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Introduction

Michael Hopkins taught a course (Math 256y) on spectra and stable homotopy theory
at Harvard in Fall 2012. These are my “live-TEXed” notes from the course.

Conventions are as follows: Each lecture gets its own “chapter,” and appears in the
table of contents with the date.

Of course, these notes are not a faithful representation of the course, either in the
mathematics itself or in the quotes, jokes, and philosophical musings; in particular, the
errors are my fault. By the same token, any virtues in the notes are to be credited
to the lecturer and not the scribe. Thanks to Emily Riehl and Arnav Tripathy for
pointing out several mistakes.

Please email corrections to amathew@college.harvard.edu.
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Lecture 1
9/5

81 Administrative announcements

This is a class taught by Michael Hopkins, whose office in 508. Office hours are Wednes-
days 3-4. After this class, we’ll be in room 507. That makes me happy, because I'm
taller than everyone in that class. There will be no class meeting on Monday, September
10, 2012. In local coordinates, Monday.

I've had a sense that people are interested in learning about more classical and
computational topics. As in the course outline, I want to roughly focus this on a story
about computations of the homotopy groups of spheres. I'll outline that story a little
today. We're going to use this to segue into other classical topics in the subject.

I put down that 231br was a prerequisite for this class. We're going to use tools
like the Steenrod algebra, Serre classes, etc. I don’t want to lose anyone, since they
weren’t covered in the last semester of 231br.

§2 Introduction

There are three classical theorems in homotopy theory.

1. The Hopf invariant one problem. What’s that? Start with a map f : §?*~1 — S";
the Hopf invariant is defined by forming the mapping cone X = S™ Uy e?", and
the cohomology H*(X) = Z when % = n,2n and zero otherwise. These are
definite spheres, so we choose definite generators

ve H'(X), yeH™(X),

then we can look at the cup product structure. We have that 22 = H(f)y where
H(f) € Z. That number H(f) depends only on the homotopy class of f, and it’s
called the Hopf invariant of f.

The Hopf invariant was first introduced by Hopf, although he didn’t call it the
Hopf invariant, I think. He used it to show that the map S® — S? that he
constructed was not homotopic to the constant map. In other words, he used it
to show that the homotopy groups of spheres were not the homology groups.

The problem of understanding for which n does there exist a map f : S?»~1 — 8"
with Hopf invariant one was a big one. It got kicked around a lot, and was
regarded as one of the most important problems in algebraic topology until Adams
solved it in the late 1950s.

1.1 Theorem (Adams). There exists a map f : S?"~1 — S™ with Hopf invariant
one only whenn = 2,4,8.

This was related to many other questions. It was related to the existence of
division algebra structures on euclidean space R™, and other things. Adams’s
papers explain the implications of his theorem. It’s one of those papers whose
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title is the main theorem, it’s called “On the non-existence of elements of Hopf
invariant one.”

Adams’s original proof used the Adams spectral sequence and was quite illumi-
nating. Later on Atiyah and Adams gave a much simpler proof, although I think
a lot of people who work with this stuff think that the simpler proof doesn’t really
give you the reason.

2. The vector field problem. What is the maximum number of linearly inde-
pendent vector fields on a sphere S”1? In a first course on algebraic topology,
you prove that an even sphere has no nonvanishing vector fields (the hairy ball
theorem). It’s an application of the notion of a degree of a map. Odd spheres are
harder. S! has one, S has three, S7 has seven, but the remaining odd spheres
are more mysterious.

This problem was also solved by Adams.

1.2 Theorem (Adams). S™ ! has p(n) — 1 linearly independent vector fields,
but not p(n). Here p(n) is the Radon- Hurwitz number: if n = (2a +1)2° and
=c+4d,d € 0,3], then
p(n) =2°+8d.

Later we'll try to understand p(n) better. Today it will play no role.

We’ll spend some time discussing how the vector field problem is solved. Adams
solved it by studying K-theory, and it was one of the first applications. That’ll
be a unit in the class.

3. The third of these classical problems in algebraic topology was the Kervaire
invariant problem. I'm going to say more about this from the point of view of
homotopy theory in a little bit, but this is a problem that originates in differential
topology. In which dimensions n does there exist a smooth stably framed manifold
with Kervaire invariant one?

1.3 Theorem (Hill, Hopkins, Ravenel). Only when n = 2,6,14,30,62, and pos-
sibly 126, can there exist such a manifold.

I won’t say much about our solution to the problem, but I’d like to put it up as
one of the classic three problems.

These were really the three long-lasting and hallmark questions in homotopy theory,
and there were several reasons for wanting to know the answer. In its original incarna-
tion, it had to do with detecting maps of spheres, although it connected to questions
about multiplications on R™ and other structures. The vector fields of spheres prob-
lem is “almost” a recreational problem. It might help to know that S® has 2 and not
3 linearly independent vector fields, but it’s hard to know what to do with it. The
Kervaire invariant problem occurred as a thorn in surgery theory and an issue people
couldn’t really get around, but people got good at avoiding it. It still plays a certain
role, though.
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I bring them up because they all get united in some basic questions about the
homotopy groups of spheres, and the goal of the course is to flesh out this story as
much as I can. How do these come together?

83 The EHP sequence

There’s something called the EHP sequence, first invented by Whitehead but really
developed by James. For this, we localize everything at 2. James showed:

1.4 Theorem (James). There is an exact sequence
Wk(Sn) — 7Tk+1(5n+1) — 7Tk+1(52n+1) — Wk_l(Sn) — TFk(Sn—H) — ﬂk(Szn—H) — ..

We'd like to think of this as an exact couple. If you know about exact couples and

spectral sequences,

E
. S™

7Tk;+15n+1

e A

Tht1 S2n+l
Here are the maps:

e F is the first letter for the German word for suspension. It suspends a map
f:8% = 8" toXf: Skt 5 gntl

e H is a bit of a surprise. See below.

Let’s note that when k + 1 < 2n, the groups mp4152"*! are zero, and we get
that m,S" — 7Tk+15n+1 is an isomorphism. Note that this is precisely the Freudenthal
suspension theorem. If you're going around calculating the homotopy groups of spheres,
you're going to get the same thing a lot.

1.5 Definition. The stable range is when k + 1 < 2n and 7 (S™) is the same as the
colimit hgwkﬂ»(snﬂ' ). These colimits are called the stable homotopy groups of
spheres.

So once you are in the stable range, the homotopy groups stabilize. That’s one
little lesson on which we’ll expand on a great deal later in the course.

What happens when 152" *! first appears and is nonzero? Let’s take k + 1 =
2n 4+ 1, so that mo,1(S?" 1) = Z. The exact sequence runs

E H
an(Sn) — 7T2n+1(Sn+1) — 7r2n+1(52"+1) ~7.
The surprising thing is that this is precisely the Hopf invariant.

1.6 Theorem. The map mon11(S™) — moni1(S* ) ~ Z is precisely the Hopf
tnoariant.
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In particular, the exact sequence of James generalizes the Hopf invariant! It’s
not at all obvious how the Hopf invariant would lead to an exact sequence involving
stabilization. This is a wonderful surprise, and it starts to tell you how you might
generalize the Hopf invariant to maps of spheres in different dimensions. It also tells
you about the role that the Hopf invariant might play. Hopf invariant one is equivalent
to:

1. H: mon1(S™) — mopy1(S%"H) is a surjection.
2. Tt tells you when the map P out of 7o, 1(5?"*1) is zero.

The idea of using the EHP sequence is to somehow start the homotopy groups of
S1 plus a little extra and then inductively calculate the higher homotopy groups of
spheres. I haven’t explained how you might get organized to think this way—we’ll
talk about it in the next couple of lectures. But you want to imagine that it is a
way to make conjectures (about this long exact sequence) that will help calculate the
homotopy groups of spheres. The first real calculations of the homotopy groups of
spheres were done by Toda, using this sequence. Understanding what carrying out
what this calculational program requires will occupy us for parts of this course.

Let’s now describe the other two maps in the EH P sequence in this special dimen-
sional case.

e H is secretly the Hopf invariant (or a generalization thereof).

e The map P : mo,1(S?"*!) — 72, 1(S™) has the property that 1 goes to the
Whitehead product of [i,:] (here ¢+ € 7,(S™) is the identity). That’s some
magic element in 7o, _1(S™).

Let’s review what this is. Given a map f : St — S" and ¢ : S**1 — S,
then we can combine them to get a map S+ v S+ — 8. There is a nice map
Satbtl _y gatly G+l by Jooking at the cell decomposition of S%+! x S**+1 which
starts with S+ v S8+ U, @042 where p is an attaching map

b+1 1 b+1
p:Sa++_>Sa+ \/5-1-;

it’s the attaching map for the next cell in the product. One can give a formula
for it.

So, given maps f : St1 — 8" and g : S**! — S™, we can form a new map
v
gatb+l P gatl,, gb+l [Y9 5"

which is the Whitehead product [f, g] (which makes the homotopy groups of
spheres into a graded Lie algebra). That’s what this means.

Let’s recapitulate where we got. We are imagining that we can use this FHP
sequence to calculate all the homotopy groups of spheres. What problems do we have
when carrying this out? One is to understand what the image of the Hopf map in
the EHP sequence; that’s the Hopf invariant one problem. The next problem is, when
the Hopf invariant one doesn’t exist, to understand the image of P : 7T2n+1(5’2”+1) —
Ton—1(S™). There are two questions that arise.
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1. For which k is [t,¢] € T2,_1(S™) in the image of E¥? How divisible is it by E?
This is a natural problem if you try to turn this into an exact couple.

2. Is [i,¢] divisible by two? That is, does [t,t¢] generate a summand of this group
71'2”71(5")?

These are two fundamental issues to deal with while carrying out this exact sequence.
Here are the theorems.

1.7 Theorem (Toda(?)). [t,t] is in the image of E* if and only if the n—1 (this might
be n instead) sphere has k linearly independent vector fields.

In particular, the vector field problem has an important role in understanding the
EHP sequence. This is a really important part of this course. We’re going to see that
it is the true meaning of the vector fields on spheres problem, and it explains why the
solution works the way it does.

1.8 Theorem (To be stated later fully). The Whitehead square [i,1] is divisible by 2
in wan—1(S™) under the following conditions:

1. When n is even, this is a version of the Hopf invariant one problem (to be ex-
plained another time; it’s because the Hopf invariant of [i,t] is divisible by 2).

2. When n is even, this is equivalent to the Kervaire invariant problem.

Anyway, the organizational principle is that all these hallmark problems in algebraic
topology are all aspects of the FHP sequence. Another theme that I hope to cover
in the course is the following. In the metastable range, the EH P sequence also gives
information on the homotopy groups: it turns the metastable homotopy of the sphere
into the stable homotopy of RP*°. All these problems have a manifestation in terms of
the stable homotopy groups of RP*°. Moreover, this picture leads to an understanding
of the image of J in the FH P sequence, which might appear later in this course.

Lecture 2
9/7

(Reminder: no class on Monday.)

So, last time I gave this overview of what I want to do in the course, relating these
computational questions about the homotopy groups of spheres to classical problems
in algebraic topology. One of our goals is to really flesh out that relationship. Today,
and on Wednesday, I'd like to spell out how James constructed this EHP sequence.
We'll play around with various aspects of it for a while.

81 Suspension and loops

Let’s recall what the EHP sequence is. It is a long exact sequence (2-locally)

7rk5” — 7Tk+15n+1 — 7Tk+152n+1 — .,
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which we’d like to derive from a fibration sequence. In other words, we’d like to con-
struct a fibration i — X — B whose long exact sequence in homotopy groups was
exactly this. In order to do this, we’d need to get at least one of the maps here via
spaces. This looks hard, because any map S"*! — $2"+1 is nullhomotopic!

However, observe that

TS = mQ8m Tt

where Q2 means “loop space:” the space of maps w : [0,1] — X with w(0) = w(1) =
*. | assume you know this, but recall that there is another construction called X
(“suspension”) of a pointed space. These functors (on the category of pointed spaces)
are adjoint: we have

Hom(A4,QX)=Hom(XA, X),

which is true at the point-set level as well as at the homotopy level. So, observe that
there is an isomorphism,

Hom(XA,¥A) — Hom(A, QX A)

and the identity XA — YA corresponds to an adjunction map ¢ : A — QX A. Here ¢
is a canonical map, and we even know what it is: a € A goes to the path -, which at
time ¢ is the point (a,t) € X A. So we can get formulas, but maybe it’s not so useful
for now.

Let’s take A = S™, now. Then ¥ A = S"*! and we have a natural map

S™ — QS
arising from the above induction. That induces a map
Te(S™) = m(QS™ ) ~ g (S™H).

I leave it to you to check that this map is precisely the suspension map F. In particular,
one of the maps (F) in the EHP sequence comes from a map of spaces.

82 Homotopy fibers

Now we might guess that we can get the EHP sequence from taking the homotopy fiber
of the map S — Q5" +1,

2.1 Definition. Given X — B, we define the homotopy fiber to be the pull-back
X xp PB: in other words, it is the space of pairs (7, x) such that ~ is a path in B
(starting from the basepoint) and = € X, and such that v ends at the image of x.

In particular, if F' is the homotopy fiber of X — B, we get a long exact sequence
from the “fiber sequence” F' — X — B. So anytime we run into a map in homotopy
theory, we can get a long exact sequence. We might thus hope to study the homotopy
fiber F of S™ — Q5™*!, and we’d then get a long exact sequence

B — ﬂ'k(Sn) — 7Tk+1(Sn+1) — 7Tk_1(F) — ...

10
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That’s not too bad, but remember that we want to show (for the EHP sequence) that
1 F ~ 715?21, This tells us that we expect that

F ~ st2n+1.

That would give us the right homotopy groups. We could calculate the rather compli-
cated homology of 2252"*! and the homology of F (via the Serre spectral sequence),
but it’s tough to write down a map, and it’s not how James did it. We will later see
that this is true, but not a viable approach for understanding the EHP sequence.

83 Shifting the sequence

I also remind you that when you cook up a fibration sequence
F— X — B,

then we can extend it by forming the homotopy fiber of F — X, and so forth: we
extend the fiber sequence

= 0X - 0OB—- F— X — B,

and the whole thing keeps continuing. We could get a long exact sequence out of any
triple here, so we could get a long exact sequence in lots of different ways.
We're staring at the sequence

QQSQH-FI N STL N an—‘rl’

or at least, we hope to get that. But maybe the fiber sequence is a shift of something
else. Maybe where we are is in a different place in the sequence, and instead maybe we

have a map
Q9" - gt

whose fiber is §™. That would give us the homotopy fiber sequence we desire.
That’s what James did. James produced a very interesting map

QSn—l-l — QSQn+1,

and showed that the homotopy fiber of that had the mod 2 homology of S™. From there,
it was fairly easy to get the EHP sequence. I'll remind you of some of the apparatus
that goes into that.

84 The James construction

Our first task that we have to solve though, is to produce the James map Q57! —
Q527+ and then to say something about the homotopy fiber. This is the sort of story
of the rest of this lecture, and Wednesday’s lecture. It’s to understand something
about loop spaces and the rest of that. I was a student of loan James (I had two thesis
advisors, Ioan James and Mark Mahowald). James came up with a way of describing
the loop space of a suspension, and he told me about it.

11
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Here’s a bit of the history. Marston Morse, using Morse theory, understood the
homology of Q8"+ H,(Q25"*!). Nowadays you can do it with the Serre spectral
sequence. But you can also do it by using Morse theory to give a cell decomposition of
Q8"+ with a cell decomposition in each multiple of n. That is,

QS ~ SrueueduU. ...

E. Pitcher showed that the first attaching map S?"~! — S™ is precisely the Whitehead
product. Thus, what is the mapping cone of the Whitehead product look like?

Question. What does the mapping cone of the Whitehead product [¢,¢] € mo,—1(S™)
look like?

We might as well calculate its cohomology ring structure, and thus the Hopf in-
variant. But we might also understand a little better what the geometry of this space
Q5™ is. Our goal, for reasons I haven’t really motivated, is to produce an interesting
map out of Q5" The better we can understand these attaching maps, the better
our chance of making such a map. We can start by understanding the mapping cone
of the Whitehead square.

If you look at what the space means, it gives you a good idea. What is the definition
of the Whitehead product again? We’re supposed to take the map

§2l gy 5 Y g,

where S?"~1 — S" v S™ has the property that its mapping cone is S™ x S™ (that’s
the description of the Whitehead product in the previous lecture). In particular, the
mapping cone of the Whitehead product is what you get by taking S™ x S™ (a torus)
and folding two axes together (that is, crushing S™ Vv S™ to S™).

Anyway, we have
H"™(S" x S™) = Za @ Zb,

and H?"(S™ x S™) = ab. Observe that x € H"(S™;Z) pulls back to a + b in S x S"
and consequently z2 goes to (a + b)?. Now,

(a+0)* =a® +b* 4+ ab+ba = ab + ba = (1 + (—1)")ab.
In particular, the Hopf invariant is,

0 if nis even

H(le,d) {0 if n is odd
That’s something I claimed in the previous lecture, in relation to the question of di-
viding the Whitehead square by two.

The geometric description was a little cumbersome, but the algebra is easier. S™U|,
e?" is the quotient of all pairs a, 8 modulo the relation (a,*) = a, (,b) = b. That’s
supposed to remind you of forming formal products of an element in the sphere with
another element in the sphere, with the basepoint the identity. That inspired James
to look at the rest of the whole free associative monoid on the sphere. In other words,

12
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Pitcher’s result is the beginning of writing down the whole free associative monoid on
the sphere.

Motivated by this, James produced for a pointed space (X, *) a space JX which is
the free associative monoid on X with * the identity.

2.2 Definition. The James construction JX is the free associative topological
monoid on X with * the unit.

85 Relation with the loopspace on a suspension

The James construction turned out to be an extremely important construction. What
James did was to relate this to the loopspace of a suspension of X. If we could make
QXX into a monoid, then the adjunction map

X - Q¥X
would extend uniquely to a map of monoids
JX — QY X.

We'd like to say that XX is a topological monoid under catenation of loops, and then
the map (of topological monoids!) JX — QXX is “formal.” That’s good, and we’'ll
calculate the homology of both sides and show that it’s a homology isomorphism.

Let’s stop and think about this statement. The space XX is a complicated space:
it doesn’t come to you with a cell decomposition. Once you have the Serre spectral
sequence, you can say something about the homology, but it doesn’t have much geo-
metric context. However, JX can be built by an explicit construction: a quotient of a
disjoint union of products of X modulo some explicit relations. You can use combina-
torial methods to understand JX, and to produce maps from it. It gives you a lot of
insight into what QXX looks like.

Back in the 50s when James did this, JX looks like a free monoid, and you can
manipulate it using the methods of combinatorial group theory (collecting words and
so forth); many of the original means of analyzing this space used them. Once the basic
theorems were proved, topologists found sneakier and quicker ways of proving them. I
have a different motivation in mind, so I’ll give a quicker proof than the more classical
combinatorial ones, although there’s still some value in going back and looking at them.
There was an era when learning about (23X was learning about commutators, but now
we handle it with different techniques.

My goal is to tell you what’s wrong with the above sketched argument, and then
to calculate the homology of QX X.

86 Moore loops

The argument in the previous section is wrong. In producing JX — QX X, we have a
problem: loop concatenation on 23X is homotopy associative, not literally associative
on the nose. So 23X is not a topological monoid.

13
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Given paths f,g,h € QY for a space Y (say ¥X), and if we write % for loop
concatenation, then the path fx g € QY is defined as

<f*g><t>={f(2“ sr=l

g(2t—1) 1/2<t<1

So in particular, (f % g)*h and f* (g h) are basically the same path but traversed at
different speeds. So the loop multiplication is not actually associative.

That looks like a problem, but fortunately it’s only a minor problem. There are
lots of ways of remedying this. Later on in the course we are going to study n-fold
loop spaces, and in order to understand the relations this little trick I'm going to
now introduce won’t be enough. The idea is that a loop space is not just homotopy
associative, but infinitely homotopy associative, and there are general strictification
results.

But here there’s a trick, due to Moore. We will define a space §2,, X C Map([0, oo], X) x
(0, 00).

2.3 Definition. 2,, X (the space of Moore loops) consists of all pairs (f,t) such that
f(0) =« and f(s) = * for s > t.

This is just a fancy way of avoiding the rescaling involved in the previous con-
struction. If you don’t have to rescale, then the rescaling involved previously becomes
unnecessary, and we can get associativity on the nose.

I leave it to you to produce a map QX C 2,,X which is a homotopy equivalence.
I also leave the following to you:

2.4 Proposition. Q,, X is an associative topological monoid.

(Given (f1,t1) and (fo,t2), you form their product by first running f; from 0 to ¢;
and fy from ¢; to t; + to.) This is a great trick, and I think a really good technical
trick that saved a lot of technical headaches. Every loop space is homotopy equivalent
to a monoid.

In particular, we get a map

X = QX = Q. X,
and consequently a map of monoids
JX = QXX

That’s an important map.
Our goal is:

2.5 Theorem. The map JX — Q,2X s a homology isomorphism.

Let’s think a little about the homology of JX. Fix a field k, and write H, for
homology with coefficients in k. The tensor product will mean over that field. The
James construction is coming to us filtered: it’s got the basepoint *, and then X, and

14
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then Jo X (all words of length < 2), and then J3X, and so forth. In general, J, X is a
quotient of X", or more accurately a quotient of

sUXUX2U-- UX" ~,

modulo an appropriate equivalence relation ~. Anyway, it corresponds to words of
length < n, and there is a filtration

sxCXCchXcCchXc---cJ,XC---CJX.

In general, we can write J, X as a quotient of J,_1 X x X.
Anyway, you should try to work the following out:

2.6 Theorem. H,(JX) is the tensor algebra T(H,(X)).

To see this, you should use the Kiinneth theorem, since we have field coefficients.

Lecture 3
9/12

81 Recap of the James construction

So, last time I described the James construction JX (for (X,*) a pointed space),
which was the free associative monoid on X with the basepoint as the unit. We could
describe JX = | |,~, X"/ ~, modulo a suitable equivalence relation: (z1,...,2,) =
(x1,...,2;,...2,) with the ith coordinate removed if 2; = *. Now JX is filtered, and
let J, X denote | |,,, X"/ ~, so words of length < n.
We had a filtration
JoX C S XCThXC...,

where J, X/J,-1X ~ X" as is easily seen. From this, it is fairly easy to calculate the
homology of JX.

Let’s assume field coefficients throughout, so that H,(X xY) ~ H,(X)® H.(Y). So
let’s see. The one thing is that H.(JX) is an algebra, as JX is a monoid. It contains
H,(X); that is, there is a map

H.(X) — H,(JX),

via the map X — JX. Let T(V) = @ V®* denote the tensor algebra on a vector space
V. This extends to a map

T(.(X)) > H,(JX),
because H,(JX) is an algebra.

3.1 Theorem. T(H.(X)) — H.(JX) is an isomorphism.

Proof. Let V = H,(JX). We can filter T(V) via subspaces T,V = Di<n V@ We get
maps

T,V — H,(J,X),

15
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which are compatible as n varies. In fact, we have a diagram

Tn_l(V) H*(Jn—lv) )
T,(V) H,(J,X)

l |

yen Ho(Jo X, Jp1 X) ~ V"

and assuming a mild topology condition to get H(Jp X, Jp—1X) =~ ﬁ*(JnX/Jn_lX) ~
H, (X",

Let’s look at this diagram. We want to prove that 7,,(V) — H,(J,X) is an isomor-
phism. We can prove this by induction on n; when n = 1 it is obvious. If we assume
that T,,—1(V) — H.(J,—1X) is an isomorphism, and we know that the bottom map is
an isomorphism, we can use the long exact sequence of a pair. Now use the long exact
sequence in homology to work up on n (observe that the map Hy(J,X) — V®" is a
surjection just by the diagram, so it’s really a short exact sequence). A

Remark. Alternatively, one could run a spectral sequence argument on the filtered
space JX, although it doesn’t seem to make things easier. Note that we’ll review
spectral sequences in a couple of days, so till then we’ll do a few arguments the long
way.

82 The homology on QXX

We have a canonical map
X — Q¥X,

which gives a map B
H.(X) = H.(QXX),

and the target is an algebra, so that if V' = H, (X) as before, we get a map
T(V) = H. (QXX).
3.2 Theorem. The map T (V) — H.(QXX) above is an isomorphism.

Proof. This would be relatively easy to do with the Serre spectral sequence for the path
loop fibration. But I want to use this for a couple of different purposes. Let’s study
QXX by studying the fibration

QXX — PYXX — ¥X,

where PX X is the space of (based) paths in ¥X. We could work out the homology of
QXX from the homology of ¥ X and that of the (contractible) PXX.

But I'd like to extract a picture from this. Imagine the suspension of X: it splits into
a positive cone C; X C ¥X and a negative cone C_X C Y. X, which are (contractible)
open sets whose intersection is homotopy equivalent to X: for instance, CL XNC_X =

16
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(—€,¢) x X. Now one of the first things you do when you learn the Mayer-Vietoris
sequence is to use this to calculate the homology of ¥ X.
Consider the evaluation map (evaluation at 1)

p: PXX — XX,
whose fiber is 2XX. Consider the inverse images p~!(C; X) and p~1(C_X). We write
PiYX =p HCLX).

That leads to a diagram which we are going to study. We will study H,(2XX) using
the diagram
PyNP. — P %X .

L

P YXX ——> pyX

Now we’ll study the Mayer-Vietoris sequence for this diagram. Let’s look at these
spaces and try to understand their homotopy type.

Consider P;YX: this consists of the space of paths v such that v(0) = * and
v(1) € CLX. The path starts at the basepoint, can go anywhere, but has to land in
the positive cone. Note that C'y X is contractible. In other words, we have a pullback

PYX ——PYX,

L]

Ci X ——3¥X
and note that it is also a homotopy pull-back. Since C'; X is contractible, we find that
P YX ~O¥X.

We could very easily provide a homotopy equivalence by taking a loop that extends in
the positive cone and extending it on any homotopy that contracts the positive cone
onto the base point. Similarly,

P XX ~O¥X.

The last thing to understand is PyXX N P_3X. To get this, we have a homotopy
pullback
P .NP.—PYX.

L

X 2X

However, X — XX is nullhomotopic (it’s the inclusion of the equator), so the homotopy
pull-back is the same as one would have gotten by taking the constant map X — ¥X.
In particular, we get for the pull-back a homotopy equivalence

P, NP ~X x Q¥X.

17
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Maybe you’re not used to these ideas, so let me tell you what you’d have to do

to actually prove this. Choose a homotopy X x [0, 1] X from the inclusion to the
constant map. We have a diagram

E PXX,

L,

Xx[0,1]X >yvx

where E is the pull-back. We could include X x {t} in X x [0, 1] for any ¢, a homotopy
equivalence. In particular, the map E; — E is a homotopy equivalence,

Ly E PYX,

SR

X x {t} —=X x[0,1] Z—~¥xx

and now you compare E; for t = 0, 1: these maps are respectively the inclusion X — XX
and the constant map. In particular, the two Ey, E; are just X x QXX and Py N P_.
I'm not using anything very deep, but it’d probably be a good idea to really try to
understand this argument. I’'m not using anything deep, but I'm using a pretty good
fluency in the notion of a fibration.

OK, so now I want to put up something here. We’ve been studying the diagram

P+ﬂP_*>P+ 5

;]

P_ PYX

and we can now write down what these spaces are homotopy equivalent to:

X xQ¥X —Q¥X .

L

19230.¢ *

This is a homotopy pushout square.

Here’s a subtlety: there’s something to think through. I'm going to advertise this
as an exercise. But this is an important little point, about principle bundles over
suspensions. I went through this quickly, but there was a choice to be made, and I
went through it sufficiently quickly that you probably didn’t notice the choice. The
nullhomotopies of X — X involved running through either C'y X or C_X; let’s choose
C4+X. In other words, let’s use the contractibility of C X rather than that of C_X.

Exercise: With the choice of C; contractibility, the horizontal map in the above
diagram (Py N P_) — Py

X x QXX - O¥X

is the projection map, while the vertical map Py N P_ — P_

X xQ¥X —- Q¥ X

18
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is the twisting map (where X goes into QXX and then you multiply: X x QXX —
QXX x Q¥ X — O¥XX). This is something important to understand.

Finally, after all this, we’d like to study this diagram using the Mayer-Vietoris
sequence in reduced homology. In particular, we get that the map

H, (X x Q2X) — H,(QLX) ® H,(QEX),

is an isomorphism, where one of the two maps H,(X x QXX) — H,(QXX) come from
projection and the other comes from the action map.

The projection map H,(X x QXX) — H,(QXX) has a section (coming from the
section XX — X x QXX from the basepoint). Consider a diagram

00— H,(QEX) H,(QLX)

| |

H,(X x Q¥X) — H,(QYX) & H,(QLX)

| |

0 C H,(Q5X)

Note that H,(X x Q5X) ~ H,(X)® H.(Q5X) @ <ﬁ*(X) ® ﬁ*(QEX)). In particular,
the map H,(QLX) — H,(X x QXX) is the inclusion of a factor, and we find that

C=H(X)® (ﬁ*(X) ® ﬁ*(QZX)) .

We find that that’s isomorphic to ﬁ*(QEX ). Moreover, the map
C — H,(Q2X)

comes from both the inclusion and the twisting map.

This may not seem like much, but we find that H,(QXX) is an algebra which
has this recursive property that we’ve just seen. For instance, we could just do this:
substitute the identity into itself! We could abstract upon this.

3.3 Lemma. Let A be an augmented algebra (with augmentation ideal A) and consider
a map V — A with the property that

Vo (Ve A ~A
This implies that A ~T(V).

This lemma implies the result. We could prove this lemma purely algebraically, or
substitute the identity into itself. We get that

Va(VeV)e(VeVeA) ~A,

and in the limit, we get the desired form of A. B
The conclusion is that H,(Q2¥X) is the tensor algebra on H,(X), as in the theorem.
A

3.4 Corollary. The map JX — QXX is an isomorphism in homology.
By the Hurewicz theorem, we find that the map JX — QXX is a weak equivalence.
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83 To be fixed later

I would like to finish today by deducing a different, topological statement, out of this.
We calculated this without using very much. We got this identity and this recursive
relation, but we never had to think about what anything really looked like. This is
usually a clue that there is a more geometric statement that implies this. This is
probably a general rule in math. There’s a more fundamental geometric statement.

This geometric statement was originally proved by using this construction JX and
the equivalence JX ~ QX X. I'm going to deduce it from a diagram, a trick due to
Ganea. Let’s consider again the diagram

X xQ¥X —Q¥X .

L

19230, ¢ *

Consider the mapping cones of both maps. Since the map is a homotopy pushout, the
mapping cones are homotopy equivalent.

The mapping cone Cone(X x QXX B Q¥X) is QX X. We’'ll deduce from this.
Let X4 = X Ux where x is a new basepoint, so that (X x Y); = X4 AY. The smash
product commutes with taking mapping cones. The mapping cone of X, — S? is ©.X.
Now smash with Y, to get a new cofiber sequence,

X+/\Y+ —)Y+ —)EX/\Y+
So in particular, we have a cofiber sequence
(X XY)+—>Y+ —>EX/\Y+

That implies that the cone of X x QXX — QXX is homotopy equivalent to XX A
(QXX)4. In particular,
QXX ~STAX A (QEX),.

I’'m out of time, so let me just say: technical basepoint issues. That tells me that
X A St Anyway, that’s X A (2X X, ), and now we're in a position of substituting
this identity.

3.5 Corollary (James splitting). YOXX ~ % \/72; XV,

We’re going to play a lot with this in the next class.

Lecture 4
9/14

I keep digging and found some resources which I’ll put up on the website on the weekend.
I’ll attend to it this weekend and hopefully put up a problem set.

We were trying to set up the EHP sequence and just consider that as a device for
calculating the homotopy groups of spheres, but we’ll primarily consider the questions
that arise in doing so. Let me remind you what we did in the last class.
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81 Recap
I looked at the path loop fibration

QYX - PYXX - XX =0 XUy C_X,

where C+ X, C_X were contractible. We saw that the pull-back P;¥X = PYXX Xx5x
CL X was QX X. We saw that there was a commutative homotopy pushout square

X x QXX —O¥X

L

19239, ¢ *

and there’s something like this for general principal bundles. The two maps X xQXX —
Q> X came from projection and a map we called 7. We used this diagram in a couple
of ways:

1. First, we used it to calculate H,(Q2XX).

2. Next, we used it to analyze the homotopy type. Consider the mapping cones of
both rows, we get a map

YXLAQEX — XOYX

of mapping cones, which is an equivalence, since the diagram was homotopy
cocartesian. Since XX AQYXX = X1 AXOQX X, we iterate this over and over and
get the James splitting

YOXX ~ % \/ XA,

n>1

There are some good things about the way I did this and some bad things. In the
problem set, I'm going to ask you a lot of questions about this—I’ll give you a flavor of
them in a minute. However, I haven’t been very explicit about what these maps are.
There’s some work to unpack everything.

82 James-Hopf maps
We understand what YQXX — ¥/, o, X" does in homology.

4.1 Definition. The James-Hopf maps (which generalize the Hopf invariant) come
from taking this splitting

YOYX - % \/ D S AL

n>1
and then taking the adjoint map
OXX — QNX" ",

which is called the James-Hopf map.
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It’s related to the Hopf invariant when n = 2 and X a sphere. On Monday I'll start
to explain how that works, but you might puzzle it out yourself.

4.2 Example. Here is an example of a little exercise. I plan to put this on the
imaginary problem set with a little coaching, but it’s worth thinking about even at this
point. Let’s try to understand something about this map. Consider the map

QXX - QXX A X.

Recall that [A, QX X] = [EA, ¥ X]. Moreover, [4, QXX AX] = [EA, XX AX]. Somehow,
given a map

YA =YX

we get a map
A= YXAX

There’s some construction which produces this map, which we haven’t thought of
yet. An exercise would be to describe this construction, which is not a very easy thing
to do given what I've told you so far.

4.3 Example. Here’s another exercise. Given f : YA — ¥ X, define H(f) : ¥A —
Y X A X by the construction of the James-Hopf. Show that H(f) = 0 iff the following
diagram commutes:

Recall that XA is a cogroup object in the homotopy category, via the “throttle”
map ¥4 DA — XAV IA.

YA / »X
iT/JA iT/JA
vf
YAVIA——=YX VYIX

T’ll either give a more guided exercise or come back and tell you about it. But note
that something nontrivial has already happened with this James splitting: we get new
maps out of old maps that we wouldn’t have been able to think about before. This is
part of the way of life that we’re going to go over the next week.

You can think of the commutativity of the above diagram as the first obstruction
to f: XA — XX being a suspension.

83 The induced map in homology
The rest of the talk today will be on the induced map in homology
H.(QXX) — H.(QXZX"").
You might think this isn’t a very hard problem. We saw that
H,(QXX) = T(H.(X))
and

H,(QS X\ = T(H(X)®").
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You might think that such a map is determined by where the algebra generators go,
i.e. by what happens to H,(X). Because, after all, these are the algebra generators for
H,.(QXX). However, this might fail: you might not think that the map

H.(QXX) — H (QXX"")
is an algebra map. In fact, it is not an algebra map. The map
QXX — Qxx™

is not a loop map, so the map on homologies is not necessarily an algebra. The
James-Hopf maps are maps between loop spaces which are not loop maps.
But that’s OK. There’s still something which we can do. We could look at the map
in cohomology
H* QLX) — H*(QXX),

which is a ring homomorphism: that would be good, as we could leverage information
in low dimensions to information in high dimensions. As such, we need to understand
the ring structure in H*(2XY) for a space Y. We’d like to study the multiplicative
structure via homology.

84 Coalgebras
If I have a space A, and I look at the diagonal map

A Ax A,

the Kiinneth formula and pull-back gives the ring structure H*(A) ® H*(A) — H*(A).
If I want to study the map on homology, I look at the induced map

H.(A) — H.(A) ® H.(A).
This makes homology into a coalgebra.

4.4 Definition. A coalgebra is a vector space V with a comultiplication V — V@V
and a counit V < k which satisfy coassociativity and comultiplicativity.

The commutative diagrams you have to write down for a coalgebra are the opposite
of the diagrams you have to write down for an algebra.
Note as such that the map

H.(QXX) — H,(QXX"\")

is a map of coalgebras. Any map of spaces gives me a map of coalgebras, and from
that, we can usually work out the effect of the map in homology. I want to do this
ezxplicitly in the case X = S™.
So I need to be able to understand the coalgebra structure here. What is the
coproduct map
H,(QXX) — H,(QXX)®2?
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The first fact is that the diagonal map QXX A ONX is a loop map. Therefore, the
coproduct map is a ring homomorphism. And hence, you might think it’s determined
by what it does on ff*(X ), the generators. In fact, it is determined by what it does on
the generators. How can we figure out what it does on the algebra generators? That’s
kind of easy too, because this diagram commutes:

X X xX ,

| |

QXX —Q¥X x QXX

and in particular the effect on the generators is given by the coproduct on H,(X) itself.
If we knew the cohomology ring of X, we could determine the coproduct on H,(X),
and then we could determine everything for QX X.

4.5 Example. Let X = S™. T'll break it into even and odd in a moment. Then
H.(X)~k
in degree * = n and zero otherwise (where we use coefficients in the field k). Let’s call
Zn € Hy(S™) the generator. The coproduct in z,, has to be
T = T Q1 +1Qx,,

because that’s the only possibility. In fact, x;,, maps to something in the group ﬁn(S "X
S™), which is free on z, ® 1,1 ® x,, and after projecting on each factor we have to
get x, again. Something more general happens in a space which is a suspension: the
coproduct is always of this form.

We have

H,(QX8™) = T(H,(S™)) = k[z,).

It’s not actually commutative if I think about graded commutativity. If I think of n
odd, then the ring is not graded commutative.

Now the coproduct is

T = T Q1 +1Qx,,

and consequently

f s (@1 +1@x,)k

I'm supposed to expand this out. You might think that that’s the sum ), ti=n (?) Tt ®
x7,, but that’s not necessarily true. For instance,
(2, ®1+102,) 2 =22 @1+ 1022 + (1 @ zp) (25 @ 1) + (2, @ 1)(1 @ 2),
and there is a sign trick that happens: we get
(2, @1 +1@x,)° =22 @1+ (1+ (=1)") (2 @ x,) + 1@ 22.

If you want to avoid the sign issue, you can either work with n even or take k = Fo.
For the heck of it, let’s suppose n is even. Then H,(25""!) is a polynomial algebra
klx,] with

B\ A
ks Z <i)m;®acﬁl:(xn®1+l®xn)k.
i+j=k
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When n is even, 2n is also even, and we want to focus on the first James-Hopf map,
that is the map
an-i-l N 952n+1.

We have H,(QS"!) ~ k[z,] and H.(Q25%"*!) = k[y2,]. Observe that
Tp > 0, xi — Yo
because the following diagram commutes:

| |

052+l ——Q¥.5" A S™.

In general, for X a space, we have a commutative square:

Xk XNk
QXX ——= QR XNk

which is easy to deduce. Taking higher iterated maps is much more complicated.
For example, we find

23— 0 € Hs, (28?1 = 0.

However,
4 2
Ty — Ao

In order to figure out what A is, we figure out the comultiplication. Under the comul-
tiplication,

o rr @1+ 423 @2, + 622 @22 + 4z, @23 + 1@

This map goes to
AY3n @ 14 6y2n @ yon + A ® Y3,

However, the coproduct A(\y3,) can be expanded to

and from this we get
A =3.

4.6 Example. Let’s now try an arbitrary element 2%, which has to go to /\ygn, and our
goal is to determine A. The strategy is to go all the way to the k-fold comultiplication.
That’s going to go to (this is a little confusing for the coalgebra)

AP = (2,91 ®14+102,91®---@1+...)~
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That turns out to be the better thing to look at. I want to wrap this up: there are all
kinds of monomials in here, but the interesting ones to compare are where x, occurs
squared and yo, does. So let’s compare the coefficient of

T2 RI% QXD Yo @ @ Yon

The first thing is (,, gkz) (where there are k two’s), so

(2Kk)!
2k -

The coeflicient on the other side is

k
— |
A(11...1) AR

~(2k)!
2Kkl
The important point for us is that A is odd. Next class, we will exploit that and finally
establish the fibration sequence defining the EHP sequence.

so that
A

=1x3x---x(2k—-1).

Lecture 5
9/17

I struggled today: there are two thorny topics to get through. I thought I had a nice
way of avoiding the Serre ss in one, but I don’t. In any event, I'm going to need to use
spectral sequences throughout the course. So I'll explain what the issue is, and give you
a quick overview of the Serre spectral sequence. We’re going to need that technique in
the future.

81 Recap

OK, so let me remind you where we are, and the next thing we’re proving. I produced
this map
QXX - QXX NX,

and a lot of the fun’s going to begin when we start to analyze this map, called the
James-Hopf map. We were particularly interested in it when X was a sphere S™. In
the last lecture, we calculated the homology of both sides, and showed that this was a
decent map. I emphasized the case when n was even.

1. H(QXS™) ~ k[zn], Ho(QES?") = k[yan].

2. The map
klxn] — klyzn)

is not a ring homomorphism, but we saw that 2l 0 if J is odd and

) = (0dd)ys,.
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82 Goals

Let F be the homotopy fiber of QX.5" — QXS5?". The adjunction map S™ — QXS
factors through F'. We want to show that the map

H,(S") — H.(F)

is an isomorphism, whenever we are localized at 2. By the mod 2 Hurewicz theorem,
we find that there is an equivalence

T (S")(2) = () (2)-

Even if T could trick this out and prove the result without the Serre ss, most people
(including me) prove the mod C Hurewicz theorem using the Serre ss. Apparently tom
Dieck does these theorems without the Serre ss.

If you don’t mind, maybe you’ll humor me and I'll take you through a little of the
analysis of this fibration and why you really need spectral sequences.

Let’s consider something more general. Suppose we have a fibration X — B and a
space F' — X. Consider two situations:

1. This is a fiber sequence F — X — B and B is connected. We're also going to
suppose that we have a map H,.(X) — H,(F) which splits the map H.(F) —
H,(X). The conclusion is that the composite

H(X) 2 H,(X)® H,(X) — H.(B) ® H.(F)

is an isomorphism.

This is a typical result you might prove with the Serre ss. We’re not quite in this
situation with the James-Hopf maps, but we’re almost are, since we don’t yet
know that S™ is the homotopy fiber of the James-Hopf map QXS — QXS5%7.

Let’s try to prove this.

(a) Suppose first X ~ F' x B. This should be easy, and it is: it’s a matter of pure
algebra. It’s easiest to state and prove this in the language of cohomology
rather than cohomology. So let’s work in cohomology, since products are
easier to think about than coproducts. I have a vector space map

p: H(F) —- H*(F x B)~ H*(F) ® H*(B)
by the Kiinneth formula, and I have a ring homomorphism
H*(B) - H*(F x B), a—1®a.

We know that H(B) = k and that the first map is a splitting, so that the
composite
H*(F) 5 H*(F)® H*(B) — H*(F x %)

is the identity. So in particular,

p(z) :x®1+2x;®m§’, dima} > 0.
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I want to conclude that the map
H*(F)® H*(B) = H*(F)@ H'(B), z®b—z@b+ Y zj®a)b

is an isomorphism. But that’s pretty easy: it’s almost the identity map. If
we filter H*(B) by degree, then this map is an isomorphism (in fact, the
identity) on the associated graded. I just want to emphasize that I'm doing
something here where there is a filtration on the cohomology of B. So that’s
fairly straightforward.

(b) 77
2. Here’s the other situation. The situation we’re actually in is:

5.1 Theorem. We have a map f : X — B with homotopy fiber Fy, and with B
simply connected. We also have a map F — X whose composite with f is null,

which gives us a map
F— Ff

We have a map of vector spaces
H.(X)— H.(F)

splitting the map H.(F) — H.(X). Also, we have that the map H.(X) —
H.(X)® H.(X) — H.(F) ® H.(B) is an isomorphism. The conclusion is that

H.(F) = H.(Fy)
is an isomorphism.

It seems we have to use the Serre ss here. This is the thing I want, and that’s
the situation we’re in with the James-Hopf maps. Once we’ve done this, we will
have established the EHP sequence, a 2-local fiber sequence

Sn_>an+1 —>QS2n+1.

Proof. The first place in an algebraic topology course where you encounter a spectral
sequence but are not told about it is in the cellular chain complex. Let B be a CW
complex. Then you introduce the cellular chains on B. We have

C5(B) = Ho(B™, B)
and we have a differential
H,(B™ By & g, (B™Y) = H,_ (B Br=2),

and you prove (almost axiomatically) that the homology of B is the homology of this
cellular complex. All you need is excision, the calculation of the homology of spheres,
and the long exact sequence of a pair. In fact, this chain complex, it’s not always
pointed out, is a bit of a funny one. There isn’t a natural way to relate this to the
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singular chain complex. If you know about the AHSS, you’ll know that there can’t be a
functorial relationship between cellular and singular chains. It’s a bit strange: you use
this in the first semester to calculate, but it’s relating to homology in a special case.
It’s a special case of a spectral sequence.

I want to try the same thing. Consider a Serre fibration X — B, and suppose that
B is a CW complex. I'm reminding you of what the quickest way to explain the Serre
ss. I also know that, from lecturing on it, it’s not the quickest way of constructing
it actually. This is just a quick way to think about it. So for instance, the Serre ss
doesn’t really require B to be a CW complex, and it’s easier to construct in terms of
singular than cellular homology.

What I want to do is to look at the n-skeleton B and form the pull-back,

X —— X,

]

B(n) —— B

where X[ is not to be confused with the n-skeleton of X. Let’s try to use this method
for calculating the homology of B and use that to calculate the homology of X. We
need to understand

H, (XM xn=1)
to start with, which isn’t so bad: it’s a pull-back of the pair (B, B(™=1)  Sitting
over it I have (X [l x[»=11) " By excision or relative homeomorphism, the homology of

(B™, B("=1) is the same as the disjoint union of a bunch of pairs (D™, S"~1), one for
each n-cell of B. There’s a map of pairs

|_|(Dn75n71) N (B(n)’B(nfl))

which is an isomorphism of homology. Pulling back the fibration over X, we get
something homotopy equivalent to a direct sum of copies of H,(F x D", F x S"~1).

I can write this more functorially. The homology of H, (X[, X"=1]) is the set
of cellular n-chains in B, tensored with the homology of F. I can write that more
canonically as

H,(x", x=1 ~ cel(B) @ H,(F),

and the reason that this ends up being a bit of a hand-wavy approach is this fact which
requires a tough proof: when B is simply connected, the connecting homomorphism

H(xM xr=1y & g (xP-Uy 5 g (x-U x =2

is the cellular chain map of C<?!'( B) tensored with the identity. There’s even a statement
when B is not simply connected. Then we get this long exact sequence for the triple

xn=2 - x-1 - xln

and from there we can calculate H,(X™, X["=2]). Inductively, we could try to calcu-
late H,(X D' [”*k}) and in the end, what you’re doing is working with the spectral
sequence. That’s one way of thinking about what a spectral sequence is.
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Now I'm going to speed up and tell you how this works out. This will probably be
very hard to follow if you’'ve never seen spectral sequences before — I’'m just going to
get through it. So what’s a spectral sequence? A spectral sequence is a sequence of
groups

(B, dy)

where E, is an abelian group (usually bigraded) and d, : E, — E, is a differential.
There are isomorphisms
E 1~ H(E,d,).

In the case of the Serre spectral sequence, the theorem about the Serre spectral sequence
is that there is a spectral sequence (which organizes all these long exact sequences):

5.2 Theorem (Serre). Suppose F' — X — B is a Serre fibration with B simply
connected. Then there is a spectral sequence

EPY ~ Hy(B, Hy(F)) = Hpyq(X).

In fact, BV ~ CN(B) @ H.(F) and di = d°" when B is a CW complex.

Usually when you draw one of these spectral sequences, you just draw a bigraded
group where in position p, ¢ you have H,(B; Hy(F')). The E, term measures the homol-
ogy H,(X[ X"=r]) (for all n). The sense in which I say “measures” is a more subtle
aspect of a spectral sequence. There are a lot of ways in which people use spectral se-
quences, sometimes the Ey page tells you the entire answer, or sometimes the evolution
of the spectral sequence is of interest. In the latter case, you need to understand what
the notion “measures” means. We’ll come back to these aspects of spectral sequences
later in the course.

A spectral sequence at this level of generality is only a marginally useful notion:
usually there’s a mechanism that produces the differentials d,.. You don’t just get a
sequence of random new terms every time. In the Serre spectral sequence, there are
two gradings, and the differentials respect the grading. We have:

. g p—r,q+r—1
dy : EPT — EF .

These groups are being related to Hp4(X), and the total degree of the differential is
always —1, just like in the chain complex. One thing that even those of us who are
making mistakes made sure of was that d, had degree —1.

What does this notion of “convergence” mean? If I'm in a given box (bigraded
piece), after a while the groups stabilize because we are in a first quadrant spectral
sequence. As you move through the spectral sequence, you're replacing each term by
the kernel of d mod the image of d, and each box gets replaced by a subquotient.
Eventually they reach a stationary value, because the kernel of the zero map is the
whole thing, and the image of the zero map is zero. In other words,

EPr>0

is fixed, and we write that as ER?. The “convergence” now means that H, (X) has a

filtration with associated graded @, ,_, E&'-
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At any rate, let’s look at how this works in the situation that we were in, in the
last minute. I have a map X — B with homotopy fiber F'; and a space I called F'. We
had a map H,(X) — H,(F) which was a section, and which gave us an isomorphism

H,(X)~ H.F)® H.(B).

We wanted to conclude that H,(F') — H,(Fy) was an isomorphism. I think I'm not
going to be able to spell out all the intracies of this in just five minutes. If you've
played with the Serre ss, you’ll understand this argument. If not, it’s a good argument
to get yourself acquainted with some of the formalities.
Notice that the map
H.(X)— H.(B)

has to be surjective, because H.(X) — H.(F) ® H.(B) was an isomorphism. This
means that all the differentials out of H,(B) in the bottom row must be zero. Therefore,
for instance, H1 X is formed from HyB and H;Fy. Or in other words,

H.(B)® Hy(Fy) ~ H,(X) in degrees < 1.

This is enough to imply that H(F') — H;(Fy) is an isomorphism. That’s enough to
tell us that there are no differentials which can come out of the second row. And you
can run the argument over and over with 1 replaced by 2, and keep going. I know
that was very quick. If you're familiar with the Serre ss, you've probably seen that.
But I wanted to contrast this with the other situation we were in. This was proved
by induction on the homology degree of F', which is hard to access without the Serre
Ss. A

Lecture 6
9/19

81 The EHPss

We still have a lot of analysis to do just to set up the EHP sequence, but I want to

take a minute in today’s class and explain how one uses it to inductively calculate the

homotopy groups of spheres. The idea was to use this as a question-generating device

and then we’d scurry off and do other things. We need to organize the EHP sequence.
The EHP sequence is a (2-localized) collection of long exact sequences

TS = T ST o S

there’s a whole bunch of these, as n varies over the spheres. These together form
an ezact couple and hence a spectral sequence. I want to get into what this spectral
sequence looks like. There’s a sort of recursive aspect to the spectral sequence that
enables you to make a lot of caclulations. I'll do that today; it’s rather nice.

Let’s write this as an exact couple.

TI'*Sn 7['*_:,_1Sn+1 ,

~N 7

W*SQnJrl
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where the “E'” term is 7,52+ (the homotopy groups of odd spheres) and the abut-
ment is the colimit of the maps on the “D terms,” ligwmrkS”, the stable homotopy
groups of spheres. You don’t really use this as a method of starting with the homotopy
groups of odd spheres and calculating the stable homotopy groups of spheres. Instead
it’s the process of the spectral sequence which enables you to make calculations and
which reveals a very beautiful story which we’re going to get to.

Before we go forward, we have to make a bunch of decisions of how to draw these
things on the page.

82 The spectral sequence for a double complex

Let’s first talk about an easier type of spectral sequence, and that’s the spectral se-
quence of a double chain compler. I'm going to suppose I have a chain complex which

L

Cop<——Co1 =— (2

L

Cio<=—Ci1=—Ch2

Cop <— Con =— Co2
which means that the maps are differentials and the maps square to zero. I'm not
giving these names because that would be a drag. Out of this you make a total chain
complez. It’s like
Coo <~ Cro®Cro ¢ Co @ C11 ®Co2 . ...

In general,
TOt(C)n = @ Cij
i+j=n

and the differentials come from the vertical and horizontal differentials, but you have
to alternate the sign.

Alright, now, out of a double chain complex there is a spectral sequence. You make
a spectral sequence out of a double chain complex by filtering it. So we would take
our double chain complex C;;. We’d just take the first n columns and cut it off there;
there’s a sub double complex. Given Cee, we have

FTLC.. C O..

where F), consists of the first n columns. Then we have a filtration on Cee and F),/F,,—1
is just the nth column, as a chain complex. That gives a long exact sequence of
homology groups. For instance, we have an exact couple

H,(F,) H.(Fiy1)

o~

H*(Ccol)
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and thus we get a spectral sequence starting (in F1) with the homologies of the columns,
and converging to H,(Tot(Cas).

The spectral sequence of a double chain complex is a really good example to think
about. The Serre ss can be constructed as an ss of a double chain complex. I want to
talk about this because even if you don’t know about spectral sequence, the process
of the spectral sequence gives an algorithm for computing the homology of the total
chain complex, and it’s possible to understand that algorithm.

OK, so let’s imagine that we know the F; page of this spectral sequence. That is,
we know the homologies of each of the columns. Let’s suppose we have an element in
the homology of one of these columns, so an element in the E; page of the ss. Say
(n, k) dimensions. We can represent = by an element Z in C,, which is a cycle, with
respect to the vertical differential.

Over here, let’s imagine the double chain complex itself.

What happens to T under the total differential? There’s a vertical and a horizontal
component. The horizontal component might be nonzero, though the vertical element
is zero. That gives an element d;T in the chain complex. Back here, with our friends
running the spectral sequence, the element di7 is a cycle in Cj,_ %, because these
diagrams are supposed to commute. So diT represents a homology class, which I'll call
diz, in Hy(Cp—1,). If that’s not zero, that’s a differential and we have to replace the
group in the spectral sequence by the homology of this differential and we don’t learn
anything more about spectral sequences.

To go further, suppose that dijx = 0 € H,(Cy—1,+). That doesn’t mean that d;z = 0,
just that diT is a boundary. We can find a class ¢; whose vertical differential is d;Z.
So we can choose a ¢; € Cy,_1 41 such that the vertical differential of c¢; is the same
as diZ. Now let’s look at the total differential of ¢1: it has vertical and horizontal
components. The horizontal component d"(c;) is a cycle, and it represents another
homology class in Hj41(Cp—2) which I'm going to call dax.

So this is the basic process. There were some choices involved. I could have added
to this any element which went to zero there, and that’s exactly what happens in a
spectral sequence. I'm going to stop with this story, but the idea is that one can
continue this process over and over. So this is the algorithm that the spectral sequence
is doing. You can learn about the great applications of the Serre ss, but those are
mostly where the ss collapses. But if you want to deal with a ss where not much
collapses, like the EHPss...

Note also that we could use this strategy to get a spectral sequence for computing
the homology of F},Clee.

OK. So that’s a bit of advice about learning spectral sequences. It’s good if you get
lost, a little bit—I recommend really thinking through this algorithm and understand-
ing at which point are things well-defined. All those little questions are informative to
think through.

83 Back to the EHPss

OK. So, the EHP sequence. We got one problem straight off the bat. And that is,
I want to think of 7,5™ as the homology of a chain complex. There’s actually—well,
we’ll come back to that later—a way, but let’s just imagine that we can do that. So

33



Lecture 6 Spectra and stable homotopy theory notes

m.S™ = H,F, and these F), chain complexes sit inside each other
F,CFy1 C...

and H*(thn) = m$S0.
One problem is the index. mw;S™ isn’t the kth homology of some chain complex
because then the map would have to raise degrees. Let’s imagine

T4k (S™) = Hi(Fn)

for a chain complex F,. Then, if I were drawing it like this, we would get a spectral
sequence where the F; term would be H,(F,/F,_1) which would be the homotopy
groups of an odd sphere. The E; term would be 7, 1 (5?7~ 1).

Let’s make a chart and try to imagine what this spectral sequence looks like. In a
given column, I’'m supposed to write down the homotopy groups of odd spheres. In the
first vertical column, we’d have (from bottom to top) m1.St, m2St, ..., and then we’d
get the homotopy groups of S3, starting with m.93. The groups ma41(S?**1) are on
the diagonal. Wait, is this right? There was some debate in class.

Anyway, the first differential goes

7Tn+k(52n_1) — 7rn+k—2(52n_3)-

I have something messed up in the way I indexed this. Topologists rewrite the indices
a little differently anyway. What’s supposed to happen is that the d; is supposed to
go horizontally. However you do this, there’s a problem. It’s not a bad problem, but if
you're analyzing a spectral sequence like this and it’s not going to collapse and there’s
really something going on, you want to be able to assess visually what the situation is.
Given an element, I want to know what the possible differentials are on an element,
and what the possible groups contributing to a given group. The problem with this
indexing is that everything happens on a diagonal.

Topologists, starting with Adams, reindex these things. It’s just a linear change
of coordinates in the plane. We use Adams indexing. In the Adams indexing, you
arrange things so that all the groups in a given column contribute to the same group
that you’re computing in the total complex. My point, which I’'m going to be rushing
through in the next few minutes, is to show you the recursive nature of the sequence.
The differentials go over from one column to the next. This requires a “shearing” of the
coordinate system. I'm going to rewrite the EHP ss in a way that works with Adams
indexing, and we’ll talk a little about what the spectral sequence is telling you.

What the spectral sequence tells you is that you can calculate the homotopy groups
of a given sphere by truncating the spectral sequence at a given column. If you truncate
the homotopy groups at the first m columns, then—as in the F;,’s—you can compute
the homotopy of S™. You can already see that there’s an opportunity for feeding the
information back into itself.

What I want to do in the last ten minutes is to start going through a chart which
you can find in Ravenel’s green book. Holds up a copy. This is proof that the book
used to be green, but if you buy it now it’s going to be red. It’s a red shift. In the free
version that you download, it’s on page 27. It’s in the first chapter. Ravenel Adams
indexes this.
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(to be added)
One can use this to show:

0 if*x>2n+1

*5271—‘,-1 —_ .
™ )®Q {Q if«x=2n+1

The whole spectral sequence can inductively shown to be basically zero after tensoring
with Q. On the other hand, when * = 2n, we get something a little more complicated.
More generally,

Q ifx=2n,4n-1

0 otherwise

(S ®Q = {

We’re going to pick this up much more carefully next time.

Lecture 7
9/21

81 A fix

So, I want to continue going through the EHP sequence and how it’s used to calculate.
I want to explain this chart that’s in Ravenel’s book. First let me clear up something I
got confused about in the last lecture. So I was imagining we were looking at a double
chain complex Cqq, which I drew as if on a piece of graph theory. I filtered that, calling
F,C the pth piece. We got an exact couple,

H*(Fp—l(c)) H*(ch) )

\/

H*(Fp/Fp—l)

and the thing H,(F,/F,—1) is the E; term of the spectral sequence. I had said that
F,/F,_1 is exactly the pth column C,,., and that’s true, but that column’s not put in
the degree you're seeing it. For instance, Cjo has total degree zero. The pth homology
of F,,/F,_1 is contributed to by the group Cpg. So

H.(Fp/Fp-1) ~ Hi(Cps)

is true, but with a shift of degrees.
In fact,

Hk(Fp/Fp—l) = Hk-i—p(cp,*)'

So that was my mistake—I forgot that there was a change in degrees, and if you make
that you’ll get the standard conventions in a spectral sequence.
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§2 The EHP sequence

I'm now going to follow Ravenel’s indexing. So recall: we’re taking the sequence of
homotopy groups of spheres. We consider the exact couple

Tp+k (SP) Tp+1+k(SPTL)

\/

Tpr14k(S2PTT)

given by the EHP sequence (2-locally). The E; term of this spectral sequence is the
homotopy groups of odd spheres. The F., page corresponds to the stable homotopy
groups of spheres.

If you truncate this spectral sequence, you get a spectral sequence converging to
the homotopy groups of any sphere.

Let’s put this together in a chart, and I’'m going to index it in the way homotopy
theory people index it: I'm going to follow the Adams indexing convention rather than
the Serre one.

We place the homotopy groups of the odd spheres in the rows. Let’s start with the
knowledge that m,(S™) = Z.
Abutment: 73 (S°) Z

Sl
SS
SS
S?
S0 Z
st 6 Z |

Below the diagonal, everything is zero, and we don’t know what the stuff above
the diagonal is at this point. We will calculate it recursively. The truncated spectral
sequence would go for instance, from m,S lor,. S8 7r,.S°®m,S? and it would converge
to m,S%. This sets up an amazing recursive relationship between the homotopy groups
of spheres and lets you calculate very far.

ZXg

U W N~ 3
N

It’s much easier if I write down generators of groups than groups. So instead of

writing down Z’s, let’s call the generators A;. So let’s change this to:
Abutment: 73 (S°) Z

X|[O0O]O0O|O0]O0]O
A1

Sl
S3
55
S7
59
Sll )\5 ‘

In the last class, we worked out the diagonal differentials d;. I'll just remind you
what that was. These are maps

A2
A3
A4

SO W~ 3

Tont1 (52n+1) 5 Ton_1 (521171)
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which sends the generator to the Hopf invariant of the Whitehead product, i.e. 2 if n
is even and zero if n is odd. So every other d; is multiplication by 2 on the A;. That is,

di(A2) =2\

and so forth. After this differential hits, we know that the first stable homotopy groups
of spheres is Z/2, and we even know something about 73(S?). We learn the following:

1. m5t(S%) =2z/2.

2. 13(8%) = 7Z, 14(S3) = Z/2, and then we're in the stable range. (This we learn
from the truncation of the spectral sequence.) This is a bit confusing. If we
want to read of 7,(S3) from this spectral sequence, we take the E,, page of the
truncated spectral sequence, and look at the various columns.

So we’ve learned something. We know the next stable group. And that means
we can continue writing down the spectral sequence. Let’s try to start filling in

holes here. We're using the spectral sequence to go back and calculate the E; term.
Abutment: 7§ (S?) Z | Z]2

Sl
83
515

| O O] 0] 0] 0|
M| Z/2
X | Z/2
ST A3 | Z/2
S0 A | Z)2
St 6 Xs | Z/2 |
Now we get a bunch of maps between Z/2’s which are differentials d; in the EHPss.
The standard name for the generator of 7{(S°) = Z/2 is . What I'd like to say that
the maps Z/2 — 7Z/2 are zero. We run into a funny question.

Uk W N = 3

Question. Let’s say I have a map a : S"** — S so0 a € 7,1 1(S™). The set of maps
between spheres of the same dimension is the integers. Given an integer d, we can do
two things with «:

1. Compose with the degree d map S"t* — Sntk,
2. Compose with the degree d map S™ — S™.

You might think that those are the same. But they’re not. The first map, by
definition of addition, is da. The second map is not necessarily da. Let me just give
you a simple example where this is not the case.

7.1 Example. Consider the Hopf map H : % — S2. Compose with the degree d map
5?2 — S2. How do we make the diagram commute?

53*?>53 .
b

S2i>52
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We might think that S — S2 should be d. But that’s not the case. Look at the
mapping cones; we get an endomorphism of the mapping cone CP2. It sends the
generator in degree two to d times it, so it multiples the top generator by d?. So the ?
map should be multiplication by d?!

So that raises a question:

Question. What does the degree d map S™ — S™ (on the wrong side) do in the
homotopy groups of spheres?

We need to take this information to leverage that into the differentials.
Anyway, the differentials
dy:7/2 — 72

in the portion of the spectral sequence thus drawn are all zero. I want to name these
generators rather than labeling groups. There’s something good to do here, but let’s
think about what the classes are. What do I know about it from this spectral sequence.
Let’s call it g.

Abutment: 73 (S°) Z |7Z)2

Sl
S3
55
S?

| 0[O0 0] 0] 0
AL | g
72
A3 | Z)2
S9 N | Z)2
S Xs | Z)2 |
g corresponds to some element in 75¢(S%). The first place I see it, though, is on the
2-sphere. So it’s actually in the image of m4(S?). It’s not in the image of 73(S*) = 0.
We give a name to that. We say that S? is the sphere of origin of g. That means
that it comes from the sphere S? but from no smaller sphere.
Let’s imagine we have some element in 7, 441(S""!) and we have the maps

Tk (S™) — 7Tn+k+1(5n+1) — W}it(so)-

S U W N~ 3
>
O

Suppose some element T € m, ,41(S"!) and n + 1 is the sphere of origin of the
stabilization. That means that it’s not in the image of m,;(S™) and in particular it
has a nontrivial Hopf invariant in 7, ,1(5?""1). That’s what not desuspending
further means.

So what is the Hopf invariant of the class in m4(S?) that we just called g? It is
nonzero, since g doesn’t desuspend. The Hopf invariant is just ... There’s a map from
74(S?) — m4(S3). That comes from the spectral sequence. An element in 74(S?)
defines an element of 75 and you look at the preimage in the E; page?? That’s also
the Hopf invariant.

We're calling the generator of w1 A; or Ay mod 2. In fact you’re making an algebra
called the \; algebra. So we write for g A1 A;. When I write down Aj A1, the first thing
writes down the sphere of origin and the second thing is the Hopf invariant. I know
this is hard to understand. (At least, the scribe of these notes is completely confused.)
In general, for a sequence I,

ARAT
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means an element with sphere of origin the k& + 1 sphere and Hopf invariant A\;. So

A1A1 means that the sphere of origin is the 2-sphere and the Hopf invariant is A;.
Abutment: 73 (S?) Z |Z)2

Sl
53
S5
57

Xo| 0 | 0 0 0 0 |
Al | A
Ao
A3 | Az
S A | A
St As | AsAp |
The generator of 75(S°) has sphere of origin S? and Hopf invariant ;. Anyway,
when we continue this, and assume that the differentials are zero, we learn

ST W N~ 3
>
o

Tt =17/2.

And what about the generator? We learn that the sphere of origin is the 2-sphere
again. The Hopf invariant is the element we're calling A\;A;. So the next elements are
AMALAL, A2 A1 AL, AsA1 A1, and so forth. I claim, once we analyze wrong-way composition,
that all the differentials on these triple products are zero. So that means that we get
three cyclic groups of order Z/2 in 3.

Ravenel uses slightly different notation for the A-notation, and it actually comes
from something called the A-algebra. I guess I wanted to tell you something. In fact
w5 = Z/8. Its generator is A3. Twice the generator is AoA; and AjA; A is four times
it. That’s weird. We can go and feed this back into the calculation, which will tell us
about further groups.

Anyway, we learn that 74(S?) ~ Z/4.

Abutment: 73 (S°) Z | Z]2
n
St 11X | O 0 0 0 0
S3 2 AL A N
S5 3 Ao XAl | Aa i
S7 4 A3 AsA1 | AsAig
S 5 A\ A1
S 6 A5 As A1

Let’s turn to other things. If )\, is a permanent cycle of the spectral sequence, then
that represents an element with sphere of origin on the n+ 1 sphere and Hopf invariant
one. So the question of which A,’s never have a differential come out of them is the
Hopf invariant one problem. If we’re just looking down the diagonals, the question of
when the differentials are zero or not is precisely the existence of Hopf invariant one
problem.

So we get to the question:

Question. When is there an element of Hopf invariant one?

Later in the course we’ll see that A1, A3, Ay are permanent cycles. For instance, we
implicitly used this to see that A3 was a permanent cycle. But look, here’s a place
where there’s definitely not an element of Hopf invariant one: 711(S%). So A5 has to
support a differential. If I look it up in my crystal ball, A5 is going to hit AzA;.
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In order to go further in this, we need to understand what the differentials of the
A; are. The amazing thing is that that’s a problem you can completely solve.

Question. What are the differentials out of the \;?

I want to translate that into a question about the homotopy groups of spheres. A,
wants to be an element of 7o, 1(S"*!) which hits 1 in 79, 1(S?*1). If it doesn’t hit
one, then 1 must go to the Whitehead square in mg,_1(S™) which must be nonzero.
What’s the differential? We have to find the sphere of origin of the Whitehead square.
We want to write this as an element of m,1,—1(5™). And then take the Hopf invariant
of that. So anyway, the differentials on the X’s, if you think this through, are equivalent
to:

Question. Differentials on the \’s are equivalent to understanding what the sphere of
origin of the Whitehead square [ty, ty] is, and understanding what the Hopf invariant
is?

The really cool thing is that it’s equivalent to answering the vector fields problem.
So that’s going to be the bulk of what we do over the next month or so—explain how
this problem is related to the vector fields problem.

Lecture 8
9/24

We’ve gotten pretty far. We talked about the EHP sequence and how it could be used
to recursively compute the homotopy groups of spheres. I was describing this spectral
sequence and I used it to generate a series of questions. I want to talk now how we
answer some of these questions.

We drew this spectral sequence:
Abutment: 73 (S?) Z |Z)2

Sl
53
S5
S?

X| 0| 0 0 0 0 |
A A
Ao A1
A3 | Az
S e | A
St As | AsAp |
We got that the initial differentials were Ao — 2, Ay — 2A3 where the other
differentials on the diagonal were zero. We had this recursive method of filling in this
table. We could calculate the differentials that Ao — 2X1, and we wanted to conclude
something about the differential of AgA;.

ST W N~ 3
>
o

8.1 Example. So let’s review this notation. If A3, an element in 77(S*) survives this
spectral sequence, it represents an element in 7r§(SO) whose sphere of origin is the 4-
sphere. The Hopf invariant lands in 7757 and if A3 survived, it would be an element
of Hopf invariant one.
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This is pretty tedious. You encounter, in the end, problems that you can’t solve.
Homotopy theory developed over the years by people looking at these tedious calcula-
tions and finding something systematic in them. We're going to do that in this semester.
I’'m going to trace a thread through several aspects of homotopy theory that come out
of this tedious calculation. In the end, we still don’t know all the homotopy groups
of spheres. We know large pieces, but it’s still tedious and anecdotal, and there’s still
room for new people to find new patterns and new conceptual frameworks. But it’s
amazing how much comes out of really trying to understand this. I’ll put some things
on the problem set to help you come to grips with how this information is displayed.
After this we’re going to do stable homotopy for about a month, and then return to
this with a lot more information at our disposal. It’s a good idea to understand this
much of the chart, but we’re going to be coming back to this later with a different
conceptual framework.

The differentials on \; are the Hopf invariants of the Whitehead squares. Now we
wanted to claim that the di’s of the Az \; are all zero.

8.2 Theorem. di(AgA1) =0 for all k.

We want to understand what the question to understand this. This differential on,
say, AaA1, goes from the homotopy groups of the 5-sphere to the homotopy groups of
the 3-sphere. We have a map

165° — 16S° ~ 7)2 ~ 7,/2 {n}

and that goes around by the P map to m4(S?), and then that comes around by the
H map to m4(S?) to m4(S3) ~ Z/2 and generated by the suspension of 7. So 7 is the
generator of 75(S%) =~ m,41(S™),n > 3. What are these maps?

The first thing we need to do is to understand these things as maps between spaces.
Let’s try to realize this as a map between spaces. We have a map S? — Q83 — QS°,
and I’'m interested in the connecting homomorphism: the map which shifts degrees and
goes back to S2. So let’s back this fibration one more time, using the Barratt-Puppe
sequence to get a fibration sequence

028° - 82 5 OS5,

The map 925 — S? is kind of amazing: it’s hard to thing about such a map. There are
a lot of interesting things happening in this map. That gives us the P map ms(S°) —
74(S?). Then we have the H map m4(S?) — m4(S?). The H map is induced by a map
05? — Q53. In the end, we're looking at some map

035° — 05?% — Q83

and that composite map is the map we want to understand. Specifically, we’d like
to understand what this map is doing in m3. That is the question of what the first
differential dj (A2A1) is. This is a hard thing to understand. These maps are complicated
and the spaces are unintuitive. It’s difficult to know in general how to calculate the
effect of this map on homotopy groups.
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Well, let’s look at the bottom cell. There is an adjunction map S? — Q35°, and
there is a suspension map S? — Q5%. We have a commutative square:

52i>9355,

P

S ——Q83

Why is it multiplication by 2? We need to know the effect in my of Q35° — Q83 and
the map between the two spaces was P followed by H. P sends the generator to the
Whitehead square and H sends the thing to the Hopf invariant.

Next, the map m3(5?) — m4(S?) ~ 76(5%). Our element 7 here actually comes back
to the 2-sphere and it’s generated by the Hopf map. Let € m3(S5?) be the Hopf map.
And you see, the question of calculating this map is the following question: what is
S35 522 52, and I showed you at the end of this class is multiplication by four.
That means in the ss that the differential d; is multiplication by four, hence zero.

The theme of this lecture is to explore this question:

Question. What is S% — 52 2 527
Let’s ask a more gneeral question.

Question. Say I have a map o : S"™* — 8. Consider multiplication by 2, S™ — S™.
What is [2] o a? It’s not 2a; so what is that?

I want to solve this by answering an even more general question. How do I get the
degree two identity? I take the degree two map as the sum of the identity map with
itself. So let’s ask this question even more generally. The more general question is this.
Let’s consider maps between two spaces that always form a group. So let’s consider
the following situation.

I have a map

a: YA — XX,

and two maps f,g: XX =Y. Out of those two maps I can form the sum.
Question. How to express (f + g)«a in terms of fia, g, and other things?

The answer to this question is only involved in this lecture, but it’s worth knowing.

What is f+g¢? You take £X — X vEX Y9 V. The comultiplication V : $X —
X VXX is the map which crushes the middle copy of X. So in other words, if ¢1, to
are two inclusion maps XX — XX V XX, then

YX - YXXVEX

is the sum ¢ + ¢5. In other words:

Question. What is YA - 3 X — XX VX X7?
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This is the universal example. Since YA — XX is not a suspension map, we can’t
say that the universal example asks for replacing ¥ A by ¥.X.

Let’s continue with this a little bit. What if A — ¥ X was a suspension? Then
the map is the sum of the two inclusions. So if « is a suspension, then

(f + 9)a = fea+ gua.

It looks like it’s hard to get somewhere. However, let’s adjoint over. If we adjoint over,
we can map

A= QSX 5 Q(EX VEX)

and I could also ask what the composite is. That’ll eventually give us the formula.

The miracle is that Q(3XX Vv 3 X) is a space you can say something about. There’s
the Hilton-Milnor decomposition of Q(XX VvV XY'). That will answer this question. My
whole goal today was just to explain what its role is in this story. We’re not going to
meet it again, [ don’t think, after this lecture. But it’s a very important classical piece
of homotopy theory. In a way, it’s kind of a background motivation for things that are
coming.

All right, let’s think about this space (XX V XY'). The homology of QXX is, as
we saw, a tensor algebra on the homology of X. So the homology of Q(¥X V XY) is
a tensor algebra on H,(X) ® H.(Y). We'll get some idea of what this looks like if we
think about what a tensor algebra does to a direct sum. Let me just start by writing
down a few terms. The tensor algebra on H,(X) & H,(Y) is

k+H (X)®H, (X220 H,(Y) D H (X))@ H, (YD H (V)R H, (YO H (V)@ Hy (X) . ...

I just want to do some algebra. This algebra will point us to an answer. The first bit,
the bit that looks like T(H,(X)), is the homology of OX¥X. The next thing looks like
T(H.(Y)). Also, there’s a piece that starts out as T'(H.(X) ® H.(Y)). That is, we get
a decomposition

T(H.(X)® Ho(Y)) 2~ T(H (X)) @ T(H,(Y)  T(H (X ANY)) ® ...

This is getting a little hard to tex. This is a piece of algebra. Roughly speaking, we get
a decomposition of T'(H.(X) & H(Y)) as a big tensor product of big tensor algebras
of things gotten from tensoring things together.

Can I realize that by maps of spaces? In fact I can, because we can certainly
map X — Q(XX VvV XY), and certainly map Y in. That extends to a map QXX —
QEX VXEY). If I have two maps Z; — Q(EX VXY), Zs — QXX VYY), I can get
a map fro their product because loop spaces are monoids. So if I want to get tensor
algebras going in, I just need to map things like X A Y”* in. In fact, X A'Y maps
into (XX Vv XY') by taking commutators of the two maps. Part of the Hilton-Milnor
theorem is that this winds up continuing.

8.3 Theorem (Hilton-Milnor theorem). There is a decomposition of QXX V XY) ~
QY x QZY x QB(X AY) x ...
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I haven’t really given a proof of the Hilton-Milnor theorem, or a statement of it.
But I’'m going to give you an instruction kit for figuring out the correct statement and
proof. The idea is that this is a matter of combinatorics. If T could write T'(V & W) as
a tensor algebra on tensor algebras on V, V®® and similarly for W, then I could realize
that easily by taking maps like this easily and forming commutators and stuff. What I
hope that this has at least compelled you to see is that it involves two things: making
maps and combinatorics of free associative algebras. And that’s the thing. That winds
up giving you this decomposition.

Let’s assume something simple. But this is the way to remember this statement.
Let’s say I have a tensor algebra T{x,y}. My goal is to write that as a big tensor
product of other algebras. There’s a trick here. What do we know about a tensor
algebra? A tensor algebra is the universal enveloping algebra of the of a Lie algebra,
the free Lie algebra on x,y. If you give this a Hopf algebra structure by making x,y
primitive, then this Lie algebra is precisely the Lie algebra L {x,y} of primitives. What
do we know about enveloping algebras of Lie algebras? We have the Poincaré-Birkhoff-
Witt theorem.

8.4 Theorem (PBW). If L is a Lie algebra and U is the universal enveloping algebra,
then and I take U — k and filter by the augmentation ideal and look at the associated
graded, then that’s just the symmetric algebra on L.

Up to associated graded, this U is a polynomial algebra. And so that lets me write
U as a tensor product, since a symmetric algebra is always a tensor product. Let’s take
an example.

8.5 Example. Let L be a free Lie algebra on two variables. This has a basis x, y, [z, y], [z, [z, y]], . . . .
You can map the symmetric algebra on all these into the enveloping algebra of L: it’s
not an algebra map though.

So up to associated graded, a tensor product is a tensor algebra is a tensor product
of polynomial algebras. I'm just going to say this and I’'m going to put it together
next time. The Hilton-Milnor theorem says that Q(XX Vv XY) is a big product, over a
basis for the free Lie algebra on two variables, of copies of QX (X" A YY), To do it
properly, I'd have to go into the combinatorics of free Lie algebras. In the beginning
of class next time, I'll answer the original question.

Lecture 9
9/26

81 Hilton-Milnor again

OK, let’s continue. I was sort of telling you about the Hilton-Milnor decomposition.
I don’t want to dwell on it too long. I just want you to understand that there’s a
problem that’s more or less solvable, at least through a range of dimensions. Let me
tell you what the consequence of the Hilton-Milnor theorem is.

Let’s suppose that we have a map o : ¥A — XX, and we have two maps

f,9: 32X =Y,
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and we want a formula for (f + g).a. Of course, f + g is the composite of the maps

X S uxvex 9y,

and of course, we could figure it out if we knew this symbol V.«a. We decided we would
approach this problem by taking the adjoint maps,

A= QEX = Q(EX VEX).

Hilton-Milnor tells us that the space Q(XX VX.X) can be written as an infinite product
of things. It starts out looking like

QXX x QXX x O%(X A X) x (14+O0(XM)),

as long as we're having fun with terms of analysis. I.e., let’s imagine that X is n — 1-
connected. Then O(X”?) means something which is at least 3n — 3 connected. So
if X = S™, then this infinite product would be an infinite product of loopspaces of
spheres of increasing connectivity.
If
dim A < 2n — 1,

then this map only sees the first part, the map into QXX x QX X. We get a series of
maps from A into each of these terms in the product, you see. If dim A < 3n — 1, we
see only the first three factors, and so on. What does that tell us about our original
map XA — XX VXX. Let’'s remember again how the H-M theorem works. We had
an equivalence of (XX V XX) with something else.

The maps of the H-M theorem come as follows. %X goes into XX V XX into two
different ways, and XX (AX) — XX V XX (the Whitehead product of the first two
factors). Then we take loops on all these maps and multiply them together. That gives
the various factors. My interest in this was just to inform you about how something
works without getting bogged down in details. However, the question is something
topologists know how to answer, and it’s a nice answer.

We had this map

a: YA — XX,

and we’re going over here to XX V X X. Let’s suppose that dim A < 3n — 1. Then, out
of this, we get three maps from A into the first three factors, and if we adjoint them
back, we get there maps

YA YX, YA 5 TX, YA - DX A X.

By chasing the diagrams around, or by projecting off of each factors, the first two maps
are the original inclusion maps, and the third map is the James-Hopf invariant. 'm
claiming these two things are the same.

Namely, we can get a map YA — XX A X in two different ways. One is via the
Hilton-Milnor decomposition, as we’ve just seen. The other definition of the Hopf
invariant of o : A — XX was

A—>QEXH2A—>EQEX—>EVXA” — YA S IX AX.
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These two give the same thing. I won’t get into these things. My goal was to give
you the beginning of the answer to this question. The Hopf invariant comes up as the
quadratic term that comes up here, and there are “generalized” Hopf invariants which
give us higher terms. The other terms can be expressed as James-Hopf maps.

The final answer in this range of dimensions is our final formula:

Viea = (11) s+ (i2)sa + [i1,i2]« H ().

So we have to follow the Hopf invariant A — XX A X followed by the Whitehead
product XX A X — oX V XX. Anyway, notice that this is non-linear. This is kind
of the theme of the course. The first two terms are in the stable range, the third
is in the “metastable” range. What we’re studying in the unstable homotopy theory
is focusing on the metastable part. That’s ultimately what makes these connections
between vector fields on spheres and desuspending the Whitehead product.

If we go back to our original problem here, if we had maps

f,9: 32X =Y,
then we find that
(f‘i'g)*a = fea + gia + [f,g]*H(Oz) o

9.1 Example. Let’s do an example, and reconstruct a formula we already know. Let’s
take the Hopf map n : S — S? and compose this with the degree two map S? — S2.
What is the composite S® — S2? We calculated using the mapping cone and cup
products that it would be 47n. As I pointed out in the last class, 2 =141,

2om=(1+1on=mn+n+H() ol =n+n+2n=4n,
since [¢,¢] = 2n and H(n) = 1. And that’s what we knew it to be.

We could do this with other maps as well. The importance of the Hilton-Milnor
theorem is to understand the addition in the wrong variable when you’re studying
maps between suspensions. There’s a book on this. Note that when we study the EHP
sequence, we discover new elements in the homotopy groups of spheres through their
Hopf invariants, which makes this formula very useful.

82 Hopf invariant one problem
We know what the Hopf invariant is. The question is:
Question. For which n does there exist a map

a: S8l gn
with Hopf invariant one?

There are lots of definitions. In this case, let’s define the Hopf invariant of o by
taking the mapping cone S™ U, €2", look at the cohomology of this. If n > 2, this has

a basis x,, xo, in degrees n, and 2n. Then
22 = H(a)xa,.

n

This problem was solved by Adams. The theorem is:

46



Lecture 9 Spectra and stable homotopy theory notes

9.2 Theorem (Adams). Only when n = 2,4,8 does there exist a map « of Hopf
mvartant one.

This would also make sense with mod 2 cohomology, and I could have added n =1
to this list for the degree two map of the sphere S' — S'. But the thing I want to
discuss is the case n > 2.

Now I could just give you the K-theory proof, and I will explain that. There’s a
lot of things to be learned from how one approaches this problem. In a way, Adams’s
original proof, which I won’t talk about, gave a lot more information about what’s
going on with this Hopf invariant. I'm going to try to give similar information when I
discuss the K-theory proof.

Adams’s theorem uses K-theory. I'm going to have to review some things about
Adams operations in K-theory. So let’s discuss the K-theoretic proof.

§3 The K-theoretic proof (after Atiyah-Adams)

So let K be K-theory. If you don’t know about K-theory, I don’t really have time in
this course to really develop it, but you can look at Hatcher’s book “Vector bundles
and K-theory.” Let me just tell you some basic facts.

1. To every space X, we have a ring K°(X). There’s a graded ring K*(X) and
this is a contravariant functor from spaces to graded rings, and it’s a generalized
cohomology theory, meaning the Eilenberg-Steenrod axioms are satisfied, except
for the dimension axiom. I have a long exact sequence for a pair, I have excision,
and so forth, it’s just that the cohomology of the point is a little different.

2. If X is a finite CW complez, then K°(X) is the Grothendieck group completion
of the set of (complex) vector bundles on X. Vector bundles form a monoid under
Whitney sum, and the group completion is the smallest group receiving a map
out of that monoid. That becomes a ring under tensor product of vector bundles.

3. There’s a lot to say. On complex projective space CP", we have the tautological
line bundle L. CP" is the space of complex lines in C"*! and over it you have
the tautological line bundle. In particular, an important element is when n = 1.
Let’s look at CP! = S2 and we want to look at a particular element, 1 — L. So

1-LeK°S?),

which restricts to zero on a point (since L restricted to a point is one), and 1 — L
really lives in reduced K-theory.

4. K-theory satisfies Bott periodicity. And that says that for any X, multiplica-
tion by the element 1 — L € S? defines a map

K°(8?) @ K"(X) — K"(S? A X) ~ K" 2(X)

is an isomorphism. (Also, K 0(S%) = Z.) The K-groups are periodic with period

2. In some sense, K"(X) only depends on n mod 2, but we're going to introduce
some other structure which will break that symmetry.
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5. The amazing thing about K-theory is that the fact that it is a cohomology theory
lets you make a lot of calculations. T’ll try to summarize these things as gently
as I can.

Let me give you some examples of calculations of K-groups. We know that

because a vector bundle over a point is just a vector space. So the monoid of vector
bundles over a point is N, and the group completion of that is the integers.
Something that requires proof is that

K~ Y(x)=0.

This, plus Bott periodicity, implies that

K" (%) =

7 if n is even
0 ifnisodd

That tells us the K-groups of all spheres. We get
kO(SZn) =7, R’—O(S2n+l) —0.

We also want to know something about the ring structure, but let’s leave that for
the time being. So I could deduce something from this. Some version of this is going
to come up later. I want to work out the ring

K°(CP?) =2.

Let’s imagine that we are going to do this by induction on 2. We’re going to study
this inductively on 2, so we’re going to start the induction when 2 is one. Let’s look at
KO(CP") = K°(S?) = Z @ K°(S?) = Z & Z. But we know a little more about it. We
know that the generator of the first Z is 1 and the generator of the second Z is 1 — L,
by Bott periodicity. So I could also say that

K%S* =7 a7,

generated by 1, L. For geometric purposes, if you want to think about K-theory as
telling something about vector bundles, this is a good basis. However, 1,1 — L is a
better basis for homotopy theory.

Let’s work out the ring structure. What is L2? Well, L? has to be a sum of a multiple
of 1 and a multiple of L, and in the basis 1, L it’s a little harder to understand. In the
second basis, it’s easier. Let me point out something.

9.3 Lemma. Let E is a multiplicative cohomology theory and a,b € EO(EX), then
aUb=0.
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The reason for that is that we can split our suspension X into the union Cy X U
C_X, with intersection X. Then

E°(2X) = E°%(2X,C.X) = E°(2X,C_X).

SoaUb € E%EX,Cy X UC_X) = E°2X,%X) = 0. Over here, we can apply
1 — L € K°(S?) has to square to zero. That means

1-2L+1?=0, so L*=2L-1,

which is not easy to see (you can find a geometric argument for it, though).
I guess I'm going to wrap this up by talking about the K-theory of CP2. So in the
K-theory of CP?, let’s look at this sequence

CP! — CP? — 5*,
so that we get an exact sequence
o= K9(8Y — K°(CP?) — K°(CP!) — ...

We've calculated the two extreme groups, and the sequence is actually short exact
because K°4(5%) = K°44(82) = 0. We find

K°d(cp?) =0,
and there is a short exact sequence
0— Z— K°(CP?) — Z — 0,
so that K9(CP?) =Z & Z. So
KYCPH=ZDZSZ.

What I'm going to claim is a consequence of the definitions and Bott periodicity.
But you have to get yourself organized. The fact is, K°(CP?) has a basis given by
1,1 — L,(1 — L)% The element (1 — L)3 = 0. If you're not familiar with K-theory,
this would be a good thing to think through. The other reason this identification is
important is to take the map

K°(5*) — K°(CP?)

and the first thing is Z generated by the square of the Bott periodicity class. It maps
over to (1 — L)?> € K°(CP?). Note in particular that these generators of K°(CP?)
are sums of one-dimensional line bundles. This is an example of something called the
splitting principle in K-theory. We’ll come back and use the splitting principle later.
It’s how you make all calculations with things like Adams operations.
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Lecture 10
9/28

81 Splitting principle

I’'m kind of giving you a crash course in K-theory, and describing some of the ideas hat
go into the K-theory proof of Hopf invariant one. Last time I did a bunch of things
very quickly, and there’s something in K-theory that I’'m going to make use of called
the splitting principle.

10.1 Proposition. If X is a finite CW complezx, and V a vector bundle over X. Then
there exists a map p: P — X such that the following happens:

1. K(P) is a free module of finite rank over K°(X).

2.V is pulled back under p to a sum of line bundles on P.

So as far as K-theory is concerned, if you're willing to pass to finite rank free
modules, you can pretend that any vector bundle is a sum of one-dimensional vector
bundles. This is proved in two steps.

The first thing is the projective bundle formula. That’s the following. Let

V- X

be a vector bundle. Let P(V) — X be associated projective bundle space. If V is a
family of vector spaces parametrized by X, then the fiber P(V), is the projective space
P(V,). If the dimension of V' is n, then the map P(V) — X is a fiber bundle with fiber
CP"~1. On P(V), there is a one-dimensional bundle denoted L — P(V). The fiber of
L over a point in P(V) (which is a point in X and a line £ C V) is precisely the line
£. In other words, all I'm doing is something we talked about for complex projective
space, and we’re regarding this P(V') as a family of complex projective spaces.

So anyway, that line bundle L gives an element z = [1 — L] € K°(P(V). What’s the
projective bundle formula?

K'P(V)) = KO(X) {1,2,2%...,2""'}.

There are lots of ways of proving this. You could imagine proving it with the Atiyah-
Hirzebruch spectral sequence, which we haven’t talked about yet. It’s easier to prove
this directly.

Proof. Observe first that there’s always a map K°(X) {1, z,...,2""1} — K%(P(V)). I
want to regard both sides as functors of (X,V). This map is a natural transformation.
If X is a union of two spaces X = U; U Us, then both sides give a long Mayer-Vietoris
sequence. That’s just because K-theory does, and so this direct sum of n copies of
K-theory does, and because if X = Uy U Us, then P(V) = P(V|y,) UP(V]y,). So both
sides have a Mayer-Vietoris sequence.

Finally, when X is contractible, the map is an isomorphism. That’s just the com-
putation we did in the previous class, the computation of K°(CP"~!). At this point
it’s a standard argument. You finish by induction through a cell decomposition, or by
choosing a nice covering and using a partition of unity or something like that. A
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When X is not a finite cell complex, you have to use the Milnor exact sequence.
The more machinery you use, the easier it is to see this theorem. In equivariant K-
theory, there’s a group acting on everything, I think there isn’t really a good proof
of the result. There’s some little bit of index theory needed to prove this result in
equivariant K-theory. This is pretty easy, but be warned: in equivariant K-theory the
analogous theorem is a little harder. The projective bundle formula is very important
and lets you do all kinds of things. Note that it was really formal.

Back on the projective bundle, let’s call p : P(V) — X. I can take the original
bundle V' — X and pull it back along p. Over each fiber in P(V'), I have a specified
line. So

p"V~L3V,dimY =dimV — 1.

On the projective space of a vector space, the tautological bundle sits inside the constant
vector bundle, and in algebraic topology, short exact sequences of bundles split (e.g.
by use of a metric or partition of unity). So by iterating this process and applying it
to V, we can get the splitting principle.

Remark. You could do this in one go by taking the bundle of flags of a vector bundle.

There’re an awful lot of things that the splitting principle is used for. The use I
want to make of it is the following. We’re going to use it for computations and other
things, but this is a very general construction that always works and for a given X there
might be easier splittings sitting around. The consequence I want is the following:

10.2 Corollary. If 11,15 : K — K are additive natural transformations, and for all
line bundles L, T\ ([L]) = To([L]), then Th = T5.

Slightly more generally:

10.3 Corollary. IfTy,Ts : K — E are additive natural transformations and E*(X) <
E*(P(V)) for all X,V as before, and for all line bundles L, Ti([L]) = T>([L]), then
T =1T5.

That’s just a diagram chase. Given a class [V] € K(X), choose P — X such that
V pulls back to a sum of line bundles. We have a diagram:

K(P) —E(P) ,

]

K(X)—— E(X)
by naturality, which lets us conclude that T7([V]) = T2([V]) as desired.

10.4 Example. Other than E = K, we could take H*(X; Q[u*!]) ~ @, H*™"(X;Q)
where |u| = 2, so that E is complez-orientable. Another class of examples is the
complezx-orientable theories E, those multiplicative cohomology theories for which there
exists z € E2(CP*) such that

z‘E?(cpl)

is the generator of E2(52) ~ E°(S°). T'll come back in the course and discuss complex-
oriented E. You’'ll see why I want to do that in just a second.
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The splitting principle is a really nice thing. If I want to check that two natural
transformations are equal, then you can just check on the classes of line bundles.

Remark. It’s even better. You only have to check on the universal line bundle on

CIP*°, just by naturality. Every line bundle is pulled back from the universal line bundle
on CP*°.

That’s half of how you use the splitting principle. The other half is the following.
I might want to describe a natural transformation by giving its values on line bundles.
I’d like a condition that would guarantee that it was defined more generally. I'll just
tell you. In fact, K(X) doesn’t just inject into K (P), but this map is faithfully flat,
and we have an equalizer diagram

K(X) = K(P) = K(P) ®g(x) K(P).

Anyway, this was supposed to be a crash course in K-theory. I want to tell you
about two interesting natural transformations from K-theory to ordinary cohomology.

82 The Chern character

The Chern character goes
ch: K*(X) —» H*(X;Qu*]), |u]=-2.
It’s characterized by the properties:

1. It’s a ring homomorphism.

2. The Chern character of a line bundle L is

2
et :1+ucl+%+...,
where ¢; is the first Chern class of L. (Objection about the infinite sum.) This
is always a little bit of a funny thing, and I never know how to think about it.
We have
* oo\ _ 1: * n\ __ 1: n+1
H* (CP*) = lim B (CP") = ln Z[«]/ ("),

and when you take the inverse limit in the category of graded rings, you get
a polynomial rather than a power series ring. So as a graded ring, you can
also think of it as a power series ring. Secretly, every time we talk about a
cohomology theory, we mean to take the inverse limit over finite subcomplexes
(modulo the Milnor sequence). So when I write H*(X;Q[u™!]), then I really
mean an appropriate inverse limit of graded rings.

If you don’t know what the first Chern class is but know that line bundles are
pulled back from maps into CP*°, then you pull the (well, one of them) generator
of H%(CP*>) back to it.
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83 The Adams operations

For k € Z, we have the Adams operation:
1. These are maps ¥¥ : K(X) — K(X) (really K°(X)) which are additive.
2. They satisfy ¥, (L) = L®*, and therefore are multiplicative.

We’re going to do a lot with Adams operations. They are the first things we are going
to use to get new information about homotopy groups. Let me set up how these things
are going to be used. I want to put these things together, and to connect these things
to the Hopf invariant. We’re going to check other properties of the Adams operations
in a minute, but let’s look at these two properties.

What’s the operation W2(V)? If V is a sum of line bundles Ly & - -- @ L,, then

VA(V)= L3+ -+ L2,
There are some other things I could form out of V. I could take
2
AV => LiL;.
i<j

There is also
Sym2V = Z LiLj,

1<j
and
2
Sym?V @ /\ Vo~ V92,

But notice that if we subtract these things, we get

2
Sym*(V) = \(V) = ¥a(V) = Y L.

Let me just say also that
(V) =V® mod 2.

On K-theory, as follows from all this, we find that:
10.5 Theorem. V?(z) = 22 mod 2 for z € K°(X).

That’s one fact we get from this.

84 Chern character and the Hopf invariant

The other thing has to do with the Chern character. Suppose now that I have a map
8?1 5 8™ m even,

and we can form the mapping cone Cy = S™ U e?™, which maps to S*™ by crushing
the bottom cell. We get the Barratt-Puppe sequence

S 5™ — Sy = 5P,
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and for both K-theory and cohomology, we get a little short exact sequence of groups
0 — K°(S%™) = K°(S™ U e®™) — K°(S™) — 0.

The outside groups are Z. We can also get the same thing if we take the sum of all the
even cohomology groups. We get a ses

0 — HO(S*™ Qu*")) — HO(S™ U™, Qut']) — HO(S™, Qu*'] — 0,

and these fit into a commutative diagram. The claim is that you can use K-theory to
get the Hopf invariant just as well. We have a commutative diagram:

0

KO(S2m) KO(S™ U e?m) Ko(§™) ——0

| | |

0—> ﬁO(SQm’ Q[uil]) o f_jO(Sm U €2m,Q[ui1]) . I:TO(Sm,Q[Uﬂ] S

Now if z is the generator of K%(S?"), then x is pulls back under the crushing map
CP" — S?" to (1—L)". This goes under the Chern character to (1—e“)". Expanding
out and using ¢} = 0, we get for this (—uc;)™ for the Chern character. So ch sends a
generator of K°(52™) to the integral generator of H°v*($2™ Q[u*!]). That means if I
start with a generator in K°($2™) and lift it to some @ € K°(S™ U ™) and calculate

the Chern character
@ = H(f)b

(these notes are getting messy; I need to fix them).

Conclusion: the Hopf invariant, at least up to sign, can be calculated either using
K-theory or cohomology. So that’s a rather simple point. It appeared to depend on
a lucky definition of the Chern character, but the Chern character is really defined to
send generators to generators on spheres.

Lecture 11
8/1

81 The e-invariant

Today I want to present the Atiyah-Adams proof of Hopf invariant one. I want to make
a little more of a story out of it to set us up for things that we’re going to do later.
There’s a general method of showing that a map of spheres isn’t trivial. You start
with a map
fosmtEt g

and consider the mapping cone S™ U e"*. Suppose we have a cohomology theory F
and one of two things happens:

1. Either f is induces a nonzero homomorphism in E*-cohomology.

2. Or E*(f) = 0.
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If it’s nonzero, then f is not null. The classic example is if E is ordinary cohomology
and the map is the “E-degree.” If E*(f) is zero, then we have a short exact sequence:

0 — E*(S"tk) - E*(S" U e™™) - E*(S™) — 0,

and if E is a multiplicative cohomology theory, then this is a split exact sequence.
The middle term is non-canonically the sum of those two. It’s split in the category of
E*(x)-modules. But we can often equip E with extra structure. You can look for extra
structure on E*(X) and try to regard this as a sequence in a different category. If
you think about this, you already do this in the first semester of an algebraic topology
course. You might study the attaching map of a cell in CP? and prove that it is not
null by remembering that you have a cup product. One of the first things that you do
is to introduce a cup product, and you can look at these as algebras rather than just
as modules.

This is the beginning of a great idea that was systematically exploited first by
Adams, then by many other people. This is the beginning of the information you see
in the Adams spectral sequence. This wasn’t the first instance of the ASS, but it’s the
easiest one and you can get a good feeling for what’s going on from looking at it.

We’re going to take ' as K-theory and the enhanced structure will be the Adams
operations. Eventually, we're going to focus on showing that a certain structure that
can’t exist. First I want to talk about the general algebraic structure.

OK, so since K-theory is concentrated in even degrees, life will be easier if n, k are
even. Let’s change the situation a bit and double all the degrees, and so for a cofiber

sequence
SQ(n+k)—1 N SQn N S2n Ue2(n+k) N S2(n+k)’

and since K-theory is concentrated in even degrees, the degree of f in K-theory is
automatically zero and we get an exact sequence

0 — KO(S2(mh) — KO(§2m U 2Ry — KO(S%m) — 0.

So we have that short exact sequence. Now the outermost groups are the inte-
gers. Also, we know that the Adams operation W' on I?O(SQ") by I™ and it acts on
K 0(52(”+k)) by "%, We can regard this as an exact sequence in some category of
abelian groups with Adams operations. We’ll denote these two objects by Z(n) and
Z(n+k).

What did we produce? We produced an element e(f) (“e¢” for extension) in
Ext!(Z(n),Z(n + k)) where the Ext is in the category of abelian groups together with
Adams operations. The K-theory functor takes values in this category of “abelian
groups with Adams operations” (where “Adams operations” is defined below).

11.1 Definition. An abelian group with Adams operations is an abelian group
A together with morphisms ¥! : A — A,l € Z which commute with each other and
satisfy UlwF = Wk,

If we wanted to be really careful, we might restrict the category further. For
instance, the K-theory functor doesn’t give an arbitrary group with Adams operations.
Remember the Chern character, which mapped the K°(X) into €@, H*"(X;Q) and
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was an isomorphism mod torsionﬂ You can check from the splitting principle that the
Adams operations on @ H?"(X;Q) are given by W! =" on H?". In other words, the
action of the Adams operations is semisimple on rational K-theory and the grading of
the cohomology can be extracted from them. In other words, if A comes out of the
K-theory of some space, then A ® Q is a big sum of copies of Q(n).

There are a lot of situations in which it’s easier to define K-theory than cohomology,
for instance it can be defined for associative algebras. A lot of people have studied this
formula in different types of cohomology that come up in algebraic geometry.

If we were really to stop and to be careful about what category this Ext was living
in, then we would at least consider abelian groups with the property that when you
tensor with the rationals the action becomes semisimple.

§2 Ext’s in the category of groups with Adams operations

How do we calculate this group? What is Ext!(Z(n),Z(n + k))? We're going to do a
little with this answer as we move forward. I’'m not going to do the entire calculation
as we move forward. Let’s imbed that group in a short exact sequence.

We have a map

Zin+k) = Qn+k)— Q/Z(n+ k),

which gives a long exact sequence of these Ext groups. There is a long exact sequence,
Hom(Z(n), Q(n+k)) — Hom(Z(n), Q/Z(n+k)) — Ext}(Z(n), Z(n+k)) — Ext*(Z(n), Q(n+k)).
The thing we’re interested in is that we’re split between two groups which are rational.

11.2 Lemma. When k # 0, both the outside groups are zero. That is, Hom(Z(n), Q(n+
k) and Ext'(Z(n),Q(n + k)) are zero.

Proof. The hom assertion is kind of obvious. Namely, 1 would have to go to some
assertion a € Q(n + k), and thus I would have to go to I"**a which is a contradiction.
So the Hom group is clearly zero. What about the Ext group? For the Ext group, it’s
equivalent to take Ext!(Q(n), Q(n + k)). This requires a bit of justification.

Let’s not get bogged down. I was deliberately a little vague about the category, and
we’ll clarify this later on for some of the further calculations. We have a short exact
sequence

0—-Qn+k)—E— Q(n)—0,

and let’s choose a basis €1, ez such that e; is the image of the basis element of Q(n + k)
and e projects to a generator of Q(n). Then

ln+k *
I _
v= o)

and we can find a unique new basis by choosing an eigenvector for "% which maps to
the generator of Q(n) and that splits the sequence. So you need a little linear algebra.
Note that the U! commute so can be simultaneously diagonalized. The fact that they
commute is important for running this proof. A

'Because ch is a natural transformation of homology theories which is an isomorphism on the
spheres.
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I wanted some of these things in our minds for later use. So the question is, we now
know that this Ext group can be described as

Hom(Z(n),Q/Z(n + k)) ~ Ext!(Z(n), Z(n + k)).

That tells us something right away. Whatever this is, this is a subgroup of Q/Z,
consisting of things compatible with the Adams operations. So we find that this group
is cyclic.

But what is this group? A homomorphism Z(n) — Q/Z(n + k) is determined by
where it sends 1, to some element © € Q/Z(n + k). What does = have to satisfy in
order for the map to be a homomorphism? For all n,

(I"TF — M2 =0 € Q/Z,

which is what it takes to make the diagram commute. Or equivalently, the denomi-
nator must divide all the numbers "% — [?. In other words, we find that this group
Ext!(Z(n),Z(n + k)) is cyclic of order

ged.(I"(IF -1)).

What is this greatest common divisor?

That turns out to have a rather nice answer. We're going to explore this as time
goes on. But I want to get to the Hopf invariant one thing, but I suggest: if you've
never studied this stuff, it would do you good if you tried to actually answer this
question—Dbefore I tell you the answer in the next lecture. It has a beautiful answer.

Let’s simplify this a little, though. I might as well work one prime at a time. Let’s
localize everything at 2 for instance. I want to localize at 2. I just want to take | = 37
and look at what numbers we get. Now I want to know, what’s the largest power of 2
that divides

"Ik —1) = 3% (3% — 1),

for all [? (Here n,k are fixed.) We're going to see that this solves the Hopf invariant
problem.

Obviously, this is equivalent to finding the largest power of 2 that divides all the
numbers 3% — 1. Let’s look at numbers of the form 3™ — 1. If m is odd, then we can
write this as (3 — 1)(1 +3 + --- 4+ 3™~!) and the second term has an odd number of
terms, so 3™ — 1 is divisible by one power of 2, at most. So when m is odd, the largest
power of 2 dividing 3™ — 1 is just 2.

What happens when m is even? Let’s think about 3™ — 1 now, and that’s the case
as

9m1:(1+8)m1:8m+(’;>82+....

There’s a little thing to check. You have to check that the remaining terms are highly
divisible. But we have to claim that this turns out to be 8m(odd number) so that

(32m — 1) = 228 « 6dd number.
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If you go back, you find that if we localize at 2 and consider [ = 3/, we find our answer
is:

2 if k is odd
3+ wva(y) if kis even.

That’s the 2-power part of the g.c.d. of all these numbers 3™ (3% — 1), over all j. This
is something we need to know for several reasons. So this gives us an upper bound on
the size of this Ext group. If I just look at the power of 2 in the denominator, this
gives us a bound on that group. I really want to explain this proof of Hopf invariant
one, even in five minutes.

Lecture 12
10/3

81 Hopf invariant one

I meant to do the non-existence of elements of Hopf invariant one last time. Let’s do
that now, and I’ll discuss it from a couple of different points of view. I’'m going to
suppose we have a map

f . S4n71 N SQn
and we’re supposing that the Hopf invariant of f is one. Actually, we just need to
suppose that it is odd. I mentioned that using the Chern character, we could calculate
the Hopf invariant in K-theory and get the same answer. We get a short exact sequence
in K-theory B B B
0— K°8') - K°(S* u ey - K°(S?) =0
which was some extension
0—Z(2n) - E — Z(n) -0

in the category of abelian groups with Adams operations.
Call the generator of Z(2n) b, and choose some element a € F which projects to a
generator of Z(2n). We have

for H(f) the Hopf invariant of f.
We recall also that
U%(a) = a® = H(f)b mod 2.

What is W2(a) really? Well, that’s a multiple of a plus a multiple of b. That multiple
of a has to hit 2"a in Z(n). So

¥2(a) = 2"a + mb

and we know, by reducing mod 2, that m is odd and m = H(f) mod 2.
All these groups are localized at 2, so we might as well divide by m and assume
m = 1. 'm just doing that so I have one fewer symbol in my notation. So we have

¥?(a) = 2" + b.
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Here’s how the Atiyah-Adams argument goes. I'm going to give it, because it is
quite simple, and then I'm going to reflect on it. So we also have an action of ¥3. So

U3(a) = 3"a + rb.
Now we use the fact that these commute. Let’s calculate W2(¥3(a)). We get
T2(T3(a)) = U*(3"a + rb) = 3"(2"a + b) + r2%"b.

Also,
T3 (V% (a)) = 2"(3"a + rb) + 3*"b.

The coefficients of a match up (as 6™). We're supposed to get
6"a 4 (3" + 22"r)b = 6™a + (2"r 4 3*")b.
I get the following equation. I get that
(22— 2")r = (3% — 3",
and again, we're localized at 2. So we get
2"(odd)r = 3"(3" — 1),

and in order for this to have a solution, 2" must divide 3" — 1. And that turns out not
to happen very often. We worked out the power of 2 dividing this.

If n is odd, then 3" — 1 = 2(odd) so n = 1 is the only possibility. If n = 2k is even,
then 32% — 1 = 8k(odd) as we checked. So we have to have that

2%k | 8k,

and that’s not going to happen very often—in fact, let’s just check when that happens.
That happens for k = 1, and k£ = 2, but we don’t make it for k¥ > 3. Why is that? Just
look at the 2-adic valuation of each side. On the left we get 2k and on the right we get
3 4+ vo(k). So that only happens when k < 3.

12.1 Theorem. There can only exist maps of Hopf invariant one in the dimensions
53 — 82, 87 5 84, S5 5 87,

That’s nice, that’s quite, that’s clever; if you only want to know the answer to
Hopf invariant one this is good. We’re going to come back and say more about Hopf
invariant one. Let me just tell you how to think a bit more systematically about what’s
going on here. Remember I talked about this e-invariant that we could define. There’s
something traditionally called the e-invariant and I'm slightly modifying it, so let’s call
it the e-invariant.

12.2 Definition. The é-invariant is the Ext!(Z(n),Z(2n)) in the category of groups
with Adams operations.
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We determined that this Ext! was a cyclic group of some order. The Hopf invariant
one thing is saying somehow something about the order. I’'m just going to reproduce
more or less the same calculation but put this in more or less the same context.

I only want to consider W2, U3, These are generating monoids. This is like Ext over
the algebra Zl[t1,t2]. How do I calculate an Ext group like that? In general, I would
calculate Ext in this category as the cohomology of a certain complex. In other words,
Ext(M, N) can be calculated by taking the complex

Mgl
Hom(M, N) ——Hom(M, N)
lm%wg lmng
M_\yN

Hom (M, N) 2—"Hom(M, N)

(add this stuff)

If I have two modules over a polynomial ring M, N, and M is free as an abelian
group, then you can compute Exté[t](M, N) by resolving M by M ® Z[t]. There’s a
little bit more of a story here, and I should tell it in a proper context. Let me come
back. This was calculating the Ext groups in the category of modules over a polynomial
ring in two variables.

Anyway, I could also calculate Ext just with W2, or just with W3,

Alright, let’s do the one we’re looking at. I want to calculate

Ext!(Z(n), Z(2n)).

What does that diagram work out to be? It looks like

782

L_(SZ”—?* ¥ —3m)
(22n_2n

b, —

Everything is implicitly localized at 2.
The Ext group we calculate out by taking the 1st cohomology of this complex. Well,
we can compute this by taking the horizontal cokernels. We get the map

z/2" "5t 7 /9m

and the kernel of that map is the Ext group. How do I calculate the element that I'm
looking at? Well, let’s break this into a couple of e-invariants.

I'll call this temporarily the ep-invariant, which will be an element of Ext}l,2 (Z(n),Z(2n))
and an element e3 € Exty,(Z(n),Z(2n)). How do I calculate these? If you think about
it, you calculate ey of a sequence

0—Z(2n) - E—Z(n) =0

you choose an element a hitting 1 in Z(n), call the image of 1 in E b, and evaluate
U2(a) = 2"a + egb. If you think about the definition, that is the number es.
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Our assumption on Hopf invariant one was that ¥a(a) = 2"a + (odd)b. So e2 is a
generator of Ext!. But then—I'm just repeating the same calculation—the generator
of this group doesn’t go to zero there. That does not extend to an element of Ext! over
the polynomial ring in two variables. I've just restated this calculation in a slightly
richer algebraic context.

There are things to learn from this. This element of Hopf invariant one is trying
to live here (points) in this Ext! term, but it doesn’t live here. That’s an important
thing in homotopy theory. I’ll come back and expand on this sometime later. There’s
something more important to understand here. The picture is that there is an element
which is something which wants to be an element of the homotopy groups of spheres,
but supports a differential.

What I really wanted to do today—I wanted to expand slightly on the Atiyah-
Adams argument and expand on this argument—was to turn to calculating these Ext
groups, over all the Adams operations. And again, I haven’t honestly formulated the
correct category for Ext. I want to start doing that now.

Let’s go back to the thing I was talking about Monday. We studied

EXtAdams/ops (Z(m) ) Z(TL)) :

When m # n, that was the same as

HomAdams (Z(m) ) Q/Z(n))

and that’s certainly a subgroup of Q/Z. We were trying to work out the order of
that subgroup. So we figured out, by an elementary calculation, that a fraction p/q
(reduced) is in this subgroup if and only if

q| k™ — k", Vk.

So we need to figure out the g.c.d. of all these numbers. We need some mechanism for
calculating that. That’s kind of a cool problem, and I think it’s kind of cool that it has
a solution. It has a solution that’s expressed in two different, very elegant ways. I'm
going to talk about one of them today.

So the first thing I want to do is to study this problem one prime at a prime. I
might as well try the following: for each prime [, let’s figure out the largest power of [
dividing k™ — k™. Equivalently, we’re calculating

HomAdams (Z(m) ) (Q/Z)l (n)) .

I don’t want to over-motivate this. If we sat down and tried to solve this problem, you
would discover this next move yourself. But it’s useful to know. I want to separate
these Adams operations into those relatively prime to [ and into [ itself.

For k relatively prime to [, there’s this action U* : (Q/Z); ~ (Q/Z);. It’s an
isomorphism. Moreover,

Hom((Q/Z)1, (Q/Z)1) = Zy

is the l-adic numbers. The number-theory thing you can check is that for (k,l) = 1, the
action of k — Wy, gives me a function from the integers prime to [ into Aut((Q/Z);(n)),
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and that extends a continuous action of Z;. This is the thing that makes this problem
a little easier to solve. So what is the structure of Z;?
The group Z;maps to (Z/1)* with kernel the 1-units, 1 + [Z;. Two things happen.

1. If [ is odd, then (Z/1)* is cyclic of order [ — 1. The kernel 1+ [Z; is a pro-I-group
and it’s isomorphic for [ odd (by the logarithm) to the Z;. So there’s a short
exact sequence

02 -7 —-Z/(l-1)—=0

which splits. The [ — 1st roots of unity are in Zj. There are a lot of ways of
making this split. Anyway,

7~ (Z)1—1) x .

2. When | = 2, the structure is a little different. Then the 2-adic units are isomorphic
to Z / 2 X Zs.

It makes the story a little easier to tell if you work with the l-adics. Now, the
point is that we can phrase this question somewhat differently. The largest power of [
dividing k™ — k™, (k,1) = 1 is also the largest power of | dividing A" — A" where X is
a topological generator for Z; (at least when [ is odd). Class is almost over, so I just
want to look at this. What is that number? So now A" — A" = A\"(1 — A""™") and call
the number 1 — A7 = k.

What happens? I'm just supposed to take A* and figure out how close to 1 it is. If
I —11k, then \* =1 mod I. Suppose k = I"(I — 1), then the power of [ is that one.
We're out of time. I’'m going to put these ideas together in the next class.

Lecture 13
10/5

Let me just start today by correcting the mistake made yesterday and slightly reex-
plaining something I did. We were looking at maps S2("tk)=1 _ 627 and we wanted
to understand these. The e-invariant of this was an element of a cyclic group of
order ged(m™* — m™),en. T described how you calculate that, but I think I made it
a little complicated.

Let’s just look at an example and get some ideas. Let’s say we are looking at a map
59 — S8, In that case, we want the greatest common divisor of the numbers m> —m3,
or m3(m? — 1). If you're trying to compute this, you might start writing down some

numbers.
1. Iif m =3, I get 27 x 8.
2. If m = 5, then we get 53(24). That tells us that the g.c.d must divide 24.

3. If m = 7, then we get 73(7% — 1), and that doesn’t improve the g.c.d.
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Now we get the idea that the g.c.d. in this case is probably 24. So what are we doing
when we check that? Now we have some number m and want to look at m3(m? — 1)
and we want to check that this is divisible by 24. There are two cases. One is where
m is prime to 2,3, so that m € (Z/24)*. So it’s equivalent to saying that m? = 1
mod 24. That’s easy to check. That’s also equivalent to saying that m? = 1 mod 3
and mod 8. That’s equivalent to saying that (Z/3)* has exponent two and (Z/8)* has
exponent two. If you pursue this, and I won’t, you can see just by thinking about it
naively that this reduces to a question about the structure of the units in (Z/p’)* for
some j.

Or equivalently, the structure of the group Zj of p-adic units, which is where we
arrived last time. What was it that I had said wrong last time? I was writing (for A
the topological generator of 1 + pZ,)

Zp/()‘j —1), p>2
and the claim is:
1. This is zero if (p— 1)1 3.
2. If j = p'(p — 1)m with (m,p) = 1, then this is cyclic of order Z/p*!.

I left it to you to work this out.

Now notice that I sort of left off something with the 24 business at the start. What
about the case of m dividing 2 or 3?7 When m = 2, we get 23(22 — 1) = 24, so we're
also good, and if m = 3, then that’s the one I started with. But those numbers 2, 3 are
slightly different, because they’re not units mod 24.

In general, the two factors of the expression

m3(m? — 1)
play two different roles. To explain that, let’s try to understand what happens under
suspension.

81 Suspension

Given
f : S2(n+k)—1 - S2n
I suspend it twice. Then I get X2 f : §2(n+1+k)—1 _y 62(n+1)  Tet’s ask a question:
What happens to the e-invariant of f7

To answer the question, recall that the e-invariant was defined by looking at the
short exact sequence

0 — Z(n + k) — K°(5?" U 2" +k)) 5 7(n) — 0.

We take a generator 1 € Z(n + k) mapping to b in IN(O(SQ” U e2("tk)) we take a in the
middle hitting the generator of Z(n + k), and we study how ¥,,(a) = m™a + e(f)b.
(Sort of: e(f) is really an extension class.)
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Now, when we suspend, we get a new exact sequence
0— Z(n+1+k) — KO(S2HD) y 24140y 5 70 4-1) — 0,

and we can take the generators of the middle group to be the double suspensions ca, ob
of a, b previously defined.
Let’s make some remarks about double suspension. The double suspension map

goes
Bott

KO(X) = K*(S? A X) =~ KY%S?AX)
and this map sends a bundle to its multiple by 1 — L. In other words, ¥, of a double
suspension ox is moW¥,,x. That is,

U, (o) = mo (V).

So ¥, does not commute with suspension: it does so up to this factor.
So we find from this:

U, (oa) = mo¥,,(a) = moa(m"a+ e(f)b) = m" (o (a)) + me(f)o(b).

(Note: e(f) should really be e,,(f) here, and be a function of m.)
Anyway, the point is:

13.1 Proposition. e(of) is the image of e(f) under the map
EXtA dams (Z(n), Z(1 + k) = Extiqams (Z(n + 1), Z(n + 1 + k))
given by tensoring an extension with Z(1).

Here’s what 1 wanted to say about this. If you play through the calculations, the
e-invariant is in some cyclic group of order gedm™(m* —1). When I suspend it, then we
change it to gcdm™*!(mF — 1). This number is coming as a product of two relatively
prime things. What you're supposed to come away from this saying is that m* — 1
has to do with stable homotopy theory and all the unstable information is contained
in the first factor m™. This little discussion was supposed to arrive at this very simple
observation.

Let’s just illustrate this for a second. We were looking at something in the 3-stem.
We were looking at something of the form S2("+2~1 _ §27 and I was thus looking at
the ged of the numbers m™(m? — 1). I picked n > 3 and in that case the g.c.d. was 24.
But if n = 2, then the g.c.d of the numbers m"(m? — 1) for m prime to 2,3 is still 24.
If I put in m = 2, then I get 22(3) = 12. So the e-invariant is not the generator.

Conclusion: if I have a map S — S*, then the e-invariant of f must have order 12.
If T went down to S® — S2, then the e-invariant would have order 6. There are factors
of two that we are losing because we are looking at complex and not real K-theory.
We're going to revisit this in a couple of weeks. The point is that the m* — 1 is telling
you stable stuff, and the factor m™ is telling you about the sphere of origin.

Ultimately this is going to feed in and tell us some properties of the EHP sequence.

Here’s an interesting reality check. We know for which & a map like this is in the
stable range. We know that a stable range S2("*%)—1 _ 627 happens when k < n and
that corresponds to something about the g.c.d. of these numbers, which you might try
to check.
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§2 The J-homomorphism

We need more maps between spheres. The most understandable part of the homotopy
groups of spheres is the image of the J-homomorphism. I'm going to start with the
special orthogonal group SO(n). Given a linear map R™ — R™ which is an isomorphism,
I can form a map S™ — S™ by taking one-point compactifications. This gives a map

SO(n) — Q"S™.
These fit inside each other; there are commutative diagrams:

SO(n) Qnse

| |

SO(n+1) ——= Qntigntl

We can then go to the limit. We get a map
lim SO(n) = SO — lim "™ & QS°.
We get a map
7,(S0) = m,(QS") = w3 (5°).

Alternatively, we get a map
—0 ) s
KO (711 — 75(59).

We know the K O-groups of spheres, and we don’t know the homotopy groups of spheres.
Amazingly, one knows exactly the image of the map. The image is a summand, it
represents the only part of the homotopy groups of spheres which is nontrivial but still
really understandable. I want to spend the next week talking about this map and how
Adams analyzed it. Then we’re going to start talking about vector fields on spheres.

There’s another thing about the J-homomorphism that we’re going to exploit, and
that comes back to this picture. We had this map

H: Q8" — gt

which had the property that if we localize at 2, the homotopy fiber is S™. Looping
n + 1 times gives a map: Q187+l O+l g2n+l  We have a commutative diagram,

SO(n) Qnse

| X

SO +1) — = guiigntl

l |

SO(n+1)/SO(n) ~ 8" —— qnt+1 g2n+1

The bottom map is the adjoint to the identity S?**! — §2n+1,
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So there’s something better. There’s the stable J-homomorphism, but there are
all these unstable J-homomorphisms which fit together with the EHP sequence. The
J-homomorphism is even better. I get an EHP style spectral sequence for the SO(n)
groups mapping to the usual EHP spectral sequence and in the end it converges to
the stable J-homomorphism. In this course, we’re going to use this to get a lot of
information. It’s going to tell us a lot about the EHP sequence. By the end of the
course, we’ll have understand Mahowald’s picture of how the image of J behaves in
the EHP sequence. It’s a picture that represents the most complicated calculation that
you can do that most people can understand. It makes a pretty picture and it’s what
inspired the development of chromatic homotopy theory. This will take us about a
month to get on board, and we’re still going to have time to talk about chromatic stuff.

Anyway, we talked about this P map which connects around. It’s a map

Qn+252n+1 — Qngn

and there’s a map
QS™ — SO(n).

This fibration SO(n) — SO(n + 1) — S™ gives a definite map S"~ ! — SO(n — 1)
and it maps to 2"S™ so we get a map S"~! — Q"S™ which is the Whitehead product.
There’s a lot of beautiful geometry going on here.

The last thing I’ll say about this is, what is this fibration SO(n) — SO(n+1) — S™?
What’s the fiber over a point in S™? Given a point in S”, the fiber over that point
is all orthonormal bases of the orthogonal complement, appropriately oriented. That’s
the same thing as the set of all oriented orthonormal bases of the tangent space of S™
at that point. So this bundle SO(n) — SO(n + 1) — S™ is the bundle of oriented
orthonormal frames of S™. Anything that you do in this kind of homotopy theory can
be expressed in terms of the tangent bundle of the sphere or the frame bundle. What
it often buys you is that there’s some really weird elementary way of describing some
question about stable homotopy theory in terms of the geometry of the sphere. Some
of these are interesting, some go kind of nowhere. For instance the question of dividing
the Whitehead square by 2 on the sphere is equivalent to asking, if I have the bundle of
pairs of orthonormal vectors over the sphere, when is there a homotopy of the identity
to the self-map which switches the two vectors? Starting in the next lecture, we’ll
investigate this J-homomorphism. Once the tangent bundle to the sphere is in there,
lots of questions about homotopy groups of spheres will have formulations in terms of
geometry. The vector fields on spheres question is related to the sphere of origin of the
Whitehead product.

Lecture 14
10/10

81 Vector fields problem

I introduced the J-homomorphism last time. There are a number of things to say
about it, but I think that if we talk about the vector fields problem first, some of those
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things might come out more naturally. So we’ll start with the vector fields problem.
This is the vector fields problem.

Question. What is the maximum number of linearly independent vector fields on a
sphere S™~1?

Let’s just think about this. What is a vector field on a sphere? The sphere sits
inside euclidean space,
Sl ey RP

and a vector field is just a continuous way of assigning a tangent vector to the sphere
at each point. A vector field is a function

v:S" SR

such that v(z) is tangent to the sphere at z at each 2 € S*~!. The tangent space at x
is the orthogonal complement of x in R™. So a vector field is a function

v:S" L SR

with the property that
v(z) Lz, Vres L

Of course, a sequence {v1,...,v;} is linearly independent if the sequence you get
by evaluating at any z € S" ! is linearly independent in each tangent space. So for
instance, a single vector field is linearly independent if and only if the vector field never
vanishes. So just coded in the statement the vector fields have to nowhere vanish.

Now, if I have a linearly independent set w1, ..., v of linearly independent vector
fields, we can use Gram-Schmidt to make them orthonormal. We can get a new linearly
independent set of vector fields 77, ..., 7, which are orthonormal. We could ask in the
vector fields problem for the maximum number of orthonormal vector fields on the
n — 1-sphere.

Let’s turn this into a homotopy theory question. What are we asking now? Let’s
look at the orthonormal case. I'm sending

T U1y...,Uf
such that v; L x and the v; are orthonormal. In other words, the sequence x,v1,...,vg
is orthonormal. It’s also the same thing as saying that vy, ..., vg, x is orthonormal. We

can phrase that in terms of a mapping problem.
Let me define:

14.1 Definition. The Stiefel manifold V,, ; is the space of orthonormal ¢-frames in
R™. As a set, it is the set of all sequences v1,...,vy € R™ which are orthonormal. T
want to make this into a space, and we can think of it as imbedded in the space of n x ¢
matrices. It is the space of n x £ matrices such that the colums are orthonormal.

14.2 Example. The Stiefel manifold V,, ,, is the set of n-by-n matrices whose columns
are orthonormal, so that’s O(n).
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There are a lot of other ways of writing this.

14.3 Example. V), ; is the homogeneous space O(n)/O(n — £). That’ll play more of
a role when we start talking in more detail about Stiefel manifolds. It’s a little bit
obvious when you think about it, but we’ll come back to it in a couple of days.

So this is a space, and I’'m going to claim various things about the point-set topology
about it. They're all very believable, but the details are important for various claims
I’'m going to make, in particular for various claims I'm going to make about the J-
homomorphism. I'm going to give you detailed proofs in the next lecture or the one
after that.

So we have a map

. -1
p'Vn,k-I-l — S" s (vl,...,vk+1)f—>vk+1.

This map is a fiber bundle. It’ll be actually important for us later to really prove that
— to write down a local trivialization. What’s the fiber? What are we asking over
here? We're saying;:

14.4 Proposition. S™! has k linearly independent vector fields if and only if the map
Vak+1 — S™1 has a section.

We're going to come back and do a lot more with these Stiefel manifolds. But since
this is a fiber bundle, having a section is the same is the same as having a section up
to homotopy, and that’s some statement about m,_1 of this space. The real story of
the vector fields manifold is revealed by the topology of these Stiefel manifolds. But
we’ll come back and discuss that later.

So let’s look at some examples of vector fields.

14.5 Example. The circle S' has one vector field which nowhere vanishes. If I wanted
to write down a formula for it, the vector at z € S' could be iz: we could use the
complex numbers to get a perpendicular vector at x.

14.6 Example. Similarly, $?"~! has a vector field: I get that by thinking of $?"~1 C
C™ and sending a vector z to the orthogonal vector iz (so we get a 2-frame z,ix).

That tells us that odd spheres have nowhere vanishing vector fields. You probably
learned in the first semester of algebraic topology that S?" has no nowhere vanishing
vector fields. That’s usually proved very early in the course, and I want to come back
and tell you the real secret of that proof once we understand a little more about Stiefel
manifolds.

14.7 Example. S® C H (the quaternions). I could use quaternionic multiplication to
send
x> (iz,jx, kx)

which gives three vector fields on S3.
14.8 Example. More generally, by regarding S*"~! ¢ H", we find that S*~! has

linearly independent three vector fields.
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Finally, there are the octonions Q@ of Cayley numbers. As a vector space,
0 ~R®

with the structure of a division algebra by octonionic multiplication. The easiest way
to describe the multiplication here is to draw a picture of the Fano plane. You label
the vertices of the Fano plane e; up to ey. And then you have to put a cyclic ordering
on the vertices in every one of the lines. A basis for the octonions is 1,eq,...,e7r and
the rule is that any three in the line multiply like the quaternions, and e? = —1. It’s
easy then to check that this is a division algebra. If you multiply an element by its
conjugate, you get something nonzero. The multiplication is nonassociative, but the
table is pretty easy to write down.
We can use this to give S7 seven vector fields.

14.9 Example. S7 has seven vector fields sending
= ex,...,erx

and more generally S® ! has seven vector fields, by thinking S8 ~1 ¢ OF and sending
a vector  — (e1x,...,e7x).

These are the easy vector fields. There are two things here. Algebra is sort of good.
Algebra told us that if we had a bunch of vector fields on one sphere, we get them on
lots of spheres. You can prove that in topology and it uses an important map.

14.10 Proposition. If S"~! has (at least) k linearly independent orthonormal vector
fields, then S™=1 also does.

Proof. The idea is this. Let’s induct on ¢. Write
]Rné ~ R" x Rn(ﬁfl)

and the unit sphere S™~1 ¢ R™. That comes to us as the join of two other spheres:
S™=1 and 71, We can write

z=cosbz +sinfy, xec S ye DL

The idea is that if there are k vector fields on each of the two spheres in the join, I can
take the linear combination with cos @ and sin 8 of them.

Namely, if vy, ..., v are vector fields on S™ ! and wy, ..., w; are vector fields on
Sn=1)=1 Then sending

(cos Oz + sin Oy) — (cos Ov;, sin Owy;)

gives k vector fields on S™1,
A

Ioan James thought about this and realized there was an interesting map going on.
I really like this map, although it got subsumed by later technology. You can use this
map to give a simple proof of the Adams conjecture. James called this the intrinsic
join. That’s a map
Vn,@ * Vm,é — Vner,f'

It does just what I said—it’s just this same formula.
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14.11 Definition. Recall that X Y is X xY x [0, 1]/ ~ where the equivalence relation
is that X x Y x {0} is crushed to X and X x Y x {1} is crushed to Y.

This homeomorphism
Snfl * Smfl ~ Sernfl

sends (x,y,0) — (zcosf,ysind). Joining with SY is the unreduced suspension and
the join has the homotopy type of the suspension of the smash product. Anyway, it’s
an important construction. James’s intrinsic join construction generalizes the above
homeomorphism to the Stiefel manifolds.

Thinking in terms of this map, I could even state a more general theorem.

14.12 Proposition. Suppose S"~1, S™ ! have k linearly independent vector fields.
Then S™=1 has k linearly independent vector fields.

Proof. We have sections of the fibrations
Vokir = S Vi — 8™

by assumption. Then we take the intrinsic join of these two sections. You can check
easily that this gives a section of the fibration

Vn+m,k+1 — gmtn—l
A

Anyway, the point is: once we got the vector field on the circle, we got it on any
odd sphere. Once we had those seven vector fields S7, we got seven vector fields on
S8k=1 We got this from homotopy theory, and we didn’t need algebra.

Now we want to talk about the vector fields problem. We have to construct vector
fields, and we have to show that they are no more. The homotopy theory picture does
two things. It shows us that there is an upper bound on the number of the vector fields,
and it connects the problem to the EHP sequence. There’s an awful lot in the story
of these Stiefel manifolds. For the rest of the lecture today and in the next lecture, 1
want to talk about constructing vector fields.

82 Constructing vector fields

There’s kind of a nice way to motivate this. It takes a lot of leaps of faith, but there’s
a good lesson in that. If you were faced with the problem of constructing vector fields,
you would study the examples we’'ve discussed and try to imitate that construction.
But you also can imagine it’s hard to think up such algebras. A vector field, you might
picture, is something topological. But there’s a lesson here: when you're trying to
think up an example and you don’t know what’s going on, imagine that you might be
lucky and a lot of convenient accidental things will happen. What are some convenient
things that might happen?

To every point in the sphere S"~1, we want vector fields vi(z), ..., vg(x) and these
are supposed to be orthonormal. In the case of the complex numbers, we used the
module structure

CoV =V
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to produce vector fields.
Here are two assumptions that happen in the cases we’ve studied:

1. z — vi(z) is actually a linear transformation R” — R™. We're just looking at
values on the sphere. This is a good way to try to think of examples. So we want
the property that any unit vector gets sent to something perpendicular to it. So
we want k such linear transformations.

So we want linear transformations 7" : R™ — R"™ such that Tx 1 z for all . It’s

also natural to guess that the way this happens is 72 = —1. We want maps
61,...,€k:Rn—>Rn
satisfying e? = —1. I guess I'm not going to have time to motivate this. This gives a

map from RF @ R® — R™ given by taking linear combinations. It’s natural to express
this condition without referring to a basis. For every u € R, I get a transformation
T, of R* — R™. It’s natural to assume that for every unit vector u, T2 = —I. I'm
running out of time so I'm going to leave this as an exercise, but the exercise is that
this implies
€169 = —E€9€1.
There’s a better way of saying this. These are natural assumptions that you might

look for if these vector fields were introduced in an easy way. This motivates introducing
the Clifford algebra.

14.13 Definition. The Clifford algebra Cl,(R) is the algebra, not necessarily com-
mutative, generated by elements eq, ..., e, subject to the relation

) . .
ej = —1, eje; = —eje;, 1 #£ ]

The basic fact is that if the Clifford algebra Cli(R) has a representation on R™,
that implies that S™! has k vector fields. The beautiful thing about this is that you
can construct the maximum number of vector fields once you work out the structures
of these Clifford algebras. Given R™, you can find the largest Clifford algebra that acts
on it, and then find the maximum number of vector fields.

Lecture 15
10/12

81 Clifford algebras

We’re continuing to talk about the vector field problem, and just the aspect of con-
structing vector fields. Last time I discussed a way of constructing vector fields, and I
said something a little funny. The basic thing was, I introduced these Clifford algebras
Clg.

15.1 Definition. The Clifford algebra Cly, is the tensor algebra T'(eq, . .., ;) modulo

the relations e = —1, e;ej + eje; = 0.
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We saw that if Cl; acts on R™, then S"~! has k linearly independent vector fields.

15.2 Example. Look at Cl; = R[e]/(e? = —1) =~ C. If the complex numbers act on a
vector space, then multiplication by ¢ gives the sphere one vector field.

I gave some sort of motivation for doing this.

Remark. Is there a relationship between the Clifford algebra and the octonions? You
might think Clg has something to do with the octonions. But the Clifford algebras
are associative and the octonions aren’t. But we're going to work out Clg and that
has to do with the octonions. It’s this thing called trialty. I'll say something about
that. Sping has these three irreducible representations and when you tensor two of
them, you get the third plus something else. This gives a multiplication law related to
the octonions. As far as this story goes, though, the use of the octonions to construct
vector fields on the spheres is mostly tangential.

We also saw last time that choosing k vector fields on S"~! was equivalent to
choosing a sequence in the fibration

Vk,n—l — Vk+1,n — Sn_l-

Observe that k-framings up to homotopy can be classified when we know 7,1 (Vi n—1)
if we know that there exists a k-frame (that is, a section).

Today, we’ll figure out what the number of vector fields that you can get from
Clifford algebras, and our job will later be to prove that that is the maximal number.
So I motivated this a little bit. I want to generalize this. One way I motivated this was
that the action of Cly gave transformations

61,...,€k2Rn—>Rn
with e? = —1 and we could extend this linearly and get a map
RF x R™ — R"

which is bilinear. The assumption that we made was that there was a coordinate-free
way of describing this. For any v € R*, we could get a map

v:R" — R"”
and we could ask the question whether if it’s a unit vector, then v?> = —1. Or more
generally, by replacing any v by v/ ||v]|, we would want

2
o2 = — [lo]?.

That’s what gave us the relation that the e;,e; anticommute: we used the relation
(61 + 62)2 = —2.
That motivates a general construction of Clifford algebras, which is worth noting.

15.3 Definition. Suppose V is a vector space over a field k. Suppose V is equipped
with a quadratic function q: V — k, i.e. a function with the properties:
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1. g(\r) = N2q(x) for x € V,\ € k.

2. The function (z,y) af q(x +y) — q(x) — q(y) is bilinear.

An example is v.v on euclidean space.

If V is a vector space with a quadratic form ¢, we can define a Clifford algebra,

which is the free associative algebra on V, T(V), modulo the relation v? = —q(v) for

v € V. That is,
CUV, q) & T(V)/(v? = —q(v)).

There are a lot of conventions about what to do. Some people put a factor of two
in the relations, which is no harm as long as you're not in characteristic 2. I'm saying
this because Clifford algebras are extremely important in all kinds of places in math.

§2 Z/2-graded algebras

There’s really a lot to think about when learning Clifford algebras. They really come
up in an amazing number of places. I just wanted to say something a little more general
about them. Doing it at this level of generality points out something you’d like to see
about them.

15.4 Example. Suppose given two quadratic spaces (V,q), (W,q¢’). Then we can form
a new quadratic space (V & W, ¢") where

¢" (v,w) = q(v) + ¢ (w).

In other words, I'm making the orthogonal sum. You’d like that the Clifford algebras
do something nice. You’d like to say

Cl(V @ W,q¢") ~ CI(V, q) ® CI(W,{).

That’s almost right. There are some indications that this would be right. If V' has
basis ey,...,e; then Cl(V) has basis ey for I C {1,2,...,k} and we take for e; the
product in increasing order of elements. That’s easy to check from the rules. One has

dimCl(V) = 2%, k=dimV.

So if V' has basis eq,...,ex and W has basis fi,..., f;, then the Clifford algebra on
V @ W will have basis given by all the products

erfr, IC{l,Q,...,k},JC{1,2,...,[}

and the tensor product Cl(V)) ® CI(W) will have the same basis. That makes it look
like they’re the same. But they’re not. There’s a subtlety here.

They have the same basis, but the multiplication isn’t the same. In CI(V & W),
say e1, f1 anticommute because e; L f1. But in CI(V) ® Cl(W),

er®fi=(e®l)(1® fi)=(1® fi)le1®1).

So that’s the thing that goes wrong. Anticommutativity versus commutativity.
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There’s a nice way to correct this and make the statement true. The way to fix
this is to regard Cl(V') as a Z/2-graded algebra. We let |e;| = 1. That makes sense,
because the relation

e} = —q(e:)

is homogeneous for the Z/2-grading. If T do everything in the world of Z/2-graded
vector spaces, we can still form the tensor product. Given Z/2 graded vector spaces
X,Y, we grade

XY, |ty =|z[+|y| mod 2.

However, we want the symmetry of the symmetric monoidal structure to have the
Milnor structure. The canonical isomorphism

XYY ®X
sends
r@y— (1)WY @ g,
That affects what you mean by the tensor product of Z/2-graded algebras. If A, B are
7 /2-graded algebras, so is A ® B, but beware. When I multiply
(a1 ® b1)(az ® ba),

I have to move things past each other. We set:

(a1 ® b1)(az @ be) & (—1)P1llezl (g1 05 @ byby).

This is precisely the sign convention we encountered before.
We have, in fact:

15.5 Proposition. As Z/2-graded algebras,

CI(V & W) ~ CI(V) @ CI(W).

83 Working out Clifford algebras

It’s important to know this, and the compelling reason for making them Z/2-graded
is to be able to do this. Once you start working with them, you realize that there
are all kinds of important reasons for working with the grading. However, I want
to identify these Clifford algebras with algebras with we know, in terms of ordinary
tensor products. Today, though, we’ll be mixing both Z/2-graded and ordinary tensor
products.

Temporarily, starting now, I’ll write ® for the graded tensor product, and
® for the ungraded one. Both can be used to produce legitimate algebras
but & is the one that we used above.

OK, so let’s work out these Clifford algebras.

15.6 Definition. As before, write Cl,, for C1(R"™) for the usual norm square quadratic
form. We'll write Cl, for C1(R"™) with the quadratic form ¢'(v) = —|v|?.
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Let’s make a little table below. For instance, Cl; ~ C with a funny Z/2-grading
with 7 in degree 1. Cl} ~ R[e]/(e? = 1) ~ R x R where e = (1, —1).
What about the next one, Clo? That’s

Cly = Rlep, ea]/(e? = —1,€3 = —1,e1e0 = —ege;) ~ H,
where e; = i,e5 = j,ejea = k. Again, there’s a funny grading. Next,
Cly ~ Rler,ea)/(e? =1,e3 =1,e1e9 = —e1e9).

This takes a little working out. In the ordinary reals, I can solve the quadratic equations
22 = 1. I don’t have two anticommuting solutions, though. If I send e; to the matrix

o1 1o
AT o 270 -1

and these give an isomorphism

L, ~ R(2).

Notation: If K =R, C,H, we let K(n) to be the algebra of n-by-n matrices over K.
You can keep going, but at this point there’s a convenient little trick you can use. If
you were sitting down trying to work out these algebras, you’d be able to do it. When
you here this argument, it’ll go by a little quick. But it’s probably worth just playing
around with these algebras and discover the rest of the table. Don’t be intimidated by
my prestidigitious use of clever identities—you too could figure this out.
Here’s a very useful lemma.

15.7 Lemma. Cl),_, ~ Cl, ® Cly. This is the ordinary tensor product. Moreover,
Clyto > Cl;.L ® Cls.

Proof. We have to use that, and the proof is totally straightforward. I just have to tell

you the map. Let’s map
CIQLH — Cl, ® Cl,

by sending
/ / / !/ / N
1= 1®el, e 1®ey, €, e_2®eje, (n>2).

You have to check that the identities hold: that each square to —1 and each anticom-
mutes. It’s really important that I don’t mean ® here. These are just ordinary tensor
products here. You just have to check the relations. You would have figured this out
if you were playing around enough and looking for patterns. A

That lets me move from one side of this table to the other. We can continue the
first four rows from this lemma. But then we need another lemma.

15.8 Lemma. A(n) ® A(m) ~ A(nm). Also, H® C ~ Ms(C) = C(2) (this is part of
knowing about semisimple algebras).

75



Lecture 15 Spectra and stable homotopy theory notes

Proof. Here’s a way of seeing the last thing. H acts on itself on the left. It acts on R*,
if you like. That commutes with the right action. So we can restrict the right action to
C C H and we could restrict the right multiplication to the complex numbers C. That
means that H left acts on R* C-linearly. That gives a map

H — MQ((C)
and I can just extend it to a map
CeH— MQ(C)

and now you just count dimensions and check that it’s an isomorphism. This is sur-
prising when you see it, but it’s part of a whole story about simple algebras and the
Artin-Wedderburn theorem. A

Finally, we need to know:
15.9 Lemma. H® H ~ R(4).

Proof. That’s because we have an action of H ® H on R* (given by left and right
multiplication) and that gives a map

HeH — R(4)
which is an isomorphism. A

Finally, we can now fill out the rest of the table.

n Cl, Cr,
0 R R

1 C ReR
2 H R(2)
3 H o H C(2)
4 H(2) H(2)
5 C(4) H(2) @ H(2)
6 R(S) H(4)
7| R(8)®R(Y) C(8)
8 R(16) R(16)
9 C(16)

10 H(16)

11 | H(16) @ H(16)

Let’s plug this identity into itself. We get

Clln—i-4 =

We get the identities

cl,,, ~Cl, & Clj,

That also implies

Cln+g >~ Cln & Clg,

Clpto ® Cly ~ Cl) ® Cly ® Cly ~ CI, @ C,.
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But by tensoring with Clg, Cl§ just puts 16-by-16 matrices over everything. So the
basic structure is eight-fold periodicity. I'm not going to drive this all the way home
today, but let’s just do an example.

How many vector fields can we get on S7? We need the largest k so that Cl;, acts
on R®. Well, H(2) has an eight-dimensional real representation, C(4) has an eight-
dimensional representation, and even R(8) @ R(8) does. That gives a representation of
Cl7 on R® and that’s the biggest one that acts. That gives 7 vector fields on S7.

What about 157 How many vector fields do we get on 157 Now I want to look for
16-dimensional representations. Looking at the table, we can get 8 vector fields on S'°
but can’t get any further via Clifford algebras.

Lecture 16
10/15

81 Radon-Hurwitz numbers

There are two things I want to do today. First, I’d like to collect this thing about
vector fields. Last time we talked about Clifford algebras. We made this table of the
Clifford algebras:

n Cl, Cr,
0 R R

1 C RoR
2 H R(2)
3 Ho H C(2)
4 H(2) H(2)
5 C(4) H(2) @ H(2)
6 R(S) H(4)
7 | R(8)®R(8) C(8)
8 R(16) R(16)
9 C(16)

10 H(16)

11 | H(16) @ H(16)

That’s what they worked out to be. We had the isomorphism
Cly48 ~ Cl,(16),

and then you can work them all out, and find out how many vector fields you can
produce on a sphere using them.

For R™, we wanted to know the largest value of m such that Cl,, acts on R™. That
gives us m vector fields on S”~!. That’s the thing we want to figure out. Or in other
words, given a Clifford algebra, we’d like to know the smallest vector space it acts on.
Let’s figure that out. Let’s make a table of the smallest representations of the Clifford
algebras:
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n Cl, Dimension of the smallest rep
0 R 1
1 C 2
2 H 4
3 HeH 4
4 H(2) 8
5 C(4) 8
6 R(8) 8
7 | R(8) ®R(8) 8
8 R(16) 16
9 C(16) 32
10 H(16) 64

We want to reverse this information and find the find the largest ¢ such
that Cl, acts on R”.

Notice that the smallest representation of a Clifford algebra has dimension a power
of 2. So we are going to want to write

n = 2'm,m odd.

The Clifford algebra we want is going to be the largest Clifford algebra acting on a
2J-dimensional vector space. We have this basic list of Clifford algebra representations,
and each time we move up by eight, then the minimal Clifford algebra representation
bumps up by 4.

So let’s distinguish j mod 4. Let’s write j = 4r + s, s € [0, 3], so

n=2""m, modd.

1. If s = 0, then n is a multiple of sixteen. We have ¢ = 8r (the best Clifford
algebra).

2. If s =1, then it’s going to be £ = 8r + 1.
3. If s =2, then it’s going to be £ = 8r + 3.
4. f s =3, =8r+T.

Summary: The Clifford algebra construction constructs an action of Cly on R”,
or ¢ vector fields on S™~!, where £ is as above.

16.1 Definition. We write p(n) for the number ¢ constructed above. These are the
Radon-Hurwitz numbers. That is, if n = 24" 7m, m odd and 0 < s < 3, then

8r s=0

)8+l s=
pln) = & +3 s=2’
qr+7 s=3

and we can write this as 8r + 2% — 1.
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Now we need to figure out how we are going to prove that there are no more vector
fields. We have to find these Radon-Hurwitz numbers in algebraic topology. That’s
kind of a remarkable story.

We’ve proved:

16.2 Proposition. There are at least p(n) linearly independent vector fields on S™1.

82 Algebraic topology of the vector field problem

So we’re going to leave these Clifford algebras for now, and return to them later as we
get more geometry under our belts. We want to find a way of getting an upper bound
on the number of vector fields. We were looking at these Stiefel manifolds Vi1 541
and the fibration

Vk—‘rl,n—i—l — 9"

and we wanted to know if it had a section. A section was equivalent to S™ having k
vector fields. So we’d like to understand when a section exists.

One thing we might do is to apply homology and to see if we have a section in
homology. If that wasn’t enough, we could try to study Steenrod operations. That’s
what Whitehead and James did, and that gives an upper bound on the number of
vector fields. But it’s not the best. This method thinks that all the S2"~!-spheres are
parallelizable.

We could also study K-theory and Adams operations and try to understand whether
there’s a section in K-theory. That turns out to give the right answer, the right upper
bound. So we want to study this, and to calculate the K-theory of these spaces with
Adams operations.

Goal: Compute

KOy (Vit1,n+1) = KOL(S™)

with the action of Adams operations, and see if there’s a section. Note that we’ve
written K O-homology and used K O-theory, not K-theory.

83 The homology of Stiefel manifolds

The first thing I want to do is to get an idea of this space Vi1 1. To start with, we
want to understand its homology. Let’s take the extreme case. Consider Vi1 n41 =
O(n+1). As a topological space, that is two copies of SO(n + 1), so we might as well
try to understand SO(n + 1). More generally,

Vistni1 = O(n +1)/O(n — k) = SO(n +1)/SO(n — k),

and so we might as well study the special orthogonal group rather than the orthogonal
one.

Let’s start with SO(n + 1): the group of oriented orthogonal isomorphisms of R™
with itself. There is a fibration

SO(n) — SO(n+1) —» S"
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where the last map sends an orthogonal matrix T' to Te,,+1 (where e,4+1 is the last
basis vector). This is a fiber bundle. Just to get an idea, let’s imagine that there is
a section. There isn’t one, but imagine we had one. Then we could take that section
and SO(n) — SO(n + 1) and multiply them to get a map

SO(n) - S" — SO(n+1)

and that would be a homeomorphism. We could repeat with n replaced by n — 1 and
we would find that SO(n+1) ~ S" x S"~1 x ... x §1. (If T had used O instead of SO,
it would go all the way down till S'.) There’s no reason to think that this is true, but
if it were, we would get

H.(SO(n+1);Z/2) ~ H,(S™Z/2) ® --- ® H,(S';Z/2).

I’'m telling you this because if you ever forget what things look like, this is a good way
to remember it.

Let’s just continue this fantasy world with the Stiefel manifolds. We have that
SO(n +1) acts on Vjy1pn41 because that’s a homogeneous space for that group. That
makes Hy(Vit1n+1;2Z/2) into a module over the homology H.(SO(n + 1);Z/2) (the
Pontryagin ring). If you go through this same argument and imagine that all of these
fiber bundles had sections, you can get a description of this Stiefel manifold using the
group action. What we would get, if we continued this analysis (imagining that we
had these sections and that SO(n + 1) = SO(n) x S™ = SO(n — 1) x S™ x S*71), we
would find that the homogeneous space SO(n +1)/SO(n — k) = S" % x ... x S*. So
we would get

H*(VkJ’»l’nJ’»l; Z/Q) ~ E[l’n, ey xn,k].

This is in fact true, and our aim now is to modify the incorrect argument above
and to describe some things that actually do work. We don’t actually have these
sections. However, we do have sections like that away from a point. So if I were to
take

SO(n+1) — S",

I don’t have a section here, but I do have a section here away from a given point. 1
do have a section, say, over a disk. How can I make such a section? Well, that’s part
of just saying it’s a fiber bundle which must be trivial over a contractible space. Let’s
do it explicitly. The map SO(n + 1) — S™ sends a matrix 7' +— Te,+1. We need to
find a continuous way of making an orthogonal transformation that takes e; to a given
vector v (away from one point in S™).

Here’s one way of doing this. Draw an n-sphere ™ with basepoint e, 41 and remowve
the point —e,4+1. Given any other vector v € S, we can take the 2-plane spanned by
the two vectors v, e, 1. Choose a transformation on the plane spanned by v, e,,+1 which
rotates e,+1 into v, in the plane spanned by these two vectors, and the identity map on
the complement. It’s not defined at the point v = —e,41. There’s another place where
they’re not linearly independent, where v = e, 11, where we just take the identity map.
This gives a continuous section

S"\ {—ent1} = SO(n+1).
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Now I'm going to say something without proof. This tells me that we have the map
p:SO(n+1) — S™ and we can write S” = S™ \ {—en+1} U {—ent1}. Over the open
set S™\ {—en11}, there’s a section of p and the fiber bundle looks like SO(n) x (S™\ )
and over {—ep41} the fiber looks like SO(n). So we can write

SO(n+1)=D" xS0(n)Ux*x SO(n)

as sets, not as spaces. This in particular gives a map D" — SO(n + 1). Now I can
iterate this by applying to SO(n).

Or another way of saying this—we don’t have sections over spheres, but we do have
sections over interiors of disks. We have a whole bunch of maps

D} DE, ..., — SO(n+1).
For every subset S C {0,1,2,...,n}, we can define a map

[1D6 - som+1).
€S
The theorem about these is that:

16.3 Theorem. These maps are the interiors of a cell decomposition of SO(n + 1).

If you haven’t seen this before, it’s probably coming by in a blur. The point is, we
were imagining these SO(n + 1) as a product of spheres. This isn’t true, but the cell
decomposition is similar to what it would have been if it were a product of spheres.

I just want to summarize something about these Stiefel manifolds. The last thing
is, if we wanted to prove our homology calculation, we’d need to calculate the cellular
differential in this cell complex. We need to know something more about how these
cells are connected. There’s a nice picture here. Let me go back to this little fantasy
story. We wrote that if SO(n+ 1) — S™ has a section, then SO(n+ 1) ~ SO(n) x S™.
But that doesn’t happen (except when n = 1,3,7). However, if it has a homology
section, then the homology of SO(n + 1) is still H,(SO(n);Z/2) ® H.(S";Z/2). So
it’s the same type argument, you could compare it with the Serre spectral sequence for
instance.

There’s an important map I wanted to get on the board today. Let me put up the
map, and then we’ll call it a day and answer these questions. As we said, if it had a
homology section, I could get the same decomposition of the homology. Let me put up
this important map. There’s a way of getting a section in homology that tells you a
great deal. One way of getting such a section would be to find a space X — S™ which
is an iso on H,, and then find a lift

SO(n+1).

|

X S

We will take X = RP", where RP" — S™ is the collapse map. This is the key to
understanding the topology of these manifolds. The point is that a rotation is the
product of two reflections, and a reflection is determined by a line through the origin.
That’s supposed to motivate the following map:
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16.4 Definition. The map RP" — SO(n + 1) sends a line ¢ to reflection through
the hyperplane perpendicular to ¢, composed with reflection through the hyperplane
perpendicular to e;41.

Now, the way I've set it up, the diagram we want commutes. On the interior of the
top cell of RP", it’s actually the map I wrote down earlier. I'll come back to that next
time.

Lecture 17
10/17

§1 The map RP" — SO(n + 1)

In the last class, I was trying to tell you a little about the topology of SO(n + 1). 1
made a slightly bad convention, which I will change at this point. I told you a way of
remembering what its homology looks like and made an argument that its homology
actually was of that form. Let me review this now. The important thing about this is
the map

RP" < SO(n +1).

You get this, first, by mapping
RP" — O(n+1),

by sending a line £ to the linear operator R, which is —1 on £ and 1 on the orthogonal
complement, i.e.
Ry=(-1)¢® 1.

That has determinant —1, so the map lands in O(n + 1). Then we multiply that with
a fixed reflection through another line.
Here’s the change of notation.

17.1 Definition. Let ¢y be the line through the first coordinate vector e;.
Therefore, we have:

17.2 Definition. The map RP" — SO(n + 1) sends a line ¢ to Ry o Ry,, where R
denotes the rotation operators as above.

Remark. There are complex and quaternionic analogs of this. In the complex analog,

we get a map
CP" x S' - U(n+1)

sending a line £ and A to Ry = Al @ 1],0 (or rather Ry o RZOI)\). So this actually
factors through a map
CP"AS' - U(n+1).

With the quaternions, it’s more complex as they don’t commute.
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One of the reasons is that I've switched to the first basis vector, rather than the
last basis vector, is that it isn’t compatible with the choice of other special orthogonal
groups. With the choice that we’ve now made, we have commutative diagrams:

RP"! 50(n)
| |
RP™ SO(n+1)
L
RP" /RP" ! — S

and you can check that the bottom map is a homeomorphism. This gives you a map
in homology, that is, a homology section of SO(n + 1) — S™. That lets you write
H,(SO(n+1);Z/2) as a tensor product of the homology of spheres.

In fact, the argument gives a decomposition of SO(n + 1) into cells, and the cells
are attached as they are for RP". I'm just going to tell you some results. I’'m pretty
sure something like this is written down in Hatcher’s book.

Let’s try to say something about Vii1pn,41 = SO(n + 1)/SO(n — k), the Stiefel
manifolds. Note that we also get a commutative diagram:

RpP?k-1 SO(n —k) .
R}L SO(riL +1)

| |

RP"/RP" %! —— Vit 1041

Now RP™ has a zero-cell, a one-cell, and so on, all the way up to an n-cell. RP" 1
has all the cells up to n — k — 1. The quotient space that you get is what you get by
crushing those bottom cells: it has a basepoint, and cells from n — k up to n. That
space has another name.

17.3 Definition. RP"/RP"*~1 is written as RP?_, (the subquotient of RP* with
cells in the range of dimensions from n — k to n). It is called a stunted projective
space. This plays an important role with the Stiefel manifolds.

If you go through the inductive argument last time, we get:
17.4 Theorem. The map RP" — SO(n + 1) gives an isomorphism of rings,
/\ H.(RP"; Z,/2) ~ H.(SO(n + 1); Z/2).
It’s also true that you get a cell decomposition of SO(n + 1), by induction on n.

The idea is that SO(n + 1) = SO(n) x (8™ \ %) U SO(n).
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Remark. There’s a pretty easy explanation for why the elements square to zero. We’ll
come back to this next time.

All we really need to know is that a monomial basis for A\ H.(RP™;Z/2) goes to a
basis for H,(SO(n + 1)). Anyway, the same type of reasoning gives a map

/\ H.(RP}_) = Hi(Vig1n+1;Z/2)

by mapping to H,(SO(n + 1);7Z/2) first and mapping down. This is an isomorphism
of modules over H,(SO(n + 1);Z/2). There isn’t an obvious ring structure on the
homology of Stiefel manifolds.

Remark. Another way to organize this inductive calculation is to use the long exact
sequence of SO(n),SO(n + 1). Namely, if we know the homology of SO(n), then we
can calculate

H,(SO(n +1); SO(n)) = H,(SO(n) x D™, SO(n) x S"71).
In fact, we have a homeomorphism
SO(n+1)/50(n) ~ (SO(n) x D")/(SO(n) x S*™1).

More generally, if we have a fiber bundle p : F — X and A — X with pull-back
E4 — A, then we can calculate E/FE 4 by the following.
Consider a diagram:
EFs——F .

b

A——X

]

A/ [ X/
If (X',A") — (X,A) is a relative homeomorphism, then E/E, ~ E'/E’,. This is a
kind of standard trick for analyzing fiber bundles over CW complexes.

Anyway, we can now use the Kiinneth formula to calculate H,(SO(n+1),SO(n)) ~
H.(SO(n) x D™, SO(n) x S"~!) which we can calculate by the Kiinneth theorem. We
get this long exact sequence. One checks that H,(SO(n+1)) — H.(SO(n+1),50(n))
is a surjection and the long exact sequence of H,(SO(n))-modules actually splits. We
get

H.(SO(n+1)~ H,(SO(n)) ® b,H(SO(n)), |by] =n.

This gives the desired computation.

82 The vector field problem

I want to do something else. Let’s go back to the vector fields problem. Consider S'°
again. We saw, from Clifford algebras, that S'° has eight vector fields. We aim to
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prove that there are no more. If we translate that into the theory of Stiefel manifolds,
it means that we take the fibration

15
Vg,16 — Vo,16 = S

and the theory of Clifford algebras produces a section of this fibration. We think that
there are not nine though, so V1916 — 515 should not admit a section.

We know something about the homology of these spaces. We know that H,(Vy 16;7Z/2)
is an exterior algebra on the homology of the stunted projective space RIP’%? This is
slightly inconvenient for reasons you’ll see in a moment. I want to use some implica-
tions that we had before. I used James’s intrinsic join construction to show that S'°
has eight vector fields, which implies that S'6*~1 has eight vector fields for any k.

I want to take k = 3. If S'° has nine vector fields, James’s intrinsic join construction
shows again that S*7 has nine vector fields.

So I want to look at the map

Vioas — S*7

and show that it does not have a section.

Beginning of a proof. The homology H,(Vy 4s;Z/2) is an exterior algebra E(H,(RP57))
and H,(Vio4s;7/2) is an exterior algebra E(H,(RP5Y)).

The first thing is the same as H,(RP35) and the second is the same as H,(RP3%),
through dimension 79. We're only interested in those spaces through dimension 47. So
what we learn is S47 has eight vector fields if and only if the map

RP3) — S*7
has a section, and S*7 has nine vector fields if and only if the map
RP3§ — 5%

has a section. That’s a problem you can actually solve. There are a lot of things you
can say here. The point is, through a big range of dimensions, a Stiefel manifold is just
a stunted projective space. You'll see it come back as telling us a big part of the EHP
sequence. A
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Lecture 18
10/19

81 Spheres with one vector field

In the previous lecture, we studied a map RP" < SO(n + 1), which was compatible
with the inclusions:

Rp-1L SO(n)
RP" SO(n+1)
RP" /RP"! S

This also gave us inclusions RP),_, def 7 / RP? k-1 Vi+1,n+1- These two maps led

to cell decompositions to both spaces, and led to a computation of the homology. Even
though there isn’t a natural algebra structure, we have

H.(Visrs1: 2/2) = E(H,(RF}_; Z/2))

for E meaning the exterior algebra.

This is kind of a fundamental picture; it’s going to be the crux of what we do in
class. In this class, we’re going to try to see what this has to do with the vector field
problem. We did some examples in the last class, and we’re going through many more
examples today. With solved problems like the vector fields problem, you can just
read the solution, but you miss something if you don’t put yourself in the position of
someone who was faced with solving the problem.

Let’s first ask about spheres having one vector field. Now that’s saying we are
looking at V5,41 — S™ and we want to know if that has a section. What does this
space look like? V5,11 has an n-cell and an n — 1-cell (which comes from the stunted
projective space). Then it has the product of those two cells, which is in dimension
2n — 1.

Remark. A more refined statement is that the cellular chain complex of RP; _, is the
exterior algebra on the cellular chain complex on Vi1 ,41. 1 really want to think of
this.

For most values of n, we have 2n —1 > n. As long as n > 1, we have this. So what
are we asking. We have a map
RP,_; — S™

and that map sends the top cell to the top cell. We're asking whether there exists a
map in the opposite direction. As long as n > 1, we’re asking whether there is a map
back. That’s because if we had a section S™ — Vi1 541, it would be homotopic to a
map into the n-skeleton, so we only need to pay attention to that skeleton.
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I know something about the cellular chains on RP"™. If I draw the cellular chain
complex of RP", it looks like

z372%72%7. .

If we look at what’s happening in homology, the cellular complex of RP],_; is

Z%Z n even
227 nodd

We learn right away that there isn’t a section when n is even, because there isn’t
a section in homology. This is the hairy ball theorem: S?" doesn’t have a nowhere
vanishing vector field.

We also know that S' has one, thanks to the complex numbers. Similarly, odd
spheres do, thanks to the complex numbers. So S?"*! has one.

Let’s say a little more: what is the homotopy type of this stunted projective space?
RP;_, is the mapping cone of a map

Snfl N Snfl

which is degree two when n is even, and 0 when n is odd. That’s from our calculation
of the cellular chain complex. We learn:

1. When n is even, RP?_, = S"~1 U, e™.

n—1
2. When n is odd, S™~1 v S™.

So the latter thing alone lets us say that odd spheres have one vector field.

There’s one more thing I want to say about this. I'm setting up the trivial case of
something that’s going to get more sophisticated as we get going. These little stunted
projective spaces with two cells come only in two varieties, either the attaching map is
2 or it’s zero. A weird corollary:

18.1 Corollary. X2RP" ;| ~ RPZﬁ.

In other words, these stunted projective spaces are periodic in n.
This is a reason I like to draw real projective spaces, I draw little lines like this
which indicate the attaching map on each subquotient (sorry, can’t TEX these!).

82 Spheres with more than one vector field
Now you have the odd spheres. Let’s think about the odd spheres:
St §%,8%, 87, 57

and we know that S' has one, S® has three, S® has at least one, S” has seven, and S
has at least one, and S'! has (at least) three. The first sphere we don’t know anything
about is the 5-sphere. One question is whether the five-sphere has two vector fields.
Let’s consider the map

Vv376 — S5

87



Lecture 18 Spectra and stable homotopy theory notes

and we want to know whether this has a section. We have
RP < Vi

and R]P’g — S% by the collapse map. Then V36 has a bunch of things in higher dimen-
sions. The Stiefel manifolds start looking like the stunted projective spaces and then
have a bunch of much higher-dimension cells.

(It’s a little surprising to have a complex with so many high-dimension cells which
can map via a degree one map to S°.)

So we have a little copy of ]RIP’g sitting inside V3. We know that the 4-cell is
attached to the 3-cell by the degree 2 map. We know that if we kill the bottom cell,
there’s a splitting.

Let’s think about what this RP3 looks like. I know that there’s a map and cofiber
sequence

54 % RPA - RPS

where the map S* — RIP% comes from the double cover S* — RP* followed by crushing.
So we get an element

f € my(RP3).

So again, we're interested whether there is a section S° — RP3.

Claim: S° has two vector fields if and only if f is zero.

One direction is easy: if f = 0, then the map f is null, and RPj ~ R]P’éL V S5, So we
have a section S° — RP3.

The interesting direction is the other one. Here’s a way to argue that. Suppose I
had a section S° — RP. Let’s look at the sequence

RPi — RP3 — S5

and note that we’re in the stable range, by the Freudenthal suspension theorem. In a
range of dimensions, there’s a long exact sequence of homotopy groups:

m5(RP2) — 75(S°) — m4(RP) — m4(RP3)

and if we had two vector fields, the first map in the sequence is a split surjection. This
means that 75(S%) — 74(RP4) is zero, and this map sends the generator to f. So f = 0.
Anyway, let me say it this way. Suppose I have a cofiber sequence

sl x Ly X Uet s g7

and suppose I have a section S — X Ue™. If we're in the stable range (i.e. X is about
n/2 connected). Then TFAE:

1. The section exists.
2. f=0.

3. XUe™ =XV S"in a manner compatible with this cofiber sequence.
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If you work with these, you say that the top cell splits off, or the attaching map
was zero. You need to be in the stable range to guarantee this.
We want to understand the possibilities of f. So we’d like to understand:

Question. What is w4 (RIP3)?

Again, let’s use the cofiber sequence
$% % 5% 5 RP

and we get a long exact sequence of homotopy groups in the range we care about. We
get a map

74(S%) B m4(S?) = ma(RPL) = 73(S%) > m3(S?).

Since we're in the stable range, we can do this. We find that the map 74(S%) — m4(RP3)
is an isomorphism, and there are two possibilities for the map f and R]P’g.

1. Either the attaching map S* — RPé is nontrivial and factors through the bottom
cell.

2. Or the attaching map is zero.

So the question of whether this attaching map is zero is equivalent to whether S° has
two vector fields.

How could we possibly tell what that map might be? To solve the vector field
problem, we have to figure out whether this map is not the zero map. Actually, there
is an idea that we can try. The nontrivial map S* — 83 is the suspension of the
Hopf map, which has Hopf invariant one. So we might try to measure something using
the Hopf invariant, except that we’ve suspended things and we can’t yet say anything
about the Hopf invariant once we’ve suspended everything.

I want you to understand what’s at stake and what the picture is here. As I
said, there are only two possibilities. We’d need to make some calculation about this
projective space to decide how the cells were attached. The original method was to use
Steenrod operations. You can calculate Sq? on the class in H3(RP3;Z/2) and check
that it’s not zero. Then you could conclude. Alternatively, we can compute the e-
invariant of this map and find that it’s not zero. So in any case, what I learn is that
the attaching map is not zero, and there is only one vector field on S%. We’ll do this
later.

83 James periodicity

There’s another thing, which has an interesting explanation and which we’ll find a
better explanation for a little later. So we know from this that S° does not have two
vector fields (I'm telling you this). We noticed last time that there was a kind of
periodiicty in the RP},_; was periodic of period 2. There’s a generalization of that fact,
which we’ll have a better understanding of a little bit later. This was originally called
James periodicity.
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Roughly, it states that RIP],_, is “periodic” in n with period 2%°™°P°¥*" and the power
is a little complicated to say. The power is related to the Radon-Hurwitz number. In
other words, for some m,

+ ~
RPIT =~ S"RP,_ .

For instance,

RP)_,

is periodic in n, with period 4.

Anyway, remember this argument: if the five-sphere had two vector fields, so would
S67=1 for all n. For instance, S'' would. That makes you think that the little piece
RIP’EE would be related to RIP’},I. At least, we know that if one has a top cell that splits
off, so does the other. I'll explain this.

The picture that we’re supposed to get from this: in the stable range, S™ has k
vector fields, but not k+1, if and only if the attaching map for the top cell in RP],_,
(i.e., S"~1 — RP"~; ) factors through the bottom cell, but is not zero.

One thing that’s really remarkable is that we’re constantly using here the notion
of a CW complex, and the notion of skeleta. These discoveries came soon after the
discovery of CW complexes and the work on the vector fields problem came soon after
Whitehead invented CW complexes. You wouldn’t be able to do this at all without
this idea.

Lecture 19
10/22

81 A loose end

So we’re still talking about the algebraic topology of Stiefel manifolds and the vector
field problem. There was something I did last time, and I think I made it a little more
complicated than it needed to be. We were studying the following: we had a map

fiA=X

and a cofiber sequence
A= X —>XUCA—- YA

and we supposed that there was a section of X UCA — X A. In this case, we have an
equivalence

XUCA~XVXYA.

Under convenient conditions (in particular, in the stable range), this is equivalent to
saying that f is null. I gave a proof of that, but it’s a little easier to continue the Puppe
sequence one more step

A X 5 XucA—sAdsx

and observe that if X A sits inside as a summand of X U CA, we get that XA {yx
is null (namely, in this case we factor ¥4 — XX as ¥A - X UCA — YA — XX
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and the composite of two maps in a cofibration sequence is null). If X — QXX is an
equivalence through the dimension of A, then we can conclude that f is null. I just
wanted to reinforce that this is the better way to organize it.

82 Stiefel manifolds and the intrinsic join

Here’s the deal. I want to take this argument that if S”~! has k vector fields, then so
does S for each m. We had a homotopy-theoretic argument based on the James’s
intrinsic join. This is a map

Vk,n * Vk,m — Vk,n—‘rm

(where * means join) and the map sends a frame in R™ and a frame in R™ and an
angle 6 to a frame in R™*". That is, given a pair of k-frames (fi, f2) and an angle
to (cosf)f1 + (sinf) fa. So you take the two frames fi, fo and rotate them through the
angle 6.

These maps are compatible when n, k change. The following diagram commutes:

Vk,n * Vk,m —— Vk,ner .

l |

gn—1 4 gm-1 = o gntm—1
More generally, we get a commutative diagram:
sz,n * Vk,m E—— Vk,n-i—m

| |

!/ ~
Vk,n * Vk’,m —_— Vk’,n—i—m

for ¥ < k. We’d like to know what the intrinsic join does in homology. There is a
pretty complicated argument in James’s paper, but one can use these diagrams to give
a simpler one.

To see this, let’s review the homology of the join. We have a functorial isomorphism

Snfl * Smfl ~ Sn+m71

and we learn that
CeMNX xY) = 20N (X) @ CN(Y).

In fact, if you think about this, one has a homotopy equivalence
X*xY ~3%(XAY).

If T use field coefficients, we get

H(X#Y)=% (ff*(X) ® fl*(Y)) .

Notation: If x € Hi(X),y € H|(Y), I'll write z *y for the corresponding element
in He 1 (X xY).
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Here’s the thing about the effect in homology of James’s map. Let b; € Hi(RIF’g)
be the nonzero homology class of some stunted projective space, a < i < b. Again, we
have a diagram

-1 -1
RP—, +« RP

Vk,m * Vk,m

Vk,m+n

19.1 Proposition (To be proved later). Under the intrinsic join, the James map sends
n+m—1

the class b,_1 % b; goes over to the class bi,, (under RIP’nHrhk — Vk7m+n).

The Stiefel manifold V} ,, has classes from n — k to n — 1 and the manifold V} ,,, has
classes in dimensions from m — k to m — 1 (and higher product classes). There’s the
join of these things, which maps from the Stiefel manifold V} ,4,, which starts from
n+m — 1 and goes down to n +m — k. All of these are strings of exactly k cells. The
point is that the top cell joined with one string of £ cells matches the k cells in V, ;,41,.
That’s what this statement is saying. In fact, it’s symmetric. We’ll later see that this
map looks like the dual of the cup product map in cohomology.

It’s not as good when we don’t use the top cell.

We have this cell decomposition of Stiefel manifolds, and we're just trying to learn
about the vector fields problem. This is way more information we need, but it’ll serve
us well when we get back into the EHP sequence. Sometimes there’s a map of a sphere
into the Stiefel manifold which hits the top cell.

83 James periodicity

Suppose that S has k — 1 vector fields. In that case, we have this map Vien — Sn—l
which has a section. Now that gives a section S"~! x Viem = Vien * Viem — Vienem. At
least in homology, we have a commutative diagram:

R 2 A 4

n+m—1*
Ssn—1 Vk,m Vk,ner

I say in homology, because I don’t know that there is such a commutative diagram in
the homotopy category. However, most of the time, that actually happens in homotopy
as well. The dimension of S”~! *RPE:}C has dimension m+mn —1. This Stiefel manfiold
Vi n+m can be described as R]P’Ziﬁ:i U cells where the cells have dimension at least

n+m—k+n+m—~k+1=2n+2m — 2k + 1 and higher.

Remark. If Z is a CW complex of dimension <[ and A — X is [ — 1-connected, then
we have a surjection [Z, A] — [Z, X], and if dim Z < [, it’s a bijection. Over here, we're

saying that the pair (Vi p4m, RPZI%:}C) is highly connected.

Actually, let’s work it out.
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What I claim is, most of the time, the map
S"ARP™ L = Viengm

actually factors through a map into RPZI%:}C. This is going to happen when

2n+2m—-2k+1>n+m— 1.

So equivalently, if
n+m > 2k — 2.

Here n was fixed, and m is larger. So one m > 2k — 2 — n (which happens most of the
time: 2k — 2 — n is probably negative since S"~! had k vector fields), then the above
diagram actually commutes up to homotopy, and in particular we get an equivalence

-1 +m—1
S RP,, T = RPN,

as we talked about earlier. That’s James periodicity.

You can do better than I've done, and we will do better a little later, but this
is something we noticed just by looking at stunted projective spaces by hand in low
dimensions. Let me just say it in a slightly less cumbersome way: it just says that
if S"~! has k — 1 vector fields, then we get length k stunted projective spaces (i.e.,
those with k cells) are periodic (with period n). This was kind of a miracle in its
day. We’re soon going to have a much more elegant explanation for James periodicity.
This explanation is so geometric, though, that it’s worth remembering, and there’s
something nice that’s going to come out of this in a second.

So we’ve constructed a bunch of vector fields on spheres, so we can prove examples
of James periodicity. It’s a little bit technical because there are a lot of numbers
to process. I could do some actual numerical examples, or I could get on to more
conceptual things. Let’s do a reality check.

In the last class, we learned that RP],_; is periodic with period 2, that is, we had
equivalences

¢ 042
S2RPY_; ~ RP;HT.

How could we get that here? We could take n = 2, k = 2 and use the fact that S* has
one vector field. We could use the fact that S3 has three vector fields to get

YIRP? , ~ RPMH,

n—4 —

The reason that sort of tells us something is that the issue of a sphere having so many
vector fields had to do with the top cell of these stunted projective spaces split off.
This turns out to be a stable problem, because of James periodicity.

Remark. We could do that as well for stunted complez projective spaces. (To be
returned to later.)

There’s something even better that comes out. Let’s go back to the situation and
reverse the roles of the two spheres. We had this map

Snil * Vk,m — Vk,n+m
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n+m—1

nim— Where this map

and sitting inside Vj 4., was this stunted projective space RIP

n+m—1
R]P)T%mek — Vk7n+m

was an {-equivalence, for £ = 2(n+m—£k). This is when S"~! has k—1 vector fields. Last
time, when we thought this through, we just paid attention to the stunted projective
space. We note that S" ! x Vi,m has dimension n + d where d is independent of n. On
the other hand, we have 2(n + m — k)-connectivity for the map R]P’Zi%:,lg — Vientm-
For a given k and N, we can find a sphere S"~! with n > N such that S*~! has k — 1
vector fields. So playing around with this, we can assume n > 0.

By taking n > 0, we may assume that the dimension of that join S™~! Viem 18
smaller than the connectivity of the pair (Vi nim., RPZI%:,&E). That’s because we have
a dimension n + constant versus 2n + constant connectivity. For n > 0, we produce a
map

n—1 n+m—1
S * V]@m — RPnerfk

which has the property that the composite

n—1 m—1 n n+m—1
S *RPD—, — 5™+ Vi — RPITIT 0

is a homotopy equivalence (James periodicity).
The consequence of this is a very beautiful fact:

19.2 Corollary (James). Stably, we have a splitting
S" N Vi = S A RPZ:}C V anotherspace.

That stunted projective space, living inside the Stiefel manifold, breaks off after you
suspend it a bunch of times. This even applies when &k = m. When k& = m, this implies
that a big suspension of SO(m) is homotopy equivalent to a big suspension RP™ !
wedge another space. There are some neat uses of this. I was really fascinated by this
when I was a graduate student, and there was a lot of speculation about whether there
was a further decomposition. The homology of SO(m) is an exterior algebra and as a
result, it was believed that the decomposition of X°°SO(m) went for all these exterior
pieces. Haynes Miller proved this. “Stable splittings of Stiefel manifolds” is the paper.

That’s the end of my little tour of the homotopy theory of Stiefel manifolds, but a
lot of arguments—which are not very widely known—can be used to prove things like
the Adams conjecture. That’s the easiest proof of the Adams conjecture I know, but
I’ve never seen it written down anywhere. Some of us who like to think about motivic
homotopy theory use analogs of these maps in motivic homotopy theory. They work
in many other contexts. You have to be careful where your join coordinate lives. I
kind of want to advertise these because they are beautiful applications of the theory of
CW complexes. These are some theorems that never became that widely known, but
they’re extremely useful theorems that work in much broader contexts than this one.

Lecture 20
10/24

I still owe you the computation of the intrinsic join in homology, and I'll say a little
about that today. I keep finding myself hampered by the fact that I'm not working in
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the stable homotopy category. I want to explain today the basics of stable homotopy
insofar as I'll use them in the near future.

81 Stable homotopy

So we’ve seen that a lot of our problems that we’re looking at don’t change if we
suspend a few times. We've seen that if dim A < 2connectivity(X), then the map

(4, X] — [2A4, DX]

is a bijection. Then 3 A has dimension dim A 4+ 1 and the connectivity of X bumps up
by 1. So the condition gets easier and easier after suspending. This condition is always
eventually met, if A is a finite-dimensional CW complex and X is arbitrary. In other
words, we can define:

{4, X} = lig[x" 4, 5" 4],

and the system actually stabilizes at some finite stage. If dim A = d, then dim X" A =
d + n, while the connectivity of X" X is n — 1, so we need n large enough such that

d+n <2(n-1),

and that’s the same as saying
n>d+2.

A lot of times, you're in that range. In this range, good things happen: for instance,
cofiber and fiber sequences are the same.

82 The Spanier-Whitehead category

This is probably actually good enough for our purposes. Any model for stable homotopy
theory that you produce has to contain the Spanier-Whitehead category. This is what
you need to start with, and there are a lot of ways of embellishing it to have good
properties.

e The objects are finite pointed CW complexes X.
e The maps {X,Y} < lig [S"X,3"Y].

Some simple things that happen (I'm assuming you know about the Freudenthal
suspension theorem):

1. If A C X is a subcomplex and I look at X/A, then the following happens. We
have two long exact sequences: I can stick this in either variable and get along
exact sequence. The easier one is, for any Y, I get a long exact sequence

{X/A) Y} - {X,) Y} - {A Y},

and this is exact. But it’s also true in the other variable. For any Z, we have a
long exact sequence
{Z,A} - {Z, X} - {Z,X/A}.
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The first statement is true at any stage, and the second is only true after a
sufficiently high suspension. The point is that the map

S A - fiber(S"X — £ (X/A))

is an equivalence through a large range of dimensions (about 2n). You can work
out that number, say, from the Serre spectral sequence. I’'m going to leave it
to you to do that.

2. In both cases, we can extend the sequence to an infinite exact sequence in both
directions. So for instance, let’s take the first one. It extends in one direction
obviously, because we just take the Barratt-Puppe sequence

A—=-X 5 X/A—-YA—-3¥X — ...,

and map that into Y, and even at every stage, I get a long exact sequence. Taking
colimits, I get

{AY}  {X)Y} « {X/AY} + {ZAY} « {EX, YV} «+ ...
We can extend in both dimensions, though, because we’ve rigged things such that
{A,) Y}~ {3¥A XY},

sort of by definition of the colimit. When we move into the right-hand direc-
tions, we were suspending the first variable, and when we move in the left-hand
directions.

3. The same thing is going to happen with the other sequence. Now these are going
to go in the normal direction. In the other sequence, we would have

{Z,A} - {Z, X} > {Z, X/A} - {Z,2A} — ...

and we can extend it in the other direction by suspending Z instead of A. For
instance, we could continue the sequence:

{32, X} - {32, X/A} - {Z,A} - {Z, X} - {Z,X/A} - {Z,2A} — ....

This is a little inconvenient to suspend in one variable one way and to suspend
in the other variable the other way. This is inconvenient, because you’re treating
the variables separately, while these long exact sequences are great.

It’s therefore nice to be able to add new objects to the Spanier-Whitehead category.
We’re going to add objects X" A, n > 0. In order for this to make sense, we have to
define maps into and out of it. We set

{(S7"4, X} = {4,5"X}

and similarly
{Z,x7"A} ={x"Z,A}.
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It’s more convenient to add these objects. If I introduce these formal desuspensions of
objects and define the objects like this, then I can rewrite my sequences like

= {Z,5"AY 5 {Z, 2" X} =5 {Z,5™(X/A)} = {Z,2"TTAY — L

and that’s true for all integers m. The other sequence would have worked out the
same. The Spanier-Whitehead category works out a little better when you introduce
these formal desuspensions.

83 Spanier-Whitehead duality

The reason Spanier-Whitehead introduced the category was because of Spanier-Whitehead
duality. In the Spanier-Whitehead category, the operation X A'Y makes sense: we use
the smash product spaces. If you think through the definition, you can arrange things
so that
ETPXALTYY =5TX AY).

So you can extend to the formal desuspensions. This makes the Spanier-Whitehead
category into a symmetric monoidal category. The unit is the sphere S°.
In a symmetric monoidal category like this, we say that:

20.1 Definition. (This would work in any symmetric monoidal category; I'm in the
Spanier-Whitehead category.) A dual of X is an object Y equipped with maps

XAY -5 S5 vaX
such that the following composite:
XAS" 5 XAYAX = S'AX
is the tautological equivalence. Similarly, I require that
SONY Y AXAY Y ASY
be the tautological equivalence.

If Y is a dual of X, then here’s a simple proposition:

20.2 Proposition. If Y is a dual of X, then I can make the following maps. Given
any W, Z, I can consider

(ZAY, WY S {ZAY AX,WAXY = {ZASOW A X}

and this composite map is an isomorphism.

It’s like vector space duality. It’s supposed to remind you of what happens in vector
spaces. A map Z ® Y into W is the same as maps Z — W ® YV, in vector spaces.
Another easy reuslt:

20.3 Proposition. IfY is a dual of X, then X is a dual of Y.
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That’s because it is a symmetric monoidal category, and you can commute all of
these.

I keep talking about “a” dual, but the dual is unique up to unique isomorphism.
This first proposition tells me what functor it represents. We know that

{v, }~{s° - AX},

and this determines Y in terms of X, uniquely up to unique isomorphism in the Spanier-
Whitehead category.
I want to write this dual as a functor.

20.4 Definition. If X is in the Spanier-Whitehead category, I'm going to write DX
for the Spanier-Whitehead dual of X (assuming it exists).

If I have a map X3 i) X5 and if I know that the duals of both terms exist, then I
get a map
Df : ]D)XQ — ]D)Xl

That just follows because I know what functors are being represented and corepresented
by the duals, so it’s standard category theory. In fact,

(DX, DX1} ~ {S°, Xo ADX 1} ~ {X1, Xo},

and we take the map corresponding to f at the end.
So if the dual exists, then D is a contravariant functor from the Spanier-Whitehead
category to itself.

20.5 Definition. SW will denote the Spanier-Whitehead category.
In fact, once we’ve seen that the dual exists, we’ll have:

20.6 Proposition. D : SW — SW is a contravariant functor which squares to the
identity.

Let’s note first that the dual of the sphere is the minus sphere, i.e.
DS" ~ 5" =550
So every sphere has a dual. If we have a cofiber sequence
A— X — X/A,

and if A, X have duals, then X/A has a dual and it’s going to be forced to fit into the
cofiber sequence
DA+ DX + D(X/A),

and that says that D(X/A) is the desuspension of the cofiber of the map DX — DA.
So we have the duals for the sphere, and we get it from things that we can build
from spheres and cofiber sequences. We thus get:

20.7 Proposition. Fvery X has a dual.

I’'m kind of breezing through this. You can read about this in Hatcher or in the
exercises in Spanier’s book, which have an excellent discussion of duals. Every X has
a dual, but this hasn’t helped us very much yet. We have another result:

20.8 Proposition. D(X AY) ~DX ADY for X, Y € SW.
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84 Formulas for DX

This is very useful on its own, but it helps a lot if you know what the dual is. You
start getting somewhere when you learn what the dual is.

Suppose X is a CW complex and I can imbed X <« S™. Let’s even suppose that
that this extends to a CW decomposition of the sphere. I'm going to suppose that
S™\ X is a finite CW complex (up to deformation retraction). What I'm picturing is,
for instance, that SPta—1\ §P=1 ~ §9=1 This is a really important picture, and I'm
going to keep coming back to it in other guises. That’s a typical example.

Let A C 8™\ X be a finite subcomplex which is a deformation retract of S™\ X.

You want to place these in the sphere, by possibly moving things up to a homotopy,
that:

1. No point of A is antipodal to any point of X. Here A C S™\ X is homotopy
equivalent to it.

2. Then you get a map A* X — S™ by sending (a, x,t) to the v¥(¢) where 7Z is the
unique geodesic joining a to x.

3. Alexander duality ends up implying that X and A end up becoming Spanier-
Whitehead duals. In fact,
Ax X ~S(ANX),

and I have a map from that to S™. That gives a map in the Spanier-Whitehead

category,
. AN~ W-Dx 5 g0

This, you can check, makes »~ W=D X into the dual of A.

4. Notice that you apparently also need to provide a map AAS~V-DX — S0 but
you only really need to provide one map. Given a map X AY — S°, that already
gives me a transformation

{(ZWAXY S {ZAY,WAXAY} = {ZAY,W}

and if that map is an isomorphism, then X and Y are duals, and the other map
(ie., S - Y A X) is given to us from this isomorphism. That is, the map
S% — Y A X is isomorphic under that isomorphism from {Y, Y} and we take the
one corresponding to the identity.

You can read about this in Hatcher’s book. My goal today was to summarize the
basic properties of Spanier-Whitehead duality. This last piece isn’t formal, but it’s a
consequence of Alexander duality. In the next class, I'm going to give you Atiyah’s
formula for the dual, and I want to use that to think about lots of duals. I'm going to use
Thom complexes of vector bundles, and I’ll introduce it very briefly next time. Spanier-
Whitehead duality mixes with the theory of Thom complexes in a very beautiful way,
and I'll explain that in the next class.
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Lecture 21
10/26

81 Thom complexes

We were talking about stable homotopy theory and the Spanier-Whitehead cate-
gory. I want to describe some natural objects in that category, and those are Thom
complexes.

Suppose I have a space X and a vector bundle V' — X. There are a couple of
different definitions we can give of the Thom complex.

21.1 Definition. Suppose X is compact, e.g., a finite CW complex. Then the Thom
complex XV of V — X is the one-point compactification of V' (i.e., of the total space).

For more general X, XV is defined as the direct limit of X\ as X, C X runs
through the compact subspaces. As a set, it still is the same (one extra point), but the
topology is a little different.

We'll use this form of the definition today, but if X is paracompact, you can choose
a (positive-definite) metric on V, and let B(V') be the unit ball bundle in V', and let
S(V') be the unit sphere. Then we could define

XV =B(V)/S(V).

Alternative notation. An alternative notation for the Thom complex, when there
are other superscripts, is Thom(X, V).

21.2 Example. Suppose V = X x R" is trivial. Using the second definition, we find
that
XV =XxD"/(X xS =X, AS"

(Here X is X with a disjoint basepoint.) Notice that if X is a cell complex, and if
I were to draw a “picture” of it, then we notice that the cells of the Thom complex
are the same cells as the cells of X, but now starting in dimension n. There’s another
thing that’s important to think about. We don’t imagine that X started out with
a basepoint. It can, but you get more uniform statements if you don’t regard X as
starting out with a basepoint but do regard XV as having a basepoint.

There’s a one-to-one correspondence between the cells of X and those of the Thom
complex. In particular, we have an isomorphism in cohomology, which is just the
suspension isomorphism, B

H*(X) ~ H*(XxY).

Remark. As said above, X" has a canonical basepoint, for any V (as a one-point
compactification or quotient).

Now let’s imagine that X is a CW complex, and let’s imagine that we attached a
cell. So start with some space A, which sits inside X = A Uy e™. Suppose we have
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some vector bundle V' — X. Let V4 be the restriction to A. We have a map of Thom

complexes
AVa o xV
)

and we’d like to ask what the quotient space X" /A4 is. Notice, however, that we
have this pushout diagram:

Smil — -Dm )

|

A X

and I have this vector bundle V sitting over X. At this point it’s going to be a drag to
give V different names, so I'm going to use the same symbol for the pull-backs of V.

I'm taking the one-point compactification of V' and modding out everything that
lives over A. That’s the same thing as pulling back V' to D™, taking the Thom complex,
and crushing the sphere. So

XV/AV — (Dm)V/(Sm—l)V'

Now V|pm ~ D™ x R™, and we already worked out what that Thom complex is. If I
further restrict to the boundary sphere, it’s still trivial. So we can calculate that

(Dm)V/(Smfl)V — DT A Sn/S_T_l A S" ~ (Dm/sm—l) A S
Let me make a slightly more general statement:

21.3 Proposition. If I take V|ym), then (X)) /(X(=D)WV s o wedge over the
m-cells \/ ,_cons S N S™.
If you think about this a little more, you learn that:

21.4 Proposition. (X(m))v is the skeleton filtration of a CW decomposition of XV,
which has one m + n-cell for every m-cell of X.

This argument also shows that we get an isomorphism on the cellular chains:

21.5 Proposition. There is an isomorphism CN(X) with the Cyin(X") as graded
abelian groups.

However, this isomorphism isn’t an isomorphism of complexes, as it doesn’t gen-
erally commute with the differential d°®!. The identifications we made depending on
trivializations of vector bundles over spheres, and those could be done in different ways.
But nevertheless, it leads one to look for an isomorphism,

H.(X)~ Hypgimv(XY),

or
H* (X) ~ ﬁl*—&—dimV(XV)‘

Under convenient conditions, there is such an isomorphism.
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§2 The Thom isomorphism

We first have to define something. Suppose V' — X is a vector bundle over X of
dimension n.

21.6 Definition. A Thom class for V is an element U € H"(X") with the property
that, for each x € X, the map

Ve ~ {2}V = XV,

(where the Thom complex of V]{x} is the one-point compactification SV=, for V,, the
fiber over x), carries U to a generator of H"(S").

The Thom isomorphism theorem, which is quite easy to prove, is that:

21.7 Proposition. If U is a Thom class for V, then multiplication by U induces an
isomorphism o _

H*(X) ~ H*erlmV(XV) ~ H*erlmV(B(V),S(V)),
of modules over H*(X).

We note that the cohomology of (B(V),S(V)) is a module over H*(X), because
B(V) is homotopy equivalent to X. The proof is very easy—here’s a sketch.

1. Check for trivial bundles (which is easy).

2. Show by induction on j that if X = W7 U---U W;, where each W; is open and
V0w, is trivial, then it’s true for X. That’s a very simple argument using the
Mayer-Vietoris sequence. If you know it for j — 1, cover it by the union of the
first 5 — 1 and the last one, and use the Mayer-Vietoris sequence for X and for
the Thom complex, and the five-lemma.

3. A limiting argument, if X is paracompact.

You can easily figure this out. But we’ll probably come back to the Thom isomor-
phism for other cohomology theories a little bit later.

83 Examples

I wanted to do some examples of Thom complexes, because these are really important.
First, I want to generalize one thing. Here’s another observation.

21.8 Proposition. Let V be a vector bundle on X. XVER™ ~ §m A XV More
generally, let V. — X, and W — Y be vector bundles. Form the external Whitney sum
VoW —- X xY. Then

(X xY)VOW ~ xV AYW,

This is almost immediate from the definition. The first assertion is a special case
of the second with Y = x.

The point is that adding a trivial bundle just suspends the Thom complex. This
means that we can define the Thom complex of a wvirtual bundle. Let £ be a virtual
bundle.
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21.9 Definition. If ¢ is a virtual bundle (in KO°(X), which is the group completion
of the monoid of real vector bundles on X) on the finite CW complex X, then we can
define a Thom complex X¢ in the Spanier-Whitehead category SW (i.e, the form
including the formal desuspensions).

Namely, suppose £ = V — W where V, W are finite-dimensional bundles over X.
Choose a vector bundle W’ such that W & W' is trivial, so choose an isomorphism
W' @ W ~RY. Then

VW —RN =V -W =¢,

so we define the Thom complex

X§ = n-Nxvew'

I’'m going to use this a lot. It’s convenient to be able to talk about Thom spectra,
or Thom complexes of virtual vector bundles, but you have to imagine them in the
stable homotopy category.

Here are some examples.

21.10 Example. Let V = kL where L is the tautological line bundle RP". What is
Thom(RP",kL)? There are two ways to work this out, and they correspond to the
two different definitions of the Thom complex. One of them is to notice this little fact
about projective spaces. Here RP" is all the lines through the origin in R"+1.

Let’s say I have a line through the origin in R**!1** but not a “vertical” line, i.e.
not in R¥. In this case, such a line is a point in RP"F \ RPF~1. A line that’s not a
vertical line will pass the “vertical line test,” and will be the graph of its projection to
R"™*1. Tt shows that

RP"F\ RPF—1 — RP"

is a bundle, and in fact this bundle is @k L*. Since I'm over the reals, I can write this
as @F L (if T were over the complex numbers, I'd have to introduce conjugates). The
Thom complex Thom(RP", kL) is the one-point compactification of the total space. To
calculate this, we can imbed the vector bundle (the total space) in a compact space,
and then crush the complement. We have

kL < RP™"TF\ RPF1,
so that the complement of kL in RP"* is RP*~!. So we can assert
Thom(RP", kL) = RP"F/RP*1 = RPHF,
i.e. we get the stunted projective spaces studied earlier.

21.11 Example. This extends our definition for stunted projective spaces. We can
construct Thom(RP", kL) when k < 0, and we can use this to define virtual stunted
projective spaces in SW. In other words, we can define RIP’Z for a,b € Z, and b > a.

We’re going to build a lot on this Monday, but let me just do one another example
which will play an important role.
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21.12 Example. There is another important vector bundle on RP", which is the
tangent bundle. I'm going to describe this for you. This description also would
work for any Grassmannian. Now RP" is the space of lines in R"*!. Choose a point,
i.e. aline £ C R*™1. A little infinitesimal movement of that line ¢ is the graph of a
homomorphism ¢ — ¢+, just as before. This tells you that

TRP" = Hom(L, L),

where L € R*! x RP", and the quotient of that imbedding is the quotient L*. If you
hom L into the sequence

0— L— R xRP" - L+ — 0,
you get a sequence that goes
0 — Hom(L, L) — Hom(L,R"*") — Hom(L, L) — 0.
Since Hom(L, L) is trivial, you get that
Hom(L, L1) ~ L™+,

If you put this together, you find that the tangent bundle to RP™ plus a trivial bundle
is (n 4 1) copies of L, L1 Equivalently,

TRP" = (n+ 1)L — 1.
Let’s now look at

(RP™) TR = Sy(RP")~("FDE = SRPZE .

You’re supposed to have this picture of the cells of real projective space, but you're
allowed to extend them to negative dimensions. In the next section, we’ll identify this
with the Spanier-Whitehead dual of RP’}, and that gives a useful relationship between
stutnted projective spaces and Spanier-Whitehead duality. We’ll come back to that in
the next lecture.

Lecture 22
10/31
81 Spanier-Whitehead duality

In the last class, we talked about Spanier-Whitehead duality. Spanier-Whitehead
duality has a lot of important aspects to it. It’s useful to be able to figure out the
Spanier-Whitehead dual of something is. Last class, I showed that if K C S™ D L are
disjoint (with no antipodal points) and the inclusion

LcS'"\K
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is a homotopy equivalence, then L and K are Spanier-Whitehead duals. In this situa-
tion, you get a map
K+«L~YKANL)— S"

SO you get a map
STMAS'K AL — S,

which makes S™™" A L ~ DK. It’s of low importance to keep track of the suspensions,
at the beginning. If you look at the cells and where they are, you can figure out what
the shift had to be. If you're learning about these things for the first time, I would
advise ignoring these indices, for now.

I want to tell you a beautiful formula of Atiyah for the Spanier-Whitehead dual of
a manifold with boundary. Let M be a smooth, compact manifold with boundary oM.
The boundary might be empty. You’ll see that even if we’re interested only in closed
manifolds, it’s important to include the case of a nonempty boundary. We choose an
imbedding

M — DV

with the property that 9M C SV~ and nothing other than the boundary goes into
SN=1_ In other words, it’s an imbedding of manifolds with boundary (M,dM) —
(DN, SN=1), This gives me an imbedding

M/OM — DV /SN=1 ~ gN,

If the boundary happened to be empty, a case which I allowed, then M/OM = M U x
(when you mod out by something you add a point and identify everything in that set
to the point), and what we have is that

M c SN\ {oc}, *— {co}.

So we're going to get a formula for D(M/OM). As we saw, it is SV \ (M/OM).
What is that? It definitely doesn’t contain oo, the point at infinity. In fact,

SN\ (M/OM) = Int(DN) \ (M \ dM).

Now the boundary of a manifold has a little collar neighborhood that looks like OM x
[0,1], and if T remove the boundary, that’s homotopy equivalent to shrinking it down
to the edge of that collar neighborhood. So that’s homotopy equivalent to M, i.e.

M\ OM ~ M.

Let’s call My = M\ OM.

Choose a tubular neighborhood V' of (M, M) C DV. We note that Int(D")\ My ~
Int(DY) \ V. Now Int(DV) ~ R¥. So we have a manifold M° imbedded in R and
we're interested in understanding the complement. Now notice that RY /(R™ \ V) is
the Thom space Thom(M?, V). We have a cofiber sequence

RY\V - RY - RY/RV\V
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so that the suspension of (RV\ V) is homotopy equivalent to RY /(RV\V') = Thom(My, M).
So
Y(RN \ V) ~ Thom (Mo, V).

So V is a trivial N-dimensional bundle minus TM. So
Thom (M, V) = SV A Thom(M, —TM).

There are a bunch of indices to go get straight here. We figured out the complement
of the sphere, which is related to the Spanier-Whitehead dual by some amount of
suspension. If you work out all these numbers, we learn that up to suspension,

22.1 Theorem. If M is a compact manifold with boundary OM, then
D(M/OM) = Thom(M,—TM).

This is a really important fact, and this is used in all kinds of places. For instance,
here’s a use of it. If you have a Thom class in T'M, then so does —T' M, and then I
have a Thom isomorphism

HE (M) =~ H*=4mM (Thom(M, ~TM)) = Hy_y(M,dM).

This is Poincaré duality, relating the cohomology and homology of M. Formu-
lated like this, it tells you that having Poincaré duality is equivalent to having a Thom
isomorphism for —T'M. It also tells you that if you have a transformation of coho-
mology theories, it’ll be as compatible with Poincaré duality as it is with the Thom
isomorphism. That’s something for which there are good formulas. That’s a really
useful point. If you're learning about the index theorem, this thing is really useful to
internalize. It’s part of the story about the index theorem, which tells you that some
number computed by analytic means is equal to some number computed by topological
means. The topological story is very related to this.

Atiyah formulated this in terms of manifolds with boundary, and it lets you get
a slightly more general result. Suppose M is closed, M = (). Suppose V' — M is
a vector bundle. Then the disk bundle D(V') is a manifold with boundary S(V') (the
sphere bundle). What does Atiyah’s theorem tell us in this case? In this case, the
theorem tells us that

D(Thom(M, V)) = D(D(V)/S(V)) = Thom(D(V), ~TD(V)).

Let’s figure out what the last thing is. In D(V'), we have a manifold homotopy equiv-
alent to M, and the tangent bundle to the disk bundle corresponds to TM & V. So
the Thom complex of the disk bundle with coefficients in —T'D(V'), that’s homotopy
equivalent to

Thom(M,—-TM —V).

The conclusion here is:

22.2 Corollary.
]D)(MV) — M*TM*V.

I could have put both of these together and handled the case where M had a
boundary as well, but I'll leave that to you. That’s a variation on this.
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82 Application to vector fields

Now I want to bring all this home. I want to apply it to our vector fields problem.
There’s one more piece of the puzzle that has to come in before we have a really robust
tool to work with. Let’s do an example.

22.3 Example. We checked before that TRP" @& R is (n + 1)L for L the tautological
bundle. Atiyah’s formula tells us that

D(RP") = Thom(—nL) = ER]Pjn iy

We don’t know anything about that yet. We could identify this with a different stunted
projective space using James periodicity but we don’t know that yet. Remember, the
last statement is basically a definition.

22.4 Example. More generally, suppose I wanted the Spanier-Whitehead dual of
RP"_,. That’s the Spanier-Whitehead dual of Thom(RP*, (n — k)L). What is that?
By Atiyah’s formula, we get

D (Thom(RIF’k, (n — k)L)> = Thom(RP¥; 1 (k+1)L—(n—k)L) = Thom(RP*, 1— (n+1)L),

which is (et 1)
—(n—k+1
ERP—(nH) .

What we’re learning is, for all a, b,
b —a—1
DRP, = ERP_;~,.

This is sort of a formal statement — we haven’t yet identified these things with
projective spaces. We're going to use real K-theory to get a different proof of James
periodicity, and that will give us a way to turn these things into more useful statements
for us.

There’s one more thing I want to tell you, which has to do with the Spanier-
Whitehead dual of a manifold. Let M be a closed manifold, sitting inside RV. We
can do the Pontryagin-Thom construction, and we can collapse everything outside a
tubular neighborhood to a point, which gives a map

SN — Thom(M, v),

for v the normal bundle. Up to a suspension, this is the Spanier-Whitehead dual of
M. Now I can also map Thom(M,v) out to SV. Pick any point in M, and collapse
everything outside a neighborhood of it to a point. This gives a map Thom(M, v) — SV
and the composite

SN — Thom(M,v) — SV

has degree one. If you want, it’s the Pontryagin-Thom collapse map about a point in
Thom(M, v).

Remark. If I have N ¢ M C RY, the Pontryagin-Thom collapse goes in the reverse
direction,
SN — Thom(M, vp;) — Thom(N, vy).

107



Lecture 23 Spectra and stable homotopy theory notes

The conclusion of this is, what are these Thom(M,v)? If M is connected, and
d-dimensional, then M has a zero-cell, which is the basepoint, and then it has a bunch
of cells up to in dimension d and has a single d cell. The Thom complex just shifts
the cells, so that has cells in dimension N — d and all the way up to an N-cell. These
maps show that the top cell is unattached. The top cell of Thom(M,vy,) splits
off, as there’s a map from a sphere in, and a sphere out. The Thom complex is SVV
something else. I’'m going to say this in a more colloquial way because it’ll be useful
for us in the vector fields problem.

In XM, the bottom cell splits off. If I take the Spanier-Whitehead dual DX M,
the top cell splits off. That’s also Thom(M,—TM), so the top cell of the Thom
complex has to split off. This is a really important thing about the Thom complex
about —T'M. It comes with a canonical map from a sphere to it which is the dual of
the tautological map from M to a x. The relevance of this will become clearer in the
next lecture, but I'll remind you that the vector field problem was equivalent to asking
that the top cell split off in a stunted projective space. Ultimately this is all going to
relate to real K-theory and Radon-Hurwitz numbers.

Lecture 23
11/1
We ended last time with the Atiyah duality theorem.

23.1 Theorem. If M is a manifold with boundary, then D(M/OM) is M~TM . For a
closed manifold M, the dual of a Thom complex MV is M~TM=V

The second case reduced to the manifold-with-boundary case. If M is a manifold-
with-boundary and V is a vector bundle on M, we have a more general statement

D(MY JoMY) = M~TM=V,

These are very useful for stunted projective spaces. But they only tell some of the
story.

81 Real K-theory
Let X be a finite CW complex.

23.2 Definition. KO°(X) is the Grothendieck group of real vector bundles on X.
You try to make this into a cohomology theory. You can define
- -n ——0
KO (X)=KO (S"AX),

which gets us negative KO-groups. The real version of the periodicity theorem is as
follows:

— ——m-8
23.3 Theorem (Bott periodicity). KOm(X) ~KO" (X).
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—0
The periodicity isomorphism is induced by multiplication by a class u in KO (S%) =
—~ -8
KO (8Y), constructed from Clifford algebras. It’s important to understand this class.
I’ll give you a couple of constructions of it because it’s important to understand what
it is. But I’d rather make a more systematic discussion.
Here are some other facts about KO:

—0

1. KO (X) is homotopy classes of pointed maps [ X, Zx BO]. Here BO = lim BO(n),
and BO(n) can be described as the limit lim . Gry, (R™N). Bott periodicity gives
you the homotopy groups of Z x BO.

2. In fact,
ma(Z x BO) = KO' (5"
0] 1 2 3451678
is given by the following table: —o¢
KO (S")|Z|Z/)2|\Z/2|0|Z|0]0]|0|Z

The groups repeat mod 8. There’s a song for them. We will write KO, for these
groups, and we can also write them as m, KO if we build a spectrum for KO-
theory.

We get the Atiyah-Hirzebruch spectral sequence. That goes from
H (X;m.KO) = KO*X.

I deliberately didn’t write down how the indices work. I could write down the general
formula, but I’d rather instead point out the two situations when you use this. You
don’t have to remember this if you remember how the Serre ss works.

Another way of saying this is that KO°(X) is built from @, H"(X;7,KO). By
built from, I mean in the sense of a spectral sequence. KO°(X) has a filtration whose
associated graded is a subquotient of that.

I want to do some examples here, but there’s one other thing I want to point out.
Suppose X is finite and V is a vector bundle over X. Then the Thom complex XV,
regarded as a stable object (or an object in SW), depends only on the underlying
equivalence class of V in KO®(X). If I add a bunch of trivial bundles to V, that will
just suspend this. That is, XVR" = g7 A XV, Also, V] ~ V5 in KO°(X) if and only
if Vi ® R™ ~ V5 @ R™. To say that they’re equivalent in K O-theory means that I can
add some vector bundle to them to get them to be isomorphic, i.e. Vi & W ~ Vo o W.
Now add some other bundle to W that makes it trivial.

If I work in reduced K O-theory, then I get the same Thom complex up to suspen-
sion. In other words, XV depends, up to suspension, only on the class of V —dimV €

KO'(X). If V,W are identified in KO'(X), then V & RN ~ W & RM for some M, N.

82 Examples

Let’s do an example with X = RP® = RP§. Take X = RP®. We've seen that

RP"® = Thom(RP®, nL).
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Modulo suspensions, that only depends on n(L —1) € If(:ao(R]P’S). Now what do we

know about I%O(RPg). You’d use the AHSS. If you wanted the spectral sequence for
reduced K O-theory, you’d put in reduced cohomology everywhere rather than coho-
mology.

(spectral sequence to be filled in later.)

Remark. When you run the spectral sequence for KO°(X), you only get Z/2’s down
the diagonal, never Z’s. When you right this down, you just put in Z/2’s in each of
the spots where you have Z/2’s in KO,,.

We don’t yet know what happens: it might be a bloodbath. There might be a ton
of differentials. But we know from this that

—0
KO (RP?)
has order at most 16. If we combine that with this, this implies that
RPH+8
n

depends only on n modulo 16.

I could replace 8 by any number. For more general values of 8, this gives James
periodicity. In fact, just saying it this way, “the order of the K O-group is at most this
number,” you get exactly the same James periodicity as you get from Clifford algebras.
In fact, you get the same periods from this crude method as the periods that come from
Clifford algebras. (Remember, when we had vector fields on spheres, we got a James
periodicity result.) I think this is really the way to think about James periodicity. It’s
sort of the most direct way to think about it. The Thom complex (RP®)™* depends
only on n modulo the order of this K O-group, and that gives you the periodicity.

There’s something else that comes out of this. We got vector fields out of Clifford
algebras, and we can also get vector fields out of this. By Atiyah’s results,

D(RPY) = RP;,

and for this thing, we know that the top cell splits off. That happens in the Spanier-
Whitehead dual of any smooth manifold. But this only depends on these numbers mod
16. So we find that the top cell of R]P’%E’ splits off, stably. That implies that S'® has
eight vector fields.

23.4 Corollary. S' has eight vector fields.

23.5 Example. This more generally implies that S'"~! has eight vector fields. We
might be able to do better when n is even.

We also got that out of Clifford algebras.

I’ll tell you in a minute what these K O-groups work out to be. But we haven’t used
very much. We've used Bott periodicity, and we’ve used this stuff about K O-theory,
but we haven’t tried to calculate: we just got an upper bound. And we found a method
of constructing vector fields on spheres just from Atiyah duality and K O-theory, and
we got the same number of vector fields on spheres as we did with Clifford algebras.
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Let’s just do one more and see if we can guess the general pattern. Let’s try RP.

I'm just going to run through the same kind of stuff. I/(VOO (RP19) is going to have order
at most 64, but the same AHSS argument. That tells me that RP"*10 depends only
on n mod 64. That gives some sort of James periodicity for 11-cell stunted projective
spaces. And what about vector fields?
We know that
D(RP%) = RP_ 1,

and that only depends on the numbers mod 64. Here again the top cell splits off, so
we can 64 to each of these numbers. So in R]P’g%, the top cell splits off. That implies
that S% has ten vector fields. That is also the same number that we would get from
Clifford algebras. (Wait, is this right?)

I actually am going to give you a homework problem right now. So far, I picked
projective spaces that ended on a Z/2 in the AHSS. What if T did something like

RP°, RPS, RP7? If we looked at I?(/)O(RPE’), we’d find that it has at most 8 elements.
The same thing is true for RP® and the same is true for RP7.

Here we would learn that
RPP5
n

depends only on n mod 8. Here would learn that R]P’ZJr6 only depends on n mod 8,
and same for RIP’Z”. The last statement implies the ones before it; it is the strongest.
The same thing would be true with vector fields. The first one would tell me that
58— has five vector fields, the second one would tell me that S®"~! has six vector
fields, and the third one would tell me seven vector fields. So we get better results if
we take the projective space that ends right when possible.

There are several statements coming together here: we can construct vector fields
using Clifford algebras, and using real projective spaces. It turns out that we get the
same number. I want to put a couple of statements together. I'll prove this next time.

—0
23.6 Proposition. KO (RP") is cyclic of the order given by the E5 page of the AHSS:
there aren’t differentials in an out of there. It’s generated by L —1 for L the tautological
bundle.

If you put this together, we have the following proposition:

—0
23.7 Proposition. If (L — 1) has order m in KO (RP"), then S™ ! has n vector
felds.

We also learn:
23.8 Proposition. If Cl, acts on R™, then S™~! has n vector fields.

I can rewrite the first proposition by saying that mL = R™ stably. The question
I want to leave you with, which I am going to put on the problem set, is: what is the
relationship between these? Can you go from one to the other? What is the relationship
between?

e mL =R™ on RP"
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e Cl,, acts on R™.

It’s easy to get a number which is off by a factor of two, and there’s a trick to improve
it. This is kind of miraculous. The reason that KO-theory solves the vector fields
problem is because they are giving exactly the same number.

Lecture 24
11/5

Today, I want to describe the calculation of the K-theory of some stunted projective
spaces. I was just rereading Adams’s discussion of this—and I recommend going to
Adams’s paper “Vector fields on spheres” if you want to see some version of these
details written up—but I think that the best way to engage with it is to use some of
the techniques I'm going to talk about today and to put it together yourself. There
are a lot of ways to do this calculation, and it’s important to do it from these points
of view. So let’s begin.

81 Outline

—0
Our goal is to calculate KO (RP}'). I'm going to give you some techniques, and we’ll
put the answer together.
Here are some tools:

e The Atiyah-Hirzebruch spectral sequence
H*(X,KO*(x)) = KO*(X).

There’s also an analog for complex K-theory, and there are the various maps
between them. There is a map

K%X) = KO(X)

which sends a vector bundle V to its realification. Then there’s the map KO(X) —
K (X) which complexifies a vector bundle.

e Note that the composite
K(X)— KO(X) — K(X)

sends V = V ®g C. The complex structure comes from the second factor of C,
and thisis V@ V.

e The composite KO(X) — K(X) — KO(X) is multiplication by 2.

This is how you make all these calculations in homotopy theory—make maps to
things that you know how to calculate.
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§2 K*(CP")

Let’s start with some spaces that we know. The first thing is the complex K-theory
of CP". The AHSS for this is rather simple. It’s got Z’s in every other degree (add a
drawing) and zeros everywhere else: there is a checkerboard pattern and consequently
no possible differentials. I already made this calculation, and I did something about a
projective bundle formula when I talked about Adams’s splitting principle.

So the spectral sequence runs

H*(CP"; K*(x)) = H*(CP", Z[u*']) = K.[u'] = K*(CP").

There is a little thing that we want to check here. We want to check that if we take
the class of 1 — L¢ (where L is the tautological bundle) corresponds to z. This is kind
of an easy statement to believe—what else could it be? But it really is something you
need to check, and it gets at the heart of how you use the AHSS. You could prove that
by naturality. We could compare the spectral sequence to the case of Cfl, and let’s
even take reduced cohomology. That looks like H*(CP!, K*(x)) = K*(CP!) and
the generator in H? (times u~!) has to correspond to the generator in K°.

Notation: L is the tautological bundle over RP", and L¢ is the tautological
bundle over CP".

What does this mean homotopy-theoretically? Homotopy-theoretically, it means
that we have a map CP" — BU, and that when we restrict to the 2-skeleton, the class
CP! — BU is the generator of mo(BU). I'll come back and expand on this a little bit
later. It’s important to remember what it means for a cohomology theory to represent
an element in the AHSS. We're going to meet this in a little bit.

So this easily gets that K°(CP") has a basis 1,z,...,2", and there’s one more
assertion here: why does z"*! = 0?7 We’ve talked about this. I'll just remind you: let’s
consider the pull-back

CP" — ((C]P;n)/\(nJrl)

and the class 2" is pulled back by z®---®z. However, CP" — (CP™")""*1 s trivial
(because CP" is n-dimensional and the smash product is (n 4 1)-connected). So that
takes care of K°(CP").

§3 KO(RP?")

We have a map RP?"* — CP" (in fact, RP?*"*! — CP"), creating a diagram of spectral
sequences

H*(CP", K,) —— K*(CP") .

l |

H*(RP*, K,) —— K*(RP?")

This map is nontrivial in H2. If you like, this map corresponds to the nontrivial
cohomology class in H%(RP?";Z), giving a map RP?" — CP>™ which we restrict to the
appropriate skeleton.

What do the two spectral sequences look like? For CP", we have Z’s in even degrees
and zero everywhere else. For RP?", we get a bunch of Z’s and Z /2’s in a lot of places.
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So we get a similar checkerboard pattern. Once again, there are no possible differentials
and the AHSS collapses. So we find that K(CP") — K (RP?") is surjective. Moreover,
K (RP?") has a filtration whose associated graded is this sum of Z/2’s. Let’s look at
these Z/2’s and try to get some information about them. Notice that under this map
RP?" — CP", the bundle L¢ pulls back to L @ C.

Let’s write w = 1— L®C. If I look in this spectral sequence here, there’s a generator
« in this group H?(RP";Z) = Z/2. Then the remaining classes are a,a?,.... Here
represents 1 — L ® C, so those o™ represent (1 — L ® C)™. What do we learn from
that? We learn from that K°(RP?") has a decreasing filtration

0cC---c K°(RP™)

whose associated graded is a sum of Z/2’s. Moreover, each of the Z/2’s are generated
by the classes of w™.
Now
w'=1-2LRC+L*®C=2-2L=2uw.

That tells us that w? = 2w and tells us how to solve the extension problem.

24.1 Corollary. KO(RP?") = Z/2" generated by w.

§4 KO(RP")

Now we want to move on discuss K O-theory. I'm going to say a few more words about
it and leave stunted projective spaces to you. Let’s again look at the AHSS for RPPS.

(draw this)

This spectral sequence doesn’t fit the checkerboard pattern — there are possible
differentials. If you just read Adams’s paper, you’ll never know what the differentials
are, and it turns out there are differentials. It’s worth working this out. If you're just
interested in KO, though, there are no differentials that either come in or leave out
the line. All the group extensions turn out to correspond from multiplication by 2, and
from there you can work out the K O-theory of any stunted projective space.

There are some things that are easy to tell right away. I'm going to change notation
and let a be 1 — L. It’s easy to check that the first class is represented by «. You
have to know something about the KO-groups of a point—and the second thing is
represented by a?. We need to know the ring structure of KO*(*) for this.

24.2 Proposition. KO, is generated by 1,n € mKO,h € myKO,p € wsKO. Here
n3 = 0,h? = 48, and 8 is invertible.

Unfortunately we can’t use the spectral sequence quite as we did for complex K-
theory. We know one thing from this. We know that KO(RP®) has at most 2* = 16
elements. We can map that to K (RIP’S), and we just checked that it was cyclic of order
24 generated by 1 — L ®C, so o comes down to the generator. It follows that If(\é(RIP’S)
has to have exactly 16 elements. Therefore

KO(RP®) — K (RP®)
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is surjective and therefore an isomorphism, by counting. That tells us that
—0
KO (RP®) = 7/2%,

generated by this class a.

The same argument would have worked for If(\éo(R]P’Sk). This has at most 24
elements and K9(RP®) is cyclic of that order, generated by 1 — L @ C. Therefore the
map is surjective and therefore an isomorphism. This exact same argument will work
as long as the KO-theory has the same number of Z/2’s as complex K-theory. This
exact same argument would show, and this is how Adams does it, that the KO-theory
of RPS*1 RPS#2 RP®* is a cyclic group of the same order as the K-theory. So we get
those real projective spaces.

I’'m going to stop at this point and let you think about it. We could also learn from

=0
the a, @ thing that KO (RP?) = Z/4. For RP®* C RP***2 note that the cofiber is
a stunted projective space R]Pgllzﬁ which in turn is an appropriate suspension of RP?.
You can use these sequences to get things about these groups. I'm going to let you

play around with it. You’ll learn more if you try to get these next groups.

24.3 Exercise. Can you compute I?an(RPZ) in general?

I concentrated on I/(VOO, and the reason for that will become clear next lecture. 1
didn’t do any of those stunted ones, but I could those from the long exact sequences
and things. I’ll just warn you: the answer is a bit unwieldy. It’s really doable, though.

Let me just tell you the way to remember how this works.

—0
24.4 Theorem. No differentials affect the part of the AHSS that converges to KO (RPZ).
The Z,/2’s always assemble into a single cyclic group. The only way you can not get a
Z]2 is if you get an RP);, which provides a Z in H* (., KOyy).

That’s in 1?60—1 haven’t said a word about the other KO-groups.

I want to go back to one of these examples where we produced these vector fields
on spheres. We saw that K0' (RP®) = Z/2*. So the dual of RP® was RP_§ and we can
add sixteen to that, so that gives us after suspending RIP’%5 whose top cell splits off.
That gives us that S has eight vector fields. But we could ask whether it can have
nine? T’ll pick this up next time.

Lecture 25
11/7
I want to move into the next step of discussing the vector fields problem. We’ve learned
a lot about Stiefel manifolds and Thom complexes, and just to keep the discussion
concrete, let’s stick with the specific example we’ve been discussing.

We’ve seen, in two ways, that S has eight vector fields. The question is, does it
have nine? We produced vector fields in two different ways:

1. Clifford algebras.
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2. The order of the reduced tautological line bundle on projective space.

The conjecture was that eight is the best possible.

There are a couple of ways in which we can ask this question. We have an equivalent
formulation. If we look at R}P’%E’, then the top cell splits off. The question is, how about
RPS5?

In terms of the cells, RP{® has cells from dimension 15 to 6, and the cells are
connected by attaching maps. We know that the attaching map from the top cell isn’t
attached to cells fourteen through seven and the question is whether it’s attached to
the bottom cell. The question is, what is this attaching map?

To clarify, we have an attaching map S'4 — RP};“ which factors as a map of spaces

s RPM — RPY!

where the first is the double cover. The composite to ]R}P’%‘l isn’t unique, so we can
factor the map through S%, which is not unique. The map S — S6 is only well-
defined modulo something, and when I say whether it’s zero, I mean whether it’s zero
after I take S'* — RP{*. There is not a definite canonical map S'* — S°.

For the EHP sequence, we want our hands on this map S'4 — S6. If you go back
and think about it, there is extra data specified. We have an explicit construction of
eight vector fields on S'°. This means that we have an explicit way of splitting
of the top cell, which means we have an explicit splitting off of the top cell, and that
means we should get a canonical factorization and a canonical map S — S5, Today,
we’re going to talk about how you get this map.

I'm going to describe this map to you using homotopy theory, but it occurs to
me, as | explain it to you, that there’s an explicit construction using Clifford algebras,
and there must be an explicit factorization using Clifford algebras. It’s possibly an
interesting thing to think about.

There’s another thing that all the classical stuff about vector fields does. There
are many places where people convert the problem into the Spanier-Whitehead dual
problem. I know one of really good reason to do it, and I'll explain that later. This
isn’t the point. I'm just going to say that there are a lot of maneuvers where you switch
the problem to the Spanier-Whitehead dual, and it makes one calculation much more
doable. But in principle, looking at something or its dual is just a formal maneuver
and it shouldn’t really advance you towards to the solution.

With that said, I want to look at the dual problem.

Question. Does the top cell of RIP%5 split off?
That’s equivalent to the dual problem:
Question. Does the bottom cell of D(RPE) split off?

The duality stuff (Atiyah duality) tells you that D(RP°) is, up to a suspension,
RIP:IG. In general, we had the formula

]D)(Mu) — M—TM—V,
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and we had
RPY = (RPP~%)2F,

where the tangent bundle of RP*~® was stably easy to work out.

So we want to know whether the bottom cell of this thing splits off, and this
is Thom(RP?, —16L). Let’s ask ourselves about this Thom complex, because that’s
where we are going to learn something.

—0
What do we know about KO (RPY)? If we remember the AHSS, we got a bunch

—0
of Z/2’s lining up, and we found that it was Z/32. Meanwhile KO (RP®) = Z/16. So
remember that 16L is trivial on the 8-skeleton, and it’s in the highest filtration of the
AHSS. The way I want to use the trivialization of 16L|gps is to observe the following.
We have a map
rP® 5P Bo,
and since that is trivial on RP®, we get a factorization of SY. That has to be the
nontrivial element of m9(BO). There’s something you need to use about the definition
of the spectral sequence. We get a commutative diagram:

16(1—L
RPY (H)BO .

e

S9
This commutative diagram gives us a diagram of Thom complexes,
—7
SIRPT — (59)8 = (SO Uy €?)

We also know that the map RP? — S9 is nonzero in HZ/2 in dimensions zero and
nine. So the above map of Thom complexes is an isomorphism in HZ/2 in the same
coefficients in appropriate degrees.

Now, if we dualize everything, and suspend as necessary, we get the dual of the
cone on f mapping into the dual of the stunted projective space. So we get a map

D((SY)%) — RPE

up to suspension. This dual, suitably suspended, is S% Up 7 €', mapping into RPE.
So we have a map of a two-cell complex in hitting the bottom and top cells. So the
(stable) attaching map of the top cell of ]RIF%-E’ comes from the attaching map of this
two-cell complex followed by the map into R]P’(lf. In other words, the stable attaching
map
st — RP§

factors as o
s14 2 o6, grpl4

and this thing with the Atiyah-Hirzebruch SS produces an explicit example of the
attaching map.

117



Lecture 25 Spectra and stable homotopy theory notes

Adams knew about this, but he doesn’t talk about this in the vector fields paper.
In that paper, he doesn’t discuss S'* — S%, only the composite into RIP%A‘. He writes
that he knows about it and it appears many years later in his J(X) papers.

We have a general question of what this map Df is. Then we have a dual question
of how this works for arbitrary spheres. Let me tell you what the general question you
meet is.

rush

Question. We have a map RP" 5" S» i> BO, where £ : S™ — BO is the generator.
(In order for this group to be nonzero, let’s assume n = 0,1,2,4 mod 8.) The general
thing we would meet is this situation.

The question is about &. We look at the Thom complex £ (S™)¢ = S° Uyse™ and the
question is what f is in terms of ¢, and then what is Df in terms of &.

Let’s first do the question about Df. I think this is quite easy to figure out. The
second question applies to any map.

Question. For f: 5" ! — S% any map in 7,_1(S°), what is Df : SO — S"~1 (also an
element of 7,_1(5°))?

I think Df = f. I remember what we used to always say, we used to say “What
else could it be?” and that was a good proof back in the day. Of course, it could be
(=1)™f or something like that. It could be something random. But I think it is pretty
easy. The thing is, this is a natural transformation. The dual is a functor. Let’s come
back to that, though.

The real thing about today’s lecture is, what is f in terms of £7 And this is the
important thing. The answer to the first question is that f is the J-homomorphism
applied to £ where

J : 1 (BO) = m,_1(S°).

Let me remind you about the definition of this map. Here O(n) acts on n-dimensional
euclidean space, so

J : O(n) — Linlso(R",R") — Map, (S",S") = Q"S"

That gives me a map 7,0 (n) — m(Q"S™) = Tp1m(S™). It’s trivial to check that
if I go into O(n + 1), this map corresponds to suspension. In the limit, I get a map
7,(0) — 7(SY). That’s the J-homomorphism.

25.1 Proposition. If £ is a vector bundle over S™ classified by some map S™ LN BO,
then the Thom complex is S° Uje e™.

This turns out to be extremely important. For a random map of spheres, to show
that it’s nontrivial, I have to make some computation in the mapping cone. The point
is, when a map is in the image of J, I can understand the mapping cone and its
cohomology in terms of the Thom isomorphism. So this is a really important thing to
know.

There’s probably just enough time to prove this.

118



Lecture 26 Spectra and stable homotopy theory notes

Remark. Let me go back and say the previous thing a little more honestly. The
problem is, the basepoint of 275" is the constant map at the basepoint. Here (2*S™
has many path components for each degree and O(n) goes into the path component of
the paths of degree one. So O(n) — Q"S™ isn’t basepoint-preserving the way I
wrote it because I didn’t land in the component containing the basepoint.
I landed instead in the component of maps of degree one. I really get a map

O(n) — Q5"

landing in maps of degree +1. The basepoint in O(n), the identity, goes to the identity
map of S™.

So in reality, we should modify the map by subtracting off (in some group model
for Q™S™) the identity map. So let’s define J : O(n) — Q"S™ as this map, when you
subtract off the identity.

Lecture 26
11/9

A reminder: there’s no class next week.

81 Thom complexes and the J-homomorphism

I ended last class talking about the J-homomorphism. We considered the following.

There is a map
¢: 8" 5 BO(n)

classifying the n-dimensional bundle ¢ over S¥*1. We want to form the Thom complex
Thom(S*1, ¢) of that. Now I'm working unstably, so that’s of the form S"Uge™ A+ for
some map f : S"t* — S™. The claim was that f is given by the J-homomorphism. We
adjoint this over, and & gives a map S*¥ — O(n) (because m441(BO(n)) ~ m(0(n))).
Let’s call that map

o€ : S* = O(n).

The claim was that:

26.1 Proposition. f = J(cf) where J is the map m,(O(n)) — mp41(S™) described in
the last class.

Recall that this comes from the map
O(n) — Q8™ =3 QI.S™.
First, I'd like to give you a proof of this.

Proof. We have to think about what the relationship between ¢ and the vector bundle
£. If you think this through, I'm just going to tell you the answer. I’'m just going to
let you check the answer. Given a map

7: 8% 5 0(n),
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called the clutching function or twisting function, you make a vector bundle over
SkF1 as follows: we take two copies of the disk D_’f“l, D**! which fit together along S*
to make the sphere S**1. For instance,

k+1
Dy
could be the upper hemisphere, and D**1 is the lower hemisphere. Our vector bundle
(from 7) over S**1! is constructed as follows. You take

Di—i-l L D/j—i—l % Rn/ ~

where ~ refers to the equivalence relation (ay,v) ~ (a_,7(a)v) for a € S¥. In other
words, you fit the two disks along the S* to make S¥*1. The vector bundle is trivialized
over each top disk, and the gluing along the boundary is done using this twisting
function. This construction in general describes a vector bundle over the suspension
of any space. Today I'm going to discuss this construction and many different ways of
looking at it.

How do we build the Thom complex? The Thom complex of a vector bundle V' is
D(V)/S(V). I want to write this vector bundle as a pushout because I want a formula
for this. Our vector bundle looks like a pushout

st R @i o
l(a,v)»ﬁ(a,’r(a)v) l
D/j—l—l % R™ g

I would have a similar diagram for the disk bundle and a similar diagram for the sphere
bundle. I would also have a similar diagram for the disk bundle modulo the sphere

bundle.

S* x (D(R")/S(RM) 22 P o (D7) /S (R™))

\L(a,v)H(a,T(a)v) l
DL s (D(R™)/S(R™)) D(£)/5(¢)

We’d like to understand the homotopy type of D(£)/S(€), and in particular it as a CW
complex. So this is actually a pushout diagram, but I can also think of it as a double
mapping cylinder if I replace the disks by points. I could also write this as a homotopy
pushout or a double mapping cylinder

(Sk: L *) A g#f’m) qn

l(a,v)H(a,T(a)v) l

S" ———— Thom(§)

The horizontal map is projection and the vertical map is derived from 7. We already
see our J-homomorphism coming into the picture.
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Let’s extend the columns down and form the Barratt-Puppe sequence. Before 1
do that, notice that the map (S* LI %) A S — S™ has a section. This kind of gives a
cell decomposition of the Thom space. It says I have two n-cells and they are glued
together. You can derive the proposition from that. I'll leave it as an exercise to finish
it from this diagram. It isn’t a very hard or deep fact. It’s a matter of staring at this.
A point is that the two S™’s that come into the cell decomposition get identified. A

§2 The Thom isomorphism in K-theory

Where does this place us? We made this long argument, and we eventually came to
the following situation. We had some stunted projective space, and we had a map from
a Thom complex into a stunted projective space. And what we found was, we had to
understand attaching maps of cells in Thom complexes. We're going to understand the
attaching maps by calculating K-theory and Adams operations. So to go further, we
need to understand the K-theory (or KO-theory) of a Thom complex, and we need to
understand the Adams operations.

I haven’t even talked about the Thom isomorphism in K O-theory, and that’s one
of the things I want to talk about today. Let’s start with the case of K-theory.

Let V be a complex vector bundle of complex dimension n over the space X. We
want to construct a natural Thom class in K-theory. We’d like to construct

UeK'(x"),
and by Thom class, it means that for every x € X, the restriction map
KY(XY) = KO({z};) ~ K(V;") ~ Z

restricts to a generator. I want one of these which is natural, and which sends sums
to products, and things like that. I probably ought to talk about that. I'm going to
summarize most of this without proving things.

There are two really natural ways of making this Thom class. One construction
just deduces it from the projective bundle formula. That’s because we can identify
Thom (X, V) with P(V & 1)/P(V). That’s because the lines through the origin in V@1
that do not lie in V' determine uniquely a point of V. In other words, given a line £ in
V @1, and look at where it intersects the single line 1. It’s at a point (1,v). The lines
that are in V' correspond to the point at co in the Thom complex. So anyway,

XV =P(Va1)/P(V).

We could make the class there, because we know that we have this tautological line
bundle L over P(V). By the projective bundle formula,

K'P(Vea1)=K'(X){1,z,...,2"}
where £ = 1 — L. Similarly,

f{o([[b(v)) = K%(X) {1, Z,... ,x”_l}
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and the map between them is the obvious map. Therefore,
KPRV @1)/P(V)) ~ K°(X) {2"}

and this is the Thom isomorphism. This x™ is the Thom class we want, and we have
the Thom isomorphism. Moreover, we get that multiplication by U = z" gives an
isomorphism
" K%(X) ~ K°(xV).

We could do a lot of calculations with this. But if we only work with K-theory, we’ll
miss all those Z/2’s. We'll be off by factors of two if we use complex K-theory. So
we also need to understand the Thom isomorphism in K O-theory. That is different to
a different, rather beautiful construction of the Thom class. This is the simplest way,
given what we know, to get the Thom isomorphism, and it’s really good for making
calculations. But we need a little more.

83 Difference bundles

There’s another description, which Atiyah calls the difference bundle construction.
Given A C X, we want to describe classes in K%(X, A). To do this, suppose given a
vector bundle over X, say V. It’s often going to be the trivial bundle. I have a map

T7T: V>V

such that over A, 7 is an isomorphism. Then this data gives a class in K 0(X, A).

Intuitively, what I'm looking at is the difference V' — V. Let me just give you a
construction. You're supposed to imagine that you have two copies of V sitting on X
and you “glue them together” on A, and that’s like a clutching function. This is almost
in the situation of a clutching construction.

26.2 Definition. By excision we have K°(X, A) ~ K°(X Uy X, X).

First let’s make a vector bundle over X U4 X. To do this, I have these two copies
of X glued together at A. I glue together two copies of V' by 7 on A. So if X7, X5 are
the two copies of X, then we take

V/X1 L V/Xg/(v/al = T(’l))/az).

So we're gluing two copies of V along A by 7. This gives me a vector bundle V7™
on X L4 X which restricts to V' on each copy of X. So we define the element in
K°(X U4 X, X) tobe VT —V (where V refers to the bundle on X L4 X obtained by
gluing V' by the identity).

Let’s do an example. Here’s a really good example.

26.3 Example. Let’s take X = C (parametrized by A), and V trivial. We define the
map 7 which sends (), v) + (A, Av). That’s an isomorphism as long as long as A # 0.
This defines an element in K°(C,C\ {0}) ~ K°(CP'). Strictly speaking, we need A to
be excisive, which C\ {0} is not, so we should take C\ D;(0) or something. We can
do this because everything is homotopy invariant.

The question is which vector bundle I have. The answer is, this is a construction
of L — 1. There are a variety of conventions in here which we’ll need to commit to. In
particular, this is the generator of K°(CP).
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Let me just indicate a variation on this, and then I'm going to stop. This thing
is supposed to be multiplicative. The generator of K°(C?, C?\ {0}) is supposed to be
the square of the Bott element. What would happen if I actually tried to square this?
Then what you really see, if you tensor these two constructions together, is a chain
complex. You're supposed to think of this thing over C defined earlier as a little chain
complex C — C and when you multiply them, you’re supposed to tensor the chain
complex with itself. Then I get a four-term chain complex

C—oCopC—C

over C2. This four-term chain complex is acyclic away from zero. There’s a similar
construction to get vector bundles from these—I refer you to Atiyah-Bott-Shapiro.

I want to say this in a coordinate-free way. Suppose I have a complex vector space
W. I'm now going to make a chain complex of trivial bundles. Form a (trivial) vector
bundle over W with W x A®* W. We make this into a chain complex of vector bundles
sending (w,n) — w A n. That’s a generalization of this construction. This defines the
generator of the K-theory of W, W\ {0}. The nice thing about this description is that
it can be applied fiberwise in a vector bundle over a space X. If W is now a vector
bundle over X (for m : W — X)) with fibers W, we can do this same construction. We
can take W x 7* A* W and make that into a chain complex in the same manner. This
gives an element U € K°(W, W \ {0}) which reproduces the previous construction at
each fiber.

Lecture 27
11/19

So I realized to some horror that there’s only today and four more classes. I think
I need to go a little more quickly. Anyway, last time I was talking about the Thom
isomorphism in K-theory, which I talked about, and I was about to do it in KO-
theory, and I got into this impromptu lecture about this stuff. It’s harder than it looks
to pull off. Anyway, I think what I’d be better off doing is just to summarize how the
calculations go. I was explaining all that to get the conventions nailed down.

Let me remind you where we were, and describe how the vector field problem gets
solved, and discuss the image of J, all today.

81 Solution of the vector fields problem

I find it easier to go through with a particular numerical example. We could do the
general case if we wanted. Let me remind you of the setup. Start with RP®. This will
be a “typical” case. We have -
KO(RP®) = 7,/2%,

as we know from the Atiyah-Hirzebruch spectral sequence. The dual of RPi is RP:;
and the top cell of this splits off. We can add 16 to everything so that is, up to
suspension, R]P)%E’. This implies that S has eight vector fields. We have to be in the
range where this approximates a certain Stiefel manifold, but this is just to illustrate
the general method.
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We want to show that S'° does not have nine vector fields. We try to repeat the
argument with RPY. We know that KO(RPY) = Z/32. You're always doing this. In
the vector fields problem, you're always looking at n such that I%(R]P’") is Z/2% and
I/(VO(]R]P’”Jrl) = 7,/2°T1. You're always looking at that one, because for a fixed power of
2, you're finding the largest value of n with that K O-theory. If you go back and think
about it, you’ll remember it.

Now the dual of RIP’%r is RIP’:%O and again, the top cell splits off. But we want to
show that the top cell of RIP%E’ does not split off. There’s a lot of monkeying around
with Spanier-Whitehead duality at this point. You can show this, but the thing is to
make a calculation in KO-homology. It’s easier to work with K O-cohomology for us,
though, which takes us to the dual.

I’'m not going to use this at the moment, but we also saw that there is a map

S% Uy e'® — RPg

which is a monomorphism in homology. The attaching map comes from the generator
image of the J-homomorphism. The attaching map goes all the way from the top cell
to the bottom cell.

This isn’t so convenient. The more convenient thing is to work with the dual. This
thing is equivalent to showing that the bottom cell of D(RPE®) does not split off. This
boils down to something easier. Namely, we want

D(Thom(RP?, —16L) = RP.

Remember the general formula: D(RP%) = RIP’:?:%, up to suspension. Anyway, let’s
just use that formula. We get

D(RP§®) = RP" 1,

and we can add 32 to everything to get RP?%. This is the Thom complex of 16 L over
RPY. The general thing that you get when all is said and done is:

We have some KO(RP") = Z/2% and KO(RP"*1) = Z/2°+1. We're at an n where
when we increase n, we increase the size of the KO-group. The general case is, we're
trying to show that the bottom cell of the Thom complex of RIP’%Z*"H does not split
off. For some reason, when you work in K O-cohomology, this is the easier problem to
work with. -

We need to think about what KO(RP%) looks like. We have a map

RP?* — RP%,

and RP?® < RP>. We know the K O-theory of the projective spaces and the map and
we want to understand the third one. When we look at the AHSS for RP%;, there’s
nothing until dimension 16, and then ....

Use the fact that there are no differentials in the spectral sequence, as you can see
by comparing it with the AHSS for RP?5.

We find two things:

o I?E(R]P’%g) maps to 1?6(516) = Z and that map is onto, and the kernel, which is
KO(RP?3), is cyclic of order 32.
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e IfIlook at the spectral sequence, I find that the image of If(\é(R]P’%g) — If(\é(RP%)
is cyclic of order 64. Alternatively, use the half-exact sequence that you get from

the cofiber sequence
RPY — RP* — RP%.

Now, if RP% = S'6 v RP¥, then the Z would be generated by a class = with
W3(z) = 3%2. I didn’t get around to this, but the Adams operations also exist in KO-
theory. There are unique ones which are compatible with complexification. There’s a
formula for the Adams operations in terms of the exterior powers and operations on
vector spaces and you can make those formulas in terms of the reals. Also, U*(L) = L*
for a line bundle, which is L if k is odd.

In the map KO(RP?2) — KO(RP?), the generator of the Z summand hits a
generator of the image. So the generator maps to something of order 26. Here’s the
thing that is surprisingly easy. You might think that all the money is in calculating U3
on this. But the point is that K O(RP?) is cyclic generated by L —1 and W3(L —1) =
L — 1, so that ¥3 acts as the identity on I/(VO(]RIP’") for any n. So over in the image,
we find that if the bottom cell splits off, the generator of the image would be killed by
3% — 1, which is (1 + 8)* — 1 = 32(odd number). That’s a contradiction because the
generator has order 64.

I think the only way to understand this better is to pick another example and play
with it. The important things to come to grips with — this argument works in general
— I think, is to recognize when the K O-groups of real projective spaces change. The
thing to do is to think about this argument, but to keep track of when the order of the
K O-group changes, and in our case, for the existence of the vector fields problem, you
want one before it changes, and for the non-existence, you want just after it changes.
If you’re trying to understand this better, I'd recommend trying to use these issues.
But the takeaway is — and this is what Adams did — is that we can use K O-theory
and Adams operations to show that certain cells don’t split off.

In the course of this vector fields problem, we wound up learning (and I'm going to
say this in a different way) that the solution to the vector field problem tells us that
the stable attaching maps of the n-cell in RP" “goes down” by the Radon-Hurwitz
number and attaches by the generator of the image of J, which is nonzero. So, for
example, we know that S'° has eight vector fields. That’s the appropriate Radon-
Hurwitz number. It doesn’t have nine, though. So that means that the stable attaching
map S — RP™ — RP' factors through RP® and no further, and the composite
S — RPS — SO (the obstruction to going down further) is the generator of the image
of J.

§2 Adams’s work on the image of J

If you're not trying to understand all the details of the calculation and you still want to
follow the rest of the course, the point is that we understand the stable attaching maps
in RP*, and that will be in the next couple of lectures. What I wanted to do, and 1
only have time to barely start it, is to discuss the image of the J-homomorphism. This
is another very beautiful thing that Adams solved using essentially these methods.
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I'm just going to give you a summary and a guide to how the calculations work
after break. We’re studying the J-homomorphism, which goes

7,BO — 75 _S°.
What Adams did was to determine the image of this map. Adams showed:
e The image is a summand.
e The Z/2’s (when n = 8k + 1,8k + 2) go in via a split injection.

e When n = 4k, it’s cyclic of order the denominator of Byi/4k. When I say
denominator, I say denominator when you reduce it in lowest terms. Recall that
B, is the nth Bernoulli number. It’s defined by the identity

o0
et — 1 nl
n=0

I want to show how the Bernoulli numbers come up. This represents the only part
of the homotopy groups of spheres that is really computable, and amazingly, it tells us
the attaching maps of the cells in RIP*°.

So there are two parts to this: the Bernoulli number part, and the Z/2 part.
We’ve already shown that the image of the generators are nontrivial—that’s what this
argument shows. But in fact, the situation when n = 8k 4+ 1,8k + 2 is in fact kind
of interesting. I’'m going to leave this as an exercise, although a rather challenging
exercise from what we’ve learned so far, although it’s possible to do this exercise given
what we’ve done in class.

27.1 Exercise (Challenging exercise). Show that n = 8k + 2, the following happens:
The map Z/2 ~ 7, BO — 75 _1S° — 7,_1KO ~ Z/2 is an isomorphism.

Lecture 28
11/26

So I actually put a problem set up. It’s on the course website. The last two problems
are harder than the other ones, and I didn’t work out the last one. I'm pretty sure you
can’t. I saw this problem in one of Adams’s J(X )-papers and he says “presumably this
is true.” I kind of like anyone who’s an undergraduate or who needs a grade to actually
turn in the problem set. In the problem set, I just hit a few things which I think are
main topics of the course, although some of the stuff I'm going to do this last week is
not there.

81 The e-invariant

I want to talk about the e-invariant and the J-homomorphism in this term. So the
first thing is the e-invariant. There are two convenient ways of defining this, one due
to Adams and one due to Toda. Adams says that they’re probably equivalent.
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28.1 Definition. The e-invariant is a map
e: 71'2”_150 — Q/Z

from an odd stable homotopy group of spheres to Q/Z.
Start with a map
f:8%1 5 60

and form the mapping cone S°U ¥ e?™ and look at the exact sequence in K-theory. You
get a short exact sequence

0 — K°(8%) — K°(S° Us e®™) — K°(S°) — 0
and you can also apply the Chern character to go to rational cohomology.

00— K%($%") —— K°(S° Uy ") —— K°(S%) —0

Jo Jo Ja

00— }Nlev(‘s&n) *)f]ev(so U 6271) S ﬁev(sO) —0

where the vertical maps are rational isomorphisms. Note that the bottom sequence is
canonically split as
0-Q—-QeQ—-Q—0.

Choose a € K°(S° U e®™) which hits the generator 1 € K°(8%) = Z. We look at the
Chern character ch(a) € H(SY) @ H?"(S?"). Its component in the first thing is 1 and
the component in the second piece is €. The e-invariant can be defined as

&)z

or
ch

&/(im(K°(S%") S Hever)
and it’s easy to see that is well-defined, because a is well-defined modulo K°(52"). You
can also think of this in terms of rational K-theory and the splitting in terms of the
eigenspaces of the Adams operations (which is the splitting of rational cohomology).

This is one definition of the e-invariant. Here’s a variation. We could look at
the same sequence in K O-theory. We could do the same thing, and tensor with the
rationals. Then what we get is

en(f) € HZ($*")/KO" (S*").

We want n to be even here, see the next paragraph. If 2n = 4 mod 8, the group in
question is Q/2Z. If n = 0 mod 8, the group in question is Q/Z. That’s because the
map from I/(T)O(SQ") — K°(52") is an isomorphism if 2n = 0 mod 8 while hits 27 if
2n =4 mod 8.
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Remark. Recall that
KO(X) = K(X) 8 Ho(X;Q)
and the KO-theory lands in the cohomology of X in degrees a multiple of 4.

So that’s the e-invariant, and that’s the thing which we want to understand how to
compute. It’s difficult to do this in general. It’s difficult to say something about the
K-theory of a random 2-cell complex. However, when the map is in the image of the
J-homomorphism, then we can say something about it. There’s a complex version and
a real version.

The complex version goes

Tm1U = 7 BU ~ K°(S™) = Tpm_1(S°).
There’s also a real version which goes
—0
Tm-10 — T BO = KO (8™) — mp_1(S°).

These are related. These maps take vector spaces, real or complex, and turn them into
spheres by taking the one-point compactification. Of course, doing that doesn’t depend
on any complex structure. So we have a factorization of the complex J-homomorphism
through the real one and the map U — O.

What happens here is that m,,,_1U alternates between being Z and 0: if m is
even, then we get Z. If m is odd, then we get 0. The homotopy groups of O go
7/2,0,7,0,0,0,Z. The map U — O is the opposite of the map defined previously, and
the composite is multiplication by 2. That is,

7 ~ TI'm_lU — TI'm_lO ~7

is an isomorphism when m =4 mod 8 and is multiplication by 2 when m =0 mod 8.
(You get this by looking at the composite.) It’s easier to say everything in terms of
complex K-theory. When m = 0 mod 8, we’ll get something that’s off by a factor of
two. The cost of working with complex rather than real K-theory is an overall factor
of two. We'll just work with it, though. That is, we’ll compute

ﬂ'Qm_lU — 7T2m_150 £> Q/Z

(Remember this is zero when m is odd.) It’s twice the value of the real e-invariant eg
on the generator of KO J-homomorphism.

Let x9, € w2, BU be the generator, so that we can think of it as a virtual complex
vector bundle over S?". If f = J(x9,) € ma,_1(S°), we want to calculate e(f). In order
to do that, we need to know about the K-theory of S°U ¥ e?". Geometrically, we know
that it is

Thom(S%", z9,,)

where x9, is regarded as a virtual vector bundle. That’s the thing about the image
of J—the mapping cones that you form are Thom complexes. We can take for our
class a € K°(S% Uy e*™) the K-theory Thom class in this Thom complex. In order to
calculate the e-invariant, we need to know:
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Question. What is ch(U) where U is a Thom class in K-theory?

This is part of a very beautiful story that kind of has to do with Grothendieck’s
original invention of K-theory and its relation to cycles, and Atiyah-Hirzebruch’s defi-
nition of K-theory, and the index theorem. The answer to this question was one of the
reasons K-theory was set up in the first place. I'm going to have to skip some details.

Let’s recall the K-theory Thom isomorphism, which is an isomorphism

K%X) ~ K%Xx")

where V' — X is a complex vector bundle on X. This makes sense for virtual bundles, as
well. In fact, it’s an isomorphism of modules over K°(X). The Thom class U € K°(X")
is a choice of generator. If I have two different Thom classes U, U’, they “differ” by a
unit in K°(X)—meaning U = xU’ where x € K 9(X)*. That’s true for any cohomology
theory. The same remarks apply to the sum H®*"(-;Q) cohomology theory, rational
even periodic cohomology.

So take Ux € K9(XV), and take its Chern character ch(Ux) € H®*(XV). There’s
also the rational cohomology Thom class Ug. The two of them differ by a unit. There’s
some unit x = x(V) € H®*"(X)* that measures the difference between ch(Ug) and
the rational cohomology Thom class. So

Ch(UK) = X(V)UH

What’s Ug? If dim¢ V' = n, then Ug is the ordinary cohomology generator in
H?"(X"). There’s a canonical choice of Thom classes in cohomology for complex
vector bundles. We also saw earlier that there was a canonical choice of Thom classes
in K-theory for complex vector bundles — that’s Ux. So make these canonical choices.
That gives meaning to all these symbols and to x (V).

Now these Thom classes have some canonical properties. If I have two spaces X,Y
and vector bundles V, W over X,Y, then the Thom complex of V@& W over X xY (the
“Whitney sum”) is the smash product of the Thom complexes X" A YW, Under this
isomorphism, the homology and K-theory Thom classes are multiplicative. This means
that x is exponential. It’s also a stable, and — this is trivial to check — x(1) = 1.
So

x : K%(X) = HY(X)

and it is called a stable exponential characteristic class, because of all this. That
is, x(V @ W) = x(V)x(W), etc. By the splitting principle, x is determined by what it
does on line bundles.

So what does x do on line bundles? In order to talk about this, we have to get
straight some conventions. Let L be the tautological line bundle over CP*°. There’s the
zero section CP*®° —» ((CIP’OO)L which is a homotopy equivalence, since the unit sphere
bundle of CIP*° is contractible. For various reasons, the convention that works out right
is that under this map

KO((CP®)!) — K(CP™)

the Thom class Uk (L) goes back to 1 — L. There’s a good way of remembering this.
For any vector bundle V', the Thom class is supposed to pull back to the total exterior
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power of V. So that’s the general formula, and whatever conventions you make, this
has to be true, or certain things you want to be multiplicative don’t. You don’t get to
make this up. This forces a whole bunch of other conventions on you.

We want this to map under the Chern character to the generator x of H?(S?) under
restriction. We need to define

ch(L)=e*=e1B) 2 e HY(S%Z).

This is all make-work for the sign police, anyway — we’re not going to be able to hang
on to it. So the Chern character of the Thom class is 1 — e™”.
What is the ordinary cohomology? We know that Uy = x. So we get that

1—e*
L) = .
x(L) .

For those of you who are anticipating the appearance of Bernoulli numbers, this is
almost there, but not quite. Just hang in there.

Next, we need to calculate what is x(z2,). There are several ways to do this. I
know of two approaches to this. We need to work out the splitting principle. We need
to take the virtual bundle x9, on S?* and we need to find a space mapping to this such
that this becomes a sum of line bundles.

e You can map S2 x --- x S? to it, where it pulls back to [](1 — L;).

e You can also pull-back to CP": there’s a map CP" — S?" and it pulls back to
(1 — L)™. You can use either of these approaches. I have a particular reason for
liking the first reason better, since it generalizes, although it’s possible that the
algebra works for the second case.

Lecture 29
11/28

The goal is to start with the generator
Ton € K0(5727)
and we can think of that as a map
S*" — BU

and to calculate the Chern character of the Thom class.

Let Ug € K°(Thom(S2", x3,)) be the Thom class, which we constructed explicitly
earlier. We'd like to calculate the Chern character ch(Uk), because that will give the
e-invariant

e(J(zan)).
As we saw,

ch(Uk) = x(z2,)Up
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where Uy is the homology Thom class and x(x2,) is the stable exponential character-
istic class and was determined by its values on line bundles. So
_l—e"

X(L) = ——, —s=a(D)

for a line bundle L.
To calculate x(z2,), we need to write xg9, as a sum of line bundles, after sum
pull-back. To do this, form the pull-back

S x . ox 8% 382N N8% 5 52

where there are n factors. Then 9, pulls back to [[(1— L;) where L; is the tautological
bundle on the ith factor.

I'd like to calculate this. Let’s write g(x)
like to calculate this. When n = 2,

def 1_eg—2
= 1% For some low values of n, we’d
1

z]/x* = H*(S% Q).
oG € Uel/z" = H'(55Q)

x(z2) =x(1—L) =
The expression is —t— =1+ %x So that’s something.
What’s the next one going to be? Let’s just do one more. What happens to x4?
That’s x(1 — Ly — Ly + L1 Ly). This is a sum of line bundles, so that’s

9(z1 + x2)
g(w1)g(z2)

where x1 = ¢1(L1), z2 = c¢1(L2). Note that the first Chern class is additive, ¢; (L1 La) =
T1 + 2. So we can expand this as

1+ ex1x9 + higher terms

and that e is the e-invariant.
It takes a little while to get used to such an expression. If I had to figure out x(x¢),
I'd have
g(@1 + x2)g(w2 + 33)g(22 + 3)
9(@1)g(x2)g(3)g(w1 + x2 + 23)
Somehow we have to get used to what this is doing algebraically. If this was plus
instead of times, it would be g(z1 + z2) — g(z1) — g(z2), which kills linear functions.
The second term would kill quadratic functions. If you want to see one exploitation
of it, you can look at my ICM talk on the theorem of the cube in algebraic topology.
Anyway, as I said, it’s easier to think about if I took the log. So let’s take the log and
turn it into addition.
So we might as well take the logarithm — the natural log — and compute the

=1+4+exiz0T3+ ...

e-invariant. So
log X(xQn) = e1T1T2...Tn.

Instead of working with g, let’s work with the log of g. We’re trying to figure out what
this does. So we have this operator. I'm just going to state something and let you
prove it. I want to take the log of g, and let

f(z) =log g(x).
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Now we’re interested in the following expression, which we might call 6". We’re inter-
ested in

" f(xr,...,zn) =0=(f(z1) + ... flzp)+(f(z1 +22)+ ... ) —(f(z1 +zo+23) + ... )£ +(=1)"f(z1+- -

We want to figure out ¢" f. It starts out with z; ...z, and we’d like to figure out the
coefficient. There’s a pretty simple inductive formula for this. It’s easy to see that this
is some constant times z1zs ... x, plus higher terms, because if any of the x; = 0, then
the whole thing is zero.

We have:

(1, ... @) = (0" L) (@1, .. 14T — (0" ) (1, 1) — (0T ) (2, g, ).

If T take
6f(x,y) = flx+y)— f(x) = f(y)

then I'm iterating it in the last variable, but since it’s symmetric I can iterate it in any
other variable.

So obviously 6" is linear. If h(x) = 2%, then you can explicitly what all of these
things are. We already know that

0"h =0, k<n.

If kK =mn, it’s nlzy...x,. That’s really trivial to check. If you take the definition, the
only place to get an x; ...z, is the last one.
The answer to our question “What is the e-invariant e(x2,)?” is “the number ¢,

m

you get by writing log g(z) = > cmr.” So that’s what we have eto figure out. Now

this gets fairly easy. So what was our g(x)? It was 1=¢—=. Therefore
e " 1 1 1
dl = _ = _ -
o8 9(z) l—e? 2 e&-1 =z

The % just cancels. Remember the definition of the Bernoulli numbers now,

T z"
et —1 :ZBnﬁ

and these are the things that go into writing down formulas for 1% + - .- + n*. So this
thing dlog g(x) here, if we forget the % constant term, that’s equal to

Bn xnfl
Z n (n—1)!

so that

By, x™
logg(z) =) ——.

n n!
If you play around with this, you can see that after the first one, odd Bernoulli numbers
are all zero. But that’s okay, right. We know that the J-homomorphism on half of the
classes is zero anyway, because it factors through K O-theory.
The conclusion is:
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Bn

29.1 Proposition. The e-invariant of xop is <™.

So that’s pretty good. That gets us somewhere. There’s a little bit more to the
story though — this isn’t quite the expression that comes up in algebraic topology.
There are a couple of things we need to modify. So xa, € 72, BU mapping to ma,_1.5°.
That factored through 7o, BO. We're mapping out of ms,,_15° using the e-invariant.

So we have a diagram

s QnB U——n 27LBO

e

Ton—15°

le
Q/Z

and we observe
e(ran) =0, n odd.

In dimension 8k + 4, the map mgx14BU — mgrp+4BO is an isomorphism, but in
dimensions 8k, the map is multiplication by 2 wgp BU — w9 BO. We should really use
KO-theory rather than K. If you follow the definitions, you get another factor of 2. If
you put all these together, you learn:

29.2 Proposition. The KO-invariant eg on J of the generator of myBO is % €

Q/Z.

That’s the magic expression. This number comes up a lot. The denominator of this
number comes up in the order of the image of J and the numerator comes up in the
number of exotic spheres. So these numbers are very important in topology.

You can do the same thing for K O-theory and the associated power series is

z/2 _ —x/2 _ .z
e e :61/29”(1 e >

T T

There’s a lot more to the story. I'm just going to tell you how this winds up

——0
working out. So we have this map 74,80 ~ KO (S*) — m4,_1S° and the image of
the generator was relevant to us: it had to do with the vector field problem and the
sphere of origin problem. I just wanted to tell you more about this map. We had maps

7T4kBO — 7T4k_180 £> Q/Z

and we worked out the image of the composite. Now there are some things to check.
We’ve at least shown that the image of the generator factors through a cyclic group of
order the denominator the generator of By /4k and in fact the entire stable homotopy
groups of spheres map into that cyclic group.

What is the kernel of the J-homomorphism? What is the kernel of

J: 7T4kBO — 7T4k_1SO?
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The point is, there are two ways to calculate the e-invariant. I talked about one earlier.
If T have an arbitrary map of an odd sphere f : %=1 — §% and we look at the two
cell complex SO U I e** . We can look at the short exact sequence

0 — KO(S™) = KO(8° Uy ') = KO(5°) — 0

and tensored with Q there was a canonical splitting. The splitting came from the
eigenspace decomposition in terms of Adams operations. It splits into the eigenspaces
of 1y, which are 1, \¥. This implies that the e-invariant is killed by

ged ANOF—1), N>o.

This number is also denominator of By /4k. The proof of this is pretty straightforward
and the proof uses the arithmetic interpretation of Bernoulli numbers in terms of power
sums. That’s what gives you access to this kind of information. You can do that as an
exercise or look it up in Adams.

The other part of this is the Adams conjecture.

Lecture 30
11/30

All right, I had a whole lot of things I was hoping to do this semester, but I think I
should tell you something about the Adams conjecture.

81 Adams conjecture

(This isn’t standard notation.) Let X be a space. Consider I/(B(X ), the Grothendieck
group of real vector bundles over X (modulo the image of 1). We saw that if we took
an automorphism of a vector space and took the one-point compactification of all those
spaces, we’d get things in the homotopy groups of spheres. There’s a way of formulating
this as a map of cohomology theories. Unfortunately I don’t know a standard name
for this other cohomology theory.

30.1 Definition. G°(X) is the Grothendieck group of pointed spherical fibrations over
X. A pointed spherical fibration P — X is a fibration P — X together with a
section * — X whose fibers are all spheres S™. You made that into a semigroup via
the fiberwise smash product. The Grothendieck group of that is G°(X).

There’s a sometimes useful variant of this. You can take unpointed spherical fi-
brations S"~! — P — X and you can make that into a semigroup via fiberwise join.
Those give you the same group completions. As soon as I add a trivial bundle to a
spherical fibration, it becomes pointed, and you get the same thing.

Given a vector bundle V' — X over X, we can send it to the fiberwise one-point
compactification V — X.

30.2 Definition. That gives a map
KO(X) — G°(X).
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When X = S™, then If(\é(X ) ~ mp,—10 because a vector bundle is determined by
its clutching function. Similarly, G(S™) = m,_1HAut(SV), N > 0 where HAut(SV) is
the space of self-equivalences of the sphere. Observe that HAut(S”) is a subspace (not
pointed!) of QVSY consisting of the identity component. Therefore, if we subtract the
identity,

g(Sn) =~ 7Tn—1+N(SN)'

So when we take a sphere, this is the J-homomorphism. So this map
KO (X) — G%X)

is, for X = S™, the J-homomorphism. That’s nice, it embeds the J-homomorphism
into a map of cohomology theories, although it’s not quite obvious that G°(X) is a
cohomology theory. But it is a cohomology theory and this comes from a map of
spectra.

Let’s call this map

J: KO(X) 2 ¢°x).

Remark. More generally, if X = XY for Y connected, then G°(X) = [V, QVSV] for
N > 0 or stable maps S¥ A Y — SV — that’s the cohomology theory associated to
the sphere spectrum.

It’s kind of amazing that you can say something of this map. But the Adams
conjecture lets you say what the image is. Homotopy theory doesn’t want to produce
an image — it wants to produce a long exact sequence. In fact, what happens is that

G (X)

splits into the product of two cohomology theories, one called the image of J and one
called the cokernel of J.

If X is a finite connected CW complex, then the group G°(X) is finite. That follows
from the AHSS

H*(X;G%(x)) = G"(X),

and since the G-groups of a point — the stable homotopy groups of spheres — are
finite.

This space has finite homotopy groups, so we can understand this by localizing at
a prime p.

30.3 Theorem (Adams conjecture). Fiz a finite complex X. For every k, there exists
an N such that for each x € KO°(X),

kN (F (x) — x) € kerJ
and these elements (for all k) generate the kernel.
Alternatively, one could formulate this by saying that the kernel of the map

KOY(X) ) = G°(X))
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is generated by the elements of the form *(z) — x, for pt k.

The Adams conjecture is a theorem. Adams couldn’t settle a factor of two, even
for the sphere. In Adams’s J(X) paper, he makes this conjecture, and he determines
the order of the image of J. He shows that the order of the imJ for

Tak—1(0) = w1 (S°)

is the denominator of % when k is odd, and when k is even, it’s this or twice this.
The Adams conjecture implies this answer, that the factor of 2 isn’t actually there.
Remember, that factor of 2 came from the map K — KO.

This factor of two was settled by Mahowald. The full Adams conjecture was proved
by Quillen-Friedlander (using étale homotopy theory), Sullivan (using similar methods),
Quillen (a later proof), and a simple proof due to Becker and Gottlieb. I was going to
show you a really easy proof in the complex analog using stuff we did in this class, and
if there’s time and interest I’ll talk about that. In a way, the Becker-Gottlieb proof is
really easy. The first three proofs are really beautiful and use all this machinery; if this
Becker-Gottlieb proof had arrived early enough, we wouldn’t have all this mathematics.
These are wonderful papers to read, especially the Sullivan one.

Let’s do some examples.

30.4 Example. Let’s take X = CP?. What is I%O(CIP’Q)? I claim that it’s Z and
it’s generated by the real bundle underlying the tautological bundle. I think I should
call it i, L — 2 where i, : K — KO. If we were to complexify, then i, L complexifies to
L @ L™, so the generator becomes L @ L~! — 2. This follows easily from the AHSS.
There’s a little to do to solve extension problems, but you can solve it by looking
at the K-theory spectral sequence. Let’s just assume it. We also have to figure out
what ¢* of the generator is. To figure this out, complexify, since complexification is a
monomorphism that commutes with the Adams operations. Namely,

K(CP?) = Z[z)/«®, z=L-1

—~0
and the generator of KO (CP?) goes to L + L' — 2. One finds that

for y the generator.

Let’s localize at 2.

The kernel of J is generated by the element 13(y) —y = 8y. At the prime 2, I get
3y. At other primes, you'll just get zero. All of this implies that the image of J for
CP? is 7,/24.

Recall

((CIPQ)VLL — (C[PZ+2,

and this therefore depends only on the order of n modulo 24. This is a consequence
of the fact that the Thom complex of a vector bundle depends only on the associated
stable spherical fibration. We got statements like this about real projective spaces
because the real K O-groups had finite order; the complex K-groups of CP"™ don’t but
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the J-groups have finite order. This is complex James periodicity. I just wanted
to illustrate that it’s pretty easy to do these calculations, though I've never actually
worked out James periodicity for all the complex projective spaces. It’s a good way of
trying to really understand the Adams conjecture.

82 A proof of the Adams conjecture

I’ll give you a proof of the complex Adams conjecture, which is slightly easier and which
doesn’t quite settle the factor of two. This is a sketch proof, but I'm going to only use
stuff that you can find in Hatcher.

I'm going to do something which was a little sophisticated, in its day. There’s a
theorem, called the mod p Dold theorem:

30.5 Theorem (mod p Dold theorem). Suppose X is a finite CW complex. Suppose
I have two spherical fibrations P, — X, P, — X of the same dimension, of the pointed
kind.

Suppose I have a map between them

N

where the map on fibers is S™ % S". Then the class P, is the class of Py in G°(X)[k™1].

P2a

So if k is prime to p, they’re equal in G°(X )(p). Since the reduced G-theory is finite,
it suffices to prove this at every prime. This is something that takes some proof. A nice
place to read about this stuff and to get the whole culture is in Sullivan’s “Genetics
of homotopy theory and the Adams conjecture.” This isn’t completely obvious. One
reason is that GY(X) is homotopy classes of maps into BF, the classifying space of
self homotopy-equivalences into the sphere. This isn’t obvious. You need to say that
multiplication by & in BF (the infinite loop space) is related to multiplication by & on
the sphere.

That lets you redefine the group G° when you’ve localized at a prime p. Here’s one
place you know the Adams conjecture is true. You know that it’s true for line bundles.
Take the map

cp> & cp
which classifies L&*. That’s covered by a map of universal bundles which is fiberwise
the degree k map (raise everything to the kth power). All I'm doing is taking a line
and raising it to the kth power, on each fiber it’s z — 2*.

By the mod p Dold theorem, this implies that 15 (L) — L is in the kernel of J, when
you've localized at p (for k prime to p). This is supposed to be sort of trivial and if
you think about it for a while it is.

So you know it for line bundles.

The next step is to try to turn this into a theorem about spaces. So K-theory is
maps into BU, at least for reduced K-theory, and G-theory is maps into BHAut(S™).
So there’s a map

BU — BHAut(SY)
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and we’re going to localize all these spaces at a prime p. The other fact you need,
which isn’t very hard (I’d have to get into infinite loop spaces) is that this is an infinite
loop map between infinite loop spaces. What are we trying to prove? We are trying to
show that for k prime to p, the map

BU, "5 BU 2 BHAut(SY),,)

is nullhomotopic. We know that it’s true for CP*°. We want some glorified version
of the splitting principle to give it to us for BU. All I'm going to use is that these
are infinite loop maps. Since these are infinite loop maps, I get a nullhomotopy of the
infinite loop map

QCP>® — BU "' BU 2 BHAut(SV),,

where QCP is the free infinite loop space generated by CP*°.

The key point is that the map QCP>* — BU has a section. We're sort of all set
up to prove that. I was planning to do that in this course. How do we do that? Well,
remember the James splitting. One said that the map

RP", — Vi
and stably this has an inverse. There’s also the complex analog. It goes
YCP*® — (Vin)c — SCP—,

and this came from constructing vector fields on spheres and James’s intrinsic join.
When k& = n, you get that
YCP"! — SU(n)

and there’s a stable map back. In other words, there is a map
YCP" ! — SU(n) — QVENucprt
Now let N,k — oco. You get a map
YCP>* — SU — QXCP*
and if you adjoint over, that gives you a diagram
CP* — QSU ~ BU — QCP*

That gives us a map BU — QCP* and the map CP>* — BU is the reduced class of
the tautological bundle. We also know that all these maps are loop maps.
So now we have

CP*® — BU — QCP>* — BU

where BU — BU is a self-map which is a loop map and which sends L—1 to L—1. That
implies that BU — QCP>* — BU is a homology isomorphism because the homology
of BU is the symmetric algebra on the homology on CP*°. In fact, this is a homotopy
equivalence, and BU is a retract of CP°°. This is a proof that uses 1950s era algebraic
topology, just using James maps and Bott periodicity. (This argument also works in
motivic homotopy theory.) This isn’t enough to do the KO-Adams conjecture.
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Lecture 31
12/3

So there was a calculation I was hoping to go back to and explain this semester. I’ll
explain how it’s set up. We started out talking about the EHP sequence and this thing
for calculating the homotopy groups of spheres. We used that to generate a bunch
of questions, and one of them the vector field problem. Now that we’ve analyzed the
vector field problem, let me tell you what it means for the EHP sequence.

One thing that plays a role in the vector field problem is the J-homomorphism. One
might try to set up a J-theory analog of the EHP sequence. The J-homomorphism

goes
SO(n) — Q"S",

and these are compatible with the suspension map. We have commutative diagrams:

SO(n) Qnsn

| |

SO(n+1) ——= Qntlgn+tl

and we know the respective homotopy fibers of these things. We know that the homo-
topy fiber of SO(n — 1) — SO(n) is 25"~ !, and we get fiber sequences

SO(n) Qngr

| |

SO(n+1) —— Qntlgntl

| |

Sn QnJrl 52n+1

You get a map from the spectral sequence that would relate the homotpy groups of
SO(n) to the EHP sequence and it takes the Hopf invariant map and it desuspends it a
few times. One thing that you learn from this is that if z € im (7 SO(n) = 71 (S™)),
then the Hopf invariant H(x) desuspends a lot.

The identity element of S™ comes over under the connecting homomorphism to
something in 7,_1(SO(n — 1)). This map is something that you can work out pretty
easily.... This requires a little bit of proof. The formulas work out a bit easier if you
use the spin groups. The next thing is that the composite

S 5 Q8™ — SO(n) — Q"S™

that map corresponds to the Whitehead square of the identity.

So we get this nice map, which goes from a spectral sequences starting from the
homotopy groups of spheres, ending at the homotopy groups of SO. What did the
vector field problem say? The vector field problem said that S™ has k vector fields if
the map Vi41n41 — 5™ had a section. That was one formulation of the vector field
problem, and we approximated these Stiefel manifolds with stunted projective spaces.
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Now Vit1n+1 = SO(n+1)/SO(n — k). Let me put down a diagram to make sense of
this.
We've got
SO(n) SO(n)/SO(n — k)

| |

SO(n+1) ——=S0O(n+1)/S0(n — k)

| l

Sn Sn
and the existence of k vector fields is saying that the identity map ¢ € m,(S™) goes to
zero in the long exact sequence in m,—150(n)/SO(n — k). That’s also equivalent to
saying that the image of ¢ in m,_1(SO(n) lifts to m,—1(SO(n — k)).

So let’s go here. We have ¢ € m,S™ which is going over to m,_1(SO(n)), which is
mapping under this J-homomorphism to 7g,—1(S™). Then ¢ maps to the Whitehead
square. The vector field problem says that if the sphere has k vector fields, then
this lifts to m,—1(SO(n — k)). That means that the Whitehead square comees from
Ton—k_15""%. We get:

31.1 Proposition. If S™ has k vector fields, then the Whitehead square [in, L] desus-
pends k times.

So this is an easy diagram chase. We learned exactly what the answer to the vector
fields problem was. We learned exactly what the obstruction to desuspending was.

What else did we learn? If S™ has k but not k + 1 vector fields, then what did we
learned? We learned, from all this analysis, that we have 7, S™ mapping to 7,—150(n).
We've lifted the image of the identity through m,_1S0(n — k) but it doesn’t lift any
further. So that maps down nontrivially to m,_;S? %=1

TS ———— m,-150(n)

generator of im J
ﬂn_lsO(n — —>an15n_k_1

|

Tn-190(n —k — 1)
In fact, the image in m,_1S™ %~ is the generator of the image of .J there. I've got
a bunch of different J-homomorphisms here which is rather confusing. Over there, I
said that if I have vector fields on spheres, then the Whitehead product desuspends k
times. When £ is the maximum number of vector fields, then the Whitehead square
does not desuspend further and the obstruction to desuspending further —the Hopf
invariant — is the generator of the image of J.

(Note : everything in the world is localized at 2.)

So this is one part of the story. This relationship between the Whitehead square
and the desuspension goes back to James and Toda. Toda understood this relationship
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between vector fields on spheres and desuspending the Whitehead product. If you
remember this picture of the EHP spectral sequence, we had these spheres, and you
wrote down the homotopy groups of odd spheres. What the vector fields problem tells
you is that there’s a differential out of the ¢ classes killing the elements in the image of
J.

In the EHP spectral sequence, this tells you that all the differentials coming out
of the diagonal, if you feed this back in. That’s a remarkable amount of information.
This is important for use in the computational aspects of homotopy theory. Now you
might ask what happens to the image of J elements in the EHP sequence. In a given
range, you can start working through it. There’s a more systematic way to look at it.
We had this map

»NSO(n) —» N — Rp !

that is, the map SO(n) — RP" ! had a stable retraction via James’s “intrinsic join.”
I can think of that as a map to QVENRP" ! and taking the limit, get a map

SO(n) — QRP"™" = lig OV SN RP"!
and these things are all compatible. We have a commutative diagram

SO(n) QRP" !

| |

SO(n+1) —— QRP"

and there’s a cool theorem of Snaith which says that they factor through the maps
Q"S™ — QRP™ L. This is just a fancy way of producing that Toda produced by differ-
ent methods. This gives a map from the EHP spectral sequence to the spectral sequence
for calculating the stable homotopy groups of RP*: that is, the Atiyah-Hirzebruch ss
for mSRP> whose Ea-term is H,(RP>, w$SY). This seems kind of gargantuan but this
is something really understandable — it’s something that you can calculate. This dia-
gram ultimately relates all the things we talked about attaching maps about cells and
projective spaces and so forth.
See Mahowald’s paper “The image of J in the EHP sequence.”

141



	9/5
	Administrative announcements
	Introduction
	The EHP sequence

	9/7
	Suspension and loops
	Homotopy fibers
	Shifting the sequence
	The James construction
	Relation with the loopspace on a suspension
	Moore loops

	9/12
	Recap of the James construction
	The homology on X
	To be fixed later

	9/14
	Recap
	James-Hopf maps
	The induced map in homology
	Coalgebras

	9/17
	Recap
	Goals

	9/19
	The EHPss
	The spectral sequence for a double complex
	Back to the EHPss

	9/21
	A fix
	The EHP sequence

	9/24
	9/26
	Hilton-Milnor again
	Hopf invariant one problem
	The K-theoretic proof (after Atiyah-Adams)

	9/28
	Splitting principle
	The Chern character
	The Adams operations
	Chern character and the Hopf invariant

	8/1
	The e-invariant
	Ext's in the category of groups with Adams operations

	10/3
	Hopf invariant one

	10/5
	Suspension
	The J-homomorphism

	10/10
	Vector fields problem
	Constructing vector fields

	10/12
	Clifford algebras
	Z/2-graded algebras
	Working out Clifford algebras

	10/15
	Radon-Hurwitz numbers
	Algebraic topology of the vector field problem
	The homology of Stiefel manifolds

	10/17
	The map RPn SO(n+1)
	The vector field problem

	10/19
	Spheres with one vector field
	Spheres with more than one vector field
	James periodicity

	10/22
	A loose end
	Stiefel manifolds and the intrinsic join
	James periodicity

	10/24
	Stable homotopy
	The Spanier-Whitehead category
	Spanier-Whitehead duality
	Formulas for DX

	10/26
	Thom complexes
	The Thom isomorphism
	Examples

	10/31
	Spanier-Whitehead duality
	Application to vector fields

	11/1
	Real K-theory
	Examples

	11/5
	Outline
	K*(CPn)
	K0(RP2n)
	KO"0365KO(RPn)

	11/7
	11/9
	Thom complexes and the J-homomorphism
	The Thom isomorphism in K-theory
	Difference bundles

	11/19
	Solution of the vector fields problem
	Adams's work on the image of J

	11/26
	The e-invariant

	11/28
	11/30
	Adams conjecture
	A proof of the Adams conjecture

	12/3

