Fourier-Mukai transforms

D. Huybrechts

Garda 2, March 2008

Serre functor

Basics

 $\mathcal{A} = \mathbb{C}$ -linear category with dim $\operatorname{Hom}(A, B) < \infty$.

Serre functor: \mathbb{C} -linear equivalence $S: \mathcal{A} \longrightarrow \mathcal{A}$ st.

$$\operatorname{Hom}(A,B) \simeq \operatorname{Hom}(B,S(A))^*$$

functorial in $A, B \in A$.

Facts:

- If *S* exists, then *S* is unique.
- Any equivalence is compatible with Serre functors.
- A Serre functor on a triangulated category is exact.

Equivalences

Geometric

Fourier-Mukai transform

Serre duality: For X smooth projective of dimension n is

$$S(E) := E \otimes \omega_X[n]$$

is a Serre functor on $D^{b}(X)$. As a special case, one has the classical Serre duality

$$\operatorname{Ext}^{i}(F,\omega_{X})\simeq H^{n-i}(X,F)^{*}.$$

Fact: If $F: D^{b}(X) \longrightarrow D^{b}(X')$ is a \mathbb{C} -linear equivalence, then $\dim(X) = \dim(X')$ and $\omega_X \simeq \mathcal{O}_X \Leftrightarrow \omega_{X'} \simeq \mathcal{O}_{X'}$.

Corollary: X = K3 surface $\Rightarrow X' = K3$ (or abelian) surface.

X,X'= smooth projective varieties $/\mathbb{C}$ and $\mathcal{E}\in \mathrm{D}^{\mathrm{b}}(X\times X')$. The Fourier–Mukai transform $\Phi_{\mathcal{E}}$ with Fourier–Mukai kernel \mathcal{E} is the composition $p_*\circ (\mathcal{E}\otimes (\))\circ q^*$, i.e. the functor

$$\Phi_{\mathcal{E}}: \mathrm{D}^{\mathrm{b}}(X) \longrightarrow \mathrm{D}^{\mathrm{b}}(X'), \quad F \longmapsto p_{*}(\mathcal{E} \otimes q^{*}F)$$

Remark: As one could view \mathcal{E} also as an object on $X' \times X$ and hence define $\mathrm{D}^{\mathrm{b}}(X') \longrightarrow \mathrm{D}^{\mathrm{b}}(X)$ one sometimes writes

 $\Phi_{\mathcal{E}}^{X o X'} : \mathrm{D^b}(X) {\longrightarrow} \mathrm{D^b}(X')$ to indicate the direction.

Clear: $\Phi_{\mathcal{E}}$ is \mathbb{C} -linear and exact.

Example: Let X = X' and $\mathcal{E} := \mathcal{O}_{\Delta}[n]$. Then $\Phi_{\mathcal{E}}$ is the shift functor $F \mapsto F[n]$.

Orlov: Suppose $\Phi: D^{b}(X) \longrightarrow D^{b}(X')$ is a fully faithful exact \mathbb{C} -linear functor (e.g. Φ an equivalence). Then there exists $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}(X \times X')$ unique up to isomorphism such that $\Phi \simeq \Phi_{\mathcal{E}}$.

Remarks: i) Originally, Φ was assumed to have left and right adjoint. Automatic! Due to Bondal, van den Bergh: $D^{b}(X)$ is saturated, i.e. every contravariant cohomological functor of finite type is representable.

- ii) The same results holds in other situations: smooth quotient stacks (Kawamata), twisted varieties (Canonaco, Stellari). The assumption 'fully faithful' can be weakened.
- iii) It is generally(?) believed that any exact functor is of Fourier-Mukai type.

Equivalences

Adjoints

Fourier-Mukai transform

Grothendieck duality: For $f: X \longrightarrow Y$ between smooth projective varietes one defines $\omega_f := \omega_X \otimes f^* \omega_Y^*$. Then

$$f_*\mathcal{H}om(F, f^*E \otimes \omega_f[\dim f]) \simeq \mathcal{H}om(f_*F, E)$$

functorial in $E \in D^{\mathrm{b}}(Y)$ and $F \in D^{\mathrm{b}}(X)$.

For $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}(X \times X') \rightsquigarrow \Phi_{\mathcal{E}} : \mathrm{D}^{\mathrm{b}}(X) \longrightarrow \mathrm{D}^{\mathrm{b}}(X')$.

$$\mathcal{E}_{\mathrm{L}} := \mathcal{E}^{\vee} \otimes p^* \omega_{X'} [\dim X']$$

$$\mathcal{E}_{\mathrm{R}} := \mathcal{E}^{\vee} \otimes q^* \omega_X [\dim X].$$

Mukai: $\Phi_{\mathcal{E}_{\mathbf{L}}}: \mathrm{D^b}(X') \longrightarrow \mathrm{D^b}(X)$ and $\Phi_{\mathcal{E}_{\mathbf{R}}}: \mathrm{D^b}(X') \longrightarrow \mathrm{D^b}(X)$ are left resp. right adjoint to $\Phi_{\mathcal{E}}$: $\operatorname{Hom}(\Phi_{\mathcal{E}_{\mathbf{I}}}(E), F) \simeq \operatorname{Hom}(E, \Phi_{\mathcal{E}}(F))$.

Remark: Note $\Phi_{\mathcal{E}_{\mathbf{R}}} \simeq S_X \circ \Phi_{\mathcal{E}_{\mathbf{L}}} \circ S_{X'}^{-1}$.

Corollary: If $\Phi_{\mathcal{E}}$ is an equivalence, then $\mathcal{E}_{\mathrm{R}} \simeq \mathcal{E}_{I}$.

Composition

Consider
$$\mathcal{E} \in \mathrm{D}^{\mathrm{b}}(X \times X')$$
 and $\mathcal{F} \in \mathrm{D}^{\mathrm{b}}(X' \times X'')$ and the induced
$$\Phi_{\mathcal{E}} : \mathrm{D}^{\mathrm{b}}(X) {\:\longrightarrow\:} \mathrm{D}^{\mathrm{b}}(X') \qquad \Phi_{\mathcal{F}} : \mathrm{D}^{\mathrm{b}}(X') {\:\longrightarrow\:} \mathrm{D}^{\mathrm{b}}(X'').$$

Convolution: $\mathcal{E} * \mathcal{F} \in \mathrm{D}^{\mathrm{b}}(X \times X'')$ is $\pi_{XX''*}(\pi_{XX'}^*\mathcal{E} \otimes \pi_{X'X''}^*\mathcal{F})$ where $\pi_{XX'}: X \times X' \times X'' \longrightarrow X \times X'$ etc.

Mukai: $\Phi_{\mathcal{F}} \circ \Phi_{\mathcal{E}} \simeq \Phi_{\mathcal{E}*\mathcal{F}}$.

Fourier-Mukai transform

Corollary: $\Phi_{\mathcal{E}}$ equivalence $\Leftrightarrow \mathcal{E} * \mathcal{E}_{R} \simeq \mathcal{E} * \mathcal{E}_{L} \simeq \mathcal{O}_{\Delta_{M}}$ and $\mathcal{E}_{\mathrm{R}} * \mathcal{E} \simeq \mathcal{E}_{\mathrm{L}} * \mathcal{E} \simeq \mathcal{O}_{\Lambda_{\mathrm{W}}}$

Exercises: i) $\Phi_{\mathcal{E}} : \mathrm{D}^{\mathrm{b}}(X) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}(X') \Leftrightarrow \Phi_{\mathcal{E}} : \mathrm{D}^{\mathrm{b}}(X') \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}(X)$. ii) $\mathcal{O}_{\Lambda}^{\vee} \simeq \mathcal{O}_{\Lambda}[-\dim X] \otimes p^*\omega_{Y}^*$

 $\mathcal{D} = \mathbb{C}$ -linear triangulated category.

Spanning class: $\Omega \subset \mathrm{Ob}(\mathcal{D})$ such that

- Hom(A, B[i]) = 0 for all $A \in \Omega$, $i \in \mathbb{Z} \Rightarrow B \simeq 0$.
- Hom(B, A[i]) = 0 for all $A \in \Omega$, $i \in \mathbb{Z} \Rightarrow B \simeq 0$.

Remark: Weaker notion than '(split) generating'.

Examples:

- $\{k(x) \mid x \in X\}.$
- $\{L^i \mid i \in \mathbb{Z}\}$, where $L \in \text{Pic}(X)$ ample ('split generating').
- $\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n) \in \operatorname{Pic}(\mathbb{P}^n)$ ('full exceptional').
- $\Omega := \{E\} \cup \{E\}^{\perp}$ with $E \in D^{b}(X)$ arbitrary. Here $\{E\}^{\perp} := \{F \mid \text{Hom}(E, F[i]) = 0 \ \forall i\}.$

Fully faithful

FF via spanning classes

Fourier-Mukai transform

Formal: Suppose $\Omega\subset \mathrm{D}^\mathrm{b}(X)$ is a spanning class and $\Phi:\mathrm{D}^\mathrm{b}(X)\longrightarrow \mathrm{D}^\mathrm{b}(X')$ an exact functor with left and right adjoints (eg. FM transform). Then Φ is fully faithful $\Leftrightarrow \forall A,B\in\Omega,\ i\in\mathbb{Z}$:

$$\operatorname{Hom}(A, B[i]) \simeq \operatorname{Hom}(\Phi(A), \Phi(B)[i]).$$

For the spanning class $\{k(x)\}$ one has the stronger version:

Bondal, Orlov: A FM transform $\Phi_{\mathcal{E}}: \mathrm{D^b}(X) \longrightarrow \mathrm{D^b}(X')$ is fully faithful $\Leftrightarrow \forall x, y \in X$:

$$\operatorname{Hom}(\Phi_{\mathcal{E}}(k(x)), \Phi_{\mathcal{E}}(k(y))[i]) = \begin{cases} k & \text{if } x = y \text{ and } i = 0 \\ 0 & \text{if } x \neq y \text{ or } i \notin [0, \dim(X)]. \end{cases}$$

$$\dim X = \dim X'$$
 and $\mathcal{E} \otimes q^* \omega_X \simeq \mathcal{E} \otimes p^* \omega_{X'}$.

Bridgeland: Suppose $\Phi_{\mathcal{E}}: \mathrm{D}^{\mathrm{b}}(X) \longrightarrow \mathrm{D}^{\mathrm{b}}(X')$ is fully faithful. Then Φ is an equivalence $\Leftrightarrow \forall x \in X$:

$$\Phi_{\mathcal{E}}(k(x)) \otimes \omega_{X'} \simeq \Phi_{\mathcal{E}}(k(x)).$$

Spherical objects

Basics

Spherical object: $E \in D^b(X)$ with $\operatorname{Ext}^*(E, E) \simeq H^*(S^n, \mathbb{C})$ and $E \otimes \omega_{\mathbf{X}} \simeq E$.

Remarks: i) By Serre duality: $n = \dim X$.

ii) Second condition is void for $\omega_X \simeq \mathcal{O}_X$.

Examples: i) $L \in Pic(X)$ where X = K3 surface.

$$\operatorname{Ext}^*(L,L) \simeq H^*(X,\mathcal{O}_X) \simeq H^*(S^2,\mathbb{C}) \simeq H^*(\mathbb{P}^1,\mathbb{C}).$$

- ii) $\mathcal{O}_{\mathcal{C}}(i)$, $i \in \mathbb{Z}$, where $X = \mathsf{K3}$ surface and $\mathbb{P}^1 \simeq \mathcal{C} \subset X$.
- iii) $\mathcal{O}_{\mathcal{C}}(i)$, $i \in \mathbb{Z}$, $X = \mathsf{CY}$ threefold and $\mathbb{P}^1 \simeq \mathcal{C} \subset X$ with $\mathcal{N}_{C/X} \simeq \mathcal{O}(-1) \oplus \mathcal{O}(-1)$.

$$t: E^{\vee} \boxtimes E \longrightarrow (E^{\vee} \boxtimes E)|_{\Delta} = \iota_*(E^{\vee} \otimes E) \xrightarrow{\operatorname{tr}} \mathcal{O}_{\Delta}$$

and

Basics

$$\mathcal{P}_E := \mathrm{C}\left(t: \ E^{\vee} \boxtimes E \longrightarrow \mathcal{O}_{\Delta} \ \right).$$

Spherical twist: associated to spherical object $E \in D^b(X)$:

$$T_E := \Phi_{\mathcal{P}_E} : \mathrm{D^b}(X) {\:\longrightarrow\:} \mathrm{D^b}(X).$$

Then $T_E(E) \simeq E[1 - \dim X]$ and $T_E(F) \simeq F$ for $F \in \{E\}^{\perp}$.

Seidel, Thomas: T_E is an equivalence.

- i) Fully faithful: Consider spanning class $\Omega := \{E\} \cup \{E\}^{\perp}$.
- ii) Equivalence: Use

$$\mathcal{P}_E \otimes q^* \omega_X \simeq \mathrm{C}(E^{\vee} \boxtimes E \longrightarrow \iota_* \omega_X) \simeq \mathcal{P}_E \otimes p^* \omega_X.$$

P-twists

Spherical twists work well for CYs and in dimension two where HK=CY.

P-twists are the HK analogues of spherical twists.

$$\mathbb{P}$$
-object: $E \in \mathrm{D}^{\mathrm{b}}(X)$ with $\mathrm{Ext}^*(E,E) \simeq H^*(\mathbb{P}^n,\mathbb{C})$ and $E \otimes \omega_X \simeq E$.

Remarks: i) By Serre duality: $2n = \dim X$.

ii) Second condition is void for $\omega_X \simeq \mathcal{O}_X$.

Examples: i) $L \in Pic(X)$, where X = HK.

ii) $\mathcal{O}_P(i)$, where $X = \mathsf{HK}$ and $\mathbb{P}^n \simeq P \subset X$, $2n = \dim X$.

Define for \mathbb{P} -object $E \in \mathrm{D^b}(X)$ the FM kernel

Fourier-Mukai transform

$$\mathcal{Q}_E := \mathrm{C}\left(\mathrm{C}\left(E^\vee \boxtimes E[-2] \!\longrightarrow\! E^\vee \boxtimes E\right) \ \stackrel{\mathrm{t}}{-\!\!\!-\!\!\!-\!\!\!-} \ \mathcal{O}_\Delta\right),$$

where $E^{\vee} \boxtimes E[-2] \longrightarrow E^{\vee} \boxtimes E$ is $h^{\vee} \boxtimes 1 - 1 \boxtimes h$ with $\mathbb{C}h^{\vee} = \operatorname{Ext}^{2}(E^{\vee}, E^{\vee}) \simeq \operatorname{Ext}^{2}(E, E) = \mathbb{C}h$. Show: t exists!

 \mathbb{P} -twist: associated to \mathbb{P} -object $E \in \mathrm{D}^{\mathrm{b}}(X)$:

$$P_E = \Phi_{\mathcal{Q}_E} : \mathrm{D}^{\mathrm{b}}(X) \longrightarrow \mathrm{D}^{\mathrm{b}}(X).$$

Then
$$P_E(E) \simeq E[-2n]$$
 and $P_E(F) = F$ for $F \in \{E\}^{\perp}$.

H., **Thomas**: P_F is an equivalence.

Same proof.

Fully faithful

Comparison

 $\dim(X) = 2: E \in D^{b}(X):$

Fourier-Mukai transform

- E is \mathbb{P} -object $\Leftrightarrow E$ is spherical.
- In this case: $T_F^2 = P_F$.

 $\dim(X) > 2$: $E \in D^{b}(X)$, $\operatorname{rk}(E) := \sum_{i=1}^{n} (-1)^{i} \operatorname{rk}(E^{i})$. Then

$$\left(\mathcal{O}_X \stackrel{\mathrm{id}}{\longrightarrow} E^\vee \otimes E \stackrel{\mathrm{tr}}{\longrightarrow} \mathcal{O}_X\right) = \mathrm{rk}(E) \cdot \mathrm{id}.$$

- If $rk(E) \neq 0$, then $\operatorname{Ext}^{i}(E,E) = H^{i}(X,E^{\vee}\otimes E) = H^{i}(X,\mathcal{O}_{X}) \oplus H^{i}(X,(E^{\vee}\otimes E)_{0}).$
- If X symplectic, then $H^2(X, \mathcal{O}_X) \neq 0$. Hence, there are no spherical objects with $rk(E) \neq 0$.