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Abstract

Relative algebraic geometry is an approach to algebraic geometry
using category theory. This allows us to generalise algebraic geometry
to many different settings. This project will cover basic notions from
category theory, symmetric monoidal categories, Grothendieck topolo-
gies, algebraic geometry relative to a symmetric monoidal category and
the example of classical algebraic geometry and monoid algebraic ge-
ometry which is a version of the field with one element.

One very important paper in this area is [TV07], which is written
in French, and translating the first few sections of it into English would
open this paper up to a whole new audience. Although mathematical
French is in general not entirely impenetrable when one is armed with
a good dictionary or glossary, a lot of the language found in this paper
is hard to find in other sources. Further, when we are dealing with such
abstract mathematics, grammar and semantics are of the utmost im-
portance, and small variations can change the meaning wildly, making
‘on-the-fly’ translation tricky.

The aims of this project are: to translate the first few sections (those
dealing with establishing the formalities of the subject) of [TV07] into
English; to provide ample editorial commentary concerning the transla-
tion and historical context; and to comment on the mathematics in the
paper, providing enough background information for the new reader to
be able to follow the main ideas – the main emphasis is placed on this
last point.

Thanks

Many thanks to give;
word limit too tight – I swim
in deep gratitude.

Firstly, thanks to [Lan12] for creating such an
invaluable mathematical French dictionary.
Secondly, thanks to Kobi Kremnitzer and
Christopher Hollings for their excellent
supervision, and for not complaining about the
vast number of questions I asked. Lastly, thanks
to all my family and friends, without whom I
would not be lucky enough to be at university,
let alone be able write this dissertation.

Point n’est besoin d’espérer pour entreprendre, ni de réussir pour perséverer
– Willem van Oranje Nassau
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1 Introduction

1.1 Formatting

This paper consists of translated sections from [TV07] as well as the author’s
own writing. The general layout and order tries to follow that of the original
paper as much as possible, including section numbering and naming.

Longer sections of translated text will be boxed, left aligned, sans serif,
and ended with a small black square (�). At the start of such sections there
will also be a reference to the location of the source text. Shorter ‘quota-
tions’ will simply be in italics and referenced afterwards. Theorems (and
definitions) that have been translated will not be boxed off or in quotes, but
there will be a reference to the original theorem (or definition) after the the-
orem (or definition) number. Hopefully it will be largely self-explanatory,
but here are a few guidelines that the author has tried to adhere to:

· Usually they will be given as a section and a paragraph, e.g. (§1¶2),
where the paragraphs are counted by looking at indentations.

· Negative paragraph numbers indicate counting from the end of the
section (as given), with the last paragraph being the -1st. For example,
(§2.1¶-2) would indicate the penultimate paragraph of section 2.1.
(Luckily there are no subsubsections, so we don’t have to worry about
things getting any more complex.)

Sometimes a section that we wish to translate will contain some reference
to a theorem or definition in the original paper, and this might have a differ-
ent numbering in this paper. Because of this, all such references (e.g. voir
définition 2.12) from the original will be suitably replaced with numbering
relevant to this paper (e.g. voir [ . . . ] (Lemma 1.3.1.3)).

If there are any references to a certain section or paragraph without spec-
ifying from which paper, then they are to [TV07]. Similarly, if any lemma
(or theorem) is stated without a proof then a proof can be found in the
referenced lemma (or theorem) in [TV07].

Finally, all footnotes, in translated sections or not, are by the author and
not from [TV07].
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1.1.1 Conventions

We retain the following conventions from [TV07]:

§ 1
¶ -2

All the monoids and monoidal categories considered will be unital and associative,
and all modules over a monoid will be unital. We will ignore all set-theoretic
problems to do with the choice of universe; the reader can consult [TV05; TV08]
to find a method to resolve them. �

We also impose the following conventions ourselves, which are always
assumed (unless otherwise stated):

· all algebras and rings are unital and associative;

· k is an algebraically closed field;

· 0 ∈ N;

· for a ring R we write R× to mean the group of multiplicative units in
R;

· Gm = k× = k \ {0};

· for n ∈ N \ {0} we write µn to mean the cyclic group of order n;

· given a category C we write x ∈ C to mean x ∈ ob(C);

· ‘presheaf’ means a Set-valued presheaf.

We usually use ‘functor’ to mean ‘covariant functor’.
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1.2 Overview

In this paper we will summarise some of the results of [TV07], providing
background definitions along the way, as well as filling in some of the proofs
that are omitted or only sketched. All of the pictures, as well as Sections 1.3
and 4, are entirely original and aim to complement the main results (though
the pictures are not to be taken too literally – they often illustrate simple
cases, such as when C = Op(T )). There are also explanations of motivation
(e.g. Section 3.1) and historical notes (e.g. Section 4.2) that are original.
This is why this paper is subtitled ‘a readers’ guide’, and not simply ‘a trans-
lation’.

The results of [TV07] are many, and we will not have time to cover most
of the later sections; we will focus largely on the first three∗ sections. Be-
cause of this, for us, the introduction of [TV07] summarises the purpose of
the paper better than the abstract.

§ 1
¶1

The aim of this paper is to construct several categories of schemes that are defined
over bases found under SpecZ. Of course, since Z is the initial object in the
category of commutative rings, it is vital to leave the usual framework of rings and
permit the use of more general objects, but only objects that resemble commutative
rings enough such that the notion of a scheme can still be defined. Our approach to
this problem is based on the theory of relative algebraic geometry, largely inspired
by [Hak72]. It comes from remarking that a commutative ring is nothing but a
commutative monoid in the monoidal category of Z-modules, and that, in general,
for a symmetric monoidal category (C,⊗, 1), the commutative monoids in C can
be thought of as models for the affine schemes relative to C. It is remarkable that
such a general (simplistic, even) approach allows us to actually define the notion
of schemes, and moreover in a functorial way in C. So, in choosing C equipped
with a sensible symmetric monoidal functor C → Z-Mod, we find a notion of
schemes relative to C and a base-change functor to Z-schemes, and thus a notion
of schemes under SpecZ. �

∗Not including the introduction, so sections 2 (Géométrie algébrique relative), 3 (Trois
exemples de géométries relatives), and 4 (Quelques exemples de schémas au-dessous de SpecZ).
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1.3 Background knowledge

This section acts as a prelude to [TV07], containing a few motivating ex-
amples and prerequisite definitions and lemmas. Before diving straight into
the abstract definitions, we give an example of why we might think to try a
category-theoretic approach to algebraic geometry.

1.3.1 Motivating example

Let A be a finitely-generated commutative k-algebra. Then we can write

A =
k[x1, . . . , xn]

(f1, . . . , fm)

for some m,n ∈ N and fi ∈ k[x1, . . . , xn]. If B is another commutative k-
algebra (not necessarily finitely generated) then the collection of algebra
morphisms A → B is in bijection with points of Bn that vanish on all of
the fi, since a morphism is determined entirely by where it sends each of
the xi whilst satisfying 0 7→ 0. So, letting CommAlgk denote the category of
commutative k-algebras,

HomCommAlgk
(A,B) ∼= {b ∈ Bn | f1(b) = . . . = fm(b) = 0} (1.3.1.1)

where, as usual, we evaluate fi(b) inside B.
Equation (1.3.1.1) implies that we should maybe think of Hom(A,B) as

some variety inside Bn determined by A, for general A,B ∈ CommAlgk, and
so we might be able to recover a lot of algebraic geometry from studying
these Hom(A,B). In fact, thinking of Hom(A,−) as a functor CommAlgk →
Set which takes an algebra B to a variety (a set of points) inside Bn, we are
led to the more general idea of studying all functors CommAlgk → Set, and
calling such functors spaces.

Before formalising this, we first recall a few things from category theory.

Definition 1.3.1.2 [Presheaves]
Let C be a category. The category of presheaves on C is defined as the func-
tor category PSh(C) = Fun(Cop, Set), whose objects are (covariant) functors
Cop → Set and morphisms are natural transformations F ⇒ G between such
functors. y
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Figure 1: Presheaves on Op(T ) (see paragraph after Definition 2.1.1.5) – inclusion of open
sets corresponds to restriction of presheaves

Lemma 1.3.1.3 [Yoneda lemma]
Let C be a locally small category.∗ Define the downwards Yoneda functor† by

Y(−) : C → PSh(C)
A 7→ HomC(−, A),

which is well defined, since Hom(−, A) : Cop → Set covariantly. Then, for any
A ∈ C and F ∈ PSh(C),

HomPSh(C)(YA, F ) ∼= F (A) (1.3.1.4)

via the canonical restriction map. Further, Y is fully faithful. y

Proof. See [Mac78, §III.2, p.59–62].

Since CommAlgk is locally small,‡ we can make the definitions in Ta-
ble 1.1, where Y is the Yoneda functor from Lemma 1.3.1.3.§

∗That is, the hom-sets Hom(A,B) are actual sets for all A,B ∈ C.
†This is not at all common terminology. It is often called the contravariant Yoneda func-

tor: it maps an object A ∈ C to the contravariant functor HomC(−, A) : C → Set. But the
functor C → PSh(C) itself is covariant, so we use ‘downwards’ to avoid confusion. The
dual ‘covariant’ (upwards, in our terminology) functor is Y (−) : Cop → Fun(C,Set) given by
SpecA 7→ Y A = HomC(A,−), where we write SpecA ∈ Cop to be the object corresponding
to A ∈ C. Then the statement HomFun(C,Set)(Y

A, G) ∼= G(A) holds.
‡As in [TV07], we try to ignore such set-theoretic issues, but here we have the reason-

able explanation that CommAlgk is a concrete category, and thus locally small.
§In the definition of Spec we use the fact that any covariant functor F : C → D induces

a contravariant functor F : Cop → D, and vice versa.

7 of 55



Name Notation Definition

the category of affine schemes over k Affk CommAlgk
op

the category of k-spaces Spk PSh(Affk)
the spectrum functor Spec Y : CommAlgk → Spk

Table 1.1: Categorical approach to algebraic geometry with CommAlgk

We’ve already given a reason for calling objects of the functor category
Fun(CommAlgk, Set) spaces, and we call objects of CommAlgk

op schemes be-
cause we know that the Yoneda lemma (Lemma 1.3.1.3) will give us a way
of viewing Affk as sitting inside of Spk.

Lemma 1.3.1.5 [Yoneda embedding]
The category Affk is equivalent to the essential image of the Yoneda functor
Y : Affk → Spk. y

Proof. Here we use the fact that a functor gives an equivalence of categories
if and only if it is fully faithful and essentially surjective.∗ Lemma 1.3.1.3 tells
us that Y is fully faithful so it forms an equivalence of categories between
Affk and the essential image of Y in Spk.

So Lemma 1.3.1.5 lets us imagine Affk as sitting inside Spk. This mirrors
classical algebraic geometry where, loosely speaking, given some commuta-
tive ring R we define the space SpecR of prime ideals of R endowed with
the Zariski topology. We can then give SpecR some extra structure to make
it an affine scheme. Then Spec is a map taking commutative rings to affine
schemes, which form a subclass of the objects (schemes) in which we’re in-
terested.

Studying algebraic geometry this way is called the functor of points ap-
proach,† because Lemma 1.3.1.5 says that describing some affine scheme
X ∈ Affk is exactly the same as describing its functor of points X(−) ∈ Spk
under the Yoneda embedding. Sometimes this latter method is far easier, as
the following example shows.

Example 1.3.1.6 [GLn]
Given A ∈ CommAlgk we can define GLn(A) to be the group of n × n in-
vertible matrices over A. This induces a functor GLn(−) : Affk

op → Set, so
GLn(−) ∈ Spk. We claim that this functor is in the essential image of the
Yoneda (spectrum) functor Y : CommAlgk → Spk, and is thus represented by
an affine scheme. This is not obvious a priori. To prove this, we need to find

∗[Mac78, Theorem 1, §IV.4]
†As opposed to the traditional ringed space approach.
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an isomorphism

GLn(−) ∼= HomCommAlgk
(R,−) = SpecR

for some R ∈ CommAlgk, where we mean SpecR as defined in Table 1.1.∗

By definition, this is equivalent to finding a bijection of sets GLn(A) ∼=
HomCommAlgk

(R,A) that transforms naturally in A for each A ∈ CommAlgk.
Note that an element of GLn(A) is a choice of x11, x21, . . . , xnn ∈ A

such that det(xij) is invertible. That is, there exists some y ∈ A such that
y det(xij) = 1. Hence

R =
k[x11, x21, . . . , xnn, y]

(y det(xij)− 1)

gives us the desired result, and so GLn = R ∈ Affk is an affine scheme. y

1.3.2 Preliminary definitions

We now give some definitions of which [TV07] assumes prior knowledge.
The motivation for them usually comes from taking C = Set, and their ap-
plication to algebraic geometry can be better understood† by taking C =
Z-Mod = Ab. We assume that the reader is familiar with notions such as cat-
egories, functors, natural transformations, and functor categories, but not
too much else.

Definition 1.3.2.1 [Monoidal category]
A monoidal category consists of the following data:

· a category C;

· an object 1 ∈ C, which we call the unit or identity;

· a bifunctor (−⊗−) : C × C → C, called the monoidal or tensor product;

· natural isomorphisms α (the associator), λ (the left unitor), and ρ (the
right unitor), constructed from morphisms

αABC : (A⊗B)⊗ C ∼−→ A⊗ (B ⊗ C)
λA : 1⊗ A ∼−→ A

ρA : A⊗ 1
∼−→ A

for all A,B,C ∈ C.
∗That is, identify SpecR ∈ Affk with SpecR := HomCommAlgk

op(−, R).
†Since [ . . . ] a commutative ring is nothing but a commutative monoid in the monoidal

category of Z-modules [ . . . ] (§1 p.2 ¶1).
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Further, the three natural isomorphisms are subject to the following coher-
ence conditions∗:

· (unit associativity) for all A,B ∈ C the following commutes

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

ρA⊗idB

αA1B

idA⊗λB

· (4-associativity) for all A,B,C,D ∈ C the following commutes

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

αA(B⊗C)D

idA⊗αBCDαABC⊗idD

α(A⊗B)CD αAB(C⊗D)

y

Definition 1.3.2.2 [Symmetric monoidal category]
A monoidal category (C,⊗, 1) is symmetric if it can be equipped with a maximally-
symmetric brading γ. That is, for all A,B ∈ C, there exists an isomorphism

γAB : A⊗B
∼−→ B ⊗ A

that is natural in both A and B, and also subject to the following coherence
conditions†:

· (unit associativity) for all A ∈ C the following commutes:

1⊗ A A⊗ 1

A

γ1A

λA ρA

∗These diagrams simply say that ⊗ is associative in all the ways that you might expect.
†These diagrams simply say that ⊗ is commutative in all the ways you might expect.

10 of 55



· (3-associativity) for all A,B,C ∈ C the following commutes:

(A⊗B)⊗ C (B ⊗ A)⊗ C

A⊗ (B ⊗ C) B ⊗ (A⊗ C)

(B ⊗ C)⊗ A B ⊗ (C ⊗ A)

γAB⊗idC

αABC αBAC

γA(B⊗C) idB ⊗γAC

αBCA

· (maximal symmetry) for all A,B ∈ C the following commutes:

B ⊗ A

A⊗B A⊗B

γBAγAB

idA⊗B

y

Definition 1.3.2.3 [Closed symmetric monoidal category∗]
A symmetric monoidal category (C,⊗, 1) is closed if, for all A ∈ C, the functor
−⊗ A : C → C has a right adjoint, written (A⇒ −). This means that

Hom(X ⊗ A,B) ∼= Hom(X,A⇒ B)

naturally in X and B for all A,B,X ∈ C. The object (A ⇒ B) ∈ C is called
the internal Hom.† y

Lemma 1.3.2.4
Let (C,⊗, 1) be a closed symmetric monoidal category. Then the bifunctor

(−⊗−) : C × C → C

commutes with colimits in both of its arguments. y

Proof. Since (− ⊗ A) has a right adjoint, it commutes with colimits (see
Lemma 2.1.1.3). This gives us commutativity in the first argument. As for
commutativity in the second argument, we claim that

A⊗ (colimXi)
(1)∼= (colimXi)⊗ A

(2)∼= colim(Xi ⊗ A)
(3)∼= colim(A⊗Xi).

∗See [TV07, Hypothese 2.6, p.14]
†[TV07] uses the notation Hom(A,B).
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(1) follows since (C,⊗, 1) is symmetric;

(2) follows from our first statement;

(3) requires a bit of work, but using the isomorphisms Xi ⊗ A ∼= A ⊗ Xi

and the fact that they are natural in both A and Xi we can show that
colim(Xi ⊗ A) satisfies the universal property required to be the colimit
of {A⊗Xi}, giving us the required isomorphism.

Definition 1.3.2.5 [Cosmos]
A (Bénabou∗) cosmos† is a bicomplete‡ closed symmetric monoidal category.

y

Definition 1.3.2.6 [Commutative monoid in (C,⊗, 1)]
A commutative monoid (A, µ, η) in a symmetric monoidal category (C,⊗, 1) is
an object A ∈ C along with morphisms

· µ : A⊗ A→ A (multiplication);

· η : 1→ A (unit),

such that the following commute:

· (associativity)

A⊗ (A⊗ A) A⊗ A

(A⊗ A)⊗ A A

A⊗ A

idA⊗µ

µαAAA

µ⊗idA
µ

· (left and right unity)

1⊗ A A⊗ A A⊗ 1

A

η⊗idA

λA

µ

idA⊗η

ρA

∗After the French mathematician Jean Bénabou.
†Possible etymology: catégorie monoïdale symétrique gets initialised to CMS which gets

pronounced ‘acronymically’ as cosmos.
‡All small limits and small colimits exist.
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· (commutativity)

A⊗ A A⊗ A

A

γAA

µ µ

We denote the category of all such objects by Comm (C), where the mor-
phisms are morphisms f : A → A′ in C such that everything transfers nicely
(that is, η′ = f ◦ η : 1→ A′ and f ◦ µ = µ′ ◦ (f ⊗ f) : A⊗ A→ B). y

Definition 1.3.2.7 [Module over a monoid]
Let (C,⊗, 1) be a symmetric monoidal category and A ∈ Comm (C) a com-
mutative monoid in C. A module∗ (M,σ) over A is an object M ∈ C with a
morphism σ : A⊗M →M such that the following diagrams commute†:

· (compatibility with µ)

A⊗ A⊗M A⊗M

A⊗M M

idA⊗σ

µ⊗idM σ

σ

· (unity)

1⊗M A⊗M

M

η⊗idM

λM σ

We denote the category of all such objects by A-Mod, where the mor-
phisms are morphisms f : M →M ′ in C such that everything transfers nicely
(that is, f ◦ σ = σ′ ◦ (idA⊗f) : A⊗M →M ′). y

∗Really this is the definition for a left A-module, but since A is commutative the notions
of right and left modules coincide.

†That is, σ is an action.

13 of 55



2 Relative algebraic geometry

§ 2
¶1

The aim of this first part is to present the idea of a scheme relative to a sym-
metric monoidal category C. We start with a general process of construction of
Grothendieck topologies from prestacks in categories satisfying certain conditions.
This allows us to then define the faithfully flat and quasi-compact topology, as
well as the Zariski topology in the very general setting. We will afterwards define
the idea of a relative scheme by gluing back together affine objects with the help
of the Zariski topology. �

2.1 Constructing Grothendieck topologies

2.1.1 Exactness and pullbacks

Definition 2.1.1.1 [Conservative functor]
Let F : C → D be a functor. Then F is conservative if, for all morphisms f in
C, whenever the morphism F (f) in D is an isomorphism then so too is f . y

Definition 2.1.1.2 [Exact functor]
Let F be a functor. We say that F is left exact if it commutes with finite limits.
Dually, F is right exact if it commutes with finite colimits. If F is both left
and right exact, then we say that it is exact. y

If F : C → D where C andD both have zero objects then, loosely speaking,
F being conservative is saying that∗ [F (c) = 0 =⇒ c = 0], and F being exact
is saying that F (0) = 0.

Lemma 2.1.1.3
Let (F a G) be an adjunction of functors. Then F commutes with colimits and
G commutes with limits. y

Proof. [Mac78, §V.5, p.118]

Corollary 2.1.1.4
Left-adjoint functors are right exact; right-adjoint functors are left exact. y

∗If we wanted to really abuse notation then we would write this as F−1(0) = {0}.
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Definition 2.1.1.5 [Pullbacks]
Let C be a category, X,X ′, Y ∈ C objects, and f : X → Y , g : X ′ → Y mor-
phisms:

X

Y

X ′

f

g

Then the pullback (or fibred product) of Y (along f and g) is the limit of this
diagram (if it exists) and is written as X f×gYX ′ (or just X ×Y X ′ when no
confusion may arise). The commutative diagram

X

X ×Y X ′ Y

X ′

fπX

πX′
g

is also called a cartesian square. y

Since the pullback is a limit, if our category C has finite limits then it has
pullbacks. In Set, the pullback X ×A Y is given by ‘intersecting’ the images
of X and Y in A:

X ×A Y = {(x, y) ∈ X × Y | f(x) = g(y)}.

Working in Op(T ) for some topological space T – the category whose objects
are open sets of T and whose morphisms are the inclusion maps of the open
sets – pullbacks correspond to intersections (Figure 2). So pullbacks gener-
alise intersection, but also fibres: let Y, T be topological spaces, p ∈ T some
point with inclusion map ι : {p} ↪→ T , and f : Y → T continuous. Then the
pullback is the fibre (or preimage) of p under f :

Y ×T {p} = {y ∈ Y | f(y) = p}.

(Figure 3). So when we have a continuous τ : S → T we can think of Y ×T S
as the fibre of the points of τ(S) ⊂ T under f .
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Figure 2: Pullbacks in Op(T ) Figure 3: Pullbacks as fibres

2.1.2 Grothendieck pseudofunctor

Definition 2.1.2.1 [Grothendieck pseudofunctor∗ (Hypothèse 2.1, §2.1, p.8)]
Let D be a category that has finite limits and M : Dop → Cat a pseudofunc-
tor.† Then M is a Grothendieck pseudofunctor if it satisfies the following con-
ditions:

(i) for each X in D, the category M(X) has all limits and colimits;

(ii) for each p : X ′ → X in D, the functor M(p) = p∗ : M(X)→ M(X ′) has
a right adjoint p∗ : M(X ′)→M(X) that is conservative;

(iii) (the Beck-Chevalley condition) for all pullbacks

Y

X ×Z Y Z

X

qp′

q′
p

in D, the natural transformation p∗q∗ ⇒ q′∗(p
′)∗ (called the change of

base‡) is an isomorphism. (See [TV07, §2, ¶3] for how this transforma-
tion is constructed). y

∗This is not standard terminology, but aims to hint at the links to Grothendieck fibrations
and the Grothendieck construction. We should probably instead call M a D-indexed category
with D-indexed coproducts (see [PS12, Definitions 2.1, 3.1]).

†That is, a ‘not-quite-functor’ D → Cat (the category of small categories), in the sense
that it doesn’t necessarily preserve composition of morphisms and the identity morphism
exactly, but only up to coherent isomorphism. Roughly speaking, we require a natural iso-
morphism F (g ◦ f) ∼= F (g) ◦ F (f) such that we can ‘evaluate’ F (h) ◦ F (g) ◦ F (f) in an
associative way. There is a similar condition concerning the identity morphism. For more
details see [Bor94, Definition 7.5.1, §7.5, p.296].

‡See Note 2.2.3.3 for information on this terminology.
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The motivating example for such a pseudofunctor M is when D is the
category of affine schemes and [ . . . ]M(X) is the category of quasi-coherent
sheaves on X ∈ D (Remarque 2.2, §2.1, p.9).

Figure 4: Definition 2.1.2.1 – note that this is a picture of a contravariant M : D → Cat
rather than a covariant M : Dop → Cat.

Definition 2.1.2.2 [M -faithfully flat (Définition 2.3, §2.1, p.9)]
Let D and M be as in Definition 2.1.2.1, and let {pi : Xi → X}i∈I be a family
of morphisms in D. Then {pi : Xi → X}i∈I is

(i) M -covering if there exists a finite (non-empty) subset J ⊂ I such that
the family of functors

{p∗j : M(X)→M(Xj)}j∈J

is conservative;

(ii) M -flat if all the functors p∗i : M(X)→M(Xi) are left exact∗;

(iii) M -faithfully flat if it is both M -covering and M -flat. y

The reason for the name ‘M -faithfully flat’ comes from the fact that if p is
M -faithfully flat then p∗ is faithful† (§2.1 ¶5).

∗Note that, by Definition 2.1.2.1, a morphism p : X ′ → X is M -flat if and only if the
functor p∗ is exact. This is because left adjoint functors are right exact (Corollary 2.1.1.4)
and we have assumed that p∗ has a right adjoint (Definition 2.1.2.1).

†We provide here a quick proof. Since M(X) is bicomplete we have a zero object and
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2.1.3 Grothendieck topologies

Classically, we use a topology on a commutative k-algebra (or commuta-
tive ring) to define the notion of a sheaf. One of the pivotal moments for
algebraic geometry (and mathematics as a whole) was Groethendieck’s gen-
eralisation of this idea in 1958, rephrased in terms of category theory (which
was itself only around 13 years old). The foundational definition was that
of a site, which is a category endowed with a Grothendieck topology∗ – a
structure that mirrored that of open sets of a topological space.† There is
also a Grothedieck pretopology, which is slightly less strict, but can be used to
construct a topology. We formalise all of this below.

Definition 2.1.3.1 [Grothendieck pretopology ([Sch10b])]
Let C be a category with pullbacks. A Grothendieck pretopology on C is an
assignment, to each object X ∈ C, of a collection C(X) of families of mor-
phisms to X, called covering families, satisfying the following conditions for
all X ∈ C:

(i) (isomorphisms cover) for every isomorphism Y
∼−→ X in C, the single-

ton family {Y ∼−→ X} is in C(X);

(ii) (stability) the collection C(X) is stable under pullback (or change of
base): if {Xi → X} ∈ C(X) and f : Y → X is some arbitrary morphism
in C, then {f ∗Xi → Y }i∈I ∈ C(Y ), where f ∗Xi = (Y ×X Xi);

(iii) (transitivity) if {Xi → X}i∈I ∈ C(X) and there is a covering family
{Xi,j → Xi}j∈Ji ∈ C(Xi) for each i ∈ I, then the family of composites
{Xi,j → Xi → X}i∈I,j∈Ji is also in C(X). y

The previously-introduced notion of ‘M -faithfully flat’ now comes into
use: such families can be used to construct a pretopology.

Lemma 2.1.3.2 [(Proposition 2.4, §2.1, p.9])
Let D and M be as in Definition 2.1.2.1. Then the M -faithfully flat families

the notion of an equaliser (dual to Definition 2.2.1.2). By definition, two morphisms f, g in
M(X) are equal if and only if their equaliser is zero. Now p∗ is exact, so it commutes with
limits. Thus eq(p∗(f)⇒ p∗(g)) ∼= eq(p∗(f ⇒ g)). Further, since p∗ is exact, p∗(0) = 0. Also,
since p∗ is conservative, it reflects limits, so [p∗(c) = 0 =⇒ c = 0]. Thus p∗(c) = 0 if and
only if c = 0. Putting these facts together we see that f = g if and only if p∗(f) = p∗(g).
That is, p∗ is faithful.

∗We sometimes refer to this simply as a topology, but only when it is obvious what we
mean.

†Though there is some confusion with this nomenclature; [Joh02] suggests the name
Grothendieck coverage, but we stick with ‘topology’ for simplicity. See [Ško11].
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Figure 5: Definition 2.1.3.1 with C = Op(T )

define∗ a Grothendieck pretopology on D. y

Proof.

(i) (Isomorphisms cover) Let p : Y ∼−→ X be some isomorphism in D. We
want p∗ : M(X) → M(Y ) to be conservative and left exact. If we have
p∗ ∼= (p−1)∗ then left exactness follows from being a right adjoint, and
being conservative follows from Definition 2.1.2.1.

Since M is a pseudofunctor, we have natural isomorphisms

(p−1)∗p∗ ∼= (pp−1)∗ ∼= idM(X)

idM(Y )
∼= (p−1p)∗ ∼= p∗(p

−1)∗

Thus (p−1)∗ a p∗ and so (p−1)∗ ∼= p∗ as required.

(ii) (Stability) Let {pi : Xi → X} beM -faithfully flat and f : Y → X. Define
Yi = Y ×X Xi with morphisms

Y

Yi X

Xi

fqi

fi pi

We want to show that {qi : Yi → Y } is M -faithfully flat.

∗To each X ∈ D we assign the collection C(X) of M -faithfully flat families {Xi → X}.
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Firstly, to be M -covering we want(∏
j∈J

q∗j

)
: M(Y )→

∏
j∈J

M(Yj)

to be conservative for some finite J ⊂ I. We claim that the same finite
J ⊂ I that makes {pi}M -covering works. By Definition 2.1.2.1, (fi)∗ is
conservative, and so the above morphism is conservative if and only if(∏

j∈J

(fj)∗q
∗
j

)
: M(Y )→

∏
j∈J

M(Xj)

is conservative. Now, p∗i f∗ ∼= (fi)∗q
∗
i , so the above morphism is conser-

vative if and only if(∏
j∈J

p∗i f∗

)
: M(Y )→

∏
j∈J

M(Xj)

is conservative. But both f∗ and {p∗j}j∈J are conservative, so we are
done.

Secondly, to be M -flat we want q∗i to be left exact for all i ∈ I. This
follows straight from p∗i f∗

∼= (fi)∗q
∗
i , since both f∗ and (fi)∗ are right

adjoints, thus left exact, and p∗i is left exact by hypothesis.

(iii) (Transitivity) Let {pi : Xi → X}i∈I beM -faithfully flat. Suppose we also
have M -faithfully flat {q(i)j : Y

(i)
j → Xi}j∈J for all i ∈ I. The fact that

{piq(i)j : Y
(i)
j → X}(i,j)∈I×J

is M -covering follows from the fact that the product of two finite sets is
finite; that it isM -flat follows from the natural isomorphisms (piq

(i)
j )∗ ∼=

(q
(i)
j )∗p∗i and the fact that the composition of two left-exact functors is

again left exact.

Definition 2.1.3.3 [Sieves on an object]
Let X ∈ C be an object in some category. A sieve on X is a subset∗ S ⊂
C/X of the objects of the slice category that is saturated (i.e. closed under
precomposition). That is, if (Y → X) ∈ S and Y ′ → Y is some arbitrary
morphism in C, then the composition Y ′ → Y → X is also in S. y

If we have any collection C of morphisms to some fixed object X ∈ C
then we can saturate the collection to obtain a sieve on X – we can extend
the collection to include all precompositions by arbitrary morphisms to any
object that is the source of a morphism in C.

∗Again, we are assuming local smallness here for simplicity.
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Definition 2.1.3.4 [Pullback sieve]
Let C be some category, S a sieve on X ∈ C, and f : Y → X some morphism
in C. Then the pullback of S along f , written f ∗S, is the sieve on Y defined
by∗

f ∗S = {g ∈ Hom(Y ′, Y ) | Y ∈ C, fg ∈ S}. y

As to why this construction is called a pullback, we recall Definition 2.1.1.5
and claim that f ∗S is the image† of the projection

S ×Hom(−,X) Hom(−, Y )→ Hom(−, Y )

where we take the pullback in Set, and our morphisms are the inclusion
S ↪→ Hom(−, X) and post composition (f ◦ −) : Hom(−, Y ) → Hom(−, X).
It follows from Definition 2.1.1.5 that, in Set, the pullback is given by

X ϕ×ψZY = {(x, y) ∈ X × Y | ϕ(x) = ψ(y)}.

So here,

S ×Hom(−,X) Hom(−, Y ) = {(g, h) ∈ S × Hom(−, Y ) | g = f ◦ h}

and projecting this to Hom(−, Y ) gives the set of all morphisms h such that
f ◦ h = g for some g ∈ S. This is exactly what Definition 2.1.3.4 says.

Definition 2.1.3.5 [Grothendieck topology‡]
Let C be some category. A Grothendieck topology on C is an assignment, to
each object X ∈ C, of a collection J(X) of sieves on X, called covering sieves,
such that the following conditions are satisfied for all X ∈ C:

(i) (base change) if S ∈ J(X) and f : Y → X is some arbitrary morphism
in C, then the pullback sieve satisfies f ∗S ∈ J(Y );

(ii) (maximal sieve) Hom(−, X) ∈ J(X);

(iii) (intersections)§ S, T ∈ J(X) if and only if S ∩ T ∈ J(C);

(iv) (transitivity) if S ∈ J(X) is such that TS ∈ J(X), where

TS =
⋃
Y ∈C

{f : Y → X | f ∗S is covering on Y },

then S ∈ J(X). y
∗Roughly speaking, take all morphisms to X that factor through Y along f and ‘divide

them by f ’.
†Which we can avoid defining category-theoretically here since we have a natural un-

derlying set structure.
‡As in [Sch09].
§This condition is actually redundant; see the comments after [MM92, Defini-

tion 1, §III.2].
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Definition 2.1.3.6 [Site]
Let C be a category and J a Grothendieck topology on C. Then the pair (C, J)
is called a site. y

Recall: a pretopology on a category C consists of, for each X ∈ C, a
collection C(X) of covering families {Xj → X}. We can use these to pick
certain sieves on X that we wish to be in J(X), and then see that this choice
satisfies the conditions of Definition 2.1.3.5. The actual method is quite
simple: given some sieve S = {Si → X} on X, we say that S ∈ J(X) if and
only if it contains some covering family {Xj → X} ∈ C(X). More details on
this construction can be found in [MM92, §III.2].

Note 2.1.3.7
There is an important result ([TV07, Théorème 2.5, §2.1, p.11]) that we
don’t cover here because it deals with the notion of stacks. We do not have
the space in this paper to cover the background needed to talk about stacks;
we refer the interested reader back to [TV07]. From now on we will skip
over stack-theoretic theorems without mentioning them. y

2.2 The faithfully flat topology

Throughout this section (C,⊗, 1) is a cosmos∗ and we use D to refer to an
arbitrary category. The structure of this section is largely based on [Mar09,
§1.2, 1.3] (where all proofs can be found) and [TV08, §1.1].

Definition 2.2.0.1 [Affine schemes over C (Définition 2.7, §2.2, p.14)]
The category of affine schemes over C is the opposite category

AffC = Comm (C)op.

For an object A ∈ Comm (C) we write SpecA to denote the corresponding
object in AffC. y

∗In keeping with Hypothèse 2.6, §2.2, p.14; recalling Definition 1.3.2.5.
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2.2.1 Commutative algebras

Definition 2.2.1.1 [Commutative A-algebras]
Let A ∈ Comm (C). The objects of A/Comm (C) are called commutative A-
algebras, and we write A-CommAlg to mean the category of such objects. y

This slightly opaque definition is best explained after showing how we
can endow A-Mod with a symmetric monoidal structure.

Definition 2.2.1.2 [Coequaliser]
The coequaliser coeq(X ⇒ Y ) of two morphisms f, g : X → Y in D is defined
by the universal property of being a pair (Q, q), where Q ∈ D and q : Y → Q,
such that q ◦f = q ◦g, and for any other such pair (R, r) there exists a unique
morphism ϕ : Q→ R such that the following diagram commutes:

X Y Q

R

f

g

q

r
ϕ

y

Definition 2.2.1.3 [Symmetric monoidal structure on A-Mod]
Let A ∈ Comm (C). Define the bifunctor (−⊗A−) : A-Mod×A-Mod→ A-Mod
by the object of the coequaliser

X ⊗A Y = coeq(X ⊗ A⊗ Y ⇒ X ⊗ Y ),

where the morphisms are the natural ones, namely

X ⊗ (A⊗ Y )
idX ⊗σY−−−−−→ X ⊗ Y

(X ⊗ A)⊗ Y (σX◦γXA)⊗idY−−−−−−−−−→ X ⊗ Y.

Then (A-Mod,⊗A, A) is a symmetric monoidal category.∗ y

Lemma 2.2.1.4 [Equivalent definitions of A-CommAlg]
Let A ∈ Comm (C). Then we have the equivalence of categories

Comm (A-Mod) ≡ A-CommAlg = A/Comm (C)

(using the symmetric monoidal structure from Definition 2.2.1.3). y

Proof. [Mar09, Proposition 1.2.15, §1.2, p.14].
∗[Mar09, Proposition 1.2.15, §1.2, p.14]
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Because of this equivalence we sometimes write objects of A-CommAlg
as X for some X ∈ Comm (A-Mod), and sometimes as (A → X) for some
X ∈ Comm (C). Object-wise, we can think of the structures we have defined
as follows:

Comm (A-Mod) ≡ A-CommAlg ⊂ A-Mod ⊂ Comm (C) ⊂ C.

Corollary 2.2.1.5
Let A ∈ Comm (C). Then

(i) Comm (C) and A-CommAlg are bicomplete;

(ii) (A-Mod,⊗A, A) is a cosmos. y

Proof. Lemma 2.2.1.4 and [Mar09, Propositions 1.2.14, 1.2.17 §1.2].

Lemma 2.2.1.6
Let A ∈ Comm (C) and X, Y ∈ Comm (A-Mod). Then

X ⊗A Y ∼= X tA Y

where the coproduct is taken in Comm (C). y

Proof. [Mar09, Proposition 1.2.6, §1.2, p.16]

2.2.2 Change of base for modules over a monoid

Assume we have some morphism f : SpecB → SpecA in AffC. We claim that
this induces a forgetful functor B-Mod → A-Mod. That is, on the level of
objects, B-Mod ⊂ A-Mod.

Take some object X ∈ B-Mod. This comes with a B-action σB : B ⊗X →
X. We can compose f and σB to obtain

σA : A⊗X
f⊗idX−−−−→ B ⊗X σB−→ X.

We claim that this is an A-action on X. This just means showing that both
of the diagrams in Definition 1.3.2.7 commute. Here we show just one since
the other is equally straightforward. Note that

1⊗X A⊗X

X

ηA⊗idX

λX σA
=

1⊗X B ⊗X

X

(f◦ηA)⊗idX

λX σB
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But f is a morphism in Comm (C), so f ◦ ηA = ηB (recall Definition 1.3.2.6),
and hence the second diagram commutes. Thus so too does the first diagram.
We also have an induced forgetful functor B-CommAlg→ A-CommAlg, since
if (B → X) ∈ B-CommAlg then, composing with f , we get (A → B → X) ∈
A-CommAlg.

We mention the forgetful functor B-Mod → A-Mod because it has a left-
adjoint, namely

(−⊗A B) : A-Mod→ B-Mod

(which is well defined: f lets us consider B, which is a B-module, as an
A-module). This tells us that (−⊗A B) is right exact.

2.2.3 fpqc topology

Now we apply the results from Sections 2.2.1 and 2.2.2. Let D = AffC and,
using (AffC)

op = Comm (C), define the pseudofunctor

M : (AffC)
op → Cat (2.2.3.1)

A 7→ A-Mod

(A→ B) 7→ (−⊗A B : A-Mod→ B-Mod).

We claim that D and M satisfy the conditions of Definition 2.1.2.1, and so
generate a Grothendieck topology on AffC. There are four conditions that we
need to check∗:

(i) AffC has finite limits: Corollary 2.2.1.5 (recall that AffC = Comm (C)op);

(ii) A-Mod is bicomplete: Corollary 2.2.1.5;

(iii) (− ⊗A B) has a conservative right adjoint: the right adjoint is the for-
getful functor B-Mod → A-Mod, and this is conservative since it gives
us B-Mod as a full subcategory of A-Mod;

(iv) the Beck-Chevalley condition†: say we have the following pullback dia-
gram

SpecB

SpecX SpecC

SpecA

qp′

q′ p

in AffC (i.e. SpecX = SpecB ×SpecC SpecA is the pullback). Then
X = B tC A is the pushout in Comm (C), and A,B ∈ Comm (C-Mod) ≡

∗Really, we also need to check that M actually is a pseudofunctor, but since we only
gave a rough definition of pseudofunctors we simply claim that this is, in fact, true.

†This is proved (much more generally) in [Shu13, Example 2.35].
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C-CommAlg. Lemma 2.2.1.6 then tells us that X ∼= B ⊗C A. Thus,∗ for
M ∈ B-Mod,

M ⊗B X ∼= M ⊗B (B ⊗C A) ∼= (M ⊗B B)⊗C A ∼= M ⊗C A,

and so p∗q∗ = (−⊗C A) ∼= (−⊗B X) = (q′)∗(p
′)∗.

Figure 6: Constructing the fpqc topology – compare with Figure 4

Definition 2.2.3.2 [Faithfully flat and quasi-compact topology (Définition 2.8,
§2.2, p.15)]
With definitions as in Equation (2.2.3.1), the M -faithfully flat topology on
AffC is called the faithfully flat and quasi-compact (or simply fpqc,† or even
just flat) topology. y

Note 2.2.3.3 [Change of base]
For a morphism f : X → Y in some category D we have the notion of the
change of base functor f ∗ : D/Y → D/X given by the pullback along f . This
is not quite what we mean when we call (− ⊗A B) a change of base. We are
instead applying the terminology from Definition 2.1.2.1: say we have

SpecB

SpecA

SpecB′

p

q

∗The second isomorphism comes from associativity; the third comes from the fact that
M⊗BB ∼=M . Both these facts mirror the usual case of tensor products over a commutative
ring, and can be proved by using Lemma 2.2.1.6: X ⊗A Y ∼= X tA Y .

†In keeping with most current literature, we choose to keep the original French initialism
rather than using the English ffqc.
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Then q∗ : B′-Mod→ A-Mod is the forgetful functor, and

p∗ = (−⊗A B) : A-Mod→ B-Mod.

So p∗q∗ = (− ⊗A B) : B′-Mod → B-Mod is what we call, in line with Defini-
tion 2.1.2.1, a change of base. y

In Section 2.3 we will actually redefine the fpqc topology by spelling
out explicitly what it means to be M -faithfully flat with M as in Equa-
tion (2.2.3.1). We do this because it makes it easier to define the Zariski
topology.

2.3 The Zariski topology

Yet again, throughout this section we assume that (C,⊗, 1) is a cosmos and use
D to refer to an arbitrary category.

2.3.1 Zariski covers

Our next goal is to define the Zariski topology on AffC. Once again, we start
by defining a certain type of morphism in AffC and saying when a collection
of such morphisms gives an open cover.

Definition 2.3.1.1 [Zariski open (Définition 2.9, §2.3, p.15)]
Let f : A→ B in Comm (C). Then f is

(i) flat if the functor

(−⊗A B) : A-Mod→ B-Mod

is exact∗;

(ii) an epimorphism if, for all X ∈ Comm (C), the map

(− ◦ f) : Hom(B,X)→ Hom(A,X)

is injective;

∗We already know that this functor commutes with colimits, since (A-Mod,⊗A, A) is
closed (Corollary 2.2.1.5), so it is exact if and only if it commutes with finite limits as well,
i.e. if and only if it is left exact.
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(iii) a finite presentation if, for every filtered diagram∗ of objects

{Xi ∈ A/Comm (C)}i∈I ,

the natural morphism

colimiHomA/Comm(C)(B,Xi) −→ HomA/Comm(C)(B, colimiXi)

is an isomorphism.

We say that f : SpecB → SpecA in AffC is Zariski open (or an open Zariski
immersion) if the corresponding morphism f : A → B in Comm (C) is a flat
epimorphism of finite presentation. y

Definition 2.3.1.2 [fpqc and Zariski covers (Définition 2.10, §2.3, p.16)]
A family of morphisms {SpecAi → SpecA}i∈I in AffC is

(i) an fpqc cover (or simply a flat cover) if

(a) for all i ∈ I, the morphism SpecAi → SpecA is flat;

(b) there exists some finite subset J ⊂ I such that the functor∏
j∈J

(−⊗A Aj) : A-Mod→
∏
j∈J

(Aj-Mod)

is conservative†;

(ii) a Zariski cover if

(a) it is an fpqc cover;

(b) for all i ∈ I, the morphism SpecAi → SpecA is Zariski open. y

We are interested primarily in the Zariski topology, and the fpqc topology
will be used essentially only for [ . . . ] (Lemma 2.3.2.4) (§2.3 p.16 ¶3).

Saying that a family of morphisms is a flat cover, in the sense of the above
definition, is just another way‡ of saying it is M -faithfully flat, in the sense

∗That is, our diagram is non-empty and such that

(i) for any two objects x, y in the diagram there exists some object k and arrows
x→ k ← y;

(ii) for any parallel arrows f, g : x → y there exists some object k and an arrow a : y → k
such that af = ag.

†By definition, this is just asking that (−⊗A Aj) be conservative for each j ∈ J .
‡The only real difference between being a flat cover and being M -faithfully flat is that

the former requires exactness of the change of base functor (− ⊗A Ai) whereas the latter
requires only left exactness, but we know that this functor is right exact anyway, since it
is left adjoint to the forgetful functor Ai-Mod → A-Mod. Thus these two requirements
coincide.
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of Section 2.2.3. So we already know that flat covers give rise to a topol-
ogy: the fpqc (or flat) topology. To show that the same is true for Zariski
covers we need to show that the property of being Zariski open is preserved
by pullbacks and is associative (in the sense of Definition 2.1.3.1), and also
that isomorphisms are Zariski open. However, Definition 2.3.1.1 is phrased
not in terms of SpecB → SpecA, but instead in terms of the corresponding
A→ B. So we need to check that these properties of morphisms of com-
mutative monoids are stable under pushouts. Stability of finite presentation
follows from a lengthy definition chase, and epimorphisms are always sta-
ble under pushouts.∗ As for flatness, the fpqc topology already tells us that
flatness is preserved.

Definition 2.3.1.3 [Zariski topology]
The topology on AffC generated† by Zariski covers is called the Zariski topol-
ogy. y

Note 2.3.1.4
Because we require both fpqc and Zariski covers to be finitely conservative, a
sieve S on SpecA is in the generated topology if and only if it contains some
cover if and only if it contains the finite conservative subset of that cover.
This means that these pretopologies are quasi-compact, i.e. generated by
finite covering families. For more, see the beginning of [MM92, § IX.11]. y

2.3.2 Sheaves

Just as in classical algebraic geometry, now that we have some topology we
can introduce the idea of ‘gluing together’ affine schemes to obtain schemes.
Fundamental to this idea is the definition of a sheaf.

Definition 2.3.2.1 [Sheaves on a site]
Let (D, J) be a site‡ and F ∈ PSh(D) some presheaf.§ We say that F is a
J-sheaf (or simply a sheaf if the context is clear) if, for all objects X ∈ D and
covering sieves S ∈ J(X) on X, the natural map

Hom(Hom(−, X), F ) −→ Hom(S, F )

induced by the inclusion S ↪→ Hom(−, X) is a bijection.
We write ShJ(D) to be the category of sheaves on (D, J), a full subcate-

gory of PSh(D). y

∗[Bor94, Proposition 2.5.3(1)]
†As in Lemma 2.1.3.2.
‡Definition 2.1.3.6
§Definition 1.3.1.2
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If we have a pretopology then we can rewrite this definition in a way
which is sometimes easier to apply in practice, and also gives a better geo-
metric intuition.

Lemma 2.3.2.2 [Sheaves on a presite]
Let (D, C) be a presite,∗ (D, J) the site that it generates, and F ∈ PSh(D).
Then F ∈ ShJ(D) if and only if, for all objects X ∈ D and covering families
{Xi → X}i∈I ∈ C(X) of X,

F (X) = eq

(∏
i∈I

F (Xi)⇒
∏
j,k∈I

F (Xj ×X Xk)

)

(where the equaliser eq is the dual notion to the coequaliser†). y

Proof. [MM92, §III.4, Proposition 1]

As for how this provides us with some intuition, let us return to the exam-
ple of Op(T ). In this category, pullbacks correspond to intersection, and we
think of presheaves as being functions on the open sets that take inclusion
maps to restriction maps. Lemma 2.3.2.2 says that F is a sheaf if and only if,
when we piece together all of the F (Xi) that agree on overlaps (this is the
equaliser term), we get exactly F (X), for any cover Xi of X. This is just the
(classical) presheaf condition – see Figure 7.

Since the Zariski topology is coarser (see Figure 8) than the fpqc topology,
the collection of fpqc covering sieves on some object is at least as large as
the collection of Zariski covering sieves. This means that asking for the map
induced by inclusion in Definition 2.3.2.1 to be a bijection for all covering
sieves on an object is a stricter condition in the fpqc topology than in the
Zariski topology. So being an fpqc sheaf implies being a Zariski sheaf, but
the converse doesn’t necessarily hold. Thus we have the subcategories

Shfpqc(AffC) ⊂ ShZar(AffC) ⊂ PSh(AffC).

Note 2.3.2.3
As already stated, our primary interest is the Zariski topology, so whenever
we speak of sheaves without reference to a specific topology it is assumed
that we mean Zariski sheaves. Similarly, we write Sh(AffC) = ShZar(AffC). y

∗This is not standard terminology, but we define a presite as a pair (D, C) consisting of
a category D and a Grothendieck pretopology C on D. Given such a pair, we can talk about
the site that it generates by endowing D with the Grothendieck topology generated by C.

†Definition 2.2.1.2
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Figure 7: The fact that we always have a morphism from F (X) to the equaliser in
Lemma 2.3.2.2 corresponds to the classical presheaf condition: for presheaves on a topo-
logical space it doesn’t matter whether we restrict U ∪ V to U ∩ V via U or via V

In Section 1.3.1 we identified Affk with its essential image in PSh(Affk)
under the Yoneda embedding, and we can do the same here: identify AffC
with its essential image in PSh(AffC) under the Yoneda embedding. It turns
out, however, that we can actually come up with a stronger result.

Lemma 2.3.2.4 [(Corollaire 2.11, §2.3, p.17)]
For all X ∈ AffC the presheaf YX coming from the Yoneda embedding∗ is an
fpqc sheaf. y

Proof. The proof in [TV07] uses stacks; see Note 2.1.3.7.

Firstly, this exactly says that the fpqc topology (and thus the Zariski topol-
ogy, since it is coarser) is subcanonical: all representable presheaves are fpqc
sheaves. Secondly, this means we have the equivalence of categories

AffC ≡ AffSch(C) (2.3.2.5)

where we define the full subcategory AffSch(C) ⊂ Sh(AffC) by

AffSch(C) = {X ∈ Sh(AffC) | X ∼= HomAffC(−, SpecA) for some SpecA ∈ AffC}.

We call the objects of AffSch(C) affine schemes.

∗Lemmas 1.3.1.3 and 1.3.1.5
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Figure 8: The Zariski topology is coarser than the fpqc topology, i.e. it has fewer open sets,
so every Zariski cover is also an fpqc cover – the sheaf condition ‘reverses’ this inclusion:
there are more fpqc covers than Zariski, hence fewer fpqc sheaves than Zariski (and maybe
hence more fpqc schemes (something we don’t define) than Zariski; see Figure 12 for a
similar conjecture)

Definition 2.3.2.6 [Affine schemes over C]
From now on we use the phrase ‘affine scheme’ interchangeably, to mean
an object of either AffC or AffSch(C). We often use the same notation for
both as well (so for SpecA ∈ AffC we also write SpecA ∈ AffSch(C) to mean
YA = Hom(−, SpecA), and vice versa). y
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2.4 Schemes

In this section we present the main definition of this paper, that
of a scheme over C. (§2.4, ¶1)

2.4.1 Using sheaves

In light of Equation (2.3.2.5), we need to rephrase Definitions 2.3.1.1 and 2.3.1.2
in terms of sheaves.

Definition 2.4.1.1 [Zariski open in Sh(AffC) (Définition 2.12, §2.4, p.18)]

(i) Let X ∈ AffSch(C) and F ⊂ X a subsheaf of X. We say that F is
Zariski open in X if there exists a Zariski-open (in the sense of Defini-
tion 2.3.1.1∗) family {Xi → X}i∈I in AffC (where I is not necessarily
finite†) and a sheaf morphism

∐
i∈I Xi → X whose image in X is F .

(ii) A morphism f : F → G in Sh(AffC) is Zariski open (or an open Zariski
immersion) if, for all affine schemes X and morphisms X → G, the
induced morphism

F ×G X → X

is a monomorphism whose image is Zariski open in X. y

By definition, Zariski-open morphisms are stable under a change of base
and also under composition in Sh(AffC). Further, it can be easily checked that
Zariski-open morphisms are monomorphisms in Sh(AffC). (§2.4, ¶2) When we
introduce schemes we will see that this point about monomorphisms is an
example of a property holding on all affine schemes in a cover implying that
the same property holds for the whole scheme, i.e. ‘locally a monomorphism
implies globally a monomorphism’.

At the moment we have two definitions for what it means for a mor-
phism of affine schemes to be Zariski open: Definition 2.3.1.1 for AffC; and
Definition 2.4.1.1 for AffSch(C). The following lemma shows that the two
definitions are indeed equivalent.

∗Recall Definition 2.3.2.6: X is not necessarily in AffC , but we know that we can find
some SpecB ∈ AffC such that X ∼= Hom(−,SpecB). Similarly we can find SpecBi ∈ AffC
such that Xi

∼= Hom(−,SpecBi). Then we want the family {SpecBi → SpecB}i∈I to be
Zariski open in the sense of Definition 2.3.1.1.

†See the paragraph accompanying Figures 10 and 11, just before Section 2.4.2.
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Lemma 2.4.1.2 [Lemme 2.14, §2.4, p.18]
Let f : Z → Y be a morphism of affine schemes. Then f is Zariski open in
the sense of Definition 2.3.1.1 if and only if it is Zariski open in the sense of
Definition 2.4.1.1. y

Proof. This proof is largely unpacking definitions, and is given in [TV07].

Definition 2.4.1.3 [Scheme relative to C (Définition 2.15, §2.4, p.19)]
A sheaf F ∈ Sh(AffC) is a scheme relative to C (or simply a scheme if the
context is clear) if there exists a family {Xi}i∈I of affine schemes and a mor-
phism

p :

(∐
i∈I

Xi

)
→ F

satisfying the following two conditions:

(i) p is an epimorphism of sheaves;

(ii) for all i ∈ I the morphism∗ Xi → F is an open Zariski immersion.

We define the category Sch(C) to be the full subcategory of Sh(AffC) consist-
ing of such sheaves, and call the family {Xi → X} an affine Zariski cover of F .

y

At the moment, we simply know that a scheme is in some sense ‘covered’
by affine schemes – we do not yet know exactly how these affine schemes ‘fit
together’ (we find out in Lemma 2.4.3.4).

Figure 9: Definition 2.4.1.3 – schemes

When we defined Zariski covers in Definition 2.3.1.2 we required them
to be finitely conservative, but here we don’t have any finiteness conditions
– we use the word ‘cover’ in two slightly different senses. Here it is not

∗That is, the induced morphism Xi →
∐
Xi → F .
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so much a topological cover, as a scheme-theoretic cover. Locally, schemes
‘look like’ affine schemes, which have this finitely conservative (i.e. quasi-
compact) property, but globally they are not under such tight restrictions.
See Figures 10 and 11.

Figure 10: Consider infinitely many lines
glued together pairwise at a point – this is a
scheme, since we can take the Xi to be the
lines, then {Xi} is an infinite affine Zariski
cover

Figure 11: The trivial gluing (coproduct)
of infinitely many lines; here we can take
the Xi to be the lines and p to simply be
the identity

2.4.2 Partial summary

Before moving on to talk about the properties schemes, we provide a brief
summary of what we have done so far.

In Section 2.3.1 we defined two topologies on AffC = Comm (C)op by
defining certain types of open morphisms: fpqc and Zariski. After this, in
Section 2.3.2, we looked at a more abstract situation: using the topologies
we just defined to consider fpqc and Zariski sheaves.∗ Then, with the Yoneda
embedding, we considered AffC as sitting inside Shfpqc(AffC) ⊂ PSh(AffC),
and called the essential image of this embedding AffSch(C), whose objects
are affine schemes. Next, in Definition 2.4.1.1, we extended our definition
of Zariski open morphisms to general sheaf morphisms and showed that it
agreed with our previous definition. We used this to define a scheme as
a sheaf that was covered by affine schemes, with each affine scheme em-
bedding into the sheaf via a Zariski open immersion. By definition, every
affine scheme is also a scheme (just as we would expect) and every scheme
is a sheaf. Figure 12 shows how all these full subcategories overlap inside
PSh(AffC).

∗Then agreeing, from now on, to say sheaf to mean a Zariski sheaf.

35 of 55



Figure 12: The hierarchy,
considering objects up to
isomorphism – really there
are ‘lots more’ fpqc sheaves
than schemes: Shfpqc(AffC)
is bicomplete but Sch(C)
does not have all colim-
its, so we can construct
X ∈ Shfpqc(AffC) \ Sch(C) by
talking a sufficiently nasty
colimit
Note: it seems possible
(hence the question mark)
that Sch(C) ⊂ Shfpqc(AffC),
since Zariski open mor-
phisms are also flat mor-
phisms, and we have an
‘fpqc-sheafification’ functor
Sh(AffC) → Shfpqc(AffC)
that is a left adjoint (and so
preserves colimits) – this is
not mentioned in [TV07] and
we don’t have the space here
to go any further

2.4.3 Properties of schemes

We now state some fundamental properties of schemes, and refer the reader
to [TV07] for proofs of each one. However, there are diagrams (at the end
of this section) of sketches for most of the proofs, which should hopefully
convey the main ideas reasonably well. The conventions used in these dia-
grams is explained in Figure 14. We recall that we can think of pullbacks as
a generalisation of fibres; that pullbacks of epimorphisms are epimorphisms;
and that pullbacks of Zariski open morphisms are Zariski open.

Lemma 2.4.3.1 [Gluing and affine schemes (Proposition 2.6, §2.4, p.20)]

(i) Let A,B be affine schemes, G a sheaf, and G → A ← B morphisms of
sheaves. If G is a scheme then F = B ×A G is also a scheme.

(ii) Let A be an affine scheme, F a sheaf, and F → A a morphism of sheaves.
If there exists an affine Zariski cover {Ai → A} such that each F ×A Ai is
a scheme then F is a scheme. y
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Lemma 2.4.3.2 [Proposition 2.17, §2.4, p.21]

(i) Let F be a scheme and F0 ⊂ F be Zariski open in the sense of Defini-
tion 2.4.1.1. Then F0 is a scheme.

(ii) Let f : F → G be a morphism between schemes. Then f is Zariski open in
the sense of Definition 2.4.1.1 if and only if f satisfies the following two
conditions:

(a) f is a monomorphism;

(b) there exists an affine Zariski cover {Xi → F} such that each mor-
phism Xi → G given by composition with f is Zariski open. y

Definition 2.4.3.3 [Congruence on an object]
For X ∈ D, a congruence R on X is∗ a monomorphism

R
(p1,p2)
↪→ X ×X

equipped with the following morphisms:

(i) (reflexivity) r : X → R such that p1 ◦ r = p2 ◦ r = idX;

(ii) (symmetry) s : R→ R such that p1 ◦ s = p2 and p2 ◦ s = p1;

(iii) (transitivity) t : R×X R→ R such that

R×X R R

R X

π1

t

π2t p1

p2

commutes (where π1, π2 are the pullback morphisms).

Given such an R, we define the quotient object X/R as

X/R = coeq(R
p1
⇒
p2

X). y

Lemma 2.4.3.4 [Stability; gluing affine schemes (Proposition 2.18, §2.4, p.21)]

(i) The subcategory Sch(C) ⊂ Sh(AffC) is stable under disjoint unions and
pullbacks.

∗Up to some notion of isomorphism between morphisms – see [Ško09].
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(ii) A sheaf F ∈ Sh(AffC) is a scheme if and only if there exists some congru-
ence R on some sheaf X ∈ Sh(AffC) where the following four conditions
are satisfied:

(a) X ∼=
∐

i∈I Ui for some affine schemes Ui;

(b) for all (i, j) ∈ I2, the subsheaf Ri,j ⊂ Ui × Uj given by the pullback∗

Ri,j Ui × Uj

R X ×X

is such that each induced morphism

Ri,j → Ui

is Zariski open;

(c) for each i ∈ I the subobject Ri,i ⊂ Ui × Ui is equal to the image of
the diagonal morphism Ui → Ui × Ui;

(d) F ∼= X/R. y

It is possible to rephrase Lemma 2.4.3.4(ii) in terms of pushouts. Say we
have affine schemes A,X, Y and Zariski-open immersions A → X, A → Y .
Then X

∐
A Y is the presheaf obtained by gluing X and Y along the images

of A (see Figure 13). The above lemma then says that this presheaf is also
actually a scheme.

Figure 13: Rephrasing Lemma 2.4.3.4(ii) in familiar ‘gluing’ terms – if we take some affine
schemes with Zariski-open affine subschemes and glue along these subschemes in a ‘suf-
ficiently nice’ way, then we end up with a scheme – further, every scheme is obtained in
exactly this way – schemes are affine schemes glued together

∗‘Intersecting down’ the congruence: R ∼=
∐
i,j Ri,j . The morphisms Ui × Uj → X ×X

are those induced by the Ui →
∐
Ui

∼−→ X.
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2.4.4 Another view

Here we briefly discuss how the functor of points approach that we have
been using (Section 1.3) coincides with the classical ringed space approach.
What follows is a sketch of the story – in particular we make claims without
stating proofs – and we refer the reader to the end (the last four paragraphs)
of [TV07, §2.4, p.24] as well as [MM92, §IX.1–3] for the details.

Given some topological space T we can view the category Op(T ) as a lat-
tice, with partial order given by inclusion. Generally, define a frame to be any
lattice X that behaves suitably like Op(T ): having arbitrary joins and finite
meets, and meets distributing over arbitrary joins. The morphisms between
frames are maps of partially-ordered sets preserving arbitrary joins and finite
meets. This defines a category Fra of frames. We define the category of lo-
cales∗ as Loc = Fraop, and for f : X → Y in Loc we write f−1 : O(Y )→ O(X)
to be the corresponding morphism of objects in Fra.

Next, given a locale X we can define points of X as locale morphisms
1 → X, where 1 ∈ Loc is the terminal locale. We say that a locale has
enough points if elements of the lattice can be distinguished by a single point.†

That is, for any distinct U, V ∈ O(X), there exists p : {∗} → X such that
p−1(U) 6= p−1(V ). It can be shown‡ that if a locale X has enough points then
there exists some topological space |X| such that O(X) ∼= Op(|X|).

Finally, given X ∈ Sch(C), we define Zar(X) as the full subcategory of
Sh(AffC)/X consisting of u : Y → X such that Y is a scheme and u is an
open Zariski immersion. It turns out that Zar(X) is a locale, and it has an
induced topology coming from the canonical topology on Sh(AffC). If we
define AffZar(X) to be the full subcategory of Zar(X) consisting of Y → X
with Y an affine scheme, and endow this with the same restricted topology,
then we have the equivalence of categories

Sh(Zar(X)) ≡ Sh(AffZar(X)),

so we write Sh(XZar) to mean either (under this identification). The topology
on Zar(X) is generated by a quasi-compact pretopology (i.e. finite covering
families), namely AffZar(X). This means that Zar(X) has enough points,§

and so, by the above, Zar(X) ≡ Op(|X|) for some topological space |X|. This
induces the equivalence

Sh(XZar) ≡ Sh(|X|).
∗Translation note: locales are called lieux in French.
†[MM92, §IX.2] provides a nice way of thinking of this in terms of frames.
‡[MM92, Corollary 4, §IX.3]
§More generally, Deligne’s theorem ([MM92, Corollary 3, §IX.11]) tells us that any co-

herent topos has enough points.
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Now let Y = (SpecA → X) ∈ AffZar(X). We can associate to Y the
object A ∈ Comm (C); letting Y vary over AffZar(X) induces a functor

OX : AffZar(X)op → Comm (C)
(X → SpecA) 7→ A.

Then OX is a sheaf,∗ and the pair (|X|,OX) acts as in a C-ringed space ap-
proach. Replacing C with Ab we recover the classical ringed space approach.

Figure 14: The motivation of the notation is the naive motto ‘straight lines are simpler than
curved ones’: affine schemes are our building blocks, schemes are slightly more complicated,
and sheaves are the least well behaved of all – the choice of graphical notation is not meant
to be read into too deeply

Figure 15: Lemma 2.4.3.1(i) – the proof of 1© uses pasting of pullbacks and tells us that the
Yi are affine schemes, because Specα×Spec β Spec γ ∼= Spec(α

∐
β γ); the proof of 2© simply

says that the pullback of an epimorphism is also an epimorphism

∗Lemma 2.3.2.4
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Figure 16: Lemma 2.4.3.1(ii) – a special case of [TV07,
Lemme 2.20, §2.4]

For 1© the previous
part of the lemma
tells us that F ×A Ai
is a scheme; 2©
says that if we take
affine covers for
all of the F ×A Ai
then together they
cover F

Figure 17: Lemma 2.4.3.4(i) – the statement concerning pullbacks

We build up to this
proof in successive
steps, from a© to d©
– the statements are
on the left and the
proofs on the right
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2.5 Changes of base

The aim of this section is to provide some technical machinery that we will
use in Section 3, so we only state the main result of [TV07, §2.5] and refer
the reader back to there for more details.

Theorem 2.5.0.1 [(Corollaire 2.22, §2.5, p.27)]
Let (C,⊗, 1C) and (D,�, 1D) be cosmoses, and f : C → D be a strong symmetric
monoidal functor∗ with left adjoint g : D → C. Define

f∼! : Sh(AffC)→ Sh(AffD)

F 7→ (a ◦ F ◦ g)

where a is the sheafification† functor. Suppose that g : D → C is conservative
and commutes with filtered colimits, and that, for every flat morphism A→ B
in Comm (C) and every N ∈ f(A)-Mod, the natural morphism

g(N)⊗A B → g(N �f(A) f(B))

is an isomorphism in B-Mod. Then

(i) f : AffC → AffD is continuous in the Zariski topology;

(ii) the functor f∼! : Sh(AffC)→ Sh(AffD) preserves the subcategories of schemes,
and induces a functor (called the change of base functor)

Sch(C)→ Sch(D)
X 7→ X ⊗D := f∼! (X);

(iii) we have an isomorphism

f∼! (X) ∼= f(X)

for every X ∈ AffSch(C). y
∗That is, a functor that respects the symmetric monoidal structure of both C and D. To

be slightly more precise, the functor comes with an isomorphism f(X) � f(Y )
∼−→ f(X ⊗

Y ), natural in X and Y , which respects the symmetry of ⊗ and �, and an isomorphism
1D

∼−→ f(1C) satisfying certain coherence conditions. [TV07] and many others use the name
monoidal functor to refer to what we (and some others) call a strong monoidal functor. The
choice of nomenclature is only important insofar as consistency; we agree to use ‘strong’.

†Similar to classical algebraic geometry: the inclusion functor ι : Sh(AffC) → PSh(AffC)
admits a left adjoint a : PSh(AffC) → Sh(AffC) which we call the sheafification functor. For
(vastly many) more details, see [MM92, §III.5, Theorem 1].
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Note 2.5.0.2 [Notation]
Say (T ,⊗, 1) is a cosmos and A,B ∈ Comm (T ). Then, with C = A-Mod and
D = B-Mod, we write

F∼! (−) = (−⊗A B) : Sch(A-Mod)→ Sch(B-Mod),

extending the definition of (−⊗A B) from Section 2.2.1. y

As we would (very much) hope, the change of base functor is functorial:
it doesn’t matter in which order we change base and sheafify. In particular,
if X = SpecA ∈ AffC for some A ∈ Comm (C) then Theorem 2.5.0.1 (iii) tells
us∗ that

f∼! (SpecA)
∼= Spec f(A).

Thus, using the Hom-set isomorphism from the adjunction (f a g),

f∼! (SpecA) : Comm (D)→ Set

B 7→ Hom(f(A), B) ∼= Hom(A, g(B)).

We think of Spec f(A) as†

Spec f(A) ‘ = ’ HomAffD(−, Spec f(A))
=HomComm(D)(f(A),−).

So, remembering Section 1.3.1, f∼! (SpecA) gives the functor of points of A.

∗[TV07, §2.5, ¶-1]
†Again, recall Definition 2.3.2.6.
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3 Three examples of relative geometry

We now present our first three examples of categories of relative schemes. (§3 ¶1)

Note 3.0.0.1
As stated in Section 1.1.1, we adopt the convention that 0 ∈ N. y

3.1 Under SpecZ

Instead of just restating the results of [TV07, §3.1–3.3, 4] we try here to
provide some motivation for these choices of examples.

We know that Z is the initial object in the category CRing of commu-
tative rings; we said in Section 1.2 that we would have to leave CRing in
order to find schemes over bases that lie under SpecZ. If we remove all al-
gebraic structure from CRing we end up with the category Set of sets, and
we might worry that we have discarded too much structure to be able to
define schemes any more. But (Set,×, {∗}), where × is the cartesian product
and {∗} is a singleton, is a cosmos,∗ and so we can define schemes over Set.
Since Set is the prototype of a concrete category we can’t really go down any
further without becoming too far removed from our usual concept of alge-
braic structures. So we look at what (commutative associative and unital)
structures we can find in between Set and CRing.

We can endow a set with some commutative associative binary opera-
tion, which we might as well call addition, and pick an object to be the
additive identity – this results in a commutative monoid. Then we could go
one of two ways: introducing additive inverses to our commutative monoid,
making it an abelian group; or introducing some commutative multiplication
with identity, making it a commutative semiring. Either way, the only thing
(of interest to us now) sitting above these two structure comes from com-
bining the two, resulting in a commutative ring – this is where we stop, since
classical algebraic geometry can deal with things from here.

Note 3.1.0.1
A very important thing to be aware of (that notation doesn’t make entirely
clear) is that when we speak about A-Mod for A ∈ Comm (C), this category
depends on C. For example, if we take Z ∈ Comm (Ab) = CRing then Z-Mod

∗It is arguably the most tautological example of a cosmos.
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is the category of abelian groups, but if we consider Z ∈ Comm (Set) = CMon
then Z-Mod is the category of monoid actions, or Z-actions (sometimes con-
fusingly written Z-Set). To avoid confusion in this section, we adopt the follow-
ing (non-standard) notation: we writeA-ModC to emphasise thatA ∈ Comm (C).

y

Recalling Definitions 1.3.2.6 and 1.3.2.7, the following pattern emerges:

1-ModC (1, C) Comm (1-ModC)

Ab (Z,Ab) CRing

CMon (N,CMon) CSemiring

Set ({∗}, Set) CMon

introduce additive inverses

introduce addition

It is true that {∗}-ModSet = Set, but here lies the subtle issue: when we
introduce addition we need our singleton to contain an additive identity and
an additive generator for N, but by definition these things must be distinct.
That is, we want 0, 1 ∈ {∗} with 0 6= 1. Clearly, such a singleton doesn’t exist,
but in [Tit57] Jacques Tits introduced the idea of the field with one element:
F1. Although it is not a well-defined mathematical object,∗ it is interesting
to put aside such concerns and try to glean as much information from it as
possible, especially when it arises in such a natural way as it does here.†

By definition, 1 is initial in Comm (C) and so Spec 1 is terminal in AffC.
Thus we can think of schemes relative to 1-ModC as being schemes over
Spec 1. It can be shown‡ that (Ab,⊗,Z), (CMon,⊗,N), and (Set,×,F1) are all
cosmoses. In [TV07, §3.1–3.3], the authors work up to defining F1-schemes,
as well as a base change to Z-schemes:

(−⊗F1 Z) : F1-Sch→ Z-Sch (3.1.0.2)

which acts on affine schemes by

(−⊗F1 Z) : AffF1-Mod → AffN-Mod → AffZ-Mod

CMonop → CSemiringop → CRingop

M 7→ N[M ] 7→ Z[M ].

(3.1.0.3)

∗At least, not within our current definitions of algebraic objects.
†In fact, studying this F1 is one of the main motivations for developing all of this abstract

theory – see Section 4.2.
‡These are relatively standard facts – they can be found, for example, on the nLab.
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3.2 Diagonalisable group schemes

With Equation (3.1.0.2) we can try to generalise some constructions of classi-
cal schemes to N-Sch and F1-Sch. We now look at one such example, straight
from [TV07, §4].

[Mil12, §XIV.3, p.217] provides a general introduction to diagonalisable
group schemes. The basic idea is to define a functor

D : Ab→ Fun(CRing,Grp)

M 7→ HomGrp(M,−×)

Then D(M) : R 7→ HomGrp(M,R×) can be viewed as an ‘affine group’.

An abelian group is also a commutative monoid, and AffF1-Mod = CMonop.
So for M ∈ Ab we can define

DF1(M) = SpecM ∈ F1-Sch.

Now [Mil12, Proposition 3.3, §XIV.3, p.217] tells us two things:

(i) D(M) ∼= SpecZ[M ];

(ii) if M is finitely generated then D(M) is isomorphic to a finite product
of copies of Gm and µn (for various n ∈ N).

If we define the affine F1-scheme

Spec(F1n) = DF1(Z/nZ)

then, using the above results and Equation (3.1.0.3), we see that

(i) DF1(M)⊗F1 Z ∼= D(M);

(ii) Spec(F1n)⊗F1 Z ∼= µn ∼= D(Z/nZ).

So we can generalise D(−) to DF1(−) to obtain diagonalisable group schemes
over F1 that, after a change of base F1 → Z, agree with our existing notions
of diagonalisable group schemes. By using a change of base F1 → N we can
also recover a definition for N-schemes.

This idea of SpecF1n plays a major role in Section 4.2.
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4 Further applications

We now look at some applications that are not covered in [TV07].

4.1 Day convolution

The theory developed in [TV07] is very powerful, but relies on working with
a cosmos – we assume, in particular, that our category is bicomplete. How-
ever, many categories with which we would like to work are not bicomplete.
If this is the case then there are two reasonably natural approaches towards
a solution:

(i) throw away some morphisms – the fewer the morphisms the ‘easier’ it
is for a morphism to be universal in some way;

(ii) add in some objects – ‘bicomplete’ this category in some way.

An example of the first approach is when we define the category of Ba-
nach spaces to be Ban1, whose morphisms are weak contractions, instead
of the more general Ban, whose morphisms are any bounded linear maps –
Ban1 is bicomplete∗ whereas Ban isn’t. This approach forms the beginning
of the study of categorical Banach space theory: see e.g. [CLM79] for explicit
descriptions of certain objects and functors (such as the change of base);
[Cru08] for an enriched-category view; and [Cas10] for a general survey.

As for the second approach, it is a standard fact† that PSh(D) is bicom-
plete for any category D, so here we consider PSh(Ban). But now the issue is
giving PSh(Ban) a closed symmetric monoidal structure. A method to do this
was given in [Day70] in the form of the eponymous Day convolution.‡ We
can sometimes use a simpler method though, if we start with a category D
that is closed symmetric monoidal (for example, Ban). Then the tensor prod-
uct commutes with colimits, since it is left adjoint to the internal Hom. Since
every presheaf is (canonically, in fact) a colimit of representable presheaves§

we can define a tensor product on PSh(D) by simply writing all presheaves
as such colimits and then using our tensor product from D. It turns out,
however, that this gives exactly the same structure as Day convolution does,
but is described in a much simpler fashion.

∗[Yua12]
†Since (co)limits are computed pointwise in Set, and Set is bicomplete.
‡Most of the results we quote in this section are actually far more powerful than we

need; they can be found in all their generality in [Day70] and [MMSS99], for example.
§[Mac78, Theorem 1, §III.7]
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Definition 4.1.0.1 [Day convolution]
Let (C,⊗, 1) be a monoidal category, and F,G ∈ PSh(C). Define the Day
convolution product as the coend

F ? G =

∫ d∈C ∫ c∈C
F (c)×G(d)× HomC(−, c⊗ d)

where, for S : Cop × C → D with D cocomplete, we define the coend by∫ c∈C
S(c, c) = coeq

(∏
c→c′

S(c′, c)⇒
∏
c∈C

S(c, c)

)

with the morphisms on the right coming from S(c′, c)→ S(c, c) and S(c′, c)→
S(c′, c′). y

Definition 4.1.0.2
Let A be a small∗ symmetric monoidal category and D be a cosmos. Define
the symmetric monoidal category

{A,D} =
(
Fun(A,D), ?,HomA(1A,−)

)
where ? is the Day convolution. Also define

FunLSM(A,D) ⊆ Fun(A,D)

to be the full subcategory whose objects are lax† symmetric monoidal func-
tors A → D. y

It turns out that we can characterise the objects of Comm ({A,D}) when
D = Set in more explicit terms, and then use this to better understand
AffSch({A,D}).

Lemma 4.1.0.3

(i) {A,D} is a cosmos;

(ii) Comm ({A,D}) ≡ FunLSM(A,D). y

Proof. For (i), see [Sch10a]; for (ii) see [Day70, Example 3.2.2] or [MMSS99,
Proposition 22.1].

∗Following [TV07], we ignore issues of universe.
†That is, a strong symmetric monoidal functor F : A → D but where the morphisms

f(X) � f(Y ) → f(X ⊗ Y ) and 1D → f(1A) are not necessarily isomorphisms (but still
satisfy the coherence conditions).
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Lemma 4.1.0.4
Let SpecA, SpecB ∈ AffC. Then

(i) YA ∈ Aff{Cop,Set};

(ii) YYA ∈ AffSch({Cop, Set});

(iii) Hom(YYA , YYB)
∼= Hom(A,B). y

Proof. Claims (ii) and (iii) follow straight from Yoneda’s lemma; claim (i)
is the only one that we need to explain. By Lemma 4.1.0.3 we need to
show that YA is lax symmetric monoidal.∗ One of the morphisms we need to
provide is

µX,Y : Hom(X,A)× Hom(Y,A)→ Hom(X ⊗ Y,A).

All we generally have is a morphism

(−⊗−) : Hom(X,A)× Hom(Y,A)→ Hom(X ⊗ Y,A⊗ A),

but if we have µ : A⊗A→ A coming from the commutative monoid structure
of A then we can compose the two to obtain µX,Y = µ ◦ (− ⊗ −). Some
diagram chasing (omitted here) shows that this µX,Y satisfies the required
conditions, and that the conditions concerning units and symmetry also hold.

Unfortunately we don’t have the space to discuss this further, but this
approach could lead to some very interesting research projects by using what
seems like a new combination of techniques.

∗We can think of YA ∈ Comm ({Cop,Set}) since Fun(D, E)op ≡ Fun(Dop, Eop).
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4.2 The Riemann hypothesis

One of the main motivations for trying to study F1 is the hope that it will lead
to a proof of the Riemann hypothesis. An excellent history of F1, starting
from Tit’s original idea of ‘interpreting Sn as the Chevalley group over the
field of characteristic one’ in [Tit57] (aiming to explain an analogy from
[Ste51]), and ending with the relatively recent paper [CC09] (which deals
with this zeta function approach) can be found in the introduction of [PL09].

In [KS96], treating F1 as any other finite field Fp for p prime, we think of
its extension of degree n, denoted F1n, coming from adjoining the nth roots
of unity. This idea is built upon in [Sou08, §2.4], where it is conjectured that

F1n ⊗F1 Z = Z[T ]/(T n − 1).

Comparing this to the results in Section 3.2, we see that our definitions
match, as we would hope.

The Riemann zeta function, defined, for s ∈ C with <(s) > 1, as

ζ(s) =
∞∑
n=1

1

ns

is a particular example of an L-function.∗ In fact, it is really the generalised
Riemann hypothesis – which states that the non-trivial zeros of global† L-
functions lie on the line <(z) = 1/2 in the complex plane – that has profound
implications across the whole of mathematics.‡ The link between a conjec-
ture by Emil Artin on Artin L-functions [Art23] and the Riemann hypothesis
was pointed out by André Weil in a letter to Artin written on July 10th 1942,§

and was later mentioned more concretely in [Wei47, p. 4]¶:

The Riemann hypothesis, after having lost hope of proving it
by methods of the theory of functions, appears to us today in a
new light, that shows it inseparable from the Artin conjecture on L-
functions, these two problems being two sides of the same arithmetic-
algebraic question, where the simultaneous study of all the cyclo-
tomic extensions of a given number field will certainly play a vital
role.

∗Certain meromorphic functions on the complex plane (conjecturally) coming from the
analytic continuation of an infinite series called an L-series, which is associated to some
mathematical object (for example, an Artin L-function is associated to a linear representa-
tion of a Galois group). Dirichlet L-series are of the form

∑∞
n=1 an/n

s where (an)n∈N is a
complex sequence and s ∈ C.

†Defined as Euler products of local zeta functions.
‡Although nobody would likely turn their nose up at a proof of the Riemann hypothesis.
§Listed as [1942] in the bibliography of [Wei09].
¶What follows is a translation by the author – the original is in French.
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Prior to this, in 1940,∗ Weil proved the Riemann hypothesis for curves over
finite fields by taking a smooth curve C over a finite field Fp and looking at
the diagonal of C ×Fp C. If we could think of Z as a smooth curve over some
finite field (which seems natural since Z is of dimension one) then Weil’s
proof could hopefully be extended to a proof of the Riemann hypothesis. But
Z is not an algebra over any field. However, one of the conjectured properties
of F1 is that Z is an F1-algebra, and so we would be able to construct Z×F1Z.

Building on this idea, as well as previous conjectures by Artin [Art24], led
Weil in 1949 to the famous Weil conjectures [Wei49], the proof of which pro-
vided the main impetus for Alexander Grothendieck’s two decades of work
building upon that of Jean-Pierre Serre. There were four conjectures: the
rationality conjecture, proved by Bernand Dwork in 1960 [Dwo60]; the func-
tional equation and the Betti number conjectures, proved by Grothendieck†

in 1965 [Gro65b; Gro65a]; and the Riemann hypothesis analogue, proved by
Deligne in 1974 [Del74]. This last conjecture implies that, if X is a smooth
projective variety of dimension n over Fq, then its local zeta function

ζX(s) = exp

(
∞∑
m=1

Nmq
−sm

m

)

(whereNm is the number of points ofX defined over the degree-m extension
Fqm of Fq) is such that its zeros and poles lie on the lines <(s) = j/2 for
j = 1, 2, . . . , 2n. So, if we could realise X = SpecZ as a smooth projective
variety of dimension 1 over F1, then ζX(s) = would be the Riemann zeta
function, and a proof of the Riemann hypothesis would almost fall straight
out, or so we might hope.

Obviously though, there are some obstructions, otherwise the Riemann
hypothesis would have been solved by now. The main problem is that we
have many definitions for F1, and there have been many different ideas for
what F1-schemes should be (see [PL09]), but none of them have all of the
properties that we need to prove the Riemann hypothesis. Even if we did
find some perfect definition, we would need to come up with new cohomol-
ogy theorems, just as Grothendieck, Deligne, et al. did to solve the Weil
conjectures. In fact, it seems as if solving the Riemann hypothesis is more a
question of doing analytic geometry over F1 rather than algebraic geometry
over F1. So where should we go from here?

∗[Wei40], though he later showed that his result was independent of this “transcenden-
tal” theory in [Wei41].

†Together with Michael Artin, Pierre Deligne, Michel Raynaud, Jean Girard, and many
others.
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