Self-Dual p-Form Gauge Theory & the Topology of the Graviton

Abu Dhabi, January 2024

Half Field Theory

- q 1-form gauge field A, F = dA
- If d = 2q, and q odd: can impose SELF-DUALITY
- Covariant action for SD theory?

ł

F-DUALITY F = *F halves d.o.f.

Half Field Theory

- q 1-form gauge field A, F = dA
- If d = 2q, and q odd: can impose SELF-DUALITY F = *F halves d.o.f.
- Covariant action for SD theory?
- Sen's action: inspired by String Field Theory
- Quadratic: good for quantisation
- Generalises to allow Born-Infeld and Chern-Simons interactions

ł

Sen's Theory

- Spacetime metric $g_{\mu\nu}$, Minkowski metric $\eta_{\mu\nu}$, Hodge duals $* = *_g, *_\eta$
- Fields in action couple to η , there is weird interaction term depending on $g_{\mu\nu}$
- TWO SD gauge fields A, C (constructed from fields appearing in action)

$$F = dA, F = *F$$

- A: couples to space-time metric (and other physical fields)
- C: Couples to none of the physical fields: DECOUPLES

 $G = dC, G = *_{\eta}G$

Sen's Theory

- $\eta_{\mu\nu}$ very restrictive: Most spacetimes don't admit Minkowski metric
- Coordinate independent?
- Strange symmetry: acts like diffeomorphisms on $g_{\mu\nu}$, A but $\eta_{\mu\nu}$, C invariant

• Would like coordinate independent theory that can be formulated on *any* spacetime

Non-Sen's Theory

- Replace $\eta_{\mu\nu}$ with metric $\bar{g}_{\mu\nu}$ $*_{\eta} \rightarrow *_{\bar{g}} = *$
- $F = dA, F = *F, \qquad G = dC, G = \bar{*}G$
- Hard bit: finding interaction term $f(g, \overline{g})$ and showing it gives required field equations
- Physical Sector $g_{\mu\nu}$, A + other physical fields, couple to each other
- Non-physical sector $\bar{g}_{\mu\nu}$, C couple to each other but not to any physical fields
- Gives desired physical sector plus shadow sector that decouples

CMH 2307.08748

The space with 2 metrics

- Spacetime with 2 metrics $\mathcal{M}(g, \bar{g})$
- Interesting bi-metric geometry, new structures, important in technical bits
- Action covariant, can be formulated on any spacetime
- $\bar{g}_{\mu\nu}$ can be a background metric or can be dynamical
- Similar "bi-metric structures" arise in massive gravity and interacting theory of 2 gravitons de Rham, Gabadadze, Tolley Hassan, Rosen

Doubled Geometry (after all)

- Two metrics: 2 kinds of "diffeomorphism" symmetries $\delta g_{\mu\nu} = 2\partial_{(\mu}\zeta_{\nu)} + \dots$
- Extends to symmetries of full theory
- The ζ_{μ} transformations act on Physical Sector $g_{\mu\nu}$, A + other physical fields, do not act on Shadow Sector $\bar{g}_{\mu\nu}, C$
- The χ_{μ} transformations act on Shadow Sector, do not act on Physical Sector • "Real diffeomorphisms" diagonal subgroup

,
$$\delta \bar{g}_{\mu\nu} = 2\partial_{(\mu}\chi_{\nu)} + \dots$$

$$S = \int \left(\frac{1}{2}dP \wedge *_{\eta}dP\right)$$

Define: $G \equiv \frac{1}{2}(dP + *_{\eta}dP) + Q$ $G = *_{\eta}G$

Field equations imply: $dG = 0, \qquad dF = 0$

Choose M(Q) so that:

Sen's Action

 $M(Q)_{\mu_{1}...\mu_{q}} = \frac{1}{a!} M_{\mu_{1}...\mu_{q}}^{\nu_{1}...\nu_{q}} Q_{\nu_{1}...\nu_{q}}$ $Q = *_n Q$

 $P - 2Q \wedge dP - Q \wedge M(Q) \bigg)$

 $F \equiv Q + M(Q)$

$$S = \int \left(\frac{1}{2}dP \wedge *_{\eta}dP\right)$$

Define: $G \equiv \frac{1}{2}(dP + *_{\eta}dP) + Q$ $G = *_{\eta}G$

Field equations imply: $dG = 0, \qquad dF = 0$

Choose M(Q) so that:

Sen's Action

 $M(Q)_{\mu_{1}...\mu_{q}} = \frac{1}{a!} M_{\mu_{1}...\mu_{q}}^{\nu_{1}...\nu_{q}} Q_{\nu_{1}...\nu_{q}}$ $Q = *_n Q$

 $P - 2Q \wedge dP - Q \wedge M(Q) \bigg)$

 $F \equiv Q + M(Q)$

 $\implies G = dC$. F = dA

$$S = \int \left(\frac{1}{2}dP \wedge \bar{*}dP\right)$$

Define: $G \equiv \frac{1}{2}(dP + \bar{*}dP) + Q$ $G = \bar{*}G$

Field equations imply: $dG = 0, \qquad dF = 0$

Choose M(Q) so that:

New Action

 $\eta \to \bar{g}, \quad *_{\eta} \to \bar{*}$ O = *O

 $-2Q \wedge dP - Q \wedge M(Q)$

 $F \equiv Q + M(Q)$

$$S = \int \left(\frac{1}{2}dP \wedge \bar{*}dP\right)$$

Define: $G \equiv \frac{1}{2}(dP + \bar{*}dP) + Q$ $G = \bar{*}G$

Field equations imply: $dG = 0, \qquad dF = 0$

Choose M(Q) so that:

New Action

 $\eta \to \bar{g}, \quad *_{\eta} \to \bar{*}$ O = *O

 $-2Q \wedge dP - Q \wedge M(Q)$

 $F \equiv Q + M(Q)$

 $\implies G = dC, \quad F = dA$

Dependence on Metrics

Term in action $- Q \wedge M(Q)$ gives interaction between Q, g, \bar{g}

Action gives complicated theory of P, Q, g, \bar{g}

But gives simple theory of

$$G \equiv \frac{1}{2}(dP + \bar{*}dP) + Q$$

with F interacting with g and G interacting with \bar{g} , but no interactions between the physical sector F, g and the shadow sector G, \bar{g}

$F \equiv Q + M(Q)$

2d Chiral Boson

Zweibein \bar{e}^a_μ for \bar{g} , $a, b = \pm$, $\bar{e}^\pm = 2^{-1/2} (\bar{e}^0 \pm \bar{e}^1)$,

$$S = \int d^2x \sqrt{\bar{g}} \left(\partial_+ P \partial_- P + Z\right)$$

Field equations give

$$G = \overline{*} G \qquad F =$$

Ď

if M chosen to be:

$$g^{++} = g^{\mu\nu} \bar{e}^+_{\mu} \bar{e}^+_{\nu}$$

 $\partial_a = \bar{e}^{\mu}_a \partial_{\mu}$

$2Q_+\partial_-P + M_-Q_+Q_+)$

 $G_{+} = \frac{1}{2}\partial_{+}P + Q_{+}, \qquad F_{+} = Q_{+}, \qquad F_{-} = M_{--}Q_{+}$

= * F

 $\mathcal{D} = \frac{1}{2} [(\bar{g}^{\mu\nu}g_{\mu\nu})^2 - \bar{g}^{\mu\nu}g_{\nu\rho}\bar{g}^{\rho\sigma}g_{\sigma\mu}]$ $M_{--} = \frac{\mathscr{D}}{1 + \frac{1}{2} \mathscr{D} g^{\lambda \tau} \bar{g}_{\lambda \tau}} g^{++}$

The two metrics

- 2 kinds of mass/energy: physical mass and shadow mass
- Treat $g_{\mu\nu}$ as metric tensor field in usual way, giving physical gravitational field
- Conventional: take $\bar{g}_{\mu\nu}$ to be a 2nd metric tensor field, transition functions involve diffeomorphisms $\delta \bar{g}_{\mu\nu} = 2\partial_{(\mu}\xi_{\nu)} + \dots$

The two metrics

- 2 kinds of mass/energy: physical mass and shadow mass
- Treat $g_{\mu\nu}$ as metric tensor field in usual way, giving physical gravitational field
- Conventional: take $\bar{g}_{\mu\nu}$ to be a 2nd metric tensor field, transition functions involve diffeomorphisms $\delta \bar{g}_{\mu\nu} = 2\partial_{(\mu}\xi_{\nu)} + \dots$

Diffeomorphism $\phi: x \to x' = \phi($

Infinitesimal: x

 $x'^{\mu} = x^{\mu} - \xi^{\mu} +$

(x),
$$g_{\mu\nu}(x) \to g'_{\mu\nu}(x') = [\phi_*g]_{\mu\nu}(x')$$

+ ..., $g'_{\mu\nu}(x) = g_{\mu\nu}(x) + 2\partial_{(\mu}\xi_{\nu)} + ...$

The two metrics

- 2 kinds of mass/energy: physical mass and shadow mass
- Treat $g_{\mu\nu}$ as metric tensor field in usual way, giving physical gravitational field
- Conventional: take $\bar{g}_{\mu\nu}$ to be a 2nd metric tensor field, transition functions involve diffeomorphisms $\delta \bar{g}_{\mu\nu} = 2\partial_{(\mu}\xi_{\nu)} + \dots$

- 2 kinds of mass/energy: physical mass and shadow mass
- Treat $g_{\mu\nu}$ as metric tensor field in usual way, giving physical gravitational field
- Conventional: take $\bar{g}_{\mu\nu}$ to be a 2nd metric tensor field, transition functions involve diffeomorphisms $\delta \bar{g}_{\mu\nu} = 2\partial_{(\mu}\xi_{\nu)} + \dots$
- Unconventional: take it to be a gauge field, allow spin-2 gauge transformations in transition functions: $\delta \bar{g}_{\mu\nu} = 2\partial_{(\mu}\xi_{\nu)} + 2\partial_{(\mu}\chi_{\nu)} + \dots$

The metrics

Conventional geometry

 \bar{g} : conventional tensor on manifold \mathcal{M}

 $\bar{g} \in \Gamma(S_2)$

 $S_2 = (T^* \otimes_{sym} T^*) \mathscr{M}$

Un-Conventional geometry

Manifold \mathcal{M} Atlas (U_i, ψ_i) Open cover U_i

Symmetric tensors on each U_i $\bar{g}_i \in \Gamma(S_i)$

On intersection $U_i \cap U_j$

On triple intersection $U_i \cap U_j \cap U_k$

$S_i = (T^* \otimes_{sym} T^*) U_i$

Active diffeomorphism σ_{ii}

 $\sigma_{ij}\sigma_{jk}\sigma_{ki}=1$

Un-Conventional geometry

Manifold \mathcal{M} Atlas (U_i, ψ_i) Open cover U_i

Symmetric tensors on each U_i $\bar{g}_i \in \Gamma(S_i)$

On intersection $U_i \cap U_j$

Transition functions: $\bar{g}_i = (\sigma_{ij})_* \bar{g}_j$

If σ_{ij} generated by vector field χ_{ij}

$S_i = (T^* \otimes_{sym} T^*) U_i$

Active diffeomorphism σ_{ij}

 $\bar{g}_i = \bar{g}_j + \mathscr{L}_{\chi_{ij}} \bar{g}_j + O(\chi_{ij}^2)$

Unconventional case

- Unconventional: take it to be a gauge field, allow spin-2 gauge transformations in transition functions: $\delta \bar{g}_{\mu\nu} = 2\partial_{(\mu}\xi_{\nu)} + 2\partial_{(\mu}\chi_{\nu)} + \dots$
- Particular case: $\xi_{\mu} = -\chi_{\mu}$: $\delta \bar{g}_{\mu\nu} = 0$!

• e.g.
$$\bar{g}_{\mu\nu} = \eta_{\mu\nu}!$$

Bi-Metric Geometry

Interpolating Structure f_{μ}^{ν}

 $g_{\mu\nu} = f_{\mu}^{\ \rho} f_{\nu}^{\ \sigma} \bar{g}_{\rho\sigma}$

$\Phi: X \to \Phi(X)$ Map on forms

 $\Phi(X)_{\mu_1\ldots\mu_r} = f_{\mu_1}^{\ \alpha}$

converts between the two Hodge duals for the two metrics $* \Phi(X) = \Phi(\bar{*}X)$

maps \bar{g} -self-dual forms to g-self-dual forms

Generalisation of vielbein

$$\alpha_1 \dots f_{\mu_r} \alpha_r X_{\alpha_1 \dots \alpha_r}$$

Conclusion

- Sen's action for chiral form fields generalised, OK for general spacetimes
- Extra shadow sector $\bar{g}_{\mu\nu}$, C which decouples from physical fields
- Shadow sector metric $\bar{g}_{\mu\nu}$ can be background or dynamical
- Good for quantum calculations
- Generalises to allow Born-Infeld and Chern-Simons interactions
- Physical form field A isn't a fundamental field, but constructed from P, Q, g, \bar{g}
- Bi-metric geometry, tensor gauge fields