D. Huybrechts

Garda 2, March 2008



Basics Fourier—Mukai transform Compositions Fully faithful Equivalences

Serre functor

A = C-linear category with dim Hom(A, B) < cc.

Serre functor: C-linear equivalence S : A— A st.
Hom(A, B) ~ Hom(B, S(A))*

functorial in A, B € A.

Facts:
o If S exists, then S is unique.
@ Any equivalence is compatible with Serre functors.

@ A Serre functor on a triangulated category is exact.

Spherical twists
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Geometric
Serre duality: For X smooth projective of dimension n is
S(E) == E ®@wx|n]

is a Serre functor on DP(X). As a special case, one has the
classical Serre duality

Ext/(F,wx) ~ H"™/(X, F)*.

Fact: If F: DP(X)—=DP(X’) is a C-linear equivalence, then

dim(X) = dim(X') and wx ~ Ox < wx ~ Ox.

Corollary: X = K3 surface = X’ = K3 (or abelian) surface.
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X, X' = smooth projective varieties /C and £ € D?(X x X’).
The Fourier—Mukai transform ®¢ with Fourier—Mukai kernel £ is
the composition p, o (E® ( )) o g%, i.e. the functor

G : DP(X) —~DV(X), Fr>p.(€®q'F)

X x X'

2 X
X X/

Remark: As one could view £ also as an object on X’ x X and

hence define DP(X’) —DP(X) one sometimes writes
CDgX x DP(X)—=DP(X’) to indicate the direction.
Clear: ®¢ is C-linear and exact.

Example: Let X = X’ and £ := Oa[n]. Then ®¢ is the shift
functor F+— F[n].
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Orlov's result

Orlov: Suppose ® : DP(X) —=DP(X’) is a fully faithful exact
C-linear functor (e.g. ® an equivalence). Then there exists
£ € DP(X x X') unique up to isomorphism such that ® ~ ®g.

Remarks: i) Originally,  was assumed to have left and right
adjoint. Automatic! Due to Bondal, van den Bergh: DP(X) is
saturated, i.e. every contravariant cohomological functor of finite
type is representable.

ii) The same results holds in other situations: smooth quotient
stacks (Kawamata), twisted varieties (Canonaco, Stellari). The
assumption ‘fully faithful' can be weakened.

iii) It is generally(?) believed that any exact functor is of
Fourier—Mukai type.
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Adjoints

Grothendieck duality: For f : X —Y between smooth projective
varietes one defines wr := wx ® f*wy,. Then

fHom(F, f*E ® wf[dim f]) ~ Hom(f.F, E)
functorial in £ € DP(Y) and F € DP(X).
For £ € DP(X x X') ~ &g : DP(X)—=DP(X").

&L = &Y ® prwx[dim X'] Er = &Y ® g wx[dim X].

Mukai: ®g : D’(X')—=DP(X) and &g, : D’(X’) —DP(X) are
left resp. right adjoint to ®¢: Hom(®g, (E), F) ~ Hom(E, ®g(F)).

Remark: Note ®g, ~ Sx o dg o S)?,l.

Corollary: If ®¢ is an equivalence, then Eg ~ &;.
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Composition

Consider £ € DP(X x X’) and F € DP(X’ x X”) and the induced

dg : DP(X)—DP(X') oz :DP(X)—DP(X").

Convolution: € * F € DP(X x X") is Txxrs(Tix: € @ Ts3nF)
where Txx: 1 X X X' x X"—X x X' etc.

Mukai: (D]: o q)g ~ ¢g*_7-'.

Corollary: ®¢ equivalence & & x g ~ € x &L, =~ Oa,, and
Er*E &L xE >~ Op,y.

Exercises: i) ®¢ : DP(X) ">DP(X’) & &g : DP(X')->DP(X).
ii) OX ~ Oa[—dim X] ® p*wk
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Spanning class

D = C-linear triangulated category.

Spanning class: Q C Ob(D) such that
o Hom(A,B[i])=0forall AcQ, i€ Z = B~0.
e Hom(B,A[i])=0forall Ac Q, i€ Z = B~0.

Remark: Weaker notion than ‘(split) generating’.

Examples:
o {k(x) | x e X}.
o {L| i€ Z}, where L € Pic(X) ample (‘split generating’).
e 0,0(1),...,0(n) € Pic(P") (‘full exceptional’).
o Q:={E}U{E}* with E € DP(X) arbitrary.
Here {E}+ := {F | Hom(E, F[i]) = 0 Vi}.
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FF via spanning classes

Formal: Suppose Q C DP(X) is a spanning class and
® : DP(X) —=DP(X’) an exact functor with left and right adjoints
(eg. FM transform). Then & is fully faithful < VA,B € Q, i € Z:

Hom(A, B[i]) ~ Hom(®(A), ®(B)[i]).

For the spanning class {k(x)} one has the stronger version:

Bondal, Orlov: A FM transform ®¢ : DP(X)—=DP(X’) is fully
faithful < Vx,y € X:

Hom(@e k(). o kNI = { ¢ %57 20
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Formal: Suppose ®¢ : DP(X) —=DP(X’) is fully faithful.
Then ®¢ is an equivalence &

dimX =dim X' and € ® q*wx ~ € ® pwx:.

Bridgeland: Suppose ®¢ : DP(X)—=DP(X’) is fully faithful.

Then & is an equivalence < Vx € X:

(Dg(k(X)) KR wxr ~ (Dg(k(x))

Spherical twists
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Spherical objects

Spherical object: £ € DP(X) with Ext*(E, E) ~ H*(S",C) and
E®wx ~E.

Remarks: i) By Serre duality: n = dim X.
ii) Second condition is void for wx ~ Ox.

Examples: i) L € Pic(X) where X = K3 surface.
Ext*(L, L) ~ H*(X,Ox) ~ H*(§%,C) ~ H*(P,C).

i) Oc(i), i € Z, where X = K3 surface and P! ~ C C X.
i) Oc(i), i € Z, X = CY threefold and P! ~ C C X with
NC/X ~ O(—l) D O(—l).
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For any E € DP(X) ~ Define
tEVRE — (EYRE)a=w(EY®E)—2>0na
and
PE::C(t: EV®E—>(’)A>.
Spherical twist: associated to spherical object £ € DP(X):
Tg == ®&p, : D’(X) —DP"(X).

Then Tg(E) ~ E[1 —dim X] and Tg(F) ~ F for F € {E}*.

Seidel, Thomas: Tg is an equivalence.
i) Fully faithful: Consider spanning class Q := {E} U {E}*.
ii) Equivalence: Use

Pe ® g wx ~ C(EY K E—=1,wx) ~ Pe ® pwx.
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P-twists

Spherical twists work well for CYs and in dimension two where
HK=CY.

P-twists are the HK analogues of spherical twists.
P-object: £ € DP(X) with Ext*(E, E) ~ H*(P",C) and
E®wx ~E.

Remarks: i) By Serre duality: 2n = dim X.

ii) Second condition is void for wx ~ Ox.

Examples: i) L € Pic(X), where X =HK.
i) Op(i), where X = HK and P" ~ P C X, 2n = dim X.
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Define for P-object £ € DP(X) the FM kernel
Qe = C(C(EVRE[-2)—~EYRE) —> Oa),

where EV R E[-2]—EY R E is i K1 — 1K h with
ChY = Ext?(EY,EV) ~ Ext?(E, E) = Ch. Show: t exists!

P-twist: associated to P-object £ € DP(X):
Pe = &g, : DP(X)—DP(X).
Then Pg(E) ~ E[—2n] and Pg(F) = F for F € {E}*.

H., Thomas: Pg is an equivalence.

Same proof.

Spherical twists
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Comparison

dim(X) = 2: E € D*(X):
@ E is P-object & E is spherical.
@ In this case: TE— = Pg.

dim(X) > 2: E € D*(X), tk(E) := >_(~1)'rk(E’). Then

<(9X ML Ve E s 0X> = 1k(E) - id.

o If rk(E) # 0, then
Ext/(E,E) = H'(X,EV®E) = H'(X, Ox)®H (X, (EY®E)o).
o If X symplectic, then H2(X,Ox) # 0. Hence, there are no
spherical objects with rk(E) # 0.
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