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The problem

Aim: Categorical construction of Čech representatives of Chern classes in Deligne
cohomology of coherent analytic sheaves.

Difficulties:

• categorical (not ad-hoc)

this talk←−−−−−

• Čech representatives (not just existence)

this talk←−−−−−

• Deligne cohomology (not de Rham)

???←−−

• holomorphic (not smooth)

this talk←−−−−−

• coherent sheaves (not vector bundles)

a little bit←−−−−−−
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From vector bundles to coherent
sheaves



Global resolutions

In the algebraic world, coherent sheaves can be resolved by a finite complex of locally
free sheaves. However, in the analytic world, this is only true locally.

Theorem (Toledo–Tong)
These local resolutions do not glue together on the nose, but can be glued up to
homotopy, with the homotopies themselves satisfying some higher homotopies, and
so on, to get a twisting cochain.

Corollary (O’Brian–Toledo–Tong)
Lots of Riemann–Roch theorems in the holomorphic setting.

Theorem (Green)
Twisting cochains can be semi-strictified into strict complexes of “(co)simplicial
locally free sheaves”. (Conjecture (H): This is a Dold–Kan type result).
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Global resolutions

Theorem (H–Zeinalian,H–Glass)
The following three concepts are (give or take some technicalities) sort of equivalent:

1. coherent sheaf
2. homotopy-coherent complex of locally free sheaves (twisting cochain)
3. complex of locally free sheaves on the Čech nerve (Green complex)
4. homotopy-coherent complex of locally free sheaves on the Čech nerve

Furthermore, each can be constructed as a homotopy limit (over the Čech nerve) of a
simplicial presheaf.
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Global resolutions

One big technicality is what we mean by “coherent sheaf” …

(a) a single coherent sheaf?
(b) a complex of coherent sheaves?
(c) a complex of sheaves with coherent cohomology?

Another big technicality is whether we want an equivalence of mere objects, or an
equivalence of (∞, 1)-categories.

But this is not today’s talk! (Though it is the subject of work-in-progress).
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The setup



Conventions

• (X,OX) holomorphic manifold
• E locally free sheaf of rank r on X
• U = {Uα} “Stein-good” cover of X that trivialises E
• φα : E|Uα

∼−→ (OX |Uα)
r trivialisation maps

• gαβ = φα ◦ φ−1
β transition maps

• s
(1)
α , . . . , s

(r)
α local sections of E over Uα

⇝ s
(j)
α =

∑
i(gαβ)

i
js

(i)
β

• holomorphic connections (to be defined) ∇α on each E|Uα
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Atiyah class

Definition
The Atiyah exact sequence (or jet sequence) of E is the SES

0→ E ⊗OX
Ω1
X → J1(E)→ E → 0

of OX -modules, where J1(E) = (E ⊗ Ω1)⊕ E as a CX -module but with OX action
given by

f(s⊗ ω, t) = (fs⊗ ω + t⊗ df, ft).

Definition
The Atiyah class of E is the corresponding Ext class

atE = [J1(E)] ∈ Ext1OX
(E,E ⊗ Ω1

X).
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Atiyah class

The Atiyah class is “strongly related” to the Chern class. Briefly, we can recover the
Chern classes by taking traces of the Atiyah classes. [Huybrechts, Proposition 4.3.10,
Example 4.4.8.i, Exercise 4.4.11].

For the rest of this talk, think “Atiyah class = Chern class”
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Holomorphic connections

Definition
A holomorphic (Koszul) connection on E is a holomorphic splitting

∇ : E → E ⊗ Ω1
X

of the Atiyah exact sequence of E.

By enforcing the Leibniz rule

∇(s⊗ ω) = ∇s ∧ ω + s⊗ dω

we can extend any connection to higher order morphisms

∇k : E ⊗ Ωk−1 → E ⊗ Ωk.
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Existence of connections

Lemma
Any locally free over an arbitrary holomorphic manifold “rarely” admits a
holomorphic connection.

Proof.
The first Chern class.

Lemma
Any locally free sheaf over a Stein manifold admits a holomorphic connection.

Proof.
Cartan’s Theorem B.
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Čech representatives of the Atiyah class

Lemma
The Atiyah class of E is represented by the cocycle

{ωαβ := ∇β −∇α}α,β ∈ Č 1
U
(
Hom(E,E ⊗ Ω1

X)
)

∼= Č 1
U
(
End(E)⊗ Ω1

X

)
.

Proof.
Given an SES 0→ A→ B → C → 0 (in an abelian category “over X”) and local
sections σα : C|Uα → B|Uα, we have the correspondences

Ext1OX
(C,A) ∼= HomD(X)(C,A[1]) ∼= H1(X,Hom(C,A))

[B] ↔ C ∼−→ (A → B) id−→ A[1] ↔ [{σβ − σα}α,β ].
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Čech representatives of the Atiyah class

If the local sections s(k)α are ∇α-flat (i.e. lie in the kernel), then

ωαβ(s
(k)
α ) = ∇β(s

(k)
α )

and so

ωαβ(s
(k)
α ) = ∇β

[∑
ℓ

(gαβ)
ℓ
ks

(ℓ)
β

]
=
∑
ℓ

[
∇β(s

(ℓ)
β ) ∧ (gαβ)

ℓ
k + s

(ℓ)
β ⊗ d(gαβ)

ℓ
k

]
=
∑
ℓ

[(∑
m

(g−1
αβ )

m
ℓ s

(m)
α

)
⊗ d(gαβ)

ℓ
k

]
=
∑
m

s(m)
α ⊗ (g−1

αβdgαβ)
m
k .
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Čech representatives of the Atiyah class

So, in the Uα trivialisation,
ωαβ = dlog gαβ

which we might recognise as the first Chern class.
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Čech representatives of the Atiyah class

Lemma

1. dωαβ = −ω2
αβ

2. d trωαβ = 0

Proof.

1. Use the fact that d(A−1) = −A−1 · dA ·A−1.
2. d trωαβ = tr dωαβ = − trω2

αβ , and tr(A2k) = 0 for all k ∈ N.

Corollary
The trace trωαβ of the Atiyah class defines a class in de Rham cohomology.

14/49



Čech representatives of the Atiyah class

Lemma

1. dωαβ = −ω2
αβ

2. d trωαβ = 0

Proof.

1. Use the fact that d(A−1) = −A−1 · dA ·A−1.
2. d trωαβ = tr dωαβ = − trω2

αβ , and tr(A2k) = 0 for all k ∈ N.

Corollary
The trace trωαβ of the Atiyah class defines a class in de Rham cohomology.

14/49



Exponential and standard Chern classes

The trace of the Atiyah class recovers the first Chern class; to recover higher Chern
classes, we need to take the trace of powers of the Atiyah class. But there is a choice
in how we multiply endomorphism-valued forms:

• Exponential — Compose the endomorphisms, wedging the forms(
a b

c d

)
·

(
e f

g h

)
=

(
ae+ bg af + bh

ce+ dg cf + dh

)
∈ Γ

(
U,Ω2

X ⊗ End(E)
)

• Standard — Wedge the endomorphisms, wedging the forms(
a b

c d

)
∧

(
e f

g h

)
= det

(
a f

c h

)
∈ Γ

(
U,Ω2

X ⊗ End(E ∧ E)
) ∼= Γ

(
U,Ω2

X

)
Note that if we take the trace, then both of these simply become 2-forms on U . More
generally, tr(Mk) and tr(∧kM) are both k-forms on U .
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Higher exponential Atiyah classes

Definition
The second exponential Atiyah class at2E of E is the image(
(atE ⊗ idΩ1)⌣ atE

)
∈ H2

(
X,Hom(E ⊗ Ω1, E ⊗ Ω1 ⊗ Ω1)⊗Hom(E,E ⊗ Ω1)

)
↓Hom(F⊗G)⊗Hom(E,F)→Hom(E,G)

∈ H2
(
X,Hom(E,E ⊗ Ω1 ⊗ Ω1)

)
↓α⊗β 7→α∧β

∈ H2
(
X,Hom(E,E ⊗ Ω2)

)
.

Generally, atkE ∈ Hk(X, End(E)⊗ Ωk).
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Čech representatives of the second Atiyah class

When we apply the composition map

Hom(F ,G)⊗Hom(E ,F)→Hom(E ,G)

to calculate at2E in terms of ωαβ , we need to account for the change of trivialisation
Uβγ ⇝ Uαβ , and so

(at2E)αβγ = ωαβ ∧ gαβωβγg
−1
αβ .
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Čech representatives of the third Atiyah class

What about at3E? Here we risk a coherence problem: does the order in which we
change trivialisations and apply the composition map give us different answers?

ωαβ ∧ gαβ(ωβγ ∧ gβγωγδg
−1
βγ )g

−1
αβ

?
= ωαβ ∧ gαβωβγg

−1
αβ ∧ gαγωγδg

−1
αγ

Thankfully these two are equal, due to (1) the cocycle condition on the gαβ , and (2)
the fact that A ·MB = AM ·B whenever M is a matrix of 0-forms.
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Truncated de Rham cohomology

Everything is nice enough (paracompact X, Stein U , coherent Ωk
X) for the Čech–de

Rham complex to compute singular cohomology:

Hk Tot• Č i
U (Ω

j
X) ∼= Hk(X,C).

Definition
Hk

tDR(X) := Hk(X,Ω•⩾k
X )

Note that, if we have some closed class c = (c0, . . . , c2k) ∈ Tot2k Č ⋆
U (Ω

•
X) with

ci ∈ Č i
U (Ω

2k−i
X ) such that ci = 0 for i ⩾ k + 1, then we can refine the corresponding

singular cohomology class [c] ∈ H2k(X,C) to a tDR cohomology class [c] ∈ H2k
tDR(X).
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The manual construction



The main idea

If we are given some ck ∈ Č k(Ωk) that is

• Čech-closed (δ̌ck = 0), but …
• …not de Rham-closed (dck 6= 0)

(main example: atkE) then we can try to “lift” it to an element

(0, c1, c2, . . . , ck−1, ck, 0, 0, . . . , 0) ∈ Tot2k Č ⋆(Ω•)

such that δ̌ci−1 = dci. This then gives a class in singular/tDR cohomology.

Č

Ω

•
“lifting”

Č

Ω

••
••
•
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The first Atiyah class

We’re actually already done: trωαβ is both Čech- and de Rham-closed (which is fine
because c0 = 0, i.e. our minimal Čech degree is that of ωαβ), i.e.

(0, trωαβ , 0) ∈ Tot2 Č ⋆(Ω•)⇝ [(0, trωαβ , 0)] ∈ H2
tDR(X)
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The second Atiyah class

We have seen that (at2E)αβ = ωαβgαβωβγg
−1
αβ .

We’re going to make everything live over Uα, so let’s introduce some notation:

A = ωαβ B = ωαγ g = gαβ (X = gωβγg
−1).

Lemma

1. dA = −A2 (and similarly for B and X)
2. A+X = B

Corollary
at2E = AX = A(B −A)
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The second Atiyah class

Corollary
d tr(at2E) = − tr(A(B −A)B)

0

? tr(A(B −A)B)

tr(A(B −A)) 0

δ̌

d

δ̌

d
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The second Atiyah class

0

? tr(A(B −A)B)

tr(A(B −A)) 0

δ̌

d

δ̌

d

We know that ? must be some homogeneous degree-3 polynomial in A, but up to a
scalar we have only one choice: tr(A3). Computing the Čech coboundary, we see that

δ̌ : tr(A3) 7→ tr
(
(B −A)3 −B3 +A3

)
= . . . = 3 tr(A2B −AB2)

and
d tr(A3) = tr(dA ·A2 −AdA2) = − tr(A4) = 0.

24/49



The second Atiyah class

So, equating coefficients, we get Čech representatives for the (trace of the) second
Atiyah class:

0

−1
3 tr(A

3) tr(A(B −A)B)

tr(AX) 0

δ̌

d

δ̌

d
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The third Atiyah class

Expanding our previous notation:

A = ωαβ g = gαβ X = gωβγg
−1

B = ωαγ h = gαγ Y = hωγδh
−1

C = ωαδ

so that at3E = AXY = A(B −A)(C −B).

It’s easy to calculate that

d tr at3E = tr
(
A(B −A)(C −B)C

)
but it’s harder to find some c2 ∈ Č 2(Ω4) such that δ̌c2 = d tr at3E .
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The third Atiyah class

Since we can (up to a sign) cyclically permute under the trace, we can take the
following brute-force approach:

1. List all monomials in the non-commuting variables A,X of degree 4, modulo
equivalence under cyclic permutation (A2X2, AXAX, A3X, and AX3).

2. Calculate the Čech differential applied to each monomial.
3. Equate coefficients with d tr at3E .

In fact, we can iterate this: once we have c2, we can do the same thing to calculate c1.
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The third Atiyah class

0

1
10

tr(A5) 1
10

tr
(
(B −A)5 −B5 +A5

)
ρ(A,X) − tr

(
A(B −A)(C −B)C

)
tr
(
A(B −A)(C −B)

)
0

δ̌

d

δ̌

d

δ̌

d

where ρ(A,X) = − 1
4
tr(AXAX) + 1

2
tr(A2X2)− 1

2
tr(A3X)− 1

2
tr(AX3).
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The fourth Atiyah class

There is clearly some pattern, and we can reduce this to the computational problem of
working with polynomials in non-commuting variables modulo cyclic permutation, but
things get very messy very quickly…
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The fourth Atiyah class

5c3
tr
=

13

5
A5 + 13A4(B −A) + 5A3(B −A)2 + 5A3(B −A)(C −A)

+ 3A3(C −A)(B −A) + 4A2(B −A)A(B −A) + 4A2(B −A)A(C −A)

+ 3A2(B −A)3 −A2(B −A)2(C −A) + 5A2(B −A)(C −A)2

+ 5A2(C −A)A(B −A) + 2A2(C −A)(B −A)2 +A2(C −A)(B −A)(C −A)

+ 3A2(C −A)2(B −A)−A(B −A)A(C −A)(B −A) + 5A(B −A)A(C −A)2

− 5A(B −A)2(C −A)(B −A) + 5A(B −A)(C −A)A(C −A) + 5A(B −A)(C −A)3

+ 4
(
A(C −A)

)2
(B −A)− 2A(C −A)(B −A)3 + 4A(C −A)(B −A)2(C −A)

+A
(
(C −A)(B −A)

)2
+ 2A(C −A)2(B −A)2 +A(C −A)2(B −A)(C −A)

+ 3A(C −A)3(B −A)

5c2
tr
= 5A5(B −A)− 4A4(B −A)2 +A3(B −A)A(B −A) +A3(B −A)3

− 5A2(B −A)A(B −A)2 − 4A2(B −A)2A(B −A)− 4A2(B −A)4

+
1

3

(
A(B −A)

)3
+A(B −A)A(B −A)3 +A(B −A)5

−35c1
tr
= A7
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The categorical construction



Sheaves on simplicial spaces

Definition (Detailed)
A sheaf E• on a simplicial space Y• is a family of sheaves {Ep ∈ Sh(Yp)}p∈N along
with, for all φ : [p]→ [q] in ∆, morphisms

E•φ : (Y•φ)∗Ep → Eq

such that E•(ψ ◦ φ) = E•(ψ) ◦ E•(φ).

A morphism of such objects is a collection of morphisms that makes the squares
commute.

Definition (Brief)
An object in a Grothendieck construction.

Note that we do not ask for the E•φ to be isos/quasi-isos/weak equivalences (“the
rank can jump across simplicial levels”).
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Sheaves on simplicial spaces

Note that we do not ask for the E•φ to be isos/quasi-isos/weak equivalences (“the
rank can jump across simplicial levels”).
Example
Y• = Č (U)• and E• = (Č (U)→ X)∗E (so here the E•φ are isos).

Theorem (Green)
Any coherent sheaf can be resolved by a complex of locally free sheaves on the Čech
nerve. Furthermore, these can be constructed such that the E•φ are
quasi-isomorphisms. Furthermore, these quasi-isomorphisms are the inclusion into a
direct sum with an elementary complement.

Proof.
Really a construction of such objects from the data of a twisting cochain;
Toledo–Tong show that any coherent sheaf can be resolved by a twisting cochain.
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Simplicial differential forms

Definition (Brief)
A simplicial differential r-form ω• on a simplicial complex manifold Y• is a family of
differential r-forms ωp on Yp ×∆p that are holomorphic on Yp, smooth on ∆p, and
descend to a differential form on the fat geometric realisation of Y•: for all coface
maps f : [p− 1]→ p, we have that

(Y•f × id)∗ωp−1 = (id× f)∗ωp ∈ Ωr(Yp ×∆p−1).

We get a differential by decomposing into Yp and ∆p parts and then enforcing a
Koszul sign convention.
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Fibre integration

Theorem (Dupont)
For each fixed r, fibre integration∫

∆p

: Ωr,∆(Y•)→ Ωr−p,∆(Yp)

induces a quasi-isomorphism∫
∆•

: Ωr,∆(Y•)
∼−→

r⊕
p=0

Ωr−p(Yp)
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Fibre integration

Example
Taking Y• = Č (U)• gives∫

∆•
: Ωr,∆(Č (U)•)

∼−→
r⊕

p=0

Ωr−p(Č (U)p) ∼= Totr Č ⋆(Ω•).

Caution: if we actually want to compute these integrals, then we need to be careful
about our choices of orientations and sign conventions.
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More notation

• πp : Č (U)p ×∆p ↠ Č (U)p
• Ep := (Č (U)p → X)∗E (giving a locally free sheaf on the Čech nerve)
• Ēp := π∗pE

p (giving a locally free sheaf on the product of the Čech nerve with the
simplex)

• ξip : [0]→ [p]

Note that we get isomorphisms E•ξip : (Č (U)•ξip)∗E0 ∼−→ Ep and so any connection
∇α on E gives a connection (also denoted ∇α) on Ep.
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The barycentric connection

Definition
The barycentric connection ∇µ

• on Ē• is the map

∇µ
• : Ē

• → Ē• ⊗ Ω1
Č (U)•×∆•

defined by

∇µ
p =

p∑
i=0

ti∇αi = ∇α0 +

p∑
i=1

tiωα0αi .
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The curvature of the barycentric connection

Let’s try to be more explicit: how does (the curvature of) this connection act on
sections σα0 of Ēp over Uα0?

(∇µ
p )

2(σα0) =

[
∇α0 +

p∑
i=1

tiωα0αi

]2
(σα0)

!
=

p∑
i=1

σα0 ⊗ d(tωα0αi) +
k∑

i,j=1

σα0 ⊗ (tjtiωα0αjωα0αi)

where we again make the assumption (!) that σα0 is ∇α0-flat.

In other words,
(∇µ

p )
2 = dω̄p + ω̄2

p

where ω̄p =
∑p

i=1 tiωα0αi . (Note also that ∇µ
p = d + ω̄p).
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(∇µ
p )

2(σα0) =

[
∇α0 +

p∑
i=1

tiωα0αi

]2
(σα0)

!
=

p∑
i=1

σα0 ⊗ d(tωα0αi) +

k∑
i,j=1

σα0 ⊗ (tjtiωα0αjωα0αi)

where we again make the assumption (!) that σα0 is ∇α0-flat.

In other words,
(∇µ

p )
2 = dω̄p + ω̄2

p

where ω̄p =
∑p

i=1 tiωα0αi . (Note also that ∇µ
p = d + ω̄p).

38/49



The curvature of the barycentric connection

Let’s try to be more explicit: how does (the curvature of) this connection act on
sections σα0 of Ēp over Uα0?
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Analogies and differences

Things seem familiar when compared to before, if we just substitute ω̄ for ω, e.g.

• The barycentric connection is of the form d + ω̄p.
• Its curvature is of the form dω̄p + ω̄2

p.

N.B. we haven’t actually checked that this
defines a simplicial differential form yet, i.e. that it satisfies the fat realisation
equivalence relation.

However there are some key differences, e.g.

• The ωαβ was the obstruction towards admitting a global connection; the ω̄p is a
“global” connection.

• dωαβ = −ω2
αβ but dω̄p 6= −ω̄2

p (i.e. the barycentric connection is not “flat”).

As a consequence, there will be an odd mismatch: the Atiyah class is the “connection”
ωαβ , but the simplicial Atiyah class is the “curvature” of the “connection” ω̄p.
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The simplicial Atiyah class

Definition

ātkE =
{
(−1)k(k−1)/2(dω̄p + ω̄2

p)
k
}
p∈N

=

(−1)k(k−1)/2

− p∑
i=1

ωα0αi ⊗ dti −
p∑

i=1

tiω
2
α0αi

+

p∑
i,j=1

tjtiωα0αjωα0αi

k


p∈N

Theorem (H)
ātE is an admissible endomorphism-valued simplicial differential form.
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The simplicial Atiyah class

Lemma
tr ātkE is d-closed.

Corollary
tr
∫
∆• āt

k
E defines a cohomology class.

Theorem (H)

ςk

(
tr

∫
∆•

ātkE

)(k,k)

= ςk tr(at
k
E) ∈ Č k(Ωk

X)

where ςk denotes the skew-symmetrisation of a cochain (which is the identity in
cohomology).

Proof.
Combinatorics. 41/49



The simplicial Atiyah class

So, in summary, we can recover these complicated manual lifting constructions from
before by simply computing some integrals over simplices, which recover the c0, . . . , ck
(by looking at the type-(i, j) parts of the simplicial differential form), even including
their coefficients (e.g.

∫
∆2 t1t2dt1dt2 =

1
24).

The caveat is that we don’t recover exactly the same Čech representatives on the nose:
for k ⩾ 3 we only get equality in cohomology. However, this is somewhat artificial, in
that it is caused by us not using skew-symmetric Čech cohomology initially.
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The second simplicial Atiyah class

By definition,

āt2E =

{
−

(
−

p∑
i=1

ωα0αi ⊗ dti −
p∑

i=1

tiω
2
α0αi

+

p∑
i,j=1

tjtiωα0αjωα0αi

)2}
p∈N

but the only parts that will be non-zero after fibre integration are the (2, 2) parts on
the 2-simplex, and the (3, 1) parts on the 1-simplex.
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The second simplicial Atiyah class

The only (2, 2) part comes from the first half of the (dω2)
2 term, which gives us

tr

∫
∆2

āt2E = tr

∫
∆2

−

 2∑
i,j=1

(ωα0αj ⊗ dtj) · (ωα0αj ⊗ dtj)


= tr

∫
∆2

2∑
i,j=1

ωα0αjωα0αi ⊗ dtjdti

= tr

∫
∆2

(
ω2
α0α1

⊗ (dt1)
2 + ωα0α1ωα0α2 ⊗ dt1dt2

+ ωα0α2ωα0α1 ⊗ dt2dt1 + ω2
α0α2

⊗ (dt2)
2
)

= tr

∫
∆2

(
ωα0α1ωα0α2 − ωα0α2ωα0α1

)
⊗ dt1dt2

= tr

∫ 1

0

∫ 1−t2

0

(
ωα0α1ωα0α2 − ωα0α2ωα0α1

)
⊗ dt1dt2

=
1

2
tr
(
ωα0α1ωα0α2 − ωα0α2ωα0α1

)
=

1

2
· 2 · tr(ωα0α1ωα0α2 ) = tr

(
ωα0α1 (ωα0α1 + ωα1α2 )

)
= tr(ωα0α1ωα1α2 ). 44/49



The second simplicial Atiyah class

So far, we have
tr

∫
∆•

āt2E = ?︸︷︷︸
p=1

+tr(ωα0α1ωα1α2)︸ ︷︷ ︸
p=2

.
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The second simplicial Atiyah class

For the (3, 1) part, we work on the 1-simplex and get

tr

∫
∆1

āt2E = tr(−1)3·1
∫
∆1

−
(

−
1∑

i,j=1

(ωα0αj ⊗ dtj) · (−tiω
2
α0αi

)

−
1∑

i,j=1

(−tjω
2
α0αj

) · (ωα0αi ⊗ dti)

−
1∑

i,j,k=1

(ωα0αk ⊗ dtk) · (tjtiωα0αjωα0αi )

−
1∑

i,j,k=1

(tktjωα0αkωα0αj ) · (ωα0αi ⊗ dti)

)

= tr

∫ 1

0
2ω3

α0α1
(t1 − t21)dt1

=
1

3
trω3

α0α1
.

46/49



The second simplicial Atiyah class

Finally, we have
tr

∫
∆•

āt2E =
1

3
trω3

α0α1︸ ︷︷ ︸
p=1

+tr(ωα0α1ωα1α2)︸ ︷︷ ︸
p=2

which is exactly our previously calculated lift of tr at2E .

47/49



Questions



What about Deligne cohomology?

The first Atiyah class (first Chern class) is “already in” Deligne cohomology, just for
degree reasons.

But if we try to manually lift the second Atiyah class to a closed element in the
Čech–Deligne bicomplex then we immediately run into issues: there are no obvious
elements to take the Čech differential of.

In fact, I don’t even know how to do the very simplest thing at the desired level of
detail: write down Čech representatives for the (non-trivial) second Chern class in
Deligne cohomology of any holomorphic vector bundle.

Does anybody know how to do this?
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Fin

Thank you for your time.
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