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ABSTRACT

STABLE DECOMPOSITIONS 
OF CERTAIN LOOP SPACES

by
MICHAEL J. HOPKINS

This paper studies the stable structure of nsu(n) 
and ftSp(n) . The homology of fiSU(n) is a polynomial ring. 
As a module over the Steenrod algebra it splits as the sum 
of its homogeneous parts. It .is_ conjectured that this cor
responds to a geometric splitting, and a version of this 
conjecture is proved after inverting one of the generators.
In contrast with this, f2Sp(2.) and f2Sp(3) are shown to 
be stably atomic at the prime 2, in the sense that any 
stable self-map inducing an isomorphism of H2( ;Z/2) is 
a 2-local stable homotopy equivalence.

The spectra arising in the (localized) splitting of 
fiSU(n) are the bordism theories associated to the double 
loop maps

fiSU(n-l) — > fiSU s BU .

These bordism theories are fairly interesting in their own 
right and two of the three chapters of this paper are de
voted to studying their properties.
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Introduction

This thesis represents an attempt, only partially suc
cessful, to determine the stable structure of QSU(n) and 
^Sp(n) . In trying to understand these spectra one is nat
urally led to consider Thom spectra X(n) and Xp(n) which 
arise from certain vector bundles over ^SU(n) and ftSp(n). 
The spectra X(n) are due to Ravenel [ 1 9 ] and in some sense 
generalize the X^-construction of Barratt. It turns out that, 
these spectra are fairly interesting in their own right and 
a large part of the material herein is devoted to developing 
their properties.

In Chapter 1, the spectra X(n) and Xp(n) are de
fined and certain elementary properties are exhibited. The 
spectra X(n) filter MU and it is shown that many of the 
properties of MU and BP induce analogous properties of 
the spectra X(n) .

In Chapter 2 applications of this and related material 
are made. These include:

i) A characterization of the 2 -primary cyclic BP- 
module spectra which might admit a commutative multiplica
tion.

ii) Any commutative ring spectrum of characteristic 
two is a wedge of suspensions of Eilenberg-MacLane spectra.

iii) Elements of order two in a commutative ring spec
trum which have nilpotent mod-2 Hurewicz image are nilpotent.
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iv) A decomposition of the (p-localized) infinite
nr> _ 2  JJsmash product AZ IP into irreducible spectra, together

cd _o n —2 n with applications to the structure of [AZ IP , AZ (CP }
ooand to the structure of the infinite loop space ft X(n) .

v) A study of nilpotence in Tr + X(n) and a geometric 
decomposition of X(2) in terms of nilpotent self maps of 
finite complexes.

Odd primary analogues of applications i), ii) and iii) 
are also indicated. The other applications are valid at any 
prime.

Chapter 3 contains the structure theorems pertaining 
to the suspension spectra of ftSU(n) and ftSp(n) . The 
homology of ftSU(n) is a polynomial ring. As a module over 
the Steenrod algebra it splits as a sum of its homogeneous 
parts. It is conjectured that this corresponds to a geomet
ric splitting,and a version of this conjecture is proved 
after inverting one of the generators. In contrast with 
this, ftSp(2) and ftSp(3) are shown to be stably atomic 
(at the prime 2) in the sense that any stable self map in
ducing an isomorphism in H2( ;Z/2) is a stable homotopy 
equivalence.

It is a pleasure to thank Professor Hark Mahowald for 
his patience and guidance during our many conversations and 
during several sailing excursions. Many of the results in 
this work were conjectured by him and many of the proofs fol



low his suggestions. It has been a marvelous opportunity to 
learn about stable homotopy theory from one who knows it so 
directly. His influence will be apparent throughout this 
work.

Second, I would like to thank my friend Henry Cejtin 
for being my first mentor and for kindly waiting for me to 
finish my thesis before he began writing his. I would also 
like to thank my friends Jeff Smith and Wolfgang Lellman for 
countless stimulating conversations and for helping to cre
ate a very exciting topological neighborhood here at North
western .

Finally, I wish to thank Wagner Associates for their 
cheerful and speedy job of typing this manuscript.



Chapter 1. The Spectra X(n) and Xp(n)

1.1 Elementary Remarks
Given an H-space X and an H-map f:X->-BO , the re-

fsuiting Thom spectrum X is a ring spectrum [ 11 ], [ 12 ].
If X has a higher kind of multiplicative structure (for 
example if X is an n-fold loop space), and if f is com-

fpatible with this higher structure, then X will have anal
ogous structure in its multiplication [ 0 ].

Let BSU(n)-*-BSU and BSp(n)-*BSU be the usual in
clusions. Taking double loop spaces and appealing to Bott 
periodicity yields maps £}SU(n)-»-BU and f}Sp(n)-»-BU . These 
maps result in Thom spectra which will be denoted X(n) and 
Xp(n) respectively. They have a higher multiplicative 
structure analogous to that of a double loop space. There
are clearly maps X(n)-*X(n + l) and one has lim X(n)=MU .

n+°°
The spectra X(n) were originally constructed by 

Ravenel [ 19 ]. It is quite likely that many of the results 
of this chapter are known to him. Very few of these appear 
in the literature or in preprint form, however, so we have 
taken the liberty to give a fairly detailed account.

We wish to compute the homology of X(n) and Xp(n) . 
Recall [ 22] that consideration of the subspace of 'reflec
tions’ results in an inclusion S2n_1 x 1S1/S2ns s
c— > U(n) . Translating this back to SU(n) by multiplying



by a fixed inclusion U(l) c > U(n) results in a map
ZCCPn-1-*■ SU(n) . The following can be extracted from [ 22 ] .

Proposition 1.1.1. i) H+(SU(n); 2) is the exterior 
algebra E [H*( I<EPn-1; 2)].

ii) The map
H*(Sp(n); 2) + H+(SU(2n); 2) is the inclusion of the exterior 
subalgebra on the generators of dimensions congruent to 3 
mod 4.

%“i  1Let dP "" -*-fiSU(n) be the adjoint of the above map.
The following is an easy consequence of the Eilenberg-Moore 
spectral sequence.

Proposition 1.1.2. i) H+(QSU(n); 2) is isomorphic
 ̂ n 1to the symmetric algebra on H+(CP ; 2) .

ii) The map H+(£2Sp(n); Z)
 > H+(ftSU(2n) ;Z) is the inclusion of a polynomial sub
algebra. Modulo decomposables,the generators of 
H+(£2Sp(n); z) are the generators of H+(QSU(2n ) ;Z) in 
dimensions congruent to 2 mod 4.

Combining the above proposition with the Thom isomor
phism yields the homology of X(n) and Xp(n) . Before de
scribing it, however, we need to make a convention. An appro-



6
priate choice of equivalence QSU BU makes the composite

ffPn_1 — > fiSU(n) — > fiSU — > BU
*classify the canonical line bundle. Passing to Thom spectra

results in an "orientation” ?~^dPn -+X(n) . We wish to fix
a basis for H+(I-2CPn ; Z) . Let x e H2(CPn-1; Z) be a
generator and let 2  ̂ c basis

2 n 1dual to {l,x,x ,***,x ~ } . Finally, let {b^,...,b 1 ) c
H* (l"”2(i;pn ; Z) correspond to  ̂ ‘ ' ^n-1 ̂ under the Thom

2 nisomorphism. The abelian group H+(Z" CP ; Z) is therefore
free abelian with basis {b^ | 0 ^ i < n - l }  and with |b^| = 2i.

Proposition 1.1.3. i) H+(X(n); Z)=
2 [b^,..•,b^_2]/(bQ — 1). 

ii) The map H+(Xp(n); Z ) -*■ 
H+(X(2n); Z) is the inclusion of a polynomial subalgebra 
with generators congruent to ^ i - l  ^ ^  n  ̂ modulo 
decomposables.

* See Appendix B
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1.2 A Characterization of X(n)

_2 nThe analogy of the orientation £ GP -*X(n) with
—  2  oo£ GP MU can be pursued and yields a characterization of 

X(n) similar to that of MU via formal group laws. Our 
treatment parallels that of [ 1 ].

Let E be a ring spectrum. We shall say that a map
_2 pf:£ GP E carries the unit if the restriction of f to

 2the bottom cell of £ GP is the unit of E . Such a map 
will be called an E-orientation of GPn and, when no con
fusion will arise, just an orientation.

The following is the main result of this section.

Proposition 1.2.1. Let E be a ring spectrum. Any 
2 nmap £- GP E carrying the unit extends to a unique map of

ring spectra X(n)+E .

An E-orientation of GPn can be regarded as an ele
ment x e E^(CPn ) .

Lemma 1.2.2. Let E be a ring spectrum and let 
2 n

X  e E (GP ) be an orientation. Then
i) E* (CPn ) * E*[x]/(xn+1).

ii) The external product
I------  k    1 1---  k  1

E (GPn ) • •‘S ^ E  (GPn ) — > E (CPn x-.-x GPn )

is an isomorphism.
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2proof: i) Any representative for x on the E -term

of the Atiyah-Hirzebruch spectral sequence must survive to

spectral sequence collapses. There are no extension prob-
*lems since we are dealing with free E -modules.

ii) This follows from the appropriate pairings 
of spectral sequences.

Lemma 1.2.3. For 0 < i *£ n let B., € En..(CPn ) be— 1 A 1
dual to x1 under the Kronecker pairing. Then

oo 2  ̂ 1E . Since the E -term is isomorphic to E [x]/(x ) the

i) E^CP11 is a free E+-module with basis

ii) The external product

is an isomorphism.
iii) As an E+-coalgebra, E+(CPn ) is deter

mined by the formula

proof: This follows from Lemma 1.2.2 by using the
appropriate pairings of spectral sequences.
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The elements Bi for i < n - l  can be regarded as 

elements of E+(<CPn’"̂ ") . For 0 < i < n - l  let 
b. e E (E~2CPn ) correspond to B- under the Thom isomor-1 a X 1
phistn. We will also use the symbol b^ to denote the image
of b^ under the map E + ( I- (̂CPn ) -+E+( X(n )) . If two
spectra, say E and F , are under consideration, super-

E Fscripts will be appended to distinguish {b^} from {b^} .

Corollary 1.2.4. i) E+(X(n))«E# [bQ ,...,bn_1]/(bQ-l ) .
ii) E,(X(n)AX(n)) ' E^(X(n>) ^  E*(X(n)) .

iii) E*(X(n)) a HomE [E*(X(n)),E+] .
iv) E*(X(n)AX(n)) * Horn [E + (X(n)AX(n)),E+] .

*
v) Under the identification iii), the maps 

of ring spectra X(n)-»-E correspond to

HomE+-algebras^E*(X(n))»E*̂  *

proof: Parts i) and ii) follow easily from Lemma
1.2.3 and the Atiyah-Hirzebruch spectral sequence. Parts
iii) and iv) also follow from the Atiyah-Hirzebruch spectral 
sequence modulo convergence questions. These are dealt with 
below. Part v) follows easily once iv) is interpreted as
saying that two maps X(n)AX(n)+E agree if and only if
the induced maps in E-homology agree.



We have used the following lemma.
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Lemma 1.2.5. Let X be a spectrum which is the 
direct limit of a sequence

f
* • * — > X — X — > • * •n n+1

of finite dimensional spectra. Suppose further that
♦ ♦ *f : H (X jir̂ E) + H (X ;tt*E) is an epimorphism for all n . n n+i * n * *If the Atiyah-Hirzebruch spectral sequence for E (X) col-

2 *lapses at E then it converges to E (X) .

proof: We need to show that E (X) ~ jim E*(X ) —
i ^that is, that j.im E (Xfi) =0 . Since the maps

f :H (Xn+1; ff+E ) -*• H (Xn ;7T+E) are epimorphisms, so is the 
*map H (X;tt+E) . It follows that the Atiyah-Hirzebruch spec-

 ̂ 2 tral sequences for E (X^) collapse at E . These spectral
sequences converge since the X are finite dimensional.

3̂TThis implies that the maps E Xn+  ̂•+ E Xfl are epimorphisms, 
since a map of finitely filtered abelian groups which in
duces an epimorphism of associated graded groups is an epi-

*morphism. It follows that the system {E (Xn )l is Mittag-
1 *Leffler and hence that }im E (Xn ) = 0  . This completes the 

proof.



The proof of Proposition 1.2.1 now follows easily. By
Corollary 1.2.4, the maps of ring spectra X(n)+E are in
one to one correspondence with the (graded) E+-algebra maps
E+(X(n)) ~ E+ [bQ , . . . ,bn__1]/(b0 - 1) -*■ E+ . These correspond

2 nbijectively to maps E + (£- IP ) -*• E+ which send bQ to 1 ,
using the identification of Lemma 1,2,3 i). By
the same lemma these correspond exactly to the orientations 
— 2 n2 (EP -*• E . This completes the proof.
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1.3 Localization of X(n)

In this section we will investigate the behavior of 
X(n) after localizing at a prime. Let HZ/p denote the 
mod-p Eilenberg-MacLane spectrum. Recall that for p odd, 
HZ/p*HZ/p ~ E[ tq ,t1 ,...]©Z/pf51 ,C2 ,•••] with |xi J=2'p1 -l 
and | |  = 2px - 2 . When p = 2 one has HZ/2^HZ/2 ~
TLj 2 [ £ . . , w i t h  | £ . | = 21 - 1 . In order to avoid sep-

X Z  2

arating cases we will adopt the odd primary notation and 
leave to the reader the obvious modifications for the case 
p = 2 .

An immediate consequence of the definition of the ^
([ 14]) is that the unique orientation t~ CP -►HZ/p induces
a map in homology which sends b^ to if j = p1 - 1 and
to zero otherwise.

Corollary 1.3.1. There is a unique map of ring spectra
X(n)-»-HZ/p . The induced map in homology has for its image
the polynomial subalgebra of generated by
{^i | i < logp(n)} .

Let P c A be the sub-algebra of cyclic reduced 
powers. The vector space dual of P is the polynomial ring 
Z/p[£j,£2 *•••] • Let Tn (P)c— > P be the n-fold commutator 
ideal. It is a Hopf ideal and the quotient P/rn+* will be 
denoted P_ .
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Lemma 1.3.2, The vector space dual of Pn is isomor

phic to Z/p[?1 ,...,£n] .

proof: Let I c P be the annihilator ideal of
Z/p £ ] . Then I c I and the Hopf algebra ker-1 ’ n n+l n
nel of P/I , — 5£> P/I is abelian. It follows that' n+l ' nn+1 n+1I c T . I t  remains to show that F annihilates the n
elements 1 , .  This follows from dimensional con-' 1 ’ ’ n
siderations and the following facts:

i) Elements of minimal degree in an ideal of a con
nected graded Hopf algebra are primitive.

ii) The set of primitives in P is the vector space 
dual of the set with respect to the monomial
basis.

iii) The connectivities of the ideals fn form a 
strictly increasing sequence.

From now on, m and n when they appear together, 
will be integers in the relation pm < n < p m+  ̂ .

Proposition 1.3.3. The mod-p cohomology H (X(n);Z/p) 
is free over Pm

proof: Since X(n) is a commutative ring spectrum
H (X(n);Z/p) is a commutative co-algebra. The proposition 
follows in the usual way from a theorem of Milnor-Moore [ 15]
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once one shows that the action of the Steenrod algebra on a
generator of H^(X(n);Z/p) factors through Pm , and that
evaluation on thi$ generator induces a monomorphism 

*Pm c— > H (X(n);Z/p) . The vector space dual of this asser
tion is precisely the content of Corollary 1,3.1. This com
pletes the proof.

We now wish to show that Proposition 1.3.3 has a geo
metric analogue.

Lemma 1.3.5. Any map of ring spectra e:MU-*MU deter
mines a family {e^ : X(n )-*-X(n)} of maps of ring spectra 
with the following properties:

i) There is a commutative diagram

X(n) <=------- ► X(n + 1)

e c ,n n+l

X(n)C------- ► X(n + 1)

ii) lim e  = e . nn-f®
Furthermore, the en are unique with respect to these 
properties.

proof: The map e  is determined by its restriction
n QQto £ (CP . Since X(n)-*-MU is a (2n - 1 )-equivalence this
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_2 ndetermines a unique map £ ip -*X(n) . The lemma now fol

lows from Proposition 1.2.1.

In order to compare our results with the more standard 
results from MU-theory it will be convenient to locate 
another system of polynomial generators in H+(X(n);Z) .

« i + iLet be the formal power series inverse (under
i>° 1 i+1

substitution) to £b^x • It 1S easy to see that
m - e Z[b-,...,b -1 and that m i e -b - mod decompos-n-1 1 n-l n-1 n-1
ables. We can therefore regard m. e H^fXCnijZ) wheneverl *
i < n . The proof of the following lemma is then an easy 
calculation.

Lemma 1.3.6. i) H+(X(n);Z) - Z[m^,.../mn_1] .
ii) The homology homomorphism induced

by the map of ring spectra X(n)->-HZ/p sends m. to x^-j)
J

if j = p1 - 1 and to zero otherwise.

Proposition 1.3.7. After localizing at p there exist
maps en :X(n) X(n) of ring spectra satisfying:

i) is idempotent.
ii) The induced map in homology satisfies

f m. if i = p^ - 1 for some j
e (m.) = < 1
n 1 I 0 otherwise .

iii) The are compatible in the sense that the fol-



lowing diagram commutes (up to homotopy)
16

X(n + 1)

E , in+l 

X(n + 1)

iv) The limit lim e :MU->-MU is Quillen's idempotent [18]. 
n->-°°

proof: This is immediate from the properties of
Quillen's idempotent and from Lemma 1.3.5.

Recall our convention that n and m are integers in 
the relation pm < n < p in+1 . The idempotents give rise
to spectra which will be denoted X<m > . Part ii) of 
Proposition 1.3.7 determines the cohomology of X<m > and 
shows that X < m > is independent of the choice of n . The 
X< m > fit together to form a sequence whose limit is BP .

Corollary 1.3.8. For m > 1 there exist p-local
commutative ring spectra X < m > of finite type with 

*H (X<m>;Z/p) ~ Pm • E is a ring spectrum admitting an
—2 norientation I <EP -+ E , then there is an isomorphism 

E)t.X< m >  * • • • »t m ] with 11 ± | = 2P31 - 2.

X(n) ^ n

X(n)
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proof: Only the last assertion has not yet been

proven. It follows easily from the fact that the Atiyah- 
Hirzebruch spectral sequence for E+X< m > collapsesrsince 
X < m > is a retract of X(n) localized at p .

Finally, construct ring spectra out of suitable
wedges of spheres, satisfying H+( M ; Z ) « Z [ x ^ J l < i < n - l ,
i jfp1' -1 for any j] with | x^| = 2i . We will denote
lim M by M . n Jn-*-“

Corollary 1.3.9. After localizing at p , there 
exists an equivalence of ring spectra MU s BP^M . Further
more, any such equivalence restricts to a unique family of 
(p-local) equivalences X( n ) -*■ X< m >AM .

proof: The first assertion is standard. For the
second observe that any map of ring spectra MU + BP^M is

—2 00determined by its restriction to I CP . Any orientation
I-2CP°° BP/sM determines a unique orientation Z-2CPn +
X< m > aM since X< m >AM -+ BP^M is a (2n - 1 )-equivalence. n n
This completes the proof.



1.4 X(n)# X(n) and X< m >+ X < m >
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Recall that a ring spectrum E is said to be flat if 
it satisfies one of the following equivalent conditions:

i) EaE splits as a wedge of suspensions of E .

ii) E+E is a free E+ module.

Corollary 1.2.4 implies that the algebra of co
operations X(n)+ X(n) is isomorphic to X(n)+ [b^,...,b 
with = 2i . Corollary 1.3.8 implies that X< m >+X< m >
* X< m >* [t^ , . . . , t ] with 11 ̂ | =2(p1 -l) . It follows that
X(n) and X < m > are both flat. The purpose of this sec
tion is to show that the decompositions resulting from part 
i) above can be made compatible as n and m vary. This 
enables one to determine much of the structure of the Hopf 
algebroids X(n)+X(n) and X < m > +X < m > from that of MU+MU 
and BP+BP .

The idempotent gives rise to a map X(n)-*-X<m> .
Composing this with the orientation E~^IPn -*■ X(n) fixes an 

“2 norientation E (EP -+• X< m > .

Proposition 1.4.1. Let E be a ring spectrum. Then 
any ring spectra homomorphism X< m > •+■ E is uniquely deter
mined by its restriction to E~^(LPn .
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proof: If there is a map of ring spectra X< m > -*■ E

then E is p-local and admits an orientation. Corollary
sfc )|c1.3.9 implies that E (X<m>)-»-E (X(n)) is a split monomor

phism, The proposition then follows from Proposition 1.2.1.

Next we need to discuss the splittings of MU^MU and 
of BP^Bi3 . To construct a splitting one first builds Moore
spectra for the rings Z[b^,b2 ,..,] (|b^| =2i) and
Z [ t^ , tg , . . . ] ( 1 |  = 2(p1 -l)), by imposing appropriate mul
tiplications on wedges of spheres. Smashing these with MU 
and BP gives ring spectra MU[b^, , . . . ]  and 
BP [t^, tg, . . . ] . Next one constructs maps MU^MU-►
MU[b b2> . . . ] and BP^BP -*■ BP [t^ , t2 , . . . ] , and proves them
to be equivalences. It is not unreasonable to ask that these 
be maps of ring spectra. It is also not unreasonable to ask 
that they preserve the obvious left BP and MU module 
structures.

Definition. Let E and S2 be ring spectra. An 
equivalence s:EAE-*EAfl is said to be an admissible 
splitting if it is a map of ring spectra preserving the ob
vious left E-module structure.

The advantage of admissible splittings is that they 
are determined by the right unit
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which is a map of ring spectra. When E is one of the 
spectra X(n) or X< m > , the right unit is in turn deter-

striction the right orientation.

Proposition 1.4„2, Let s :MUaMU -*• MU [t^, , . . . ] be
any admissible splitting. The map s determines a family 
of admissible splittings s :X(n)AX(n) -*■ X(n) [b^, . . . ,bn_1] 
which are unique with respect to the following two 
properties:

i) The s^ are compatible in the sense that

2 nmined by its restriction to T. CP We will call this re-

X(n)„X(n) X(n + l)^X(n +1)

sn

X(n)[blt...,bn_1] + X(n + 1) [bĵ  bfi]

commutes.

ii) The limit lim s is s
n-*-°°
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Proposition 1.4.3. Let s :BP^BP •+■ BP [tj , tg , . . . ] be

any admissible splitting. The map s determines a family
of admissible splittings s :X< m >AX< m > -+■ X< m > [t- , . .. , t ]m 1 1' ' m
which are unique with respect to the following two 
propert ies:

i) The sn are compatible in the sense that the
diagram

X< m >AX< m >

m

X< m + 1 >AX< m + 1 >

m+1

X<m>[t ....t 1 1 m X< m + 1 >[t1,...,tm+1]

commutes.

ii) The limit lim s is s
n-+°° n

proof of Proposition 1.4.2: Any admissible splitting
s : M U / s M U  ■+■ MUfb^.bg, . .. ] is uniquely determined by its right

_2 COorientation Z IP ■+ MU [b^ , bg , . . . ] . This in turn deter
mines a unique family of orientations l”2IPn -*•
X(n) [b1, ... »bn_1] , since X(n) [b1 ,.. . ,bn_1] -*• MUlbj.bg, ... ] 
is a (2n - 1)-equivalence. These latter maps induce homomor- 
phisms X(n)/xX(n)-1-X(n) [bj, . . . ,bn_j] which are easily cal
culated to be homology equivalences, hence admissible
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splittings. The compatibility and unicity statements follow 
from the analogous statements about the orientations 
Z iPn -»■ X(n) [b1 , . .. »bn_1] .

■ proof of Proposition 1.4.3: We wish to mimick the
proof of Proposition 1.4.2. The splitting BP^BP ->
BP[t^,tg,...] is uniquely determined by the right orienta- 

— 2 COtion IP -*■ BPft-p tg, . . • ] • This in turn determines
unique orientations Z~2IPn -+ X< m > [t^ t ] . We need only
show that these extend to maps of ring spectra X< m > -►
X< m > [t^,...,t ] . By Proposition 1.2.1 they do extend to
maps X(n)^  ̂-*■ X< m >[t^t . . . »tm ] since the range is p-local. 
Composing with the canonical inclusion X< m > -+ X(n) ̂ j 
yields a map X< m > -*■ X< m > [t^ , . . . , t ] . This gives rise to

n _another orientation Z IP X< m > [t_ . . . . . t ] and we will1 m
be done if we can show that it agrees with the one we started 
with.

Consider the case n = 00 . Here one can factor the maps 
in question as follows:



By definition the map B P -*■ MU^p  ̂ BP is the identity. The
— 2 ootwo orientations 1 IP -*■ BP [t^ (tg , . . . ] therefore agree.

This means that the two orientations £-2iPn -*• X<m>[t^, . . . ,tm]
agree after mapping into BP[t^,tg,...] . But the map
X< m > [t- , . . . , t ] -*• BPft ,t , . . . ] is a (2pm+1 - 3 )-equivalenc.e,J. m _l
so they agree as maps Z-2([Pn->-X< m > [t1, . . . , tm ] . This com
pletes the proof.
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1.5 The Spectra Xp(n)

We record some results which will be needed in chapter
3. Recall that denotes the Moore spectrum for the ring
Z[x^ | i f pJ - 1 for some j] where |x^| = 2i . Let be
the Moore spectrum for the ring I * =0(2), i < 2n] .

Proposition 1.5.1. After localizing at 2, there is an 
equivalence

Xp(n)AM ----> X(2n)

of ring spectra.

proof: We already have a 2-local equivalence
X< 2m + X(2n) . Let M -*■ be the obvious inclusion.2m n 2m
Composing with the above equivalence gives a map M ->X(2n) . 
This can be multiplied by the inclusion Xp(n) c— *- X(2n) to
obtain a map of ring spectra Xp(n )AMn -*■ X( 2n) . By con
struction, it is a homology equivalence. This completes the 
proof.

Finally, we need to note the existence of one more
family of ring spectra. Let [k] 1 ^CPn -* £ ^£Pn be the map
induced by zl— *-zk : --•" S1 . Observe that [k] ° [£] =
[k*£] and hence that ^([1] - f—12) is idempotent and of

2 ndegree one on ^q C^- <EP ) - It therefore induces an idem-
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potent e :X(n) -*■ X(n) after inverting 2. Call the resulting 
ring spectrum X(n) „

Proposition 1.5.2, After inverting 2, there exist 
ring spectra X(n) c X(n) with H+(X(n") ) z Z [ -g ] [b2 , , . . . ] .
There is an equivalence of ring spectra X(n)-*- 
X(n)[x1 ,x3,..„] .

proof: Only the last assertion needs to be proved.
The Atiyah-Hirzebruch spectral sequence for 
£cPn fX(n) collapses. This allows one to con-
struct a suitable orientation £- CP -*■ X(n ) [x1, xg f . . . ] . If
one is interested in compatibility over the various n , 
one can first construct the splitting of MU and then re
strict to the finite cases as in the proof of Corollary
1.3.9. This completes the proof.



Chapter 2 Applications

In this chapter we present the applications of the 
spectra X(n) and X < m > which were enumerated in the 
introduction. They have been included largely for amuse
ment and serve to illustrate the ease with which certain 
kinds of information can be obtained about X(n) and X< m >. 
Many of these applications arose out of attempts to under
stand the conjectures of Ravenel [ 19], and the interested 
reader may wish to look there for an exposition of our pre
vailing philosophy.

In the first two sections of this chapter we will 
work mostly at the prime two. This is largely for technical 
ease in the statements of results. Most of these results 
have odd primary analogues which, though more difficult to 
state, require only trivial modifications of the two primary 
arguments in their proofs. At the end of each section we 
will indicate the necessary modifications at odd primes.

26
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2.1 Regular BP Module Spectra

Recall that B P . * 7., . Fv., , vn , . . , 1 where I v . I = 2pX-2 .* (p ) 1 1 2 i'
Whenever vQ arises it will be taken to mean multiplication 
by p . Given any sequence c = (c^,c^,...) of elements of 
BP,,. , the Baas-Sullivan f 2 ] technique of bordism with 
singularities yields certain BP module spectra BP^ . In 
case c is a regular sequence on has tt+(BPc ) =BP*/(c) .
We will be interested in the special case when c is a sub
sequence of (Vg,V^,.,,) .

Definition. A regular BP-module spectrum is a BP
module spectrum of the form BPc with c a subsequence of
(Vq,v 1 ,.„.) . The regular BP module spectra with 
c= (v ,v 2 >• • • ) are denoted B P < n > .

The following lemma has been proven by Baas and Madsen

[ 3 1.

Lemma 2,1.1. Let BP be a regular BP module spec-    c
trum. Then one has H (BPc ; Z/p) - A ® E E[03i:vi e c] where
E = E[Qq ,Q^,...] is the exterior subalgebra of A generated
by the primitives of odd degree.

proof: We will prove the dual statement. For an element
<J> e A+ let $ denote x(4>) * We will show that any 

non-trivial map BPc HZ/p induces an isomorphism



of H+(BP ;Z/p) with the subalgebra E[t. | v. e c] ®O 1 1
A  .A.Z/p [ » * • • ] "the dual Steenrod algebra.

Suppose first that c consists only of the single
2n1-2element v. . Let M denote the cofibre of v.:S ^ -*■ BP .i i

Then the map BP BPc factors through BP •+ M , and we ob
tain by composition a map M -*■ BP^ -+ HZ/p . The element
has Adams filtration 1. It follows that H(M;Z/p) is given

1 2d 1 1by a non-trivial A-module extension in Ext^’ p _ (Z/p, 
H+(BP;Z/p)) . This group is easily calculated to be Z/p 
so there is only one possibility for H^CHjZ/p) —  namely

A Athe sub module of A+ generated by Z/p[ . . . ]  and
A

t ̂ < The image of H+ (BP^ ; Z/p ) -*■ A+ therefore contains
AETt .I . Since BP is a BP-module spectrum it must contain 1 lJ c

all of E [t . ] ®Z/p [ C-i , ,  . . . ] . The cofibre sequence
i  12n -2I F BP BP -*■ BP shows that H . BP can be no larger thanc * c

this. It follows that the lemma is true when c consists
of one element.

Morava [ 16] has constructed pairings BP ABP , ->-c c
BP, ,, where (c.c') denotes the concatenation of the (c ,c )
sequences c and c ’ . These pairings induce isomorphisms 
of H°( ;Z/p) . It follows that the image of H+(BPc ;Z/p) 
in A+ contains the conjectured subalgebra when c has 
only finitely many elements. The cofibre sequence
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shows by induction that H+(BPc ;Z/p) can be no larger than 
this subalgebra. The lemma is therefore true when c has 
only finitely many elements. The general case follows by 
passage to direct limits. This completes the proof.

Since the homology and the homotopy of the regular BP- 
module spectra are commutative rings one might expect that 
they are commutative ring spectra. It can be shown ([ 16 ],
[ 19] , [ 20 ]) that the B?c are ring spectra, but as far as
commutativity is concerned, we have

Theorem 2.1.2. The only 2-local regular BP-module 
spectra which might admit commutative multiplications are 
the BP< n > .

Theorem 2.1.2 follows from the fact that commutative 
ring spectra have a slightly enriched structure. Let E be 
a commutative ring spectrum and let u:E/sE->E be the multi
plication. If t:E^E-*-E^E denotes the twist, then u ° ( 1 - t )  

is null-homotopic. The multiplication therefore extends 
over the cofibre of (1-t) which will be denoted by 
Dg(E) . We will call any spectrum E equipped with an ex
tension over DgfE) of the multiplication a Dg ring spec
trum. A map between Dg ring spectra E and F will be a 
map E ■* F of ring spectra compatible with the extensions
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over Dg .

The homology of £>2(E) is easily computed and results 
in an extended squaring operation in H+(E;Z/2) analogous 
to the Dyer Lashof operation in the homology of a double 
loop space. We will call this operation

Ql :Hn(E) - »  H2n+1(E) .

The spectrum D„(E) is the subspectrum S* * v E^E
h2

of the extended power EEr, * v EAE . Ring spectra with ex-
2

tended power operations have been studied in complete gener
ality by May et al. [ 12 ] „ They have also studied the re
sulting homology operations.

The following lemma can be found in [23]. Recall 
that the anti-automorphism is being denoted
<j> I— ► <]) .

Lemma 2.1.3. The mod-2 Eilenberg-MacLane spectrum 
HZ/2 admits a unique D2~structure. Furthermore, the opera-

/V Ation sends £ to £ , .^1 n n+1

Lemma 2.1.4. Suppose that E is a (-1)-connected 
ring spectrum and that the unit generates tt̂ E . Then any 
non-trivial map E -*• HZ/2 is a map of D2 spectra.
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proof: The commutativity of all diagrams follows from

the fact that H°(D2E;Z/2) *Z/2 .

Lemma 2.1.5. Let E satisfy the conditions of Lemma
2.1.4 and let E + HZ/2 be a non-trivial map. If
a a
E € im H.E then so is E, , •^n * n+1

proof: This is immediate from Lemmas 2.1.3 and 2.1.4.

We can now complete the proof of Theorem 2.1,2. Let 
BPc be a regular BP--module spectrum admitting a commutative 
multiplication —  i.e., a D„ structure. Suppose v. e c.

A.Then E,. is an element of H*(BP ) c A. by Lemma 2.1.1.l * c *
ABy Lemma 2.1.5 also in H+BPc and so by Lemma

2.1.1 again, vi + i e C . It must therefore be the case that
c = ( v  ... .v for some n —  i.e. BP = BP< n > . Thisn+i n+2’ c
completes the proof.

Remark: Of course Theorem 2.1.2 has an odd primary
analogue. Commutativity, however, is not sufficient. In
fact, Morava [ 16 ] has shown that the odd primary BPc all
admit commutative multiplications. At the prime p one must
require that the iterated multiplication extend over D (X) - 
~ 2 p ~ 2C(R ;p) x j. where C(F ;p) is the configuration space

P 2 pof p ordered points in R , and denotes the p-fold
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smash product with the obvious E action. Under thisP
assumption the proofs of this section go through without 
trouble„
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2.2 Commutative ring spectra

In fact the notion of commutativity at the prime 2 can
be quite a strong condition. In this section we will give
two more applications of the lemmas of the previous section. 
These are slight strengthenings of results of Steinberger
[23] and Nishida [17].

Theorem 2.2.1. Let E be a commutative ring spectrum. 
If E+ contains an invertible element of order two then E 
is weakly equivalent to a wedge of suspensions of Eilenberg- 
MacLane spectra.

Theorem 2.2.2. Let E be a commutative ring spectrum 
and let a e E^ be an element of order two. Then a is 
nilpotent if and only if the Hurewicz image H+ct e H* (E ;Z/2) 
is nilpotent.

Given a spectrum X and a map ->• X one can form a 
sequence

X — > D2X — > d 2(D2X ) *** D^n)(X) — > ••• .

Let DgfX) be the homotopy direct limit of this sequence. 
The following lemma is the rrain tool in the proof of 
Theorems 2.2.1 and 2.2.2.



Lemma 2.2.3, Let M2i = S° e1 be the Z/2 Moore 
0 00spectrum. Then H (D2(M2 ,);Z/2) sZ/2 and the non-trivial map

00D2 (M2i) HZ/2 is projection onto a wedge summand.

0 00proof : The calculation H (D.,M0 . ; Z/2) -.Z/2 is
00trivial. We will show that D2M2 i -*-HZ/2 is surjective in 

homology. The result will then follow from a slight modi
fication of a theorem of Margolis [13 ] (Lemma 2.2.4 below).

 ̂ n—1Define a second grading of A. by w (£ ) =2 and*  t i l

wt(£*£')= wt(£)+wt(£') . We will show by induction on n 
that the image of H+(D2n ̂ M2i ;Z/2 ) -» A + contains all elements 
of weight < 2n . This is obviously true for n = 0 . Assume 
therefore that we have shown this for D2n M̂2i ' The sub“ 
group of A+ of elements of weight ^ 2n+  ̂ is precisely the 
vector space generated by the two-fold products of elements 
of weight ^ n , and by ^n+2 0 comPos:*-̂ ion

shows that the image of  ̂(M2  ̂) ;Z/2) contains the
two-fold products of elements of weight ^ 2n . The factor-
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A  /Nshows that it also contains = ̂ n+2 * This com

pletes the proof.

We have used the following lemma.

Lemma 2.2.4. Let X be a connected spectrum and let 
f :X -> HZ/p be any map. If f induces a surjective map in 
mod p homology then f is projection onto a wedge summand.

proof: It follows that f induces a monomorphism in
cohomology and, since A is an injective A-module, that 
H (X;Z/p) « A © N  . Suppose that X is (k-1 )-connected.
Then N is (k-1)-connected. Guided by the Bockstein spec
tral sequence, one can map to wedges of suspensions of 
HZ/2n and HZ^ , and successively kill the cohomology in N. 
There results a tower of spectra • * * -+ Xn -► Xn  ̂ = X
with H*(Xn ) = A © N  where N is (n + k - 1 )-connected. Let ' n n
F denote the fibre of jim Xn -*■ HQ/^im Xn . The composite

n n
F — > X — > HZ/p

induces an isomorphism in both mod-p and rational cohomology.
Since the spectra involved are connected it is an equivalence.
This completes the proof.

Remark: The analogous theorem of Margolis ([ 13 ],
Theorem 2) has a stronger conclusion but makes essential use



of the hypothesis that X be of finite type —  a property 
not enjoyed by D2 M̂ 2 i^ "

Proof of Theorem 2.2.1. If E+ contains an inverti
ble element of order 2 then 1 e E+ has order 2, and E + 
is a Z/2 vector space. The unit -*■ E can therefore be 
extended over M0 . . Since E is commutative this in turn
extends over ®2^2i  ̂ which in turn extends over 
DgfDgfMgi)) etc. Iterating this procedure and passing to

COthe limit yields a map extending the unit. By
00Lemma 2,2.3 there is a map HZ/2 -* D0 (M0 • ) inducing an iso-Z 4-> 1

morphism of 7Tq . The unit S ° E  therefore admits an ex
tension f:HZ/2-*E . Let S be a homogeneous basis for
E+ . The map v lJs ^HZ/2-*-E whose s-^ component is 

s £ S

sAf : SIs IAHZ/2 — > E

induces, by construction, an isomorphism in . This com
pletes the proof.

Proof of Theorem 2.2.2. (This is essentially Nishida's 
argument [ 17 ]). Replacing a by some power if necessary 
we may assume that H+(ot)=0, i.e., that the composite
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is null homotopic. We may also assume that |a| is even.
The spectrum HZ/2 is a direct limit of finite spectra, so, 
since homotopy commutes with direct limits, we have a null 
homotopy of

S M  — > e — > HZ/2(k)„E 

for some finite skeleton HZ/2^k  ̂ of HZ/2 . Similarly,
( k ̂ oothe composite HZ/2 •* HZ/2 Dg( )  must factor through

DgH^fMgi) for some finite n .
I „ |Since a has order 2 it extends over £' f^i * 

square therefore extends over Dg( E ̂ 01 ̂ H2i ) ~ ̂  ̂ a ̂D2^2i  ̂
since |a| is even [ 4 ]. Repeating this procedure produces
an extension of over I2 ' anc* hence over
t2 HZ/2^k  ̂ by the preceding paragraph. The (2n +l)-st 
power of a therefore factors as follows:

S (2 +1) M  s2 _> z2 HZ/2(k)AE -> E^E -> E .

The composite of the first two maps is null homotopic. This 
completes the proof.

Remark. As in section 2,1 the odd primary analogues 
of the results of this section go through virtually un
changed —  provided that one replaces the assumption of com
mutativity with that of a D structure.P



oo _o n2.3 The Infinite Smash Product AE CP
In this section we return to the spectra X<m > . We 

remind the reader that m and n are integers in the re
lation P̂11 < n < P rn+̂ ‘ .

Def in it ion. The infinite smash product AE ^CPn is
the direct lim AE ^CPn . The map AE-^CPn -*■ A E~^CPn is 

k-*-o° ,
-2 nobtained by smashing the identity map of AE CP with the

2 ninclusion of the bottom cell of E- CP

The main result of this section is the following 
structure theorem.

Theorem 2.3.1. After localizing at p there is an
oo—2 nequivalence between the infinite smash product AE CP and 

a wedge of suspensions of X < m > .

We will give two applications of Theorem 2.3.1 —  one 
to the structure of [AE-^CPn ,AE~2CPn] , and one to the

OOstructure of the infinite loop space fi X < m > (Propositions
2.3.4 and 2.3.6).

Lemma 2.3.2. There is an isomorphism 

X< m >*( AE-2CPn ) s ̂ .im X< m >*(AE-2CPn) . In particular the
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^  oo ■> 9  nAtiyah-Hirzebruch spectral sequence for X< m > (AT. 'IP )

2collapses at E and converges.

proof: This is an application of Lemmas 1.2.2 and
1.2.5.

Lemma 2.3.3. The Atiyah-Hirzebruch spectral sequences 
for the following groups collapse and converge:

i) ^AI~2CPk , AE 2<CPnJ k < n

ii) [ x ( k ) , A£-2lPn ]

| x < m ’ > , AE 2<tP"p) jiii) X<m' > , AT IP, . m' <m .

proof: Part ii) follows from part i). Indeed, multi-
—2 kplying the orientations T IP ->X(k) results in maps

_2 k
AT IP ^X(k) which induce monomorphisms in cohomology with 
any coefficients through a range tending to infinity with 
I „ Part iii) is immediate from ii) in view of Corollary
1.3.9. It remains to prove part i). The strategy is to 
produce all of the maps.

Step 1. Let a € tt.(AE 2IPn ) . Then for any q
■ Q ^there exists a map E^AE“2CPn AE_2IPn extending a . In

deed, since homotopy commutes with direct limits, there is
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— r _2 nan element a e tt.(A£ CP ) , for some r , which projects1

to a under the homomorphism

TTj^AI 2 CPn ) — >  TTj 2 CPn )

The desired map is then given as the following composite: 

SJAAZ"2IPk AS-2IPnrtAS-2IPn  > AS_2lPn .

i ^ -2 kStep 2 , Given x € H (AS IP ;Z) there exists a q
£ _2 k i^ -2 kand a map f:AS IP +1 AE IP so that the induced map in

i i1} -2 kcohomology sends a fixed generator ' e H (E JiE IP ;Z ) ~Z
to x o In fact, one can use an appropriate diagonal map in

* £ kview of the ring structure of H (IIIP ) .

Step 3 . Let 2 be an element of
i £  _ 2  ir oo _ 2  nH (AS IP ;tt.(AS IP )) „ Choose a homomorphism JOO 2 ¥1g:Z-*7T.(AI CP ) so that there is an element J

X e h A( h - ‘ JIPk ;Z) projecting to z under the coefficient
°o —2 nhomomorphism g . Finally, let a = g(l) e i t . (AS IP ) „ By

J

Step 2, there exists an integer q and a map 
f : A£-2IPk -+■ I^A£-2IPk with f ( i ) = x . By Step 1 there is
a map

SJAE 2IPk — > AS 2IPn

extending a . Consider the following composite in which



the first map is the (j-i)-fold suspension of f:

zJ_1AE“2ipk — > e -̂a z-2!?14 — > AE~2ipn .
Z . m

The first map represents x e H* (AZ-2CPk ; tt . ( Z^ AZ“2IPk ))
i £ k 3= H (AIP ;Z) . By naturality of the Atiyah-Hirzebruch spec

tral sequence, the composite represents z . This completes 
the proof,,

We are now able to prove Theorem 2.3.1, Let us sup
pose by induction that we have constructed an equivalence

oo — 2 nbetween the p-localization of AZ IP and FVN , where F 
is a wedge of suspensions of X < m > and N is (k-1)- 
connected. The inductive step is to construct an equivalence 
between N and F'VN' , where F' is a wedge of suspen
sions of X<m > and N' is k-connected. The result will
then follow by passing to the limit. Now tt. (N) s: H. (N ;Z , . )-

K K  v. p  )

is a (countably generated) free Z^^-module, since it is a
summand of H^(AE-2CPn ;Z^p^) . Choose a basis {s^jSg,...}
for tt.  (N) and let F ’ and F 1 denote respectivelyK q

V IkX< m > and V ZkX< m > . Let U± be
{ S ^ j S g f O B o }  {  , ■ O ■ , }

the free Z^^-module with generator s^ . Suppose by induc
tion that we can write N s N  V F 1 with tt (N )  ~  ©  M .  .  Weq q k q i>q 1
wish to decompose : N^+1 V E X< m > with ^k^q+l^*

©  M. • The desired equivalence then results by passing 
i>q+l 1
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to the limit.

oo _2 nSince is a wedge summand of AT. <LP , the
Atiyah-Hirzebruch spectral sequences for [X<m>,N^] and
[N ,X<m>] collapse and converge. There result

k kmaps i:Z X< m > -* and p:N^-»-£ X< m > representing the
inclusion and projection of the first factor of ©  M. in

i>q 1
H°( X< m >; tt, (N ))sHom(M - , ©  M, ) and Hk(N ; tt X<m>)K q  q + J- ^>q i Q ^

~ Hom( ©  M. , H , respectively. The compositei>q i * q + l

ZkX< m > — > N — > ZkX< m >q

therefore induces the identity on (LkX < m > ;Ẑ  ^) . Since
*H (X<m>;Z/p) is a cyclic A-module the composite is a mod-

p homology equivalence. It is therefore a homotopy equiva- 
*lence since H (X<m>;Z^^) is a Z^^-module of finite type. 

This completes the proof.

We now present two applications of Theorem 2.3.1. For 
the rest of this section all spectra will be localized at p. 
Observe that there is a homomorphisn

^AZ-2CPn , AE"2<DPnJ — > p V l " 2!?" , A Z_2CPnJ

—2 ngiven by smashing with the identity map of Z IP ,
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Proposition 2.3.4. If n > p  , the map 

li m ^ M -2 IPn , AE_2 £PnJ — > ^AE_2 IPn , AE_2 IPnJ 

is neither surjective nor injective.

Remark. When n < p  the spectra involved are wedges 
of p-local spheres. In this case the map is injective but 
not surjective. Details are left to the reader.

proof: Any element of a direct limit must arise at
some finite stage. The map

AE IP — > X< m > — > AE IP

which induces the identity on cannot arise at a finite
k _ 2  nstage. The result would be a map X< m > -*■ AE IP inducing

an isomorphism of H°( ;Z/p) , violating the action of the
Steenrod algebra. The map in question is therefore not 
surjective.

Let a e 7T2p-3^S°^ e^ement Hopf invariant
one. Then

- r2p-3<= -2 „ n  . “v-2 naAl : E K AE IP — > AE IP

is null homotopic by Theorem 2.3.1 since X < m > is a ring
spectrum, and since



g2p-3 ---> g0 c ^ j-^pP  > X< m >
a

is null homotopic. On the other hand, any element which 
vanishes in a direct limit of abelian groups must vanish at 
a finite stage. The result now follows from the following 
lemma.

Lemma 2.3.5, Let F be a finite spectrum. Then
2 p 2aAl : I p~ F + F is not null homotopic.

proof: The cofibre of aAl is M AF where
  a

M = S° u e2 *5-2 . We must show t'hat M AF 4> F V E2p-2F . Let
a  a  a  r

n be the largest integer with the property that the reduced
power Pn acts non trivially on H*(F;Z/p) . Then pn + 1

*acts non-trivially on H (Ma^F;Z/p) but trivially on 
H (F V Z2 ^”2 F;Z/p) „ This completes the proofs of lemma 2.3,5 
and Proposition 2.3.4,

Our second application concerns the structure of the
OOinfinite loop space £2 X< m > . The spectra BP< n > all have 

the property that £2°°BP< n > ~ £2 BP< 1 > X Y [ 24 ] for some in
finite loop space Y , (£2 BP< 1 > is one of the (p-1)
similar factors of BU^^). We will show that this is not 
the case for X < m > . In fact we will prove a little more.
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Proposition 2.3.6. There does not exist a map

£2 p-4 tPnCP •* 0. X<m-1> inducing an isomorphism of ttoo

The proof of Proposition 2.3.6 consists of two lemmas.

Lemma 2.3.7. Let E be a ring spectrum and let

Then every element in the kernel of the X< m > - Hurewicz 
homomorphism E+ -+■ X< m >+E is annihilated by some power of 
a .

proof: Let f e tt̂ E be in the kernel of the X< m >-
Hurewicz homomorphism. Since homotopy commutes with direct 
limits, the composite

inducing an isomorphism of tTq . This map restricts to a

a € tt̂ E be in the image of E * 2 (CPn ) -► E A 2 (S2 ) z tt̂ E .

( k)is null homotopic for some finite skeleton X< m > of
X< m > , By Theorem 2.3.1 there is a map X< m > ->■ A£-2 CPn

v ( k )  ^ r - 2 - . . n  map X< m > -*■ AT CP for some N . It follows that the
composite

E

is null homotopic.
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The element a:S1 ->-E admits an extension to 

Z1—2 (CPn . It follows that can be extended over
N _ o  j-i mA£ CP . The element a *f therefore factors as

gi*N+j l^f^ s1>NaE ---> AH1 2 CPnAE  > E .

The composite of the first two maps is null homotopic.
This completes the proof.

Lemma 2.3.8. Let v, e T i n . ,  nX<m-l>:Z,_, be a — — — — —  i z p — z  C P ;

generator. There exists an element w e iT+X<m-l> with 
the following properties:

i) w is in the kernel of the X<m > - Hurewicz 
homomorph i sm.

ii) None of the elements v^w is zero.

proof: The following line was suggested by Mahowald.

Step 1. Let Mp be the Moore spectrum S° e1 . 
There exists an element v e n (X<m-1>AM ) whose

2 p - 2  p
image under the map 7r*(X< m-1 >AM ) -*■ tt . (BPAM ) ~p * p
2/P [ >  v 2 * * • ■ 1 •’•s vm • Indeed, the map of Adams spectral
sequences is surjective and collapses in the range 
t>(2pm -2)*s . This is because in this range, the usual 
change of rings converts it into the map of co-algebra 
cohomology induced by



The listed generators are primitive so the map in question 
is Z/pfv^ „ . . , v ] ®E[x] ->-Z/p[v1, . . . ,v ] . The bidegree of 
x is (l,2pm -2) . Since there are no differentials in 
the range there can be no differentials in the domain.

Step 2 . Consider the exact sequence

tt+X< m-1 > n*X< m-1 >  > ttj)c(X< m-1 >AMp) — > tt* ^X< m-1 >.

Let w be the element 6 (v) € tt (X<m-1>) . Then w
2pm-3

is in the kernel of tt+X< m-1 > -*■ X< m >*X< m-1 > . In fact
TY1 -L 1the range is (2p -3) equivalent to BP+X< m-1 > which

is torsion free.

kStep 3. None of the elements v^w e 7iJt.X<m> is
k k—zero. Indeed, suppose one had v^w= 0 . Then v^v would

be the mod p reduction of an element of tt+X< m-1 > which
would have non-trivial image in tt + BP . This contradicts
the (elementary) calculation

■n+X< m-1 > ® d )  se Q) [v-ĵ , . . . , V m_ 1 ] c —>  tt + BP » Q [v1 , v?_, . . . ] .

This completes the proof.
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2.4 Nilpotence in iTJ([X < m >

There is a general conjecture that the torsion ele
ments of iT1)(X < m >  are nilpotent. We will get nowhere near 
proving this, but in this section we will obtain some pre
liminary information. Observe that the map tt + X< m >-*■ tî BP 
is a monomorphism modulo torsion, and that the image can be
identified with Z, . [v,...,^ 1 . The following theorem(p ) 1 m
shows that some classes of torsion elements in iTJt. X < m >  

are nilpotent.

Theorem 2.4.1. Let v 1 e TT2p_2 ( X < m > )  be a
generator and let a e Tr.X<m> be any element.

J

i) If p*a = 0 then a is nilpotent.

ii) If v1*a = 0 then a is nilpotent.

proof: In both cases a is not detected in BP
homology, hence perforce not in mod-p homology. Part i) 
therefore follows from Theorem 2.2.2 and its odd primary 
analogue (and the fact that the X(n) are Thom spectra of 
double loop maps). For part ii) let Y denote the (2p-l) 
skeleton of the cofibre of v^ : ^X< m > ■+ X< m > . The
spectrum Y has three cells and the image in homology of
any non-trivial map Y-*HZ/p is the vector space with

Abasis {1,Tj ,£^} . The argument in the proof of Lemma
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2.2.3 shows that the image in homology of the map 
d“y + HZ/p is E[t1 (t2 , . . . ] ®Z/p[f1( C2 * * • • 1 • The maP
M /v.D°°(Y) ■+ HZ/p is therefore surjective in homology and P P
hence by Lemma 2.2.4, projection onto a wedge summand.
One can now imitate the proof of Theorem 2.2.2 to show that 
some power of a is in the kernel of m > -+ TT + X< m •
This means that some power of a is divisible by p .
Since a  was a p-torsion element it must be nilpotent.
This completes the proof.

Remark (Added in proof). We have recently been able 
to extend this to an analogous result involving elements 
annihilated by v^, k < m  . Details will appear elsewhere.
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2.5 A Geometric Decomposition of X(2).

In this section we present a decomposition of X(2) 
localized at 2 in terms of nilpotent self maps of certain 
finite complexes . Motivation for such a decomposition 
arises from two sources. For one thing, the squares of the 
maps in question behave as if they were obtained by smash
ing the identity map of a finite complex with an element of 
tt̂ Ŝ  „ By Nishida's theorem [ 17 ] they must be nilpotent. 
Second, there is a general conjecture (motivated by [19]) 
which states that for a ring spectrum R , elements in the 
kernel of X< m >+R X< m+1 >+R are nilpotent. It is 
natural therefore to look for a way in which X<m+1> is 
built out of X < m > and certain nilpotent maps. The decom
position of this section is the case m = 0 for p = 2 . We 
will describe at the end of this section how this result 
can be extended, but as we have no applications in mind, we 
will only sketch the result.

Before stating our main result, we need to establish 
some conventions. All spectra will be localized at 2. Re
call that the homology H+(X(2);Z^2 )) is a polynomial ring 
Z( 2 )[b1] with |b1 | =2 . The spectrum X(2) therefore 
admits a CW decomposition with one (2-local) cell in 
every even dimension. We will use the symbol x£ to de- 
note the sub-quotient of X(n) with 2 cells, starting 
in dimension 2n*2 . It is the quotient of the
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2((n+1)*2k - 1) skeleton of X(2) by its 2*(n*2k -l) 
skeleton. When n =0 we will abbreviate this notation to

Xk 0

Lemma 2„5.1. i) One can find a primitive element
b g X(2)2 X(2) so that X(2)*X(2) sX(2)Jb]

ii) Let eR e X(2) KX(2) be dual to
bk . Then 6 ^ 0 6 ^ = ( k , £ ) .

iii) The coproduct is given by

Li+j=n J

proof: Part i) follows from the results of Chapter
1. Parts ii) and iii) are formal consequences of i).

We can regard the operations 0^ as maps
X(2) •+ I2 kX( 2 )

Lemma 2.5.2. The map + : Hn(X(2 ) ^^ )

Hn-2 k (X(2 );Z(2 )) sends ^  to (k)bn"k *

proof: This follows formally from Proposition 2.5.1
but the following line is also instructive. We introduce 
the total operation 0^ = Z0ktk : X(2) -*■ X(2) [t] . This is a
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map of ring spectra and under the equivalence X(2)AX(2)
k X(2)[t] can be identified with the homomorphism n „K
By definition we have 0^(b)=b + t . It follows that 
0^(bn ) = (b + t)n = Z (^)bn ^t^ . This completes the proof.

Our main use of the operations 0^ is the following 
periodicity theorem for the X^ . This result is due to 
Mahowald„

Proposition 2.5.3. There is an equivalence 
k

6 :X? + l2n'2 X.. k k

proof: Consider the operation 0 k : X(2) -*■
. n • 2

2 n * 2I J X(2) . Passing to sub-quotients yields a map

IhxP - * - ^ 11 2 X, . The effect of 0 in homology is deter-K K
mined by Lemma 2.5.2 and is easily seen to be an isomor
phism over ^( 2 ) °

By definition there is a cofibration -*■ Xk X^ + 1 .
^  ]_

We denote by hk the composite Z2n 2 ^X^ — -— ► £ ̂ X ^ X ^  .
This is justified since the map is represented in the Adams 
spectral sequence by the product of the identity map of 
H*(Xk ;Z/2) with hfc e ExtA(Z/2,Z/2) .



The maps give a decomposition of X(2) . In
deed, one starts with S° and attaches a two cell by the 
map h1 , Having inductively obtained , one builds
Xk + 1  as the cofibre of h^ . Since X(2) is the limit 
of the X, , this actually does build X(2) . Our mainK
goal is to show that the hk are nilpotent„
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X( 2 )
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Lemma 2.5.4. The map h^ has order 2.

proof: Consider the 2*(3*2 -l)-skeleton of X(2)
By the preceding paragraph it admits a decomposition

xk u xk u xk ' xk uf cz2k~lxk UK “ 2 '2 k- 1xk .

The attaching map f is by definition h We will show
that the attaching map g is 2(odd)h^ . By definition, 
the map g is the unique map making the following diagram 
commute (The unspecified maps are the obvious attaching 
maps):

,k+l

2 k+1-lXX

■+ x;

k g  k

By definition of the maps 6^ there is the following com
mutative diagram

srlxk
0

-*■ x;

x.

x



k kThe binomial coefficient (2 ,2 ) is twice an odd number. 
This completes the proof.

Lemnia 2.5.5. The following composites are null 
homotopic:

ok i h.
1 ) 1XR — Xk ---- > X(2).Xk

2k V  X,,  > ( A S ^ C P 2) *X,, ( N » 0 )
h

ii) 'lk " '"k " \ JltJ / '','lk

iii) Z2 -1 Xk — XR --- > (as -Ŝ P2) ^  ( M » 0 )

proof; i) It follows easily from Proposition 1.4.2 that 
X(2 )AXk X(2 )^Xk + 1  is the inclusion of a wedge summand.
The composite 

2 k-l
S Xk Xk X(2)-Xk X(2 )^Xk+l

is null homotopic since it factors through the cofibratinn

2 k-l
E \  - *  \  xk+i •

ii) From part i) we know that



/ n  \is null homotopic for some finite skeleton X(2) J of
X(2) . For sufficiently large N there is a map 

(n ) N _ 2 2X(2) -+AZ IP extending the inclusion of the bottom
cell. The composite in question therefore factors as

I2 _1 Xk — > Xk — > X(2)(n)AXk — > AZ_2 IP2 AXk .

iii) The argument for this case proceeds as in part
- 2  2  ̂ _i 2ii) using the fact that there is a map Z IP -+■ AZ RP

extending the inclusion of the bottom cell.

Theorem 2.5.6. The map hk is nilpotent.

proof: By Lemma 2.5.4, the square of hk extends
over the smash product of the domain with Z-1RP 2 . The
M-fold iterate of hk can therefore be extended over.the 
smash product of the domain with AZ -1RP 2 . Using Lemma
2.5.5 and a by now familiar argument, this guarantees that 
the next iterate of hk is nullhomotopic. This completes 
the proof.

Remark. The situation of this section generalizes
to the spectra X(n) . Instead of filtering by skeleta,

2 n— 1one pulls the James filtration of back through
q  _ *1the fibration J)SU(n)-»-nS . Passing to Thom spectra
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results in a filtration of X(n) whose associated graded
is VE^n*X(n - 1) . The various copies of X(n-l) are re-

*lated by a divided polynomial subalgebra of X(n) X(n) .
Analogues of the spectra xf| can be constructed. Instead
of being built out of cells, these are X(n - 1)-module
spectra built out of copies of X(n-l) . A periodicity
theorem analogous to Proposition 2.5.3 can easily be proven
and the generalizations of the maps hk can be constructed.

2At odd primes one has h^ = 0 . At the prime two we are 
currently unable to demonstrate nilpotence of the maps h^ 
but conjecture that this is the case. Again, we have no 
applications of these ideas and therefore omit the proofs.



Chapter 3 „ Stable Decompositions of J2SU(n) and f2Sp(n).

3.1 Introduction and Statement of Results
In this final chapter we will explore the structure

of the suspension spectra of £2SU(n) and QSp(n) . Recall
that H .(ftSU(n);Z)wZ[b~,...,b ] and let M denote theT j. n—x n
subgroup of homogeneous polynomials of degree n » A re
sult of James [ 7 ] asserts the existence of a stable map 
QSU( n ) CPn-  ̂ splitting the inclusion (EPn  ̂-*■ fiSU ( n ) .
We conjecture{following Mahowald) that the James splitting 
can be refined as follows.

Conjecture 1. There exist spectra Bn with
H.B sM and a stable equivalence ^SU(n) s; V B * n n nn=l

Remark. This conjecture has been verified by
Mahowald when n = 3 and by Snaith [ 21 ] when n = °° . In
fact candidates for the B can be constructed as sub-n
quotients of the spaces of loops on certain Stiefel Mani
folds. The problem, of course, is to produce the maps.

In contrast to Conjecture 1, we have the following 
conjecture and theorem.

59
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Conjecture 2 . After localizing at 2, any stable self 

map of ftSp(n) (n>l) inducing an isomorphism of 
H2 ( ;Z/2) is an equivalence.

Theorem 3.1.1. Conjecture 2 is true in case n = 2
or 3.

The proof of Theorem 3.1.1 is given in Section 3.5. 
Remark. It is shown in Anpendix A that the spectra 

QSp(n) decompose after inverting 2.

Stably, the space Sp(2) breaks apart. It therefore 
supplies an example (apparently the first) of a space which 
stably decomposes, but whose loop space does not.

There is a weak sense in which we can say something 
about Conjecture 1. For a spectrum X let X+ denote 
X V . The spectra S2SU(n)^ and QSp(n), are the bord-"r t
ism theories associated to the (double loop) null homotopic 
maps. As such they are commutative ring spectra. Let a 
denote indiscriminately the inclusion of the 2 -cell in 
either ftSU(n)+ or QSp(n)+ . We can then form the local
ized spectra a-^f2SU(n)+ and a ^S)Sp(n)+ .

Theorem 3.1.2. i) There is an equivalence

1 00 o •o" «SU(n)+ a V E X(n - 1) .i = _oo
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ii) After inverting 2, there is an equivalence

00

a-1fiSp( n)+ = V r 1x(2n - 1) .!=_«>

iii) After localizing at 2, there is a map
00

a_1 SlSp(n)+ — > V £2 lXp(n-l)i = _co

which induces an isomorphism of Xp(n-l) homology.

Since we can completely decompose X(n) and Xp(n) 
into irreducible spectra after localizing at any prime, 
Theorem 3.1.2 gives a complete decomposition of a~^ftSU(n)+ 
at any prime and of a”^ftSp(n) at odd primes.*r

An appropriate version of Conjecture 1 would imply
part i) of Theorem 3.1.2. This is because inversion of the
class a has the effect of assembling the spectra B.J
(appropriately desuspended) to form X(n-l) .

Added in proof. We have recently been able to show 
that the map of part iii) in Theorem 3.1.2 is not an equiv
alence when n = 2 . The fibre is therefore a non- 
contractible (2-local) spectrum F with the property that 
X(2)^F is contractible. A theorem of Ravenel’s ([ 1 9 ], 
section 3) asserts the existence of such spectra, and this 
seems to be a new example of one.
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3.2 The Homology of I2Sp(n)

The proof of Theorem 3.1.1 requires a fairly detailed 
knowledge of the homology and connective K-theory of 
^Sp(n) . In this section we will determine the algebra 
H*( f2Sp(n ) ;Z/-2) as a right algebra over the Steenrod 
algebra. We first need to recall some facts about Sp(n) 
and SU(n) . The assertions of the following lemma can bo 
found in [ 2 2 ] .

Lemma 3.2.1. i) There is an embedding

S4""1 *Sp(l) SpCD/S4"-1 *Sp(1) {1} sp(n) ,

with Sp(l) acting on itself by conjugation.

ii) The integral homology of Sp(n) is 
the exterior algebra on the homology of

s4"'1 *sP(i) S p O V S 4"-1 *Sp(l) {1) •

The space S4 " ^ 1 xg p ( 1  Sp(1)/S4 " " 1 *Sp(1) U )  is
easily seen to be the Thom complex of the vector bundle
over HPn ~ 4 induced by the double cover Sp( 1) -*• S0( 3) .
For our purposes this space is inconvenient because it is
not a suspension. We can remedy this by passing to the

on _ 2bundle induced over IP . It is easily seen to be the
Whitney sum of a trivial line bundle with the bundle in



duced by the squaring map S0(2) -*■ S0( 2 ) . Its Thom complex 
is therefore a suspension and carries the homology of 
Sp(n) . We will base our calculations of H^^Spfn)) on 
the adjoint of this map. For ease of notation we will work 
with the case n = 00 „ The finite cases are determined by 
restriction.

COLet L denote the canonical line bundle over (CP i
2and let P be the Thom complex of L . Passing to Thom

OO COcomplexes from the squaring map CP -+ CP results in a 
sequence

in which the first map is the zero section and the composite 
is the squaring map. The following lemma is an easy con
sequence of the above sequence, the Thom isomorphism, and

2the fact that L has zero Stiefel-Whitney classes.

OOLemma 3.2.2. i) The zero section CP -*■ P induces
a monomorphism of integral cohomology which is of degree
two in each positive even dimension. The cohomology ring 
♦H (P;Z) is therefore generated by elements x^ of degree 

2 i , subject to the relation



ii) Let a e H0 (P;Z) be dual to x . Then the n zn n
co-algebra structure of H+(P;Z) is given by

n- 1
a I— > a ©  1 + 2 51 a . ©  a . + 1 ®  a n n n-i 1 n

iii) As a module over the mod-2 Steenrod algebra,
* * 2 2 “H (P;Z/2) is isomorphic to H (S VI IP ;Z/2) . In par

ticular, if a denotes as well its own mod 2 reduction,* n ’
then the right A-module structure of HJ([(P;Z/2) is given 
by

v sq •

The map ZP -+ Sp yields by ’ adjunct ion a map P -* ftSp 
We will use the symbol aR to denote indiscriminantly the 
homology class in Hgn(P;Z) , its image in H+(f2Sp;Z) 
under the above map, and the mod 2 reductions of these 
classes. An easy consequence of the Eilenberg-Moore spec
tral sequence is that H+ (SISp ;Z ) « Z [a.̂ , a^, . . . ] . The real 
work is to express the a2i as polynomials in the a2 i+i

OO

Let a, denote the formal sum Z a.t , and let
t i= 0  1

00 2 ia and a ,, denote respectively Z a„.t andev odd J i=Q 2 l
00

2 i + 1Z a2 i + i^ • ^e make the convention that a^ = 1 when-
i= 0
ever it arises. There are the relations a =4[a, +a .]ev £ t -x
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Theorem 3.2.3. i) There is an isomorphism 

H+(J2Sp;Z ) =Z[a 1 ,a3, . . . ] .

ii) In H+(JlSp;Z) the relation

2 2a - a . , = a ev odd ev
holds, hence

1 + J l  + 4a2 , .V oddcl — nev 2

iii) Let I c H+(fiSp(n);Z) be the augmentation ideal
Then

2 4a - a . , mod I ev odd

and

V ( 2 =+l) ' U 2 ''+l)2k ^  (2>

proof: It suffices to verify the relation in part
ii), which is easily seen to be equivalent to

*) a = a *a . .* ev t -t

Consider the set of formal power series f(t)=Ifntn ,
with f € H0 (QSp;Z) „ Such a power series is said to be n
grounlike if f(t) f(t)©f(t) under the coproduct. Ob
serve that this implies f(0) = l . If
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f(t )= 1 + f + fn+1tn+ 1+ ••■ is grouplike then f is 
primitive. We will see below that H+(£2Sp;Z) has no prim
itives in dimensions congruent to zero mod 4. It follows 
that if f(t) is grouplike and satisfies f(t)=f(-t) 
then f(t) = 1 . Now the series 2â . - 1 and 2a_^ - 1 are 
grouplike, being the images of b̂ _ and b under the map 
H^CIP00) H+(P) -»■ H +(^Sp;J) . The series
f(t) = (2 â_ - l)(2 a_̂ . - 1 ) is therefore grouplike and satis
fies f(t)=f(-t) . This gives

(2 at - l)(2 a_t - 1 ) = 1

which implies *).

It remains to show that H+(^Sp;Z) has no primitives 
in dimensions congruent to zero mod 4. Since H^fftSpjZ) 
is torsion free it suffices to verify this for H+(S2Sp;Q) „ 
But H+(nSp;Q) is a commutative, co-commutative Hopf alge
bra over Q „ For such algebras the map from the primi
tives to the indecomposables is an isomorphism [ 15 ]. The 
result now follows since the indecomposables all lie in 
dimensions congruent to 2 mod 4. This completes the proof.

Remark. Taken together, theorems 3.2.2 and 3.2.3 
determine the structure of (flSp(n);Z/2) as an algebra 
over the Steenrod algebra. The key to this structure is, 
of course, the relation *). We will give another proof of 
this relation in the next section.



3.3 The Image of H+(ftSp(n)) in H*(BU)
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In this section we will determine the images of the 
generators e H+(flSp;Z) under the tnonomorphism
H* ( QSp;Z ) -*■ H+( ftSU ;Z) = H + (BU;Z)» Z [b^ ,b^ , . . . ] . Our first

00task is to determine the bundle over IP classified by 
the composite:

**) IP°° — > P — > ftSp — > ftSU ~ BU .

OOLet L denote the canonical line bundle over IP and 
*L its dual.

Theorem 3.3.1. i) The vector bundle classified by
*the above composite is L - L .

ii) The map in homology induced by
P -+■ fiSp •+ BU sends â. to

1
2 + 1

-t
= r—  * b .b ev

proof: We calculate the Chern character. Since the
map P ftSp is first given in the form Z P -> Sp , it will 
be easier to calculate the Chern character of the composite

2 00 z ip 2 Z P BSp BSU

and then deduce our result from Bott periodicity. Let £



be the vector bundle classified by the above composite.
The Chern classes of £ are given by

c2 iU )  =-2s2 *x2 l _ 1  e H4 l(£2 CP°°;Z) 

c2 i-l.^ = 0

2where s denotes the double suspension (see the remark 
below). The Chern classes determine the Chern character 
by the formula

tnch(£) = £p ~  n n !

where pn = Pn^°l’°°',Cn^ is the Newton polynomial. Now
n 1Pn (ci , . ..,cn ) is congruent to (-1 ) n cn mod decompos-

* 2 roables. Since there are no cup products in H (£ CP ) thi 
determines the Chern character of £ :

2 2 n-lch(£) = T  (2 P->2s *_( 2 n )!

■
2 2 n-l s x

<2 "- 1 )

By Bott periodicity, the Chern character of **) is
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*  co 0  y  ooSince ch:K (IP ) ■+ H (IP ;Q) is a monomorphism, the

*bundle classified by **) must be L - L  . This proves i).
*The homology homomorphisms induced by L - 1 and L -1

send b^ to b^ and b_t respectively. The homomorphism
|̂{induced by L - L  therefore sends b, to b,/bt —■ t

Part ii ) now follows since b^ = 2a^ - 1 . This completes 
the proof.

Remark 1. Some comments are in order concerning the 
Chern classes of £ . Lemma 3.2.2 and Theorem 3.2.3 imply 
that the map in cohomology induced by

ZIP — > EP — > Sp — > SU

is zero in dimensions 4k + 1 , and has index 2 in dimen
sions 4k - 1 . The Chern classes of £ are therefore as 
stated -- up to sign. The signs are determined by the
choice of equivalence ftSU s BU . In Appendix B a choice is
made which guarantees that the adjoint to the embedding

00ZIP ->■ SU classifies the canonical line bundle. An elemen
tary calculation of the Chern character shows that the Chern

2 00classes of the associated bundle Z IP ■+ BSU are given by

c. = (-l)j-1 s2 xj _ 1  € H2 :i(Z2 lp“ ;Z) (j>l) .J

This determines the signs used above0



70
Remark 2 . Part ii) of Theorem 3.3.1 enables one to

give an alternate proof of Theorem 3.2.3 ii). Indeed, the
map H + (ftSp;Z) -*■ H+(BU;Z) is a monomorphism and the series

1 2a and a^a . are both sent to r— r-— (b ) ev t -t b.b v ev
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3.4 bu+^Sp(n)

Since H +(£2Sp(n) ; Z )  is torsion free, the Atiyah- 
Hirzebruch spectral sequence for bu+(^Sp(n)) collapses. 
The result is that bu+(ftSp(n)) is isomorphic to the poly
nomial algebra

Z [ v ̂ ] [ oc ̂ , a ̂ , » » = * ®2 n+1  ̂ *

where j | = 2 i .
For any spectrum X there is an isomorphism (the 

dual of the Chern character)

bu*(X)®Q s Q[v1] ®H*(X;Z) .

For our purposes it will be convenient to find generators 
a2 i+l anc* comPute their images under the embedding

bu+(^Sp) — > Q[v^]®Z[a^,a^,...] .

This can be done as follows. First, a Thom class
2 *U e bu (P) must be selected. A basis {x.} for bu (P)J

is then given by

Xj = U* (L - l)j = 4>k((L - 1)J )

where <t>k denotes the connective K-theory Thom isomorphism.
The set can then be taken to be the basis of bu+(P)
dual to • The elements a2 k+l ’ k < n  , will then
give rise to polynomial generators for bu+(f)Sp(n)) .
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We will need to compute the Chern characters of the 

bundles involved. In this direction, two comments are in 
order. First, the Chern character can be viewed as the 
rationalization map

[X,bu] — > Horn[H+(X),n+bu ®Q] = H*(X;Q[Vl]) .

We will find it useful to use the (somewhat unorthodox) 
notation

ch(£) = ^yivj

*where e H (X;Q) . The powers of v^ are usually
viewed as placeholders and omitted. We will find it help
ful to remember that they are powers of v^ .

Second, it will be more convenient to make our cal-
culations over CP and then pass to P via the Thom iso
morphism. We will therefore need to know about the rela
tionship between the rational homology and connective K- 
theory Thom isomorphisms. This is given by a theorem of 
Riemann-Roch type as described by Dyer [ 6  ].

Let £ be a complex vector bundle over X and let
* £U € bu (X ) be a Thom class. Denote by 4^ and <t>K the 

rational cohomology and connective K-theory Thom isomor- 
ph isms respectively, and set p(£) = $Hloch(U).
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*Proposition 3,4.1. Let x be an element of bu (X) 

With the above notation,

4>h r ch ° <J>k (x ) = ch(x)*p( 0  .

2For our purposes, a convenient Thom class U e bu (P) 
is given by the composite

P — > ftSp — > ftSU = BU „

With this choice we have

V' v2k+1ch(U) = + 1  1k= 0  (2 k + 1 ) !

and hence

2 eX V l -e"XVl sinhfxv )P<L > = ---2 ^ --- '  5ST--- * « (PjQfVj])

Setting x . = <!>( (L - 1)J ) yields a basis {x.} for J J
bu (P) . By Theorem 3 04„1 one has

1 sinh(xv v yfH •c h ( x .i> = — w,— ve - 1) ■

We can now define {a.} to be the basis of bu.(P)J *
dual to {x.} . The image of {a.} in Q[v-]®H. (P) is J J 1 *
given by the basis of Q[v-]©H^CP) dual to {ch(x.)} . 
This is in principle calculable, though only practical for
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small values of j . We tabulate the result for small 
values of j in the following lemma. This result has been 
checked by machine calculation.

Lemma 3.4.2. The images of aj » J ^ ̂  > under the 
embedding bu+P -*• Q fv^] ®  H + (P ;Z ) are given by

al '■ a.

a2
1 2 1 

- 6 Vl al - 2 Vl a 2 +
1 3  . 1 2  ,

6 Vl al + 6 vl a2 " Vl a3 +
2 4
15 V1 al + l vl a3 - l vl a4 + a!

Identifying the a. with their images in bu^C^Sp) , 
and using Theorem 3.2.3, results in the following formulae 
for the map bu+(ftSp) Qfv^ ® H  + (f2Sp;2) :

I— > a^

a3 l— > “ 6 V1 al ~ 2 V1 al + a3
. . 2 4  3 2 3 „ .,41

a5 ^  " 15 V1 al + 4 V1 a3 " 2 V1 [2 ala3 " alJ + 5

After localizing at 2 the above formulae can be simplified 
somewhat. Make the change of variables
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a3 + Vlal + 3 V1 “l

{3ala3 ~ a5 ) + 3 vl(“l - ala3 ) + Vla3 + T S vl al 

3 ala3 ” a5 °

Lemma 3.4.3, After localizing at 2, there are 
isomorphisms

bu* (flSp( 3 ) ) ^ z (2 )tv1] [°l1 ia3.a5]

H* ( £2Sp ( 3 ) \7L ̂ g ) ) ~ ^ (2 ) ̂ al ’a3 *a5̂  "

The map bu* (f2Sp( 3) ) + H* ( fiSp( 3 ) ;Z ̂ 2  ̂ ) is given by: 

a1 (— >

1 2 , 1 2  
a3 l-> a3 + 2 V1 al + 2 V1 al

-  1 2  , . 1 4
a5 ^ a5 + 4 Vl a3 + 2 Vl al *



3.5 The Stable Atomicity of QSp(2) and flSp(3)
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In this section we will prove Theorem 3.1.1. We will 
restrict our attention to I2Sp(3) , the case of f2Sp(2) 
being similar and in fact easier. Throughout this section 
all spectra will be localized at 2 .

As a first step toward proving Theorem 3.1.1 it is 
necessary to write H^C SISp ( 3) ;Z/2) as a direct sum of ir
reducible right A-modules. Let denote the right sub-
module of A+ consisting of polynomials of degree <k in

. r2 and C2 •

Lemma 3.5.1. There is an isomorphism of A-modules

H,(ftSp(2);Z/2) = E [ a J © [  ©  X4 kR ]
1 k > 0  k

proof: Let the symbols a^, a^, and a,- denote both
the 2 -local classes of the previous section, and their mod 
2 reductions. Lemma 3.2.2 implies that

a^Sq = a^

a3Sq = a3 +

h Sq = h  * a3 + al ’

It follows that there is an isomorphism



77

H#(nSp(3);Z/2) ~ E [a2 ] © Z / 2 [a^,a3 , ] .

Since the Steenrod algebra preserves the degrees of monomi- 
2 -als in Z / 2 [a^ , a^, â. ] , it splits as a module into the sum

of its homogeneous parts —  the symmetric powers of the
2 -vector space with basis {a^,a2 ,a,.} . This vector space is

2 2isomorphic to the A-module with basis {1,£  ̂ • Its
t hk symmetric power is M, . This completes the proof.

Our main goal is the following theorem, which easily 
implies Theorem 3.1.1.

Theorem 3.5.2. Let f : £2Sp( 3 ) -*■ ftSp( 3 ) be any stable 
self map inducing an isomorphism of H2( ;Z/2) . Then the 
composites

I4 kMk - H+(ftSp(3);Z/2)^i H*(fiSp(3);Z/2 ) -+ Z4 kMk 

alZ4 kMk - H^flSpO) ;Z/2)-^i+H4 (RSp(3) ;Z/2) ■+

are non-trivial, hence isomorphisms since the are the
duals of cyclic A-modules.

Theorem 3.5.2 will be proved by supplementing the 
action of the Steenrod algebra with operations from con
nective K-theory.
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Recall that modulo torsion, (bu ;Z  ̂g ) )  ** 2 ) ^  ^

where t has degree 2, One can therefore define a map of 
ring spectra

cr

at = k? 0 V k : b u  ” <2 )1*1

by collapsing the torsion from the Hurewicz map 
bu -+ HZ ( . Abu . One can also think of 0 as a map from 
bu+(X) to H2 ^2 ^[t]+(X) . We fix the generator t by re
quiring that 0^_(v^) = 2t . After rationalization the map 
0 is equivalent to the Chern character.

Lemma 3.5.3. The map 
0̂. : bu + ( ftSp( 3)) H Z ^  ) [t] *( ̂ Sp( 3 )) is given by the follow
ing formulae:

0 t(ol} = al

0t^3') = a3 + tal + 2t2al

0 ,(ac) = iL + t2 a„ + 8 t4 a, t o o  o 1

proof: This is immediate from Lemma 3.4.3 and the
fact that 6 t(v^)= 2 t .

Give bu + (fiSp(3) ) s; )  [ v ^ ]  » a 3 »  a 5  J  t I i e  monomial
basis. In the following lemma, I will generically denote
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the subgroup generated by all monomials except those under
immediate consideration. For example, in the statement 

3x h a3 + 2a^ mod I , I is the subgroup generated by all
3monomials except a3 and a^ . A similar role will be 

played by J for the ring H Z ^ ^ ]*(^SP(3))
~ Z (2 )^  fal'a3 ’a5̂

Lemma 3.5.4. i) Let x e bu^ (f2Sp( 3 )) satisfy
G„ (x) = 2nt^na? mod J + (2n+1) „ Then one has 2 n 1

x = a3 mod I + (2) .

ii) Let x e bu^fftSp(3)) satisfy
0 2 n(X) = 2nt^naj + '*' mod J + (2) . Then one has

x = mod I + (2 ) .

proof: We will sketch the proof of i), the proof of
ii) being similar. With the notation as in part i), a 
straightforward calculation shows that

9 2 n(I + (2)) C J + (2n+1) ■

Write x = n1 a3 +m , with m e I + (2) . Applying ©2n 
yields

9n 2 n n » /v\ - , 2 n n , T , /nn't' 1 vn^ 2  t a^ = °2 n ” 1 m  ̂  ̂ *

It follows that n^ =1 (2) . This completes the proof.
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We can now prove Theorem 3„5„2„ Let f : ̂ Sp( 3 ) -*■ ftSp( 3 ) 

be any stable map inducing an isomorphism of H2 ( ;Z/2 ) „ 
Suppose by induction that we have shown the composites

£4 kMR - H #(nSp(3);Z/2)-££- HJflSpO) ;Z/2) - E4 kMk
and

air4 kMk - H„,(flSp(3) ;Z/2)-£*- H+ ( fiSp( 3 ) ;Z/2 ) - ajE4kM

to be isomorphisms for k < n  . Observe that there is a 

canonical isomorphism

bu+(nSp(3))/(2,v1) s H*(fiSp(3);Z/2) .

There results a collapse p :bu+ (ftSp( 3)) -+ H+ (J2Sp( 3) ;Z/2 ) .
n 4W n —iiConsider the element a„ e £ M . We have a„=p(a„)o n u o

and it will suffice to show that f+(aa ) = mod I + (2) . 
Applying the operation 9„. yields

2 k

2 k

= *»e2k< ^) - ft(2 na f )

By the inductive hypothesis f^Ca211) = a2n mod J + (2) . It. 
follows that

0 2kf*(S3) 5 mod J + (2n+1) ,

and hence f+(aa ) = “ 3 mod I + (2) by Lemma 3.5.4, A 
similar calculation using “ ^ “ 3 completes the inductive 
step and therefore the proof of Theorem 3.5.2.



3.6 Proof of Theorem 3.1.2
In this section we will prove Theorem 3,1.2. We 

first require a simple lemma.

Lemma 3,6.1. Let E be an associative, commutative
ring spectrum, and let a e tt ,E , Then the localized3
spectrum a is a ring spectrum.

proof: The homotopy commutative diagram

£nE„£nE

aAa

I2nE

In ^EAZn ^E X2n 2^E

can be made to commute. Passage to the limit yields the 
desired multiplication.

Warning: The ring spectrum a ^E need neither be commu
tative nor associative. It does however represent a commu
tative, associative ring valued cohomology theory on the 
category of spaces.
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Recall that there is a map i : CPn-  ̂-+■ f2SU( n ) and"T

y- ^that H+(f2SU(n)+ ) is the symmetric algebra on H+(IP ~") .
Since the Atiyah Hirzebruch spectral sequence for 

n “ 1X(n-l) + IP - collapses, it also collapses for
X(n - l) + (JiSU(n) + ) , and one finds that X(n - 1) + (fiSU(n)+ )
is the symmetric algebra (over X ( n - 1 ) + ) on
X(n - 1)*((EPn_1) .

Consider the map — Ai :S 2 IPn  ̂■+ a ^f2SU(n), . Thea +
range is a ring spectrum and the map is an orientation. By
Proposition 1.2.1 this extends to a unique map of ting
spectra f:X(n-l)-*-a ^fiSUfn), . We can therefore form a*1"
map of X(n - 1 )-module spectra

oo
V Z2 lX(n - 1) — > a_1 RSU(n) + 

i=-°°
2 i - 1 iwhose component E X(n - 1) a f2SU(n)+ is the map a Af .

This map is easily seen to induce an isomorphism of
X(n-l) homology. Since it is a map of X(n-l) -
module spectra, the induced map of homotopy is a retract
of this isomorphism, hence an isomorphism. This completes
the proof of part i).

The proof of part ii) is similar. Let P 1̂ denote
the (2j)-skeleton of P . It is the Thom complex of the

o 2 i- 2  00restriction of L to IP . The zero section CP +P
n_ 1 n 1

induces a map IP ”* -► P of degree 2 on 1,2 ' Since



2 has been inverted, we can form the orientation

- 2  2 n-l a 1nSp(n)+

This extends to a unique map of ring spectra

f : X(2n - 1)

and we can use Proposition 1.5.2 to form the composite:

This is a map of X(2n - 1) module spectra. It induces an 
isomorphism of X(2n-1) homology since it induces an iso
morphism of integral homology, and the Atiyah-Hirzebruch 
spectral sequence for the X(2n-1) homology of the domain, 
and hence the range, collapses and converges (convergence 
follows from Lemma 1.2.5). This proves part ii).

For part iii), a map inducing an isomorphism of inte
gral homology is given by the composite:

The last map is provided by Proposition 1.5.1 and Corollary 
1.3.9. We need to show that f induces an isomorphism of 
Xp(n-l) homology. It suffices to show that the Atiyah-

collapses. For this it is enough to collapse the spectral

f:a ^f2Sp(n )+ a ^QSU(2n) +
00 , co
V r2 lX(2n-l) + V Z2 lXp(n-l) .

Hirzebruch spectral sequence for Xp(n-l) + (a 1 i2Sp(n) + )
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sequence for Xp(n-l)+(P^n ^) „ The composite

OO
f 2 p2n_l a'1 S)Sp(ti)+ — > V E2 lX p ( n - l ) — > Xp (n - 1)

i=-°°
provides an Xp(n-l) orientation of the restriction of
n n nL to <EP The result now follows from the Thom iso

morphism since the Atiyah-Hirzebruch spectral sequence for 
2 n 2Xp(n-l)+CP ” collapses. This completes the proof of

Theorem 3„1.2„



REFERENCES

1.

2 .

3.

4.

5.

6 .

7.

8.

9.

1 0 .

11.

J. F. Adams: Stable homotopy and generalized 
homology, University of Chicago Press, Chicago 
(1974).
N. A. Baas: On bordism theory of manifolds with 
singularities. Math. Scand. 33 (1973), 279-302.
No A. Baas and I. Madsen: On the realization of 
certain modules over the Steenrod algebra. Math. 
Scand. 31 (1972), 220-224.
F. R. Cohen, M. E. Mahowald, and R. J. Milgram:
The stable decomposition for the double loop space 
of the sphere. A. M. S. Proceedings of Symposia 
in Pure Math., 32 (1978), 225-228.
F. R. Cohen, J. P. May and L. R. Taylor: K(Z,0) and 
K(Z/2,0) as Thom Spectra. Illinois J. Math. 25 
(1981), 99-106.
E. Dyer: Relations between cohomology theories. 
Algebraic topology - a students guide. London 
Mathematical Society Lecture Note Series, No. 4. 
Cambridge University Press, London-New York, 1972, 
188-189.
I. M. James: The space of bundle maps. Topology 
2 (1963), 45-59.
G. Lewis: The stable category and generalized Thom 
spectra, Thesis, University of Chicago 1978.
R. Bruner, G. Lewis, J. P. May, J. McClure and 
M. Steinberger: H*, ring spectra and their appli
cations, Springer Lecture Notes in Mathematics, in 
preparation.

M. Mahowald: A new infinite family in 0 tt*.
Topology, 16 (1977), 249-256. ‘ A

____________ : Ring spectra which are Thom complexes.
Duke Math. J. 46 (1979), 549-559.

85



86
12.

13.

14.

15.

16.

17.

18.

19.

20 .

21 .

22.

23.

24.

J. P. May: Hro ring spectra and their applications.
A.M.S. Proceedings of Symposia in Pure Math., 32 
(1978) 229-243.
H. Margolis: Eilenberg-MacLane spectra. Proc Amer. 
Math. Soc. 43 (1974), 409-415.
J. W. Milnor: The Steenrod algebra and its dual, 
Annals of Math. 67 (1958), 150-171.
J. W. Milnor and J. C. Moore: On the structure of 
Hopf algebras. Annals of Math. 81 (1965), 211-264.
J. Morava: A product for the odd-primary bordism of 
manifolds with singularities. Topologv 18 (1979), 
177-186.
C?. Nishida: The nilpotency of elements of the stable 
homotopy groups of spheres. J. Math. Soc. Japan 25 
(1973), 707-732.
D. G. Quillen: On the formal group laws of unori
ented and complex cobordism theory. Bull. Amer.
Math. Soc. 75 (1969), 1293-1298.
D. C. Ravenel: Localization with respect to certain 
periodic homology theories. Amer. J. Math. 106 
(1984), 351-414.
N. Shimada and N. Yogita: Multiplications in the 
complex cobordism theory with singularities, Publ. 
Res. Inst. Math. Sci. 12 (1976), 259-293.
V. P. Snaith : Localized stable homotopy of some 
classifying spaces. Math. Proc. Cam. Phil. Soc. 89 
(1981), 325-330.
N. E. Steenrod: Cohomology Operations, Lectures by 
N. E. Steenrod written and revised by D. B. A. 
Epstein. Annals of Mathematical Studies, No. 50, 
Princeton: Princeton University press, 1962.
M. Steinberger: The homology operations of Hro ring 
spectra. Thesis, Univ. of Chicago, 1977.
W. S. Wilson: The 9-spectrum for Brown-Peterson 
cohomology II. Amer. J. Math. 97 (1975), 101-123.



Appendix A: £2Sp(n) —  away from 2

After inverting the prime 2, the space ftSp(n) 
stably decomposes. This follows easily from work of James 
[ 7 ]t and the fact that the map

CP2 " - 1 _ >  p2 " " 1

is an equivalence away from 2 „
For convenience we will follow [ 22 ] and refer to the

space s4 n - l x Sp(1 ) SP ( 1 ) / s 4 n _ 1  x Sp(l) ^  aS Qn- 1 ”
Away from 2, the idempotent

i( [1] - [-1]) : I(EP2n— 1 — > Z<LP2n_1

Shows the composite

IIP211-1 — > ZP2n_1 — > 0*n

to be projection onto a wedge summand. James [ 7 ] has pro
duced a stable splitting Sp(n)-*-Q of the inclusion 
Qn ^-Sp(n) . After inverting 2, one can form the (stable) 
composite

Qn — > ICP2 n — 1 — > IP211-1 — > ZftSp(n) — > ftSp(n) — > Qn .

It is easily seen to be a homotopy equivalence. This shows 
that there is a stable decomposition
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for some spectrum

J}Sp(n) ~ 2- 1Qn v Y 

Y .



Appendix B: The Equivalence flSU -*• BU .

It would appear that the spectra X(n) depend on the 
choice of equivalence fiSU -*■ BU . It is the purpose of this 
appendix to show that this is not the case and to fix a 
choice of equivalence with certain properties.

Proposition B.l. Let S1SU -+ BU be any H-map which is 
an equivalence. Then the bordism theory resulting from the 
compos ite

*) fiSU(n) — > I2SU — > BU

is X(n) .

proof: Let X(n)' denote the Thom spectrum associ
ated to *). The X(n)' are ring spectra and one has 
lim X(n)' = MU . The Thom isomorphism implies that
n-vra

H+( X{n)';Z) ~Z[b1(...,b ]̂ and hence that X( n ) ' -+ MU is
a (2n-l)-equivalence. It follows that any orientation
I-2 IP°° -+ MU restricts to a unique orientation £-2 IPn -*■ X( n )'.

— 2 nThe orientation Z IP -*-X(n)' has the further property 
that the image of H+ (E-2 tPn \7L) is a set of generators. 
Proposition 1.2.1 then produces a map X(n)-^X(n)' inducing 
an isomorphism of integral homology. This completes the 
proof.
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Remark. A canonical inverse to the map X(n)-*-X(n)' 

can be produced by observing that the proof of Proposition
1 .2 . 1  works as well for E^^CP1 1 X( n ) ' .

Since fiSU( n ) -► PSU is a double loop map, X(n) is 
a ring spectrum with commutativity in its multiplication 
analogous to that of a double loop space. It will be con
venient to fix a double loop map fiSU BU which is a
homotopy equivalence.

COProposition B.2. Let CP -+ ftSU be the adjoint of
COECP -*■ SU. There is a homotopy equivalence ftSU BU which 

is a double loop map and which makes the composite

CP°° — > S1SU — > BU

classify the canonical line bundle.

COproof: The map ECP -»■ SU has an adjoint
2 00 . i:E CP -*■ BSU inducing an epimorphism of complex K theory.

2 00It follows that any map E CP -* BSU can be extended through 
2 00i . Let f:E CP -»■ BSU correspond under Bott periodicity 

to the canonical line bundle. There results a diagram
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2 » 
Z <LP BSU

BSU

Taking double loop spaces produces the required equivalence.
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