominator the generator of B2k/4k and in fact the entire stable homotopy
groups of spheres map into that cyclic group.

What is the kernel of the J-homomorphism? What is the kernel of

J : π4kBO → π4k−1S
0?
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The point is, there are two ways to calculate the e-invariant. I talked about one earlier.
If I have an arbitrary map of an odd sphere f : S4k−1 → S0 and we look at the two
cell complex S0 ∪f e4k. We can look at the short exact sequence

0→ K̃O(S4k)→ K̃O(S0 ∪f e4k)→ K̃O(S0)→ 0

and tensored with Q there was a canonical splitting. The splitting came from the
eigenspace decomposition in terms of Adams operations. It splits into the eigenspaces
of ψλ, which are 1, λk. This implies that the e-invariant is killed by

g.c.d.λλ
N (λk − 1), N � 0.

This number is also denominator of B2k/4k. The proof of this is pretty straightforward
and the proof uses the arithmetic interpretation of Bernoulli numbers in terms of power
sums. That’s what gives you access to this kind of information. You can do that as an
exercise or look it up in Adams.

The other part of this is the Adams conjecture.

Lecture 30
11/30

All right, I had a whole lot of things I was hoping to do this semester, but I think I
should tell you something about the Adams conjecture.

§1 Adams conjecture

(This isn’t standard notation.) Let X be a space. Consider K̃O(X), the Grothendieck
group of real vector bundles over X (modulo the image of 1). We saw that if we took
an automorphism of a vector space and took the one-point compactification of all those
spaces, we’d get things in the homotopy groups of spheres. There’s a way of formulating
this as a map of cohomology theories. Unfortunately I don’t know a standard name
for this other cohomology theory.

30.1 Definition. G0(X) is the Grothendieck group of pointed spherical fibrations over
X. A pointed spherical fibration P → X is a fibration P → X together with a
section ∗ → X whose fibers are all spheres Sn. You made that into a semigroup via
the fiberwise smash product. The Grothendieck group of that is G0(X).

There’s a sometimes useful variant of this. You can take unpointed spherical fi-
brations Sn−1 → P → X and you can make that into a semigroup via fiberwise join.
Those give you the same group completions. As soon as I add a trivial bundle to a
spherical fibration, it becomes pointed, and you get the same thing.

Given a vector bundle V → X over X, we can send it to the fiberwise one-point
compactification V → X.

30.2 Definition. That gives a map

KO(X)→ G0(X).
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When X = Sn, then K̃O(X) ' πn−1O because a vector bundle is determined by
its clutching function. Similarly, G(Sn) = πn−1HAut(SN ), N � 0 where HAut(SN ) is
the space of self-equivalences of the sphere. Observe that HAut(SN ) is a subspace (not
pointed!) of ΩNSN consisting of the identity component. Therefore, if we subtract the
identity,

G(Sn) ' πn−1+N (SN ).

So when we take a sphere, this is the J-homomorphism. So this map

KO0(X)→ G0(X)

is, for X = Sn, the J-homomorphism. That’s nice, it embeds the J-homomorphism
into a map of cohomology theories, although it’s not quite obvious that G0(X) is a
cohomology theory. But it is a cohomology theory and this comes from a map of
spectra.

Let’s call this map

J : KO(X)
J→ G0(X).

Remark. More generally, if X = ΣY for Y connected, then G0(X) = [Y,ΩNSN ] for
N � 0 or stable maps SN ∧ Y → SN — that’s the cohomology theory associated to
the sphere spectrum.

It’s kind of amazing that you can say something of this map. But the Adams
conjecture lets you say what the image is. Homotopy theory doesn’t want to produce
an image — it wants to produce a long exact sequence. In fact, what happens is that

G0(X)

splits into the product of two cohomology theories, one called the image of J and one
called the cokernel of J .

If X is a finite connected CW complex, then the group G0(X) is finite. That follows
from the AHSS

H∗(X;G∗(∗)) =⇒ G∗(X),

and since the G-groups of a point — the stable homotopy groups of spheres — are
finite.

This space has finite homotopy groups, so we can understand this by localizing at
a prime p.

30.3 Theorem (Adams conjecture). Fix a finite complex X. For every k, there exists
an N such that for each x ∈ KO0(X),

kN (ψk(x)− x) ∈ kerJ

and these elements (for all k) generate the kernel.

Alternatively, one could formulate this by saying that the kernel of the map

KO0(X)(p) → G0(X)(p)
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is generated by the elements of the form ψk(x)− x, for p - k.
The Adams conjecture is a theorem. Adams couldn’t settle a factor of two, even

for the sphere. In Adams’s J(X) paper, he makes this conjecture, and he determines
the order of the image of J . He shows that the order of the imJ for

π4k−1(O)→ πs4k−1(S0)

is the denominator of B2k
4k when k is odd, and when k is even, it’s this or twice this.

The Adams conjecture implies this answer, that the factor of 2 isn’t actually there.
Remember, that factor of 2 came from the map K → KO.

This factor of two was settled by Mahowald. The full Adams conjecture was proved
by Quillen-Friedlander (using étale homotopy theory), Sullivan (using similar methods),
Quillen (a later proof), and a simple proof due to Becker and Gottlieb. I was going to
show you a really easy proof in the complex analog using stuff we did in this class, and
if there’s time and interest I’ll talk about that. In a way, the Becker-Gottlieb proof is
really easy. The first three proofs are really beautiful and use all this machinery; if this
Becker-Gottlieb proof had arrived early enough, we wouldn’t have all this mathematics.
These are wonderful papers to read, especially the Sullivan one.

Let’s do some examples.

30.4 Example. Let’s take X = CP2. What is K̃O
0
(CP2)? I claim that it’s Z and

it’s generated by the real bundle underlying the tautological bundle. I think I should
call it i∗L− 2 where i∗ : K → KO. If we were to complexify, then i∗L complexifies to
L ⊕ L−1, so the generator becomes L ⊕ L−1 − 2. This follows easily from the AHSS.
There’s a little to do to solve extension problems, but you can solve it by looking
at the K-theory spectral sequence. Let’s just assume it. We also have to figure out
what ψk of the generator is. To figure this out, complexify, since complexification is a
monomorphism that commutes with the Adams operations. Namely,

K(CP2) = Z[x]/x3, x = L− 1

and the generator of K̃O
0
(CP2) goes to L+ L−1 − 2. One finds that

ψk(y) = k2y

for y the generator.
Let’s localize at 2.
The kernel of J is generated by the element ψ3(y)− y = 8y. At the prime 2, I get

3y. At other primes, you’ll just get zero. All of this implies that the image of J for
CP2 is Z/24.

Recall
(CP2)nL = CPn+2

n ,

and this therefore depends only on the order of n modulo 24. This is a consequence
of the fact that the Thom complex of a vector bundle depends only on the associated
stable spherical fibration. We got statements like this about real projective spaces
because the real KO-groups had finite order; the complex K-groups of CPn don’t but
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the J-groups have finite order. This is complex James periodicity. I just wanted
to illustrate that it’s pretty easy to do these calculations, though I’ve never actually
worked out James periodicity for all the complex projective spaces. It’s a good way of
trying to really understand the Adams conjecture.

§2 A proof of the Adams conjecture

I’ll give you a proof of the complex Adams conjecture, which is slightly easier and which
doesn’t quite settle the factor of two. This is a sketch proof, but I’m going to only use
stuff that you can find in Hatcher.

I’m going to do something which was a little sophisticated, in its day. There’s a
theorem, called the mod p Dold theorem:

30.5 Theorem (mod p Dold theorem). Suppose X is a finite CW complex. Suppose
I have two spherical fibrations P1 → X,P2 → X of the same dimension, of the pointed
kind.

Suppose I have a map between them

P1

  A
AA

AA
AA

A
// P2

~~}}
}}

}}
}}

X

,

where the map on fibers is Sn
k→ Sn. Then the class P1 is the class of P2 in G0(X)[k−1].

So if k is prime to p, they’re equal in G0(X)(p). Since the reduced G-theory is finite,
it suffices to prove this at every prime. This is something that takes some proof. A nice
place to read about this stuff and to get the whole culture is in Sullivan’s “Genetics
of homotopy theory and the Adams conjecture.” This isn’t completely obvious. One
reason is that G0(X) is homotopy classes of maps into BF , the classifying space of
self homotopy-equivalences into the sphere. This isn’t obvious. You need to say that
multiplication by k in BF (the infinite loop space) is related to multiplication by k on
the sphere.

That lets you redefine the group G0 when you’ve localized at a prime p. Here’s one
place you know the Adams conjecture is true. You know that it’s true for line bundles.
Take the map

CP∞ k→ CP∞

which classifies L⊗k. That’s covered by a map of universal bundles which is fiberwise
the degree k map (raise everything to the kth power). All I’m doing is taking a line
and raising it to the kth power, on each fiber it’s z 7→ zk.

By the mod p Dold theorem, this implies that ψk(L)−L is in the kernel of J , when
you’ve localized at p (for k prime to p). This is supposed to be sort of trivial and if
you think about it for a while it is.

So you know it for line bundles.
The next step is to try to turn this into a theorem about spaces. So K-theory is

maps into BU , at least for reduced K-theory, and G-theory is maps into BHAut(SN ).
So there’s a map

BU → BHAut(SN )
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and we’re going to localize all these spaces at a prime p. The other fact you need,
which isn’t very hard (I’d have to get into infinite loop spaces) is that this is an infinite
loop map between infinite loop spaces. What are we trying to prove? We are trying to
show that for k prime to p, the map

BU(p)
ψk−1→ BU

J→ BHAut(SN )(p)

is nullhomotopic. We know that it’s true for CP∞. We want some glorified version
of the splitting principle to give it to us for BU . All I’m going to use is that these
are infinite loop maps. Since these are infinite loop maps, I get a nullhomotopy of the
infinite loop map

QCP∞ → BU
ψk−1→ BU

J→ BHAut(SN )(p)

where QCP∞ is the free infinite loop space generated by CP∞.
The key point is that the map QCP∞ → BU has a section. We’re sort of all set

up to prove that. I was planning to do that in this course. How do we do that? Well,
remember the James splitting. One said that the map

RPn−1
n−k → Vk,n

and stably this has an inverse. There’s also the complex analog. It goes

ΣCP∞ → (Vk,n)C → ΣCPn−1
n−k

and this came from constructing vector fields on spheres and James’s intrinsic join.
When k = n, you get that

ΣCPn−1 → SU(n)

and there’s a stable map back. In other words, there is a map

ΣCPn−1 → SU(n)→ ΩNΣNΣCPn−1.

Now let N, k →∞. You get a map

ΣCP∞ → SU → QΣCP∞

and if you adjoint over, that gives you a diagram

CP∞ → ΩSU ' BU → QCP∞

That gives us a map BU → QCP∞ and the map CP∞ → BU is the reduced class of
the tautological bundle. We also know that all these maps are loop maps.

So now we have
CP∞ → BU → QCP∞ → BU

where BU → BU is a self-map which is a loop map and which sends L−1 to L−1. That
implies that BU → QCP∞ → BU is a homology isomorphism because the homology
of BU is the symmetric algebra on the homology on CP∞. In fact, this is a homotopy
equivalence, and BU is a retract of CP∞. This is a proof that uses 1950s era algebraic
topology, just using James maps and Bott periodicity. (This argument also works in
motivic homotopy theory.) This isn’t enough to do the KO-Adams conjecture.
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Lecture 31
12/3

So there was a calculation I was hoping to go back to and explain this semester. I’ll
explain how it’s set up. We started out talking about the EHP sequence and this thing
for calculating the homotopy groups of spheres. We used that to generate a bunch
of questions, and one of them the vector field problem. Now that we’ve analyzed the
vector field problem, let me tell you what it means for the EHP sequence.

One thing that plays a role in the vector field problem is the J-homomorphism. One
might try to set up a J-theory analog of the EHP sequence. The J-homomorphism
goes

SO(n)→ ΩnSn,

and these are compatible with the suspension map. We have commutative diagrams:

SO(n)

��

// ΩnSn

��
SO(n+ 1) // Ωn+1Sn+1

and we know the respective homotopy fibers of these things. We know that the homo-
topy fiber of SO(n− 1)→ SO(n) is ΩSn−1, and we get fiber sequences

SO(n)

��

// ΩnSn

��
SO(n+ 1) //

��

Ωn+1Sn+1

��
Sn // Ωn+1S2n+1

You get a map from the spectral sequence that would relate the homotpy groups of
SO(n) to the EHP sequence and it takes the Hopf invariant map and it desuspends it a
few times. One thing that you learn from this is that if x ∈ im(πkSO(n)→ πn+k(S

n)),
then the Hopf invariant H(x) desuspends a lot.

The identity element of Sn comes over under the connecting homomorphism to
something in πn−1(SO(n − 1)). This map is something that you can work out pretty
easily.... This requires a little bit of proof. The formulas work out a bit easier if you
use the spin groups. The next thing is that the composite

Sn−1 → ΩSn → SO(n)→ ΩnSn

that map corresponds to the Whitehead square of the identity.
So we get this nice map, which goes from a spectral sequences starting from the

homotopy groups of spheres, ending at the homotopy groups of SO. What did the
vector field problem say? The vector field problem said that Sn has k vector fields if
the map Vk+1,n+1 → Sn had a section. That was one formulation of the vector field
problem, and we approximated these Stiefel manifolds with stunted projective spaces.
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Now Vk+1,n+1 = SO(n+ 1)/SO(n− k). Let me put down a diagram to make sense of
this.

We’ve got
SO(n)

��

// SO(n)/SO(n− k)

��
SO(n+ 1) //

��

SO(n+ 1)/SO(n− k)

��
Sn // Sn

and the existence of k vector fields is saying that the identity map ι ∈ πn(Sn) goes to
zero in the long exact sequence in πn−1SO(n)/SO(n − k). That’s also equivalent to
saying that the image of ι in πn−1(SO(n) lifts to πn−1(SO(n− k)).

So let’s go here. We have ι ∈ πnSn which is going over to πn−1(SO(n)), which is
mapping under this J-homomorphism to π2n−1(Sn). Then ι maps to the Whitehead
square. The vector field problem says that if the sphere has k vector fields, then
this lifts to πn−1(SO(n − k)). That means that the Whitehead square comees from
π2n−k−1S

n−k. We get:

31.1 Proposition. If Sn has k vector fields, then the Whitehead square [ιn, ιn] desus-
pends k times.

So this is an easy diagram chase. We learned exactly what the answer to the vector
fields problem was. We learned exactly what the obstruction to desuspending was.

What else did we learn? If Sn has k but not k + 1 vector fields, then what did we
learned? We learned, from all this analysis, that we have πnS

n mapping to πn−1SO(n).
We’ve lifted the image of the identity through πn−1SO(n − k) but it doesn’t lift any
further. So that maps down nontrivially to πn−1S

n−k−1.

πnS
n // πn−1SO(n)

πn−1SO(n− k)

OO

generator of im J// πn−1S
n−k−1

πn−1SO(n− k − 1)

OO

.

In fact, the image in πn−1S
n−k−1 is the generator of the image of J there. I’ve got

a bunch of different J-homomorphisms here which is rather confusing. Over there, I
said that if I have vector fields on spheres, then the Whitehead product desuspends k
times. When k is the maximum number of vector fields, then the Whitehead square
does not desuspend further and the obstruction to desuspending further —the Hopf
invariant — is the generator of the image of J .

(Note : everything in the world is localized at 2.)
So this is one part of the story. This relationship between the Whitehead square

and the desuspension goes back to James and Toda. Toda understood this relationship
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between vector fields on spheres and desuspending the Whitehead product. If you
remember this picture of the EHP spectral sequence, we had these spheres, and you
wrote down the homotopy groups of odd spheres. What the vector fields problem tells
you is that there’s a differential out of the ι classes killing the elements in the image of
J .

In the EHP spectral sequence, this tells you that all the differentials coming out
of the diagonal, if you feed this back in. That’s a remarkable amount of information.
This is important for use in the computational aspects of homotopy theory. Now you
might ask what happens to the image of J elements in the EHP sequence. In a given
range, you can start working through it. There’s a more systematic way to look at it.
We had this map

ΣNSO(n)→ ΣN → RPn−1

that is, the map SO(n) → RPn−1 had a stable retraction via James’s “intrinsic join.”
I can think of that as a map to ΩNΣNRPn−1 and taking the limit, get a map

SO(n)→ QRPn−1 def
= lim−→ΩNΣNRPn−1

and these things are all compatible. We have a commutative diagram

SO(n)

��

// QRPn−1

��
SO(n+ 1) // QRPn

and there’s a cool theorem of Snaith which says that they factor through the maps
ΩnSn → QRPn−1. This is just a fancy way of producing that Toda produced by differ-
ent methods. This gives a map from the EHP spectral sequence to the spectral sequence
for calculating the stable homotopy groups of RP∞: that is, the Atiyah-Hirzebruch ss
for πs∗RP∞ whose E2-term is H∗(RP∞, πs∗S0). This seems kind of gargantuan but this
is something really understandable – it’s something that you can calculate. This dia-
gram ultimately relates all the things we talked about attaching maps about cells and
projective spaces and so forth.

See Mahowald’s paper “The image of J in the EHP sequence.”

141


	9/5
	Administrative announcements
	Introduction
	The EHP sequence

	9/7
	Suspension and loops
	Homotopy fibers
	Shifting the sequence
	The James construction
	Relation with the loopspace on a suspension
	Moore loops

	9/12
	Recap of the James construction
	The homology on X
	To be fixed later

	9/14
	Recap
	James-Hopf maps
	The induced map in homology
	Coalgebras

	9/17
	Recap
	Goals

	9/19
	The EHPss
	The spectral sequence for a double complex
	Back to the EHPss

	9/21
	A fix
	The EHP sequence

	9/24
	9/26
	Hilton-Milnor again
	Hopf invariant one problem
	The K-theoretic proof (after Atiyah-Adams)

	9/28
	Splitting principle
	The Chern character
	The Adams operations
	Chern character and the Hopf invariant

	8/1
	The e-invariant
	Ext's in the category of groups with Adams operations

	10/3
	Hopf invariant one

	10/5
	Suspension
	The J-homomorphism

	10/10
	Vector fields problem
	Constructing vector fields

	10/12
	Clifford algebras
	Z/2-graded algebras
	Working out Clifford algebras

	10/15
	Radon-Hurwitz numbers
	Algebraic topology of the vector field problem
	The homology of Stiefel manifolds

	10/17
	The map RPn SO(n+1)
	The vector field problem

	10/19
	Spheres with one vector field
	Spheres with more than one vector field
	James periodicity

	10/22
	A loose end
	Stiefel manifolds and the intrinsic join
	James periodicity

	10/24
	Stable homotopy
	The Spanier-Whitehead category
	Spanier-Whitehead duality
	Formulas for DX

	10/26
	Thom complexes
	The Thom isomorphism
	Examples

	10/31
	Spanier-Whitehead duality
	Application to vector fields

	11/1
	Real K-theory
	Examples

	11/5
	Outline
	K*(CPn)
	K0(RP2n)
	KO"0365KO(RPn)

	11/7
	11/9
	Thom complexes and the J-homomorphism
	The Thom isomorphism in K-theory
	Difference bundles

	11/19
	Solution of the vector fields problem
	Adams's work on the image of J

	11/26
	The e-invariant

	11/28
	11/30
	Adams conjecture
	A proof of the Adams conjecture

	12/3

