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Preface

Thetopic of thisbook isthetheory of semistable coherent sheaves on asmooth algebraic
surface and of moduli spaces of such sheaves. The content ranges from the definition of a
semistable sheaf and its basic properties over the construction of moduli spacesto the bira-
tional geometry of these moduli spaces. The book is intended for readers with some back-
ground in Algebraic Geometry, as for example provided by Hartshorne'stext book [98].

Thereareat | east three good reasonsto study moduli spacesof sheaveson surfaces. Firstly,
they provide examples of higher dimensional algebraic varietieswith arich and interesting
geometry. In fact, in some regionsin the classification of higher dimensional varieties the
only known examplesare moduli spacesof sheaveson asurface. The study of moduli spaces
therefore sheds light on some aspects of higher dimensional algebraic geometry. Secondly,
moduli spaces are varieties naturally attached to any surface. The understanding of their
properties gives answers to problems concerning the geometry of the surface, e.g. Chow
group, linear systems, etc. From the mid-eightiestill the mid-nineties most of the work on
moduli spaces of sheaves on a surface was motivated by Donaldson’s ground breaking re-
sults on the relation between certain intersection numbers on the moduli spaces and the dif-
ferentiable structure of the four-manifold underlying the surface. Although the interest in
this relation has subsided since the introduction of the extremely powerful Seiberg-Witten
invariantsin 1994, Donaldson’sresultslinger asathird major motivationin the background;
they throw a bridge from algebrai c geometry to gauge theory and differential geometry.

Part | of this book gives an introduction to the general theory of semistable sheaves on
varietiesof arbitrary dimension. We tried to keep this part to alarge extent self-contained. In
Part 11, which dealsamost exclusively with sheaves on algebraic surfaces, we occasionally
sketch or even omit proofs. This area of research is still developing and we feel that some
of theresults are not yet in their final form.

Sometopicsareonly touched upon. Many interesting resultsare missing, e.g. the Fourier-
Mukai transformation, Picard groups of moduli spaces, bundles on the projective plane (or
more generally on projective spaces, see[228]), computation of Donal dson polynomiason
algebraic surfaces, gauge theoretical aspects of moduli spaces (see the book of Friedman
and Morgan[71]). We also wish to draw the readers attention to the forthcoming book of R.
Friedman [69].

Usually, we give references and sometimes historical remarks in the Comments at the
end of each chapter. If not stated otherwise, all results should be attributed to others. We
apologize for omissions and inaccuraciesthat we may have incorporated in presenting their
work.

Thesenotesgrew out of lecturesdelivered by the authorsat asummer school at Humbol dt-
Universitat zu Berlin in September 1995. Every lecture was centered around one topic. In
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writing up these notes we tried to maintain this structure. By adding the necessary back-
groundto the orally presented material, some chaptershave grown out of size and the global
structure of the book has become rather non-linear. This has two effects. It should be possi-
ble to read some chapters of Part 11 without going through all the general theory presented
in Part 1. On the other hand, some results had to be referred to before they were actually
introduced.

We wish to thank H. Kurkefor theinvitation to Berlin and 1. Quandt for the organization
of the summer school. We are grateful to F. Hirzebruch for his encouragement to publish
these notesin the M Pl-subseries of the Aspects of Mathematics. We also owe many thanks
to S. Bauer and the SFB 343 at Bielefeld, who supported the preparation of the manuscript.

Many people have read portions and preliminary versions of the text. We are grateful
for their comments and criticism. In particular, we express our gratitude to: S. Bauer, V.
Brinzanescu, R. Brussee, H. Esnault, L. Gottsche, G. Hein, L. Hille, S. Kleiman, A. King,
J Klein, J. Li, S. Muller-Stach, and K. O’ Grady.

While working on these notes the first author was supported by the Max-Planck-Institut
fur Mathematik (Bonn), the Institutefor Advanced Study (Princeton), the I nstitut des Hautes
Etudes Scientifiques (Bures-sur-Yvette), the Universtitét Essen and by agrant fromthe DFG.
The second author was supported by the SFB 343 * Diskrete Strukturen in der Mathematik’
at the Universitat Bielefeld.

Bielefeld, December 1996 Daniel Huybrechts, Manfred Lehn
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| ntroduction

It is one of the deep problems in algebraic geometry to determine which cohomology
classes on a projective variety can be realized as Chern classes of vector bundles. In low
dimensionsthe answer isknown. Onacurve X any classe; € H%(X,7Z) canberealized as
thefirst Chern class of avector bundle of prescribed rank . In dimension two the existence
of bundlesis settled by Schwarzenberger’s result, which says that for given cohomology
classesc; € H2(X,Z)N HY(X) andc, € H*(X,7Z) = 7 on acomplex surface X there
exists a vector bundle of prescribed rank > 2 with first and second Chern class ¢; and ¢s,
respectively.

The next step in the classification of bundlesaims at a deeper understanding of the set of
all bundleswith fixed rank and Chern classes. This naturally leadsto the concept of moduli
spaces.

Thecaser = 1 isamodel for the theory. By means of the exponential sequence, the set
Pic® (X) of dl line bundles with fixed first Chern class ¢; can be identified, although not
canonically for ¢; # 0, withtheabelianvariety H' (X, Ox)/H' (X, 7). Furthermore, over
the product Pic® (X) x X there exists a ‘universal line bundle’ with the property that its
restriction to [L] x X isisomorphic to theline bundle L on X. The following features are
noteworthy here: Firstly, the set of al line bundles with fixed Chern class carries a natural
scheme structure, such that there exists a universal line bundle over the product with X.
Thisisroughly what is called a moduli space. Secondly, if ¢; isin the Neron-Severi group
H?(X,7Z)NH"'(X), the moduli spaceisanonempty projective scheme. Thirdly, the mod-
uli spaceisirreducible and smooth. And, last but not least, the moduli space has a distin-
guished geometric structure: it is an abelian variety. Thisbook is devoted to the analogous
questionsfor bundles of rank greater than one. Although none of these features generalizes
literally to the higher rank situation, they serve as a guideline for the investigation of the
intricate structures encountered there.

For » > 1 onehasto restrict onesel f to semistable bundlesin order to get aseparated finite
type scheme structure for the moduli space. Pursuing the natural desire to work with com-
plete spaces, one compactifies moduli spaces of bundles by adding semistable non-locally
free sheaves. The existence of semistable sheaveson asurface, i.e. the non-emptinessof the
moduli spaces, can be ensured for large ¢, whiler and ¢; arefixed. Under the same assump-
tions, the moduli spaces turn out to be irreducible. Moduli spaces of sheaves of rank > 2
on a surface are not smooth, unless we consider sheaves with special invariants on special
surfaces. Nevertheless, something is known about the type of singularities they can attain.
Concerning the geometry of moduli spaces of sheaves of higher rank, there are two guiding
principles for the investigation. Firstly, the geometric structure of sheaves of rank r > 1
reveasitself only for large second Chern number ¢ while ¢; stays fixed. In other words,
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only high dimensional moduli spaces display the properties one expectsthem to have. Sec-
ondly, contrary to thecaser = 1, ¢ = 0, where Pic® (X)) is always an abelian variety no
matter whether X isruled, abelian, or of general type, moduli spaces of sheaves of higher
rank are expected to inherit geometric properties from the underlying surface. In particu-
lar, the position of the surface in the Enriques classification is of uttermost importance for
the geometry of the moduli spaces of sheaves on it. Much can be said about the geometry,
but at least as much has yet to be explored. The variety of geometric structures exposed by
moduli spaces, which in general are far from being ‘just’ abelian, makes the subject highly
attractive to algebraic geometers.

Let usnow briefly describe the contents of each single chapter of this book. We start out
in Chapter 1 by providing the basic conceptsin the field. Stability, asit wasfirst introduced
for bundles on curves by Mumford and later generalized to sheaves on higher dimensional
varieties by Takemoto, Gieseker, Maruyama, and Simpson, isthe topic of Section 1.2. This
notion is natural from an algebraic as well as from a gauge theoretical point of view, for
thereis adeep relation between stability of bundles and existence of Hermite-Einstein met-
rics. Thisrelation, known as the K obayashi-Hitchin correspondence, was established by the
work of Narasimhan-Seshadri, Donaldson and Uhlenbeck-Yau. We will elaborate on the al-
gebraic aspects of stability, but refer to Kobayashi’s book [127] for the analytic side (see
also [157]). Vector bundles are best understood on the projective line where they aways
split into the direct sum of line bundles due to a result usually attributed to Grothendieck
(1.3.1). In the general situation, this splitting is replaced by the Harder-Narasimhan filtra-
tion, afiltration with semistable factors(Section 1.3). If the sheaf isalready semistable, then
the Jordan-Hol der filtration filtersit further, so that the factorsbecome stable. Following Se-
shadri, the associated graded object is used to define S-equivalence of semistable sheaves
(Section 1.5). Stahility in higher dimensions can be introduced in various ways, all gen-
eralizing Mumford's original concept. In Section 1.6 we provide a framework to compare
the different possibilities. The Mumford-Castelnuovo regularity and Kleiman’s bounded-
ness results, which are stated without proof in Section 1.7, are fundamental for the con-
struction of the moduli space. They are needed to ensure that the set of semistable sheaves
issmall enough to be parametrized by a scheme of finite type. Another important ingredient
is Grothendieck’sLemma (1.7.9) on the boundedness of subsheaves.

Moduli spaces are not just sets of objects; they can be endowed with a scheme structure.
The notion of families of sheaves gives a precise meaning to theintuition of what this struc-
ture should be. Chapter 2 is devoted to some aspects related to families of sheaves. In Sec-
tion 2.1 we first construct the flattening stratification for any sheaf and then consider flat
families of sheaves and some of their properties. The Grothendieck Quot-scheme, one of
the fundamental objects in modern algebraic geometry, together with its local description
will be discussed in Section 2.2 and Appendix 2.A. In this context we also recall the notion
of corepresentable functors which will be important for the definition of moduli spaces as
well. Asaconsequenceof the existence of the Quot-scheme, arel ativeversion of the Harder-
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Narasimhan filtration is constructed. This and the openness of stability, due to Maruyama,
will be presented in Section 2.3. In Appendix 2.A we introduce flag-schemes, a general-
ization of the Quot-scheme, and sketch some aspects of the deformation theory of sheaves,
guotient sheaves and, more general, flags of sheaves. In Appendix 2.B we present a result
of Langton showing that the moduli space of semistable sheavesis, a priori, complete.

Chapter 3 establishes the boundedness of the set of semistable sheaves. The main tool
hereisaresult known asthe Grauert-Mlich Theorem. Barth, Spindler, Maruyama, Hirscho-
witz, Forster, and Schneider have contributed to it in its present form. A complete proof is
givenin Section 3.1. At first sight thisresult looksrather technical, but it turnsout to be pow-
erful in controlling the behaviour of stability under basic operationslike tensor products or
restrictions to hypersurfaces. We explain results of Gieseker, Maruyamaand Takemoto re-
lated to tensor productsand pull-backsunder finite morphismsin Section 3.2. In the proof of
boundedness (Section 3.3), we essentially follow arguments of Simpson and Le Potier. The
theory would not be complete without mentioning the famous Bogomolov Inequality. We
reproduce its by now standard proof in Section 3.4 and give an aternative one later (Sec-
tion 7.3). The Appendix to Chapter 3 uses the af orementioned boundednessresultsto prove
atechnical proposition due to O’ Grady which comesin handy in Chapter 9.

The actual construction of the moduli space takesup all of Chapter 4. Thefirst construc-
tion, dueto Gieseker and Maruyama, differsfrom the onefound by Simpson someten years
later in the choice of aprojective embedding of the Quot-scheme. We present Simpson’s ap-
proach (Sections4.3 and 4.4) aswell asasketch of theoriginal construction (Appendix 4.A).
Both will be needed later. We hope that Section 4.2, where we recall some results concern-
ing group actions and quotients, makes the construction accessible even for the reader not
familiar with the full machinery of Geometric Invariant Theory. In Section 4.5 deformation
theory is used to obtain an infinitesimal description of the moduli space, including bounds
for its dimension and a formulafor the expected dimension in the surface case. In partic-
ular, we prove the smoothness of the Hilbert scheme of zero-dimensional subschemes of a
smooth projective surface, which is originally due to Fogarty. In contrast to the rank one
case, auniversal sheaf on the product of the moduli space and the variety does not always
exist. Conditionsfor the existence of a(quasi)-universal family are discussed in Section 4.6.
In Appendix 4.B moduli spaces of sheaveswith an additional structure, e.g. aglobal section,
are discussed. As an application we construct a ‘ quasi-universal family’ over a projective
birational model of the moduli space of semistable sheaves. This will be useful for later
arguments. The dependence of stability on the fixed ample line bundle on the variety was
neglected for many years. Only in connection with the Donaldson invariantswasits signifi-
cance recognized. Friedman and Qin studied the question from various angles and revea ed
interesting phenomena. We only touch upon this in Appendix 4.C, where it is shown that
for two fixed polarizations on a surface the corresponding moduli spaces are birational for
large second Chern number. Other aspects concerning fibred surfaces will be discussed in
Section 5.3.

From Chapter 5 onwe mainly focus on sheaveson surfaces. Chapter 5 dealswith theexis-
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tence of stable bundles on surfaces. The main techniques are Serre’s construction (Section
5.1) and Maruyama's elementary transformations (Section 5.2). With these techniques at
hand, one produces stable bundleswith prescribed invariants like rank, determinant, Chern
classes, Albanese classes, etc. Sometimes, on specia surfaces, the same methodscan in fact
be used to describe the geometry of the moduli spaces. Bundles on elliptic surfaces were
quite intensively studied by Friedman. Only a faint shadow of his results can be found in
Sections 5.3, where we treat fibred surfaces in some generality and two examples for K3
surface.

We continueto consider specia surfacesin Chapter 6. Mukai’s beautiful results concern-
ing two-dimensional moduli spaceson K3 surfacesare presentedin Section 6.1. Some of the
results, due to Beauville, Gottsche-Huybrechts, O’ Grady, concerning higher dimensional
moduli spaceswill be mentioned in Section 6.2. In the course of this chapter we occasion-
ally make use of the irreducibility of the Quot-scheme of all zero-dimensional quotients of
alocaly free sheaf on a surface. Thisis aresult originally dueto Li and Li-Gieseker. We
present a short algebraic proof dueto Ellingsrud and Lehnin Appendix 6.A.

Asasequel to the Grauert-M Ullich theorem we discuss other restriction theoremsin Chap-
ter 7. Flenner’stheorem (Section 7.1) is an essential improvement of the former and allows
one to predict the u-semistability of the restriction of a u-semistable sheaf to hyperplane
sections. The techniques of Mehta-Ramanathan (Section 7.2) are completely different and
allow one to treat the u-stable case as well. Bogomolov exploited his inequality to prove
the rather surprising result that the restriction of a u-stable vector bundle on a surface to
any curve of high degreeis stable (Section 7.3).

In Chapter 8 we strive for an understanding of line bundles on moduli spaces. Line bun-
dles of geometric significance can be constructed using the technique of determinant bun-
dles (Section 8.1). Unfortunately, Li's description of the full Picard group is beyond the
scope of these notes, for it uses gauge theory in an essential way. We only state a special
case of hisresult (8.1.6) which can be formulated in our framework. Section 8.2 is devoted
to the study of a particular ample line bundle on the moduli space and a comparison be-
tween the algebrai c and the analytic (Donaldson-Uhlenbeck) compactification of the mod-
uli space of stable bundles. We build upon work of Le Potier and Li. As aresult we con-
struct algebraically amoduli space of j-semistable sheaves on asurface. By work of Li and
Huybrechts, the canonical class of the moduli space can be determined for a large class of
surfaces (Section 8.3).

Chapter 9 is amost entirely a presentation of O’ Grady’s work on the irreducibility and
generic smoothness of moduli spaces. Similar results were obtained by Gieseker and Li.
Their techniques are completely different and are based on a detailed study of bundles on
ruled surfaces. The main result roughly says that for large second Chern number the mod-
uli space of semistable sheavesisirreducible and the bad locus of sheaves, which are not
p-stable or which correspond to singular pointsin the moduli space, has arbitrary high codi-
mension.

In Chapter 10 we show how one constructs holomorphic one- and two-formson the mod-
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uli space starting with such forms on the surface. Thisreflects rather nicely the genera phi-
losophy that moduli spaces inherit properties from the underlying surface. We provide the
necessary backgroundlike Atiyah class, trace map, cup product, Kodaira-Spencer map, etc.,
in Section 10.1. In Section 10.2 we describe the tangent bundle of the smooth part of the
moduli space in terms of auniversal family. In fact, this result has been used already in ear-
lier chapters. The actual construction of the formsis given in Section 10.3 where we also
prove their closedness. The most famous result concerning forms on the moduli space is
Mukai’s theorem on the existence of a non-degenerate symplectic structure on the moduli
space of stable sheaves on K3 surfaces (Section 10.4). O’ Grady pursued this question for
surfaces of genera type.

Chapter 11 combines the results of Chapter 8 and 10 and shows that moduli spaces of
semistable sheaves on surfaces of general type are of general type as well. We start with a
proof of thisresult for the case of rank one sheaves, i.e. the Hilbert scheme. Our presentation
of the higher rank case deviates dightly from Li’soriginal proof. Other results on the bira-
tional type of moduli spaces are listed in Section 11.2. We conclude this chapter with two
rather general examples where the birational type of moduli spaces of sheaves on (certain)
K3 surfaces can be determined.
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1 Preliminaries

This chapter providesthe basic definitions of thetheory. After introducing pure sheavesand
their homological aspects we discuss the notion of reduced Hilbert polynomialsin terms of
which the stability condition is formulated. Harder-Narasimhan and Jordan-Hol der filtra-
tions are defined in Section 1.3 and 1.5, respectively. Their formal aspects are discussed
in Section 1.6. In Section 1.7 we recall the notion of bounded families and the Mumford-
Castelnuovo regularity. The results of this section will be applied later (cf. 3.3) to show the
boundedness of the family of semistable sheaves. This chapter isslightly technical at times.
The reader may just skim through the basic definitions at first reading and come back to the
more technical parts whenever needed.

1.1 SomeHomological Algebra
Let X beaNoetherian scheme. By Coh(X ') we denote the category of coherent sheaveson
X.For E € Ob(Coh(X)), i.e. acoherent sheaf on X, one defines:

Definition 1.1.1 — The support of E isthe closed set Supp(F) = {z € X|E, # 0}.Its
dimension is called the dimension of the sheaf E and is denoted by dim(E).

The annihilator ideal sheaf of E, i.e. thekernel of Ox — End(FE), defines a subscheme
structure on Supp(E).

Definition 1.1.2 — E is pure of dimension d if dim(F') = d for all non-trivial coherent
subsheaves F' C E.

Equivaently, F ispureif and only if al associated pointsof E (cf. [172] p. 49) have the
same dimension.

Example 1.1.3 — The structure sheaf Oy of aclosed subschemeY C X isof dimension
dim(Y). Itispureif Y hasno componentsof dimensionlessthan dim(Y") and no embedded
points.

Definition 1.1.4 — The torsion filtration of a coherent sheaf E isthe uniquefiltration
0CTo(E)C...CTyE)=E,

whered = dim(FE) and T;(E) isthe maximal subsheaf of E of dimension < i.
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The existence of the torsion filtration is due to the fact that the sum of two subsheaves
F,G C Eofdimension< 7 hasalsodimension < i. Notethat by definition T;(E) /T;—1 (E)
iszero or pureof dimensioni. In particular, E isa pure sheaf of dimension d if and only if
Ti—1(E) =0.

Recall that a coherent sheaf £ on anintegral scheme X istorsion freeif foreachz € X
and s € Ox, \ {0} multiplication by s is an injective homomorphism E, — E,. Using
the torsion filtration, thisis equivaent to T'(E) := Tyim(x)—1(E) = 0. Thus, the property
of ad-dimensional sheaf E to be pureis ageneralization of the property to betorsion free.

Definition 1.1.5 — The saturation of a subsheaf ' C F isthe minimal subsheaf F’ con-
taining F' such that E/F" ispure of dimension d = dim(E) or zero.

Clearly, the saturation of F' isthe kernel of the surjection
E— E/F — (E/F)|Ty1(E/F).

Next, we briefly recall the notions of depth and homological dimension. Let M beamod-
ule over alocal ring A. Recall that an element a in the maximal ideal m of A iscalled M -
regular, if the multiplication by a definesan injective homomorphism M — M. A sequence
ai,...,ap € misan M-regular sequenceif a; isM/(aq,... ,a;—1)M-regularforali. The
maximal length of an M -regular sequenceis called the depth of A/. On the other hand the
homological dimension, denoted by dh(M ), is defined as the minimal length of a projec-
tiveresolution of M. If A isaregular ring, these two notions are related by the Auslander-
Buchsbaum formula:

dh(M) + depth(M) = dim(A) (1.2

For a coherent sheaf E on X one defines dh(F) = max{dh(E,)|z € X}.If X isnot
regular, the homological dimension of E might be infinite. For regular X it is bounded by
dim(X) and dh(F) < dim(X) — 1 for atorsion free sheaf. Both statements follow from
(1.1). Also note that for aregular closed point z € X, onehas dh(k(z)) = dim(X) and
for ashort exact sequence0 - E — F — G — 0 with F localy freeonehas dh(E) =
max{0,dh(G) — 1}.

In the sequel we discuss some more homological algebra. In particular, we will study the
restriction of pure (torsion free, reflexive, . . . ) sheavesto hypersurfaces. The reader inter-
ested in vector bundles or sheaves on surfaces exclusively might want to skip the next part
and to go directly to 1.1.16 or even to the next section. For the sake of completenessandin
order to avoid many ad hoc arguments later on we explain this part in broader generality.

Let X be asmooth projective variety of dimensionn over afield k. Consider a coherent
sheaf E of dimension d. The codimension of E is by definition ¢ := n — d. Thefollowing
generalizes Serre’s conditions Sy (k > 0):

Sk, : depth(E,) > min{k,dim(Ox ;) — ¢} for all 2 € Supp(E).
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Thecondition S . isvacuous. Condition S; . isequivalentto thepurity of £. Indeed, S .
isequivalent to thefollowing: if 2 € Supp(E) with dim(Ox ) > ¢, thendepth(E,) > 1.
But depth(E,) > 1if and only if k(z) = Ox /m, doesnot embedinto E,, i.e. z is not
an associated point of E. Hence E sdtisfies S . if and only if E ispure. Note, for ¢ = 0 the
condition Sy . impliesthat theset of singular points{z € X| dh(E,) # 0} hascodimension
> 2. More generaly, if Supp(E) isnormal, then S; . impliesthat E islocaly free on an
open subset of Supp(E) whose complement in Supp(E) has at |east codimension two.

The conditions Sj, . can conveniently be expressed in terms of the dimension of certain
local Ext-sheaves.

Proposition 1.1.6 —Let E bea coherent sheaf of dimension d and codimensionc := n—d
on a smooth projective variety X .

i) The sheaves £xt% (E,wx) are supported on Supp(E) and Ezt (E,wx) = 0 for
all ¢ < . Moreover, codim(Ezt% (E,wx)) > ¢ for ¢ > c.

i) F satisfies the condition Sy . if and only if codim(€xt% (E,wx)) > g + k for all
q>c.

Proof. Thefirst statementini) istrivial. For the second onetakesm large enough such that
HO(X,Ext% (B,wx) ® O(m)) = H°(X,Ext% (E,wx(m))) = Ext!(E,wx(m)) and
uses Serre duality Ext?(E,wx (m)) = H" 9(X, E(—m))” to conclude £zt% (E,wx) =
0forn —q > d. Forii) weapply (1.1) and thefact that for afinite module M over aregular
ring A onehas dh(M) = max{q| Ext?, (M, A) # 0}. Then

depth(Ey) > min{k,dim Ox x — ¢}

& max{dim Ox , — k,c} > dh(E;) = max{q|Ext!(E;, Oxz) # 0}
& Ext!(E,,O0x,,) =0 Vq¢>max{dimOx, —k,c}

& Foral ¢ > cand z € X thefollowing holds:

Ext?(E,, OX795) = 53:753( (E,wx)e # 0= dim Oxqz>q+k.

a

For asheaf E of dimensionn, thedua Hom(E, Ox ) isanon-trivial torsion free sheaf. If
the dimension of E islessthan n, then, with this definition, the dual is awaystrivial. Thus
amodification for sheaves of smaller dimensionisin order.

Definition 1.1.7 — Let E be a coherent sheaf of dimensiond and let ¢ = n — d beits
codimension. The dual sheaf isdefinedas E” = £xt5 (E,wx).

If ¢ = 0, then EP differsfrom the usual definition by the twist with the line bundle wyx,
i.e. EP = E” ® wx. The definition of the dual in this form has the advantage of being
independent of the ambient space. Namely, if X and Y aresmooth, i : X C Y isaclosed
embedding and E isasheaf on X, then (i, E)P =i, (EP). In particular, this property can
be used to define the dual of a sheaf even if the ambient space is not smooth.
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Lemma 1.1.8 — Thereis a spectral sequence
EY? = Exth (Ext(E,wx),wx) = E.
In particular, thereis a natural homomorphisméy : E — E5 ¢ = EPD.

Proof. The existence of the spectral sequence is standard: take a locally free resolution
L, — E and an injective resolution wx — I* and compare the two possible filtrations
of thetotal complex associated to the double complex Hom(Hom(Le,wx ), I*). Notethat
onehas codim(£zt% (E,wx)) > q and therefore EX? = 0 if p < —g. Hencethe only non-
vanishing E»-termslie within the triangle cut out by the conditionsp+ ¢ > 0, p < dim(X)
and g < —c. Moreover, ES ¢ C Ey “andthusfp : E — ES ° C By~ = EPPis
naturally defined. m|

The spectral sequence also shows that E5 " = Exth (Exth (E,wx ), wx) is pure of
codimension p or trivial. Indeed, onefirst showsthat £zt (E, wx) ispureof codimension
c. Then the assertion for Ext (Ext (B, wx ), wx ) followsdirectly. In fact, we show that
Exts (E,wx) even satisfies S, .: Since codim(EY?) > pand E2;=¢ = 0 forp > ¢, the
exact sequences

0— Ef‘)_,i_—lc N Ef,fc N E7I‘)+r,fcfr+1

show
dim(E?™°) < max{dim(E?~°), dim(E}T> 2}

max, > {dim(EPTm=cr1)}
Hence codim(ES ™) > p+ 2forp > c.

Definition 1.1.9 — A coherent sheaf E of codimension c is called reflexive if g is an iso-
morphism. EPP is called the reflexive hull of E.

We summarize the results:

Proposition 1.1.10 —Let E be a coherent sheaf of codimension ¢ on a smooth projective
variety X. Then the following conditions are equivalent:
1) Eispure
2) codim(€xt!(E,wx)) > g+ 1foralg> ¢
3) E satisfies Sy .
4) O isinjective.
Smilarly, the following conditions are equivalent:
1') Eisreflexive, i.e. 6 isanisomorphism
2') E isthedual of a coherent sheaf of codimension ¢
3) codim(Ext?(E,wx)) > q+2foral g > ¢
4') E satisfies S .
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Proof. i) 1) < 2) < 3) have been shown above. If 85 isinjective, then E is a subsheaf
of the pure sheaf £xt5 (Ext% (F,wx),wx ). Hence E is pure as well. If E is pure, then
codim(€xt% (E,wx)) > g + 1for ¢ > c. Hence Ext% (Ext% (E,wx),wx) = 0forp <
q+ 1. Inparticular, EJ""7 = 0 for ¢ > ¢ and, therefore, A isinjective.

ii) 3') & 4') follows from 1.1.6. Also 1) = 2') is obvious. Now assume that con-
dition 3') holds true, i.e. that we have codim(Ext% (E,wx)) > g + 2 forg > c. Then
Eaxth (Ext’ (E,wx),wx) =0forp < g+ 2.Hence B = 0forp < ¢+ 2 > c+ 2.
Thisshows By “ = ES “and EJ~ 7 = 0 for ¢ # ¢. Hence A isanisomorphism,i.e. 1)
holds. It remainsto show 2') = 3'), but this was explained after the proof of the previous
lemma. |

Note that the proposition justifies the term reflexive hull for EPP. A familiar example
of areflexive sheaf isthe following: if Y C X isaproper normal projective subvariety of
X, then Oy is areflexive sheaf of dimension dim(Y") on X . Indeed, Serre's condition .S
isequivalentto S, . where ¢ = codim(Y")

Theinterpretation of homological properties of a coherent sheaf E interms of local Ext-
sheaves enables us to control whether the restriction E|jr to a hypersurface H sharesthese
properties. Roughly, the properties discussed above are preserved under restriction to hy-
persurfaces which are regular with respect to the sheaf. Both concepts generalize naturally
to sheaves asfollows:

Definition 1.1.11 — Let X be a Noetherian scheme, let E be a coherent sheaf on X and
let L be aline bundieon X. A section s € H°(X, L) is called E-regular if and only if
EoL 5 E isinjective. A sequence s, ... ,s; € H°(X, L) iscalled E-regular if s; is
E/(s1,-..,8i-1)(E® L")-regular forall i =1,... ,£.

Obviously, s € H°(X, L) is E-regular if and only if its zero set H € |L| contains none
of the associated pointsof E. We also say that thedivisor H € |L| is E-regular if the corre-
sponding section s € H°(X, L) is E-regular. The existence of regular sections is ensured

by

Lemma 1.1.12 — Assume X is a projective scheme defined over an infinite field k. Let £
be a coherent sheaf and let I. be a globally generated line bundleon X . Then the E-regular
divisorsin the linear system | L| form a dense open subscheme.

Proof. Let 4, ... , zn denotethe associated pointsof E, and let Zx, betheideal sheaves
of the reduced closed subschemes X; = {z;}. Then H € |L| contains z; if and only if H
is contained in the linear subspace P; = |Zx; ® L| C |L|. Since L is globally generated,
h%(X,Zx, ® L) < h°(X, L), so that the linear subspaces P; are proper subspacesin |L|
and their complement is open and dense. a

Lemma 1.1.13 —Let X be a smooth projective variety and H € |L|.
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i) If E isa coherent sheaf of codimension ¢ satisfying S, . for someinteger £ > 1 and
H is E-regular, then E| 7, considered as a sheaf on X, satisfies Si,_1,c+1-

i) Ifin addition H is xt% (E,wx)-regular for all ¢ > 0, then Ext% (E|g,wx) =
Exth (E,wx) ® L|y. Inparticular, if E satisfies Sy, ., then E|y satisfies S, c+1.

Proof. By assumption we have an exact sequence0 - E® L™ — E — E|g — 0. The
associated long exact sequence

o= Ent TN E @ LY wy) = Exth (Blp,wx) = Ext (B,wx) . . .
gives
codim(Ext% (E|mr,wx)) > min{codim(£xt% "(F ® L7, wx)), codim (Ext% (B, wx))}.

The second regularity assumption implies that the above complex of £xt-groups splits
up into short exact sequences

0 = Extl (B, wx) = Ext’ (B,wx) ® L = Ext (B ® O, wx) — 0.

This gives the second assertion. m|

Corollary 1.1.14 —Let X be a smooth projectivevariety and H € |L|.

i) If E is a reflexive sheaf of codimension ¢ and H is E-regular then E|y is pure of
codimension ¢ + 1.

i) If E ispure (reflexive) and H is E-regular and Ext% (E,wx )-regular for all ¢ > 0
then E| is pure (reflexive) of codimension ¢ + 1.

Corollary 1.1.15 — Let X be a normal closed subscheme in PV and & an infinite field.
Then thereis a dense open subset U of hyperplanes H € |O(1)| such that H intersects X
properly and such that X N H isagain normal.

Proof. One must show that X N H isregular in codimension one and satisfies property Ss.
By assumption Oy isareflexivesheaf on PV. Hence Corollary 1.1.14impliesthat O x 7 is
reflexiveagain for all H in adense open subset of |O(1)|. Let X’ C X betheset of singular
points of X. Then codimx (X') > 2. If H intersects X' properly, then codimx g (X' N
H) > 2,too. Henceit is enough to show that a general hyperplane H intersects the regular
part X,.., of X transversely, but thisis the content of the Bertini Theorem. O
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Example 1.1.16 — For later use we bring the results down to earth and specify them in the
case of projective curves and surfaces.

First, let X beasmooth curve. Thenacoherent sheaf £ might bezero or one-dimensional.
If dim(E) = 0, then Supp(E) is afinite collection of points. In general, E = T'(E) &
E/T(E),where E/T(E) islocally free. Indeed, a sheaf on a smooth curveistorsion free
if and only if itislocaly free.

If X isasmooth surface, then asheaf E of dimensiontwo isreflexiveif and only if it is
locally free. Any torsion free sheaf E embedsinto itsreflexive hull E™ suchthat E™/E
has dimension zero. In particular, atorsion free sheaf of rank oneis of theformZ, ® M,
where M isaline bundleand Z isthe ideal sheaf of a codimension two subscheme. Note
that afor torsion free sheaf E onasurfacedh(E) < 1. The support of £/ E iscalled the
set of singular points of the torsion free sheaf E. We will also use the fact that if alocally
free sheaf F' is a subsheaf of atorsion free sheaf E, then To(E/F) = 0. Therestriction
results are quite elementary on asurface: if F isof dimensiontwo and reflexive, i.e. locally
free, then the restriction to any curveis locally free. If E is purely two-dimensional, i.e.
torsion free, then the restriction to any curve avoiding the finitely many singular points of
Eislocally free.

1.1.17 Determinant bundles — Recall the definition of the determinant of a coherent
sheaf. If E islocaly free of rank s, then det(E) is by definition the line bundle A*(E).
More generally, let E be a coherent sheaf that admits a finite locally free resolution

0O—-FE,—>FE, 1—>...5FE—>FE—=DO.

Definedet(E) = ) det(E;)(~1". Thedefinition doesnot depend on the resolution. If X is
asmooth variety, every coherent sheaf admitsafinitelocally freeresolution. Seeexc. 111 6.8
and 6.9in[98] for the non-projectivecase. If dim(E) < dim(X) — 2, thendet(E) = Ox.

1.2 Semistable Sheaves

Let X beaprojectiveschemeover afield k. Recall that the Euler characteristic of acoherent
sheaf Eisx(E) := Y. (-1)'hi(X, E), where hi(X, E) = dimy H'(X, E). If wefix an
ampleline bundle O(1) on X, then the Hilbert polynomial P(E) isgiven by

m — x(E® O(m)).

Lemma1l.2.1 —Let E bea coherent sheaf of dimensiond and let Hy, ... ,H; € |O(1)|
be an E-regular sequence. Then
m+i—1

d
P(E,m) = x(E » 0m) = 3" x(Eln,_,m) )

: )
=0
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Proof. We proceed by induction. If d = 0 the assertion is trivial. Assumethat d > 0
and that the assertion of the lemma has been proved for all sheaves of dimension < d. Let
H = H,; and consider the short exact sequence

0= E(m—1) > E(m) = E(m)lg =0

Then by the induction hypothesis

d—1
X(E(m)) = x(E(m = 1)) = x(E(m)|g) = ZX(EIQJ.SMHJ-)(

i=0

m4i—1
; .
Thismeansthat if f(m) denotesthe differenceof x(E(m)) and the term on the right hand

side in thelemma, then f(m) — f(m — 1) = 0. But clearly f(0) = 0, so that f vanishes
identically. O

In particular, P(E) can be uniquely written in the form

dim(E) mi
P(E,m)= ) i (B)—
i=0 :
with integral coefficients«;(E) (i = 0,. .. ,dim(FE)). Furthermore, if E # 0 the leading
coefficient aim () (F), called the multiplicity, isalways positive. Note that argim x) (Ox)
isthe degree of X with respect to O(1).

Definition 1.2.2 —If E isa coherent sheaf of dimension d = dim(X), then

ad(E)
aq(Ox)

rk(E) :=
iscalled therank of E.

On an integral scheme X of dimension d there exists for any d-dimensional sheaf E an
open dense subset U C X such that E|y is locally free. Then rk(E) is the rank of the
vector bundle E|;;. In general, rk(E) need not be integral, and if X is reducible it might
even depend on the polarization.

Definition 1.2.3 —Thereduced Hilbert polynomial p(E) of a coherent sheaf E' of dimen-
sion d is defined by
P(E,m)

aq(E)

p(E,m) :=

Recall that thereisanatural ordering of polynomials given by the lexicographic order of
their coefficients. Explicitly, f < g if andonly if f(m) < g(m) for m > 0. Analogously,
f < gifandonlyif f(m) < g(m) form > 0. We are now prepared for the definition of
stability.



1.2 Semistable Sheaves 11

Definition 1.2.4 — A coherent sheaf E of dimension d is semistable if E is pure and for
any proper subsheaf F' C E onehasp(F) < p(E). E iscalled stable if E' is semistable
and theinequality is strict, i.e. p(F') < p(E) for any proper subsheaf F' C E.

We want to emphasi ze that the notion of stability depends on the fixed ample line bundle
on X. However, replacing O(1) by O(m) has no effect. We come back to this problemin
4.C.

Notation 1.2.5 — In order to avoid case considerations for stable and semistable sheaves
we will occasionally employ the following short-hand notation: if in a statement the word
“(semi)stable” appears together with relation signs“ (<)” or “(<)”, the statement encodes
in fact two assertions. one about semistable sheaves and relation signs “<” and “<”, re-
spectively, and one about stable sheaves and relation signs“ <” and “ <", respectively. For
example, we could say that E is (semi)stableif and only ifitispureand p(F') (<) p(E) for
every proper subsheaf F' C E.

An aternative definition of stability would have been the following: a coherent sheaf £
of dimension d is (semi)stableif ay(E) - P(F) (<) aq(F') - P(E) for al proper subsheaves
F C E. Thisisobviously the same definition except that it does not require explicitly that
E is pure. But applying the inequality to F' = T;_(FE) and using ay(Ty—1(E)) = 0 we
get P(Ty—1(FE)) < 0. Thisimmediately implies Ty, (E) = 0, i.e. E ispure.

Proposition 1.2.6 —Let E be a coherent sheaf of dimension d and assume E ispure. Then
the following conditions are equivalent:
i) Eis(semi)stable.

ii) For all proper saturated subsheaves F' C E onehasp(F)(<)p(E).

iii) For all proper quotient sheaves £ — G with aq(G) > 0 onehasp(E) (<)p(G).

iv) For all proper purely d-dimensional quotient sheaves E — G onehasp(E)(<)p(G).

Proof. Theimplicationsi) = ii) andiii) = iv) areobvious. Consider an exact sequence

0—F—>E—G—0.

Using aq(E) = a4(F) + a4(G) and P(E) = P(F) + P(G), we get ay(F) - (p(F) —
p(E)) = aq4(G) - (p(E) — p(G)). Since G is pure and d-dimensional if and only if F'is
saturated, thisyields i) = iii) and i7) < iv). Findly, i7) = ) follows from a4 (F) =
aq(F")and P(F) < P(F"), where F' isthe saturation of F'in E. |

Proposition 1.2.7 —Let F' and G be semistabl e purely d-dimensional coherent sheaves. If
p(F) > p(G), thenHom(F,G) = 0. If p(F) = p(G) and f : F — G isnon-trivial then f
isinjectiveif F isstable and surjectiveif G isstable. If p(F') = p(G) and a,q(F') = aq(G)
then any non-trivial homomorphism f : F — G is an isomorphism provided F' or G is
stable.
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Proof. Let f : FF — G be anon-trivid homomorphism of semistable sheaves with
p(F) > p(G). Let E betheimage of f. Then p(F) < p(E) < p(G). This contradicts
immediately the assumption p(F) > p(G). If p(F) = p(G) it contradicts the assumption
that F isstableunless F' — E isanisomorphism, and theassumption that G is stable unless
E — @G isanisomorphism. If F' and G have the same Hilbert polynomia a4 (F) - p(F) =
aq(@G) - p(G), then any homomorphism f : F — G isanisomorphismif and only if f is
injective or surjective. m|

Corollary 1.2.8 —If E isa stable sheaf, then End(FE) is a finite dimensional division al-
gebraover k. Inparticular, if k isalgebraically closed, then k = End(FE), i.e. Eisasimple
sheaf.

Proof. If E is stable then according to the proposition any endomorphism of E is either
0 or invertible. The last statement follows from the general fact that any finite dimensional
divisonagebra D over analgebraicaly closed fieldistrivia: any element z € D\ k would
generate afinite dimensional and hence algebraic commutativefield extension of £ in D.O

The converse of the assertionin the corollary isnot true: if Eissimple,i.e. End(E) = k,
then E need not be stable. An examplewill be giveninin 1.2.10.

Definition 1.2.9 —A coherent sheaf £ isgeometrically stableif for any basefield extension
Xk =X Xy, Spec(K) — X thepull-back E ®;, K isstable.

A stable sheaf need not be geometrically stable. An example will be givenin 1.3.9. But
note that a stable sheaf on a variety over an algebraically closed field is also geometrically
stable (cf. 1.5.11). The corresponding notion of geometrically semistable sheaves does not
differ from the ordinary semistability due to the uniqueness of the Harder-Narasimhan fil-
tration (cf. 1.3.7).

Historically, the notion of stability for coherent sheaves first appeared in the context of
vector bundles on curves [190]: let X be a smooth projective curve over an algebraically
closed field &, and let E be alocally free sheaf of rank r. The Riemann-Roch Theorem for
curves says

X(E) = deg(E) +r(1 - g),
where g isthe genus of X. Accordingly, the Hilbert polynomial is
P(E,m) = rdeg(X)m + deg(E) + r(1 — g) = (deg(X)m + uw(E) + (1 —g)) - r,

where u(E) := deg(F)/r iscaled the dope of E. Then E issaid to be (semi)stable, if for
all subsheaves F' C E with0 < rk(F') < rk(E) onehas u(F)(<)u(E). Note that thisis
equivalent to our stability condition p(F)(<)p(E).
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Example 1.2.10 — Examplesof stable or semistable bundlesare easily available: any line
bundleis stable. Furthermore, if 0 -+ Lo — F — L; — 0 isanon-trivial extension with
line bundles L, and L, of degree 0 and 1, respectively, then F' is stable: since the degree
is additive, we have deg(F') = 1 and u(F') = 1/2.Let M C F bean arbitrary subsheaf.
If tk(M) = 2, then F//M isasheaf of dimension zero of length, say ¢ > 0, and u(M) =
w(F)—1£/2 < p(F). If rk(M) = 1 consider the composition M — L. Thisiseither zero
or injective. In thefirst case M C L, and therefore u(M) < p(Lo) = 0 < 1/2.Inthe
second case M C L, and therefore (M) < u(Ly) = 1.If u(M) = 1, then necessarily
M = L, and M would provide a splitting of the extension in contrast to the assumption.
Hence again (M) < 0 < 1/2. On the other hand, adirect sum Ly ¢ L, of line bundles
of different degree is not even semistable. By a similar technique, one can also construct
semistable bundles which are not stable, but smple: let X be a projective curve of genus
g > 2 over an agebraically closed field £ and let E;, and E» be two non-isomorphic stable
vector bundlesof rank , and ro, respectively, with u(E;) = p(E>). ThenHom(Es, Ey) =
0 by Proposition 1.2.7. Hence the dimension of Ext'(E,, E;) can be computed using the
Riemann-Roch formula:

dim(Ext' (Ey, E1)) = —x(Ey" @ Ey) =11 -2 - (g — 1).

Therefore, thereare non-trivial extensions0 — E; — E — E» — 0. Of course, E is semi-
stable, but not stable. We show that E issimple: Suppose ¢ : £ — E isanon-trivial endo-

morphism. Then the composition £; — E i) E — E, must vanish, hence ¢(E,) C E;.
Since E, issmple, ¢|g, = A-idg, for somescalar A € k. Consider v = ¢ — X\ -idg. Then
v : E — FEistrivial when restricted to E; and hence factorizes through a homomorphism
¢' : Ey — E.If thecomposition’ : E; — E — E, were non-zero, it would be an
isomorphism and hence a multiple of the identity and would provide a splitting of the se-
guencedefining E. Hence ¢’ factorizesthrough some homomorphism E; — E;. But since
Hom(E,, E») = 0, oneconcludesy = 0.

If we pass from sheaves on curves to higher dimensional sheaves the notion of stabil-
ity can be generalized in different ways. One, using the reduced Hilbert polynomial, was
presented above. This version of stability is sometimes called Gieseker-stability. Another
possible generalization uses the dope of a sheaf. The resulting stability condition is called
Mumford-Takemoto-stability or u-stability. Compared with the notion of Gieseker-stability
u-stability behaves better with respect to standard operations like tensor products, restric-
tionsto hypersurfaces, pull-backs, etc., which areimportant technical tools. Wewant to give
the definition of u-stability in the case of a sheaf of dimensiond = dim(X). For a com-
pletely general treatment compare Section 1.6

Definition 1.2.11 — Let E be a coherent sheaf of dimension d = dim(X). The degree of
E isdefined by

deg(E) := ag_1(E) —rk(E) - aq4—1(Ox)
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anditsslope by
_ deg(E)
B =)

On asmooth projectivevariety the Hirzebruch-Riemann-Rochformulashowsdeg(E) =
c1(E).Ht, where H isthe ample divisor. In particular, deg(E) = deg(det(E)). If we
want to emphasize the dependence on the ample divisor H wewritedeg; (E) and pr (E).
Obvioudy, deg,, ;7 (E) = n? ! degy (E) and pnp (E) = n tuy (E).

Definition 1.2.12 — A coherent sheaf E of dimensiond = dim(X) is u-(semi)stable if
Ty o(E) = Ty—1(E) and u(F)(L)u(E) for all subsheaves FF C E with 0 < rk(F) <
rk(E).

The condition on the torsion filtration just says that any torsion subsheaf of E has codi-
mension at least two. Observe, that a coherent sheaf of dimension dim(E) = dim(X) is
u-(semi)stableif and only if rk(E) - deg(F)(<L)rk(F') - deg(E) for al subsheaves F' C E
withrk(F) < rk(F) (comparethe arguments after 1.2.4). One easily proves

Lemma 1.2.13 —If E isa pure coherent sheaf of dimension d = dim(X), then one has
the following chain of implications

FEis p—stable = F isstable = F issemistable = F is y—semistable.

For later use, we also formulate the following easy observation.

Lemmal1l.2.14 —Let X beintegral. If a coherent sheaf E of dimension d = dim(X) is
u-semistable and rk(E) and deg(E) are coprime, then E is p-stable.

Proof. If E is not u-stable, then there exists asubsheaf FF C E with 0 < rk(F) <
rk(E) and deg(F) - rk(E) = deg(E) - rk(F). This clearly contradicts the assumption
g.c.d.(rk(E), deg(E)) = 1. m|

1.3 TheHarder-Narasmhan Filtration

Before we state the general theorem, let us consider the specia situation of vector bundles
onP' over afield k.

Theorem 1.3.1 —Let E beavector bundleof rankr onP'. There isauniquely determined
decreasing sequence of integersa; > as > ... > a, sSuchthat E =2 O(a;) @ ... ® O(a,).
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Proof. The theorem is clear for r = 1. Assume that the theorem holds for &l vector
bundles of rank < r and that E is a vector bundle of rank r. Then there is a line bundle
O(a) C E such that the quotient is again a vector bundle: simply take the saturation of
any rank 1 subsheaf of E. Let a; be maximal with this property, and let @;_, O(a;) bea
decomposition of the quotient E/O(a4). Consider the twisted extension:

0— O(-1) » BE(-1-a1) » @ O(a; —ar — 1) - 0.
=2
Any section of E(—1 — a;) would induce a non-trivial homomorphism O(1 + a,) — E,
contradicting the maximality of a;. Hence H°(E(—1 —a;)) = 0. Since H' (O(-1)) = 0
we havealso H°(O(a; — 1 — ay)) = 0 for al i. Thisimpliesa; < a; + 1, sothat a; >
as > ... > a,. |t remainsto show that the sequence splits. But clearly

Extl(@ O(a;),0(ar))” = @ Hom(O(a1),O(a; —2)) =0,
i>2 i>2
sincea; > a; > a; — 2. We can rephrase the existence part of the theorem as follows:
Thereis an isomorphism

E= PV, O(a)
a€ZL
for finite dimensional vector spaces V,,, aimost al of which vanish. To prove uniqueness
amountsto showing that £ determines the dimensions dim(V,).
We define afiltration of E in the following way: for every integer b let

H°(P',E(b)) ® O(-b) — E

denotethe canonical eval uation map and E;, itsimage. Since E(b) hasno global sectionsfor
very negativeb and isglobally generated for very large b, we get afiniteincreasing filtration

..CE>sCFE_ CEyCFE C...

Moreover, itisclear that, if E = @, V, @ O(a), then E}, = @az_bva ®r O(a). This
shows: dim(V,) =rk(E_./E_,_1). O

In fact, we proved more than the theorem required, namely the existence of a certain
unique split filtration, though the splitting homomorphisms are not unique. In general, we
gtill have afiltration for a given coherent sheaf with similar properties as above but which
is non-split.

The following definition and theorem give a first justification for the notion of a semi-
stable sheaf: we can think of semistable sheaves as building blocks for arbitrary pure di-
mensional sheaves. Let X be a projective scheme with afixed ample line bundle.
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Definition 1.3.2 —Let E beanon-trivial puresheaf of dimension d. AHarder-Narasimhan
filtration for E isan increasing filtration

0 = HNo(E) C HN{(E)... C HN(E) = E,

such that thefactors grf™ = HN;(E)/HN;_; (E) fori = 1,... , ¢, are semistable sheaves
of dimension d with reduced Hilbert polynomials p; satisfying

pmax(E) =pr > >pe = pmin(E)-

Obvioudly, E issemistableif andonly if E ispureand piax(E) = pmin(E). A priori, the
definition of the maximal and minimal p of asheaf E dependson thefiltration. We will see
in the next theorem, that the Harder-Narasimhan filtration is uniquely determined, so that
there is no ambiguity in the notation. For the following lemma, however, we fix Harder-
Narasimhan filtrations for both sheaves:

Lemma 1.3.3 —If F and G are pure sheaves of dimension d with ppin (F') > Pmax(G),
then Hom(F,G) = 0.

Proof. Suppose ) : F — G isnon-trivia. Let ¢ > 0 be minimal with ) (HN;(F)) # 0
andlet j > 0 beminimal with ¢y (HN;(F)) C HN;(G)). Then thereis a non-trivial ho-
momorphism ¢ : griN(F) — griN(G). By assumption p(gri'™(F)) > puin(F) >
Pmax(G) > p(griN(@G)). This contradicts Proposition 1.2.7. ]

Theorem 1.3.4 —Every pure sheaf E has a unique Harder-Narasimhan filtration.
We will prove the theorem in a number of steps:

Lemma 1.3.5 —Let FE be a purely d-dimensional sheaf. Then thereisa subsheaf ' C E
such that for all subsheavesG C E onehasp(F) > p(G), andin case of equality F' D G.
Moreover, F' isuniquely determined and semistable.

Definition 1.3.6 — F' is called the maximal destabilizing subsheaf of E.

Proof. Clearly, the last two assertions follow directly from the first.

Let us define an order relation on the set of non-trivial subsheavesof E by F; < F; if
andonly if F; C F» and p(F;) < p(Fz). Since any ascending chain of subsheaves ter-
minates, we have for every subsheaf F' C E asubsheaf F' ¢ F' C E whichismaximal
with respect to <. Let F' C E be <-maximal with minimal multiplicity az(F") among all
maximal subsheaves. We claim that F' has the asserted properties.

Suppose there exists G C E with p(G) > p(F). First, we show that we can assume
G C F byreplacing G by GN F'. Indeed, if G ¢ F, then F' isaproper subsheaf of F' + G
and hencep(F) > p(F + G). Using the exact sequence

0-FNG—>FG@—-F+G—0
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onefinds P(F) + P(G) = P(F® @) = P(FNG) + P(F + G) and ay(F) + a4(G) =
as(F & G) = aqg(F N G) + aq(F + G). Hence, aq(F N G)(p(G) — p(F NQ)) =
aa(F + G)(p(F + Q) — p(F)) + (aa(Q) — aa(F N G))(p(F) - p(G)). Together with
the two inequalities p(F') < p(G) and p(F') > p(F + G) thisshows p(F) < p(G) <
p(F NG). Next, fix G € F with p(G) > p(F) which ismaximal in F' with respect to <.
Thenlet G’ contain G and be <-maximal in E. In particular, p(F') < p(G) < p(G'). By the
maximality of G’ and F' weknow G’ ¢ F', since otherwise aq(G') < aq(F') contradicting
the minimality of a;(F). Hence, F is a proper subsheaf of F' + G'. Therefore, p(F) >
p(F + G'). Asbeforethe inequalities p(F') < p(G') and p(F') > p(F + G') imply p(F' N
G") > p(G') > p(G).SnceG C FNG' C F,thiscontradictstheassumptionon G. O

The lemma alows to prove the existence part of the theorem: let E be a pure sheaf of
dimensiond and let F; bethe maximal destabilizing subsheaf. By induction we can assume
that £/ E; has aHarder-Narasimhan filtration0 = Go C Gy C ... C Gy—1 = E/E;. If
E;+1 C E denotesthe pre-image of G;, al that isleft isto show that p(E;) > p(E2/E1).
But if thiswere false, we would have p(E,) > p(E;) contradicting the maximality of E; .

For the uniqueness part assume that £, and E. are two Harder-Narasimhan filtrations.
Without loss of generality p(E7) > p(E:). Let j be minimal with E{ C E;. Then the
composition B — E; — E;/E;_; isanon-trivial homomorphism of semistable sheaves.
Thisimpliesp(E;/E;_1) > p(E{) > p(E1) > p(E;/E;-1) by Proposition 1.2.7. Hence,
equality holds everywhere, implying j = 1 sothat E; C FE;.Butthenp(E]) < p(E)
because of the semistability of E;, and one can repeat the argument with the rdles of E.
and E, reversed. Thisshows: E{ = F;. By induction we can assumethat uniqueness holds
for the Harder-Narasimhan filtrations of E/E;. Thisshows E}/E, = E;/E; and finishes
the proof of the uniqueness part of the theorem. |

Theorem 1.3.7 — Let £/ be a pure sheaf of dimension d and let K be a field extension of
k. Then

HN,(E ®;, K) = HN,(E) & K,

i.e. the Harder-Narasimhan filtration is stable under base field extension.

Proof. If F' C F isadestabilizing subsheaf thensois FF ® K C E ® K. Henceif
E ® K issemistable, then E isaso semistable. It therefore sufficesto prove: thereexistsa
filtration F, of E suchthat HN;(E® K) = E; ® K. ThesheavesHN,(E ® K) arefinitely
presented and hence defined over some field L, k C L C K, which isfinitely generated
over k. Filtering L by appropriate subfields we can reduce to the case that K = k(z) for
some single element z € K and that either

1. K/kispurely transcendental or separable, or

2. K/kispurely inseparable.
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In the first case, & is the fixed field under the action of G = Gal(K/k). In genera any
submodule Ny € E ® K isof theform Ng = N, ® K for some submodule N, C E
if and only if Nk isinvariant under the induced action of G on Ng. This applies to all
members of the Harder-Narasimhan filtration: For any g € G, g(HN.(E ® K)) isagainan
HN-filtration, and hence coincideswith HN, (E ® K).

In the second case, the algebra A = Dery(K) actson E ® K,and Ny C E ® K can
bewrittenas N = N;, ® K for some N, C Eif andonly if 6(Ng) C Nk foral § € A
(Jacobson descent). Let F' = HN;(E @ K') and consider the composition

WV F—EoK -5 E®K — (E®K)/F.
Though ¢ certainly is not K -linear, the composition 1 is:
W N) = () A+ [-8(0) = $(f)- A mod F.
Lemmal.3.3imliesy = 0. Thismeans§(F) C F, we are done. O
A special case of the theorem is the following:

Corollary 1.3.8 —If E isa semistable sheaf and K isafield extension of &, then £ ®;, K
is semistable aswell. O

Example 1.3.9 — Herewe provide an example of astable sheaf whichisnot geometrically
stable. Let X = Proj(R(zo, z1,22]/ (23 + 2% + x3)) and let H be the skew field of real
guaternions, i.e. thereal algebrawith generators’, J and K andrelations/-J = K = —J-I
and I? = J? = K? = —1. Define ahomomorphism

p:Heor Ox(—1) — Heg Ox

of Hor Ox-left bimodulesasright-multiplication by theelement I @ g+ J @21 + K Q5.
TheH®r Ox-structureinherited by F' := coker(¢) induces an R-algebra homomorphism
H — Endx (F), whichisinjectiveas H is a skew field. Complexifying, we get identifica-
tions
i : Pt = Proj(Clu,v]) = X x Spec(C), i*Ox(1) = Opi(2)
via
1 2

i
—v%), 11 =ww, = 5(“2 +v?)

and H ©r C = My (C) with

(4 3= (0 5) = (00),

With respect to these identifications, .. is right multiplication by



1.4 An Example 19

(M 2o ) =(h) e =),

so that ¢ factors asfollows
u
Vi ( vl —u )

M>(C) ® Op1(~2) —— € ® Opi(~1) ————3 M>(C) ® Op1.

Fromthiswegeti*Fr = C? ® Op1(1). Sincei* F islocally free and semistable by 1.3.8,
the same holdsfor F', but obviously F isnot geometrically stable. Moreover, by the flat base
extension theorem, dimg Endx (F) = dimc Endp:(Op1(1)?) = 4 which implies H =
Endx (F). Weclaimthat F isstable. For otherwisetherewould exist ashort exact sequence
0—L—F— L — 0withlinebundles £ and £’ of the same degree. Comparison with
the complexified situation impliesthat F = £ & £’ = £9? which leadsto the contradiction
Endx (F) & M>(R) % H. O

1.4 An Example

Here we want to show that the cotangent bundle of the projective spaceis stable and at the
same time supply ourselves with some detailed information which will be needed later in
the proof of Flenner’s Restriction Theorem 7.1.1. At one point in the proof we will use the
existence and the uniqueness of the Harder-Narasimhan filtration.

Let k£ be algebraically closed and of characteristic 0. Let n > 2 be an integer and V' a
k-vector space of dimensionn + 1. We want to study a sequence of vector bundleson P(V')
related to the cotangent bundle 2 = Qp(y,. It is well known that the cotangent bundle is
given by the Euler sequence

0-Q1) =2 Ve0p— Op(l) =0 (1.2)

Herethehomomorphismd : V& Ox — Op(1) isthe evaluation map for the global sections
of Op(1). Symmetrizing sequence (1.2) we get exact sequences

0 — SUQ(L)) — SV © Op 24 STV © Op(1) — 0, (1.3)

where the map §, at aclosed point corresponding to a hyperplane W C V' isgiven by

d
(v V...Vug) ®1 »—>Z(vl...\/ﬁiv...VUd)(X)(vimodW).
i=1
The assumption that the characteristic of & be zero is necessary for the surjectivity of d4.
More general, we consider the epimorphisms
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6y =0q_ip1(i—1)o...064: SV 20 — SV ® 0®),

wheredg ;11 (i — 1) isshortfor 6, ;41 ® idp(;—1), and we agree that 69 =id and 63 =0
fori > d. In particular, ; = §4. The subbundles K, := ker(8%),i =0,...,d+ 1,forma
filtration

0=KjcKic...cKicki =5V o0, (1.4)
with factors of the same nature:
Lemmal4.1 —For 0 <i < j <d+ 1therearenatural short exact sequences
0— Kf = K — K27H@) — 0.
If j =i + 1, the sequenceis non-split.

Proof. The first claim follows from the identity &7, = 7() o 8/,. In particular, for i =
j — 1l onegets:
it /K = Kh () = $771(Q(1)) @ 0().
If the corresponding short exact sequencewere split, therewould be anon-trivial homomor-
phism
S4THQ(1)) — KiFH(—i) — SYV) @ O(—i).

On the other hand, applying Hom( ., S%(V) ® O(—i)) to the short exact sequence (1.3)
(with d replaced by d — i), one gets the exact sequence

Hom(S"'V ® 0,8 @ O(—i)) — Hom(S%#(Q(1)),S8V @ O(-i)) -
- Ext’(ST7 'V ® O(1), SV ® O(-i)),

where the exterior terms vanish, and hence the one in the middle as well. O

Lemma 1.4.2 — The slopes of the sheaves K/, satisfy the following relations:

st = -2

i) Ky < u(K%) < ... <ukd) <o.
Proof. From the exact sequence (1.3) we deduce:

Cdamstv () g
dim SV — dim S4-1V (n+d)_(n+d71) =T

n n

(1)) =

Therefore, the slopes
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WG KC) = u(STHQ(1) @ ) = i — ;i _in ¢

n n

are strictly increasing with i. Since the last term of the sequenceis u(K3™') = u(SV ®
O) = 0, thelemmais proved. |

Thegroup SL(V) acts naturally on P(V'). The sheaves O(¢), SV ® O and Q also carry
anatural SL(V')-action with respect to which the homomorphisms 6/, are equivariant.

Lemma 1.4.3 — The vector bundles S¢(€2(1)) have no proper invariant subsheaves.

Proof. Any invariant subsheaf G must necessarily beasubbundle, since SL(V) actstran-
sitively on P(V). Let z € P(V') beaclosed point corresponding to a hyperplane W C V.
Theisotropy subgroup SL(V'),, actsviathe canonical surjection SL(V'), — GL(W) onthe
fiore S1(Q(1))(x) = SIW. For any invariant subbundle G the fibre G(z) C S?W isan
GL(W)-subrepresentation. But S¢W is an irreducible representation, so that G(z) = 0 or
= S4W, whichmeansG = 0 or G = S4(Q(1)). ]

Lemma 1.4.4 —The bundles K?, are the only invariant subsheaves of SV ® 0.

Proof. We proceed by induction on d. The case d = 0 istrivial. Hence, assumethat d >
0 and that the assertion istruefor al d' < d. Let G C SV ® O be a proper invariant
subbundle. ThenG; := GNK) C K} andG; = G;/Gi—1 € STT1HQ(1)®@0(i—1) are
asoinvariant subbundles. Leti beminimal withG; # 0. ThenG; = G; = S¥1—(Q(1))®
O(i — 1) because of 1.4.3. But thisisomorphism provides a splitting of the exact sequence

0— K5t = Ki = STH(Q(1) @ 0@ — 1) — 0.

According to Lemma 1.4.1 thisisimpossibleunlessi = 1. Since K} = S4(Q(1)) isirre-
ducible, G1 = K. Therefore, let v > 1 be the maximal index such that G, = K. If G =
G, wearedone. If not, G’ := G/G, isaproper invariant subbundle of SV ® O/KY, =
SV ® O(v). By theinduction hypothesis

Gu1=Gr1 /Gy 2 G' Ny, (v) = Kq,(v) = KT /K,

sothat G, = K4 contradicting the maximality of v. a

Lemma 1.4.5 —The vector bundles K/, are semistable. Moreover, (1) = K] is u-stable,
hence stable.

Proof. The Harder-Narasimhan filtration of K’ isinvariant under the action of SL(V') be-
cause of its uniqueness. By the previouslemma, all subsheaves of the Harder-Narasimhan
filtration also appear in thefiltration (1.4). But according to Lemma 1.4.2 one has u(/Cﬁ) <
w(KY) for al j < i. Hence, none of these bundles can have a bigger reduced Hilbert poly-
nomial than K, i.e. K, is semistable. The last assertion follows from u(Q(1)) = —1/n,
since p-semistability implies p-stability whenever degree and rank are coprime (1.2.14). O
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1.5 Jordan-Holder Filtration and S-Equivalence

Just as the Harder-Narasimhan filtration splits every sheaf in semistable factorsthe Jordan-
Holder filtration splits a semistable sheaf in its stable components. More precisely,

Definition 1.5.1 —Let E be a semistable sheaf of dimension d. A Jordan-Holder filtration
of E isafiltration

0=FyCE1C...CE=F,
such that thefactors gr; (E) = E;/E;_, are stablewith reduced Hilbert polynomial p(E).

Notethat thesheaves E;, ¢ > 0, areal so semistablewith Hilbert polynomial p(E). Taking
the direct sum of two line bundles of the same degree one immediately finds that a Jordan-
Holder filtration need not be unique.

Proposition 1.5.2 — Jordan-Holder filtrations always exist. The graded object gr(E) :=
P, gri(E) does not depend on the choice of the Jordan-Holder filtration.

Proof. Any filtration of E by semistable sheaves with reduced Hilbert polynomial p(E)
has a maximal refinement, whose factors are necessarily stable. Now, suppose that £, and
E. are two Jordan-Holder filtrations of length ¢ and ¢', respectively, and assume that the
uniquenessof gr(F') hasbeen provedfor al F with a,(F) < a4(E), whered isthedimen-
sion of E and ay isthe multiplicity. Let ¢ be minimal with E; C E}. Then the composite
map Ey — E] — E!/E]_, isnon-trivia and therefore an isomorphism, for both E; and
E}/E] |, arestableand p(E,) = p(E}/E}_,). Hence E] = E! |, ® E;, so that thereisa
short exact sequence

0—FE, , »>E/E, - E/E;—0.
The sheaf F' = E/E; inheritstwo Jordan-Holder filtrations: firstly, let F; = E;, /E; for

j=0,...,—1.Andsecondly,let F; = E} forj =0, ... ,i—1andlet F; bethe preimage
of £, /E;forj=1i,...,¢ — 1. Theinduction hypothesis applied to F" gives ¢ = (" and

DE/Ei = DE/E) .
J#1 i
Since E, = E/E!_,, wearedone. O

Definition 1.5.3 —Two semistable sheaves F; and E» with the same reduced Hilbert poly-
nomial are called S-equivalent if gr(E;) = gr(E>).

The importance of this definition will become clear in Section 4. Roughly, the moduli
space of semistable sheaves parametrizesonly S-equivalence classes of semistable sheaves.

We conclude this section by introducing the concepts of polystable sheaves and of the
socle and the extended socle of a semistable sheaf.
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Definition 1.5.4 —A semistable sheaf F iscalled polystableif E isthe direct sumof stable
sheaves.

Aswe saw above, every S-equivalence class of semistable sheaves contains exactly one
polystable sheaf up to isomorphism. Thus, the moduli space of semistable sheavesin fact
parametrizes polystable sheaves.

Lemma 1.5.5 —Every semistable sheaf E containsa unique non-trivial maximal polysta-
ble subsheaf of the same reduced Hilbert polynomial. This sheaf is called the socle of E.

Proof. Any semistable sheaf E' admits a Jordan-Holder filtration. Thus there always ex-
istsanon-trivial stable subsheaf with Hilbert polynomial p(E). If there were two maximal
polystable subsheaves, then, similarly to the proof of 1.5.2, one inductively provesthat ev-
ery direct summand of the first also appearsin the second. |

Definition 1.5.6 — The extended socle of a semistable sheaf E is the maximal subsheaf
F C Ewithp(F) = p(E) and suchthat all direct summandsof gr(F") aredirect summands
of the socle.

Lemma 1.5.7 — Let F' be the extended socle of a semistable sheaf E. Then there are no
non-trivial homomorphismsform F'to E/F, i.e. Hom(F, E/F) = 0.

Proof. If G C E/F istheimage of a non-trivial homomorphism F — E/F and G
denotesits pre-imagein E, then G contains F' properly and the direct summands of gr(G)
and gr(F’) coincide. This contradicts the maximality of the extended socle. O

Example1.5.8 — Let X beacurveandlet0 —+ L; -+ E — Lo — 0 beanon-trivia
extension of two line bundles of the same degree. The socleof F is L;. The extended socle
of FisE itself if L1 = Ly, anditis L; otherwise.

Lemma 1.5.9 — The socle and the extended socle of a semistable sheaf E are invariant
under automorphismsof X and E. Moreover, if E issimple, semistable, and equalsits ex-
tended socle, then E is stable.

Proof. The first assertion is clear. Supposethat E is not stable. If E equalsits socle F’,
then E isnot simple. Suppose F’ # E. Sincethelast factor of a Jordan-Holder filtration of
E/F'isisomorphictoasubmodulein F’ thereisanon-trivial homomorphismE/F' — F',
inducing a non-trivial nilpotent endomorphism of E. |

Lemma 1.5.10 —If E isa simple sheaf, then E is stable if and only if E is geometrically
stable.
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Proof. Assume F is simple and stable but not geometrically stable. Let K beafield ex-
tension of k. According to the previouslemma, the extended socle E' of K @ E isaproper
submodule. The extended socle is invariant under all automorphisms of K /k and satisfies
the condition Hom(E', K ® E/E') = 0. Thus E’ is already defined over k. (Compare the
argumentsin the proof of Theorem 1.3.7.) a

Combined with 1.2.8 this lemma shows:

Corollary 1.5.11 —If k isalgebraically closed and E is a stable sheaf, then E isalso ge-
metrically stable. a

Remark 1.5.12 — Consider the full subcategory C(p) of Coh(X') consisting of all semi-
stable sheaves E with reduced Hilbert polynomial p. Then C(p) is an abelian category in
which al objects are Noetherian and Artinian. All definitions and statements made in this
section are just specializations of corresponding definitions and statementswithin thismore
general framework. Our stable and polystabl e sheavesare the simpleand semisimple objects
in C(p). Be aware of the very different meanings that the word ”"simple” assumes in these
contexts.

1.6 p-Semistability

We have encountered already two different stability concepts; using the Hilbert polynomial
and the slope, respectively. In fact there are others. We present an approach which allows
oneto deal with the different stability definitionsin a uniform manner. In particular, for -
stability it takes care of things happening in codimension two which do not effect the sta-
bility condition. Asit turns out, almost everything we have said about Harder-Narasimhan
and Jordan-Holder filtrations remains valid in the more general framework.

Let usfirst introduce the appropriate categories.

Definition 1.6.1 — Coh,4(X) isthefull subcategory of Coh(X') whose objectsare sheaves
of dimension < d.

For two integers0 < d' < d < dim(X) the category Coh, (X)) isafull subcategory of
Cohg(X). Infact, Cohy (X) isa Serre subcategory, i.e. it is closed with respect to subob-
jects, quotients objects and extensions. Therefore, we can form the quotient category.

Definition 1.6.2 — Cohgy, 4 (X) isthe quotient category Cohy(X)/Cohgr—1 (X).

Recall that Cohg 4 (X) has the same objects as Cohy(X). A morphism f : F — G
in Cohg, o (X) is an equivalence class of diagrams F «>~ G' — G of morphismsin
Cohg(X) such that ker(s) and coker(s) are at most (d' — 1)-dimensional. G and F' are
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isomorphic in Cohg 4 (X) if they areisomorphic in dimension d'. Moreover, we say that
E e Ob(COhd,dr (X)) is pure, if Tdfl(E) =0in COhd’d/ (X), i.e Tdfl(E) = Tdrfl(E),
andthat F' C E issaturated, if E/F ispurein Cohg g4 (X).

Similarly, if welet QT)q = {P € QT]|deg(P) < d},then QTar—1 C QT]q is
alinear subspace, and the quotient space Q[T'|4,o+ = QT']4/Q[T]a -1 inherits a natural
ordering. Thereisawell defined map

Py : COhd,dr (X) — Q[T]d,d’a

given by taking theresidue class of the Hilbert polynomial. For if £ and F' ared-dimensiona
sheaves which areisomorphic asobjectsin Cohy 4 (X) then P(E, m) = P(F, m) modulo
terms of degree < d'. In particular, Py o (E) = 0 if and only if E 22 0in Cohg,q« (X). The
reduced Hilbert polynomialspg 4 are defined analogously.

We can now introduce a notion of stability in the categories Cohg 4 (X') which general-
izes the notion given in Section 1.2:

Definition 1.6.3 — E € Ob(Cohg 4 (X)) is (semi)stable, if and only if E is purein
Cohy, q (X) andif for all proper non-trivial subsheaves F' one has pg ¢ (F') (<) pa,a (E).

Lemma 1.2.13 immediately generalizes to the following

Lemma 1.6.4 —If E isa pure sheaf of dimension d and j < i, then one has:

E isstablein Cohg ;(X) = E isstablein Cohgy, ;(X)

U
E issemigtablein Cohy ;(X) <« Eissemistablein Cohg ;(X)

Example 1.6.5 — By definition Cohy ¢(X) = Cohy(X) and Pyo = P.Inthecased' =
d — 1 onehas
Td Tdfl

Pd,dfl(E) = ad(E)m + OZd—l(E) (d — 1)'

inQ[T4,4—1 and hence

d d—1
Pd,a-1(E) = % + (ad—l(E)/ad(E))h'

Hence, for d = dim(X) and asheaf E of dimension d the (semi)stability in the category
Cohg, q4—1(X) isequivalent to the u-(semi)stability in the sense of 1.2.12.

The verification of the following meta-theorem is | eft to the reader.

Theorem 1.6.6 —All the statements of the previous sectionsremain true for the categories
Cohy 4 (X) if appropriately adopted. The proofs carry over literally. a

Two results, however, shall be mentioned explicitly.
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Theorem 1.6.7 —i) If E is a sheaf of dimension d and pure as an object of the category
Cohg,q(X), then there exists a unique filtration in Cohg 4 (X) (the Harder-Narasimhan
filtration)

O=FEyCE/ C...CE,=F

suchthatthefactors E; / E;_; aresemistablein Cohg o (X') and their reduced Hilbert poly-
nomialssatisfypd’d/ (El) > ... > Dd,d (E/ngl).

i) If E € Ob(Cohg,q4 (X)) issemistable, thenthereexistsafiltrationin Cohy 4 (X) (the
Jordan-Holder filtration)

O0=FEyCE,C...CE,=F

such that the factors E;/E;_; € Ob(Cohg 4 (X)) and pq,q (E;/Ei—1) = pa,a (E). The
graded sheaf gr’ (E) of thefiltration is uniquely determined as an object in Cohg 4 (X).

Notethat for apure sheaf the Harder-Narasimhanfiltration with respect to ordinary stabil-
ity isarefinement of the Harder-Narasimhan filtration in Cohg 4 (X), whereas the Jordan-
Holder filtration in Cohy 4 (X') isarefinement of the standard Jordan-Hol der filtration pro-
vided the sheaf E is semistable.

Example1.6.5 suggeststo extend the definition of p-stability to sheavesof dimensionless
than dim (X). We first introduce a modified slope which comesin handy at various places
later on.

Definition 1.6.8 —Let E bea coherent sheaf of dimensiond. Thenay 1 (E)/aq(E) isde-
noted by ji( E). For apolynomial P = Z?:o ai’?—!l of degreed wewrite ji(P) := ag—1/aq.

When working with Hilbert polynomials /i is the more natural slope, but for historical
reasons u(E) = deg(E)/rk(E) for asheaf of dimension dim(X') will be used whenever
possible. Notethat for d = dim (X) the usual slope u(E) differsfrom ji( E') by the constant
factor ay(Ox ) andtheconstantterm ag—1 (Ox ). Moreprecisely, u(E) = ay(Ox)-ji(E)—
(o7 ) (Ox)

Definition and Corollary 1.6.9 — A coherent sheaf E of dimension d is called u-(semi)-
stable if it is (semi)stable as an object in Cohg q—1(X). Then, E is u-(semi)stable if and
only if Ty (E) = Ty—»(E) and 4(F)(<)a(E) foral 0 G F G EinCohg g1 (X).

If d = dim(X) the Harder-Narasimhan and Jordan-Holder filtration of a torsion free
sheaf considered asan objectin Cohy 41 (X) arealso called u-Harder-Narasimhan and p-
Jordan-Hol der filtration, respectively. Inthiscase, if E istorsionfree and werequirethatin
the Harder-Narasimhan filtration all factors are torsion free, then the filtration is uniquein
Coh(X). Ontheother hand, for atorsion free .-semistabl e sheaf the graded sheaf gr/ 7 (F)
isuniquely defined only in codimension one. Sincetwo reflexive sheaveswhich areisomor-
phic in codimension one are isomorphic, we have
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Corollary 1.6.10 —If E is a u-semistable torsion free sheaf of dimension d = dim(X),
then the reflexive hull gr/# (E)™ of the graded sheaf is independent of the choice of the
Jordan-Holder filtration. a

The concept of polystability also naturally generalizesto objectsin Cohg 4 (X): asheaf
E € Ob(Cohg,q4 (X)) ispolystableif E = @ FE; in Cohg 4 (X), where the sheaves E; are
stablein COhd,dr (X) and Pd,d (El) = DPd,d’ (E) Again, ford = d — 1suchashedf E is
called p-polystable. Since a saturated sheaf of alocally free sheef is reflexive and a direct
summand of alocally free sheaf islocally free, one has

Corollary 1.6.11 —Alocallyfreesheaf E on X ispolystablein Cohy 4—1 (X)) ifand onlyif
E = ®F; in Coh(X), wherethe sheaves E; are u-stablelocally free sheaveswith p(E;) =
u(E). Inthis case any saturated non-trivial subsheaf F' C E with u(F) = u(FE) isadirect
summand of E. |

1.7 Boundedness|

In order to construct moduli spaces onefirst has to ensure that the set of sheaves one wants
to parametrizeisnot too big. In fact, thisis one of thetwo reasonswhy onerestrictsattention
to semistable sheaves. Aswe eventually will show in Section 3.3 the family of semistable
sheavesis bounded, i.e. it is reasonably small. This problem is rather intriguing. Here, we
give the basic definitions, discuss some fundamental results and prove the boundedness of
semistable sheaves on a smooth projective curve.

Let X beaprojective scheme over afield k and let O(1) be avery ampleline bundle.

Definition 1.7.1 —Let m be an integer. A coherent sheaf F' is said to be m-regular, if
HY(X,F(m —1i))=0 foralli>D0.
For the proof of the next lemmawe refer the reader to [191] or [124].
Lemma1.7.2 —If F' ism-regular, then the following holds:
i) Fism'-regular for all integersm’ > m.
i) F(m) isglobally generated.

iii) For all n > 0 the natural homomorphisms
H°(X,F(m)) ® H(X,0(n)) - H°(X, F(m + n)) are surjective.

Because of Serre’s vanishing theorem, for any sheaf F' thereis an integer m such that F' is
m-regular. And because of i) the following definition makes sense:



28 1 Preliminaries

Definition 1.7.3 — The Mumford-Castelnuovo regularity of a coherent sheaf F' isthe num-
ber reg(F') = inf{m € Z|Fism-regular}.

Theregularity isreg(F) = —oo if and only if F'is0-dimensional.
The following important proposition allows to estimate the regularity of asheaf F'interms
of its Hilbert polynomial and the number of global sections of the restriction of F' to ase-
guence of iterated hyperplane sections. For the proof we again refer to [124].

Proposition 1.7.4 — There are universal polynomials P; € Q[Ty, ... ,T;] such that the
following holds: Let F' be a coherent sheaf of dimension < d and let H,,... ,H; bean
F-regular sequence of hyperplane sections. |fX(F|ﬂjSiH]-) = q; and hO(F|mJ.Sl.HJ.) < b;
then

reg(F) < Py(ao — bo,a1 — by,... ,aq — bq).

Definition 1.7.5 — A family of isomor phism classes of coherent sheaveson X is bounded
if there is a k-scheme S of finite type and a coherent O x-sheaf F' such that the given
family is contained in the set { F'|spec(k(s))x x |5 @ closed pointin S}.

Note that later we use the word family of sheavesin a different setting (cf. Chapter 2.)
Hereit still hasits set-theoretical meaning.

Lemma 1.7.6 — Thefollowing properties of a family of sheaves { F, },; are equivalent:
i) Thefamily is bounded.

ii) The set of Hilbert polynomials {P(F;)}.cs is finite and there is a uniform bound
reg(F,) < pforall . € I.

iii) The set of Hilbert polynomials { P(F,)},.c isfinite and there is a coherent sheaf F'
such that all F;, admit surjective homomorphisms F' — F,. O

As an example consider thefamily of locally free sheaveson P! with Hilbert polynomial
P(m) = 2m + 2, that is, bundles of rank 2 and degree 0. We know that any such sheaf is
isomorphicto F, := O(a) ® O(—a) for somea > 0. Anditisclear that reg(F;,) = a. In
particular, this family cannot be bounded, since the regularity can get arbitrarily large. The
lemma already suffices to prove the boundedness of semistable sheaves on curves:

Coroallary 1.7.7 — The family of semistable sheaves with fixed Hilbert polynomial P on a
smooth projective curve is bounded.
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Proof. Thefamily of zero-dimensional sheaveswith fixed Hilbert polynomial, i.e. of fixed
length, is certainly bounded. Any integer can be taken as a uniform regularity. For one-
dimensional semistable sheaves one applies Serre duality

H'(X,E(m —1)) = Hom(E,wx (1 —m))".
The latter space vanishes due to the semistability of E if

29(X)—2—d/r
" degom)

whered and r aregivenby P = r(deg(O(1)) -m + 1 — g) + d. O

Combining Lemma 1.7.6 with Proposition 1.7.4 we get the following crucial bounded-
ness criterion:

Theorem 1.7.8 (Kleiman Criterion) — Let {F,} be a family of coherent sheaves on X
with the same Hilbert polynomial P. Then this family is bounded if and only if there are
constants C;, i = 0,...,d = deg(P) such that for every F, there exists an F,-regular
sequence of hyperplane sections Hy, . .. , Hy, such that hO(F|m]_<i a;) < Ci. a

Next, we prove a useful boundedness result for quotient sheaves of a given sheaf.

Lemma 1.7.9 (Grothendieck) —Let P be a polynomial and p an integer. Then thereisa
constant C' depending only on P and p such that the following holds: if X isa projective k-
schemewith avery amplelinebundle O(1), E isa d-dimensional sheaf with Hilbert polyno-
mial P and Mumford-Castelnuovoregularityreg(E) < pandif Fisapurely d-dimensional
quotient sheaf of E then i(F") > C'. Moreover, the family of purely d-dimensional quotients
F with /1(F") bounded from above is bounded.

Proof. We can assume that X is a projective space: choose an embedding j : X — PN
and replace E by 5, E. Then we can choose alinear subspace L in PV of dimension N —
d — 1 digoint from Supp(E). The linear projection = : PN — L — P9 induces a finite
map m : Supp(E) — P? with 7*(Opa(1)) = Osupp(r)(1). If G isa coherent sheaf on
Supp(FE), then G' = 7.G isaso coherent, and if G is purely d-dimensional, then the same
istruefor G', whichinthiscaseisthe sameassaying that G’ istorsion free. Moreover, using
the projection formula, we see that G and G’ have the same Hilbert polynomial, regularity
and /1. But thisimplies, that we can safely replace E by E' and hence assumethat E isa
coherent sheaf of dimension d on P?. The assumption on theregularity allowsto write down
a surjective homomorphism

G =V ®Opi(—p) — E,
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where V' is avector space of dimension P(p). Note that the bundle G' dependson P and p
only. Any quotient of E isaquotient of G aswell, and we may thereforereplace E by G.
Let ¢ : G — F be asurjective homomorphism onto a torsion free coherent sheaf of rank
0 < s <rk(G) = P(p). Then ¢ induces a generically surjective homomorphism

ANq: NG = AV ® Opa(—sp) — det(F) = Opa(deg(F)).

Thisshowsthat deg(F') > —sp, and hence i(F') > p + ag—1(Opa) isuniformly bounded.
Thisprovesthefirst part of thetheorem. Now fix C’. In order to provethe second assertion it
isenoughto show that thefamily of purequotient sheaves F' of rank 0 < s < rk(G) = P(p)
andwith £ := deg(F) = s-(C' —ay_1(Opa)) isbounded. For agivenquotientq : G — F
with deg(F') = ¢ andrk(F') = s consider the induced homomorphism

NEYER- Y. Catle JEANY U iGNV

and the adjoint homomorphism
DG = OW) NG

Let U c P denote the dense open subscheme where F is locally free. Then ker(¢)|; =
ker(q)|u. Since the quotients of G corresponding to these two subsheaves of G aretorsion
free and since they coincide on a dense open subscheme of P4, we must have ker(d?) =
ker(q) everywhere, i.e. ' = im(s). Now, the family of such image sheaves certainly is
bounded. O

Remark 1.7.10 — Note that in particular the set of Hilbert polynomials of pure quotients
with fixed i(F) isfinite.

Comments:

— The presentation of the homological agebrain Section 1.1 isinspired by Le Potiers's article
[147]. The reader may a so consult the books of Okonek, Schneider, Spindler [211] and of K obayashi
[127]. For the details concerning the definition of the determinant 1.1.17 of a coherent sheaf see the
article of Knudson and Mumford [126].

— The concept of stable vector bundles on curves goes back to Mumford [190] and was later gen-
eralized by Takemoto [242] to p-stable vector bundles on higher dimensional varieties. The notion of
stability using the Hilbert polynomial appears first in Gieseker’s paper [77] for sheaves on surfaces
and in Maruyama's paper[162] for sheaves on varieties of arbitrary dimension. Later Simpson intro-
duced pure sheaves and their stability ([238], also [145]). Thisled him to consider the multiplicity /i
of acoherent sheaf instead of the slope .

— In modern language Theorem 1.3.1 was proved by Grothendieck in [92].

— The Harder-Narasamhan filtration, as the name suggest, was introduced by Harder and Nara-
simhan in [95]. For generalizations see articles by Maruyama or Shatz [164], [236]. In particular,
1.3.4in the general form was proved in [236]. Ancther important notion is the notion of the Harder-
Narasimhan polygon which can also be found in Shatz' paper [236].
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— Theexample in Section 1.4 is due to Flenner [63]. For other results concerning bundles on pro-
jective spaces see [211].

— S-equivalence was again first defined for bundles on curves by Seshadri [233]. There, two S
equivalent sheaves are called strongly equivalent.

— Langton defined the socle and the extended socle in [135]. For another reference see the paper
of Mehta and Ramanathan [176].

— Definitions 1.7.1, 1.7.3 and Lemma 1.7.2 can be found in Mumford’s book [191]. Proposition
1.7.4 is proved in [191] for the special case of ideal sheaves and in general in Kleiman's exposé in
[124]. Lemmas 1.7.6 and 1.7.9 are taken from [93].
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2  Families of Sheaves

In the first chapter we proved some elementary properties of coherent sheaves related to
semistability. The main topic of this chapter isthe question how these propertiesvary in a-
gebraic families. A major technical tool in the investigations here is Grothendieck’s Quot-
scheme. We give a complete existence proof in Section 2.2 and discuss its infinitesimal
structure. As an application of this construction we show that the property of being semi-
stableis openin flat families and that for flat families the Harder-Narasimhan filtrations of
the members of the family form again flat families, at least generically. In the appendix the
notion of the Quot-schemeis dlightly generalized to Flag-schemes. We sketch some parts of
deformation theory of sheaves and derive important dimension estimates for Flag-schemes
that will be used in Chapter 4 to get similar apriori estimates for the dimension of the mod-
uli space of semistable sheaves. In the second appendix to this chapter we prove atheorem
dueto Langton, which roughly says that the moduli functor of semistable sheavesis proper
(cf. Chapter 4 and Section 8.2).

2.1 Flat Familiesand Deter minants

Let f: X — S beamorphism of finite type of Noetherian schemes. If g : ' — Sisan S-
scheme we will use the notation X for thefibre product 7' x s X, and gx : X7 — X and
fr : Xr — T for the natural projections. For s € S thefibre f ~1(s) = Spec(k(s)) xs X
is denoted X ;. Similarly, if F' is a coherent Ox-module, we write Frr := g% F and F; =
F|x,. Often, wewill think of F' asacollection of sheaves F; parametrizedby s € S. The
requirement that the sheaves F; and their propertiesshould vary ‘ continuously’ ismade pre-
cise by the following definition:

Definition 2.1.1 — A flat family of coherent sheaves on the fibres of f isa coherent O x-
module F which isflat over S.

Recall that this means that for each point z € X the stalk F;, isflat over the local ring
Os,f(a)- If Fis S-flat, then Fr isT-flat for any base change T — S.1f 0 — F' — F —
F" — 0 isashort exact sequence of coherent O x-sheavesand if F"' is S-flat then F' is
S-flat if and only if F'is S-flat. If X =2 S then F'is S-flat if and only if F islocaly free.

A special case that will occur frequently in these notes is the following: £ is afield, S
andY arek-schemesand X = S x; Y. Inthissituation the natural projectionswill almost
alwaysbedenotedby p : X — Sandg : X — Y, and we will say ‘sheaveson Y’ rather
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than ‘sheaves on the fibres of p’.

Assume from now on that f : X — S isaprojective morphism and that Ox (1) isan
f-ampleline bundleon X, i.e. therestriction of Ox (1) to any fibre X, isample. Let F' be
a coherent O x-module. Consider the following assertions:

1. FisS-flat
2. For dl sufficiently large m the sheaves f.(F'(m)) arelocaly free.

3. TheHilbert polynomial P(F}) islocally constant asafunction of s € S.
Proposition 2.1.2 —Thereareimplications1 < 2 = 3. If S isreduced then also 3 = 1.
Proof. Thm. 111 9.9in [98] |

This provides an important flatness criterion. If S isnot reduced, it is easy to write down
counterexamplesto theimplication 3 =- 1. However, in the non-reduced case the following
criteria are often helpful:

Lemma21.3 —Let Sy C S bea closed subscheme defined by a nilpotent ideal sheaf
7 C Og. Then F is S-flat if and only if Fs, is Sp-flat and the natural multiplication map
7 ®0s F — IF isanisomorphism. O

Lemma214 —Let0 —» F' — F — F" — 0 beashort exact sequence of O x-modules.
If Fis S-flat, then F"' is S-flat if and only if for each s € S the homomorphism F, — F;
isinjective. m|

For proofs see Thm. 49 and its Cor. in [172].
Thefollowing theorem of Mumford turns out to be extremely useful asit allows usto ‘flat-
ten’ any coherent sheaf by splitting up the base scheme in an appropriate way.

Theorem 2.1.5 —Let f : X — S be a projective morphism of Noetherian schemes, let
O(1) be an invertible sheaf on X which is very amplerelative S, and let F' be a coherent
Ox-module. Thentheset P = {P(F;)|s € S} of Hilbert polynomials of the fibres of F' is
finite. Moreover, there are finitely many locally closed subschemes Sp C S, indexed by the
polynomials P € P, with the following properties:

1. Thenatural morphismj : [T, Sp — S isabijection.

2. Ifg: S" = S isamorphism of Noetherian schemes, then g% F' isflat over S’ if and
onlyif g factorizesthrough j.

Such adecompositionis called aflattening stratification of S for F'. It iscertainly unique.
We begin with a weaker version of this dueto Grothendieck:
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Lemma 2.1.6 — Under the assumptions of the theorem there exist finitely many pairwise
digoint locally closed subschemes S; of S which cover S such that Fy, isflat over S;.

Proof. It sufficesto show that thereisan opensubset U C S suchthat Fisflat over Ueq.
Moreover, the problemislocal in X and S. One may therefore assumethat S = Spec(A)
for some Noetherian integral domain A with quotient field K, that X = Spec(B) for some
finitely generated A-algebra, that A — B isinjective, and that FF = M~ for some finite
B-module M. This module M has afinite filtration by B-submodules with factors of the
form M; = B/p; for primeidedsp; C B. It sufficesto consider these factors separately,
so that we may further reduceto the casethat M = B isintegral and A — B injective. By
Noether’s normalization lemmathere are elements by, ... ,b, € B suchthat K ® B isa
finite modul e over the polynomial ring K'[by, . .. , b,]. ' Clearing denominators’ we can find
anelement f € A suchthat M’ := B, isdtill afinitemoduleover B := Af[b,. .. ,by].
Replace M, B and A by M', B" and A’ and apply the same procedure again. By induction
over the dimension of B we may finally reduce the problemto the casethat M = B and B
isapolynomial ring over A, in which case flatness is obvious. |

Proof of thetheorem. Let Sy = [ [, S; beadecompositionof S asinthelemmaand et i :
So — S bethe natural morphism. Then ig  F isflat, and since the Hilbert polynomial of a
flat family islocally constant as a function on the base, we conclude that the set P defined
in Theorem 2.1.5 isindeed finite.

Foranym > OletT.(F) := @,,50'm(F) = @,,, f+«F(m). Recal that there is
afunctor ~ which converts Z-graded O s-modules into O x-modules and is inverse to the
functor " (cf. [98] I1.5.). Thusthereisanatural isomorphism T, (F)~ = F,andif g : S’ —
S isany morphism of Noetherian schemes, then (¢*T..(F'))™ 22 g% F. Moreover, thereisan
integer m(g), dependingon g, such that for all m > m(g) wehavel',, (g% F) = ¢*T')n (F)
(cf.[98], exc. Il 5.9). We apply thisto the case g = iy and concludethat there is an integer
mg such that for all m > mg we have

e Hi(Fy(m))=0forali>0andforalsesS.
o HO(F,(m)) = Tpu(iy x F)(s) = (i3Tm(F)) (s) = Tou(F)(s) foral s € S.

By Proposition 2.1.2, we see that g% F' isflat if and only if ¢*T,,,(F') islocaly freefor all
sufficiently large m. Fixing m for a moment, we claim that there are finitely many locally
closed subschemes S, - such that

L jm : [, Sm,r — Sisabijection,
2. I'y(F)|s,... islocaly free of rank r and

3. g: 8" — S factorsthrough j,, if and only if g*T,,,(F) islocally free.
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Set-theoretically, this decompositionis given by Sy, » = {s € S| dimy,;) ' (F)(s) = 7}.
We must endow the sets S, . with appropriate scheme structures. Because of the universal
property of these sets, this can be done locally: let s be a point in S, .. Then thereis an
open neighbourhood U of s in S such that I',,, (F') |y admits a presentation

Or =25 O = To(F)|y — 0.

Let S,,,,» N U betheclosed subschemein U which is defined by the ideal generated by the
entries of ther x r'-matrix A and check that it has the required properties.

Now supposethat g : S' — S isamorphism such that g% F is S’-flat with Hilbert poly-
nomial P. Accordingto what was said before, g must factor through thelocally closed sub-
scheme S, p(m) for al m > mg. We therefore consider the sets

Sp={s€S|P(F.)=P}= () Smpm foralPeP. (2.1)

m>mgo
By 2.1.6 and thefirst description of Sp, weknow that S p isthefinite union of locally closed
subsets. But then it is evident from the second description and the fact that S is Noetherian,
that the intersection on theright hand sidein (2.1) isin fact finite, even when considered as
an intersection of subschemes. Let Sp be endowed with this subscheme structure and check
that the collection Sp, P € P, thus defined has the properties postulated in the theorem. O

Lemma2.1.7 —Let F be a coherent Ox-module, z € X apointand s = f(x). Assume
that F, isflat over Og 5. Then F, isfreeif and only if the restriction (F5), isfree.

Proof. The‘only if’ directionistrivial. For the‘if’ direction let r be the k(z)-dimension
of F(z) = F,/m,F,. Then thereis ashort exact sequence() —» K — (’);m — F, = 0,
and F, isfreeif K = 0. Let m,; denote the maximal ideal of thelocal ring Og ;. Since F,
is Og,s-flat, K/msK isthe kernel of the isomorphism 0%, — (F5),. By Nakayama's
Lemma K = 0. O

Lemma 2.1.8 —Let F be aflat family of coherent sheaves. Then the set
{s € S|F; isalocally free sheaf }
isan open subset of S.

Proof. Theset A = {x € X|F, isnotlocally freeat z} isclosedin X, and theset defined
in the lemmais the complement of f(A). Since f is projective, f(A) is closed. a

Definition 2.1.9 — Let P be a property of coherent sheaves on Noetherian schemes. P is
said to be an open property, if for any projective morphism f : X — S of Noetherian
schemes and any flat family F' of sheaves on the fibres of f the set of points s € S such that
F; hasPisanopensubsetin S. F is said to be a family of sheaveswith B, if for all s € S
the sheaf F; hasP.
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Examples of open propertiesare: being locally free (aswe just saw), of pure dimension,
semistable, geometrically stable (aswill be proved in Section 2.3).

Proposition 2.1.10 —Let k beafield, S a k-scheme of finitetypeand f : X — S asmooth
projective morphismof relative dimension n. If F' isa flat family of coherent sheaves on the
fibresof f then thereisalocally free resolution

O—-F,—>F,1—>...50F—>F

suchthat R" f, F), islocallyfreeforv = 0,... ,n,R' f,F, = 0fori #nandv =0,... ,n.
Moreover, in this case the higher direct image sheaves R* f, F' can be computed as the ho-
mology of the complex R" . F,: Namely, R" ' f.F = h;(R" f.F,).

Proof. Let Ox (1) bean f-very amplelinebundleon X . Sincethefibresof f are smooth,
it follows from Serre duality and the Base Change Theorem for cohomology that there is
an integer my such that for all m > mg the Og-module R™ f.Ox (—m) islocaly free and
Rif,Ox(—m) vanishesfor all i # n. Define S-flat sheaves K,,, G, forv = 0,1,...
inductively asfollows: Let K := F, and assume that K, has been constructed for some
v > 0. For sufficiently large m > m, al fibres (K, )s, s € S, are m-regular. Hence
f«K,(m) islocally free and there is a natural surjection G, := f*(f.K,(m))(—m) —
K,.ThenG, islocaly freeand Ri f.G), = f.K,(m) ® R'f.Ox(—m) by the projection
formula. In particular, R" f.G,, is locally free and the other direct image sheaves vanish.
Finaly, let K, 1, bethe kernel of the map G,, — K, . This procedure yields an (infinite)
locally free resolution G4 — F'. Since al sheavesinvolved areflat, it followsthat (G,)s
isalocaly free resolution of F for al s € S. In particular, (K,,) isisomorphic to the
kernel of (G,—1)s — (Gn—2)s, and asany coherent sheaf onthefibresof f hashomological
dimension < n, (K,)s is localy free. According to Lemma 2.1.7 the sheaf K, is itself
locally free. Hence we can truncate theresolution G, — F at then-th step and define F,, =
K,and F, = G, forv = 0,...,n — 1. To prove the last statement split the resolution
F, — F into short exact sequences and apply the functors R* f.. m|

Recall the notion of Grothendieck’sgroups K°(X) and K (X) for aNoetherian scheme
X: thesearethe abelian groupsgenerated by locally freeand coherent O x -modules, respec-
tively, withrelations[F'] — [F]+[F"] for any short exact sequence0) — F' — F — F"' —
0. Moreover, the tensor product turns K°(X) into acommutative ring with 1 = [Ox] and
gives Ko(X) amodule structure over K°(X). A projective morphism f : X — S induces
ahomomorphism f : Ko(X) — Ko(S) defined by fiF] := 3" <, (=1)"[R" f. F).

Corollary 2.1.11 —Under the hypotheses of Proposition 2.1.10: if F' isan S-flat family of
coherent sheaves on thefibresof f, then [F] € K°(X) and fi[F] € K°(S).

Proof. [F] = °,(~1)/[Fi] and A[F] = 3, (<1 [R f.F] = ¥,(~1)"[R*f.F}]. O
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Since the determinant is multiplicative in short exact sequences, it defines a homomor-
phism det : K°(X) — Pic(X) for any Noetherian scheme X (1.1.17). Applying this ho-
momorphism to the elements [F] € K°(X) and fi[F] € K°(S) in the corollary, we get
well defined line bundles

det(F) := det([F]) € Pic(X) and det(Rf. F) := det(fi[F]) € Pic(S).

More explicitly, if F, — F'isafinitelocally free resolution of F' asin Proposition 2.1.10,
then det(F) = ), det(F,)~"". This construction commutes with base change. For ex-
ample, there is a natural isomorphism

det(Rf.F)(s) = X) det(H'(F,)) V)

foreachs € S.
We conclude this section with a standard construction of aflat family that will be used
frequently in the course of these notes.

Example2.1.12 — Let F; and F; be coherent O x-modules on a projective k-scheme X
andlet E = Ext’ (F, F}). Sincedlements ¢ € E correspond to extensions

0—F — F;— I =0,

thespace S = P(E™) parametrizesall non-split extensionsof F; by F; upto scalars. More-
over, there exists a universal extension

0> ¢ FL@pOs(l) > F > q¢*F» =0

on the product S x X (with projections p and ¢ to S and X, respectively), such that for
each rational point [¢] € S, thefibre F; isisomorphicto F;. Indeed, theidentity idz gives
acanonical extension classin B~ @y E = Ext’, (Fy, E” @y, F). Let © denote the canoni-
ca homomorphism E” ® Ogs — Og(1) and consider the class 7, (idg), i.e. the extension
defined by the push-out diagram

0 — pOs()@¢g'Fy — F — ¢F — 0

tr®l 1 |
0 — E"®q¢"F, — ¢ — ¢F — 0,

wherethe extension in the bottom row isgiven by id . Notethat F is S-flat for the obvious
reason that ¢* F; and ¢* F» are S-flat.
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2.2 Grothendieck’s Quot-Scheme

The Quot-scheme is an important technical tool in many branches of algebraic geometry.
In the same way as the Grassmann variety Grassy (V, r) parametrizes r-dimensional quo-
tient spaces of the k-vector space V', the Quot-scheme Quot y (F, P) parametrizes quo-
tient sheaves of the O x-module F' with Hilbert polynomial P. Recall the notion of a rep-
resentable functor:

Let C beacategory, C° the opposite category, i.e. the category with the same objectsand
reversed arrows, and let C’ be the functor category whose objects are the functors C° —
(Sets) and whose morphismsare the natural transformationsbetween functors. The Yoneda
Lemmastatesthat the functor C — C’" which associatesto z € Ob(C) thefunctorz : y —
More (y, z) embedsC asafull subcategory into C'. A functor in C’ of the form z is said to
be represented by the object z.

Definition 2.2.1 — A functor 7 € Ob(C') is corepresented by F' € Ob(C) if thereisa
C'—-morphisma : F — F such that any morphisma’ : F — F' factors through a unique
morphism 3 : F — F'; F isuniversally corepresented by « : 7 — F, if for any morphism
¢ : T — F,thefibreproduct 7 = T x g F iscorepresented by T'. And F is represented by
Fifa:F — FisaC'-isomorphism.

If F' represents F then it al'so universally corepresents F; and if F' corepresents F then
it is unique up to a unique isomorphism. This follows directly from the definition. We can
rephrase these definitions by saying that F' represents F if Morc (y, F') = More: (y, F) for
al y € Ob(C), and F corepresents F if Morc (F,y) = More: (F, y) for dl y € Ob(C).

Example 2.2.2 — We sketch the construction of the Grassmann variety. Let k& be afield,
let V' be afinite dimensional vector space and let r be aniinteger, 0 < r < dim(V). Let
Grass(V,r) : (Sch/k)° — (Sets) be the functor which associates to any k-scheme S of
finite type the set of all subsheaves K C Og ®;, V with locally free quotient FF = Og ®y,
V/K of constant rank .

For each r-dimensional linear subspace W C V we may consider the subfunctor Gy C
Grass(V, r) which for ak-scheme S consists of thoselocally free quotientsy : Os @V —
F such that the composition Os @ W — Og ® V' — F isanisomorphism. Inthis case, the
inverse of thisisomorphism leadsto ahomomorphismg : Os®V — Og @ W which splits
theinclusion of W in V. From this one concludesthat Gy isrepresented by the affine sub-
space Gy C Hom (V, W) = Spec S*Hom(V, W)~ corresponding to homomorphismsthat
splittheinclusonmap W — V. Now for any element [ : Os®V — F] € Grass(V,r)(S)
there is a maximal open subset Sy C S such that [p|s,, ] liesin the subset Gy (Sw) C
Grass(V, r)(Sw). Moreover, if W runs through the set of all 7-dimensional subspaces of
V', then the corresponding Sy, form an open cover of S. Apply this to the universal fami-
lies parametrized by Gy and Gy for two subspaces W, W' C V': because of the universal
property of Gy thereisacanonical morphism aw,w: : Gw,w* — Gw-. One checks that
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aw,w isan isomorphism onto the open subset Gy 1 and that for three subspaces the co-
cyclecondition ayy w0 aw,w = aw,wn issatisfied. Hence we can glue the spaces Gy
to produce a scheme Grass(V, r) =: G. Then G represents the functor Grass(V, r). Using
the valuative criterion, one checksthat G is proper. The Plicker embedding

Grass(V,r) — P(A"V), [Os®@V = Fl = [0s @ A"V — det(F)]

exhibits G as a projective scheme. The local description shows that G is a smooth irredu-
cible variety. a

Example 2.2.3 — Thepreviousexamplecan begeneralizedto thecasewhereV isreplaced
by a coherent sheaf V on a k-scheme S of finite type. By definition, a quotient module of
Y is an equivalence class of epimorphismsq : V — F' of coherent Og-sheaves, where two
epimorphismsg; : V — F;, i = 1,2, areequivalent, if ker(¢; ) = ker(g2), or, equivalently,
if thereisanisomorphism® : F; — F, withqy, = ®oq. Hereandinthefollowing, quotient
modulesare used rather than submodul es because the tensor product is aright exact functor,
so that surjectivity of ahomomorphism of coherent sheavesis preserved under base change,
whereas injectivity isnot. Let Grassg(V,r) : (Sch/S)° — (Sets) be the functor which
associatesto (T — S) € Ob((Sch/S)) theset of al locally freequotient modulesq : Vr =
Or ®o, V — F of rank r. Then Grass¢(V, ) is represented by a projective S-scheme
7 @ Grassg(V,r) — S. We reduce the proof of this assertion to the case of the ordinary
Grassmann variety of the previous example. First observe, that because of the uniqueness
of Grass, if it exists, the problemislocal in S, so that one can assumethat S = Spec(A)
and V = M~ for somefinitely generated A-module /. Now let A" %5 A" s Mbea
finite presentation. Any quotient module V- — F' by composition with b gives a quotient
O} — F. Thusb induces an injection

b* : Grassg(V,r) — Grassg(O2,7) = S x Grass, (K", r).

Clearly, the functor on the right hand side is represented by S x;, Grass(k™,r). We must
show that Grassg(V, r) is represented by a closed subscheme of Grasss(O%, ). Thisfol-
lows from the more general statement: if ¢ : O} — F isalocally free quotient module of
rank r, then there is closed subscheme T, C T suchthat any g : 7' — T factors through
To if and only if g*(goar) = 0. Againthisclaimislocal in T, and by shrinking 7' we may
assumethat ' = OF. Then g o ar isgiven by anr x n'-matrix B with valuesin Or, and
g*(qoar) vanishesif and only if g factors through the closed subscheme corresponding to
theideal which is generated by the entries of B. |

We now turn to the Quot-schemeitself: let £, S and C = (Sch/S) be as in the second
example. Let f : X — S be aprojective morphismand Ox (1) an f-ampleline bundle on
X. Let H beacoherent Ox-moduleand P € Q[z] apolynomial. We define a functor
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Q:= MX/S : (Sch/S)? — (Sets)

asfollows: if T — SisanobjectinC, let Q(T') bethe set of all T-flat coherent quotient
sheaves Hyr = Or @ H — F with Hilbert polynomia P. Andif g : T — T isan S-
morphism, let Q(g) : Q(T") — Q(T"”) bethe map that sends Hr — F to Hyr — g% F.
Thus H here playstherdle of V for the Grassmann scheme in the second example above.

Theorem 2.2.4 — The functor Quot
m: Quoty,s(H,P) = S.

x/ s(H, P) is represented by a projective S-scheme

Proof. Sep 1. Assume that S = Spec(k) and that X = P . It follows from 1.7.6 that
thereisan integer m such that thefollowing holds: If [p : Hr — F] € Q(T') isany quotient
and if K = ker(p) isthe corresponding kernel, then for al ¢t € T the sheaves K;, H; and
F; arem-regular. Applying the functor fr.(. ® O(m)) one gets a short exact sequence

0= froK(m) = Or @ H (H(m)) = fr.F(m) =0

of locally free sheaves, and al the higher direct image sheaves vanish. Moreover, for any
m' > m thereis an exact sequence

FroK(m) ® HY(O(m' —m)) — Op @ HO(H(m')) — fr.F(m') — 0,

wherethefirst mapisgiven by multiplication of global sections. Thus fr. K (m) completely
determinesthe graded module @, ~.,,, fr«F (m') which in turn determines F'. This argu-
ment showsthat sending [Hr — F]to O @y, H°(H(m)) — H°(F(m)) givesaninjective
morphism of functors

Quot

Quot, , (M, P) — Grass, (H(H(m)), P(m)).

Thuswe must identify those morphismsT — G := Grassy,(H°(H(m)), P(m)) which are
contained in thesubset Q(T') ¢ G(T). Let

0= A= Og @, H(H(m)) = B—=0

be the tautol ogical exact sequence on G. Consider the graded algebra

s =@ HEY,00)

v>0
andthegraded S-moduleT. H = P, 5 HO(PY,H(v)). Thesubbundle A generatesasub-
module A- S C O ®; I'yH. Let F bethe Opy-module corresponding to the graded O

module O¢ ®, T H / A-S. Now itisstraightforward to check that Q isrepresented by the
locally closed subscheme Gp C G which is the component of the flattening stratification
for F' corresponding to the Hilbert polynomial P (see Theorem 2.1.5).
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It remainsto show that () is projective. Since we already know that Q isquasi-projective,
it suffices to show that () is proper. The valuation criterion requires that if R is a discrete
valuation ring with quotient field L and if acommutative diagram

Spec(L) —» Q

3 3
Spec(R) —  Spec(k)

is given, then there should exist a morphism gr : Spec(R) — @ such that the whole di-
agram commutes. The diagram encodes the following data: there is a coherent sheaf F' on
X, with P(F') = P and ashort exact sequence

0->K->H® L - F—0.

Certainly, there are coherent subsheaves K, C ‘H ®;, R whichrestrict to K over the generic
point of Spec(R). Let K be maximal among all these subsheaves, and put Fr = H ®y,
R/Kg. Themaximality of K r impliesthat multiplication with the uniformizing parameter
induces an injective map Fr — Fr, which meansthat F is R-flat. The classifying map
for Fr istherequired gg.

Sep2. Let S and X bearbitrary. Choosingaclosedimmersioni : X — P andreplacing
#H by i.H wemay reduceto the case X = PY . By Serre’stheorem there exist presentations

Opy(-m")"" — Opy(-m/)" —H —0.

Asin Example 2.2.3 any quotient of 7 can be considered as a quotient of Opg(—m’)”'.
Conversely, a quotient F' of OP¥(—m’)”I factors through 7, if and only if the composite
homomorphism Opx (—m")™" = Opy(—m’)* — F vanishes. The latter is equivalent
to the vanishing of the homomorphism Oy @ H O(Opky(ﬁ —m'")) = fr.F({) for some
sufficiently large integer £. Hence by the same argument as in Example 2.2.3 the functor

Quot,, (M, P) is represented by a closed subscheme in Quotpy (O(—m')™, P) =
- s

S X, Quotpx /1, (O(—m')™, P). O

Since @ := Quoty,s(H, P) represents the functor Q := QuotX/S(H,P), we have
Mor(scn/s)(Y, Q) = Q(Y') for any S-schemeY'. Inserting @ for Y we see that theidentity
map on () correspondsto a universal or tautological quotient

[p:Ho — Fl € Q(Q).

Any quotient [p : Hy — F| € Q(T) isequivalent to the pull-back of 5 under a uniquely
determined S-morphism ¢, : T' — @, the classifying map associated to p.

Inthe case X = S the polynomial P reduces to anumber and Quot y,5(#, P) sSimply
isGrassg(H, P). If S = Spec(k) and H = Ox, then quotients of H correspond to closed
subschemes of X. In this context the Quot-schemeis usually called the Hilbert scheme of
closed subschemes of X of given Hilbert polynomial P and is denoted by Hilb” (X) =
Quoty (Ox, P). Inparticular, if P = ¢ isanumber, the Hilbert scheme Hilb‘(X) parame-
trizes zero-dimensional subschemesof length 7 in X.
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Proposition 2.2.5 — Let  be a coherent Ox-module. Let 5 : Oquor © H — F bethe
universal quotient module parametrized by QuotX/S(H, P). Then for sufficiently large ¢

thelinebundles L, = det(fquot«(F ® Ox (£))) are S-very ample.

Proof. Theargumentsof thefirst step inthe proof of the theorem show that for sufficiently
large ¢ thereis a closed immersion

ve s Quoty,g(H, P) — Grasss(f H({), P({)).

Recall the Plicker embedding of the Grassmannian: If V is a vector bundle on S and if
prgV — W denotesthe tautological quotient on Grass(V, r), then the r-th exterior power
prg : A"V — det)V induces a closed immersion Grasss(V,r) — P(A™V) of S-
schemes, and det )V isthe pull-back of the tautological linebundle Op A~y (1) oONP(A"V).
Combining the Pliicker embedding with the Grothendieck embedding .., we seethat theline
bundles L, = det(f, F(¢)) are very amplerelativeto S. m|

In general, L, depends non-linearly on ¢ as we will see later (cf. 8.1.3).
We now turn to the study of someinfinitesimal properties of the Quot-scheme. Recall that
the Zariski tangent space of a k-scheme Y at apoint y is defined as

TyY = Homk(y) (my/m57 k(y)),

wherem,, isthe maximal idea of Oy-,,. Moreover, thereis anatural bijection between tan-
gent vectorsat y and morphismst : Spec(k(y)[e]) — Y with set-theoreticimage y. If Y
represents a functor, then one expects such morphisms r to admit an interpretation in terms
of intrinsic properties of the object represented by y. We follow thisideain the case of the
scheme @ = Quoty,s(H, P), where X — S is a projective morphism of k-schemes,
Ox (1) alinebundleon X, amplerelativeto S, and H an S-flat coherent O x-module.

Let (Artin/k) denote the category of Artinian local k-algebraswith residuefield k. Let
o: A" —» Abeasurjectivemorphismin (Artin/k) and supposethat thereisacommutative
diagram

Spec(4) L Q
o \L J, ™
Spec(A") 2 s

The images of the closed point of Spec(A) are k-rational pointsgy € @ ands € S, and ¢
corresponds to a short exact sequence0 — K — H4 — F — 0 of coherent sheaveson
X4 =Spec(A) xg X withH s = A®p, H.

We ask whether the morphism ¢ can be extended to amorphismg’ : Spec(A') — @ such
that g = ¢’ oo and vy = 7 o ¢/, and if the answer is yes, how many different extensions are
there? The kernel I of o isannihilated by some power of m 4.. We canfilter I by theideals
m*, I and in thisway break up the extension problemin several smaller ones which satisfy
the additional property that m 4. I = 0. Assumethat0 — I — A’ - A — Oisanextension
of thisform.
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Suppose that an extension ¢’ exists. It correspondsto an exact sequence
0= K = Ha - F =0

on X 4.. That ¢’ extends ¢ meansthat over X 4 C X 4 thequotient A ® 4 F' isequivalent
to F.Let Fy = A/my ®4 F etc. Then thereisacommutative diagram whose columns and
rows are exact because of the flatness of H 4 and F”:

0 0 0
{ { {

0 - ITonkKe 28 TonH 2% IewF, — 0
{ it {

0 » K L oHe L P S0
{ o {

0 — K = Ha L F - 0
{ { {
0 0 0

In the first row we have used the isomorphisms I ® 4+ F' = I ®,, Fy etc. We can recover
F'" asthe cokernel of the homomorphismi : K — H 4/ /(1 ® io)(I ® Ko) induced by i’.
Conversely, any Ox ,,-homomorphism 2 which gives i when composed with o defines an
A’-flat extension F” of F (flatness follows from 2.1.3). Thusthe existence of F” isequiva-
lent to the existence of ¢ asabovewhichinturnisequivalent to the splitting of the extension

0—>I®,Fo -B—K—=D0, (2.2)

where B is the middle homology of the complex

J-(1®10) ¢
00— 1I® Ky > Har s F'— 0.

Check that though B apriori isan Ox ,,-moduleit isin fact annihilated by I, so that B can
be considered asan Ox , -module. The extension class

0(0-7Qa1/}) € Eth(A (KaI®k FO)

defined by (2.2) is the obstruction to extend ¢ to ¢'. Since K isa A-flat and I ®;, Fy is
annihilated by m 4, thereis anatural isomorphism

Extk (K, I ® Fp) = Exty, (Ko, Fo) ®x I.

Lemma2.2.6 —Anextension ¢’ of g existsif and only if o(c, ¢, ) vanishes. If thisisthe
case, the possible extensions are given by an affine space with linear transformation group
HOIHXS (Ko, Fo) QL.
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Proof. The first statement follows from the discussion above. For the second note that,
given one splitting 7, any other differs by a homomorphism K — I ®, Fy. As beforethe
flatness of K impliesthat these are elementsin Hom x, (Ko, Fy) ® . O

Proposition 2.2.7 —Let f : X — S be a projective morphism of k-schemes of finite type
and Ox (1) an f-ampleline bundlieon X. Let H be an S-flat coherent Ox-module, P a
polynomial and 7 : @ = Quot /S(H,P) — S the associated relative Quot-scheme. Let
s € Sandqy € 7 1(s) be k-rational points corresponding to a quotient H, — F with
kernel K. Then thereisa short exact sequence

0 — Homyx, (K, F) — T, Q -5 T,S = Extl (K, F)

Proof. Thisisjust aspecidization of thelemmatothecase A = k, A’ = k[e]. i

Proposition 2.2.8 —Let X be a projective scheme over k£ and H a coherent sheaf on X.
Let [q : H — F] € Quot(H, P) bea k-rational point and K = ker(q). Then

hom(K, F) > dim, Quot(#, P) > hom(K, F) — ext' (K, F).

If equality holds at the second place, Quot(#, P) isalocal complete intersection near [g].
If ext! (K, F') = 0, then Quot(H, P) issmooth at [g].

The proof will be given in the appendix to this chapter, see 2.A.13.

Corollary 2.2.9 —Let F' and F"' be coherent sheaves on a smooth projective curve C' of
positive ranks ' and r" and slopes pi' and 1"/, respectively. Let0 — F' — F — F" — 0
be an extension that representsthe point s € ¥ := Quot(F, P(F"")). Then

dim, ¥ > hom(F', F") —ext'(F',F") =: x(F', F") = v'"v" (i — ' + 1 — g).

Corollary 2.2.10 —Let V bea k-vector space, 0 < r < dim V/, and let
0 —A—V®0Ograss — B—0

bethetautol ogical exact sequenceon Grass(V, r). Then thetangent bundleof of thesmooth
variety Grass(V, r) isgiven by

Tarass = Hom (A, B) .
Proof. Let G = Grass(V, r). Consider the composite homomorphism
P :piA—V ®0axa — p3B
ontheproduct G x G andits adjoint homomorphism® : Hom(p3B, pi A) = Og . Since

& clearly vanishes precisely along the diagonal, the image of 3 istheideal sheaf of the di-
agonal. Restricting thishomomorphism to the diagonal, we get asurjection Hom (B, A) —

Q¢ of locally free sheaves of the same rank, which must therefore be an isomorphism. O
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2.3 TheRdative Harder-Narasimhan Filtration

In this section we givetwo applicationsto the existence of relative Quot-schemes: we prove
the openness of (semi)stability in flat families and extend the Harder-Narasimhan filtration,
which was constructed in Section 1.3 for a coherent shegf, to flat families.

Proposition 2.3.1 —Thefollowing propertiesof coherent sheavesare open inflat families:
being simple, of pure dimension, semistable, or geometrically stable.

Proof. Let f : X — S be a projective morphism of Noetherian schemesand let Ox (1)
be an f-very ampleinvertible sheaf on X. Let F' be aflat family of d-dimensional sheaves
with Hilbert polynomial P on the fibres of f. For each s € S, a sheaf Fs is simple if
homy, ) (Fs, Fs) = 1. Thus openness here is an immedi ate consequence of the semiconti-
nuity propertiesfor relative Ext-sheaves ([19], Satz 3(i)). The three remaining properties of
being of puredimension P, semistable P, or geometrically stable P; have similar charac-
teristics: they can be described by the absence of certain pure dimensional quotient sheaves.
Consider the following sets of polynomials:

A = {P"|deg(P") =d,i(P") < ii(P) and thereis ageometric point s € S
and asurjection Fy; — F"' onto a pure sheaf with P(F") = P"}

A = {P" € Aldeg(P - P")<d-1},

Ay, = {P" e Alp' < p}, As = {P" € Ap’ <pand P" < P},

where as usual, p” is the reduced polynomial associated to P etc. By the Grothendieck
Lemma 1.7.9 the set A isfinite. For each polynomial P € A we consider the relative
Hilbert scheme 7 : Q(P") = Quoty,s(F,P") — S. Since  is projective, the image
7(Q(P'")) =: S(P") isaclosed subset of S. We seethat F; has property P; if and only if
s isnot contained in the finite — and hence closed —union J i 4, S(P") C S. O

Theorem 2.3.2 —Let S beanintegral k-scheme of finitetype, let f : X — S bea projec-
tivemorphismandlet Ox (1) bean f-ampleinvertible sheaf on X . Let F' be a flat family of
d-dimensional coherent sheavesonthefibresof f. Thereisa projectivebirational morphism
g: T — S of integral k-schemes and a filtration

0 C HNo(F) CHNy(F) C ... CHNy(F) = Fr
such that the following holds:
1. ThefactorsHN;(F)/HN,;_, (F) areT-flatforalli =1,... ,¢,and

2. thereis a dense open subscheme U C T such that HN4 (F); = g5 HNe(Fy(y)) for
alteU.
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Moreover, (g, HN,(F')) isuniversal in the sensethat if g’ : 7" — S is any dominant mor-
phism of integral schemes and if ) is afiltration of Fp» satisfying these two properties,
then thereisan S-morphismh : T' — T with F, = b5, HNJ(F').

Thisfiltration is called the relative Harder-Narasimhan filtration of F'.

Proof. It sufficesto construct an integral scheme T' and a projective birational morphism
g : T — Ssuchthat Fir = g¢%F admits aflat quotient £ which fibrewise gives the
minimal destabilizing quotient of F; for al ¢ in adense open subscheme of 7" and such that
T isuniversal in the sense of the theorem. For in that case the kernel F’ of the epimorphism
Fr — F'" is S-flat and we could iterate the argument with (S, F') replaced by (7', F'). This
would result in afinite sequence of morphisms

To Ty — ... Ty =T = S,

and the composition of theses morphismswould have the required properties.

Asin the proof of the proposition consider thefinite set A4 of polynomials P” € A such
that p” < p. Then S is the (set-theoretic) union of the closed subsets S(P"), P" € A.
Define atotal orderingon A4 asfollows: P, < Py ifandonly if p; < ps and P, > P in
casep; = po. Since S isirreducible, thereisapolynomia P” with S(P") = S.Let P_ be
minimal among all polynomialswith this property with respect to <. Thus

S(P”)
PI'EAy, P! <P_

isaproper closed subscheme of S. Let V' beits open complement. Consider the morphism
7w : Q(P-) — S.By definition of P_, 7 is surjective. For any point s € S thefibre of =
parametrizes possible quotients of F; with Hilbert polynomial P_. If s € V' then any such
guotient is minimally destabilizing, by construction of V. By Theorem 1.3.4 the minimal
destabilizing quotient is unique and by Theorem 1.3.7 it is defined over the residue field
k(s). Thisimpliesthat 7 : U := 7~ (V) — V ishijective,andforeacht € U and s = ()
onehask(s) = k(t). Moreover, according to Proposition 2.2.7 the Zariski tangent spaceto
the fibre of = at ¢ is given by Homx, (F., F.'), where0 — F} — F, — F;' — 0isthe
short exact sequence corresponding to ¢. But by construction Hom(FY, F}’) must vanish
according to Lemma 1.3.3. This proves that the relative tangent sheaf (/v is zero, i.e.
m: U — V isunramified and bijective. Since V isintegral, = : U — V isan isomorphism.
Now let T betheclosureof U in Q(P-) withitsreduced subschemestructure. ThenU C T'
is an open subscheme, and f = «|y : T — S isaprojective birational morphism. To
see that T is universal, suppose that 7" is an integral scheme with a dominant morphism
g :T' — S and aquotient morphism Frr» — G suchthat P(G;) = P_ forgeneral t € T".
By the universal property of Q(P-), ¢’ factorsthrough amorphismh : 7' — Q(P-) with
g’ = mog'. Theimageof T" isareduced irreducible subscheme of Q(P_) and containsan
open subscheme of U, since h|(yy-1(v) = 1o 9'l(g)-1(v)- Thush factorsthrough T'. O
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Remark 2.3.3 — If under the hypotheses of the theorem the family F' isnot flat over S or
if F isd-dimensional only for points s in some open subset of S, one can always find an
open subset S’ C S such that the conditions of the theorem are satisfied for Fs:. Making
S’ even smaller if necessary, we can assume that the relative Harder-Narasimhan filtration
HN,(Fs) isdefined over S’. Thisfiltration can easily be extended to afiltration of F over S
by coherent subsheaves(cf. Exc. 11 5.15in[98]), which, however, can no longer be expected
to be S-flat or to induce the (absolute) Harder-Narasimhan filtration on all fibres. Thisfil-
tration satisfies some (weaker) universal property. Nevertheless, we will occasionally use
the relative Harder-Narasimhan filtration in this form in order to simplify the notations.
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Appendix to Chapter 2

2.A  Flag-Schemes and Deformation Theory

2.A.1 Flag-schemes — These are natural generalizations of the Quot-schemes. Let f :
X — S beaprojectivemorphism of Noetherian schemes, O x (1) an f-amplelinebundleon
X, andlet # bean S-flat coherent sheaf on X with Hilbert polynomial P. Fix polynomials
Pi,...,PpwithP =3 P, Let

DrapX/S(’H,P.) : (Seh/S)° — (Sets)
be the functor which associatesto 7" — S the set of all filtrations
OCFIFHrCFHrC...CFHr=Hr:=01rH

such that the factors gr Hr are T-flat and have (fibrewise) the Hilbert polynomial P; for
i =1,... 0 Clearly, if £ = 1 then MX/S(H,PQ = MX/S(H,PQ. In general,
MX/S(H, P,) isrepresented by a projective S-scheme Drap x5 (#, P ) which can be
constructed inductively asfollows: let S, = S, Xy = X andH, = H.Let0 < i < ¢, and
supposethat S;, X; and H; € Ob(Coh(X;)) have already been constructed. Let S;_; :=
QuotXl,/Si (H;, P;), Xi—1 := Si—1 xs, X; and let H;_; bethe kernel of the tautological
surjection parametrized by S;. Then Drapy /s (H, Pe) = So.

2.A.2 Ext-groupsrevisited — If H isacoherent sheaf together with aflag of subsheaves,
we can consider the subgroup Hom _ (#, #) of those endomorphismsof # which preserve
the givenflag. In analogy to ordinary Ext-groupsoneislead to the definition of correspond-
ing higher Ext_ -groups, which play aroéle in the deformation theory of the flag-schemes:
let & be afield and X a k-scheme of finite type. Let K® and L* be complexes of Ox-
modules which are bounded below. Let Hom(K*®, L*)* bethe complex with homogeneous
components Hom(K*®, L*)? = [], Hom(K*, L**¢) and boundary operator (d"(f)) =
d"tio fi+ (—=1)"fi*tl o d'. Afinitefiltration of K* isafiltration by subcomplexes F, K*®
such that only finitely many of thefactor complexesgr, K* = F,K*/F,_, K* arenonzero.
If K* and L* are endowed with finite filtrationsthen Hom(K*, L*)*® inheritsafiltration as
well: let

F,Hom(K*,L*)* = {f|f(F;K*") C Fj4,L* forall j}
Let Hom_(K*, L*)* = FyHom(K*, L*)*® and

Hom, (K*,L*)* = Hom(K*, L*)*/FoHom(K*, L*)*.
A filtered injective resolution of the filtered complex L*® consists of afinitely filtered com-
plex I* of injective O x-modules and afiltration preserving augmentation homomorphism

e : L* — I* such that all factor complexes grf[' consist of injective modules and ¢ in-
duces quasi-isomorphisms grf'L* — grl"I*. Such resolutions always exist.
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Definition and Theorem 2.A.3 —Let Ext’ (K*, L*) and Ext’, (K*, L*) bethe cohomol-
ogy groupsof thecomplexesHom _ (K'*, I*)® and Hom, (K*, I*)*®, respectively. Theseare
up to isomor phism independent of the choice of the resolution. |

From the short exact sequence of complexes
0 - Hom_(K*,L*)* - Hom(K*,L*)* - Hom, (K*,L*)* —» 0
one gets along exact sequence of Ext-groups:
... — Ext? (K*,L*) - Ext?(K*,L*) - Ext® (K*,L*) — Ext®™ (K*,L*) — ...
Theorem 2.A.4 —There are spectral sequences

I Extp“(griK',gri,pL’) ,p<0
0 ,p>0

0 ,p<0
[1, Ext?*?(gr;K®, gripL®) ,p>0

Exti"(K*,L*) < EM= {
Ext’t(K*,L*) < EM= {
Proof. Use the natural induced filtrations on Hom  (K®, I*®)°. a

2.A.5 Deformation Theory — Thisisavery short sketch of some aspects of deformation
theory which is by no means intended to provide a systematic treatment of the theory. Not
all assertionswill bejustified by explicit computations.

Let (A, my) beacomplete Noetherian local ring with residuefield &, and let (Artin/A)
bethe category of local Artinian A-algebraswith residuefield k. We want to study covariant
functorsD : (Artin/A) — (Sets) with the property that D (k) consistsof asingle element.
Suppose we are given a surjective homomorphismo : A’ — A in (Artin/A). What isthe
image of the induced map D(o) : D(A’) — D(A), and what can be said about the fi-
bres? We can always factor o through therings A/a”, a = ker(c), and in this way reduce
ourselves to the study of those maps o which satisfy the additional hypothesism 4ra = 0,
m 4 denoting the maximal ideal of A’. We will refer to such maps as small extensions, de-
viating slightly from the use of this notion by Schlessinger [229]. The functor D is said to
have an obstruction theory with valuesin a (finite dimensional) k-vector space U, if thefol-
lowing holds: (1) For each small extension A’ — A with kernel a, there isamap (of sets)
0:D(A) » U®asuchthat thesequenceD(A4’) - D(A) » U®aisexact. (2)If A’ - A
and B" — B are small extensionswith kernelsa and b, respectively, andif ¢ : A’ — B’ is
amorphism with ¢(a) C b, then the diagram

DA) = U®a

I I
DB) = U®b
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commutes.

Thereareessentially two types of examplesthat concern ushere: The problem of deform-
ing asheaf, and that of deforming a subsheaf, or more generally, aflag of subsheaveswithin
agiven sheaf.

2.A.6 Sheaves— Let A = k beanalgebraically closed field, let X be asmooth projective
variety over k, and let F' be a coherent O x-module which issimple, i.e. End(F') = k. If
A € Ob(Artin/k), let Dp(A) bethe set of all equivalence classes of pairs (F4, ¢) where
F 4 isaflat family of coherent sheaveson X parametrized by Spec(A) andp : Fa®4 k —
F is an isomorphism of Ox-modules. (F4,¢) and (F, ¢") are equivalent if and only if
thereisanisomorphism ® : Fy — F4 withp o ® = ¢'.

Let(I*,d*) beacomplex of injective O x-modulesande : F' — I* aquasi-isomorphism.
The following assertions can be checked easily with the usual diligence and patience nec-
essary in homological algebra: the cohomology of the complex Hom(7®,1°)® computes
Ext(F,F). Let A € Ob(Artin/k) and suppose we are given a collection of mapsds €
Hom(A ® I*, A ® I*)! which restrict to d over the residue field of A. If @4 = 0 then
(AxI*,d%)isinfactan exact () complex exceptin degree0,and Fy := H(A®I®,d%)is
an A-flat extension of F over A, i.e. anelementin D (A) (useinduction onthelength of A
andthelocal flatness criterion 2.1.3). Conversely, any elementin Dy (A) can berepresented
this way. Suppose that such aboundary map d 4 with d% = 0 is given, defining an element
Fy € Dp(A). Leto : A" — A beasmall extension with kernel a. Choose alift d 4/ of
da. Since d’ = 0, the square d?, factors through a homomorphism¢ : I* — I**2 ®;, a.
This homomorphismis a 2-cocycle, i.e. d(¢) = d¢ — ¢d = 0, and its cohomology class
0(F4,0) := [¢] € Ext%(F, F) @} a isindependent of the choice of the extension d .. If
d%, = 0theno(Fy4,0) = 0,and conversaly, if o(F4, o) = 0 then ¢ = d(&) isthe boundary
of some homomorphism¢ : 1* — I**! ®; a,and d'y, = da — & satisfies (d'4,)? = 0.
Moreover, if d 4 andd'y, aretwo boundary mapsextendingd 4 thenthey differ by al-cocyle
&, and they are equivalent, if thiscocycleisacoboundary (it isat this placethat we need the
assumption that F' be simple). We summarize: the fibres of the map Dr (o) : Dp(4') —
Dr(A) are affine spaces with structure group Ext (F, F') @y, a, and theimage of Dy (o) is
the preimage of 0 under the obstruction map o(o) : Dr(A) — Ext?(F, F) @ a.

2.A.7 Flags of Subsheaves — We turn to the description of the deformation obstructions
for pointsin Drap. We will proceed in asimilar way as sketched in the previous paragraph.
Thisyieldsindependent proofs of the results of Section 2.2 and a bit more. Again we leave
out the details.

Let (X, Ox (1)) beapolarized smooth projective k-scheme, and let G be aflat family of
coherent sheaves on X parametrized by a Noetherian k-scheme S. Let s € S beaclosed
point and A the completion of the local ring Og ;. A A-algebrastructure of an Artinian k-
algebra A corresponds to a morphism Spec(A) — S that maps the maximal ideal of A to
s. Let G 4 bethe corresponding deformation of the fibre G of G at the point s.
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Suppose we are given aflag of submodules0 = Go € G; C ... C G, = G inthe
coherent O x-module G. Define afunctor D = Dge : (Artin/A) — (Sets) asfollows:
Let D(A) bethe set of al filtrations0 C G4 C ... C G4 = G4 with A-flat factors,
whoserestrictionto £k = A/my4 equalsthe givenfiltration0 C Gy C ... C Gy =G.

Thereisan injectiveresolution G — I* of the following special form: in each degreen
the module 1™ decomposes into a direct sum 69 »—1 1y, such that the boundary map d =
(dij), dij = I} — It has upper triangular form i.e.d;; = 0fori > j, and the sub-
complex% I%p = D,<, II" areinjective resolutions for the subsheaves GG, C G. (To get
such aresolution first choose injective resolutions gr,G — I, and then choose appropriate
homomorphismd;;, i < j.)

Let A € Ob(Artin/A). The associated deformation G 4 of G' can be described by an
element d4 € Hom(A ® I*, A ® I*) with d% = 0. A deformation of the flag G, over
A is given by an endomorphism of theformb, = 1 + 84 € Hom(A4A ® I*, A ® I*)°,
where 34 isastrictly lower triangular matrix with entries 34,;; : A ® I7 — my ® I?;in
particular, b isinvertible. Moreover, b is subject to the condition that the boundary map
dy = bAldAbA is filtration preserving, i.e. upper triangular. (To see this observe, that a
deformation of theflag is given by (1) deformationsof the boundary maps of the complexes
I2, and (2) deformationsof theinclusonmaps /2, — 12, ., . Sincewe are free to change
these by deformations of the identity map of the complex 7*, we can in fact assume that the
latter are given by amatrix b4 as above. Clearly, the boundary maps of the subcomplexes
I2, then are already determined by the requirement that they commute with the inclusion
maps.)

Supposenow that 0 — a - A" — A — 0isasmal extensionin (Artin/A). Let
d 4 beahomorphismthat yieldsG 4/, da = da ® 4 A and assumethat 34 definesan A-
flat extension G 4 Of thefiltration Go. Choose an arbitrary (strictly lower triangular) ex-
tension 54/ of B4 andlet byr = 1 + (4. Let ¢ denote the arlctly lower triangular part
of dAr = bA, dabar. Since the dtrictly lower triangular part of dA vanishes by the as-
sumptions, ¢ defines an element in Hom , (7°*, I*)! ® a. Asbefore, ¢ isin fact a 1-cocycle,
and its cohomology class is independent of the choice of 54. Let this class be denoted by
0(Gae,0) € Extl (G,G) ® a. Anextension G, - of thefiltration G 4 existsif and only
if this obstruction class vanishes. Moreover, if the obstruction vanishes then any two ad-
missable choicesof 34/ differ by acocylein Hom (7*, 1*)° ® a and areisomorphicif and
only if this cocycleisacoboundary. Thismeansthat thefibre of D(A’) — D(A) over Go 4
is an affine space with structure group Ext, (F, F).

2.A.8 Comparison of the Obstructions— Asbefore, let X be a smooth projective vari-
ety, andlet p : H — F be an epimorphism of coherent sheaves with kernel K, such that F’
issimple. In the last two paragraphs we defined obstruction classes for the deformation of
F asan‘individua’ sheaf and of F' asaquotient of 7, or what amountsto the same, of K
as a submodule of 7. We want show next that these obstructions are related as follows:

Leto: A" - A beasmall extensionin (Artin/k) with kernel a and let
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0Ky — ARt H—Fq4—0

be an extension of the quotient % — F over A. Let ¢ : Ext' (K, F) — Ext?(F, F) bethe
boundary map associatedto 0 -+ K —+ H — F' — 0. Then

(6 ®ida)(0(Ka C A®H,0)) = —0(Fa,0) € Ext*(F,F) ® a.

(Notethat Ext} (#,H) = Ext® (K, F').) Following the recipe above, we choose resolu-
tions K — (I}, dx) and F — (Ip,dr), and ahomomorphism~y : I — I3 such that

the complex
. ° L dx Y
(IKEBIF,d._< 0 dr ))

is an injective resolution of . Note that d> = 0 implies dxy + vdr = 0, which means
that v is a 1-cocyle. Its classiis precisely the extension classin Ext' (F, K') corresponding
to 7. A deformation of theinclusion over an Artinian algebra A’ is given by a matrix

, (10
b_<ﬁ’1>

dg +v0' 0% >
dpf' — B'dx — B'vB' dp — B'y

be upper triangular. Let ¢y = (drp(' — 3'dk) — 5'v5'. Moreover, the induced deformation
of F isdescribed by the lower right entry d — 3'y. Let ' = (drp — 3'v)?. Then

subject to the condition that

J:b'lodob':<

W' = dp —dpf'y — B'vdr + 5By
= dy — B'(ydp +dgy) + (B'dg — dpB' + B'v8')y
The first two terms in the last line vanish (v is a cocycle!). Thus ¢’ = —1y. Assuming

that the deformation exists over A meansthat ¢» and, therefore, +)" vanish when restricted
to A and thusinduce the obstruction classesin Hom(I§, I3)! ® a and Hom (I3, I3)? ® a,
respectively. Note that multiplication by ~ gives the boundary map §. Hence indeed,

o(KaC A2 H,0) = —(6 @id)([o(Fy), 0]).

Moreover, if the obstruction vanishes for a given §', then any other choice is of the form
3" + & for acocyle £. Note that the boundary operator of F4- then changes by —¢&~. Thus
the natural map of the fibre of D (A") = Drcu(A) over [Ka C H ® A] into the
fibreof Drp(A') — Dr(A) over [F4] is compatible with the boundary map § between the
structure groups of these affine spaces.
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2.A.9 Dimension Estimates—Let (A, m, ) beacompleteNoetherianlocal k-algebrawith
residue field k, and let (R, mp) be acomplete local A-algebrawith residue field k. Let R
denote the functor Homa 44 (R, .) : (Artin/A) — (Sets), andlet D : (Artin/A) —
(Sets) beacovariant functor as in the previous sections. Though R is not in the category
(Artin/A), the quotients R/m%, are. Any element ¢ € lim; D(R/m?%;) defines a natural
transformation £ : R — D. The pro-couple (R, £) is said to pro-represent D, if £ isan
isomorphism of functors. -

For example, let G bean S-flat family of sheaveson X, letp : Y = Drap(G, P.) — S be
arelativeflag scheme, andlety € Y beaclosed point that correspondsto aflag G C G =
Gs, s = p( ) € S. Then the functor D as defined in 2.A.7 is pro-represented by the pro-
couple (Oy v G.), where Oy, -y isthecompletion of thelocal ring Oy, at itsmaximal ideal,
and G, isthelimit of the projective system of flags obtained from restricting the tautol ogical
flagonY x X to the infinitesimal neighbourhoods Spec(Oy,, /m}) x X of {y} x X.In
particular, Y and D have the same tangent spaces. The results of Section 2.A.7 say:

Theorem 2.A.10 —There is an exact sequence

0 — Ext) (G,G) — T,Y 15 T,5 - Extl (G, G)

If Dispro-represented by (R, £) then the deformation theory for D providesinformation
about the number of generatorsand relations for R:

Proposition 2.A.11 — Suppose that D is pro-represented by a couple (R, £) and has an
obstruction theory with valuesin an r-dimensional vector spaceU. Let d = dim(mg/m%)
be the embedding dimension of R. Then

d>dim(R) >d—r.

Moreover, if dim(R) = d — r, then R isalocal completeintersection, andif » = 0, then R
isisomorphic to a ring of formal power seriesin d variables.

Proof. Choose representatives ty, ... ,t; € mpg of a k-basis of mR/m%{. Then R ==
k[[t1, ... ,tq]]/J for someideal .J. It sufficesto show that .J is generated by at most r ele-
ments: all statementsof the propositionfollow immediately fromthis. Letn := (¢1,... ,t4)
be the maximal ideal in k[[t1, ... ,t4]]. According to the Artin-Rees Lemmaonehasanin-
cluson JNn¥ c Jn for sufficiently large N. Consider thesmall extension0 — a — A’ —
A = owithA = R/mf = k[[t1,... ,ta]]/(J +nP), A" = k[[t1,... ,ta]]/(nJ + nV)
anda = (J+n")/(nJ +n") = J/nJ. Thenatura surjection R — A defines an element
&4 € D(A), and the obstruction to extend £ 4 to an element £4. € D(A’) isgiven by an
element
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r
o’=z¢a®fan®a,
a=1

where {¢, } isabasisof U and fi,... , f,. are elementsin J. Consider the algebra A” =
A'[(f1,..., fr). The obstruction o” to extend {4 to A” istheimage of o’ under the map
U®a— U®a/(fi,...,fr) andtherefore vanishes. The existence of an extension & 4
corresponds to a lift of the natural ring homomorphismgq : R — A to aring homomor-
phism¢"’ : R — A". And picking pre-images for the generators ¢, ... ,t4 we can aso
lift the composite homomorphism k[[ty, ... ,t4]] = R — A’ to ahomomorphism & :
E[[t1,... ,tq]] = k[[t1, ... ,tq]] suchthat the following diagram commutes:

E[fti,...,tq] — R LH A

3| q" [
El[t1,... ,tg)] — A" — A,

In thisdiagram all horizontal arrows are natural quotient homomorphisms. ® isan isomor-
phism, sinceit inducestheidentity onn/n?. Forany = € k[[t1,... ,t4)] onehas® 1 (z) =
z mod(J + n™), whichimplies J C ®(.J) + nV. By construction of &, onehas ®(.J) C
nJ + (fi,..., f4) +n"V. Combining these two inclusions one gets

JcnJ+ (fi,..., fa)+nN c J+nl.
Recall theinclusion J N n™ C nJ we started with. From
(T +0N + (fi,... . f) /0N 2T +aN /N 2 g/000N - J/ng

onededuces J = nJ + (f1,. .., fa). Nakayama's Lemmathereforeimpliesthat .7 is gen-
erated by fi,..., fr. a

Notethat if R isthecompletion of aloca k-algebra© of finite type, then the statements
of the proposition will hold for O aswell, i.e.d > dim©O > d — r. If dimO = d —
r, then O isalocal complete intersection, and if » = 0, then O isaregular ring: clearly,
dim(R) = dim(@) = dim(0O); O isreguler if and only if its completion is isomorphic to
aring of power series. Finally, write O = k[z1,... ,2¢]w/I for someidea I. Then R =
k[[z1, ..., x¢]/I, and I/mI = I/@I. Hence by Nakayama's Lemma, if I is generated by,
say, s elements, then I isalso generated by s elements. Thisshowsthat O isalocal complete
intersection, if thisistruefor R.

We can apply the previous proposition and the observation above to flag-schemes and
conclude:

Proposition 2.A.12 — Let G be a coherent sheaf on a projective scheme X . Let y be a
closed pointin Drapy (G, Ps), defining afiltration of G. Then

ext) (G, G) > dim, Drapx (G, Ps) > ext (G, G) — ext! (G, G).

If equality holds at the second place, then Drap (G, P,) isalocal completeintersection
near y. If Ext (G,G) = 0, thenDrapy ;. (G, Ps) issmooth at 3.
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Proof. This follows at once from Subsection 2.A.7, Proposition 2.A.11 and the remark
following it. m|

Note that these estimates can be sharpened if one can show in special cases that all de-
formation obstructions are contained in a proper linear subspace of Extl+ (G,G).

Remark 2.A.13 — Note that Proposition 2.A.12 contains 2.2.8 as the special case ¢ = 2:
if thefiltration of G is given by asingle subsheaf K, then Ext’, (G, G) = Ext'(K,G/K).

2.B A Result of Langton

Let X beasmooth projectivevariety over an algebraically closed field k. Let (R, m = (7))
be a discrete valuation ring with residuefield & and quotient field K. Wewrite X = X X
Spec(K) etc.

Theorem 2.B.1 —Let F bean R-flat family of d-dimensional coherent sheaveson X such
that Fr = F @ K isa semistable sheaf in Cohg ¢ (X k) for somed' < d. Thenthereis
asubsheaf E C F suchthat Ex = Fx and such that E;, is semistablein Cohg, g (X).

Proof. It suffices to show the following claim: If d > 6 > d' and if in addition to the
assumptions of the theorem F, is semistablein Coh, 541 thenthereisasheaf E C F such
that Fx = Fi and suchthat E}, issemistablein Cohy 5. Clearly, the theorem followsfrom
this by descending induction on §, beginning with theempty case § = d — 1.

Supposethe claim werefalse. Then we can define a descending sequence of sheaves F' =
F°> F' 5 F?... with Fx = F}: and F}* not semistablein Cohy,s(X) asfollows: Sup-
pose F™ has already been defined. Let B™ be the saturated subsheaf in F}' which represents
the maximal destabilizer of £} in Cohy 5(X). Let G* = F}*/B™ and let F**! betheker-
nel of the composite homomorphism F* — F — G™. Asasubmoduleof an R-flat sheaf,
Fntlis R-flat again. There are two exact sequences

0=B"=F'—>G"—=0 ad 0—G"— F' - B"—0. (2.3)

(To get the second one use the inclusions 7 F» c F*t! c F?). If C™ := G* N B"t! is
non-zero, then

P(C") < Pmax(G") < p(F}) < p(B™*')  mod Q[T ]5—1 .

Thus,inany case B! /C™ isisomorphicto anonzerosubmoduleof B™ andpy s(B" 1) <
pa,s(B" /C™) < pas(B™) with equality if and only if C™ = 0. Since F, is semistable
in Cohg 541 it followsthat pgs541(B™) = pa,s+1(Fr) = pa,s+1(G™) for al n. In partic-
ular, pas(B™) — pas(Fr) = Bn - T° mod Q[T]s_, for arational number 3,,. As 3, isa
descending sequence of strictly positive numbersin alattice %Z C Q, it must become sta-
tionary. We may assume without loss of generality that 3,, is constant for al n. In this case
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we must have G® N B™t! = 0 for al n. In particular, there are injective homomorphisms
B"tl ¢ B" andG™ C G™*!. Hencethereisaninteger ny suchthat for all n > n, wehave
P(B™) = P(B"") = ...modQ[T]5-1 and P(G™) = P(G"™!) = ... mod Q[T]5-1.
(Againwe may and do assumethat ny = 0). Now G® € G' C ... isanincreasing sequence
of purely d-dimensional sheaveswhich areisomorphicin dimensions> d — 1. In particu-
|ar, their reflexive hulls (G™) PP are all isomorphic. Therefore, we may consider the G™ as
a sequence of subsheavesin some fixed coherent sheaf. As an immediate consequence all
injections must eventually become isomorphisms. Again we may assumethat G™ = G™*!
for al n > 0. Thisimplies: the short exact sequences (2.3) split, and we have B® = B,
G" =G and F}' = B & G for al n. Define Q™ = F/F™, n > 0. Then Q} = G and there
are short exact sequences0 — G — Q™' — Q™ — 0 for al n. It follows from the local
flatness criterion 2.1.3 that Q™ isan R/="-flat quotient of F'/x™F for each n. Hence the
image of the proper morphism o : Quotx, ;g (F, P(G)) — Spec(R) contains the closed
subscheme Spec(R/#"™) for al n. But thisonly possibleif o is surjective, sothat Fix» must
also admit a (destabilizing!) quotient with Hilbert polynomial P(G) for some field exten-
sion K' O K. This contradicts the assumption on F. O

Excercise 2.B.2 — Usethesametechniqueto show: if F'isan R-flat family of d-dimensional sheaves
such that Fic ispure, thenthereisasubsheaf £ C F suchthat Ex = Fx and Ej, ispure. Moreover,
there isahomomorphism F;, — Ej, which isgenerically isomorphic.

Comments:

— For adiscussion of flatness see the text books of Matsumura[172], Atiyah and Macdonald [8] or
Grothendieck’s EGA [94]. The existence of aflattening stratificationin the strong form 2.1.5isdueto
Mumford [191]. The weaker form 2.1.6 is due to Grothendieck, cf. [172] 22.A Lemma 1. A detailed
discussion of determinant bundles can be found in the paper of Knudson and Mumford [126].

— The notion of a scheme corepresenting a functor is due to Simpson [238]. Quot-schemes were
introduced by Grothendieck in his paper [93]. There heal so discusses deformations of quotients. Other
presentations of the materia arein Altman and Kleiman [3], Kollar [128] or Viehweg [258].

— Openness of semistability and torsion freeness is shown in Maruyama's paper [161]. Relative
Harder-Narasimhan filtrations are constructed by Maruyamain [164].

— Proposition 2.A.11 isbased on Prop. 3in Mori’sarticle [181] with an additional argument from
Li [149] Sect. 1. Flag-schemes and their infinitesimal structure are discussed by Drezet and Le Potier
[51].

— The presentation in Appendix 2.A is modelled on a similar discussion of the deformation of
modules over an algebra by Laudal [137]. Deformations of sheaves are treated in Artamkin’s papers
[5] and [7] and by Mukai [186]. For an intensive study of deformations see the forthcoming book of
Friedman [69]. For more recent results on deformations and obstructions see the articles of Ran [225]
and Kawamata [120, 121].

— The theorem of Appendix 2.B isthe main result of Langton’s paper [135]. In fact, the original
version deals with p-semistable sheaves. The anal ogous assertion for semistable sheaves was formu-
lated by Maruyama ( Thm. 5.7 in [163]). We have stated and proved it in a more general form which
covers both cases.
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3 TheGrauert-Mlich Theorem

One of the key problems one has to face in the construction of a moduli space for semi-
stable sheaves is the boundedness of the family of semistable sheaves with given Hilbert
polynomial. In fact, this boundednessis easily obtained for semistable sheaves on a curve,
as we have seen before (1.7.7). On the other hand, the Kleiman Criterion for boundedness
(Theorem 1.7.8) suggests to restrict semistable sheaves to appropriate hyperplane sections
and to proceed by induction on the dimension. In order to follow thisideawewould like the
restriction F| g of a semistable sheaf F' to be semistable again. There are three obstacles:

e Theright stability notion that iswell-behaved under restriction to hyperplane sections
is u-semistability. Thereis no general restriction theorem for semistability.

e Ingenera, the restriction F'| r will have good properties only for a general element
H inagiven amplelinear system.

e Evenfor ageneral hyperplane section the restriction might well fail to be u-semista-
ble. But this failure can be numerically controlled.

The Grauert-Mulich Theorem gives a first positive answer to the problem. In its origina
form, it can be stated as follows:

Theorem 3.0.1 —Let E bea u-semistable locally free sheaf of rank r on the complex pro-
jective space PZ. If L isa general lineinP” and E|r = Or(by) & ... & Or(b,) with
integersb; > by, > ... > b,, then

0<b;—bip1 <1
foralli=1,...,r—1.

In Section 3.1 we will prove a more general version of this theorem that suffices to es-
tablish the boundedness of the family of semistable sheavesin any dimension. Thiswill be
donein Section 3.3. As afurther application of the Grauert-M{lich theorem we will show
in Section 3.2 that the tensor product of two p-semistable sheaves is again p-semistable.
The chapter ends with a proof of the famous Bogomolov inequality. For all these results it
isessential that the characteristic of the basefield be zero. It isnot known, whether the fam-
ily of semistable sheaves is bounded, if the characteristic of the base field is positive. The
discussion of restriction theorems for semistable sheaves will be resumed in greater detail
in Chapter 7.
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3.1 Statement and Proof

Let & bean algebraically closed field of characteristic zero, and let X beanormal projective
variety over k of dimensionn > 2 endowed with avery ampleinvertible sheaf Ox (1). For
a>0letV, = H°(X,0Ox(a)),andletIl, := P(V,”) = |Ox (a)| denotethelinear system
of hypersurfaces of degree a. Let Z, := {(D,z) € I, x X|z € D} betheincidence
variety with its natural projections

Scheme-theoretically Z,, can be described asfollows: let K be the kernel of the evaluation
map V, ® Ox — Ox(a). Then there is a natura closed immersion Z, = P(K”) —
P(V,”) x X. In particular, ¢ is the projection morphism of aprojective bundle, and therel-
ative tangent bundleis given by the Euler sequence

0= 0z, = ¢Kep 0,(1) = Tz,/x = 0.

We dightly generalize this setting: let (a4, ... ,ay) be afixed finite sequence of positive
integers, 0 < £ < n. LetIT :=II,, x ... x II,, with projections pr; : IT — II,,, and let
Z =Zq, Xx ...Xx Zg, With natural morphisms

7z L X

/|

1

as above and projectionspr; : Z — Z,,. Then g isalocally trivia bundle map with fibres
isomorphic to products of projective spaces. The relative tangent bundleis given by

Tz)x =priTz,, /x @...@prg'TZaz/X.

If s isaclosed point in IT parametrizing an /-tuple of divisors D, ... , Dy, then the fibre
Z, = p~!(s) isidentified by ¢ with the scheme-theoreticintersection D, N...N D, C X.
Next, let E be atorsion free coherent sheaf on X andlet F' := ¢*E.

Lemma 3.1.1 —i) Thereisa nonempty open subset S’ C II such that the morphismpg: :
Zs — S'"isflat and such that for all s € S’ thefibre Z; isa normal irreducible complete
intersection of codimension / in X.

ii) Thereis a nonempty open subset S C S’ such that the family Fs = ¢*E|z, isflat over
S and such that for all s € S thefibre F; = E|;_ istorsion free.
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Proof. Part i) followsfrom Bertini’'s Theorem and 1.1.15. For ii) take the dense open sub-
set of points(sy, . .. , s¢) € Il whichformregular sequencesfor E andfor all £zt (E, wx),
i > 0, which impliesthat Fs isflat and that E|z, istorsionfreeby 1.1.13. O

Now we apply Theorem 2.3.2 to the family Fis and conclude that there exists arelative
Harder-Narasimhan filtration

OCF()CFlC...CFj:FS

such that all factors F;/F;_, are flat over some nonempty open subset Sp C S and such
that for al s € Sy thefibres (F,)s form the Harder-Narasimhan filtration of Fs; = E|,.
Without loss of generality we can assume that S, = S. Since S is connected, there are
rational numbers p; > ... > p; with u; = p((F;/Fi—1)s) foral s € S. We define

6lu=max{,ui—,ui+1|iz 1,... 7j_1}

ifj > 1landdp = Oelse. Thendp = 6u(E)|z,) foragenera point s € II, and 6« vanishesif
andonly if E|z, isu-semistablefor genera s. Using these notationswe can state the general
form of the Grauert-Mulich Theorem:

Theorem 3.1.2 — Let FE be a u-semistable torsion free sheaf. Then there is a nonempty
open subset S C II such that for all s € S the following inegquality holds:

0 <o0u(E|z,) < max{a;}-a; - deg(X).

Proof. If 6 = 0, there is nothing to prove. Assume that 6 is positive, and let i be an
index suchthat 6y = p; — 1. L&t F' = F;and F”" = F/F', sothatforal s € S the
sheaves F, and F.' aretorsion free, and pimin (F2) = fi, pmax(Fy') = piy1. Let Zo bethe
maximal open subset of Zg such that F'|, and F"'|,, arelocaly free, say of rank r and
r"". The surjection F'|z, — F"'|z, definesan X-morphism ¢ : Zy — Grassx (E,r"). We
areinterested in the relative differential Dy : Tz, x |7z, — ©* Tarass(B,r)/x Of themap .
Recall that the relative tangent sheaf of a Grassmann variety can be expressed in terms of
the tautological subsheaf A and the tautological quotient sheaf 1B (cf. 2.2.10):

SO*ITGrass(E,r”)/X = Lp“HOTTL(A, B) = Hom(@*Aa @*B) = HO’ITL(FI, F”)|Z0'
Thuswe can consider D as the adjoint of a homomorphism
O (F'®Tz/x)z20 — |2,

Suppose @, were zero for a general point s € S. This would lead to a contradiction:
first, making S smaller if necessary, this supposition would imply that @ is zero. Let X,
be theimage of Zy in X. Sinceq : Z7 — X isabundle, X, is open. In fact, since for
any point s € .S the complement of Z, s in Z; has codimension > 2 in Z;, we aso have
codim(X — Xy, X) > 2. Moreover, E|x, islocaly free. Thus we are in the following
Situation:
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Zy —2— Grass(E|x,,r")

70\ e
Xo

where ¢, isasmooth map with connectedfibres. If & = 0, then ¢ is constant on the fibres of
¢o and hence factors through amorphism p : Xy, — Grass(E|x,,r") (Here we make use
of the assumption that the characteristic of the base field is zero). But such amap p corre-
spondsto alocally free quotient E|x, — E" of rank '' with the property that E”| 7, x, is
isomorphicto F.'|z,~z, for general s. Since by assumption F' isadestabilizing quotient of
F, any extension of E" asaquotient of E isdestabilizing. This contradictsthe assumption
that F is pu-semistable.

We can rephrase the fact that ®, is nonzero for general s € S asfollows: let C be the
quotient category Coh,,—¢ n—¢—1(Z,) asdefined in Section 1.6. Then @, isanontrivial el-
ement in Home (Fy ® Tz/x|z., Fy'). The appropriately modified version of 1.3.3 saysthat
in this case the following inequality must necessarily hold:

Hmin(Fsl &® 7iZ/X|ZS) S umax(Fs”)- (31)

The Koszul complex associated to the evaluationmape : V, ® Ox — Ox(a) providesus
with asurjection A%V, ® Ox(—a) — ker(e) = K and hence asurjection

AV, @ ¢*Ox(—a) @ p*O(1) = ¢*K @ p*O(1) = Tz./x-

Using 7z/x = @prl‘-‘TZ% /x thisyields a surjection

(@ AV, @ OX(—ai))

z. = Tz/xlz,-

From this we get the estimate

Z®F) > pmin(@ AVa, @k Ox(—a;) @ F'

= min{umin(Oz, (-a:) @ Fy)}
= pmin(Fy) — max{a;} - deg(Z;)

HMmin (TZ/X Zs )

Combining this with inequality (3.1) one gets

O =pi = piv1 = fmin(Fy) = pmax(Fy)
max{a;} - deg(Zs) = max{a;} - Ha; - deg(X).

N

Notethat if a; = ... = ay, = 1, thenthe bound for §u isjust deg(X).
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Remark 3.1.3 — Intheproof abovewe used an argumentinvolvingtherel ative Grassmann
scheme to show the following: if Hom(7z,x ® F', F") = 0, then there is subsheaf E,
namely thekernel of E|x, — E",suchthat ¢*E' = F’|,,. Thisfact can also beinterpreted
asfollows: Consider thek-linearmapV : ¢*E — Qz,x ®¢*E givenby V(s®e) = ds®e,
wheres®@e € Oz ®,-10, ¢~ 'E = ¢*E. Thisisan integrablerelative connection in ¢* E,
i.e.V(s-e) = s-V(e) +ds ®ewhereeisalocal sectionin ¢*FE and s aloca section
in Oz. Since Hom(F",Qz/x ® F") = Hom(Tz/x @ F',F") = 0, the connection V
preserves F', i.e. V induces arelative integrable connection V' : F' — F' ® Q 7, x. Then
E' := F' n ¢~ ' E defines a coherent subsheaf of E. That weindeed have ¢*E' = F' isa
local problem, which can be solved by either going to the completion or using the analytic
category ([41],[32]), where Deligne has proved an equivalence between coherent sheaves
with relative integrable connections and relative local systems.

The last step of the proof of the theorem indicates that there is space for improvement.
Indeed, if the inequality for jimin (72, x|z, ® F'|z,) can be sharpened then we automati-
cally get abetter boundfor 6 (FE|7,). Inorder torelate 6 and pimin (77, x |z, ) we need the
following important theorem:

Theorem 3.1.4 —Let X beanormal projective variety over an algebraically closed field
of characteristic zero. If F} and F, are u-semistable sheavesthen F; ® F; is u-semistable,
too.

Remember that evenif F; and F; aretorsion free, their tensor product might havetorsion,
thoughonly in codimension 2. Thusunder the assumption of thetheorem F}, F»> and F; ® F>
arelocally freein codimension 1.

The proof of Theorem 3.1.4 will be given in the next section (3.2.8). It uses the coarse
version of the Grauert-Mlich Theorem proved above. If the u-semistability of the tensor
product is granted one can prove arefined version of 3.1.2.

Theorem 3.1.5 — Let E be u-semistable. Then there is a nonempty open subset S ¢ I
such that for all s € S the following inequality holds:

0 <6u(Elz,) < —tmin(Tz/x

Proof. Indeed, it is an immediate consequence of Theorem 3.1.4 that pmin (F1 ® Fo) =
tmin(F1) + pmin (F2). In particular,

Z.)-

7, @ F'

7.) + tmin(F'|2,)-

z.) followsfrom 3.1. 0

HMmin (TZ/X ZS) = HUmin (TZ/X

z,) > 0p(E

Hence, —pimin(Tz/x

Thereforeany further analysis of the minimal slopeof therelativetangent bundleislikely
to improve the crude bound of the Grauert-Mulich Theorem. This analysis was carried out
by Flenner and led to an effective restriction theorem: if the degrees of the hyperplane sec-
tionsare large enough then E| . is semistablefor a general complete intersection Z,. This
result will be discussed in Section 7.1.
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Corollary 3.1.6 —Let X beanormal projective variety of dimensionn and let Ox (1) be
avery amplelinebundle. Let F' be a p-semistable coherent O x -moduleof rankr. Let Y be
the intersection of s < n general hyperplanesin thelinear system|Ox (1)|. Then
r—1 r—1

/j'min(F|Y) > IU(F) - deg(X) ) T and NmaX(F|Y) < N(F) + deg(X) : T

Proof. We may assumethat F' istorsion free. If F'|y is u-semistable there is nothing to
prove.Let iy, ... ,pjandry,. .. ,r; bethesopesand ranksof thefactorsof the u-Harder-
Narasimhan filtration of F'|y. By Theorem 3.1.2onehas0 < p; — pi+1 < deg(X), and
summing up termsfrom 1 toi: u; > 1 — (i — 1) deg(X). Thisgives

pF) = D2 ez = Y- 1) deg(X)

-1
2 )

v
|

D00 = 1) = pman(Fly) = deg(X) "

and similarly for pmin(F|y). m|

3.2 Finite Coveringsand Tensor Products

In this section we will use the Grauert-Milich Theorem to prove that the tensor product of
pu-semistable sheavesisagain u-semistable. Thisin turn allows oneto improvethe Grauert-
Milich Theorem, as has been shown in the previous section, and paves the way to Flen-
ner’s Restriction Theorem. The question how p-semistabl e sheaves behave under pull-back
for finite covering maps enters naturally into the arguments. Conversely, some boundedness
problemsfor pure sheaves can be treated by converting pure sheavesinto torsion free ones
viaan appropriate push-forward.

At various steps in the discussion one needs that the characteristic of the base field is O,
though some of the argumentswork in greater generality. We therefore continue to assume
that k isan algebraically closed field of characteristic O.

Let f : Y — X beafinite morphism of degree d of normal projectivevarietiesover k of
dimensionn.Let Ox (1) beanampleinvertiblesheaf. Then Oy (1) = f*Ox (1) isampleas
well. Thefunctor f, on coherent sheavesis exact and the higher direct image sheaves van-
ish. Therefore H (Y, F(m)) = HY (X, f.(F(m)) = H (X, (f.F)(m)) and in particular
P(F) = P(f.F). Thesheaf of algebras.A := f.Oy isatorsion free coherent O x-module
of rank d, and f, givesan equivalence between the category of coherent sheaveson Y and
the category of coherent sheaveson X with an A-modulestructure. Moreover, f. preserves
the dimension of sheaves and purity. On the other hand, since X isnormal and 4 istorsion
free, A islocaly freein codimension 1, which meansthat f isflat in codimension 1. Thus
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f* isexact modulo sheaves of dimension < n — 2. Moreover, if FF € Ob(Coh(X)) hasno
torsionindimensionn — 1, thenthe sameistruefor f*F'. It istherefore appropriateto work
in the categories Coh,, 1 aswe will do throughout this section.

We need to relate rank and slope of F and f*F:

Lemma3.2.1 —Let F' be a coherent O x-module of dimension n with no torsion in codi-
mension 1. Then rk(f*F) = rk(F) and u(f*F) = d - u(F). Let G be a coherent Oy -
module with no torsion in codimension 1. Then rk(f.G) = d - rk(G) and u(G) = d -

((f+G) = u(A)).

Proof. For the last assertion note the following identities: 4(G) = a(f.G), in particular
i(Oy) = j(A). Moreover,  and i arerelated by p(A) = deg(X) - (2(A) — 4(Ox)),
(@) = deg(Y) - (U(G) — (Oy)) and p(£.G) = deg(X) - (A(f.G) — (Ox)) (Seethe
remark after Definition 1.6.8). Finally, deg(Y") = d - deg(X). The assertion follows from
this. |

Lemma 3.2.2 —Let F' bean n-dimensional coherent O x-module. Then F'is u-semistable
if and only if f*F'is u-semistable.

Proof. Certainly, F' has no torsion in codimension 1 if and only if the same is true for
f*F.If F' C F isasubmodule with u(F') > wu(F) then u(f*F') > wp(f*F) by the
previouslemma. Thisshowsthe*if’ -direction. For the converse, let K beasplitting field of
the function field K(Y") over K (X) and let Z bethe normalization of Y in K. This gives
finite morphisms Z — Y — X and, because of the first part of the proof, it is enough
to consider the morphism Z — X instead of Y — X. In other words we may assume that
K(Y) D K(X) isaGdoisextension with Galoisgroup G. Supposenow that 7' isatorsion
free sheaf on X such that f*F' is not u-semistable, and let F}, C f*F be the maximal
destabilizing submodule. Because of its uniqueness, Fy, isinvariant under the action of G.
By descent theory, there is a submodule F' C F such that f*F" isisomorphic to Fy. in
codimensionl, i.e. Fy, = f*F’in Coh,, ,—1(Y"). Thus F’ destabilizes F'. O

Thislemma can be extended to cover the case of polystable sheaves:

Lemma 3.2.3 —Let F' be an n-dimensional coherent sheaf on X. Then F' is p-polystable
if and only if f*F is pu-polystable.

Proof. Again, we provethe‘if’-directionfirst. Thereisanatura tracemaptr : A — Ox.
Thismap is obtained as the composition of the homomorphism A — £nd(.A) given by the
algebrastructure of .4 and the trace map End(A) — Ox. Thelatter isfirst defined in the
usual way over themaximal openset U C X where A|y; islocally free: it extendsuniquely
over al of X, since X is normal. The homomorphism %tr splits the inclusion morphism
i:0x = A.
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We may assume that F' istorsion free. Supposethat F' isanontrivial proper submodule
with the property that the homomorphism f*F' — f*F splits. Such a splitting is given by
an Ox-homomorphismé : F — A ® F' which makes the diagram

F 5% A © F
T Ti@lF’
F’ = Ox ® F'

commutative. Thus composing & with %tr ®1lp : A® F' — F' defines a splitting o
of theinclusion F' — F. If 7 is defined outside a set of codimension 2, then the same is
truefor . Now if f*F is u-polystable, then F' is u-semistable by the previouslemma, and
the arguments above show, that any destabilizing submodulein F' isadirect summand (in
codimension 1).

For the converse direction we may again assumethat f : Y — X isaGalois covering
because of thefirst part of the proof. Let F' be u-stableand let E C f* F be adestabilizing
stable subsheaf. Then £ := 3} .1v/x) 9" F C f*F isapu-polystable subsheaf which
isinvariant under the Galois action and is therefore the pull-back of asubmodule F’ C F.
Since F' isstable, we must have F’ = F. Thus E' = f*F. |

The next step isto relate semistability to ampleness. A vector bundle E on a projective
k-scheme X is ample if the canonical line bundle O(1) on P(E) is ample. On curves a
line bundle is ample if and only if its degree is positive. For arbitrary vector bundles of
higher rank the degree condition is of course much too weak to imply any positivity prop-
erties. However, thisis trueif the vector bundle is semistable. Before we prove this result
of Gieseker, recall some notions related to ampleness:

Let X be aprojective k-scheme.

Definition 3.2.4 — A Cartier divisor D on X is pseudo-ample, if for all integral closed
subschemesY c X onehasY.D4m(Y) > (. And D iscalled nef, if Y.D > 0 for all closed
integral curvesY C X.

Thisnotion of pseudo-amplenessisjustified in view of the following amplenesscriterion:

Theorem 3.2.5 (Nakai Criterion) —A Cartier divisor D on X isample, if and only if for
all integral closed subschemesY C X onehasY.Dd™(Y) > 0,

Proof. See [100]. a

The following theorem of Kleiman says that it is enough to test the nonnegativity of a
divisor on curvesin order to infer its pseudo-ampleness.

Theorem 3.2.6 — A Cartier divisor D on X ispseudo-ampleif and only ifitisnef. O
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The anal ogous statement for amplenessiswrong. For counterexamplesand a proof of the
theorem see [100]. However, if D is contained in the interior of the cone dual to the cone
generated by the integral curves, then D isindeed ample. This result due to Kleiman and
references to the original papers can also be found in [100].

Theorem 3.2.7 —Let X bea smooth projective curve over an algebraically closed field of
characteristic zeroand E a semistable vector bundleof rankr on X . Denoteby 7 : P(E) —
X the canonical projection and by O, (1) the tautological line bundle on P(E).

i) deg(F) > 0< O,(1) is pseudo-ample.
i) deg(E) >0« O,(1)isample.

Proof. Onedirectioniseasy: assumethat O, (1) is pseudo-ampleor ample. Then the self-
intersection number (O (1))" is> 0 or > 0, respectively. But this number is the leading
coefficient of the polynomia x (O, (m)). By the projection formulaand the Riemann-Roch
formulawe get:

X(Ox(m)) = x(m.Ox(m)) = x(S™E) = deg(S™E) + rk(S™E)(1 - g).

Now
m+r—1
r—1

m+7=—1)

k(ST E) = ( ) and det(S™E) = det(E)(" "
Thusthe leading term isindeed deg(E) ";—, Now to the converse:

i) By Theorem 3.2.6, it sufficesto show that O (1) isnef. Let C' C P(E) beany integra
closed curve, v : C'— C'itsnormalizationand f = rov : C — X.If C' ismappedto a
point by 7 then it is contained in afibre. But the restriction of O (1) to any fibreisample,
hence C'.0,(1) > 0. Thuswe may assumethat f : C — X isafinite map of smooth
curves. We have C'.0,; (1) = deg(v*(O,(1)) and asurjection f*E — v*O,(1). Accord-
ing to Lemma 3.2.2, f*F is semistable. Thisimplies deg(v*O,(1)) > deg(f*E)/r =
deg(E) - deg(f)/r > 0.

ii) Choose afinite morphism f : Y — X of smooth curves of degree deg(f) > r, and
let P € Y beaclosed point. The vector bundle E' = f*E ® Oy (—P) still has positive
degree:

deg(E') = deg(f) - deg(E) — rk(E) > 0.
Moreover, E' is semistable by Lemma 3.2.2, so that by i) thelinebundle L' = Op(g1)(1)
is pseudo-ample. Under the isomorphism
P(E") 2 P(f*E) =Y xx P(E)

L' can be identified with L(—F'), where L = Op(4+p) (1) and F' isthe fibre over P. Now
let V' be any closed integral subscheme of P(f*E) of dimension s. If V' is contained in a
fibre, then V.L® > 0, since L isvery ample on thefibres. If V' isnot contained in afibre, it
maps surjectively onto Y and has a proper intersection Z with F'. Now
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V.L} =V.(L' + F)* =V.(L))* +s-V.F.L:7",

since F.F' =0and L|r = L'|p. Weknow that L' is pseudo-ample. ThereforeV.(L')* > 0.
Moreover, L|r is very ample on the fibre F. Therefore V.F.L5~! = Z.(L|r)*~! > 0.
Using the Nakai Criterion we conclude that L is ample. But L is the pull-back of O, (1)
under thefinitemap P(f*E) — P(E). Therefore O, (1) isample, too.

We are now ready to provethe theorem on the p-semistability of tensor productsas stated
in the previous section.

3.2.8 Proof of Theorem 3.1.4: — We may assume that Ox (1) isvery ample. Let i} ®
F, — @ beatorsionfreedestabilizing quotient, i.e. rk(Q) > 0 and u(F; ® F») = p(Fy) +
w(F2) > p(Q).

Step 1. Assume that /j,(Fl) + ,U(Fg) — /J,(Q) > deg(X)(rk(Fl) + I‘k(Fz) + 2)/2 A
general completeintersection of dim(X') — 1 hyperplane sectionsis a smooth curve C, and
the restrictions of the sheaves F', F», and Q to C are locally free. By the Corollary 3.1.6
to the Grauert-Mulich Theorem their Harder-Narasimhan factors satisfy (g™ (Fi|c)) >
w(EF;) — deg(X)(rk(F;) — 1)/2. Define

ey )

Then
p(gri™ Fi(=ni)le) > p(F;) — deg(X)(n; + (rk(F;) —1)/2) > 0.

Thus gr}iNFi (—n;)|c is asemistable vector bundle of positive degree. By Theorem 3.2.7
it is ample. As Hartshorne shows [97], the tensor product of two ample vector bundlesis
again ample (in characteristic 0). Thus gri™ Fy (—ny) ® grii™ F»(—n,) is ample. Hence
(F1 ® Fy)|c(—n1 —n2) isaniterated extension of ample vector bundles and thereforeitself
ample, and finally, being a quotient of an ample vector bundle, Q| (—n; — n2) isampleas
well. To get a contradiction it suffices to show that the slope of Q(—n; — n») is negative.
But

w(Q(=n1 —na))

pw(Q) — (n1 + n2) deg(X)
p(F1) + p(Fz) — deg(X)(n1 + n2 + (tk(F1) + rk(F2) +2)/2)

w(Fy) — <% +n1 + 1) deg(X)

AN

F,)

+u(Fy) — <rk(% +ny+ 1) deg(X)

< 0.

Step 2. To reduce the genera case to the situation of Step 1, we apply the following the-
orem which allows usto take ‘roots’ of line bundles.
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Theorem 3.2.9 —Let X bea projective normal variety over an algebraically closed field
k of characteristic zero and let Ox (1) be a very ample invertible sheaf. For any positive
integer d there exist a normal variety X' with a very ample invertible sheaf Ox/ (1) and a
finitemorphism f : X' — X suchthat f*Ox (1) & Ox(d). Moreover, if X issmooth, X’
can be chosen to be smooth as well.

Proof. See [166, 258] |

Using this theorem the proof proceeds as follows: choose afinitemap f : X' — X as
in the theorem with sufficiently large d. Observethat if slope and degree on X' are defined
with respect to O (1), then for any coherent sheaf F on X one has

u(fF) _ o p(F)

deg(X") deg(X)
And according to Lemma 3.2.2, f*F; and f* F5 are u-semistable with respect to O (1),
and f*@ destabilizes f*F}, ® f*F, = f*(F; ® F). Choosing the degree d large enoughiit
is easy to satisfy the condition

pf*F) + p(f*B) = p(f*Q) _ , pFR©F) — (@) | rk(F1) + rk(F) +2

deg(X") deg(X) 2
of Step 1. Thisfinishes the proof. m|

Corollary 3.2.10 —If F' isa u-semistable sheaf, then End(F'), all exterior powers A” F
and all symmetric powers S F' are again p-semistable.

Proof. F'® is p-semistable by Theorem 3.1.4. Since the characteristic of the base field
is0, AYF and S¥ F aredirect summands of F'®¥ and therefore p-semistable. Up to sheaves
of codimension 2 one has End(F) = F~ ® F, so again the assertion follows from the
theorem. m|

Theorem 3.2.11 —Let X bea smooth projectivevariety and O x (1) anamplelinebundle.
The tensor product of any two p-polystable locally free sheaves is again u-polystable. In
particular, the exterior and symmetric powers of a p-polystable locally free sheaf are u-
polystable.

We do not know a purely algebraic proof of this theorem. Using transcendental meth-
ods, one can argue as follows: first reduce to the case k£ = C. Then a complex algebraic
vector bundle on X is polystable if and only if it admits a Hermite-Einstein metric with
respect to the Kahler metric of X induced by Ox (1). (This deep theorem, known as the
K obayashi-Hitchin Correspondence, was proved in increasing generality by Narasimhan-
Seshadri [201], Donaldson [44, 45] and Uhlenbeck-Yau [253]. For details see the books
[127],[46] and [157].) Now, if E hasaHermite-Einstein metric, it is not difficult to see that
the induced metric on any tensor power E®™ is again Hermite-Einstein. The assertion of
the theorem follows.
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3.3 Boundedness||

The Grauert-M{lich Theorem allows one to give uniform bounds for the number of global
sections of a p-semistable sheaf in terms of its slope. Thisismade precisein avery elegant
manner by the following theorem. Let [z] := max{0, z} for any real number z.

Theorem 3.3.1 (Le Potier- Simpson) — Let X be a projective scheme with a very ample
line bundle Ox (1). For any purely d-dimensional coherent sheaf F' of multiplicity r(F')

thereisan F-regular sequence of hyperplane sections Hy, . .. , Hg, such that
h(Xy, Flx,) _ 1 r(F)(r(F) +d) ’
e e < e (B 4+ — 22 T ]
r(F) = (F) + 2 n

foralv=d,...,1and X, = HiN...NHy;_,.
We prove this theorem in several steps.

Lemma 3.3.2 —Supposethat X isanormal projectivevariety of dimensiond andthat F'is
atorsion free sheaf of rank rk(F"). Then for any F-regular sequence of hyperplane sections
Hy,... Hjand X, = HyN...NnH,_, thefollowing estimate holdsforall v = 1, ... ,d.

h(X,, Flx,) < 1 [NmaX(F|X1)
rk(F) - deg(X) — v! | deg(X)

Proof. Let F,, = F'|x, for brevity. The lemmais proved by induction on v.

Let v = 1. Since h%(X1, F1) < Y, h°(Xy, grf’N(F1)) and since the right hand side
of the estimate in the lemmais monotonously increasing with p, we may assume without
loss of generality that pumax (F1) = u(F1), i.e. that Fy is p-semistable. For ¢ > 0 one gets
estimates

v

+v

+

hO(Xy, Fy) < hO(Xy, Fy(=0)) 4 rf deg(X). (3.2

But hO(Xl,Fl(—g)) = hOm(OXl (Z),Fl) =0if¢ > ,u(Fl)/deg(X) by Proposition 1.2.7.
Put ¢ := |u(F1)/ deg(X) + 1]. Then (3.2) isthe required bound inthecase v = 1.

Suppose the inequality has been proved for v — 1, v > 2. From the standard exact se-
quences

0= F,(-k—1) = F,(=k) = F,_1(=k) - 0 ,k=0,1,2...
oneinductively derives estimates

h(X,,F,) < h(X,,F,(- +Zh° w1, F,_1( <Zh v_1, F,_1(—1)).

Of course, the sum on the right hand side is in fact finite. Using the induction hypothesis
and replacing the sum by an integral, we can write
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hO(XuaFl/) 1 ¢ Hmax(Fl) vt
< —1)—
A g7 S L ey 0]
where C' isthe maximum of —1 and the smallest zero of the integrand. Evaluating the inte-

gral yields the bound of the lemma. m|

Corollary 3.3.3 — Under the hypotheses of the lemma there is an F'-regular sequence of
hyperplane sections Hy, . . . , Hg such that

o (X,,F|x,) < 1 [pmax(F)  tk(F) -1 v

TR(F) - deg(X) — 7! | deg(X) S
forallv=1,...,d.
Proof. Combine the lemmawith Corollary 3.1.6. |

Corollary 3.3.3 gives the assertion of the theorem in the case that F' istorsion freeon a
normal projective variety. In order to reduce the general case to this situation we use the
sametrick that was already employed in the proof of Grothendieck’sLemma1.7.9.

Proof of thetheorem. Leti : X — PV bethe closed embedding induced by the complete
linear system of Ox(1). Let Z be the (d-dimensional) support of F' = i, F, and choose
alinear subspace L c PV of dimension N — d — 1 which does not intersect Z. Linear
projection with centre L then induces afinitemap 7 : Z — Y = P4 such that Ox (1)|7 =
7*Oy(1). Since F ispure, 7, F isalso pure, i.e. torsion free. Moreover, r(F) = rk(m, F)
and i(F) = (7 F) = pu(m F)+i(Oy) = p(m F) + (d+1)/2. A 7. F-regular sequence
of hyperplanes H] in Y induces an F-regular sequence of hyperplane sections H; on X.. If
YV,=H{n...nH,_,, thenm,(F|x,) = (m.F)|y, andhence h°(F|x,) = h°(m. Fly, ).
We need to relate fimax (F') and pmax (7 F'). For that purpose consider the sheaf of algebras
A:=m.04.

Lemma3.3.4 — A isatorsion free sheaf with pimin (A) > —1k(A) > —rk(n.F)? =
—r(F)2.

Proof. 7, F' carries an .A-module structure. The corresponding algebra homomorphism
A = Endo, (7. F) isinjective, since by definition Z isthe support of F'. Thisimpliesthat
A istorsion free and has rank less or equal to k(7. F')2 = r(F)2. By congtruction, Z isa
closed subscheme of the geometric vector bundle

PN\ L = Spec S*W — Y,

where W = Oy (—1)®(V =9 Hence, there is a surjection ¢ : S*W — A. Consider the
ascending filtration of .4 given by thesubmodulesF, A = p(OdW @...®SPW). Since A
iscoherent, only finitely many factors grgA arenonzero. Moreover, sincethemultiplication
map W @ gry A — grh, | Aissurjective, it follows that, once gry A istorsion, the same
istruefor all grf, ; A, i > 0.In particular, if grf’(A) is not torsion then p < rk(A). In

other words, the cokernel of ¢ : Oy @ ... ® S™MAW — Aistorsion. Thisimplies that
fimin (A) > pmin (STAW) = —rk(A). 0
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Lemma 3.3.5 — fimaz (T F) < fimax (F) + r(F)? — (d+ 1)/2.

Proof. Let G be the maximal destabilizing submodule of .. F', and let G' be theimage of
the multiplicationmap A ® G - A ® 7, F — w.F,i.e. G' isthe A-submodule of 7, F’
generated by G. Then G' = 7,G" for some O x-submodule G” C F'. It follows that

fimaz (F) i(G") = i(G') = w(G") + 4(Oy)

Nrnirl(~'4 & G) + ﬂ(OY)

W(G) + fmin(A) + 2(Oy) because of 3.1.4
fimax (T F) = r(F)* + (d + 1) /2,

IV IV IV IV

where for the last inequality we have used that 1(G) = pmax (7« F') by the choice of G,
a(Oy) = (d+1)/2,and pmin (A) > —r(F)? by the previous lemma. O

As a consequence of Lemma 3.3.5 we have

k(mF) -1 Fy—-1 d-1
() v+ RO L () ey L O
forany 0 < v < d. Applying Corollary 3.3.3 to . F' and using this estimate we get the
inequality of the theorem. m|

A dight modification of the proof of 3.3.2 givesthe following proposition:

Proposition 3.3.6 —Let X beasmooth projectivesurfaceand Ox (1) aglobally generated
ampleline bundle. Let E and F' betorsion free u-semistable sheaves. Then

rk(E)rk(F)
2 deg(X)

rk(E) +;k(F) +1 dog(X) >

+

hom(E, F) < u(F) — u(E) +

To seethis, apply Corollary 3.1.6 to both sheaves E and F', and use the same induction
process as in Lemma 3.3.2. The bound of the proposition is dlightly sharper than the one
obtained by applying thetheoremto E~ ® F', say in case E islocaly free. |

Asamajor application of the L e Potier-Simpson Estimate we get the boundedness of the
family of semistable sheaves:

Theorem 3.3.7 —Let f : X — S beaprojective morphismof schemes of finitetype over &
andlet Ox (1) bean f-ampleline bundle. Let P be a polynomial of degree d, and let o be
a rational number. Then the family of purely d-dimensional sheaves on the fibres of f with
Hilbert polynomial P and maximal sope jimax < po isbounded. In particular, the family
of semistable sheaves with Hilbert polynomial P is bounded.
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Proof. Covering S by finitely many open subschemes and replacing Ox (1) by an appro-
priate high tensor power, if necessary, we may assumethat f factorsthrough an embedding
X — S x PN. Thuswe may reduceto the case S = Spec(k), X = PVV. Accordingto The-
orem 3.3.1 we can find for each purely d-dimensional coherent sheaf F' aregular sequence
of hyperplanes Hy, ... , Hy such that h°(F|m,n..~m,) < Cfordli = 0,...,d, where
C isaconstant depending only on the dimension and degree of X and the multiplicity and
maximal slope of F'. Sincethese are given or bounded by P and ., respectively, the bound
isuniformfor thefamily in question. The assertion of the theorem followsfrom thisand the
Kleiman Criterion 1.7.8. |

For later referencewe note the following variant of Theorem 3.3.1. Let X beaprojective
scheme with avery amplelinebundle Ox (1). Let F;, i = 1 < ... < ¢, bethe factors of
the Harder-Narasimhan filtration of apurely d-dimensional sheaf F', and let r; and r denote
the multiplicities of F; and F. Then h?(F) < Ele hO(F;), and applying the Le Potier-
Simpson Estimate to each factor individually and summing up, we get

Usmgﬂ(Fl) < ﬂmax(F) fori=1,...,0— ]-!ﬂ(Ff) < ﬂ(F) and ﬂ(F(m)) = ﬂ(F) +m,
onefinally gets:

Corollary 3.3.8 —Let C =r(r +d)/2 . Then

LO(F -1 1 1 1
) ol D (P + 0 =1 4mlt 4 L L) 4 0 - 1 m)?

3.4 TheBogomolov I nequality

Another application of Theorem 3.1.4 on the semistability of tensor products is the Bogo-
molov Inequality. This important result has manifold applications to the theory of vector
bundles and to the geometry of surfaces. We begin with the definition of the discriminant of
a shesf.

Let F' be a coherent sheaf on a smooth projective variety X with Chern classes ¢; and
rank r. Thediscriminant of F' by definition is the characteristic class

A(F) = 2rcy — (r — 1)c.
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If X isacomplex surface, we will denote the characteristic number obtained by evaluating
A(F) on the fundamental class of X by the same symbol. (Warning: This definition of the
discriminant differsfrom many other conventionsin theliterature, partly by the sign, partly
by amultiple or a power of r, each of which hasits own virtues.) Clearly, the discriminant
of aline bundle vanishes. If F islocally free, then A(F™) = A(F). The Chern character
of F'isgiven by the series

1
ch(F) :r+cl+§(cf—202)...

Hence ch(F)/r = 1 + y for some nilpotent element y. Following Drezet we write
A(F)
2r2
The Chern character isaring homomorphismfrom K°(X) to H*(X, Q), and thelogarithm
convertsmultiplicative relationsinto additive ones. Fromthisit is clear that for locally free
sheaves F’ and F"' one has
A(F'@ F'"y A(F') A(F")
12,112 = + ) (3'3)

r'2p ,,,.12 7,.112

logch(F) =logr + 071 -

where ' = rk(F') and "' = rk(F"). In particular, the discriminant of a coherent sheaf
is invariant under twisting with a line bundle, and if F' islocaly free and n is a positive
integer, then

A(FE) = nr?=DA(F) and A(End(F)) = 2r2A(F), (3.4)
The latter equation also impliestherelation A(F') = c3(End(F)).

Theorem 3.4.1 (Bogomolov I nequality) —Let X be a smooth projective surface and H
an ampledivisor on X. If F'isa u-semistable torsion free sheaf, then

A(F) > 0.

Proof. Let r betherank of F'. Thedoubledual F~ of F isstill u-semistable, and thedis-
criminantsof Fand F™~ arerelatedby A(F) = A(F™)4+2rf(F7/F) > A(F™). Hence
replacing F' by F™, if necessary, we may assumethat F islocally free. Moreover, End(F')
is also pu-semistable and A(End(F)) = 2r? A(F), so that by replacing F' by End(F) we
may further reduce to the case that F' hastrivial determinant and is isomorphic to its dual
F~. Let k beasufficiently large integer so that k - H2 > H.K x and that thereis a smooth
curve C' € |kH|. Recall that pu-semistable sheaves of negative slope have no global sec-
tions. The standard exact sequence0 — S"F ® Ox(—C) — S"F — S"F|c — 0 and
Serre duality lead to the estimates:

KO(S"F) < hO(S"F(—=C)) + h°(S"F|c) = h°(S"F|c)
R*(S"F) = h°((S"F)"® Kx) = h°(S"F ® Kx)
hO(S"F @ Kx(—C)) + h°(S"Flc ® Kx|c) = h°(S"Flc ® Kx|c).

IN
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Thus we can bound the Euler characteristic of S™ F' by
X(S"F) < h°(S"F) + h*(S"F) < h°(S"F|c) + h°(S"F|c ® Kx|c).

Now let 7 : YV := P(F) — X bethe projective bundle associated to F', Yo =Y xx C,
and consider the tautological linebundle O (1) on Y. Thenfor al n > 0 we have

1.0x(n) = S"F, and R'm,0,(n) =0, forali > 0.
In particular, x(S™F) = x(O(n)), and by the projection formulawe get
h°(C,S"Flc @ M) = h° (Yo, Or () |y @ 7* M)
for any linebundle M € Pic(C). Since dim(Y¢) = r, there are constants y, such that
B (Yo, Or(n)|y, ® M) < yaq -n” foraln > 0.
This shows that
X(S"F) < (Yoo +Yrx|e) -0 fordln > 0. (3.5

On the other hand, we can compute x (S™ F') by the Hirzebruch-Riemann-Roch formulaap-
plied to the line bundle O, (n):

(ng)"*!
r+1l

X(S"F) = x(O-(m) = [ (36)
wherewe haveset £ = ¢; (O, (1)) and suppressed terms of lower order in n. The cohomol-
ogy class ¢ satisfiestherelation &" — ¢1(F) - €771 + e2(F) - €772 = 0. Since ¢ (F) = 0,
weget ™t = —cy(F) - ¢t = —%f) - &L Finaly, O, (1) has degree 1 on the fibres
of 7, so that (3.6) yields:

r+1
X(S”F)z/ _AWE) | _n + termsof lower orderinn

If A(F) were negative, thiswould contradict (3.5). |
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Appendix to Chapter 3

3.A e-Stability and Some Estimates

Throughout this appendix let X be a smooth projective surface, K its canonical divisor,
and Ox (H) avery ample line bundle. The following definition generalizes the notion of
u-stability.

Definition 3.A.1 — Let e be a nonnegative real number. A coherent sheaf F' of rank r is
e-stable, if it istorsion freein codimension 1 and if
_ el

!

u(F') < p(F) ==

for all subsheaves F’ C F ofrankr', 0 < r’ < r.

Thefactor |H| = (H.H)'/? isthrown in to make theinequality invariant under rescaling
H — MH. Obvioudly 0-stability is the same as p-stability, and e-stability is stronger than
e’-stability if e > ¢e’. The same arguments as in the proof of Proposition 2.3.1 show that
e-stability is an open property.

The following proposition due to O’ Grady [208] is rather technical. It will be needed
in Section 9 to give dimension bounds for the locus of u-unstable sheaves in the moduli
space of semistable sheaves. Themainingredientsin the proof arethe Hirzebruch-Riemann-
Roch formula, the Le Potier-Simpson Estimate 3.3.1 for the number of global sections of
u-semistable sheaves and the Bogomolov Inequality 3.4.1.

Let F' be atorsion free u-semistable sheaf of rank r and slope p which, however, is not
e-stablefor somee > 0. Let

0=F(0) CF(l)C...CF(n)ZF

be afiltration of F" with factors F; = F{;)/F(;_y of rank r; > 1 and slope ; such that the
following holds: al factors are torsion free and p-semistable and satisfy the conditions
elH|
po—p < = and 2 > ... > fin,
1
i.e. Fiy) is e-destabilizing, and F\,/F(y) is a u-Harder-Narasimhan filtration of F'/F{;).
For afiltered sheaf F' we defined groups Ext” (F, F') in the appendix to Chapter 2. We use

ext’ for dim Ext’ and y(A, B) for the alternating sum of the dimensionsext’(A, B) (cf.
6.1.1).

Proposition 3.A.2 — There is a constant B depending on X, H and r such that the fol-
lowing holds: if F'isa u-semistable torsion free sheaf of rank » which is not e-stable, and
if F{,) isafiltration of F' asabove, then



3.A e-Stability and Some Estimates 75

T‘[KH]+

—_ B.
2|H| e+

ext! (F, F) < (1 - 2—lr> A(F) + (3r — 1) +

Proof. First, the spectral sequence 2.A.4 for Ext_ and Serre duality allow usto write

ext! (F,F) < Y ext'(F;,F)

i<j

= Z(eXtO(FjaFi)+ext2(FjaFi)_X(Fiji))
i<j

= > (hom(F}, F}) + hom(F, Fj @ K)) + Y _ x(Fj, Fy) — x(F, F).
i<j i>j

By Le Potier-Simpson 3.3.1 we have

riT; 2
hom(Fj,F;) < 2}{]2 (Hi — i+ (r+ 1)H2)
hom(F;, F; @ K) < g};ﬁ (j —pi + K.H+ (r + 1)H2)2 ,
s0 that
il 2
;hom(Fj,Fi) +hom(F;, Fj ® K) < g A )
1<J Y]

rir;
+K-HZ HZJ (b — ps)

i<j
((r+ DHE2) + ((r + )H? + K.H)
+ 2H2 Zrirj .
i<j
The Hirzebruch-Riemann-Roch formulayields
X(F,F) = —A+1r’x(0x)
A A i GK
X(Fjan) = _<rj2_7"i +T‘i2_r]j>+rirj (?j_ng‘FX(OX)) )

where we have used the abbreviations

A=A(F), A;=A(F) and & = a(fi) alfy)

Tri ’I“j

Using the additivity of the Chern character and 27 - chy = r(c} — 2¢2) = 2 — A, the
following identities are easily verified:

A,’ A _ Cl(Fi)2 Cl(F)2
Z2rl~_2r—; 2y 2r

i

and, clearly, &;;. H = p; — p;. The Bogomolov Inequality implies A; > 0 for al i. Hence
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A — Z r; + r; Aj = A-— Z (r—ry)— < A — Z
= Top, 127“] ! 2r;
1 iTj
(ﬁ)A_Z &

i>]

This shows:

Sk ) (k< (12 1) A o0 + 322 (e - xe,).
i<j i>]

i>]

Thefirst term on theright hand side has already the required shape, the second oneisclearly
bounded by 2 - [—x (Ox)].. For thethird term we use quadratic completion and the Hodge
Index Theorem, which saysthat ¢2 < (¢£.H)?/H? for any classé.

Thisleadsto

rir; (r—1 ,
ZT( ; if‘Kfij)

i>j
2
_ rirjr—1 B rK
- 2 (f” (—1)) r—l Z“”

i>j i>]
rir; r—1 rK.H \2 rK
< v J gy — ) s
- Z 2HZ r <Mz Ki 2(r — 1)) 8(r — 1) an]
1>] 1>
_or—1 rir; , rK.H T
- 2H2 L < r (/l’l II’J) QHZ -~ r (:ul :u])
i>] 1>]
T (KH
T8 ( ) 2 i
i>]

Note that the term in bracketsin the last summand is nonnegative by the Hodge Index The-
orem, so that thesum ). . r;7; hasto be bounded from above (its maximum value being
r(r—1)/2).

Putting things together and using the abbreviation

>]

B(r,X,H) := :—6<(KH§) —K2>+r2[—x(0x)]+

((r+ DH2) + ((r + 1)H? + K.H)
2H? ’

+(r* —r+1)

we have proved so far that

1 3r—1 rK.H
1 < -
ext_(F,F) < <1 27")A+ omz Ot ome b+ B(r,X,H),

wherea and b stand for a = -, = (i — py)*> and b = 37, = (i — py), and we

are left with the assertions 0 < a < 2e>H? and0 < b < e|H|.
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We have

0<a=3" " ((mi =)~ (s = )" = 3wl = ),

since ), ri(u; — ) = 0. Because of the p-semistability of F' and the assumptions on the
pi,wehave uy —p < 0,and pu; — p > Oforal i > 2, and, fixing 1 for a moment,
the problem is to maximize > -, (i — )2 subject to the conditions p; — > 0 and
> iso Tipi — ) = r1(p — pa). A moment’sthought yields:

a<ri(p—m)® +ri(p—m)® < 2°H?.

Now let r(;) and p ;) denoterank and slope of F{;), thei-th step in thefiltration of F'. Note
that the following relations hold:

=) Spe) S-Sy =S e <<
From thiswe get

.
b=2_ f(“i = Wi-1))7(i=1) = 0.

i

Moreover, p; — p; isnegativewheni > j > 2. Hence

1 ry ry
b < —r; (i — -1 _ o _ _ < ol
hS Dzl . ri(pi — pa) ” (rpe —ripa) ., (r—r)pu =r(p—p) <elH|
Thisfinishes the proof of the proposition. O
Comments:

— In[20] Barth proves Theorem 3.0.1 for vector bundles of rank 2 and attributesit to Grauert and
Mdlich. This result was extended to vector bundles of arbitrary rank by Spindler [240]. As Schnei-
der observed, Spindler’s theorem together with results of Maruyama [162] implied the boundedness
of the family of semistable vector bundles of fixed rank and Chern classes. For this result see also
[54]. Shortly afterwards, Spindler’s theorem was further extended to arbitrary projective manifolds
by Maruyama [166] and Forster, Hirschowitz and Schneider [66]. The bound for §p in terms of the
minimal slope of the relative tangent bundle was given by Hirschowitz [102], based on Maruyama's
results on tensor products of semistable sheaves.

— Lemma3.2.2 and Theorem 3.2.7 are contained in [ 78]. In this paper Gieseker also givesan alge-
braic proof that symmetric powers of p-semistable sheaves are again p-semistable if the characteristic
is zero. This had been proved in the curve case by Hartshorne [99] using the relation between stable
bundles on a curve and representations of the fundamental groups established by Narasimhan and Se-
shadri [201]. The fact that tensor products of p-semistable sheaves are again p-semistable is due to
Maruyama [166]. His proof uses Hartshorne's corresponding result on ampleness [97] and the tech-
niques developed by Gieseker. More results on p-stability in connection with unramified coverings
can be found in Takemoto's article [243].
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— The boundedness theorem for surfaces was proved by Takemoto [242] for sheaves of rank 2,
and by Maruyama [160] and Gieseker [77] for semistable sheaves of arbitrary rank. Our approach via
Theorem 3.3.1 follows the papers of Simpson [238] and Le Potier [145].

— Theorem 3.4.1first appearsin aspecia casein Reid sreport [226]. A detailed account then was
given by Bogomolov in [28]. In fact, he proves a stronger statement, that we will discussin Section
7.3. In this stronger form the Bogomolov Inequality has interesting applications known as Reider’s
method. See Reider’s paper [227] and the presentation in [139]. Gieseker gave adifferent proof of the
Bogomolov Inequality in [78].

— The proof of the estimatein the appendix follows O’ Grady [208]. Our coefficientsdiffer dightly
from his paper.
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4  Moduli Spaces

The goal of this chapter isto give ageometric construction for moduli spaces of semistable
sheaves, the central object of study in these notes, and some of the properties that follow
fromthe construction. Asthe chapter hasgrown abit out of size, hereisashort introduction:

Intuitively, a moduli space of semistable sheaves is a scheme whose points are in some
‘natural bijection’ to equival ence classes of semistabl e sheaves on somefixed polarized pro-
jective scheme (X, H). The phrase ‘natural bijection’ can be given a rigorous meaning in
terms of corepresentable functors. The correct notion of ‘equivalence' turns out to be S
equivalence. Thisis donein Section 4.1.

The moduli space can be constructed as a quotient of a certain Quot-scheme by a natural
group action: instead of sheaves F’ onefirst considerspairs consisting of asheaf F' and aba-
sisfor the vector space H°(X, F/(m)) for somefixed largeinteger m. If m islarge enough,
such abasis defines a surjective homomorphism  := Ox (—m)"*F(m) — F and hence
apoint in the Quot-scheme Quot(H, P(F')). An arbitrary point [p : H — F] in this Quot-
schemeisof thisparticular formif and only if F'issemistableand p inducesanisomorphism
EPEm) 5 HO(F(m)). Thesubset R C Quot(H, P(F)) of al points satisfying both con-
ditions is open. The passage from R to the moduli space M consists in dividing out the
ambiguity in the choice of the basis of H°(F(m)). We collect the necessary terminology
and results from Geometric Invariant Theory in Section 4.2. The construction itself is car-
ried out in Section 4.3 following a method due to Simpson. In fact, the proofs of the more
technical theorems are confined to a separate section.

The infinitesimal structure of the moduli space is described in Section 4.5. It also con-
tains upper and lower boundsfor the dimension of the moduli space. Once the existence of
the moduli space is established, the question arises as to what can be said about universa
families of semistable sheaves parametrized by the moduli space. Section 4.6 gives partia
answersto this problem.

This chapter has three appendices. In the first we sketch an alternative and historically
earlier construction of themoduli space dueto Gieseker and Maruyama, which hasthevirtue
of showing that a certain line bundle on the moduli space is ample relative to the Picard
scheme of X. The second containsa short report about ‘ decorated sheaves', and in the third
we state some results about the dependence of the moduli space on the polarization of the
base scheme.
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4.1 TheModuli Functor

Let (X, Ox (1)) beapolarized projective scheme over an algebraically closed field k. For
afixed polynomial P € Q[z] define afunctor

M : (Sch/k)® — (Sets)

asfollows. If S € Ob(Sch/k), let M'(S) bethe set of isomorphism classes of S-flat fam-
ilies of semistable sheaves on X with Hilbert polynomial P. Andif f : S — Sisa
morphismin (Sch/k), let M'(f) bethe map obtained by pulling-back sheavesvia fx =
f x idx:

M(f) : M(S) = M'(S"),  [F] = [fx F]-

If F e M'(S)isan S-flat family of semistable sheaves, and if L isan arbitrary line bundle
on S, then F ® p* L isalso an S-flat family, and the fibres Fi; and (F' ® p*L)s = Fs @y
L(s) areisomorphicfor each point s € S. Itisthereforereasonableto consider the quotient
functor M = M’/ ~, where ~ is the equivalencerelation:

F~F'forF,F' e M'(S)ifandonlyif F = F' @ p*L for some L € Pic(S).

If we take families of geometrically stable sheaves only, we get open subfunctors (M')* C
M’ and M? C M. In 2.2.1 we explained the notion of a scheme corepresenting a functor.

Definition 4.1.1 — A scheme M is called a moduli space of semistable sheavesif it core-
presents the functor M.

Recall that this characterizes M up to unique isomorphism. We will write Mo (1) (P)
and Mo, (1)(P) instead of M and M, if the dependence on the pol arization and the Hilbert
polynomial isto be emphasized.

If Aisalocal k-algebraof finite type, then any invertible sheaf on A istrivial. Hencethe
map M’ (Spec(A)) — M (Spec(A)) isabijection. Thisimplies that any scheme corepre-
senting M would also corepresent M’ and conversely. We will see that there alwaysisa
projective moduli space for M. In general, however, there is no hope that M can be repre-
sented.

Lemma4.1.2 — Suppose M corepresents M. Then S-equivalent sheaves correspond to
identical closed pointsin M. In particular, if there is a properly semistable sheaf F, (i.e.
semistable but not stable), then M cannot be represented.

Proof. Let0 — F' — F — F" — 0 be ashort exact sequence of semistable sheaves
with the same reduced Hilbert polynomial. Then it is easy to construct a flat family F of
semistable sheaves parametrized by the affine line A, such that

Fo2F'oF'and F; = Fforalt £ 0.
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Either take F to be the tautological extension which is parametrized by the affine linein
Ext! (F", F') throughthe point given by the extension above, or, what amountsto the same,
let F bethe kernel of the surjection

¢F — i, F",

whereq : A' x X — X istheprojectionandi : X = {0} x X — A! x X isthe
inclusion. Since over the punctured line A \ {0} the modified family 7 and the constant
family O x, F areisomorphic, the morphism A! — M induced by F must be constant
on Al \ {0}, hence everywhere. This means that F' and F' & F", or more generally all
sheaves which are S-equivalent to F', correspond to the same closed point in M. Hence M
does not represent M. m|

Such phenomena cannot occur for the subfunctor M# of stable families. The question
whether M?# isrepresentable will be considered in Section 4.6.

4.2 Group Actions

In this section we briefly recall the notions of an algebraic group and agroup action, various
notions of quotients for group actions and linearizations of sheaves. We then list without
proof results from Geometric Invariant Theory, which will be needed in the construction
of moduli spaces. For text books on Geometric Invariant Theory we refer to the books of
Mumford et al. [194], Newstead [202] and, in particular, Kraft et al. [131].

Let k£ be an algebraically closed field of characteristic zero.

Group Actionsand Linearizations

An algebraic group over k isak-scheme G of finite type together with morphisms
w:GxG—G, e:Spec(k) -G and 1:G— G

defining the group multiplication, the unit element and taking the inverse, and satisfying
the usual axioms for groups. Thisis equivalent to saying that the functor G : (Sch/k) —
(Sets) factorsthrough the category of (abstract) groups. Since the characteristic of the base
field is assumed to be zero, any such group is smooth by atheorem of Cartier. An algebraic
group is affineif and only if it isisomorphic to a closed subgroup of some GL(V).

A (right) action of an agebraicgroup G onak-scheme X isamorphismo : X xG — X
which satisfies the usual associativity rules. Again thisis equivalent to saying that for each
k-scheme T there is a an action of the group G(T') on the set X (7) and that this action
is functorial in 7. A morphism¢ : X — Y of k-schemes with G-actions ox and oy,
respectively, is G-equivariant, if oy o (¢ X idg) = ¢ o ox. Inthe specia case that G
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actstrividlyonY,i.eif oy : Y x G — Y isthe projection onto the second factor, an
equivariant morphism f : X — Y iscaled invariant .

Leto : X x G — X beagroup action as above, and let z € X be aclosed point. Then
the orbit of = is the image of the composites, : G = {z} x G c X x G -5 X.lItisa
locally closed smooth subscheme of X, since G acts transitively on its closed points. The
fiore o '(z) =: G, C G isasubgroup of G and is caled the isotropy subgroup or the
stabilizer of z in G. If V is a G-representation space, let V¢ denote the linear subspace of
invariant elements.

Definition 4.2.1 —Leto : X x G — X beagroup action. A categorical quotient for o is
a k-scheme Y that corepresents the functor

X/G : (Sch/k)° — (Sets), T w— X(T)/G(T).
If Y universally corepresents X /G, it is said to be a universal categorical quotient.

Supposethat Y corepresentsthefunctor X /G. Theimageof [idx] € X/G (X)inY (X)
correspondsto amorphism« : X — Y. This morphism has the following universal prop-
erty: w isinvariant, and if 7’ : X — Y’ isany other G-invariant morphism of k-schemes
then thereis aunique morphism f : Y — Y’ suchthat 7’ = f o . Indeed, it is straightfor-
ward to check that this characterizes Y as a categorical quotient.

Evenif acategorical quotient exists, it can befar from being an ‘ orbit space’ : let the mul-
tiplicative group G,,, = Spec(k[T,T']) act on A™ by homotheties. Then the projection
A" — Spec(k) isacategorica quotient. However, clearly, it is not an orbit space. We will
need notions which are closer to the intuitive idea of a quotient:

Definition 4.2.2 —Let G an affinealgebraic group over k acting on a k-scheme X . A mor-
phismy : X — Y isagood quotient, if

e o isaffineandinvariant.

@ issurjective,and U C Y isopenif and onlyif o ~1(U) C X isopen.

The natural homomorphism Oy — (. Ox)% isan isomorphism.

If W isan invariant closed subset of X, then ¢(W) is a closed subset of Y. If W/,
and W are digjoint invariant closed subsets of X, then o(W7) N (W) = 0.

 issaid to be a geometric quotient if the geometric fibres of ¢ are the orbits of geometric
pointsof X . Finally, ¢ isa universal good (geometric) quotientif Y/ xy X — Y’ isagood
(geometric) quotient for any morphismY”’ — Y of k-schemes.

Any (universal) good quotient is in particular a (universal) categorical quotient. If ¢ :
X — Y isagood quotient and if X isirreducible, reduced, integral, or normal, then the
same holdsfor Y. We will denote agood quotient of X, if it exists, by X //G.
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Let G beanagebraicgroupandlet = : X — Y beaninvariant morphism of G-schemes.
wissaidto beaprincipal G-bundle, if there existsasurjective &alemorphismY’ — Y and
aG-equivariantisomorphismY’ x G — Y’ xy X, i.e. X islocally (in the étale toplogy)
isomorphic as a G-scheme to the product Y x G. Principal bundles are universal geomet-
ric quotients. Conversely, if 7 : X — Y isaflat geometric quotient and if the morphism
(o,p1) : X x G = X xy X isanisomorphism, then  isa principal G-bundle.

Let 7 : X — Y beaprincipal G-bundle, and let Z be a k-scheme of finite type with a
G-action. Then thereis ageometric quotient for the diagonal actionof G on X x Z. Itisa
bundle (in the &tale topology) over Y with typical fibre Z, and is denoted by X x& Z.

Example4.2.3 — Let Y be a k-scheme of finite type, let F' be alocally free Oy-module
of rank » and let Hom (05, F') := Spec S*(Hom(O5,, F')”) — Y be the geometric vec-
tor bundle that parametrizes homomorphismsfrom Of, to F'. Let X := Isom(O5,, F) C
Hom (0%, F) be the open subscheme corresponding to isomorphisms, andlet 7 : X — Y
be the natural projection. X is called the frame bundle associated to F'. The group GL(r)
acts naturally on X by composition: if y € Y (k), g € GL(r)(k), andif f : k(y)" — F(y)
isanisomorphism, theno(f,g) := fog.Thenw : X — Y isaprincipa GL(r)-bundle,
which islocally trivial even in the Zariski topology. (In fact, as Serre showsin [232], any
principal GL(r)-bundleislocaly trivia inthe Zariski topology.) Similarly, we can construct
aprincipal PGL(r)-bundle by taking theimage X’ of X in Proj(S*(Hom (O}, F)7)). We
will refer to X' as the projective frame bundle associated to F'. |

Example4.2.4 — Let G bean agebraic group and H C G aclosed subgroup. Then there
isageometric quotient 7 : G — H\G for the natural (left) action of H on G, whichin fact
isa(left) principal H-bundle. m|

Thefollowing givesthe precise definition for agroup action on ashesaf that is compatible
with a given group action on the supporting scheme.

Definition 4.2.5 — Let X a k-scheme of finite type, G an algebraic k-groupand o : X X
G — X agroup action. A G-linearization of a quasi-coherent O x -sheaf F' is an isomor-
phismof Ox xg-sheaves ® : ¢*F — p{ F, wherep, : X x G — X isthe projection, such
that the following cocycle condition is satisfied:

(idx x p)*® = pi,® o (0 x idg)* P,
wherepi, : X x G x G — X x G isthe projection onto the first two factors.

Intuitively this meansthe following: if g and = are k-rational pointsin G and X, respec-
tively, and if we write zg for o(z, g), then ® provides an isomorphism of fibres of F

&, ,: F(zg) — F(z).
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And the cocycle condition trandatesinto
Q,00Pugn =Pugn: Flzgh) - F(x).

Note that a given O x -sheaf might be endowed with different G-linearizations. A homo-
morphism ¢ : F' — F' of G-linearized quasi-coherent O x -sheavesis a homomorphism of
O x -sheaveswhich commuteswith the G-linearizations ® and &’ of F'and F”’, respectively,
inthe sensethat &' o 0*¢ = pj¢ o . Kernels, images, cokernels of homomorphismsof G-
linearized sheaves aswell astensor products, exterior or symmetric powersof G-linearized
sheavesinherit G-linearizationsin anatural way. Similarly, if f : X — Y isan equivariant
morphism of G-schemes, then the pull-back f* F' and the derived direct images R’ f. F",
i > 0 of any G-linearized sheaves F' and F' onY" and X, respectively, inherit naturd lin-
earizations. In the case of the derived direct image functor this follows from the fact that
agroup actiono : X x G — X isflat and that taking direct images commutes with flat
base change. In particular, the space of global sections of alinearized sheaf on a projective
scheme naturally has the structure of a G-representation.

A G-linearization on asheaf inducesan ‘ordinary’ action on all schemeswhich are func-
torially constructed from the sheaf: Let X be a k-scheme with an action by an algebraic
group G and let A be aquasi-coherent sheaf of commutative O x -algebraswith a G-linear-
ization @ that respects the Ox-algebra structure. Let 7 : A := Spec(A) — X bethe
associated X -scheme. Then & induces a morphism

oA AX,G=AXxp (X XG) 2 Axx, (X xG) > A

such that the diagram

AxG I8 A

1 1
XxG@ L X

commutes. The cocycle condition for @ implies that o4 is group action of G on A, and
the commutativity of the diagram saysthat 7 : A — X isequivariant. Similarly, if A is
a G-linearized Z-graded algebra, then Proj(A) inherits a natural G-action that makes the
projection Proj(.A) — X equivariant. Typically, A will be the symmetric algebra S* F' of
alinearized coherent sheaf F'.

Apply thisto thefollowing special situation: supposethat X isaprojective scheme with
aG-action and that L is a G-linearized very ample line bundle. Then G acts naturally on
the vector space H° (X, L), the natural homomorphism H°(X, L) @5 Ox — L isequiv-
ariant and induces a G-equivariant embedding X = P(L) — P(H°(X, L)). Thusthe G-
linearization of L linearizes the action on X in the sense that this action is induced by the
projective embedding given by L and alinear representationon H°(X, L).
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Example4.2.6 —LetY beak-schemeof finitetype, F alocally free Oy -moduleof rank r,
andlet 7 : X — Y betheassociated frame bundle (cf. 4.2.3). It followsfrom the definition
of X that thereisan isomorphism ¢ : O% — 7*F, the universal trivialization of F'. If we
give F' the trivial linearization and O the linearization which is induced by the standard
representation of GL(r) on k", then ¢ isequivariant. Similarly, thereisa GL(r)-equivariant
isomorphism : O% — #*F'® Ox(1) of sheavesonthe projectiveframebundle : X >
Y associated to F'.

Geometric Invariant Theory (GIT)

In general, good quotients for group actions do not exist. The situation improvesif we re-
strict to a particular class of groups, which fortunately contains those groups we are most
interested in.

Definition 4.2.7 — An algebraic group G is called reductive, if its unipotent radical, i.e.
its maximal connected unipotent subgroup, istrivial.

For the purposesof these notesit sufficesto noticethat al tori G and thegroups GL(n),
SL(n), PGL(n) arereductive.
The main reason for considering reductive groupsis the following theorem:

Theorem 4.2.8 —Let GG beareductive group acting on an affine k-scheme X of finitetype.
Let A(X) be the affine coordinatering of X and let Y = Spec(A(X)“). Then A(X)“ is
finitely generated over k, so that V" is of finite type over k, and thenatural mapr : X — Y
isa universal good quotient for the action of G.

Proof. See Thm. 1.1 in [194] or Thm. 3.4 and Thm. 3.5in [202] |

Assumethat X isa projective scheme with an action of areductive group G and that L
isaG-linearized amplelinebundleon X. Let R = &, , H°(X, L®™) be the associated
homogeneous coordinatering. Then R is afinitely generated Z-graded k-algebraas well.
LetY = Proj(R%). Theincluson RY C R inducesarationa map X — Y whichis
defined on the complement of the closed subset V(RS - R) C Proj(R) = X, i.e. onall
points = for which there is an integer n and a G-invariant section s € H°(X, L®") with
s(z) # 0. This property isturned into a definition:

Definition 4.2.9 — A point z € X is semistable with respect to a G-linearized ample line
bundle L if there is an integer n and an invariant global section s € H°(X, L®™) with
s(z) # 0. The point z is stableif in addition the stabilizer G, isfinite and the G-orbit of z
is closed in the open set of all semistable pointsin X .

A point is called properly semistable if it is semistable but not stable. The sets X (L)
and X #¢(L) of stable and semistable points, respectively, are open G-invariant subsets of
X, but possibly empty.
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Theorem 4.2.10 — Let G be a reductive group acting on a projective scheme X with a
G-linearized ample line bundle L. Then there is a projective scheme Y and a morphism
7 : X*°(L) — Y suchthat = isa universal good quotient for the G-action. Moreover, there
isan opensubset V¥ C Y suchthat X*(L) = 7= (YV*) andsuchthat 7 : X*(L) — Y* is
a universal geometric quotient. Finally, there is a positive integer m and a very ampleline
bundle A7 on'Y" such that L&™ | y««(r,) = 7~ (M).

G
Proof. Indeed, ¥ = Proj (69@0 HO(X, L®”)) . For details see Thm. 1.10 and the
remarksfollowing 1.11 in [194] or Thm. 3.21in [202]. |

Supposewe arein the set-up of the theorem. The problem arises how to decide whether a
given point z is semistable or stable. A powerful method is provided by the Hilbert-Mum-
ford criterion. Let A : G,,, — G beanon-trivial one-parameter subgroup of G.. Then the
actionof G on X inducesan action of G,,, on X . Since X isprojective, theorbitmap G,,, —
X,t + o(z,\(t)) extends in a unique way to amorphism f : A! — X such that the
diagram

Gn - G, g

+ i i

AL L X, o(z,9)

commutes, where G,,, = Al \ {0} — Al istheinclusion. We write symbolically
lim (2, A(1)) = £(0).

Now f(0) isafixed point of theaction of G,,, on X via\. Inparticular, G,,, actsonthefibre
of L(f(0)) with acertainweight r, i.e. if ® isthelinearization of L, then ®(f(0), A(t)) =
t" - idp(s(0))- Define the number p = (z, \) == —r.

Theorem 4.2.11 (Hilbert-Mumford Criterion) —Apointz € X issemistableif and only
if for all non-trivial one-parameter subgroups A : G,,, — G, one has

pl(z,A) > 0.
And z is stable if and only if strict inequality holds for all non-trivial .
Proof. See Thm. 2.1in [194] or Thm. 4.9in [202]. m|
Once agood quotient is constructed, one wants to know about its local structure.

Theorem 4.2.12 (Luna’s Etale Slice Theorem) —Let G beareductivegroup actingona
k-scheme X of finitetype, andlet 7 : X — X /G beagood quotient. Let z € X bea point
with a closed G-orbit and therefore reductive stabilizer G,,. Then thereisa G, -invariant
locally closed subscheme S C X through z such that the multiplication S x G — X
induces a G-equivariant &ale morphisms) : S x“= G — X. Moreover, ¢) induces an étale
morphism S//G, — X//G, and the diagram
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SxG=G - X

+ +
S|G. — XJG

iscartesian. Moreover, if X isnormal or smooth, then S can betaken to benormal or smooth
aswell.

Proof. See the Appendix to Chapter 1 in [194] or [131]. |

Corollary 4.2.13 —Ifthestabilizer of z istrivial, thenw : X — Y isaprincipal G-bundle
in a neighbourhood of 7 (z). |

Some Descent Results

Let G be areductive algebraic group over afield & that acts on a k-scheme of finite type.
Assume that thereis agood quotient 7 : X — Y. Let F' be a G-linearized coherent sheaf
on X . We say that F' descendsto Y, if thereis a coherent sheaf £ on Y such that thereis
anisomorphism F' = 7* E of G-linearized sheaves.

Theorem 4.2.14 —Let 7 : X — Y bea principal G-bundle, and let F' be a G-linearized
coherent sheaf. Then F' descends.

Proof. If = is a principal bundle then there is an isomorphism X x G — X xy X.
Under this isomorphism the G-linearization of F' induces an isomorphism pj F' & piF,
wherepy,ps : X xy X — X arethetwo projections. Moreover, the cocyle condition for
the linearization trand ates precisely into the cocycle condition for usual descent theory for
faithfully flat quasi-compact morphisms (cf. Thm. 2.23in [178]). |

In general, we only have the following

Theorem 4.2.15 —Let7 : X — Y beagood quotient, and let F' bea G-linearized locally
free sheaf on X . A necessary and sufficient condition for F' to descend isthat for any point
x € X inaclosed G-orbit the stabilizer G, of x actstrivially on thefibre F'(x).

Proof. See ‘ The Picard Group of a G-Variety’ in[131]. m|

Let Pic”(X) denote the group of all isomorphism classes of G-linearized line bundles
on X, the group structure being given by the tensor product of two line bundles.

Theorem 4.2.16 —Let 7 : X — X /G beagood quotient. Then the natural homomor-
phismz* : Pic(X/G) — Pic%(X) isinjective.

Proof. Loc. cit. O
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4.3 The Construction — Results

Let X beaconnected projectiveschemeover an algebraically closed field k of characteristic
zero and let Ox (1) be an ample line bundle on X . If we fix apolynomial P € Q[z], then
according to Theorem 3.3.7 the family of semistable sheaveson X with Hilbert polynomia
equal to P isbounded. In particular, thereis an integer m such that any such sheaf F'ism-
regular. Hence, F'(m) is globally generated and h°(F'(m)) = P(m). Thusif weletV :=
E®PM) and H := V ® Ox (—m), then thereis asurjection

p:H—F

obtained by composing the canonical evaluation map H?(F(m)) ® Ox(—m) — F with
anisomorphismV — H°(F(m)). This defines a closed point

[p:H — F] € Quot(H, P).

In fact, this point is contained in the open subset R C Quot(H, P) of all those quotients
[ — E], where E is semistable and the induced map

V = H(H(m)) — H"(E(m))

isan isomorphism. The first condition is open according to 2.3.1 and the second because of
the semicontinuity theorem for cohomology. Moreover, let R C R denote the open sub-
scheme of those points which parametrize geometrically stable sheaves F'.

Thus R parametrizesall semistable sheaveswith Hilbert polynomial P but with an ambi-
guity arising from the choice of abasis of thevector space H%(F(m)). Thegroup GL(V) =
Aut(H) actson Quot(#, P) from the right by composition:

[p]-g:=[poyg]

for any two S-valued points p and g in Quot(H, P) and GL(V'), respectively. Clearly, R
isinvariant under this action, and isomorphism classes of semistable sheaves are given by
theset R(k)/GL(V)(k). Let M’ = M'(P) bethe functor defined in Section 4.1. The next
lemma relates the moduli problem with the problem of finding a quotient for the group ac-
tion.

Lemma4.3.1 —If R —+ M isa categorical quotient for the GL(V')-action then M core-
presents the functor M’. Conversely, if M corepresents M’ then the morphism R — M,
induced by the universal quotient module on R x X, is a categorical quotient. Smilarly,
R — M?* isa categorical quotient if and only if M ® corepresents M?.

Proof. Suppose that S is a Noetherian k-scheme and F aflat family of m-regular Ox-
sheaves with Hilbert polynomia P which is parametrized by S. Then Vr = p.(F ®
¢*Ox(m)) isalocaly free Og-sheaf of rank P(m), and thereis a canonical surjection
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or :p"VF ® ¢"Ox(—m) — F.

Let R(F) := Isom(V ® Og, V) bethe frame bundle associated to Vi (cf. 4.2.3) with the
natural projection 7 : R(F) — S. Composing ¢+ with the universal triviaization of Vi
on R(F) we obtain acanonically defined quotient

gr : Oriry @ H — 7% F
on R(F) x X. Thisquotient = givesrise to aclassifying morphism
&z : R(F) — Quot(H, P).

As discussed earlier, the group GL(V') acts on R(F) from the right by composition, so
that 7 : R(F) — S becomes a principal GL(V)-bundle. The morphism & 1 is clearly
equivariant. It follows directly from the construction that 5}1 (R) = m 1(S*%), where
S%% = {s € S|F, issemistable}. In particular, if S parametrizes semistable sheaves only,
then & ~(R(F)) C R. Inthis case, the morphism &+ : R(F) — R inducesa transforma-
tion of functors R(F)/GL(V) — R/GL(V) and, since R(F) — S isaprincipal bundle
and therefore a categorical quotient as well, defines an element in R/GL(V)(S). In this
way, we have constructed a transformation M’ — R/GL(V'). The universal family on R
yields an inverse transformation. Hence, indeed it amounts to the same to corepresent M’

and to corepresent R/GL(V'). O

The construction used in the proof of theisfunctorid in the following sense: if f : S' —
S isamorphism of finite type of Noetherian schemesand if weset 7' = f% F thenthereis
acanonical GL(V)-equivariant morphism f : R(F') — R(F) commuting with f and the
projectionsto S’ and S, respectively, such that & = = & o f. Asaconsequence, if S and
JF carry in addition compatible G-actions for some algebraic group G, then R(F) inherits
anatural G-structure commuting with the action of GL(V") such that 7 is equivariant and
5; isinvariant.

Lemma4.32 —Let[p : X — F] € Quot(H, P) be a closed point such that F'(m) is
globally generated and such that the induced map H°(p(m)) : H°(H(m)) — H°(F(m))
is an isomorphism. Then there is a natural injective homomorphism Aut(F) — GL(V)
whose image is precisely the stabilizer subgroup GL(V');,,; of the point [p].

Proof. Consider the map Aut(F) — GL(V') defined by
¢ = H(p(m)) ™" o H(p(m)) o H (p(m)).

Since F(m) isglobally generated, thismap isinjective. By the definition of equivalencefor
two surjective homomorphismsrepresenting the same quotient, anelement g € GL(V) isin
thestabilizer GL(V');,) if and only if thereis an automorphism of F' suchthat pog = @op.

|
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Thelemmaimpliesthat the centre Z ¢ GL(V) iscontained in the stahilizer of any point
in Quot(#, P). Instead of the action of GL(1") we will therefore consider the actions of
PGL(V) and SL(V'). Thereis no differencein the action of these groups on Quot(#, P),
since the natural map SL(V) — PGL(V) is afinite surjective homomorphism. But it is
alittle easier to find linearized line bundles for the action of SL(V') than for the action of
PGL(V), though not much: if L carriesa PGL(V')-linearization, then a fortiori it isaso
SL(V)-linearized. Conversely, if L carriesan SL(V')-linearization, then all that could pre-
ventit frombeing PGL(V)-linearized isthe action of the group of units ZNSL(V') of order
dim(V'). But this action becomes trivial if we pass to the tensor power L® dim(V),

The next step, before we can apply the methods of Geometric Invariant Theory as de-
scribed in the previous section, is to find alinearized ample line bundle on R:

Let 5 : ¢*H — F bethe universal quotient on Quot(7, P) x X, andlett : V ®
Oarv) = V®Oqrv) bethe*universal automorphism’ of V' parametrized by GL(V'). Let
p1 and p, denotethe projectionfrom Quot(H, P) x GL(V) to thefirst and the second factor,

respectively. The composition ¢* o H 22xr p}.x F isafamily of quotients
parametrized by Quot(#, P) x GL(V'), whose classifying morphism

x
DoT

o : Quot(H, P) x GL(V) — Quot(H, P),

is, of course, just the GL(V')-action on Quot(#, P), which we defined earlier in terms of
point functors. By the definition of the classifying morphism, the epimorphisms o% 5 and
pi xpopsT yield equivalent quotients. Thismeansthat thereisanisomorphism A : a;(f‘ —
P} x F such that the diagram

p;,xﬁ ~
¢H D pr F

pg‘rT TA

qTH Ixe, U}ﬁ‘

commutes. It is not difficult to check that A satisfies the cocyle condition 4.2.5. Thus A is
anatural GL(V)-linearization for the universal quotient sheaf F'. We saw in Chapter 2, (cf.
Proposition 2.2.5), that the line bundle

L¢ = det(p.(F ® ¢*Ox (0)))

on Quot(H, P) isvery ampleif ¢ issufficiently large. Since the definition of L, commutes
with base change (if £ is sufficiently large), A inducesanatural GL(V')-linearization on L.

Thus we can speak of semistable and stable pointsin the closure R of R in Quot(#, P)
with respect to L, and the SL(V')-action (!). Remember that the definition of the whole set-
up depended on the integer m.



4.3 The Construction — Results 91

Theorem 4.3.3 — Suppose that m, and for fixed m also ¢, are sufficiently large integers.
Then R = R*°(L) and R* = R"(L;). Moreover, the closures of the orbits of two points
[pi : H — F;],i =1,2,in Rintersect if and only if gr/# (Fy) = gr/H(Fy). The orbit of
apoint[p:H — F]isclosedin R if and only if Fis polystable.

The proof of thistheorem will take up Section 4.4. Together with Lemma4.3.1 and The-
orem 4.2.10it yields:

Theorem 4.3.4 —Thereis a projective scheme My, (1)(P) that universally corepresents
the functor Mo (1)(P). Closed pointsin My, (1)(P) arein bijection with S-equivalence
classes of semistable sheaveswith Hilbert polynomial P. Moreover, thereisan open subset
Mg, (1) (P) that universally corepresentsthe functor Mg, (P). ]

More precisely, Theorem 4.3.3 tellsusthat 7 : R — M := My (1)(P) isagood quo-
tient,andthat 7 : RS — M?® := Méx(l)(P) is a geometric quotient, since the orbits of
stable sheaves are closed. According to Lemma4.3.2 the stabilizer in PGL(V') of aclosed
pointin R* istrivia. Thus:

Corollary 4.3.5 —Themorphismz : R® — M? isaprincipal PGL(V")-bundle.

Proof. Thisfollows from Theorem 4.3.3 and Luna's Etale Slice Theorem 4.2.12. O

Example4.3.6 — Let X be a projective scheme over k, and let S™(X) be its n-th sym-
metric product, i.e. the quotient of the product X x ... x X of n copiesof X by the per-
mutation action of the symmetric group S,,. And let M,, denote the moduli space of zero-
dimensional coherent sheaves of lengthn on X. It is easy to see that any zero-dimensional
sheaf F' of length n is semistable. Moreover, if n, = length(F, ) foreachz € X, then F'is
S-equivalent to the direct sum @, _ k()™= of skyscraper sheaves. This shows that the
following morphism f : S™(X) — M, isbijective. Consider the structure sheaf O of the
diagonal A C X x X asafamily of sheavesof length oneon X parametrized by X . Thuson
(X x...x X)x X wecanformthefamily @, p;Oa, wherep; : (X x...x X)x X —
X x X isthe projection onto the product of thei-th and thelast factor. Thisfamily inducesa
morphism f : X x ... x X — M, whichisobviously S,-invariant and therefore descends
toamorphism f : S*(X) — M,,. Infact, f isanisomorphism. In order to seethis, we shall
congtruct aninversemorphismg : M,, — S™(X). Ingenera, thereisno universal family on
M, which we could use. Instead, we construct anatural transformationg : M,, — S™(X)
for the moduli functor corepresented by M,,. Let F' be a flat family of zero-dimensional
sheaves of length n on X parametrized by ascheme S. Let s € S be aclosed point repre-
senting a sheaf F; on X . Since the support of F; isfinite, and since X is projective, there
is an open affine subset U = Spec(B) C X containing the support of F;. Then thereis
an open affine neighbourhood V' = Spec(A) C S of s such that Supp(F;) C U for all
t € V. Moreover, making V' smaller if necessary, we may assumethat H := p, F'|y isfree
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of rank n. Choose a basis of sections. Then the Oy -module structure of Fy, is determined
by ak-algebrahomomorphismp : B — E,where E = End 4 (H) isisomorphicto thering
of n x n-matriceswith valuesin A.

Recall the notion of the linear determinant: there is a natural equivariant identification
® : E¥" = End 4 (H®") withrespect to the actionsof thesymmetricgroup S,, on H®"™ and
E®" Hence (E®")% c E®" isthe subalgebra of those endomorphisms of H®" which
commutewith theaction of S,,. In particular, (E®™)%» commuteswith the anti-symmetriza-
tion operator

a:H®" 5 H®" b1 @...@hy = Y sg0(m)he(1) ® ... ® by
TESH

and therefore acts naturally on the image of a, which is A™ H and, hence, free of rank 1.
This gives a ring homomorphism id : (E®")S» — A. An equivalent description is the
following: letb: E® ... ® E — A bethepolar form of the determinant. Then b restricted
to symmetric tensorsisformally divisible by n!, and Id = b/n!.

Using thelinear determinant we can finish our argument: let g(F') : V — S™U C S™(X)
be the morphism induced by the ring homomorphism

(B=™)Sh Ly (BPm)Sh 1y 4,

Check that the morphi smsthusobtained for an open cover of S glueto giveamorphism.S —
S™(X), that this constructionisfunctorial, and that the natural transformation g constructed
inthisway providesan inverse of f.

Consider now the Hilbert scheme Hilb™(X') of zero-dimensiona subschemes of X of
length n. The structure sheaf Oz of the universal subscheme Z ¢ Hilb"(X) x X induces
amorphism Hilb"(X) — M,,. Using the above identification, we obtain the Hilbert-to-
Chow morphism Hilb"(X) — S™(X), which associates to any cycle in X its support
counted with the correct multiplicity.

Assume now that X is a smooth projective surface, and let Mx (1, Ox,n) denote the
moduli space of rank one sheaves with trivial determinant and second Chern number n.
Then thereis a canonical isomorphism Hilb™ (X)) = Mx (1, Ox,n) obtained by sending a
subscheme Z C X toitsidea sheaf Z. In this context the morphism Mx (1,O0x,n) —
S™(X) appearsasaparticular case of the* Gieseker-to-Donal dson” morphismwhich wewill
discuss later (cf. 8.2.8 and 8.2.17). |

Occasionally, one also needsto consider relative moduli spaces, i.e. moduli spaces of se-
mistable sheaves on thefibres of aprojectivemorphism X — S. It iseasy to generaizethe
previous construction to this case.

Theorem 4.3.7 —Let f : X — S beaprojectivemorphismof k-schemesof finitetypewith
geometrically connected fibres, and let Ox (1) be a line bundle on X very ample relative
to S. Then for a given polynomial P thereisa projective morphism M, s(P) — S which
universally corepresents the functor
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Mx/s : (Sch/S)° — (Sets),

which by definition associatesto an S-scheme T of finite type the set of isomor phismclasses
of T-flat families of semistable sheaves on thefibresof themorphism X :=T xg X = T
with Hilbert polynomial P. In particular, for any closed point s € S onehas Mx,s(P)s =
Mx_ (P). Moreover, there is an open subscheme M s (P) C Mx/;s(P) that universally
corepresents the subfunctor M35 /s C Mxys of families of geometrically stable sheaves.

Proof. Because of the assertionthat M x s universally corepresents M x 5, the statement
of thetheoremislocal in S. We may thereforeassumethat S isquasi-projective. Thefamily
of semistable sheaves on the fibres of f with given Hilbert polynomial is finite and hence
m-regular for someinteger m. Asintheabsolutecase, let H := Ox (—m)" ™ andlet R C
Quot x,5(#, P) denote the open subset of al points[p : H, — F] where F isasemistable
sheaf on X, s € S, and p induces anisomorphism H° (X, Hs(m)) — H°(X,, F(m)). If
Or ®o. H — F denotesthe universal quotient family, L, := det(p.(F @ ¢*Ox (£))) is
well-defined and very amplerelativeto S for sufficiently large £. For any such £ thereisa
very amplelinebundle B, on S suchthat L, ®g* By isvery ampleon R (whereg : R — S'is
the structure morphism). Then the following statements about aclosed point [p : H, — F]
inthefibre R, over s € S are equivalent:

1. [p] isa(semi)stable point in R with respect to the linearization of L, ® ¢* By.
2. [p] isa(semi)stable point in R, with respect to the linearization of L,.

This follows either directly from the definition of semistable points (4.2.9), or can be de-
duced by means of the Hilbert-Mumford Criterion 4.2.11. The theorem then is a conse-
quence of this easy fact, Theorem 4.3.3 and the fact that Mx/s(P) := R/SL(P(m)) is
auniversal good quotient (Theorem 4.2.10). We omit the details. |

4.4 The Construction — Proofs

The proof of Theorem 4.3.3 has two parts: in order to determine whether a given point
[p:V ®Ox(-m) — F]in R issemistable or stable by means of the Hilbert-Mumford
Criterion we must compute the weight of a certain action of G,,, . In this way we shall ob-
tain a condition for the semistability of p (in the sense of Geometric Invariant Theory) in
terms of numbers of global sections of subsheaves F of F', which then must be related to
the semistability of F'. We begin with the second problem and prove a theorem dueto Le
Potier that makes this relation precise.

Theorem 4.4.1 —Let p be a polynomial of degree d, and let r be a positive integer. Then
for all sufficiently large integers m the following properties are equivalent for a purely d-
dimensional sheaf F' of multiplicity » and reduced Hilbert polynomial p.
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(1) Fis(semi)stable

(2) 7 p(m) < h°(F(m)), and h°(F'(m)) (L) ' - p(m) for all subsheaves F' C F of
multiplicity ', 0 < 7' < r.

(3) 7" - p(m) (<) hO(F"(m)) for all quotient sheaves FF — F" of multiplicity r”’, r >
" > 0.

Moreover, for sufficiently large m, equality holds in (2) and (3) if and only if F' or F",
respectively, are destabilizing.

Proof. (1) = (2): Thefamily of semistable sheaveswith Hilbert polynomial equal tor - p
isbounded by 3.3.7. Therefore, if m issufficiently large, any such sheaf F'ism-regular, and
r-p(m) = h°(F(m)). Let F' C F beasubsheaf of multiplicity 7/, 0 < 7' < r. Inorder to
show (2) we may assumethat F” is saturated in F'. We distinguish two cases:

A (F")<ip(F)y—r-C
B. i(F") > j(F) —r-C,
where C' := r(r 4+ d)/2 isthe constant that appearsin Corollary 3.3.8. The family of (sat-
urated!) subsheaves F" of type B is bounded according to Grothendieck’s Lemma 1.7.9.
Thusfor largem, any such sheaf F’ ism-regular, implying h°(EF'(m)) = P(F',m), and,
moreover, since the set of Hilbert polynomials { P(F")} isfinite, we can assume that
P(F',m)(<)r'-p(m) &  PF)()r'-p.

For subsheaves of type A we use estimate 3.3.8 to bound the number of global sections
directly. Notethat jimax(F") < i(F') by the semistability of F, and i(F') < pu(F) —r-C,
since F' isof type A. Thus

RO (F'(m)) rr—1 1., a1 1., d

r = r E[/lmax(F,)+C_1+m]++F—’[H(F,)+C—1+m]+
r—1 1. 1 1.,

< = Eu(F)+C-1+n~L]ﬁ+;E[H(F)—(r_n C—1+ml

Hence for large m we get

RO(F'(m)) _ m¢ md-1 R
— . - .
where ... stands for monomialsin m of degree smaller than d — 1 with coefficients that
depend only onr, d, C and i(F'), but not on F”. Since p(m) = ”}Tf + (’gi—;)l! (F)+ ...,
the right hand side of (4.1) is strictly smaller than p(m) for sufficiently large m.
(2) = (3): Let F’ bethe kernd of asurjection FF — F" and let ' and 7' be the muilti-
plicities of F’ and F"”, respectively. Then (2) implies:

"

KO(F"(m)) > h(F(m)) — KO(F'(m)) (=) p(m) - 7 — p(m) -+ = p(m) - 1"".
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(3) = (1): Apply (3) totheminimal destabilizing quotient sheaf "’ of F'. Then, by Corol-
lary 3.3.8

o m
p(m) (<) D) < Sy o1 ml

This shows that jimin(F) = (F") is bounded from below and consequently jimax (F')
is bounded uniformly from above. Hence by 3.3.7 the family of sheaves F' satisfying (3)
is bounded. Now let F"' be any purely d-dimensional quotient of F'. Then either ji(F) <
a(F") and F" is far from destabilizing F', or indeed, 4(F) > p(F"). But according to
Grothendieck’s Lemma 1.7.9, the family of such quotients F is bounded. As before, this
impliesthat for large m one has h°(F"'(m)) = P(F",m) and

P(F",m)(z)r" -p(m) &  P(F")(Z)r"p.
Henceindeed, (3) = (2) |

This theorem works for pure sheaves only. The following proposition allows us to make
the passage to amore general class of sheaves:

Proposition 4.4.2 —If F isa coherent module of dimension d which can be deformed to
a pure sheaf, then there exists a pure sheaf E with P(E) = P(F') and a homomorphism
¢ : F — Ewithker(p) = Ty_1(F).

Proof. If F itself is pure there is nothing to show. Hence, assume that T, (F) is non-
trivial and let Y C X beits support. The condition on F' means that there is a smooth con-
nected curve C and aC-flat family F of d-dimensional sheaveson X suchthat 7y = F for
someclosed point0 € C and suchthat 7, ispureforal s € C'\ {0}. (Notethat thisimplies
that  ispureof dimension d+ 1: any torsion subsheaf supported on afibrewould contradict
flatness, and any other torsion subsheaf could be detected in the restriction of F to thefibre
overapointin C'\ {0}). Let ¢ beauniformizing parameter in thelocal ring O¢ . Consider
the action of ¢ on the cokernel N of the natural homomorphism F — FPP from F to its
reflexive hull (cf. 1.1.9). Since F is pure, this homomorphismis injective (cf. 1.1.10). The
kernels IV,, of the multiplication maps¢™ : N — N form an increasing sequence of sub-
modules and hence stabilize. Let N’ be the union of al N,,. Then ¢ isinjectiveon N/N’,
which is equivalent to saying that N/N' is C-flat. Let € be the kernel of FPP — N/N'.
Thus we get the following commutative diagram with exact columns and rows:

N/N' = N/N'
T T

0 - F - FPP 5 N 5 0
| ? 1

0O - F - & —> N = 0
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FPD isreflexiveand therefore pure of dimension d+ 1, and the same holdsfor £. In partic-
ular, both sheavesaswell as N/N' are C-flat. Restricting the middle column to the special
fiore {0} x X we get an exact sequence 0 — & — (FPP)g — (N/N')g — 0.By
Corollary 1.1.14 the sheaf (FPP), is pure, and being a subsheaf of a pure sheaf, E := &,
is pureaswell. Since N’ has supportin {0} x X, F and £ are isomorphic over C' \ {0},
and since both are C-flat, they have the same Hilbert polynomial: P(F) = P(E). Note
that diim(N) < dim(FPP) —2 = d — 1 (cf. 1.1.8). Thisimpliesthat p : F — E hasat
most (d — 1)-dimensional cokernel and kernel. In particular, ker(yp) is precisely thetorsion
submoduleof F'. |

After these preparations we can concentrate on the geometric invariant theoretic part of
theproof. Let[p: V@ Ox(—m) — F] beaclosed pointin R. In order to apply the Hilbert-
Mumford Criterion we need to determine the limit point lim;_,o[p] - A(¢) for the action of
any one-parameter subgroup A : G,, — SL(V') on [p]. Now X is completely determined
by the decomposition V' = ,, ., Vs, of V' into weight spaces V,,, n € Z, of weight n, i.e.
v At) = t"-vfordlv € V,.Of coursg, V;, = 0 for amost al n. Define ascending
filtrationsof V and F" by

Van=@PV, and  Fe, = p(Ven ® Ox (—m)).

v<n

Then p induces surjections py, : Vi, ® Ox (—m) — F, := F<,/F<p_1. Summing up over
all weights we get a closed point

pi=®npn:VRO0x(—m) — F := @Fn
n

in Quot(H, P).
Lemma4.4.3 —[p] = lim;— [p] - A(2).

Proof. Wewill explicitly constructaquotientd : V@ Ox (—m)®k[T] — F parametrized
by Al = Spec(k[T]) suchthat [fy] = [p] and [0.] = [p] - A(«) for al a # 0. The assertion
followsfrom this. Let

F =P Fen @T" C F k[T, T"].
Only finitely many summandswith negative exponent n are non-zero, so that F can be con-

sidered asa coherent sheaf on A! x X. Indeed, let N be apositiveinteger suchthat V,, = 0
and F,, = 0foraln < —N.Then F C F ®; T~ NE[T]. Similarly, define amodule

V=P Ven ® Ox(-m) @ T" C V @, Ox(—m) @, T~VE[T].
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Clearly, p inducesasurjection p’ : V — F of A' -flat coherent sheaveson A' x X. Finally,
define anisomorphism (') v : V @y, k[T] = @, V<n @ T™ by 7|y, =T -idy, for al v;
and let A be the surjection that makes the following diagram commutative:

P, Fen @ T" = F — F® T NE[T]

I I oo

VoOox(-m)ekT] - VvV — V&Ox(-m)e T Nk

First, restrict to the special fibre {0} x X: itiseasy to seethat 8y = @, p,; for we have
Fo = F|T-F = &, F, etc. Redtricting to the open complement A! \ {0} correspondsto
inverting the variable T": al horizontal arrowsin the diagram above becomeisomorphisms.
Thus we get:

F Qppr) k[T, T~ = F @ k[T, T

OT Tp@ 1
V @, Ox(—m) @y k[T, T - V& Ox(—m) @ k[T, T~

Note that v describes precisely the action of A! Hence 8 hasthe required properties, and we
are done. |

Lemma 4.4.4 —Theweight of the action of G,,, via A on thefibre of L, at the point [p] is
given by

> n-P(F,0).

neEZ

Proof. F = @©F,, decomposesinto a direct sum of subsheaves on which G,,, actsviaa
character of weight n. Hence for each integer n the group G,,, acts with weight n. on the
complex which defines the conomology groups H(F,,(¢)),i > 0, (cf. Section 2.1). This
complex has (virtual) total dimension P(F,,,{), so that G,,, acts on its determinant with
weight n - P(F),,)). Since L,([p]) = &),, det(H*(F,(¢))), the weight of the action on
L([p]) isindeed )", n - P(Fy,?). |

We can rewrite this weight in the following form: usethefact that )", n - dim(V,,) =0
sincethe determinant of A is 1, and that in both sumsonly finitely many summandsare non-
zero:

S0 P(Fal) = S n- (dim(V)P(Fy, ) — dim(V) P(F, 0))
= dim (V) =
_ _di%m S (dim(V) P(Fep, ) — dim(Ve,)) P(F, 0))

neZ
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Lemma4.45 —Aclosed point [p : H — F] € R is(semi)stable if and only if for all
non-trivial proper linear subspaces V' C V and the induced subsheaf F' := p(V' ®
Ox(—m)) C F, thefollowing inequality holds:

dim(V) - P(F',0) (>) dim(V") - P(F, ). (4.2
Proof. Define afunction 8 on the set of subspacesof V' by
O(V') := dim(V) - P(F',{) — dim(V") - P(F,¥).

Then, with the notations of Lemma4.4.4, we have

) = =S P(Fo ) = m 3 0(Ven).
neEZ NneEZ
Hence, according to the Hilbert-Mumford Criterion 4.2.11, apoint [p] is (semi)stable, if for
any non-trivial weight decomposition V' = ®V,,, the condition " 6(V<,) (>) 0 is satis-
fied. Henceif 8(V") (>) 0 for any non-trivia proper subspace V' C V, then|[p] is(semi)sta-
ble. Conversely, if V' C V isasubspacewith (V') (<) 0and V" C V isany complement
of V', define aweight decomposition of V' by

Vedgimevny =V Vaimeny =V, andV, =0 else.

Then", 0(V<,) = dim(V) - (V') (<) 0. This proves the converse. O

Lemma4.4.6 —If ¢ issufficiently large, a closed point [p : H — F] € R is(semi)gtable
if and only if for all coherent subsheaves F' C F and V' = V N H°(F'(m)) the following
inequality holds:

dim(V) - P(F") (>) dim(V") - P(F). (4.3)

Here and in the following we use the more suggestive notation V- N H°(F'(m)) instead
of H(p(m))™" (H°(F'(m))).

Proof. If V' C V runs through the linear subsets of V' then the family of subsheaves
F' C F generated by V' is bounded. Hence, the set of polynomials { P(F")} isfinite, and
if Zislarge, the conditions(4.2) and (4.3) are equivalent (with " still denoting the subsheaf
generated by V'). Moreover, if F' is generated by V', then V! ¢ V N H°(F'(m)), and
conversely, if F’ isan arbitrary subsheaf of F and V' = VN H°(F'(m)), then the subsheaf
of F' generated by V' is contained in F”. This shows that the condition of Lemma4.4.6 is
equivalent to the condition of Lemma 4.4.5. m|

Corollary 4.4.7 —For [p] to be semistable, a necessary condition is that the induced ho-
momorphismV — H(F(m)) isinjective and that no submodule ' C F of dimension
< d — 1 hasaglaobal section.
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Proof. Indeed, if thiswerefalse, let V! ¢ V beanon-trivial linear subspace such that the
subsheaf F' C F generated by V' istrivial or torsion. Then P(F") has degree less than d
and we get a contradiction to (4.3). m|

4.4.8 Proof of Theorem 4.3.3 — Let m be large enough in the sense of Theorem 4.4.1
and such that any semistable sheaf with multiplicity p < r and Hilbert polynomial p - p is
m-regular. Moreover, let ¢ be large enough in the sense of Lemma4.4.6.

First assumethat [p : 1 — F]isaclosed pointin R. By definition of R, themap V —
H°(F(m)) isanisomorphism. Let F' C F be asubsheaf of multiplicity 0 < r' < r and
let V! =V N H°(F'(m)). According to Theorem 4.4.1 one has either

o p(F") = p(F),i.e. P(F') -7 = P(F) -1, or
o WO(F'(m)) <+ - p(m).
Inthefirst case F’ ism-regular, and weget dim (V') = h°(F’(m) = r'-p(m) andtherefore
dim(V') - P(F) = ('p(m)) - (rp) = (rp(m)) - ('p) = dim(V) - P(F").
In the second case
dim(V) - =77 p(m) > BO(F'(m)) - r = dim(V') - 1.

These are the leading coefficients of the two polynomialsappearing in (4.3), so that indeed
dim(V) - P(F') > dim(V') - P(F) and hence Criterion (4.3) is satisfied. This proves:
[ple R*=[ple R and[p] e R\ R* = [p] e R\ R’

Conversely, supposethat [p : V ® Ox(—m) — F] € Rissemistablein the GIT sense.
Because of the first part of the proof it sufficesto show that [p] € R.

By Lemma4.4.6 we have an inequality

dim(V) - P(F") > dim(V") - P(F)

forany F/ ¢ Fand V' = V n H°(F'(m)). Passing to the leading coefficients of the
polynomials we get

p(m)-r-r' =dim(V) -7 > dim(V') - r. (4.9

As [p] isinthe closure of R by assumption, the sheaf F' can be deformed into a semistable
sheaf, hence a fortiori into a pure sheaf. Thus we can apply Theorem 4.4.2 and conclude
that there exists a generically injective homomorphism ¢ : F — FE to apure sheaf E
with P(E) = P(F) and whose kerndl is the torsion of F'. According to Corollary 4.4.7
the compositemap V' — H°(F(m)) — H°(E(m)) isinjective, since any element in the
kernel would give a section of T, (F'). Let E" be any quotient module of E of multi-
plicity 7', » > 7" > 0. Let F' be the kernel of the compositemap F* - E — E" and
V' =V N H°(F'(m)). Using inequality (4.4) we get:
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ho(E" (m)) h?(F(m)) — h®(F'(m))

VIV IV
=7

= E
=
!
=7
=4
=

Thus E is semistable by Theorem 4.4.1. In particular, h°(E(m)) = dim(V). SinceV —
H°(E(m)) isinjective, it isin fact an isomorphism, and V generates E. But themap V ®
Ox(—m) — E factorsthrough F, forcing the homomorphism : F' — E to besurjective.
Since E and F' have the same Hilbert polynomial, o must be an isomorphism. Hence, F' is
semistableand V' — H(F(m)) isbijective. Thismeansthat [p] isapointin R**.

Remark 4.4.9 — The last paragraph is the only place where have used the fact that the
given semistable point [p] liesin R rather than just in Quot(#, P). Sometimesthis restric-
tion is not necessary: Supposethat X isasmooth curve. Then any torsion submodule of F
is zero-dimensional and can therefore be detected by its global sections. Hence Corollary
4.4.7impliesthat F' istorsion freeif [p : H — F] issemistable. m|

We are almost finished with the proof of 4.3.3. What isleft to proveis the identification
of closed orbits. Observe first that we can read the proof of Lemma 4.4.3 backwards: let
[p : X — F]beapointin R and JH,F a Jordan-Holder filtration of F. Let V<,, =
H°(JH,F(m)) NV for al n, and choose linear subspaces V,, C V<,, which split the
filtration. Summing up the induced surjections V,, ® Ox (—m) — gr; ¥ F one gets a point
[p:H — gr’H(F)], and a one-parameter subgroup A such that lim;_o[p] - A(t) = [p].
Thus, loosely speaking, any semistable sheaf containsits associated polystable sheaf in the
closure of its orbit. Now 7 is a good quotient and separates closed invariant subschemes.
It therefore suffices to show that the orbit of apoint [p : H — F]isclosedin R if F'is
polystable. Suppose [p' : H — F'] € R isin the closure of the orhit of [p]. It suffices
to show that in thiscase F' = F. The assumption implies that there is a smooth curve C
parametrizing a flat family £ of sheaves on X such that & = F' for some closed point
0 € Cand&cfor = Ocv\foy ® F.Let F = @, F;"* be the (unique) decomposition of
F into isotypical components. Formally, we can think of F; as running through a complete
set of representatives of isomorphism classes of stable sheaves with reduced Hilbert poly-
nomia p, wherethen; are given by hom(F;, F'). Since the family £ isflat, the function

C—)No, tb—)hom(Fi,Et)

is semicontinuous for each i and equals n; for @l ¢ # 0. Thusn) = hom(F;, F') > n,.
The image of the homomorphism v; : F; ®; Hom(F;, F') — F' is polystable with all
summandsisomorphicto F;. Moreover, ¢»; must beinjective. Finaly, thesum ). Fi"; C F'
must be direct. Thisispossibleonly if nj = n; and F' = @, F/"* = F. Wearedone. O
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45 Local Propertiesand Dimension Estimates

In this section we want to derive some easy boundsfor the dimension of the moduli spaces
of stable sheaves on a projective scheme X. Thisis done by showing that at stable points
the moduli space pro-representsthe local deformation functor. From this we get a smooth-
ness criterion and dimension bounds by applying Mori’sresult 2.A.11. If the scheme X is
a smooth variety these results can be refined by exploiting the determinant map from the
moduli spaceto the Picard scheme of X.

Theorem 4.5.1 —Let F bea stable sheaf on X represented by a point [F] € M. Then the
completion of thelocal ring Oy, pro-representsthe deformation functor D. (cf. 2.A.5).

Proof. Clearly, thereisanatural map of functorsDyp — 10) 1) by theopennessof stabil-
ity 2.3.1 and the universal property of M. To get an inverse consider the geometric quotient
m : R® — M?* constructed in Section 4.3. Let [¢ : X — F] € R* beapointin the fibre
over [F]. By Luna's Etale Slice Theorem there isa subscheme S € R* through the closed
point [¢] such that the projection S — M is étale near [g]. Then QS,M = QM7[F] as func-
torson (Artin/k), and the universal family on R* x X, restricted to S x X, inducesamap
QS,M — Dr whichyieldsthe reguired inverse. m|

As a consequence of thistheorem and Proposition 2.A.11 we get

Corollary 4.5.2 —Let F' be a stable point. Then the Zariski tangent spaceof M at [F] is
canonically given by Tjm M = Ext'(F, F). If Ext”(F, F)) = 0, then M is smooth at [F.
In general, there are bounds

ext' (F,F) > dimp M > ext'(F, F) — ext>(F, F).

If X issmooth, these estimates can beimproved. Recall that to any flat family of sheaves
on X parametrized by ascheme S we can associate the family of determinant line bundles
which in turn induces a morphism S — Pic(X). By the universal property of the moduli
space we also obtain amorphism

det : M — Pic(X),

which coincides with the morphism induced by a universal family on M x X in case such
afamily exists. Similarly, if F' is a stable shedf, there is a natural map of functors D —
Dyet(r) from deformations of F' to deformations of its determinant. We want to relate the
obstruction spaces for these functors and their tangent spaces.
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If E isalocaly free sheaf, then the trace map tr : End(E) — Ox induces maps tr :
Ext'(E,E) = H(End(E)) — H*(Ox). We shall seelater (cf. Section 10.1) how to con-
struct natural mapstr : Ext’(F, F) — H*(Ox) for sheaves F which are not necessarily
locally free. These homomorphisms are surjective if the rank of F' is non-zero as an ele-
ment of the base field k. Let Ext’(F, F), denote the kernel of ¢r?, and let ext?(F, F'), be
its dimension.

Theorem 4.5.3 —Let F' be a stable sheaf. The tangent map of det : M — Pic(X) at [F]
isgiven by

tr: Ty M = Ext' (F, F) — H'(Ox) 2 Tjgeq(r) Pic(X).

Moreover, if o : A’ — Aisanextension in (Artin/k) with my. - ker(o) = 0, and if
F4 € Dp(A), then the homomorphism

tr : Ext®(F, F) — H*(Ox) = Ext®(det(F), det(F))

maps the obstruction o(F4, o) to extend F4 to A’ onto the obstruction o(det(F4), o) to
extend the deter minant.

Proof. The proof of this theorem requires a description of the deformation obstruction
which differs from the one we gave, and a cocycle computation. We refer to Artamkin's
paper [5] and in particular to Friedman’s book [69]. |

Now Pic(X) naturally hasthe structure of an algebraic group scheme: the multiplication
being given by tensorizing two line bundles. A theorem of Cartier assertsthat (in character-
istic zero) such a group scheme must be smooth (cf. 11.6, no 1, 1.1, in [43]). In particular,
all obstructionsfor extending the determinant of a sheaf F' vanish.

Theorem 4.5.4 —Let X be a smooth projective variety and let F' be a stable O x-module
of rank » > 0 and determinant bundle Q. Let A/(Q) be the fibre of the morphism det :
M — Pic(X) over the point [Q]. Then Tim M (Q) = Ext' (F, F),. If Ext*(F, F)o = 0,
then M and M (Q) are smooth at [F']. Moreover,

extl(F, F)O 2 dlm[F] M(Q) 2 extl(F, F)O — ext2(F, F)O

Proof. Tensorizing asheaf E or rank by aline bundle B twists the determinant bundle
det(E) by B". Moreover, if B isnumericaly trivia, E ® B is semistable or stableif and
only if E issemistable or stable, respectively. It follows from thisthat det : M — Pic(X)
is surjective in a neighbourhood of [Q] and is, in fact, a fibre bundle with fibre M (Q) in
an étale neighbourhood of [Q]. Then 4.5.3 impliesthat the tangent space of M (Q) at [F] is
the kernel of the trace homomorphismtr : Ext'(F, F) — H'(Ox), and moreover, that F
has an obstruction theory with valuesin Ext?(F, F'),. Thusthe vanishing of Ext?(F, F),
impliessmoothnessfor A/ and hencefor M (Q). Finally, the estimates stated in the theorem
follow as above from Proposition 2.A.11. |
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Corollary 4.5.5 — Let C be a smooth projective curve of genus g > 2. Then the moduli
space of stable O-sheaves of rank r with fixed determinant bundleis smooth of dimension

(r* =g —1).

Proof. As C is one-dimensiond, ext?(F, F)o = 0 for any coherent sheaf F. Thus the
moduli space is smooth according to the theorem, and, using the Riemann-Roch formula,
itsdimensionisgiven by ext! (F, F)o = —x(F, F) + x(O¢) = (r> = 1)(g — 1). O

As amatter of fact, for a smooth projective curve the moduli space of stable sheavesis
irreducible and dense in the moduli space of semistable sheaves[234].
If X isasmooth surface we can make the dimension bound more explicit: Note that for
astable sheaf F
2
ext! (F,F)o — ext’(F, F)o = x(Ox) — Y _(—1)’ext/(F, F),

i=0

which by the Hirzebruch-Riemann-Roch formulais equal to
A(F) = (r* 1) - X(Ox).
(Recall that A(F) = 2rca(F) — (r — 1) (F)2)
Definition 4.5.6 — The number
exp dim(M(Q)) == A(F) — (2 = 1)x(Ox)
is called the expected dimension of M (Q).

Lemma4.5.7 — Let X be a smooth polarized projective surface and let » be a positive
integer. Thereisa constant 3., depending only on X and r such that for any semistable
sheaf F' of rankr > 0 on X one has

ext?(F, F)g < foo-

Proof. By Serre Dudlity, ext?(F, F)o = hom(F, F @ wx ) — h°(wx). Applying Proposi-
tion 3.3.6 weget hom(F, F ®wx) < % [wx) + (r+3) -deg(X)]i . Obviously,

the right hand side depends only on X and r. m|
Thus we can state

Theorem 4.5.8 — Let X be a smooth polarized projective surface and let F' be a stable
sheaf of rank » > 0 and determinant Q. Then

exp dim(M(Q)) < dimpp) M(Q) < expdim(M(Q)) + feo-

If exp dim(M (Q)) = dim[z) M (Q) then M (Q) isalocal completeintersection at [F7] (cf.
2.A12). O
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What can be said about pointsin M \ M#? In this case the picture is blurred because
of the existence of non-scalar automorphisms. At this stage we only prove a lower bound
for the dimension of R, that will be needed later in Chapter 9. The setting is that of Section
4.3 for the case of a smooth projective surface: m is a sufficiently largeinteger, V' a vector
space of dimension P(m) and H := V ®;, Ox(—m). Let R C Quot(H, P) be the open
subscheme of those quotients[p : H — F] where F issemistableand V. — H®(F(m))
isanisomorphism. Let [p : H — F] € R befixed. As F' ism-regular, it follows from the
properties of [p], that End(#) = Hom(H, F) and Ext*(H, F) = 0 forall i > 0. Let K be
the kernel of p. Then thereis an exact sequence

0 — End(F) — Hom(H, F) - Hom(K, F) —s Ext'(F, F) — 0

and isomorphisms Ext’ (K, F') = Ext'™! (F, F) for i > 0. Recall that the boundary map
Ext'(K, F) — Ext?(F, F) maps the obstruction to extend [p] onto the obstruction to ex-
tend [F] (cf. 2.A.8), and that the | atter is contained in the subspace Ext? (F, F)o. Thisleads
to the dimension bound

dim;,y R > hom(K,F) —ext’(F, F)o
= hom(H,F) + ext' (F,F) — ext’(F, F) — ext®(F, F)g
= end(H) — 1+ h'(Ox) + expdim(M(Q)),

where Q@ = det(F') as before. Consider the map det : R — Pic(X) induced by the
universal quotient on R x X. This map is surjective onto a neighbourhood of [Q], and
since dim(Pic(X)) = h'(Ox), we finaly get the following dimension bound for the fi-
bre R(Q) = det™"([Q]):

Proposition 4.5.9 —dimp, R(Q) > exp dim(M(Q)) +end(H) — 1. |

Example4.5.10 — Let X beasmooth projective surface, and consider the Hilbert scheme
Hilb*(X) = Quot(Ox, £) of zero-dimensional subschemesin X of length ¢ > 0. Itiseasy
to see that Hilb' (X) = X and that Hilb?(X) is the quotient of the blow-up of X x X
along the diagonal by the action of Z /2 that flips the two components. In fact, Hilb*(X) is
asmooth projectivevariety of dimension2/for al £ > 1. We givetwo arguments: first, let 7
denotetheideal sheaf of the universal family in Hilb*(X) x X. Let (Z, z) € Hilb*(X)x X
be an arbitrary point. For any surjection A : Z(z) — k(z) we can consider thekernel 7' of
Tz — Iz(x) — k() and the associated point Z' € Hilb*"! (X). This construction yields
asurjectivemorphismP(Z) — Hilb*' (X). Notethat thefibresof P(Z) — Hilb*(X) x X
are projective spaces and hence connected. I n particular, by induction we see that Hilb* (X)
is connected.
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Now Hilb* (X') aways containsthe following 2¢-dimensiona smooth variety as an open
subset: let U bethe quotient of the opensubset {(z1, . .. ,z¢)|z; # x,;Vi # j}in X* by the
permutation action of the symmetric group. Thus, if we can show that the dimension of the
Zariski tangent space at every pointin Hilb* (X) is 2¢ we are done: for then the closure of
U is smooth and cannot meet any other irreducible component of Hilb‘(X), henceisall of
Hilb*(X) asthe latter is connected. Let Z c X beaclosed point in Hilb’(X). Recall that
T7Hilb (X) = Hom(Zz, O). Moreover,

hom(Zz,0z7) = ext'(Oz,0z)+hom(Ox,0z) —hom(Oz,Oy)
hom(Ox,0z) — x(0z,0z) + ext*(Oz,0z)
hom(Ox,0z) + hom(Oz, Oz)
= 2-length(Oz) = 2¢.

Using Theorem 4.5.4 we can give a shorter proof: observethat we can identify Hilb (X) =
M(1,0x,¢) by sending a subscheme Z C X toitsideal sheaf 7. In order to conclude
smoothnessit suffices to check that Ext®(Z,,Zz)o = 0. But

eXtQ(Iz,Iz)O = hOm(Iz,IZ [029] K)()O = hOm(Ox,Kx)o =0.

See also 6.A.1for ageneralization of thisexample. |

4.6 Universal Families

We now turn to the question under which hypothesesthe functor M?# is represented by the
moduli space M. If thisisthe case M ¢ is sometimes called a fine moduli space.

Let X beapolarized projective scheme. Recall our convention that whenever we speak
about afamily of sheaveson X parametrized by ascheme S, p and ¢ denote the projections
SxX — SandS x X - X, respectively.

Definition 4.6.1 — A flat family £ of stable sheaves on X parametrized by M ¢ is called
universal, if thefollowing holds: if F'isan S-flat family of stable sheaveson X with Hilbert
polynomial P andif @z : S — M? istheinduced morphism, then thereisaline bundle L
on S suchthat F ® p*L = ®%.£. An M *-flat family £ is called quasi-universal, if thereis
alocally free Os-module W such that F' @ p*W = ®7.£.

Clearly, M* represents the moduli functor M? if and only if auniversal family exists.
Though this will in general not be the case, quasi-universal families always exist. Recall
that the centre Z of GL(V') actstrivialy on R. Therefore the fibre over any point [p] € R
or ([p],z) € R x X of any GL(V)-linearized sheaf on R or R x X, respectively, such as
the universal quotient F on R x X, hasthe structure of aZ -representati on and decomposes
into weight spaces. We say that a sheaf or a particular fibre of a sheaf has Z-weight v, if
t € Z =2 G, actsviamultiplication by ¢”.
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Proposition 4.6.2 —Thereexist GL(V')-linearized vector bundleson R* with Z-weight 1.
If A isany such vector bundlethen Hom (p* A, F') descendsto a quasi-universal family &,
and any quasi-universal family arisesin thisway. If A isaline bundlethen £ is universal.

In the proof of the proposition we will need the following observation, which is the rel-
ative version of 1.2.8.

Lemma 4.6.3 —Let F' be a flat family of stable sheaves on a projective scheme X, para-
metrized by a scheme S. Then the natural homomorphism Og — p.End(F') isanisomor-
phism.

Proof. The homomorphism Os — p.End(F’) isgiven by scalar multiplication of Og on
F. The assumption that F' is S-flat implies that the homomorphismis injective. Now, for
each k-rational point s € S thefibre F; isstable and thereforesimple, i.e. End(F}) = k(s),
so that the composite homomorphism k(s) — p.End(F)(s) — End(Fy) is surjective.
Hence p.End(F)(s) — End(Fj) is surjective and therefore even isomorphic by the semi-
continuity theoremsfor the functors Ext,. Thismeansthat Os — p.&nd(F) issurjective
aswell. |

Proof of the proposition. If n issufficiently largethen A4,, = p. (f‘@q*(’)x (n))isalocally
freesheaf on R? of rank P(n) and carriesanatural GL(V)-linearization of Z-weight 1. Let
A beany GL(V)-linearized vector bundleon R? with Z-weight 1. Then Z actstrivialy on
thebundle Hom,(p* A, F), which therefore carriesaPGL (V) -lineari zation and descendsto
afamily £ on M*® x X by 4.2.14. We claim that £ is quasi-universal. Suppose that F' is a
family of stable sheaveson X parametrized by a scheme S with Hilbert polynomia P. Let
R(F') bethe associated frame bundle and consider the commutative diagram

R(F) = R
m m
e
Then % F = &%  F and hence
T ®hxE = BhymiE = B Hom(p* A F)

= Hom(‘f’},xp*Aai’},Xﬁ)
= Hom(p*®pA, 7% F).

Now $;A islinearized in anatural way and 7 : R(F) — S isaGL(V)-principa bundle
so that 7, A = 7* B for some vector bundle B on S. It follows that

T xE = Hom(rxp* B, F') = nxHom(p* B, F)

and therefore
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&% x& =2 Hom(p*B,F) =p*B” @ F.

Thus € isindeed a quasi-universal family. Conversely, let £ be a quasi-universal family on
M?# x X . Then applying the universal property of £ to the family F on R® x X we find
avector bundie A on R* such that 7% & = Hom(p* A, F). Then p,(Hom(x%E, F)) =
pHom(p* A QF, F) = A®p,,. p.End(F) = A by the previouslemma. Thisdescription
shows that A carries a GL(V')-linearization of Z-weight 1 which is compatible with the
isomorphism 7% € = Hom(p* A, F). Itisclear that £ isuniversal if and only if A isaline
bundle. m|

Excercise 4.6.4 — Show by the same method: if £’ and £” are two quasi-universal families, then
there are locally free sheaves W' and W" on M* suchthat &' @ p*W" = £" @ p*W'.

For theremaining part of thissection let X beasmooth projectivevariety. Let ¢ beafixed
classin K,um(X), let P be the associated Hilbert polynomial, and let M (¢)®* ¢ M? and
R(c)® C R* betheopen and closed partsthat parametrize stable sheaves of numerical class
¢ (see also Section 8.1).

Suppose B isalocally free sheaf on X. Then theline bundle

A(B) := detpy(F ® ¢*B) € Pic(R(c))

as defined in Section 2.1 carries a natural linearization of weight x (¢ ® B). If B isnot lo-
caly free, we can still choose afinite locally free resolution B, — B and define \(B) :=
®; \(B;)(=1". Then \(B) hasweight 3".(—1)x(c ® B;) =: x(c - B).

Theorem 4.6.5 — If the greatest common divisor of all numbers x(c - B), where B runs
through some family of coherent sheaveson X, equals 1, then thereisa universal family on
M(e)® x X.

Proof. Suppose there are sheaves By, ..., By and integers wy, ... ,wy such that 1 =
Yo wix(c - B;), then A := @, A\(B;)" isaline bundle of Z-weight 1. Hence the theo-
rem follows from the proposition. m|

Recall that the Hilbert polynomial P can be written in the form
d .
n+i—1
P = i .
m=3e ("

with integral coefficientsay, . . . , aq, whered = dim(F).
Corollary 4.6.6 —Ifg.c.d.(ao,...,aqs) = 1 thenthereisa universal family on M/* x X.

Proof. Apply the previoustheoremto thesheaves Ox (0), . .. , Ox (d). It sufficesto check
that the g.c.d.(ao, . .. ,aq) = g.c.d.(P(0), ..., P(d)). But this follows from the observa-
tion that the matrix
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()

) ) )

isinvertible over the integers. a

Corollary 4.6.7 — Let X be a smooth surface. Let r, ¢;, ¢o be the rank and the Chern
classes corresponding to c. If g.c.d.(r,c;.H, %cl.(cl — Kx) — ¢3) = 1, thenthereisa
universal family on M (c)® x X.

Proof. Apply the previous theorem to the sheaves Ox, Ox (1), and the structure sheaf
Op of apoint P € X. Theassertion then follows by expressing P(0) and P (1) in terms of
Chern classes and using that x(c ® Op) = r. O

Remark 4.6.8 — The condition of Corollary 4.6.7 isalso sufficient to ensurethat thereare
no properly semistable sheaves, in other wordsthat M (¢)®* = M (c). Namely, suppose that
F is asemistable sheaf of class ¢ admitting a destabilizing subsheaf F’ of rank ' < r and
Chern classes ¢} and ¢,. Then we have the relations:
r-(ci.H)=r"-(c1.H)
and
r-(ci(cf — Kx)—2c3)/2=7""(c1(c;1 — Kx) — 2¢3)/2.

If a, 3 and v areintegerswitha - r + 3 - (c1.H) + v - (c1(c1 — Kx) — 2¢2)/2 = 1, then
re(a-r'"+ 8- (c;.H)+v-(ci(c) — Kx) —2c})/2) = r/, obviously acontradiction.
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Appendix to Chapter 4

4.A Gieseker’'s Construction

The first construction of a moduli space for semistable torsion free sheaves on a smooth
projective surfacewasgiven by Gieseker [77]. We briefly sketch hisapproach, at |east where
it differsfromthe construction discussed before, for the singlereason that it givesabit more:
namely, the ampleness of a certain line bundle on the moduli space relative to the Picard
variety of X.

Let (X,0x(1)) be a polarized smooth projective variety over an algebraicaly closed
field of characteristic zero. Let P be a polynomial of degree equal to the dimension of X
(i.e. we consider torsion free sheaves only) and let r be the rank determined by P. Recall
the notations of Section 4.3: m isasufficiently largeinteger, V' avector space of dimension
P(m),and’H :=V @ Ox(—m). Let R C Quot(#, P) be the subscheme of al quotients
[p: H — F]suchthat F issemistabletorsionfreeand V' — H®(F(m)) isanisomorphism.
Let R betheclosureof R in Quot(#, P). Theuniversal quotient 5 : H ® Oz — F induces
an invariant morphism

det : R — Pic(X)

suchthat det(F) = det’ (P)®p* A, where P denotesthe Poincarélinebundleon Pic(X ) x
X and A issomelinebundleon R. We may assume that m was chosen large enough so that
any line bundle represented by a point in the image det (R) C Pic(X) ism-regular. From
p:H® O — F weget homomorphisms A"V @ O, y — det(F ® ¢*Ox(m)) and
AV © O — pudet(F(m)) = det*p. (P(rm)) @ A
which isadjoint to
¢ det*(Hom(A™V, p,P(rm))”) — A.
Note that { is everywhere surjective and therefore defines a morphism
(:R— Z :=P(Hom(A"V,p.P(rm))”)

of schemesover Pic(X), suchthat (*Oz(1) & A. Moreover, ¢ isclearly equivariant for the
obviousactionof SL(V') on Z. Observe, that if F'istorsionfreethenp : Vo Ox(—m) = F
is, as a quotient, completely determined by the homomorphism A™V — H?(det(F(m))).
Thismeansthat (| r isinjective, hence A|r isamplerelativeto Pic(X).

Theorem 4.A.1 —( maps R to the subscheme Z¢¢ of semistable pointsin Z with respect
to the SL(V')-action and the linearization of O#(1), and R* = (~*(Z?). Moreover, as
¢ : R — Z?*° isfinite, good quotients of R and R* exist, and some tensor power of A
descends to a line bundle on the moduli space M which is very amplerelative to Pic(X).
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We sketch a proof of the first statements. The last assertion then follows from these and
general principlesof GIT quotients.

Let[p: H — F]beapointin Randlet A : G,, — SL(V') be aone-parameter group
given by aweight decompositionV = @,,V,,. Asin the proof of 4.3.3, let V<), = ®,<n V)
be the induced filtration on V', but define F<,, as the saturation of p(V<, ® Ox(—m)) in
F,andlet r, betherank of F,, = F<, /F<p_1. Thendet(F) = ®pdet(F,) and

: > _ r P 0
lim (([p]A(t) = |A"V = @A Vo > H ((%) det(Fn(m))>] .
Hence the weight of the action at the limit point is, up to some constant, given by

dim(V)-> nr =Y ne (ra - dim(V) —r-dim(V,)) = = (r<, -dim(V) —r - dim(V<y,)).
The same reduction asin the proof of 4.3.3 shows that [p] is (semi)stable, if and only if the
following holds: If V' isany non-trivial proper subspace of V' and if ' is the rank of the
subsheaf in F' generated by V', then

dim (V') - 7 (<) dim(V) - 7.

At this point we can re-enter thefirst half of the proof of 4.3.3 and conclude literally in the
same way. |

4B Decorated Sheaves

So far we have encountered two different types of moduli spaces: the Grothendieck Quot-
scheme and the moduli space of semistable sheaves. The Grothendieck Quot-scheme para-
metrizes al quotients of a shedf, i.e. sheavestogether with a surjection from afixed one. In
this spirit, one could, more generally, consider sheaves endowed with an additional struc-
ture such asahomomorphismto or from afixed sheaf, afiltration or simply aglobal section.
For many types of such ‘decorated’ sheaves one can set up anatural stability condition and
then formulate the appropriate moduli problem. (Recall, thereis no stability condition quo-
tients parametrized by the Quot-scheme have to satisfy.) We are going to describe a moduli
problem that is general enough to comprise various interesting examples. To alarge extent
the theory is modelled on things we have been explaining in the last sections. In particular,
the boundedness and the actual construction of the moduli space, though involving some
extra technical difficulties, are dealt with quite similarly. However, two things in the the-
ory of decorated sheaves are different. First, the stability condition is usually slightly more
complicated and depends on extra parameters, which can be varied. Second, by adding the
additional structure we make the automorphism group of the objects in question smaller.
This can be used to construct fine moduli spaces in many instances.
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Let X beasmooth projectivevariety over an algebraically closed field k of characteristic
zero. Fix an ampleinvertible sheaf Ox (1) and anon-trivial coherent sheaf E. Furthermore,
let 6 € Q[t] be a positive polynomial. A framed module is a pair (F, «) consisting of a
coherent sheaf F' and ahomomorphisma : F' — E. ItsHilbert polynomial is by definition
P(F,a) := P(F) — e(a) - §, wheree(a) = 1if a # 0ande(a) = 0 otherwise. For
simplicity we give the stability condition only for framed modules of dimension dim(X):

Definition 4.B.1 — A framed module (F, «) of rank r is (semi)stableif for all framed sub-
modules (F', ') C (F,a),i.e. F' C Fanda' = «a|p,onehasr - P(F', o' )(<)rk(F') -
P(F,a).

Remark 4.B.2 —i) If a = 0, then this stability condition coincideswith the stability con-
dition for sheaves. If « # 0, then the stability condition splits into the following two con-
ditions: for subsheaves F’ C ker(a) onerequiresrP(F") (<) rk(F")P(F") —rk(F")d and
for arbitrary F' C F only theweaker inequality r P(F") (<) tk(F")P(F")+ (r —rk(F"))4.

i) If (F,a) isasemistable framed module then o embeds the torsion of F' into E.

i) If (F, «) issemistable and o # 0, then deg(d) < dim(X). Moreover, if deg(d) =
dim(X) and (F, «) issemistablethen aisinjective. Thus, for deg(d) = dim(X) al framed
modules are just subsheaves of E. Since this case is covered by the Grothendieck Quot-
scheme, we will henceforth assume deg(d) < dim(X).

iv) By definition the stahility of aframed module (F, ) with o # 0 dependson the poly-
nomial ¢, but for ‘generic’ § the stability condition is invariant under small changes of §.
Only when § crosses certain critical values the stability condition actually changes. More-
over, for generic § semistability and stability coincide.

V) For § small and generic, e.g. § isapositive constant close to zero, the underlying sheaf
F of asemistableframed module (F,, «) issemistable. Conversely, if F' isastable sheaf and
a: F — Eisnon-trivia, then (F, «) is stable with respect to small 4.

Example4.B.3 — Let E be a sheaf supported on adivisor D C X. Then a sheaf F on
X together with an isomorphism F|p 2 E (a‘framing’) gives rise to a framed module
(F,a) inour sensewitha : F — F|p = E. Here, E is considered as a sheaf on X
with support on D. In the case of acurve X and apoint D = {z} these objects are also
called bundles with alevel structure. Next, let E be the trivial invertible sheaf Ox. In this
case, the underlying sheaf of a semistable framed module must be torsion free (thisis true
whenever E istorsion freg). Thus, on acurve X semistable framed modules (F, o : F' —
Ox) arelocally freeand, therefore, thereisno harmin dualizing, i .e. instead of considering
(F,a) we could consider (F™,p := o~ € H°(F")). This gives an equivalence between
semistable framed modules and semistable pairs, i.e. bundles with a global section. This
correspondence holds also true in higher dimensions if we restrict to locally free sheaves.
Thereareof courseinteresting types of decorationsthat are not covered by framed modules.
Most important, parabolic sheaves and Higgs sheaves.
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L et usnow introducethe corresponding moduli functor. Asbefore, wefix apositive poly-
nomial § of degreelessthan dim(X'), acoherent sheaf E, an ampleinvertible sheaf Ox (1)
and apolynomial P € Q[z] of degree dim(X'). Then the moduli functor

M : (Sch/k)° — (Sets)

mapsS € Ob(Sch/k) totheset of isomorphismclassesof S-flat families(F,a : F' — Eg)
of semistable framed moduleswith P(F;) = P and P(F}, ;) = P — ¢ for any closed point
t € S. By M? we denote the open subfunctor of geometrically stable framed modules.

Theorem 4.B.4 — There exists a projective scheme Mo, (1) (P, E, ) that universally co-
represents the functor M. Moreover, there is an open subscheme M ® of Mo, 1) (P, E, §)
that universally represents M*. |

Analogously to the case of semistable sheaves, the closed points of Mo, (1)(P, E, )
parametrize S-equivalence classes of framed modules. We leaveit as an exerciseto find the
right definition of S-equivalencein this context. Note that the second statement is stronger
than the corresponding one in Theorem 4.3.4. It says that on the moduli space of stable
framed modules (F, a) with a # 0 there exists a universal family. Thiswill be essentially
used in the proof of the following proposition.

Proposition 4B.5 —Let M = Mo (1)(P) bethemoduli space of semistablesheaveswith
Hilbert polynomial P and let M ¢ bethe open subscheme of stable sheaves. Thenthere exists
a projective scheme M, a morphisme) : M — M and an M-flat family £ such that:
i) ¢ isbirational over M*,
ii) on the open set over M # where ) isan isomorphismthe family £ is quasi-universal,
iii) if " isthe sheaf corresponding to ¢(t) for a closed point t € M,
then &; is S-equivalent to F®?, where b = rk(€) /rk(F).

Of course, if M = M thisisjust the existence of aquasi-universal family (cf. 4.6.2). In
general, aquasi-universal family can not be extended to a family on the projective scheme
M. The projective variety M together with £ is a replacement for this. Asit turns out, for
many purposes this is enough. Note, if /¢ is reduced, by desingularizing A and pulling-
back £ one can assumethat M isin fact smooth.

Proof. Let £ beaquasi-universal family on M ® x X with Hilbert polynomial b- P (For the
existence of £ see Proposition 4.6.2.). Let M (P) denote the moduli functor of semistable
sheaves with Hilbert polynomial P. We define a natural functor transformation M(P) —
M(bP) by [F] — [F®*).If b > 1, theimage is contained in M(bP) \ M?*(bP). The
induced morphism M = M (P) — M (bP) isaclosed immersion (see Lemma4.B.6 be-
low). Next, consider the moduli space M (bP, O(n), §) of framed modules (F, F' — O(n)).
For generic ¢ there exists a universal framed module (F,F — ¢*O(n)) on the product
M (bP,O(n),d) x X and for small generic § the map [(F, FF — O(n))] — [F] definesa



4.B Decorated Sheaves 113

morphism M (bP, O(n),6) — M(bP).Let N := M xpr,py M (DP, O(n),9). It suffices
to construct a section of N — M over adense open subset of A/¢. Indeed, the closure M
of this section in N together with the pull-back of F under M ¢ N — M (bP,O(n), )
satisfiesi), i), and iii). The construction of the section over adense open subset of M ¢ goes
asfollows. For n >> 0 and any sheaf [F] € M* there exists a non-trivial homomorphism
F®b — O(n). Moreover, the generic homomorphism gives rise to a stable framed module,
i.e.apointin M (bP,O(n),d) and hencein N. The sheaf p. Hom(E, ¢*O(n)) isfree over
a dense open subscheme U C M*®. A generic non-vanishing section of this free sheaf in-
duces a section of N — M over U (We might have to shrink U dightly in order to make
all framed modules semistable). |

Lemma 4.B.6 — The canonical morphismj, : M (P) — M (bP) isa closed immersion.

Proof. As pointsin M (P) are in bijection with polystable sheaves F' = &, F; @ W,
where F; are pairwise non-isomorphic stable sheavesand W; = Hom(F;, F'), and sincethe
morphism j, isgivenby F — @;F;®(W,;®k"),itisclearly injective. Let m beasufficiently
large integer, and let R ¢ Quot(O(—m)P(™ P)and R' C Quot(O(—m)"P(™) bP)
be the open subsets as defined in Section 4.3. Then j, is covered by a natural morphism
j:R— R, [p] = [p®"]. Let F beapolystable sheaf asaboveand [p : O(—m)F(™) — F]
apointinthefibreof = : R — M (P) over [F)]. The stabilizer subgroupsof GL(P(m)) and
GL(bP(m)) at the points [p] and j[p] are given by

G=[[cLw;) ad & =][[GLW;®k),

respectively. The normal directions to the orbits of [p] in R and [p®*] in R’ at these points
are

E = @Extl(Fi,Fj’) &® HOm(Wi,W]')
2]

and
E' = B Ext'(F;, F}) © (Hom(W;, W) @ End(k®")),
i,J

onwhich G and G' act by conjugation. By Luna’s Etale Slice Theorem, an étale neighbour-
hood of [F'] in M (P) embedsinto E /G. Thereforeit sufficesto show that E /G embeds
into E'/G', or equivaently, that the diagonal embeddingé = idg ® 1 : E — E’ induces
a surjective homomorphism 0%, - O%. In fact, one can check that the partial trace map
E' = E ® End(k®®) — E induces a splitting. 0

The proposition aboveis one application of moduli spaces of framed modules. They also
provide a framework for the comparison of different moduli spaces, e.g. the moduli space
of rank two sheaves on a surface and the Hilbert scheme. For smplicity we have avoided
the extensive use of framed modulesin these notes, but some of the results in Chapter 5, 6,
11 could be conveniently and sometimes more conceptually formulated in this language.
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4.C Change of Polarization

The definition of semistability depends on the choice of a polarization. The changes of the
moduli space that occur when the polarization varies have been studied by several people
in greater detail. We only touch upon this problem and formulate some general results that
will be needed later on.

Let X be asmooth projective surface over an algebraically closed field of characteristic
0. Let = denote numerical equivalence on Pic(X), and let Num(X) = Pic(X)/ =. This
is afree Z-moduleequipped with an intersection pairing

Num(X) x Num(X) — Z.

The Hodge Index Theorem says, that, over R, the positive definite part is 1-dimensional.
In other words, Nump, carries the Minkowski metric. For any classu € Numg, let |u| =
|u?|'/2. Thisis not anorm! Recall that the positive cone is defined as

KT :={z € Numg(X)|z®> > 0andz.H > 0 for some ampledivisor H}.

It contains as an open subcone the cone A spanned by ample divisors. A polarization of X
isaray R.o.H,where H € A. LetH denotetheset of raysin K . Thisset can beidentified
with the hyperbolic manifold {H € K ||H| = 1}. The hyperbolic metric 3 is defined as
follows: for points [H], [H'] € H let

H.H' >

(), 1) = axcosh (e

Recall that arcosh is the inverse function of the hyperbolic cosine.

Definition 4.C.1 —Letr > 2and A > 0 beintegers. Aclass{ € Num(X) is of type
(r,A) if —%A < €2 < 0. Thewall defined by ¢ isthe real 1-codimensional submanifold

We = {[H] € H|{.H =0} C H.

Lemma 4.C.2 —Fixr and A asin thedefinition above. Then the set of walls of type (r, A)
islocally finitein H.

Proof. The lemma states that every point [H] in H has an open neighbourhood intersect-
ing only finitely many walls of type (r, A). Let H € [H] be the class of length 1. Then
Nump = RH ® H', and any class v decomposesas v = a.H + uy witha € R and
uo.H = 0. Defineanormon Numg by ||u|| = (a®+|ue|?)'/?. Let¢ = b.H+¢, beaclassof
type (r, A) andlet 8y beapositivenumber. B([H], 3o) istheopen ball in H with center [H]
and radius (. Supposethat [H'] € W:NB([H], By). Write H' = H+ Hj with Hy.H = 0.
Let 8’ = B([H]),[H']) < Bo. Check that |[H| = tanh(8'). Then0 = H'.€ = b+ &.H|)
and 12 = & Hy|? < [&[?.|Hj|? = tanh®(8)[&|>. Moreover, " A > |¢[? = [€2] — b* >
(1 — tanh®(8"))[€3] and [€]]* = [&]> + 5> < (1 + tanh?(8'))[€3]. Hence



4.C Change of Polarization 115

1 + tanh? (8" r2 r2
< ————— 2. —A <cosh(26)) —A.

Il < ey 2 = cosh(0) g
Thus ¢ is contained in a bounded, discrete and therefore finite set. This proves that the set
{€IWe N B([H], Bo) # 0} isfinite. 0

Theorem 4.C.3 —Let H beanampledivisor, F' a uir-semistable coherent sheaf of rank
and discriminant A, and let F' C F be a subsheaf of rank+/, 0 < ' < r, with pg (F') =
pp(F). Then€ :=r.c;(F') — r'.c; (F) satisfies:

2
¢H=0 and —%Aggz’go,

and¢2 = 0ifandonlyif ¢ = 0.

Inparticular, if ¢; € Num(X) isindivisible, andif H isnot onawall of type (r, A), then
a torsion free sheaf of rank r, first Chern class ¢; and discriminant A is pgg-semistable if
andonlyif itis um-stable.

Proof. We may assume that F" is saturated. Then F' = F/F" istorsion free and pp-
semistable of rank " = r — r'. Since H.¢ = 0 it follows from the Hodge Index Theorem
that ¢2 < 0 with equality if and only if £ = 0. Moreover, the following identity holds:

A= ZA(F) = SA(F) = - &

i iyl )
By the Bogomolov Inequality (3.4.1) onehas A(F"), A(F'"") > 0 and therefore

2
2 <r'r"A < TZA.

If ¢, isnot divisible, then & # 0, hence¢? < 0. Thus, if asubsheaf F” as above exists, then
H liesonawall of type (r, A). |

Remark 4.C.4 — The assumption of the theorem that H be ampleistoo strong: if H €
KT, it makes till sense to speak of 1 x7-(semi)stable sheavesin the sense that (re; (F') —
r'c1(F)).H (<) 0 for all saturated subsheaves F' C F' of rank r', 0 < ' < r. The proof of
the theorem goesthrough except for the following point: in order to concludethat A(F") >
0and A(F") > 0 we need the Bogomolov Inequality in astronger form (7.3.3) than proved
so far (3.4.1). Chapter 7 isindependent of this appendix. In the following we will therefore
make use of the theorem in thisform, since in the applicationswe havein mind H will be
the canonical divisor K of a smooth minimal surface of general type, which is big and nef
but in general not ample.
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Itisclear from the proof that the conditionson classes ¢ whosewalls could possibly affect
the stability notion are more restrictive than just being of type (r, A) as defined in 4.C.1.
Sincewe have no need for amore detail ed analysis here, we leave the definition as it stands.

Recall that A is the closure of the ample cone. If H and H' are elements in Num, we
write

[H H':={tH+ (1—-t)H'|t € [0,1] }.

Lemma4.C.5 —Let H bean ampledivisor and H' € AN K. Let F beatorsion free
sheaf which is g -stable but not - -stable. Then thereisa divisor Hy € [H,H'] and a
subsheaf Fy C F suchthat pg (Fy) > pg (F), and F and Fy are pp,-semistable of the
same sope.

Proof. If F' is g -semistable we can choose Hy = H' and there is nothing to prove.
Hencewe may assumethat F' isnot even - -semistable. Then there exists a saturated sub-
sheaf Fy C F with ug (Fo) > pg (F). If F' isany saturated subsheaf with this property,
let

N bEHEF) = pa(F)

") = e (P = e (P

S0 that WH+t(FYH (FI) = WH4t(F)H (F) Notethat Hy := H + t(F[))HI is ample If
t(F') < t(Fo), then pp, (F') > pm,(F). By Grothendieck’s Lemma 1.7.9, the family
of saturated subsheaves F’ with this property is bounded. This implies that there are only
finitely many numbers¢(F") which are smaller than ¢(Fy). In fact, we may assume that Fy
was chosen in such away that #( Fp) isminimal. Then Fy and Hy have the properties stated
in the lemma. m|

For the definition of e-stability see 3.A.1.

Proposition 4.C.6 —Let H beanampledivisor, H' ¢ AN K+. Letr > 2and A > 0 be
integersand put e := \/A/4sinh B([H], [H']). Supposethat F' isa coherent sheaf of rank
r and discriminant A. If F' is e-stable with respect to H then F'is p g -stable.

Proof. Supposethat F' is pr-stable but not 1 g -stable. By the previouslemmathere ex-
istsadivisor Hy € [H, H'] and a subsheaf F, suchthat £&.Hy = 0 for £ := r.c;(Fp) —

rk(Fo)e1 (F). Let By = B([H], [Ho]). Notethat 3y < B([H],[H']). Write{ = a.H + ¢
and Hy = b.H + Hy witha,b € Rand ¢, Hy 1. H. Thentanh 8y = % Moreover,
0 = &.Hy = ab|H|? + €.H, and therefore

€] > £.Ho/|Ho| = —a| H|/ tanh(f).
Furthermore, by 4.C.3 and 4.C.4 the inequality

r?AJ4 > [€]* = —a’|H|* + |§]> > o®|H|?/ sinh*(Bo)
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holds, implying that (—a)|H | < r - sinh(3,)v/A/2. Finally we get:

&H a.|H|? Vv A'sinh(f) |H|
— = — = — > — .
uar(F) = pan (Fo) = = 2ims = o) 2 2 vk(Fo) 2 k(¢
Thismeansthat F' is not e-stable, contradi cting the assumption of the proposition. |

Theorem 4.C.7 —Let H and H' beampledivisors. If A > 0, the moduli spaces
M (r,ci, A) ~ Mp (r,c1,A)
are birational.

Proof. We may assume that H and H' are very ample. Recall that we have an estimate
for the e-unstable locus of My:

T(K)(.H)+

B(X,H).
S B

dim My (e) < (1 - 2—1r> A+ (3r—1)e* +
Inserting e = +/Asinh(f)/2 for some positive number 3, the coefficient of A on the
right hand side is (1 — &= + % sinh® ), and this coefficient is strictly smaller than 1 if
sinh® By < 2. Fix fy = arsinhl. Subdivide the linein # connecting [H] and [H'] into
finitely many sections such that the division points have mutual distances < (3, and have
very ample integral representatives H = Hy, H»,... ,Hy = H'. Now choose A large
enough such that Mg, (r, c1, A) isanormal scheme of expected dimension (cf. Theorem
9.3.3) and such that dim Mg, (e) < dim My, foreachi = 1,...,N. Thisis posshle
since by our choiceof 3, thedimension of M, growsfaster than thedimension of My, (e)
considered as functions of A. By the proposition only the e-unstable sheavesin My, can
be unstable with respect to H;_1 or H;y,. Therefore the dimension estimate just derived
ShOWSMHlN...NMHN. O

Comments:

— The notion of S-equivalence isdue to C. S. Seshadri [233]. He constructs a projective moduli
space for semistable vector bundles on asmooth curve, which compactifies the moduli space of stable
bundles constructed by Mumford [190]. There exists an intensive literature on moduli of vector bun-
dles on curves. We refer to Seshadri’s book [234] and the references given there. In the curve case,
G. Faltings [61] gave a construction without using GIT, see also the expository paper by Seshadri
[235].

— Themain reference for Geometric Invariant Theory isMumford's book [194]. The lecture notes
of Newstead [202] explain the material on a more elementary level. We al so recommend the seminar
notes of Kraft, Slodowy and Springer [131]. Theorem 4.2.15 isdueto G. Kempf. For aproof see Thm
2.3.in[52] or Prop 4.2 in part 4 of [131].
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— General constructions of moduli spaces of sheaves on higher dimensional varieties have been
givenby D. Gieseker [77] for surfacesand M. Maruyama[162, 163]. This Approach has been sketched
inappendix 4.A. Our presentation in 4.3 and 4.4 follows the method of C. Simpson [238] and the J. Le
Potier’s exposé [145]. Theorem 4.4.1 and the proof of 4.4.2 are taken from Le Potier’s expose [ 145].
The observation of the dichotomie of the cases A and B in the proof of 4.4.1 as well as the statement
of 4.4.2 are due to Simpson. Thisisone of the main technical improvements of his approach. Observe
how well suited the L e Potier-Simpson Estimate isto mediate between the Euler characteristic and the
number of globals sections of a sheaf. Theorem 4.4.2 isLemma1.17 in [238], whereit isproved in a
dightly different way. In a sense, this theorem is responsible for the projectivity of the moduli space
of semistable sheaves. Thus in Gieseker’s construction its rdle is played by Lemmas 4.2 and 4.5 in
[77]. In acertain sense, the properness of the moduli space had been proved by Langton [135] before
the moduli space itself was constructed. See Appendix 2.B. In the proof of 4.4.5 we used a pleasant
technical device we learned from A. King [123].

— The smoothness of Hilbert schemes of points on surfaces (Example 4.5.10) is due to Fogarty
[65]. His argument for smoothness isthefirst one given in the example, whereas his proof of the con-
nectivity is quite different and very interesting. He shows that the punctual Hilbert scheme, i.e. the
closed subscheme in Hilb?(X) of those cycles which are supported in asingle, fixed point in X can
be considered as the set of fixed points for the action of a unipotent algebraic group on a Grassmann
variety and therefore must be connected. The existence of natural morphisms Hilb™ (X) — M,, —
S™(X) asdiscussed in Example 4.3.6 is asserted by Grothendieck [93] though without proof and us-
ing a different terminology. Our presentation of the linear determinant follows Iversen [117].

— Deformations of coherent sheaves are discussed in the papers of Mukai [186], Elencwajg and
Forster [55] and Artamkin [5, 7]. See also the book of Friedman [69]. Theorem 4.5.1 was proved by
Wehler in [259].

— The existence of universal families was aready discussed by Maruyama [163]. The notion of
quasi-universal familiesis due to Mukai [187].

— Theorem 4.B.4 can befoundin[115]. For other constructions of similar moduli spaces see[147],
[234], [244], [156]. The probably most spectacular application of stable pairsis Thaddeus proof of
the Verlinde formulafor rank two bundles [244]. Recently, moduli spaces of stable pairs on surfaces
have found applications in non-abelian Seiberg-Witten theory.

— The changes that moduli spaces undergo when the ample divisor H on X crosses awall have
been studied by several authors, often with respect to their relation to gauge theory and the computa-
tion of Donaldson polynomials. Werefer to the papers of Qin, Gottsche [84], Ellingsrud and Gottsche
[57], Friedman and Qin [72], Matsuki and Wentworth [171].

— We also wish to draw the reader’s attention to the papers of Altman, Kleiman [3] and Kosarew,
Okonek [130]. In these papers, moduli spaces of simple coherent sheaves are considered. In [3] the
moduli space of simple coherent sheaves on a projective variety is shown to be an algebraic space in
the sense of Artin. In general, however it is neither of finite type nor separated. The phenomenon of
non-separated points in the moduli space was investigated in [203] and [130].
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5 Construction Methods

The two most prominent methods to construct vector bundles on surfaces are Serre’s con-
struction and elementary transformations. Both techniqueswill be used at several occasions
in these notes. Section 5.3 contains examples of moduli spaces on K3 surfaces and fibred
surfaces. In the latter case we discuss the relation between stability on the surface and sta-
bility on thefibres.

In order to motivate the first two sections let us recall some general facts about globally
generated vector bundles.

Let0 -V — H — W — 0 beashort exact sequence of vector spaces and denote the
dimension of V and W by v and r, respectively. Let s beaninteger, 0 < s < min{v,r},
and let M, C Hom(V, W) be the genera determinantal variety of al homomorphisms of
rank < s. Then M, isanormal variety of codimension (v — s)(r — s) and the singular part
of M, isprecisely M;_q (cf. [4] 11 §2). Let M be the intersection of the pre-image of M
under thesurjectionHom (H, W) — Hom(V, W) andtheopensubset U ¢ Hom(H, W) of
surjective homomorphisms. Then M iseither empty or anormal subvariety of codimension
(v—s)(r — s) with Sing (M) = M!_,. Clearly, M isinvariant under the natural GL(TV)
actionon U. Let M betheimage of M under the bundle projection U — Grass(H,r).
Then M has the analogous properties of M.

Let X beasmooth variety. Suppose E isalocaly free sheaf of rank » which is generated
by itsspaceof global sections H := H°(X, E). Theevaluationhomomorphism H 20 x —
E inducesamorphism : X — Grass(H,r). |f V C H isalinear subspace of dimension
vandif M! C Grass(H,r) isdefined asabove, then X, := =1 (M) C X isby construc-
tion precisely the closed subscheme where the homomorphismV @ Ox — E hasrank less
than or equa to s. Since GL(H) actstransitively on Grass(H, r'), we may apply Kleiman's
Transversality Theorem (cf. [98] 111 10.8) and find that for generic choiceof V' the morphism
X — Grass(H, r) istransverseto any of thesmooth subvarieties M\ M, . 1t followsthat
X, iseither zero or isasubvariety of codimension (v — s)(r — s) with Sing(X;) = X,_1.

Examples5.0.1 — Let E beaglobally generated rank r vector bundleand H = H°(X, E)
the space of global sections as above.

1) Supposer > d :=dim(X)andletv =r —d,s =r —d — 1, sothat X, is precisely
thelocuswhere V ® Ox — FE isnot fibrewiseinjective. If V' C H isgeneral, X, iseither
empty or hascodimensionr — (r —d — 1) = d + 1, henceisindeed empty. This meansthat
thereis a short exact sequence

0-0Y 5 E—-FE -0
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for somelocally free sheaf E’ of rank d. In words, any globally generated vector bundle of
rank bigger than the dimension of X is an extension of avector bundle of smaller rank by
atrivial bundle.

2) Let X beasurfaceand let V' C H beageneral subspacewithv =r — 1. Then X,._»
isempty or has codimension 2, and X,._3 is empty or has codimension 6 (henceis empty).
Thusfor ageneral choice of » — 1 global sections there is a short exact sequence

050Y ' E—-F—0,

where F' is of rank 1 almost everywhere, but has rank 2 precisely at a smooth scheme Z =
X,_o of dimension 0, i.e. F' = det(E) ® Zz. For r = 2 thisis part of the Serre correspon-
dence between 0-cycles and rank two bundles which will be discussed in Section 5.1.

3) Again, let X beasurfaceandlet V' C H beageneral subspacewithv = r. Then X,._;
is empty or has codimension 1 and X,._» is empty or has codimension 4 (hence is empty).
Thusfor ageneral choice of » global sectionsthereis a short exact sequence

0— 0% - E—L—0,

where L iszero or alocally free sheaf of rank 1 onthe smooth curve X ._;. We say F isob-
tained by an elementary transformation of thetrivial bundle along the smooth curve X,._;.
The detailswill be spelled out in Section 5.2.

Thus, thetheory of globally generated bundlesand determinantal varietiesprovidesauni-
form approach to the Serre correspondence and elementary transformations.

For the rest of this chapter we assumethat X isasmooth projective surface over an alge-
braically closed field of characteristic O which, sometimes, will even bethefield of complex
numbers. By K x we denote the canonical line bundle of X.

For the convenience of the reader werecall the following facts discussed in Chapter 1 and
specify them for our situation. If F' isareflexive sheaf of dimension 2 on X then all sheaves
Ext?(F, Ox) have codimension > ¢ + 2 by Proposition 1.1.10 and must therefore vanish
for ¢ > 0, which meansthat F' islocally free. If F'isonly torsion freethenf : F — F™is
acanonical embedding into alocally free sheaf. Again by Proposition 1.1.10 £zt! (F, Ox)
hasdimension 0 and £zt%(F, Ox) = 0. Hence F islocally free outside afinite set of points
in X and hashomological dimension 1,i.e.if ¢ : E — F isany surjectionwithlocally free
E thenker(yp) isasolocaly free, or, still rephrasing the same fact, any saturated subsheaf
of alocally freesheaf isagainlocally free. If D C X isadivisor thenclearly dh(Op) = 1.
Sincelocally any vector bundle G on D isisomorphicto O%,, onegetsdh(G) = 1 aswell.
If z € X isapoint, then dh(k(z)) = 2. Findly,if0 - F' - F — F" — 0isashort
exact sequencethen dh(F") < max{dh(F),dh(F")—1}.If Fistorsionfreeand ' C F
islocally free, then F'/F' cannot contain O-dimensional submodules.
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5.1 The Serre Correspondence

The Serre correspondencerel ates rank two vector bundleson a surface X to subschemes of
codimension 2. We begin with some easy observations.

If Fisatorsion freeshedaf of rank 1, then I~ =: LisalinebundleandZ := F ® L~ C
Ox istheideal sheaf of asubscheme Z of codimensionat least 2,i.e. F = L®Z;.Usingthe
Hirzebruch-Riemann-Roch Theoremonegets ¢, (F) = ¢ (L) and c2(F) = o (L ® Iz) =
—c2(0z) = €(Z). Any torsion free sheaf F' of arbitrary rank has afiltration with torsion
free factors of rank 1: simply take any complete flag of linear subspaces of the stalk of F’
at the generic point of X and extend them to saturated subsheaves of F'. For example, any
torsion free sheaf of rank 2 admits an extension

0>L1®7Ty »F > Lo®7Zyz —0 (5.1

and the invariants of F' are given by the product formula: det(F) = Li ® La, co(F) =
C1 (Ll).cl (Lg) + E(Zl) + E(Zz), and

A(F) des(F) — (F) = 4(@(21) n z(ZQ)) - (01 (L) — & (L2))2 (5.2)

2

~(er(E) e (LQ))2 = —(201(L) — e (F)) (5.3)

If Fislocally freethen Z; must be empty and if in addition Z5 is not empty then the exten-
sion cannot split.

Y

Theorem 5.1.1 —Let Z C X bealocal completeintersection of codimension two, and let
L and M beline bundleson X . Then there exists an extension

0O>L—>FE->MI;—0

such that E is locally free if and only if the pair (L ® M ® Kx,Z) has the Cayley-
Bacharach property:

(CB) If Z' C Z isasubschemewith ¢(Z') = ¢(Z) —1ands € H(X,L"® M ® Kx)
with S|Zr = O,then S|Z =0.

Proof. Let usfirst show the ‘only if’ part. Assume the Cayley-Bacharach property does
not hold, i.e. thereexist asubscheme Z' C Z andasections € H°(X,L"® M ® K x) such
that £(Z') = €(Z) —1and s|z» = 0 but s|z # 0. We haveto show that given any extension
£&:0—-L—-FE— M®Iz— 0thesheaf Eisnotlocaly free. Use the exact sequence
0—Zz; = Iz — k(x) = 0induced by theinclusion Z' C Z and the assumption to show
tha H'(X, L9 M @ Kx ®Tz) - H' (X,L”® M ® Kx ® Tz isinjective. The dual
of this map is the natural homomorphism Ext' (M ® 7z, L) — Ext' (M ® 7, L) which
is, therefore, surjective. Hence any extension ¢ fitsinto acommutative diagram of the form
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0 0
\ 2

0—- L - E —> M®I; —0
[ ) !

0—- L - E — M®Izy —0
\ 2
\ 2
0 0

Since L and M ® Tz aretorsion free, E’ istorsion free as well. Hence the sequence 0 —
E - E'" — k(z) — 0isnon-split and E cannot be locally free.

For the other direction we use theassumptionthat Z isalocal completeintersection. This
implies that there are only finitely many subschemes Z' ¢ Z with ¢(Z') = ¢(Z) — 1. For
let 2 be aclosed point in the support of Z. Then there is presentation

f2
00— OX795 (ﬁ)
Applying the functor Hom (k(x), .), wefind Ext!(k(z),Zz) = k(x), Since f1, fo € m,,
so that thereis precisely one subscheme Z' C Z withZz: /T = k(z).
Suppose how that

o2 "B, 0.

E:0—>L—>E—->M®I;—0

is a non-locally free extension. Then there exists a non-split exact sequence0 — E —
E' — k(z) — 0 wherez isasingular point of E. Thesaturation of L in E’ can differ from
L only in the point . Since L is locally free, it is saturated in £’ as well. Thus we get a
commutative diagram of the above form. Hence, the extension class £ is contained in the
image of the homomorphism Ext' (M ® Tz, L) — Ext' (M ® Tz, L). Sincethe Cayley-
Bacharach property ensures that the map Ext' (M ® Tz, L) — Ext' (M ® T, L) isnot
surjective, we can choose ¢ such that it is not contained in the image of this map for any of
thefinitely many Z' that could occur. The corresponding E will be locally free. a

The Cayley-Bacharach property clearly holdsfor al Z if HO(X,L"® M @ Kx) = 0.

Examples5.1.2 —i) Let X = P2 and z € X. Using Serre duality and the exact sequence
0 - 7, - Ox — k(z) — 0, wefind that Ext'(Z,,0x) = H'(X,Z,(-3))" =
H(X,k(x))” = k. Hence, up to scalarsthere is aunique non-split extension 0 — Ox —
E, — T, — 0. Since H(X, K x) = 0, the Cayley-Bacharach Condition is satisfied and,
therefore, this extension is locally free. Moreover, E, is u-semistable. Thus every point
xz € X correspondsto a u-semistable vector bundle E,,.

ii) Let X beanarbitrary smooth surfaceandlet 2 € X beabase point of thelinear system
IL"®M®Kx|,i.e al global sectionsof L"® M ® K x vanishinz. Then (L"9M @K x, x)
satisfies (CB). Hence there exists a locally free extension of theform 0 — L — E —
M®I, —0.
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Analogoudly, if 2,y € X aretwo pointswhich cannot be separated by the linear system
|L” ® M ® Kx|, then there exists a locally free extension of theform0 — L — E —
M ® Iy, 3 — 0. These two examples are important for the study of surfaces of general

type (cf. [227]).

Though the Serre correspondence worksfor higher dimensional varietiesaswell, itisin
general not easy to produce vector bundlesin thisway. The reason being that codimension
two subschemes of avariety of dimension > 2 are difficult to control.

On surfaces Serre’s construction can be used to describe p-stable rank two vector bundles
with given determinant and large Chern number c,.

Theorem 5.1.3 —Let X bea smooth surface, H anampledivisor,and Q € Pic(X) aline
bundle. Then thereis a constant ¢, such that for all ¢ > ¢, there exists a u-stable rank two
vector bundle E with det(E) = Q and 2 (E) = c.

Proof. First observe that it sufficesto prove the theorem under the additional assumption
that deg(Q) is sufficiently positive. For if the theorem holdsfor @' = Q(2nH), n > 0,
and gives a u-stable vector bundle E’ with determinant Q' and second Chernclass ¢’ > ¢
for some constant ¢f), then E = E' ® Ox(—nH) isalso u-stable, has determinant Q and
Chernclasscy(E) = ¢ —nH.(c1(Q) +nH).Hencecy = ¢ — nH.(c1(Q) +nH) will do.

Thuswe may assumethat deg(Q) > 0. Theideaisto construct E as an extension of the
form

0-0x > FE—Qx1I; —0, (5.9

sothatindeed det(F) = Qandco(E) = £(Z).Letf; = h°(Kx® Q). Thenfor ageneric0-
dimensional subscheme Z' of length £(Z") > ¢, thesheaf Kx ® Q® Tz hasnonon-trivia
sections, so that for ageneric subscheme Z of length ¢(Z) > ¢, thepair (K x®Q, Z) hasthe
Cayley-Bacharach property (CB). Hence, under this hypothesisthere exists an extension as
abovewithlocally free E. Suppose M C E wereadestabilizing linebundle. It followsfrom
theinequality (M) > pu(E) = ¢1(Q).H > 0 = pu(Ox) that M cannot be contained in
Ox . Thusthe composite homomorphism M — E — Q ® Tz isnonzero. It vanishesalong
adivisor D with Z ¢ D and deg(D) = u(Q) — u(M) < Lei(Q).H =: d. The family
of effective divisors of degreeless than or equal to d isbounded. (This can be proved using
the techniques developed in Chapter 3 or more easily using Chow points. For a proof see
Lecture 16 in[191].) Let Y denote the Hilbert scheme that parametrizes effective divisors
on X of degree < d, and let /5 beits dimension. For any integer £ > max{/y, (>} let Y
be the relative Hilbert scheme of pairs[Z C D] where [D] € Y is an effective divisor and
Z C Disatupleof ¢ distinct closed pointson D. Thenfor each[D] € Y thefi breff[D] of the
projection Y — Y hasdimension ¢, so that dim(Y') = £ + ¢,. Theimageof ¥ in Hilb‘(X)
under the projection [Z C X] +— Z hasdimension < £ + /, < 20 = dim(Hilb*(X)).
Hence, if Z isageneric /-tuple of points, adivisor D containing Z and having degree < d
does not exist, which impliesthat the corresponding E isindeed p-stable. |
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Remark 5.1.4 — The same method allows to construct p-stable bundles E with vanishing
obstruction space Ext?(E, E),. Such bundles correspond to smooth points in the moduli
space M (2, Q, ¢). (Note that the vanishing conditionistwist invariant, hence we may again
assumethat Q is as positive as we choose.)

Indeed, tensorizing the exact sequence(5.4) by E"® K x, Q" ® K x and K x, respectively,
we get sequences

0-E 9Ky 5&nd(EY Kx 2 E®I;, Kx =0 (5.5)
02 Kx - E @Kx -7, Kx =0 (5.6)
0+Kx 2 E@Kx > Q@I Kx —0 (5.7)

From these we can read off that

h2(En
0

)) = h°(End(E) ® Kx)
WE 2Kx)+h(E®I;© Kx)
W (E"® Kx) + h°(E® Kx)
Q" ® Kx) + h°(Iz ® Kx)
+h(Kx)+h(Qe Kx ®1z),

ext?(F, E)o + h*(Ox)

d(E
®
(E” ®
®

ININ N

thusext?(E, E)y < h°(Q @ Kx)+h°(Zz 9 Kx)+h*(Q® Kx ®1). Thefirst term on
the right hand side vanishes if deg(Q) > deg(K x ). The second and the third term vanish
for generic Z of sufficiently great length. |

Thetheorem aboveassertsthe existence of -stablevector bundlesfor largesecond Chern
numbers. It is not known if one can find stable bundles with given second Chern class é, €
CH?(X)andcy > 0.Moreprecisely, oneshould ask if for agivenlinebundle Q € Pic(X)
andaclassc € CH?(X) of degreezero one can construct a u-stable rank two vector bundle
Ewithé(E) = ¢+ c2(E) - 2, wherez € X isafixed base point and c2(E) is considered
as an integer.

For the rest of Section 5.1 we assume for simplicity that our surface X is defined over
the complex numbers. Since the Albanese variety Alb(X) isafirst, though in general very
rough, approximation of C' H2(X), thefollowing result can be regarded as a partial answer.
Before stating the result, let us briefly recall the notion of the Albanese variety of a smooth
variety X . By definition, Alb(X) isthe abelian variety H°(X, Qx)~/H, (X, Z) and, after
having fixed a base point 2 € X, the Albanese map is the morphism defined by

A X — Alb(X), y»—>/
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The image of X generates Alb(X) as an abelian variety. In particular, the induced mor-
phism A : X* — Alb(X), given by addition, is surjective for sufficiently large ¢. Note
that A : X — Alb(X) isinvariant with respect to the action of the symmetric group
on X*. It therefore factors through the symmetric product and thus induces a morphism
A : Hilb*(X) — Alb(X). Thereisalso agroup homomorphism A : CH2(X) — Alb(X)
which commuteswith A and themap X — CH?(X),z +— [z]. Both A and A depend on
the choice of the base point . As ageneral reference for the Albanese map we recommend
[252].

Proposition 5.1.5 — For given Q € Pic(X),z € X, a € Alb(X), and a polarization
H one can find an integer ¢y such that for ¢ > ¢, there exists a pu-stable rank two vector
bundle E with det(E) = Q, ¢3(E) = cand A(&(E)) = a.

Proof. Asabove, we may assumethat deg(Q) > 0. If Z isacodimension two subscheme
and if E isalocally free sheaf fitting into a short exact sequence0) -+ Ox — E — Q ®
Iz — 0,then A(é(E)) = A(Z). Henceit is enough to show that the open subset U C
Hilb’z(X ) of those subschemes Z, for which a u-stable locally free extension exists, maps
surjectively to Alb(X). In the proof of 5.1.3 we have seen that U containsthe set U’ of all
reduced Z which are not contained in any effective divisor D of degree < d (notations as
in5.1.3) and satisfy h%(Q ® Kx ® Iz/) = 0foral Z' c Z with¢(Z') = ¢(Z) — 1. We
have also seen that the set of Z € Hilb’(X) that are contained in some divisor D as above
has codimension > £ — /5. Choosing ¢ large enough we can make this codimension greater
than ¢ = h'(Ox) which is the dimension of Alb(X') and hence an upper bound for the
codimension of any fibre of the morphism A : Hilb®(X) — Alb(X). Henceit sufficesto
show that A : Hilb*(X), — Alb(X) is surjective, where Hilb*(X), C Hilb‘(X) isthe
open subschemeof all reduced Z € Hilb’(X)withh®(Q®@ Kx ®Zz) = 0foral Z' ¢ Z
of colength one.

LetC € |mH|beasmooth amplecurvecontaining thefixed basepoint z:. Sincethegroup
H'(X,Ox(—C)) vanishes, the restriction homomorphism H!(X,0x) — H(C,0O¢)
isinjective. Using Hodge decomposition, this map is complex conjugate to the restriction
map H°(X,Qx) — H°(C,Q¢). It follows that the dual homomorphism H°(C, Q¢)” —
H°(X, Q) issurjective, and therefore the group homomorphism Alb(C) — Alb(X) is
surjective aswell. The Albanese map S*(C') — Alb(C) = Pic”(C) can also be described
by C O Z + Oc(Z — (- x) € Pic®(C). Henceit sufficesto find for any given line bundle
M € Pic?(C) areduced subscheme Z C C suchthat thefollowing conditionsare satisfied:
(D) Oc(Z—t-z)=2Mand (2 h°(X,0® Kx ®Zz) = 0forevery Z' C Z of colength
one. If m > 0then H°(X, Q® Kx ® Ox (—C)) = 0, so that property (2) followsfromthe
factthat H°(C, Q® Kx ® Oc(—Z")) = 0 for sufficiently large ¢ and any scheme Z' C C
of length ¢ — 1. Finally, M (¢ - z) isvery amplefor £ >> 0 independently of M. Hence we
easily find areduced Z C C' with O¢(Z) = M (¢ - z), i.e. satisfying condition (1). |

It is only natural to ask if Serre's construction can also be used to produce higher rank
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bundles. Thisisin fact possible as will be explained shortly. As a generalization of 5.1.3,
5.1.4, and 5.1.5 for the higher rank case one can prove

Theorem 5.1.6 —For given Q € Pic(X),r > 2,a € Alb(X),z € X, andapolarization
H one can find a constant ¢y such that for ¢ > ¢, there exists a u-stable vector bundle
Ewithrk(E) = r, det(F) = Q,and c2(E) = ¢, such that H?(X, Endy(E)) = 0 and
A (E)) = a.

Proof. We only indicate the main idea of the proof. The details, though computation-
ally more involved, are quite similar to the ones encountered before. First, one generalizes
Serre’s construction and considers extensions of the form

r—1
0—>L—>E—>@Mi®IZi - 0.
i=1
Assumingthatall Z;'sarereducedand Z;NZ; = () (i # j), onecan provethat alocally free
extensionexistsif andonly if (L™ ® M; ® K x, Z;) satisfiesthe Cayley-Bacharach property
foralli =1,...,r—1.Inorder to construct vector bundles as asserted by the theorem one
considers extensions of the form
r—1
0— Q((1—r)nH) = E - @ Tz (nH) -0,
i=1
for some sufficiently largeinteger n. Twisting with 9~ ® Ox ((r — 1)nH) yields the exact
sequence
r—1
0-0x - E' - @Iz @ Q (rH) -0,
i=1
where E' := E ® Q7((r — 1)nH). Then the Cayley-Bacharach property holds for generic
Z; with €(Z;) > h°(Q7(rnH) ® Kx) + 1. Suppose now, that ' C E' is adestabilizing
locally free subsheaf of rank s < r. If n was chosen largeenough so that 1(Q™(rnH)) > 0,
then F" must be contained in @, 7, ® Q™ (rnH), and passing to the exterior powersthere
isanonzero and therefore injective homomorphism

det(F) ® Q°(—rsnH) — @ L7, 0..0%;, -
1<y < <ig <r—1

(Note that the sheaf on the right hand side is the quotient of A* (d,;Z,) by itstorsion sub-
module.) Thusthereis an effective divisor D of degree

deg(D) = s - w(Q"(rnH)) — s - p(F) < p(Q7(rnH))

which contains at least s of ther — 1 subschemes Z;. Asin the proof of 5.1.3 thisisimpos-
sibleif all Z; are general and have sufficiently great length.

Thevanishing of H2(X,End(E)o) = Ext?(E, E), isachieved asin 5.1.4. It is aso not
difficult to see that the proof of 5.1.5 goes through. |
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5.2 Elementary Transformations

Now, we come to the third example discussed in the introduction.

Definition 5.2.1 — Let C' be an effective divisor on the surface X . If F' and G are vector
bundleson X and C', respectively, then avector bundle E on X isobtained by an elementary
transformation of F' along G if there exists an exact sequence

0—-FE—->F—iG—0,

where i denotesthe embedding C' C X.

If no confusionislikely, wejust write G instead of i..G, meaning G with its natural O x -
structure.

Proposition 5.2.2 —If F and GG arelocally free on X and C, respectively, then the kernel
E of any surjection p : F' — .G islocally free. Moreover, if p denotes the rank of G, one
has det(E) = det(F) ® Ox(—p - C) and c2(E) = c2(F) — pC.ci(F) + $pC.(pC +
Kx) + x(G).

Proof. Since locally G = 0% and 0 — Ox(—C) — Ox — Oc — Oisalocaly free
resolution on X, the sheaf i.G isof homological dimension < 1. Thisimpliesthat dh(E) =
0,i.e. Eislocally free. Theisomorphismdet(E) = det(F) @ det (i, G)” = det(F)(—pC)
followsfromthefact that G istrivial on the complement of finitely many pointson C. Thus
det(i.G) and det(i*Og" ) areisomorphic on the complement of finitely many points, hence
det(i.G) = det(i.05”) = Ox (pC). Theformulafor the second Chern classfollowsfrom
x(E) = x(F) — x(G) and the Hirzebruch-Riemann-Roch formulafor E and F: x(F) =
Ler(F).(er(F) = Kx) = ¢2(F) + tk(F)x(Ox) and x(E) = Le1(B).(er(E) — Kx) —
ca(E) + rk(F)x(Ox). Inserting ¢; (E) = ¢1(F) — pC givesthe desired result. O

Notethat for asmooth (or at least reduced) curve C' the characteristic x (G)) can bewritten
as x(G) = deg(G) + p(1 — g(C)) = deg(G) — §C.(Kx + C). Hence cz(E) = c2(F) +
(deg(G) — pC.cy (F)) + 2= o2,

Example5.2.3 — A trivid exampleisOx (—C), whichistheelementary transformof O x
aong O« (—C). Another exampleis provided by the sheaf Q x (log C) of differentialswith
logarithmic poles along a smooth curve C' C X. Thisisthelocally free sheaf that islocally
generated by dzy /2, and dzo, where (x4, z5) isaloca chartand z; = 0 isthe equation for
C. Therestriction map Qx — Q¢ twisted by O(C) yields an exact sequence

0— Qx(logC) = QUx(C) = Qc(C) — 0.

Indeed, fidzy /x1 + fodzs/x1 ismappedto zeroin Q- (C) if andonly if fo = g-z;. Thus
N x (log C) isthe elementary transform of 2 x (C') along Q¢ (C).
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Let E be any vector bundle of rank r on a smooth projective surface X . For sufficiently
largen the bundle E™(nH) is globally generated. The discussion in the introduction tells
us that there is a short exact sequence

0— 0% = E'(nH) - M —0

for some line bundle M/ on asmooth curve C' C X . Dualizing this sequence and twisting
with Ox (nH) yields

0= E— Ox(nH)®*" = L =0,

with L := £zt (M,Ox(nH)). Note that L is aline bundle on C, as can easily be seen
from the fact that, locally, M = O¢ and £zt (O, Ox) = Oc(C). Infact L = M~ ®
Oc(C + nH). Thuswe have proved:

Proposition 5.2.4 — Every vector bundle E of rank » can be obtained by an elementary
transformation of OF" (nH), withn >> 0, along aline bundleon asmooth curve C' C X.0O

Similarly to Serre’s construction, elementary transformations can be used to produce p-
stable vector bundleson X.

Theorem 5.2.5 —For given Q € Pic(X), r > 2, ampledivisor H and integer ¢y € Z,
there exists a u-stable vector bundle E with det(E) = Q, rk(E) = r and c2(E) > ¢o.

Proof. Let C beasmooth curve. According to the Grothendieck Lemma1.7.9, thetorsion
free quotients F of O%" with u(F) < “2C.H and rk(F) < r form abounded family
C. Now hom(O", Oc(nH)) grows much faster than hom(F, Oc (nH)) for any F inthe
family C. Thus, if n is sufficiently large, ageneral homomorphism ¢ : O%" — Oc(nH) is
surjectiveand doesnot factor throughany F' € C. Let E bethekernel of . Then E islocally
freewith det(E) = Ox(—C) and c2(E) = nH.C > 0. In order to see that E is u-stable,
let E' C E beasaturated proper subsheaf, let F” bethesaturationof £/ in O%" and consider
thesubsheaf F'/E' C Oc(nH).If F'/E"isnonzero,thendet(E') = det(F')@Ox (—C),
hence

H(E") = W) = S < 0= S = (),
and we are done. If on the other hand F'/E’ = 0 then F := O%"/E’ istorsion freeand ¢
factorsthrough F'. By construction F cannot be containedin C, hence u(F) > “=1C.H. It
follows that

_r—rk(£)
rk(E")
So E isindeed p-stable.

u(F) < -~ ;k?];(fl) . . Loow< —%—H — u(E).

u(E') =
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If Q isan arbitrary line bundle, choosem > 0 insuch away that Q" (rmH) isvery am-
ple, and pick agenera curve C' € |Q7(rmH)|. If E isap-stable vector bundle constructed
according to the recipe above with determinant det(E) = Ox (—C) = Q(—rmH), then
E(mH) is u-stable with determinant Q and large second Chern class. a

Remark 5.2.6 — One can in fact choose ¢ in the proof of the theorem in such away that
Ext?(E, E)y = Hom(E,E ® K)o~ vanishes. First check that for n sufficiently large,
any homomorphism v, : E — F ® K x can be extended to ahomomorphism : OF" —
0% ® K. Conversdly, such ahomomorphism ¢ leaves E invariant, if and only if there
isasectiony’ € H°(X, Kx) suchthat //'¢ = ). It is easy to see that the condition on 1
to be traceless requires ¢ to factor through a quotient bundle O%*, 0 < s < r. As before,
sincethe family of such quotientsis obviously bounded, for sufficiently largen and general
o thiswill never be the case. m|

5.3 Examplesof Moduli Spaces

Fibred Surfaces. We first show that for certain polarizations on ruled surfaces the moduli
space is empty. Thiswill be a consequence of the relation between stability on the surface
and stability on the fibres, which can be formulated for arbitrary fibred surfaces. The ar-
guments may give afeeling for Bogomolov's restriction theorem proved in Chapter 7. For
simplicity, we only deal with the rank two case, but see Remark 5.3.6.

Let X beasurface, let C beasmoothcurve, andlet 7 : X — C beasurjectivemorphism.
Fix Chern classes ¢; and c,. Asusud, let A := 4cy — ¢2. By f we denote the homology
class of thefibre of .

Definition 5.3.1 — A polarization H is called (¢1, ¢o)-suitable if and only if for any line
bundie M € Pic(X) with —A < (2¢;(M) — ¢1)? either f.(2¢;(M) — ¢;) = 0 or
f-(2¢1(M) — ¢1) and H.(2¢1 (M) — ¢1) have the same sign.

Letn € C bethe generic point of C' and denote the generic fibre X x Spec(k(n)) by
F,.If E isacoherent sheaf on X, let E,, betherestriction of E to F;,.

Theorem 5.3.2 —Let H bea (¢, ¢2)-suitable polarization and let E be a rank two vector
bundlewith ¢; (E) = ¢; and ¢z (E) = ¢». If E is y-semistable (with respect to H), then E,,
issemistable. If E,, is stable, then E is p-stable.

Proof. Let E be p-semistableand let M’ C E,, bearank onesubbundlesuchthat E,, /M’
islocally free. Then there exists a unique saturated locally free subsheaf M C E of rank
onesuchthat M, = M'. By (5.3) wehave A > —(2¢; (M) — ¢1)?. If M, isdestabilizing,
i.e.if f.(2¢1 (M) — ¢1) > 0then, since H is (¢y, c2)-suitable, also H.(2¢; (M) — ¢1) > 0,
contradicting the p-semistability of E.
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Conversely, assumethat E,, isstable. If A/ C E isasaturated subshesf of rank one, then
F.er (M) = deg(My) < deg(E,)/2 = (f.c1)/2

Hence f.(2¢1 (M) — ¢1) < 0. Since H is (¢1, ¢o)-suitable by assumption and since again
A > —(2¢1(M) — ¢1)? by (5.3), we conclude that H.(2c; (M) — ¢;) < 0.Hence E is
u-stable with respect to H. m|

Recall from Section 2.3 that E,, is semistable or geometrically stable if and only if the
restriction of E to the fibre 71 (¢) is semistable or geometrically stable, respectively, for
all t in adense open subset of C.

If 1 (E).f = 1(2), then, for obvious arithmetical reasons, E,, is geometrically stable if
and only if E,, is semistable. Hence

Corollary5.3.3 —If ¢1.f = 1(2) and if H is (¢, c2)-suitable, then a rank two vector
bundle E with ¢, (E) = ¢1 and c2(E) = o isp-stableif and only if E,, is stable. Moreover,
E isu-semistableif and only if F is u-stable. m|

Corollary 5.3.4 —If X — C isaruled surface, then there exists no vector bundle £ on X
thatis u-semistablewith respecttoa (c; (E), c2 (E))-suitable polarization and that satisfies
e (B).f =1(2).

Proof. Thisis aconsequence of the fact that thereis no stablerank 2 bundleonP'. O

Remark 5.3.5 — The Hodge Index Theorem shows that for any choice of (¢, ¢2) there
exists a suitable polarization. Indeed, let H be any polarization and define H,, = H + nf.
Then H,, isamplefor n > 0 and (¢, co)-suitableforn > A - (H.f)/2. To seethis let
& := 2¢1(M) — ¢, for someline bundle M and assumethat A > —£2. Since f2 = 0 and

f.((f.f)Hn — (f.Hn)f) = 0, the Hodge Index Theorem implies that

0> ((F&Hn — (FHE) = (FEH2 — 2O Ha)(Hy &) + (1.Hy) €

Dividing by 2(H,,.f) we obtain
2

1.0 > (19 (55 +n) + e

Hence either f.£€ = 0, or (f.£)? > 1 and therefore

for sufficiently large n. The last inequality meansthat H,,.¢ and f.£ have the same sign.

(fO(Hn.&) >n -
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Remark 5.3.6 — Theorem 5.3.2 can be easily generalized to the higher rank case. In fact,
for r > 2 onesaysthat apolarization H issuitableif it is contained in the chamber close to
thefibreclass f. (For the concept of wallsand chamberswerefer to Appendix 4.C.) Numer-
ically, thisis described by the condition that for al ¢ € Pic(X) such that —’”TZA < <0
either £.f = 0 or &.f and £.H have the same sign. The argument of the previous remark
shows that if H isany polarization then H + nf issuitableif n > r?(H.f)A/8 (seedso
Lemma4.C.5).

K 3-Surfaces. Inthe second part of this section two examplesof moduli spacesof sheaveson
K3 surfaces are studied. We will see how the techniquesintroducedin thefirst two sections
of this chapter can be applied to produce sheaves and to describe the global structure of
the moduli spaces. We hopethat studying the examples the reader may get afeeling for the
geometry of these moduli spaces. They will also serve as an introduction for the genera
results on zero- and two-dimensional moduli spaces on K3 surfaces explained in Section
6.1. Both examples share a common feature. Namely, the canonical bundle of the moduli
space of stable sheavesis trivial. This is a phenomenon which will be proved in broader
generality in Chapter 8 and Chapter 10.

The canonical bundle of a K3 surfaceistrivia and the Euler characteristic of the struc-
ture sheaf is 2. Hence Serre duality takes the form Ext’(A4, B) = Ext? *(B, A)” for any
two coherent sheaves A, B. Any stable sheaf E issmple, i.e. hom(E, E) = 1, so that
ext?(E, E)o = hom(E, E)o = hom(E, E) — 1 = 0. Thusany moduli space M*(2, Q, A)
of stable rank 2 sheaves with determinant Q and discriminant A is empty or smooth of ex-
pected dimension

dim M*(2,Q,A) = A — (r* = 1)x(0) = A — 6 = 4cy — ¢} — 6.

Example5.3.7 — Let X C P? be ageneral quartic hypersurface. By the adjunction for-
mula X hastrivial canonical bundle, and by the L efschetz Theorem on hyperplane sections
71 (X) is trivid ([179] Thm. 7.4). Hence X is a K3 surface. Moreover, by the Noether-
Lefschetz Theorem (see[90] or [42]) its Picard groupisgenerated by Ox (1), therestriction
of the tautological line bundle on P2 to X. In particular, there is no doubt about the polar-
ization of X which therefore will be omitted in the notation.

Consider the moduli spaces M (2, Ox (—1), ¢2). For any rank two sheaf with determi-
nant Ox (—1) p-semistability implies p-stability. Thus M (2, Ox (—1), ¢2) isasmooth pro-
jective scheme. If M (2,0x(—1),¢2) isnot empty then its dimension is 4¢; — 10 (since
c1(Ox(=1))? = deg(X) = 4). In particular, if a stable sheaf with these invariants exists
then 4¢, > 10. Thisis dlightly stronger than the Bogomolov Inequality 3.4.1. The smallest
possible moduli spaceis at least two-dimensional. In fact

Claim: M := M(2,0x(-1),3) =2 X.

Proof. Since the reflexive hull of a u-stable sheaf is again u-stable, any F' € M defines
apoint F77in M (2,0x(—1), ca) with ¢o < 3. By theinequality abovec(F™™) = 3,i.e.
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F = F"islocaly free. For any F' € M the Hirzebruch-Riemann-Roch formula gives
X(F) = 3 and hence hom(F,Ox) = h*(F) > 3 (wehave h°(F) = 0 because of the
stability of F'). Lety; : FF — Ox,i = 1,2, 3 bethreelinearly independent homomorphisms
and let ¢ denote the sum (1, @2, p3) : F — O%. We claim that ¢ fits into a short exact
sequence of the form

0— F 2 0% — T,(1) — 0,

where Z,, istheideal sheaf of apoint z € X. If ¢ were not injective, then im(y) would be
of the form Zy (@) for some codimension two subscheme V. Since Zy (a) C O%, one has
a < 0. On the other hand, as a quotient of the stable sheaf F' the rank one sheaf Zy (a) has
non-negative degree. Therefore, a = 0. But then

@:F—)IVCOXCO§(

and hencethe ¢; would only span aone-dimensional subspace of Hom (F, Ox ), which con-
tradicts our choice. Therefore p isinjective. A Chern class calculation showsthat its coker-
nel has determinant Ox (1) and second Chernclass 1. Sincerk(coker(¢)) = 1, itisenough
to show that coker(¢) istorsion free. If not, let F” be the saturation of F in O%. Then F’
isarank two vector bundle aswell and

det(F) C det(F') = Ox(b) C A20%

for some —1 < b < 0. Sinceboth F' and F' arelocaly free, det(F") % det(F'); henceb =
0. Thequotient O% / F” thenisnecessarily of theform Zy for acodimension two subscheme
V.But Hom(Ox,Zy) = 0 unlessV = (), which then impliesthat F’ =~ (0%, contradicting
again the linear independence of the ;. Eventually, we see that indeed any F' € M is part
of a short exact sequence of the form

0= F = 0% =T, (1) = 0.

Thestability of FimpliesH°(X, F) = 0, sothatthemap H°(X, 0%) — H°(X,Z,(1)) =
k? is bijective. Hence Ext' (F, Ox) = H'(X,F)~ = 0. Inserting this bit of information
into the Hirzebruch-Riemann-Roch formula above one concludes that hom(F, Ox) = 3.
Thisimplies that ¢ (and hence the short exact sequence) is uniquely determined by F' (up
to the action of GL(3)).

On the other hand, if we start with apoint 2 € X and denote the kernel of the evaluation
map H°(X,7,(1))® Ox — T,(1) by F,, then F, islocally free and hasno global section.
Clearly, h°(X, F},) = 0 impliesthat F, is stable; for any subsheaf possibly destabilizing F,
must be isomorphic to Ox. In order to globalize this construction let A C X x X denote
thediagonal, Zx itsideal sheaf, and let p and ¢ be the two projectionsto X . Define a sheaf
F by means of the exact sequence

0= F = p"(p«(Ta ® ¢*Ox (1)) = Za ® ¢"Ox (1) — 0.
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Fispflaand 7, := Fl|,-1(,) = F,. Thus F definesamorphism X — M, z — [F].
The considerations above show that thismap is surjective, because any F' ispart of an exact
sequence of this form, and injective, because ¢ is uniquely determined by F'. Since both
spaces are smooth, X — M isan isomorphism. |

We will provethat ‘good’ two-dimensional components of the moduli space are aways
closely related to the K3 surface itself (6.1.14). In many instances the role of the two fac-
tors can be interchanged. Let us demonstrate this in our example. It is straightforward to
complete the exact sequence

0-F, - H(X,Z,(1)) ® Ox = Z,(1) = 0
to the following commutative diagram with exact rows

0— F, - HY(X,Z,(1))® Ox — Z,(1) =0

! ! !
0— Qps(l)]x — HOMP3001)®0x — Ox(1) =0
1 1 1
0— 7, — Ox - k(z) —0.
Both descriptions
0= F, = HX,Z,(1)) ® Ox = T,(1) = 0 (5.8)
and
0= F, - Qps(l)|x > Z, -0 (5.9)

are equivalent. Back to the proof, we had constructed the exact sequence
0= F = p"(p«(Za ® ¢"Ox (1)) = Za ® ¢"Ox (1) = 0

on X x X. Restricting this sequenceto {z} x X yields (5.8), and restricting it to the fibre
X x{z}yields(5.9). (Usetheexact sequencel — Zao®¢*O(1) — ¢*O(1) - O(1)a = 0
to seethat p.(Za ® ¢* O(1)) =2 Qps(1)|x.) Thusthe vector bundle F on X x X identifies
each factor as the moduli space of the other.

Example5.3.8 — Let 7 : X — P! bean dliptic K3 surface with irreducible fibres. We
furthermore assume that X — P! hasasection ¢ C X. By the adjunction formula o is
a (—2)-curve. For the existence of such surfaces see [22]. If f denotes the class of afibre,
then H = o + 3f, and more generally, H,, := H + mf form > 0, are ample divisors.
Thisfollows from the Nakai-Moishezon Criterion.

If ¢1.f = 1(2), thenfor fixed ¢, and m > 0, the pgr,, -semistability of arank two vector
bundleis equivaent to its u,, -stability (cf. Corollary 5.3.3).

Claim: If m is sufficiently large, then M := My, (2,0x(c — f),1) = X.
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Therearetwo waysto provethe claim. Thefirst uses Serre’s construction, and the second
relies on the existence of a certain universal stable bundle on X, discovered by Friedman
and Kametani-Sato, that restricts to a stable bundle on any fibre. For both approaches one
needs Corollary 5.3.3 which says:

For m > 0 abundle E with determinant Q such that ¢;(Q).f = 1 is u-stable (with
respect to the polarization H,,) if and only if its restriction to the generic fibre is stable.

Notethat A = 4cy — (0 — f)? = 4 — (=2 — 2) = 8, sothat dim(M) = 2. Asbefore
thisimpliesthat any u-stable sheaf in M islocally free.

Proof of the Claim via Serrée's construction.

Let [E] € M beaclosed point. By the Hirzebruch-Riemann-Roch formula x (E) =
(o= f)? — 2 + 4 =1, and by stability h*(E) = hom(E, Ox) = 0, sothat h°(E) > 1.
Since the restriction of E to the generic fibre F;, is stable of degree 1, aglobal section s €
H°(X, E) can vanish in codimension two or along a divisor not intersecting the generic

fibre, i.e. aunion of fibres. Hence one aways has an exact sequence of the form
0->0x(nf) > E—=ZIz00x(c—(n+1)f)—0.

A comparison of the Chern classes yields the condition 1 = ¢»(E) = n + £(Z). Hence
either n = 0 and Z = {z}, i.e. s vanishesin codimension two at exactly one pointz € X,
orn=1andZ =0, i.e. E isanextension of thelinebundle Ox (¢ — 2f) by Ox(f).
The following calculations will be useful: essentially because of 02 = —2, thereisno
effectivedivisor D suchthat o ~ v f + D for any integer v > 1. Thismeansthat the groups
W (Ox (o — vf)) = W2 (Ox(vf — o)) vanish. On the other hand, h2(Ox (o — vf)) =
h(Ox (vf—0o)) = 0 becauseof tability: deg(Ox (vf—0)) = (vf—0o)(o+(m+3)f) =
v—m-—1<0form > v — 1. Itfollowsthat h*(Ox (o0 — vf)) = K (O(vf — o)) =
—~x(Ox(o—vf)=v—1.
Let us now take acloser ook at the two casesn = 0 andn = 1:
i) An extension

0-0x 2 E—>7L,20x(c —f) =0

isstableif and only if it is non-split and = ¢ o. Moreover, for given z thereis exactly one
non-split extension.

Proof. First check that indeed ext! (Z, ® Ox (o — f), Ox) = 1. Let E betheuniquenon-
trivial extension. I isstableif and only if therestriction E,, to the genericfibreisstable. Let
F be any smooth fibre that does not contain «. It sufficesto show that the restriction map

p:Exty (7, ® Ox (0 — f),0x) — Extp(Op(c N F),OF)
is nonzero, for then Er is stable and hence E,, is stable. Now p is dual to

p”: HY(F,0Op(cNF)) — H' (X, T,(c — f)).
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Since H°(X, T, (0 — f)) = 0, the kernel of p is precisely H°(X, Z,(c)). Finally, since
h°(OF (o N F)) = 1, the homomorphism p~ isnonzeroif and only if h%(Z,(0)) = 0, i.e.
ifandonly if z ¢ o. m|

ii) An extension of the form
0 Ox(f) > E—Ox(c—2f)—>0

isstableif and only if it does not split. The space of non-isomorphic non-trivial extensions
is parametrized by P(H' (Ox (3f — 0))”) = PL.

Proof. Again, it sufficesto check that agiven nontrivial extension classis not mapped to
zero by the restriction homomorphism

Exty (Ox (o —2f),0x(f) & Exth(Op(cnF),OF)
~ HY(Ox(3f — 7)) = H'(Op(-0NF))

for ageneral fibre F'. Consider the exact sequence
0 — H' (Ox(2f —0)) -5 HY (Ox(3f — o)) — HY(Op(—0 N F)) — 0

of vector spaces of dimensions 1,2 and 1, respectively. Using the Leray Spectral Sequence
we can identify H'(Ox (vf — o)) = H(R'7n.Ox(—0) ® Op1(v)) for v = 2,3, which
impliesthat R'7.Ox (—o) = Op1(—2). In this way the problem reduces to showing that
varying the base point 7(F) € P!, which is the zero locus of asection s € H°(Op1(1)),
leads to essentially different embeddings H°(Op1) — H°(Op1(1)), which is obvious. O

iii) Let A C X x X bethediagonal, Zx itsideal sheaf and p and ¢ the projectionsto the
twofactors. It followsfrom the Base Change Theorem and our computationsof conomology
groupsabovethat B := R'p.(Za ® ¢*Ox (o — f)) isaline bundle. Similarly, one checks
that Ext! (Za ® ¢*Ox (o — f),p*B) = Hom(B, B) = C. Let

0>B—>F—>Ia®¢Ox(c—f)—0

betheuniquenontrivial extensionon X x X. Then F isp-flat and Fx\ , parametrizesstable
sheaves. This producesan open embedding X \ ¢ — M, whose complement isisomorphic
toP', by i) and ii). This provesthe claim. O

Proof of the Claim via elementary transformations.
We have seen that Ext!' (Ox (o — f), Ox (f)) isone-dimensional. Hencethereisaunique
non-split extension

0—O0x(f) > G—Ox(oc—f)—0.
Obvioudy, det(G) =2 Ox (o) and c2(G) = 1. By Remark 5.3.5 the polarization Hy =

o+ 5fis(0(o),1)-suitable. Since f.H, = 1 and (o0 — f).H> = 2, thebundleG is -
stable with respect to H..
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Since HY(X,O(f — o)) = 0,themap H'(X,012f — 0)) — H(F,0(—(c N F))
isinjective for any fibre F, i.e. the extension defining G is non-split on any fibre. More-
over, any stable sheaf £ with the same invariants as GG isisomorphic to G. Indeed, by the
Hirzebruch-Riemann-Roch formula Hom(O(f), E) # 0 and by stability the cokernel of
any homomorphismistorsion free, hence isomorphicto O(c — f).

Let z € X beany closed point, F' := n~! (n(x)) thefibre through = and Zr .. the ideal
sheaf of z in F'. Since the extension

0—>0r >Gr = Op(cNF)—=0

isnon-split, Hom(Zr . (20), Gr) = 0. Hence, by Serredudity H (Gr~ ® Zr . (20)) = 0.
Since x(Gr~ ® Zp.(20)) = 1, thereis aunique nontrivial homomorphism¢ : G —
Zr.»(20) uptononzeroscalars. Again, sincethe extension defining G is non-spliton F', the
homomorphism ¢ must be surjective. Let E,, bethe kernel of p. Thendet(E,) = Ox (o —
f) and c2(E,) = 1. Moreover, for the generic fibre F, we have E,|r, = G|F,, which
impliesthat E, is stable. In thisway we get a stable bundle E,. for every point z € X. To
seethat indeed X = M, it sufficesto write down a universal family.

Let A C X xp: X C X x X denote the diagonal and Z the ideal sheaf of A asa
subscheme in X xp: X. As before p and ¢ denote the projections of X x X to the two
factors. The Base Change Theorem and the dimension computationsaboveimply that L :=
p«(Z @ ¢*(G7(20))) isaline bundle and that the natural homomorphism¢*G — p*L” ®
T ® q*Ox(20) issurjective. The kernel £ defines a universal family. a

Asin the previous example one might ask about the symmetry of the situation. Using
008 —-q¢'G=oIep"'L"®q¢"0x(20) =0
one can compute the restriction of £ to the fibres of ¢. We get
0= E1() > Ox 2 Ipa ® L7 — 0.

Inparticular, c1(£,-1()) = Ox (= f) and ca(Ey-1(,)) = deg(Zr, ® L7) = 2. To seethat
deg(L”|r) = 3 calculate as follows: Observe that the ideal sheaf of X xp1 X in X x X
isgivenby p*Ox(—f) ® ¢*Ox(—f) andthat in K (X x X) we have the relation [Z] =
[Oxxx] — [p*Ox(—f) @ ¢*Ox(—f)] — [Oa]. From thiswe deduce

L = p(I®qG(20)) =detp(Z ® ¢"G"(20))
= detpi(¢*G7(20)) ® (detpi(p* Ox (—f)
®q"G"(20 — f)))” @ (detpi(¢"G7(20)|a))”
= Ox(X(G7(20 = f) - f) ® (det(G7(20)))” = Ox (=30 = 5f).

Hence deg(L™|r) = 3.
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The situation is not quite so symmetric asin 5.3.7, e.g. the determinant has even inter-
section with the class of the fibre. Nevertheless, the second factor is a moduli space of the
first one. One can check that £,-1,) is stable and that the dimension of its moduli spaceis
dey —c2—6 = 2.Infact, E = Eq-1 () determinesthe point z uniquely by the condition that
Fistheonly fibrewhere E is not semistable and that its destabilizing quotientisZr , ® L.
Details are |eft to the reader.

The reader may have noticed that in the second example we made little use of the fact
that the elliptic surface is K3. Especialy, the construction of the ‘unique’ bundle G' goes
through in broader generality.

Proposition 5.3.9 —Let X — P! bearegular dliptic surface with a sectiono C X. If
H isthepolarization o + (2x(Ox) + 1) f, then My (2, Kx(—0), 1) consists of a single
reduced point which is given by the unique nontrivial extenson 0 — Ox(f) - G —
Kx(oc—f)—0. a

Comments:

— Theorem 5.1.1 is standard by now (cf. [91],[132]).

— The existence of stable rank two bundles via Serre correspondence (5.1.3 and 5.1.4) was shown
in[16].

— We would like to draw the attention of the reader to Gieseker’s construction in [79]. Gieseker
proved that for ¢ > [py/2] + 1 there exists a u-stable rank two vector bundle E with det(E) = Ox
and ¢2(E) = c. Notethat the bound is purely topological and does not depend on the polarization. As
Corollary 5.3.4 shows, such a bound cannot be expected for det(E) % Ox.

— Proposition 5.1.5 isdue to Ballico [12]. The statement about the existence and regularity of the
bundle E in Theorem 5.1.6 was proved by W.-P. Li and Z. Qin [153]. The details of the proof can be
found there. The assertion on the image under the Albanese map is a modification of Ballico’s argu-
ment.

— Other existence results for higher rank are due to Sorger [239].

— Elementary transformations were intensively studied by Maruyama ([163, 167]). Proposition
5.2.4 and Theorem 5.2.5 are due to him.

— The notion of a suitable polarization was first introduced by Friedman in [67] for elliptic sur-
faces. He @ so proved Theorem 5.3.2. It seems Brosius observed Corollary 5.3.4 thefirst time, though
Takemoto in [242] already found that for c1.f = 1(2) there exists no rank two vector bundle which
is pu-stable with respect to every polarization. Suitable polarizations for higher rank vector bundles
where considered by O’ Grady [209]. He only discusses the case of an dlliptic K3 surface, whose Pi-
card group is spanned by the fibre class and the class of asection, but his arguments easily generalize.

— With the techniques of Example5.3.7 one can attack ageneric compl ete intersection of aquadric
and acubic hypersurfaceinP*. Themoduli space M (2, ©O(—1), 3) isareduced point. Thelocally free
part of M (2, O(—1), 4) isisomorphic to the open subset of Z € Hilb?(X), such that thelinethrough
Z meets X exactly in Z. This isomorphism was described in [189]. The birational correspondence
between M (2, O(—1),4) and Hilb?(X) reflects the projective geometry of X.

— Example 5.3.8 isentirely due to Friedman [68]. He treats it in the more general setting of elip-
tic surfaces which are not necessarily K3 surfaces. He also gives a complete description of the four-
dimensional moduli space M (2, o, 2). It turnsout that it isisomorphic to Hilb?(X'), though theiden-
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tification is fairly involved. The distinguished bundle G was aso discovered by Qin [215] and in a
broader context by Kametani and Sato [118]. We took the description as the unique extension from
there. Friedman’s point of view isthat G is the unique bundle which restricts to a stable bundle on
any fibre, even singular ones. For this purpose he generalizes results of Atiyah for vector bundles on

singular nodal dlliptic curves.
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6 Moduli Spaceson K3 Surfaces

By definition, K3 surfaces are surfaceswith vanishing first Betti number and trivial canoni-
cal bundle. Examples of K3 surfacesare provided by smooth completeintersectionsof type
(a1,... ,ap—2)inP, with>" a; = n+1, Kummer surfacesand certain elliptic surfaces. In
the Enriques classification K3 surfaces occupy, together with abelian, Enriques and hyper-
elliptic surfaces, the distinguished position between ruled surfaces and surfaces of positive
Kodaira dimension. The geometry of K3 surfaces and of their moduli space is one of the
most fascinating topics in surface theory, bringing together complex algebraic geometry,
differential geometry and arithmetic.

Following the genera philosophy that moduli spaces of sheaves reflect the geometric
structure of the surfaceit doesnot come asasurprisethat studying moduli spaces of sheaves
on K3 surfaces one encounters intriguing geometric structures. We will try to illuminate
some aspects of the rich geometry of the situation.

We present the material at this early stage in the hope that having explicit exampleswith
arich geometry in mind will make the more abstract and general results, where the geom-
etry has not yet fully unfolded, easier accessible. At some points we make use of results
presented later (Chapter 9, 10). In particular, afundamental result in the theory, namely the
existence of asymplectic structure on the moduli space of stable sheaves, will be discussed
only in Chapter 10.

Section 6.1 gives an almost complete account of results due to Mukai describing zero-
and two-dimensional moduli spaces. The result on the existence of asymplectic structureis
in this section only used once (proof of 6.1.14) and there in the rather weak version that the
canonical bundle of the moduli space of stable sheavesistrivia. In Section 6.2 we concen-
trate on moduli spaces of dimension > 4. We prove that they provide examples of higher
dimensional irreducible symplectic (or hyperkahler) manifolds. The presentation is based
on the work of Beauville, Mukai and O’ Grady. Some of the arguments are only sketched.
Finally, the appendix contains a geometric proof of the irreducibility of the Quot-scheme
Quot(E, ¢) of zero-dimensional quotients of alocally free sheaf E.

6.1 Low-Dimensional ...

We begin this section with some technical remarks and the definition of the Mukai vector.

Definition 6.1.1 — If E and F' are coherent sheaves then the Euler characteristic of the
pair (E,F)is
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X(E,F):= > (1) dimExt'(E, F).

X(E, F) isbilinear in E and F' and can be expressed in terms of their Chern characters.
But before we can give the formula one more notation needs to be introduced.

Definition 6.1.2 —Ifv = @v; € H*V(X,Z) = @ H?*(X,Z) thenv™ := &(—1)%v;.

Thedefinition makesal so perfect sensein the cohomology with rational or complex coef-
ficientsand in the Chow group. The notation is motivated by thefact that ch™(E) = ch(E™)
for any locally free sheaf E.

Lemma 6.1.3 —If X issmooth and projective, then
x(E,F) = / ch™(E).ch(F).td(X).
X

Proof. If E islocaly free this follows directly from the Hirzebruch-Riemann-Roch for-
mula and the multiplicativity of the Chern character:

X(E,F)=x(E"®F) = [, ch(E” @ F).td(X)
[ ¢h(E").ch(F).td(X)
= [ ch”(E).ch(F).td(X).

If E isnot locally free we consider alocally free resolution E* — E and use ch(E*™)
ch”(E®).

ol

Definition 6.1.4 — Let X be a smooth variety and let E' be a coherent sheaf on X. Then
the Mukai vector v(E) € H**(X, Q) of Eisch(E).\/td(X).

Note that tdo(X) = 1 and hence the square root /¢d(X) can be defined by a power
series expansion.

Definition and Corollary 6.1.5 —If X is smooth and projective, then

(v,w) := —/va.w

defines a bilinear form on H2*(X, Q). For any two coherent sheaves E and F' one has
X(E, F) = =(v(E),v(F)). O

Let now X beaK3 surface. If E isacoherent sheaf on X withrk(E) = r, ¢ (E) = ¢y,
and c2(E) = ca, thenv(E) = (r,c1,¢3/2 — ez + ). Clearly, we can recover r, ¢1, and c»
fromu(E).

Instead of M (r, ¢1, co) wewill use the notation M (v) for the moduli space of semistable
sheaves, wherev = (r,c1,¢3/2 — ¢ + ). If v isfixed we will also write M for M (v). We
denote the open subset parametrizing stable sheaves by M*.
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By 4.5.6 theexpected dimensionof M ¢ is2rca—(r—1)cf—2(r?—1) = (v,v)+2, which
isawayseven, sincetheintersection formon X iseven. The obstruction space (cf. Section
4.5) Ext*(E, E), vanishes, since by Serre dudity Ext?(E, E), = Hom(E, E),” = 0 for
any E € M?.Henceby 4.5.4themoduli space M * issmooth. For the following we assume
r>1.

There are generd results, mostly due to Mukai, which give afairly complete description
of moduli spaces of low dimensions, i.e. dimension < 2. As M* is even-dimensional, we
areinterested in zero- and two-dimensional examples.

Theorem 6.1.6 — Suppose (v,v) +2 = 0. If M* isnot empty, then M consistsof a single
reduced point which represents a stable locally free sheaf. In particular, M* = M.

Proof. Let F' be a semistable sheaf defining apoint [F] € M. By 6.1.5the Euler charac-
teristic x(F, E') depends only on the Chern classes of F' and not on F' itself. Since F' and
E havethe same Chern classes, onehas x (F, E) = x(E, E) = —(v,v) = 2. Thisimplies
that either Hom(F, E) # 0 or, by using Serre duaity, that Hom(E, F') # 0. The stability
of E and the semistability of F'imply in both casesthat £ = F' (see 1.2.7).

It remainsto show that E islocally free. For this purposelet G bethereflexive hull E™
of £ and S the quotient of the natural embedding E C G. If therank is two, one can argue
asfollows. G is still p-semistable and hence stisfies the Bogomolov Inequality 4c2(G) —
c}(G) > 0.Ontheother hand, 4c2(G) — ¢} (G) = 4ca(E) —4-£(S) —c}(E) = 6 —4-£(S).
Hence/(S) < 1,i.e.if Eisnotlocally free, then S = k(x) wherez isapointin X . Denote
by £ theflat family on P(G) x X defined by

03 &= ¢ G- (mx1)*0a®p*0.(1) = 0,

where A ¢ X x X isthediagona and = : P(G) — X isthe projection (for details see
8.1.7). Then Supp(&; ™/ &) = m(t) and for somet, € 7 *(x) the sheaf &, isisomorphic
to E. Hencefor the generic t € P(G) the sheaf &; is stable but not isomorphicto E. Since
the moduli spaceis zero-dimensional, this cannot happen. In fact asimilar argument works
in the higher rank case: Here one exploits the fact that Quot(G, £(S)) isirreducible. This
isproved in the appendix (Theorem 6.A.1). ThusG — S can bedeformedto G — S; with

Supp(S) # Supp(Si). 0

Remark 6.1.7 — Note that the moduli space M might be non-empty even if the expected
dimension (v, v) +2 of the stable part M/ ¢ isnegative. Indeed, [O & O] isasemistable sheaf
with (v(O @ 0),v(0 ® O)) +2 = —6.

We now turn to moduli spaces of dimension two. In general there is no reason to expect
that M = M or that M isirreducible. But as above, whenever there exists a‘good’ com-
ponent of A/*, then both properties hold:
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Theorem 6.1.8 — Assume (v,v) + 2 = 2. If M*® has a complete irreducible component
M, then M, = M* = M,i.e. M isirreducible and all sheavesare stable. In particular, if
M?* = M, then M issmooth and irreducible.

Proof. Theideaof the proof is a globalization of the proof of Theorem 6.1.6. The Hirze-
bruch-Riemann-Roch formulais replaced by Grothendieck’srelative version.

Let usfix aquasi-universal family £ over M; x X and denote the multiplicity rk(&)/r
by s (cf. 4.6.2). Let [F] € M be an arbitrary point in the moduli space represented by a
semistable sheaf F'. For any t € My we have

0 if F5 g

Hom(F, &) = { KOs if O g,

and also
) N . 0 if Fosx&
Ext*(F, &) = Hom(&:, F)” = { kB if FOs =g,

Sinces - x(F, &) = x(&, &) = 0 weaso have

0 if F®5 ¢,

1 —
Ext (F, gt) - { k@2s if F@s =) gt_

Thusif [F] ¢ M,, then Ext*(F,&) = Ofordlt € M, andi = 0,1,2. Therefore
we have Euxtl (¢*F,€) = 0.1f [F] € My, then Ext!(¢*F,E) = 0fori = 0,1 and
Exty (q*F,E)(to) = k(to)®*, where t, = [F]: thisis an application of the Base Change
Theorem. In our situation we can make it quite explicit. By [19] there exists acomplex P*
of locally free sheaves P! of finiterank such that thei-th cohnomology 7 (P*) isisomorphic
to&xtt (¢* F, &) and H (P*(t)) = Ext’(F, &). Thiscomplexisboundedabove,i.e. P? = 0
fori > 0. An argument of Mumford shows [193] that one can also assumethat P* = 0 for
i < 0.SinceExt!(F, &) = 0fori > 2, thecomplex P* isexact at P fori > 2. Thekernel
ker(d;) of thei-th differential isthe kernel of asurjection of alocally free sheaf P to ator-
sion free sheaf im(d;). Henceker(d;) islocaly free, since M; isasmooth surface. Replac-
ing P2 by ker(d») we can assumethat P* = P° 2% Pt L P2 \We have seen that ker(do)
is concentrated in t,. At the same time, as a subsheaf of P?, it istorsion free, hence zero,
i.e. dy isinjective. Also ker(d; ) islocally free, containsthe locally free sheaf P° and actu-
aly equalsit on the complement of the point ¢,. Hence Py = ker(d, ), i.e.0 = H'(P*) =
Ext)(q* F, E). For thelast statement use 0 — im(d;) — P> — H?(P*) — 0 which shows
that H2(P*)(to) = P%(to)/im(dy)(to) = H>(P*(to)) = Ext?(F, &,) = k(to)®*.
On the other hand, the Grothendieck-Riemann-Roch formula computes

a:= ch([Smtg(q*F,E)] - [Extll)(q*F, )+ [Smti(q*F, )

as an element of H*(M;, Q) and showsthat it only dependson ch(¢* F') and ch(£) asele-
mentsof H*(M; x X, Q). Sincech(F) isconstant for all [F] € M, in particular ch(F) =
s - ch(&,) evenfor [F] ¢ M, one gets a contradiction by comparinga = 0 if [F] ¢ M;
and 0 # X (Ext2(¢* F, ) = (a - td(M), [M;]) if [F] € M;. O
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Remark 6.1.9 — Theassumption M* = M is satisfied frequently, e.g. if degree and rank
are coprime any u-semistable sheaf is u-stable (see 1.2.14).

Note that under the assumption of the theorem any u-stable ' € M islocally free. In-
deed, if F' € M is pu-stable, then G := F™ is «ill u-stable and thus defines a point in
MS3(r,er,c2—£). If Fwerenotlocaly free, i.e. £ > 0, thelatter space would have negative
dimension.

The following lemmawill be needed in the proof of Proposition 6.1.13.

Lemma 6.1.10 — Supposethat (v,v) = 0 and M = M?*. Moreover, assume that there is
auniversal family £ on M x X. Then

Ext;)lz (P13€,P53E) =

0 if i=0,1
Oa if i=2,

where p;; is the projection from M x M x X to the product of the indicated factors, and
A C M x M isthediagonal.

Proof. Sep 1. Lett, € M beaclosed point representingasheaf E. Then£xt, (¢* E, €) =
0fori < 2and Ext2(q*E,&) = k(to). Thefirst statement was obtained in the proof of
Theorem 6.1.8 together with a weaker form of the second statement, namely that the rank
of ut?(q*E, &) at to is 1. It suffices therefore to show that for any tangent vector S =
Spec(k[e]) at to onehas k(tg) = Ext2(¢*E,&) ® Os(= Ext?(Os @ E,Es)). HereEs is
therestriction of £ to S x X . Thisfamily fitsinto a short exact sequence0 — E — £ —
E — 0 definingaclass ¢ € Ext (E, E). Applying the functor Homs x (E[¢], .) to this
sequence and using Ext’, « (E[e], E) = Ext (F, E) we get

Extk (B, E) - Ext% (E, E) — BExt%, y (E[e],£s) — ExtX (E, E) — 0.

Since Ext% (E, E) = k and since the cup product is non-degenerate by Serre duality, the
map Extl (B, E) - Ext%(E, E) is surjective. Hence the restriction homomorphism
Ext%, x(E[e],£s) — Ext (E, E) isan isomorphism.

Sep 2. It follows from this and the spectral sequence

H'(M,Ext) (¢"E,€)) = Exty) (¢"E, &)

that
. (k  ifn=2

Consider the Leray spectral sequencefor the compositionm; = piopia : M x M x X —
M x M — M:

Rirmy, (Ea:tf,u (PI3&P§3E)) = Ea:tfjl'j (p13E, P53E).
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AsExtl (pi3€, pss€) is (set-theoretically) supported along the diagonal, the spectral se-

P12

quence reduces to an isomorphism i, Ext) | (pis€, p5sE) = Extl (pis€, pssf). It fol-

lows from the base change theorem and Step 1, that
Eat), (pis€, p3sE)(t) = Ext},, ¢ (& ® Ox,E), teM

for al j. Thisimpliesthat £z} (p;s&,p55€) and hence Ext? | (pis€, ps5€) areline bun-
dleson M and A C M x M, respectively. It remainsto show that this line bundleistriv-
ial. But as base change holds for £xt2 , we have: Ext? , (p13E,p55E)|a = Extl(£,€),

and the trace map tre : Ext2(E,€) — H?*(X,0x) ® Ox (cf. 10.1.3) gives the desired
isomorphism. m|

After having shown that in many cases the moduli space M is asmooth irreducible pro-
jective surface we go on and identify these surfaces in terms of their weight-two Hodge
structures. Recall that a Hodge structure of weight n consistsof alattice Hz C Hg inared
vector space and a direct sum decomposition H¢ := Hr ®p C = @p+q:n HP? such that
Hr.a = H?P, A Q-Hodge structureis a Q-vector space Hy C Hg inareal vector space of
the same dimension and a decomposition of He = Hg ®q C as before.

Let Y be acompact Kahler manifold. Then there is a naturally defined weight » Hodge
structureon H™ (Y, Z) /Torsion, whichisgivenby H"(Y,C) = @, ,—,, H?(Y). In par-
ticular, Y admitsanatural weight-two Hodge structure on the second cohomology H2(Y, Z)
defined by

H*(Y,C) = H**(Y,C) ® H"*(Y,C) & H"*(Y,C).

If Y isasurface theintersection product defines a natural pairing on H2(Y, 7). The Global
Torelli Theorem for K3 surfaces states that two K3 surfaces Y, and Y, are isomorphic if
and only if there exists an isomorphism between their Hodge structures respecting the pair-
ing, i.e. there exists an isomorphism H?(Y,,7Z) = H?(Y>,Z) which maps H%°(Y;,C) to
H?(Y5,C) and which is compatible with the pairing. For details see [22], [26]. For sur-
faces one can aso define a Hodge structure H(Y,Z) on H*'(Y,Z) = @, H*(Y,7) as
follows.

Definition 6.1.11 —Let Y bea surface. H(Y,Z) (or H(Y,Q)) is the natural weight-two
Hodgestructureon H (Y, Z) givenby H>°(Y, C) = H>°(Y,C), H*(Y,C) = H>?(Y,C),
and H-'(Y,C) = H(Y,C) ® H"'(Y,C) ® H*(Y,C).

Let H(Y, Z) beendowed with thepairing ( ., . ) definedin 6.1.5. Therestrictionof ( ., .)
to H2(Y,Z) equals the intersection product. Theinclusion H2(Y,Z) ¢ H(Y,Z) is com-
patible with the Hodge structure.

The Mukai vector v can be considered as an element of H(Y,Z) of type (1,1). The ex-
pected dimension of M ¢ istwo if and only if v is an isotropic vector.

Assume that v is an isotropic vector such that M ¢ has a complete component. By 6.1.8
thelast conditionisequivalentto M * = M. Let £ beaquasi-universal family over M x X
of rank s - r.
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Definition 6.1.12 —Let f : H*(X,Q) — H*(M,Q) and f' : H*(M,Q) — H*(X,Q)
be the homomorphismsgiven by f(c) = p.(u.¢*(c)) and f'(c) = q.(v.p*(c)), where y :=
v'(&)/sandv :=v(E)/s.

If we want to emphasize the dependence on £ we write f¢ and f£. For any locally free
sheaf W on M thefamily £ ® p* (W) isaso quasi-universal. The corresponding homomor-
phisms are related asfollows: feg )« (w)(c) = fe(c).(ch™ (W) /rk(W)).

Proposition 6.1.13 — Let v be an isotropic vector and assume M = M. Assume there
exists a universal family £ over M x X. Then:

i) M isaK3surface.
i) feoft=1

iii) fe definesan isomorphism of Hodge structures H (X, Z) = H(M,Z) which is com-
patible with the natural pairings.

Proof. Consider the diagram

M x M T s M
P2 N |
MxMxX 2 Mmxx 5 M
™ pis 4 ad
MxX N X
pl
M = M

Then, by the projection formula

F(f'(e)= pe(p-q* g (v-p*c)) = p(p-p13.p33(v-p*c))
= p«P13. (P13 p-P33(v-p*c)) = p1.,. (i3 p-p33v-p33p*c)
= T14P124 (PT3-DP33V-PTaT5C) = 14 (P12, (PI3k-P33V).T50)
= T1. (p12* (ch™ (pi5€).ch(pss€) pitd(X)) i +/td(M).m5 \/td(M)-WSC) :

It follows from Lemma 6.1.10 and the Grothendieck-Riemann-Roch formulafor p, 5 that

P12, (chv(pIBE).ch(pEBE).pgtd(X)) = ch(Ext? (p15E,55E)) = ch(i.Oa).

P12
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Hence, f(f'(c)) = m1.(ch(i.Oa) .75 \/td(M).w5+/td(M).73c). Now the Grothendieck-
Riemann-Roch formula applied to i says ch(i.Oa).td(M x M) = i.(ch(Oa).td(A)).
Hence, f(f'(c)) = m1,(ixch(Oa).m5c) = c. Therefore, the homomorphisms f" and f are
injective and surjective, respectively. Moreover, f preserves H°% and HeV*", becausev is
an even class. Hence H' (M, Q) = 0. By 10.4.3 the moduli space admits a non-degenerate
two-form and, therefore, the canonical bundle of M istrivia (Thisisthe only place where
we need a result of the later chapters). Using the Enriques-classification of algebraic sur-
faces one concludesthat A/ isabelian or K3. Since by (M) = 0, it must be aK3 surface. In
particular, dim H*(M, Q) = dim H*(X, Q). Hence, f and f' areisomorphisms.

Theisomorphisms f and f' do respect the Hodge structure H. Indeed, f and f’ are de-
fined by the algebraic classes i and v, which are sums of classes of type (p, p). Itisstraight-
forward to check that thisis enough to ensure that f and f' respect the Hodge type of an
element ¢ € H. (Note that the compatibility with the Hodge structure is valid also for the
case of aquasi-universal family.)

The compatibility with the pairing is shown by:

—(a,f(0)) =

(
= ((f'(a)".0), [X]) = =(f'(a), ).
) = (a, f(f'(b))) = (a,b),i.e. f"iscompatiblewith

I
o~~~
<3

*
* o~
_—

the pairing.

To conclude, we haveto show that theisomorphisms f and f' areintegral. Since /td(X)
and /td(M) are integral, it is enough to show that ch(&) isintegral. This goes as fol-
lows. The first Chern class ¢, (£) = chq(€) is certainly integral. Since H'(X,7Z) = 0,
it equals p*ci (E|prx{z}y) + ¢*c1. Since X and M are K3 surfaces, the intersection form
is even. Hence chy (€) = ¢(£)/2 — c2(€) isintegral. Writing ch(€) = Y. €7 with
et € HP(M,Q) ® H(X, Q) this saysthat the classes €20, 22, ¢4, €22, and %4 are
al integral. Moreover, ch(&).p*td(M) = 3 eP? + 3 eP9.p* PD(pt), where PD(pt) de-
notes the Poincaré dual of a point. Hence g. (ch(£).p*td(M)) = > ([,, e*? + €*7). On
the other hand, ch(q:€) isintegral and, by the Grothendieck-Riemann-Rochformula, equals
¢« (ch(&).p*td(M)). Hence e*? and e** are dso integral. In particular, chy(£) = et is
integral. The same argument applied to p. (ch(£).q*td(X)) shows e** isintegral. Hence,
ch3 (&) = e*? + €24 isintegral. Altogether this provesthat ch(€) isintegral. O

The orthogonal complement V' of » in H (X, Z) containsv. If wein addition assumethat
v is primitive, i.e. not divisible by any integer > 2, then the quotient V/Zuv is afree Z-
module. Sincew isof puretype (1, 1) and isotropic, the quotient V/Z v inheritsthe bilinear
form and the Hodge structure of H (X, 7).
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Theorem 6.1.14 —If v isisotropic and primitive and M ¢ has a complete component (i.e.
M?® = M), then f¢ defines an isomorphism of Hodge structures

H*(M,Z)=2 V|7 -v
compatible with the natural pairing and independent of the quasi-universal family £.

Proof. We first check that f : V ® Q ¢ H(X,Q) — H(M,Q) hasno H°(M)-
component. Indeed, the H°(M) ® H*(X) component of x isv” andv™.c = —(v,¢) and
hence the H° (M) component of f¢(c) is — (v, ¢), which vanishesfor ¢ € V. Since

feapw(c) = fe(c).ch” (W) [rk(W),

the H2-component of f¢(c) for c € V isindependent of £. Thus we obtain a well-defined
(i.e. independent of the quasi-universal family) map f : V. — H?(M,Q). The following
computation showsthat f¢ (v) hastrivial H? (M )-component:

s- fe(v) = pe(p-g*(v))
= td(M).p.(ch™(€).q¢"\/1d(X).q* (ch(Et, ).\/td(X)))
= td(M).ch(Ext2(€,q*E,))
— 2. Jtd(M).ch(k(to))
s? - \/td(M).PD(pt)
s* - PD(pt),

wheret, € M. Hence f definesahomomorphismV/Zv — H?(M, Q). If auniversa fam-
ily exists then this map takes valuesin theintegral cohomology of M (Proposition 6.1.13).
Hence V/Zv = H?*(M,Z). The general case is proved by deformation theory. The basic
ideais to use the moduli space of polarized K3 surfaces and the relative moduli space of
semistable sheaves. It is then not difficult to see that the moduli space M is a deformation
of afine moduli space on another nearby K3 surface. (For the complete argument see the
proof of 6.2.5.) Since the map f is defined by means of the locally constant class y, it is
enough to prove the assertion for onefibre. m|

Corollary 6.1.15 — Suppose that v is an isotropic vector and that M * = M. Then there
exists an isomor phismof rational Hodge structures H? (M, Q) = H?(X, Q) whichiscom-
patible with the intersection pairing.

Proof. Thisfollowsfrom the theorem and the easy observation that

H(X,Q - H(X,Q
w — (0, w,cr.w/r)
inducesan isomorphism H?(X, Q) = (V/Zv) ® Q of Q-Hodge structures compatiblewith

the pairing. The assumption that v be primitive is unnecessary, because we are only inter-
ested in Q-Hodge structures. a
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6.2 ...and Higher-Dimensional Moduli Spaces

Theaim of this section isto show that moduli spaces of sheaves on K3 surfaceshave avery

special geometric structure. They are Ricci flat and even hyperkahler. In fact, aimost all

known examples of hyperkahler manifolds are closely related to them. Thus the study of

these moduli spaces sheds some light on the geometry of hyperkahler manifoldsin general.
L et us begin with the definition of hyperkahler and irreducible symplectic manifolds.

Definition 6.2.1 —A hyperkahler manifoldisa Riemannian manifold (M, g) which admits
two complex structures I and .J suchthat 7 o J = —.J o I and such that g is a Kahler
metric with respect to I and .J. A complex manifold X is called irreducible symplectic if
X is compact Kahler, simply connected and H?°(X) = H°(X, Q%) is spanned by an
everywhere non-degenerate two-form w.

Recall, that a two-form is non-degenerate if the associated homomorphism 7x — Qx
is isomorphic. If (M, g) is hyperkahler and I and .J are the two complex structures then
K := T o J isalso acomplex structure making g to a Kahler metric. If g isahyperkahler
metric then the holonomy of (1, g) iscontainedin Sp(m) wheredimg M = 4m. (M, g) is
caledirreducible hyperkahler if the holonomy equalsSp(m). If wy, w, and wk denotethe
corresponding Kahler forms, thenthelinear combinationw = wy+i-wk definesan element
in H°(X, Q%), where X isthe complex manifold (M, I). Obviously, w iseverywherenon-
degenerate.

Theorem 6.2.2 —If (M, g) is an irreducible compact hyperkahler manifold, then X =
(M, I) isirreducible symplectic. Conversely, if X is an irreducible symplectic manifold,
then the underlying real manifold M admits a hyperkahler metric with prescribed Kahler
class [wr].

Proof. [25] m|

Evenif oneisprimarily interested in hyperkahler metrics, thistheorem allows onetowork
in the realm of complex geometry. In the sequel some examples of irreducible symplec-
tic manifoldswill be described, but the hyperkahler metric remains unknown, for Theorem
6.2.2 isa pure existence result based on Yau's solution of the Calabi conjecture.

Remark 6.2.3 — If X admitsanon-degeneratetwo-formw, then Kx = Ox. If X iscom-
pact, thisimplies that the Kodairadimension of X is zero. In dimension two, according to
the Enriques-Kodaira classification, a surfaceisirreducible symplectic if and only if itisa
K3 surface. On the other hand, dueto aresult of Siu, any K3 surfaceadmitsa Kahler metric,
henceisirreducible symplectic.

Theorem 6.2.4 —Let X be an algebraic K3 surface. Then Hilb™(X) isirreducible sym-
plectic.
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Proof. M := Hilb™(X) is smooth, projective and irreducible (cf. 4.5.10). Moreover, M
can beidentified with the moduli space of stable rank one sheaveswith second Chern num-
ber n and therefore admits an everywhere non-degeneratetwo-form w (cf. 10.4.3). In order
to provethat M isirreducible symplecticit therefore sufficesto show that M issimply con-
nected and that dim H°(M,Q3,) = 1.

For the second statement consider the complement U € X™ := X x ... x X of the
‘big diagonal’ A := {(z1,...,zn)|z; = z; forsomei # j}. Thereis anatura mor-
phismvy : U — M mapping (z1,...,2,) € UtoZ = {x1,...,z,} € M. This
morphism identifies the quotient of U by the action of the symmetric group S,, with an
open subset V of M. Then H°(M,Q3%,) ¢ HO(V,Q32,) = HO(U,Q%)%, where the lat-
ter is the space of S,,-invariant two-formson U. But H°(U,Q?,) = H°(X™ Q%.) and
H°(U,0%)% = H (X", 0%.)%", sincecodim(A) = 2.Since H°(X, Q%) = 0, wehave
H°(X™,0%.) = @ H°(X,0Q%). Together with the isomorphism H°(X™, Q%)% =
HO(X,0%) = Cthisyields H°(M, Q3%,) = C. A similar argument shows H°(M, Q},) C
HO(X, Q%) = 0,whichimmediately givesb; (M) = 0. Inorder to show 7 (M) = {1} we
argue asfollows. Thereal codimension of A in X" is4, sothat 7 (U) — 7 (X") = {1}
isan isomorphism. And since M \ V hasrea codimension2in M,themapj : m (V) —
(M) is surjective. The projection pr : U — V induces an isomorphism S,, — 71 (V)
whichisdescribed asfollows: Choosedistinct pointsz1 , . .. ,z, € X andtake(z, ... ,z,)
and{z1,...,z,} asbasepointsinU and V', respectively. For each 7 € S,, chooseapath 5,
inU connecting (1, ... , o) @ (Tx(1),-- -, Tx(n)). ThENay = 1o 3, isaclosed pathin
V withbasepoint {z1, ... ,z,}.Inorderto provethat m; (M) = {1} it sufficesto show that
j(az) isnull-homotopicin M. Since S,, is generated by transpositions, it suffices to con-
sider the specia case 7 = (12). We may assume that z; and x> are contained some open
set W C X (intheclassical topology) suchthat W = B* ¢ C? and 3, ... ,2, € X \ W.
Then apath 3, can be described by rotating ; and » in acomplex lineC N B* around a
point zo. Now let z; and z, collide within this complex lineto o, i.e. {z, z2} converges
to Z C X with Supp(Z) = z¢ and (mz/m%)* = T,,(C N B). Then o, isin M freely
homotopic to the constant path Z U {z», ... , 2, }. Hence j(a;) = 0. |

For the higher rank case we again use the Mukai vector
v = (vo,v1,v2) = (r,c1,6/2 = ¢y +7)

and denote the moduli space My (r, 1, c2) by Mg (v). Recall, dim M§ (v) = (v,v) + 2,
where M §; (v) isthe moduli space of stable sheaves. The component v, of the Mukai vector
v iscalled primitiveif it isindivisible asacohomology classin H?(X, 7). Recall that from
v onerecoversthefirst Chern class ¢; and the discriminant A. We therefore have achamber
structure on the ample cone with respect to v (see 4.C).

Theorem 6.2.5 —If vy isprimitive and H is contained in an open chamber with respect
to v, then My (v) isanirreducible symplectic manifold.
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The proof of the theorem consists of two steps. Wefirst proveit for a particular example
(Corollary 6.2.7). The general result is obtained by a deformation argument.

We take up the setting of Example 5.3.8. Let X — P, be an elliptic K3 surface with
fibreclass f € H?(X,Z) and asection o C X the class of which is also denoted by o €
H?(X,7).Assume Pic(X) = Z - O(o) ® Z - O(f). Let v be aMukai vector such that
v, = o + £f and let H be suitable with respect to v (cf. 5.3.1). Note that o + m f isample
for m > 3 and suitableif m — 3 > r2A/8 (cf. 5.3.6).

Proposition 6.2.6 — Under the above assumptions the moduli space My (v) isbirational
to Hilb" (X).

Proof. The proof is postponed until Chapter 11, (Theorem 11.3.2), where the proposition
istreated as an example for the birational description of a moduli space. |

Corollary 6.2.7 — Under the assumptions of the proposition M (v) is irreducible sym-
plectic.

Proof. We consider the following general situation. Let f : X — X' beabirational map
between an irreducible symplectic manifold X and acompact manifold X' admitting anon-
degenerate two-form w'. Let U C X be the maximal open subset of f-regular points, i.e.
flu isamorphism. Then codim(X \ U) > 2. HenceC - w = H°(X, Q%) = H°(U,Q}).
Moreover, f*: HO(X', 0%,) — H°(U, Q%) isinjectiveand thusC - w’ = H°(X', Q%.).
We can write f*w'|y = X\ - w|y for some A € C*. Since w is non-degenerate every-
where, f|¢r isan embedding. The same argumentsapply for theinversebirational map £~ :
X' — X.Oneconcludesthat there existsan openset U’ C X' suchthat 1|y isregular,
codim(X'\U') > 2,and f : U = U’. Moreover, thisaso implies 7, (X') = m (U') =
w1 (U) = m (X) = {1}. Hence X" isirreducible symplectic as well. Now, apply the argu-
ment to the birational correspondencebetween Hilb™ (X') and M (v) postulated in 6.2.6.0

The proof of Theorem 6.2.5 relies on the fact that any K3 surface can be deformed to an
elliptic K3 surface. To make this rigorous one introduces the following functor:

Definition 6.2.8 —Let d bea positiveinteger. Then [C; isthefunctor (Sch/C)° — (Sets)
that maps a scheme Y to the set of all equivalence classes of pairs (f : X — Y, £) such
that f : X — Y isasmooth family of K3 surfaces and for any ¢ € Y therestriction £,
of £ to thefibre X; = f~!(t) is an ample primitive line bundle with ¢} (£;) = 2d. Two
pairs(f: X - Y, L), (f': X' = Y, L") areequivalent if there exists an Y -isomorphism
g: X — X'andalinebundle AV onY suchthat g*£' = L ® f*N.

Thisisavery specia case of the moduli functor of polarized varieties. The next theorem
is an application of amore general result.

Theorem 6.2.9 — The functor /C, is corepresented by a coarse moduli space Xy which is
a gquasi-projective scheme.
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Proof. [258] |

Similar to moduli spaces of sheaves, the moduli space Ky is not fine, i.e. thereis no uni-
versal family parametrized by K. But, as for moduli space of sheaves, K, isaPGL(N)-
quotient = : H4 — K4 of an open subset #, of a certain Hilbert scheme Hilb(PY, P(n)),
where P(n) = n? - d + 2. The universal family over the Hilbert scheme provides a smooth
projective morphism : X — H, and aline bundle £ on X, such that 7 (t) € K4 corre-
spondsto the polarized K3 surface (X}, £;).

An alternative construction of XC; can be given by using the Torelli Theorem for K3 sur-
faces. This approach immediately yields

Theorem 6.2.10 — The moduli space K4 of primitively polarized K3 surfacesis anirre-
ducible variety.

Proof. [26] |

Using an irreducible component of # ;, which dominates K4, the theorem shows that any
two primitively polarized K3 surfaces (X, H) and (X', H') with H2 = H'* are deforma-
tion equivalent. (In fact, H, itself isirreducible.) More is known about the structure of Xy
and the polarized K3 surfaces parametrized by it. We will need the following results: For
the general polarized K3 surface (X, H) € K, onehasPic(X) = Z - H. ‘Generd’ here
means for (X, H) in the complement of a countable union of closed subsets of £Cy. In fact
the countable union of polarized K3 surfaces (X, H) € K4 with p(X) > 2 isdensein K.
For the proof of these facts we refer to [26, 22].

It istheirreducibility of X; which enables us to compare moduli spaces on different K3
surfaces:

Proposition 6.2.11 — Let vy, v2 € Z and e = =£1. Then there exists a relative moduli
space ¢ : M — H,4 of semistable sheaves on the fibres of ¢ such that: i) ¢ is projective,
i) for any t € #4 thefibre ¢ =1 (t) is canonically isomorphic to the moduli space M, (v)
of semistable sheaveson X, wherev = (vg, ec1(L4), v2), andiii) ¢ issmooth at all points
corresponding to stable sheaves.

(Don't get confused by theextrasign e. It isthrown in for purely technical reasonswhich
will be become clear later.)

Proof. i) and ii) follow from the general existence theorem for moduli spaces 4.3.7. As-
sertion iii) follows from the relative smoothness criterion 2.2.7: By Serre duality, we have
Ext%, (E, E)y = Homy, (E, E),” = 0 for any stable sheaf E on thefibre X;. By Theorem
4.3.7 the relative moduli space M — H 4 isarelative quotient of an open subset R of an
appropriate Quot-scheme Quot y /5, ((£7)® (™), P). Since R — M isafibrebundleover
the stable sheaves, the morphism M — #, is smooth at apoint [E] € M? if and only if
R — Hgissmoothat [¢ : (£;)®F(™) — E] € R overit. Let K bethekernel of ¢. Since
Ext' (K, E) N Ext’>(E, E)y = 0, the tangent map T,R — T;H, is surjective by 2.2.7,
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2.A.8and 4.5.4. Hence M — H, is smooth at all points corresponding to stable sheaves
on the fibres. m|

Corollary 6.2.12 — Let (X, H) and (X', H') be two polarized K3 surfaces with H? =
H"” andlet v = (vo,eH,v;),v' = (vo,eH',v,). Assume that every sheaf E in My (v)
andin My (v') isstable. Then My (v) isirreducible symplectic if and only if My (v') is
irreducible symplectic.

Proof. Let HY C H, denote the dense open subset of regular values of ¢. Then there
exist pointst,# € MY such that (X}, L) = (X, H) and (X, Ly) = (X', H'). Hence
the restriction of ¢ to 7 is a smooth projective family over a connected base with the two
moduli spaces M i (v) and My (v') occurringasfibresover t and ¢’ respectively. Asfor any
smooth proper morphism over a connected base the fundamental groups and Betti numbers
of al fibres of ( are equal. On the other hand, the Hodge numbers of the fibres are upper-
semicontinuous. Since the Hodge spectral sequence degenerates on any fibre and hence the
sum of the Hodge numbers equals the sum of the Betti numbers, the Hodge numbers of the
fibres of ¢ stay also constant.

Therefore, if My (v) isirreducible symplectic, then My (v') is simply connected and
h20(Mpy (v")) = 1. Since by 10.4.3 the moduli space My (v') admits a non-degenerate
symplectic structure, My (v') isirreducible as well. a

Proof of Theorem 6.2.5. Step 1. We first reduce to the case that p(X) > 2. If p(X) = 1,
thenv; = +H, where H isthe ample generator of Pic(X ). Aswe have mentioned above,
the set of polarized K3 surfaces (X', H') € K4 with p(X') > 2 is acountable union of
closed subsets which is densein XC;. On the other hand, the set of K3 surfaces (X', H') €
KCq suchthat My (v') isnot smooth isaproper closed subset. Indeed, My (v') issmooth at
stable points and the set of properly semistable sheavesis closed in M and does not dom-
inate H4. Thus we can find (X', H') € K4 such that p(X’) > 2 and H' is generic with
respect to v'. By 6.2.12 the moduli space M (v) is irreducible symplectic if and only if
My (v') isirreducible symplectic.

Sep 2. We may assume p(X) > 2. Let us show that one can further reduce to the case
that H2 > r>A/8. By assumption H is contained in an open chamber with respect to v.
Hence there exists a polarization H' in the same chamber which is not linearly equivalent
tov;. Thenwe get My (v) = My (v) = Mg (v(mH')) for any m. Herev(mH') isthe
Mukai vector of E @ O(mH'), where E € My (v), and the second isomorphismis given
by mapping E to E ® O(mH'"). For any m there exists an integer m > my such that
vi(mH") = vy + rmH' is ample, contained in the chamber of H, and primitive. Hence
My (v) = My, trmp (v(mH'")). Clearly, (vy + rmH')? can be made arbitrarily large for
mo > 0.

Sep 3. Assume now that (X, H) isapolarized K3 surfacewith H2 > r?A /8. Let X' be
an dliptic K3 surface with Pic(X') = Z - f ® Z - o asin Proposition 6.2.6. Then H' :=
o+ (H? + 2) f isample and suitable with respect to v’ = (v, H', v2) by 5.3.6. Moreover,
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H'> = H? =: 2d. Thus (X, H), (X', H') € K4. Hence M (v) isirreducible symplectic if
and only if My (v") isirreducible symplectic which was the content of Proposition 6.2.6.0

In Section 6.1 we first established that any two-dimensional moduli space is a K3 sur-
face, i.e. irreducible symplectic, and then determined its Hodge structure. Here we proceed
along the sameline. After having achieved thefirst half we now go on and study the Hodge
structure of the moduli space.

A weight-two Hodge structure on any compact Kahler manifold is given by the Hodge
decomposition H?(X,C) = H*°(X)eH" (X)9H"?(X). For anirreduciblesymplectic
manifold the full information about the decomposition is encoded in the inclusion of the
one-dimensional space H>°(X) Cc H?*(X,C), i.e. apointin P(H?(X,C)”). This point
is called the period point of X . Next we introduce an auxiliary quadratic form, by means
of which one can recover the whole weight-two Hodge structure from the period point in
P(H?(X,C)).

Definition and Theorem 6.2.13 — If X is irreducible symplectic of dimension 2n, then
there exists a canonical integral formq of index (3, b2(X) — 3) on H?(X, Z) given by

glaw + a + bw) = X - (ab + (n/2) /X(wu_))”loz2> ,

wherea € H"'(X), C-w = H°(X, Q%) with [(ww)™ = 1 and X is a positive scalar.

Moreover,
2n n _ \n 2n
(%) oy = [ oon

Proof. [25], [73] m|

Note that for K3 surfacesthisis just the intersection pairing.

For the higher dimensional examples constructed above one can identify the weight-two
Hodge structure endowed with this pairing. We begin with the Hilbert scheme. The higher
rank case is based on this computation.

Theorem 6.2.14 — Let X be a K3 surface and n > 1. Then there exists an isomorphism
of weight-two Hodge structures compatible with the canonical integral forms

H(Hilb"(X),Z) = HX(X,Z)& T - 5,

where on the right hand side ¢ is a class of type (1, 1) and the integral formis the direct
sum of the intersection pairing on X and the integral formgiven by 62 = —2(n — 1). The
constant A in 6.2.13is1/2.

Proof. [25] m|

For the higher rank case, we recall and dightly modify the definition of the map



156 6 Moduli Spaces on K3 Surfaces

f : H*(XvQ) - HZ(MH(U)aQ)

introduced in the proof of 6.1.14. If £ is a quasi-universal family over My (v) x X of
rank m - rand ¢ € H*(X,7Z), then f(c) = p.{p.g*(c)}2/m, where thistime p :=
ch™(€).¢*\/td(X). Thisdiffersfrom the origina definition by the factor /td(M). Asbe-
fore, denoteby V' the orthogonal complement of v € H (X, Q) endowed with the quadratic
form and the induced Hodge structure. Note that under our assumption dim(Mg (v)) > 2
thevector v isnolonger isotropic,i.e.v ¢ V. A priori, f need not beintegral evenif My (v)
admits a universal family.

Theorem 6.2.15 — Under the assumptions of 6.2.5 the homomorphism f defines an iso-
morphismof integral Hodge structures V' =2 H? (Mg (v), Z) compatiblewith the quadratic
forms.

Proof. [209] m|

Thistheorem dueto O’ Grady nicely generalizesBeauvill€' sresult for the Hilbert scheme
and Mukai’'s computationsin the two-dimensional case. Indeed, if v = (1,0,1 — n), then
Mg (v) = Hilb"(X)andV = {(a,b,a(n — 1))|la € Z,b € H*(X,Z)}. And with its
induced Hodge structure V' is isomorphic to the direct sum of H?(X,7) and Z where for
a € Zonehasq(a) = ((a,0,a(n — 1)), (a,0,a(n — 1))) = —2a*(n — 1).

We conclude this section by stating a result which indicates that although the moduli
spaces M (v) provide examples of higher dimensional compact hyperkahler manifolds,
they do not furnish completely new examples.

Theorem 6.2.16 —Let v; be primitiveand H contained in an open chamber with respect
to v. Then My (v) and Hilb™ (X') are deformation equivalent, wheren = (v,v)/2 + 1

Proof. [113] m|
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Appendix to Chapter 6

6.A Thelrreducibility of the Quot-scheme

In the appendix we prove that the Quot-scheme Quot(E, £) of zero-dimensional quotients
of length ¢ of afixed locally free sheaf E isirreducible. Thisresult was used at several oc-
casionsin this chapter but it is also interesting for its own sake.

In the following the socle of a zero-dimensional sheaf T at a point z is the k(x)-vector
space of all elementst € T, whichareannihilated by themaximal ideal of Ox ,. Thisusage
of theword 'socle’ differsfromthat in Section 1.5. Exercise: In what sense arethey related?

If rk(E) = 1, then Quot(FE, ¢) isisomorphicto the Hilbert schemeHilb (X, £). Thelatter
was shown to be smooth and irreducible (4.5.10).

Theorem 6.A.1 —Let X beasmooth surface, E alocally free sheaf and ¢ > 0 an integer.
Then Quot(E, ¢) isan irreducible variety of dimension £(rk(E) + 1).

Proof. The assertion is proved by induction over £. If £ = 1, then Quot(E, 1) = P(E),
whichisclearly irreducible.

Lee0 - N = Oquot ® E — T — 0 bethe universa quotient family over Y, :=
Quot(E, ) x X. For any point (s,z) € Y, and anontrivial homomorphism A : Ny(z) —
k(z) we can form the push-out diagram

0 — k) — T, — Ts — 0

I

0 — N, — E =S T, — 0.

Thus sending (s, z, (\)) to (s', z) definesamorphism : P(N) — Y,4,. We want to use
the diagram

Ye ¢ P(N) % Ve

for an induction argument. For each (s : £ — Ts,z) € Y, leti(s,z) := hom(k(z),Ts)
denote the dimension of the socle of T at x. Then i is an upper semi-continuous function
onY;: let Yy ; denotethe stratum of points of socle dimension:. Itis not difficult to see that
if y = p((\) andy’ = ((\)) for some (\) € P(N), then |i(y) —i(y')| < 1. Thisshows
that

P Vepg) € | et (V). (6.1)
li—j|<1
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Check that ¢y='(s',2) = P(Socle(T!)”) = Pi{s"®)~1 and p='(s,z) = P(N,(z)) =
Pdim N (z)—1 Moreover, using a minimal projective resolution of T, over the loca ring
Ox 2, oneshows: dim N, (x) = rk(E) +i(s, z). Using this relation, the information about
thefibredimension, and therelation (6.1) one provesby induction that codim (Y ;, Y2) > 2i
forali>0and? >0.Let0 - A — B — N — 0bealocaly freeresolution of N. Then
rk(B) = rk(A) + rk(E), and P(N) C P(B) isthe vanishing locus of the homomorphism
A = B — Opp)(1), 7 : P(B) — Y, denoting the projection. In particular, as Y,
isirreducible, and P(V) islocally cut out by rk(.A) = rk(B) — rk(E) equationsin P(B),
every irreducible component of P(N) has dimension > dim(Y;) + rk(E) — 1. Now it is
easy to seethat o' (V7,0) isirreducible and has the expected dimension and that =" (%)
istoo small for all 7+ > 1 to contribute other components. Hence P(V) isirreducible, and
as the composition P(N) — Yy41 — Quot(E, ¢ + 1) issurjective, Yy, isirreducible as
well. |

Comments:

—6.1.6,6.1.8, 6.1.14 are contained in Mukai’simpressive article[188]. He al so applies the results
to show the algebraicity of certain cyclesin the cohomology of the product of two K3 surfaces.

— For amore detailed study of rigid bundles, i.e. zero-dimensional moduli spaces see Kuleshov's
article [133].

— The relation between irreducible symplectic and hyperkahler manifolds was made explicit in
Beauville's paper [25]. He also proved Theorem 6.2.4 for al K3 surfaces provided the Hilbert scheme
isKéhler. That thisholdsin general follows from aresult of Varouchas [256]. Furthermore, Beauville
described another series of examples of irreducible symplectic manifolds, so called generalized Kum-
mer varieties, starting with atorus.

— Themain ingredient for 6.2.5, namely the existence of the symplectic structure is due to Mukai.
His result will be discussed in detail in Section 10. The irreducibility and 1-connectedness was first
shown in the rank two case by Gottsche and Huybrechts in [87] and for arbitrary rank by O’ Grady in
[209]. The proof we presented follows [209].

— The calculation of the Hodge structure of the Hilbert scheme (Theorem 6.2.14) is due to Beau-
ville [25]. Note that the Hodge structures (without metric) of any weight of the Hilbert scheme of an
arbitrary surface can be computed. This was done by Gottsche and Soergel [86].

— The description in the higher rank case (Theorem 6.2.15) is due to O’ Grady. The proof relies
on the proof of 6.2.5, but amore careful description of the birational correspondence between moduli
space and Hilbert scheme on an elliptic surface is needed. Once the assertion is settled in this case,
the general case followsimmediately by using the irreducibility of the moduli space KC;. Thispartis
anal ogous to an argument of Mukai’s.

— In [87] Gottsche and Huybrechts computed all the Hodge numbers of the moduli space of rank
two sheaves. They coincide with the Hodge numbers of the Hilbert scheme of the same dimension.
But thisis not surprising after having established 6.2.16.

— Theorem 6.2.16 was proved by Huybrechts [113]. The proof is based on the fact that any two
birational symplectic manifolds are deformation equivalent. Note that in [113] the proof isgiven only
for the rank two case, but the techniques can now be extended to cover the genera case aswell.

— Theresultsof [113] (and their generalizations) show that all known examplesof irreducible sym-
plectic manifolds, i.e. compact irreducible hyperkahler manifolds, are deformation equivalent either
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to the Hilbert scheme of a K3 surface or to ageneralized Kummer variety. In particular, all examples
have second Betti number either 7, 22, or 23.

— Theirreducibility of Quot(E, £) (Theorem 6.A.1) was obtained by J. Li [148] for rk(E) = 2
and by Gieseker and Li [82] for rk(E) > 2. The proof sketched in the appendix is due to Ellingsrud
and Lehn [58]. They also show that the fibres of the natural morphism Quot(E, £) — S*(X) are
irreducible. Note that in the case rk(E) = 1 Theorem 6.A.1 reduces to the theorem of Fogarty that
the Hilbert scheme of points on an irreducible smooth surface is again irreducible (cf. 4.5.10).
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7 Restriction of Sheavesto Curves

In this chapter we take up a problem already discussed in Section 3.1. We try to understand
how p-(semi)stable sheaves behave under restriction to hypersurfaces. At present, thereare
three quite different approachesto this question, and we will treat them in separate sections.
None of these methods covers the results of the others completely.

The theorems of Mehta and Ramanathan 7.2.1 and 7.2.8 show that the restriction of a -
stable or p-semistable sheaf to ageneral hypersurface of sufficiently high degreeisagain -
stable or u-semistable, respectively. It hasthe disadvantagethat it is not effective, i.e. there
is no control of the degree of the hypersurface, which could, a priori, depend on the sheaf
itself. However, such abound, depending only on the rank of the sheaf and the degree of the
variety, is provided by Flenner’s Theorem 7.1.1. Sinceiit is based on a careful exploitation
of the Grauert-Mulich Theoremin therefined form 3.1.5, it works only in characteristic zero
and for u-semistable sheaves. In that respect, Bogomolov’s Theorem 7.3.5 is the strongest,
though one has to restrict to the case of smooth surfaces. It says that the restriction of a p-
stable vector bundle on a surface to any curve of sufficiently high degreeis again u-stable,
whereasthetheoremsmentioned beforeprovideinformationfor general hypersurfacesonly.
M oreover, the bound in Bogomolov’ stheorem depends on the invariants of the bundleonly.
Thisresult providesan important tool for theinvestigation of the geometry of moduli spaces
in the following chapters.

7.1 Flenner’'sTheorem

Let X be anormal projective variety of dimension n over an algebraically closed field of
characteristic zero and let O(1) be a very ample line bundle on X. Furthermore, let Z C
IxX = Hle |Ox (a)|x X betheincidencevariety of completeintersections D, N...ND,
with D; € |Ox (a)|. (For the notation compare Section 3.1.) Recall that ¢ : Z — X isa
product of projectivebundlesover X (cf. Section 2.1) and therefore Pic(Z) = ¢*Pic(X) ®
p*Pic(II). The same holds true for any open subset of Z containing all points of codimen-
sion one.
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If E isp-semistable, then for ageneral completeintersection Z, = p~!(s) onehas(The-
orem 3.1.5):

ou(E

z,) = max{p;(E|z,) — pi+1(Elz,)} < —pmin(Tz/x|2,)-

Roughly, the proof of the Grauert-Mulich Theorem was based on this inequality and the
upper bound — pimin (Tz/x|2,) < a**! - deg(X). The Theorem of Flenner combines the
inequality for 6, with a better bound for —pumin(72,x 2. ). The new bound allows one to
concludethat §u = 0,i.e. E|z, u-semistable, for a >> 0. Notethat in thefollowing theorem
only the rank of E entersthe condition on a.

Theorem 7.1.1 — Assume

“tmy (a1 21
m+>deg()()-max{r —1}.

If E isa pu-semistable sheaf of rank r, thentherestriction E|p,n...np, toageneral complete
intersection with D; € |O(a)| is u-semistable.

Proof. The proof isdivided into several steps. We eventually reduce the assertion to the
casethat X isaprojective space. Step 1. We claim that it suffices to show

)< al+1
S (G0 PR |

— tmin(T7/x - deg(X). (7.2
Assume E is of rank r and therestriction E|z, is not u-semistable for general s € II. Let
0 C Fy C Fi C ... C F; = q*E|z be the relative Harder-Narasimhan filtration with
respect to the family p : Z — II. Then for some

) = i — i = deg((Fit1/Fi)lz,) _ deg((Fita/Fiy1)
’ v rk(Fit1/F;) tk(Fiya/Fit1)
l
a

lLem.(rk(Fiy1/F;), vk(Fiy2/Fit1))

Su(E )

Indeed, since det(F;41/F;) = ¢*Q ® p* M, where Q € Pic(X) and M € Pic(II), one
hasdeg((Fiy1/F;)|z.) = deg(Q|z.) = deg(Q) - a’. Using the inequality

2 _
Lean. (ck(Fipy /), tk(Fiyn /Fis1)) < max{1, - - 1

and (7.1) we obtain

af a€+1
— < Su(E < —pmin (73 )<
max{l, 7.24_1} > ,u( |Zs) S M ( Z/X\Z ) > (n:a) —a-l—1

- deg(X)

which immediately contradicts the assumption
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n+a
deg(X) -max{l,r2 _1} < () —a-t- 1.
4 a

Sep 2. Since O(1) isvery ample, onefindsalinear system P := P(V)) C |O(1)| suchthat
¢y : X — Pisafinite surjective morphism. Since pimin ( 7. ) can only decrease when
specializing Z,, it isenough to show (7.1) for ageneral completemtersectlon Din...nD,
with D; € P(S°V™) C |O(a)|. Moreover, wemay replacetheincidencevariety Z C IIx X
byZ =1y %11 Z, WhefeH\/—H (Sa )
viathe exact sequence

0— TZ/X ms — 0
(m = h°(X,0(a)) — dim S*V'), one has — i ( 7.) < —pmin(T5,x|z.). Thusit
suffices to show
ottt
—kmin(Tz/x12,) < - deg(X)

(T —a -1
with s € Iy .

Sep3.1f Z' C Hle |Op(a)| x P = IIy x P denotes the incidence variety on IP, then
Z = 7' xp X.Hence (1 x ¢)* T /p = TZ/X' Using the above exact sequence thisyields

7). = Hmin((1 x ¢)*(Tz//p)|2.)
=  Mmin (7—Z’/]P’|Z;) . deg((b)
= pmin(Tz/x|27:) - deg(X).

HMmin (T~

This completes the reduction to the case X = P.

Step 4. \We now prove — pimin ( 7.) < (n+a) — - forthecase X =P = P(V). To

shorten notation we introduce A := S*(V) and N := (”*“)
Let Z C Iy x P betheincidencevariety andlet v : P — P(A) bethe Veronese embed-
ding. Then Z isthe pull-back of the incidence variety

4

{(Hy,...,Hy,z) € [[P(A) x P(A)|z € H;},

i=1

which is canonically isomorphic to P(7p(4)(—1)) Xp(a) - -- Xp(a) P(Tp(a)(—1)). Hence
Z isasalP-schemeisomorphicto P(v* (7p(a)(—1))) Xp. .. Xp P(v*(Tp(a)(=1))), and the
relative Euler sequence takes the form

0— Oé — p*O(l)é & q*v*(Qp(A)(l)) — Tz/]p — 0.

Therefore, — pmin (
P(A):

z.) < _Nmin(v*(QP(A\’)(]-)”Zs)- Using the Euler sequence on

0 — Qpay(1) — A® Opay — O(1) — 0



7.1 Flenner's Theorem 163

the pull-back v* (p(4)(1)) can naturally be identified with the kernel of A ® Op — O(a).
According to the notation of Section 1.4 this is ¢, which will be abbreviated by . We
conclude the proof by showing

a£+1
() —a f-1

Recall from 1.4.5 that £ is semistable and by the exact sequence

—pmin(K|z,) <

0 —K—>A®0p — O(a) — 0

onehas u(K) = —x%5.
If Y = Z, isagenera completeintersection D; N ... N D, with D; € P(A”), then the
Koszul complex takesform

0 = A‘B(=fa) = ... - A>B(—2a) = B(—a) = Op = Oy — 0,

where B C A isthe subspace spanned by the sections cutting out Y. Splitting the Koszul
complex into short exact sequences we obtain

0— Ejy1 = A B(—ja) = E; = 0 (7.2)
with E,y; = 0 and Ey = Oy . From the dual of the short exact sequence defining £,
0= 0(—a) > A"0p - K =0,
one gets short exact sequences for the exterior powers of £
0= AT (—a) 5 ATA"® 0 = AIK" =0

For b < 0 and v < n the cohnomology groups H" (P, A2A™(b)) vanish. This givesisomor-
phisms

HOAIK (b)) = HY (AT K" (b —a)) = ... = H (A" K" (b — va))

fordl b < 0andv < n. By Lemma 1.4.5 and Corollary 3.2.10 the sheaf AYK” is p-
semistable, so that H°(P, AL (b)) = 0 assoonas0 > b+ u(AK) = b—q - u(K),
whichisequivalenttob < —<=. By tensorizing the sequences (7.2) with AP and pass-
ing to cohomology we get the exact sequences

AN B ® HI(APK™ (b — ja)) — HI (E; ® APK” (b)) — HIT (Ej1 @ APK (b))

Theterm ontheleft vanishesforall j = 0,... ,fassoonasb < —(p+¥£)-a/(N —1). For
such b one gets

H°(Y,APK” ® Oy (b)) = H°(Ey ® APK7 (b)) C ... € H (Epy @ APK7 (D)) = 0.

Hence, HO(Y, APK” ® Oy (b)) = 0 for b < —{&F0-2,
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If p*KC — F denotes the minimal destabilizing quotient with respect to the family p :
Z — Iy, thendet(F') = ¢*O(b) ® p*M with M € Pic(Ily). Hence the surjection
Kly — Fly definesanon-trivial elementin H°(Y, A€~ @ O(b)), where ¢ = rk(F) and
therefore

p> _a+0-a
- N-1
Onthe other hand, —1 > b, for b is a negative integer, and thus
N—-1—a-/
gz —
a
Both inequalities together imply
b-al (g+0-a att?
min = > - A Py et
pmin (Kly) g — (N-1)-q CETN—a-1

7.2 The Theorems of Mehta and Ramanathan

In this section we work over an algebraically closed field of arbitrary characteristic.

Theorem 7.2.1 —Let X be a smooth projective variety of dimensionn > 2 and let O(1)
beavery amplelinebundle. Let E be a u-semistable sheaf. Then thereisaninteger ay such
that for all @ > a, thereisa dense open subset U, C |O(a)| suchthat for all D € U, the
divisor D issmooth and E|p isagain p-semistable.

Proof. Let a be apositiveinteger and let as before
Zo, 5 X

p

I, := [O(a)]

be the universal family of hypersurface sections.

The u-semistable sheaf E istorsionfreeandfor any a and general D € 11, therestriction
E|p isagain torsion free (Lemma 1.1.13). Moreover, ¢* E isflat over II,,, since, indepen-
dently of D € TII,, the restriction E|p has the same Hilbert polynomia P(E|p,m) =
P(E,m)— P(E,m — a). According to the theorem on the relative Harder-Narasimhan fil -
tration (cf. 2.3.2). thereis adense open subset V, C II, and aquotient ¢*E| 7, — F, that
restrictsto the minimal destabilizing quotient of E|p, foral D € V,. Let Q bean extension
of det(F,) to someline bundleon all of Z,,. Then Q can be uniquely decomposed as

Q=q"L,®p"M
with £, € Pic(X) and M € Pic(IT,).
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Lemma7.22 —Leta > 3.1f £ and £" areline bundleson X suchthat £'|p = £"|p
for all D in a dense subset of IT,,, then £’ = L.

Proof. Let £ = (L") ' L". Thenh®(L|p) = 1 = h°(L”|p) foral D in adense subset
of I1,,.. By semi-continuity, h°(L|p), h°(L”|p) > 1fordl D € II,. Thus £L|p = Op if
D isintegral. Now the set B, of all integral divisorsinII, is open and its complement has
codimension at least 2 (Use Bertini’s theorem and the assumption a > 3). Therefore, there
isanisomorphism N — p.q*L|p, for somelinebundle N € Pic(B,) = Pic(Il,) and an
isomorphism p* A" — ¢* £ onp~!(B,), hence on thewhole of Z,. Thisimplies £ = Ox
and \V = OH(,- O

Let U, C V, denotethe dense open set of points D € V, suchthat D issmooth and E|p
torsion free (cf. 1.1.13).

Lemma7.2.3 —Leta; ... ,a, bepostiveintegers, a = Y a;, andlet D; € U,, bedivi-
sorssuchthat D = " D; isadivisor with normal crossings. Then thereisa smooth locally
closed curve C' C II,, containing the point D € II, suchthat C'\ {D} C U, and such that
Zc = C xn, Z, issmoothin codimension 2.

Remark 7.2.4 — If D, € U,, isgiven, onecan adwaysfind D; € U,, for i > 2 such that
D =" D; isadivisor with normal crossings.

Proof of the lemma. A general line L C II, through the closed point D will not be
contained in the complement of U,. Then L \ U, is afinite set containing D. Let C =
LNU,U{D}. Thecurve C is completely determined by the choice of a hyperplane H
in the cotangent space Qr, ([D]). We must choose H in such away that Z is smooth in
codimension2. Let z € D = | J D; beaclosed point in the fibre over D € II,,. The homo-
morphism

s O, ([D]) = Qz,(2)
isinjectiveif andonly if z isnot containedin any of theintersections D;N.D;, and thekernel

is 1-dimensional otherwise. Choose H such that the corresponding projective subspace does
not contain any of the images of the maps

DN D; = P, (D)), z = ker(p’).

Then H — Qz, (z) isinjectivefor al points z € D outside a closed subset of codimension
2, and Z is smooth in these points. This means that the set of pointswhere Z« failsto be
smooth has codimension at least threein Z.. O

Let u(a) and r(a) denote the slope and the rank of the minimal destabilizing quotient of
E|p foragenera point D € II,. Then1 < r(a) < rk(E) and

pa) _ des(ls) _ T
a r(a) rk(E)!

cQ
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Lemma7.25 —Leta,...,a; bepostiveintegers, a = Y a;. Then u(a) > > u(a;),
and in case of equality r(a) < min{r(a;)}.

Corollary 7.2.6 —r(a) and @ are constant for a > 0.

Proof. The functiona — @ takes values in a discrete subset of Q and is bounded
from above by p(E). Thereforeit attains its maximum value on any subset of N. Suppose
the maximum on the set of integers > 2 is attained at b, and the maximum on all positive
integers > 2 coprimeto by is attained at b, . If 3y and 8, are any positive integersand b =
Bobo + B1b1, then the lemma says

p(b) S Bobo 11(bo) n B1b1 p(br)

b T b b b by
Bobo pu(b1) +ﬂlbl f(by)
- b by b by
M(b1)_
by

Hence @ = %bll) and also @ = %’;") for al b that can be written as a positive linear
combination of by and by, hence in particular for al b > bgb;. A similar argument shows
that r(b) is eventually constant. |

Proof of the lemma. Let D; be divisors satisfying the requirements of Lemma 7.2.3 and
let C' be acurve with the propertiesof 7.2.3. Over V, there exists the minimal destabilizing
quotientg*E|z, — F.ltsrestrictiontoV,NC canuniquely beextendedtoaC flat quotient
q¢*E|z., — Fc. Theflatness of Fi impliesthat P(F¢|p) = P(F¢,.) fordl c € C\ {D}.
Hencerk(Fe|p) = r(a) and u(Fo|p) = u(a).

Let F = Folp/T(Fo|p). Thenrk(F|p;) = tk(F) = rk(Fo|p) = r(a) and p(a) =
w(Fe|p) > w(F). Moreover, since F' is pure, the sequence

0—>F—>®F|Di—>®ﬁ

i i<j

DiﬂD]‘ d 0

is exact modulo sheaves of dimension n. — 3. Computing the coefficients of degreen — 2 in
the Hilbert polynomials of these sheaves (use the Hirzebruch-Riemann-Roch formula), we
get the equation:

r(a) <,u(F) - %D(D + Kx).H”_2>

= Y r(a) <,u(F p,).H" — %Di(Di + KX).H"2>

- Z rk(F

1<j

pinp;)Di.Dj . H" 2.
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Cancelling superfluous terms one gets

M(F)=Z( p) -3 3 (HEloon)

i VED)

J) ) |

= I‘k(F\DinDJ-)
wF) < p(Plp) = Xy (Cgg ™ = 1) wie
_ tk(F|p;np;)
< pu(Flp) = 5254 (T - 1) a;a;.

It followsthat u(a) > w(F) > >, w(F;) > Y, u(a;). Moreover, if u(a) =, p(a;) w
must have equality everywhere. In particular, rk(F'|p, N D;) = r(a) and u(F;) = u(a )

Since F;; hasthe minimal possible dlope, r(a) = rk(F;) < r(a;). a

Supplement to the proof: if u(a)/a = p(a;)/a; andr(a) = r(a;) for al i, then Fe|p,

their determinant line bundles as sheaveson D; are equal. This can be used to prove:
Lemma 7.2.7 —Thereisalinebundle £ € Pic(X) suchthat £, = £ for all a > 0.

Proof. Let dy > 3 bean integer such that (a) and @ are constant for al a > do. Let
a > 2dy + landletd; = a — dy. Choose Dy € Uy, arbitrary and let D; € Uy, such that
D = Dy + D, isanormal crossing divisor. Let C' beacurve asin the previouslemmaand
consider the quotient ¢* E| 7, — Fc asabove. Extend det(F| s ) toaC-flat sheaf .A on
Zo. Then A|lp =2 L,|pr fordl D’
destabilizing quotient only indimensionn — 3, A|p, 2 L4, outside aset of codimension 2
inD; fori = 0, 1. By semi-continuity there exist non-trivial homomorphisms£,|p — A|p
and Alp — La|p-
somesi. Since both line bundles are of the same degree, it is anisomorphism. Whichin turn
implies that also on the other component there is such an isomorphism. Hence £, |p, =
Lemma7.2.2 impliesthat £, = L4, for all
a > 2do + 1. O

We can now finish the proof of Theorem 7.2.1: suppose the theorem were false, i.e. we
had deg(L)/r < p(E) andr < rk(E), wherer = r(a) for a > 0. Let o be sufficiently
large, let D € U,,andlet E|p — Fp bethe minimal destabilizing quotient. Thereis a
large open subscheme D' C D suchthat Fip|p- islocally free of rank r. Thisinduces a
homomorphismop : A"E|p — L|p whichis surjective over D' and morphisms

D' — Grass(E,r) — P(A"E).
Consider the exact sequence

Hom(A"E, £L(—a)) — Hom(A"E, £) — Hom(A"E|p, £|p) — Ext' (A"E, L(—a)).
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By Serre’stheorem and Serre duality, onehasfori = 0,1
Ext!(A"E, L(—a))”" = H* {(X,A"E ® L~ @ wx(a)) =0

for al a > 0, since by assumption n. > 2. Hence if a is sufficiently large, op extends
uniquely to a homomorphismo : A"E — L. The support of the cokernel of this homo-
morphism meets the ample divisor D in a subset of codimension 2. Hence o is surjective
on alarge open subset X' C X with D' = X' n D. We want the induced morphism
i : X' — P(A"E) to factorize through Grass(E,r). The ideal sheaf of Grass(E,r) in
P(ATE) is generated by finitely many sheavesZ,, ¢ SY(A"E), v < vg. The morphism ¢
factorsthrough Grass(E, r) if and only if the composite maps

Yy, L, — SY(A"E) — LV

vanish. But weknow already that therestriction of ¢, to D vanishes, so that we can consider
¢, aselementsin Hom(Z,, £”(—a)). Clearly, these groupsvanish for a > 0. This proves
that F)p extendsto aquotient F'x: of E|x: whichislocally free of rank r with det(Fx/) =
L|x. Hence

deg(L
n(Fx) = ¥ < )
This contradicts the assumption that E is u-semistable and, thus, concludes the proof of
Theorem7.2.1 |

We now turn to the restriction of u-stable sheaves.

Theorem 7.2.8 —Let X be a smooth projective variety of dimensionn > 2 and let O(1)
beavery amplelinebundle. Let E bea u-stable sheaf. Thenthereisan integer a such that
for all a > ao thereis a dense open subset W, C |O(a)| such that for all D € W, the
divisor D issmooth and E|p is u-stable.

Thetechniquesto provethetheorem are quite similar to the onesencountered before. The
main difficulty isthefact that a destabilizing subsheaf of a u-semistable sheaf isnot unique.
By 1.5.9 a u-semistable sheaf which is simple but not y.-stable has a proper extended socle.
Thus we first show that the restriction is ssmple and then use the extended socle (rather its
guotient) as a replacement for the minimal destabilizing quotient.

Lemma 7.2.9 —For a > 0 and general D € |O(a)| therestriction E|p issimple.

Proof. Let F' bethedoubledual of E. Thenfor arbitrary a and general D € |O(a)|, F|p
isthedoubledual of E|p (cf. Section1.1). Since E and E| p aretorsionfreeand F and F'| p
arereflexive (cf. 1.1.13), there are injective homomorphisms

End(E) » End(F)  and  End(E|p) — End(F|p).
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Therefore, it suffices to show that F'|p issimplefor a > 0 and D general. But if E is u-
stable, then sois F'. In particular, F' is simple. Consider the exact sequence

Hom(F, F(—a)) — End(F) — End(F|p) — Ext'(F, F(—a)).

Recall the spectral sequence H (X, £xt! (F, F ® wx (a))) = Ext™™ (F, F ® wx(a)). For
sufficiently large a > 0 we get

Ext'(F, F(—a))” 2 Ext" ' (F,F @ wx(a)) = H*(X,xt" " (F, F) ® wx(a)).

But Ext" 1(F,F) = 0, since F isreflexive and thus dh(F) < n — 2 (cf. Section 1.1).
Hencefor a sufficiently large, End(F) — End(F|p) is surjective. a

Let ag > 3 beaninteger such that for all @ > ay and general D € |O(a)| the restriction
E|p is p-semistable and simple. Suppose E|p is not u-stable for ageneral D. Then E|p,
isgeometrically u-unstable for the generic point € |O(a)|, i.e. the pull-back to some ex-
tension of k(n) isnot u-stable. Thisfollowsfrom the openness of stahility (cf. 2.3.1). Since
E|p, issimple, the sheaf E|p, is stableif and only if it is geometrically stable (Lemma
1.5.10). Hence E| p, isnot u-stable. In fact, the extended socle of E|p, isaproper destabi-
lizing subsheaf (1.5.9). Extend the corresponding quotient sheaf F;, to a coherent quotient
¢*E — F, overdl of Z,. Let W, denote the dense open subset of points D € |O(a)| such
that D is smooth and F,, isflat over W,. Then E|p — F|p isadestabilizing quotient for
al D e W,.

Lemma 7.2.10 —If E|p, is u-stable for some Dy € W,, a > ao, then E|p- is u-stable
forall D' € W, andall a’ > 2a.

Proof. Choose D, € W,._, suchthat D = Dy + D; isanormal crossing divisor, and
let C C |O(a')| beacurveasin the proof of Lemma7.2.3. Then the destabilizing quotient
Fu|Zc\¢py can beextendedto aflat quotient i of ¢* E| 7. Then F | p, destabilizes E| p,
in contradiction to the assumptions. m|

Assume now the theoremisfalse. Then E|p isunstablefor al a > ao and general D €
W, . As before there are line bundles £, € Pic(X) such that det(F,|p) = Lq|p for all
D e W, andal a > ag. The same argument asin Lemma7.2.7 shows: if a1, ... ,a; are
integers > ap anda = Y a;, and if D; € W,, arepointssuchthat D = Y~ D; isanormal
crossing divisor, then £, |p, is the determinant line bundle of some destabilizing quotient
of £

D;-

Lemma 7.2.11 —If D is a smooth projective variety, and if Ep is a u-semistable sheaf,
then the set T)p of determinant bundles of destabilizing quotientsof E, isfiniteand its car-
dinality is bounded by 27%(¥r).
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Proof. Let Lq,...,L,, p < rk(Ep), be the determinant bundles of the factors of some
Jordan Holder filtration of Ep. Then T is contained in the set of line bundles of the form
Rier LiswhereI C {1,...,p}. O

Leta > 2ag, andlet D € W,, bean arbitrary point. We saw that £,|p € Tp. Infact,
we get afunction

@ : N22a0 — H Tp.
DEW,,
Let ~ be the equivalence relation on N>»,, generated by: a ~ «' if the set of points
s € W, with ¢(a)(s) = ¢(a')(s) isdensein W,,. Then there are at most 2"“(P) digtinct
equivalence classes, and in particular, thereis at least oneinfinite class V. For assume that
there are distinct classes Ny, ... , Ny, £ > 2'5(E) Choose representatives a; € Nj. For
fixed D € W,,, we have

p(a1)([D]), - - p(ar)([D]) € Th.

Since £ > |Tp|, at least two of these elements must be equal. In this way we can pick for
any D € W,, apair of indicesi, j. But the set of all these pairsisfinite. Hence their is at
least onepair ¢, j which isassociated to all pointsin adense subset of W, . But by definition
thismeansa; ~ a;, hence N; = N;, acontradiction.

Lemma 7.2.12 —Thereisalinebundle £ € Pic(X) suchthat £ = £, for all a € N.

Proof. If p(a) equalsp(a’) on adense subset of W, then £,|p = L/ |p foral D ina
dense subset of |O(a)|, sothat Lemma7.2.2 implies £, = L. O

Finaly, let N’ C N be an infinite subset such that F;, has the same rank, say r, for all
a € N'. Summing up, we have: thereisalinebundle £ on X and aninteger 0 < r <
rk(E) such that deg(£) = ru(E) and such that for al @ € N' and general D € W,
thereisadestabilizing quotient E|p — Fp withrk(Fp) = r anddet(Fp) = £|p. Butthe
argumentsat the end of the proof of the previoustheorem show that this sufficesto construct
adestabilizing quotient E — Fx for sufficiently large a. This contradicts the assumptions
of the theorem. m|

7.3 Bogomolov’'s Theorems

Thissection isdevoted to anumber of resultsdueto Bogomolov. Theoriginal referencesare
[28, 29, 31]. In our presentation we use the fact that tensor powers of -semistable sheaves
areagain u-semistable (in characteristic zero), i.e. we build on the Grauert-M tllich Theorem
and Maruyamasresults, discussed in Chapter 3. In this we deviate from Bogomolov’sline
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of argument, which isindependent of the before-mentioned theorems. However, the essen-
tial ideas are al due to Bogomolov. In the following let X be a smooth projective surface
over an algebraically closed field of characteristic zero.

Recall that Bogomolov’sinequality 3.4.1 states that the discriminant of any p-semistable
torsion free sheaf is nonnegative. Before we begin to improve upon this result, we give a
short elegant variant of the proof of 3.4.1, say as awarm-up for calculations with discrimi-
nants, following an argument of Le Potier. Using one of the restriction theorems of the pre-
vious sections one can generalizethe inegquality to sheaves on higher dimensional varieties.

Theorem 7.3.1 — Let X be a smooth projective variety of dimension n and H an ample
divisor on X. If F' isa u-semistable torsion free sheaf, then

A(F).H" 2 > 0.

Proof. By 7.1.1 or 7.2.1 the restriction of F' to a general complete intersection X' :=
Din...N Do withD; € |aH|anda > 0 isagain u-semistable and torsion free.
Since a®2A(F).H"? = A(F|x), we may reduce to the case of a u-semistable sheaf
on a surface. Thus, let H be an ample divisor on a surface X and let F' be atorsion free
p-semistable sheaf. Asin the earlier proof we may assume that F' is locally free and has
trivial determinant. By Theorem 3.1.4, the vector bundles F*" are all u-semistable. They
havetrivial determinant and their ranks and discriminantsaregivenby r,, = r™ and A,, =
nr2("=1) A(F). Replacing H by some large multiple, it follows from the restriction theo-
rem of Flenner or Mehta-Ramanathan, that F'|~ —and hence dso F®"|- — is semistable
for ageneral curve C € |H|. In particular, it follows from Lemma 3.3.2 that there is a pos-
itive constant -y, depending only on X, such that h°(F®™) < v - r,,. By Serre duality, and
enlarging vy if necessary, we also get h? (F®") < v - r,,, and therefore x (F®") < 2 - 77,
On the other hand, the Hirzebruch-Riemann-Roch formulafor bundleswith vanishing first
Chern class says:

A, .
X(FE™) = rox(Ox) — o = r"x(Ox) — gr” 2A(F).

If n goesto infinity, this contradicts y (F'®") < 2v - 7™, unless A(F') > 0. ]

Corollary 7.3.2 — Let F' be a torsion free sheaf. If F' is u-semistable with respect to an
ampledivisor H, then the discriminants of the p-Jordan-Holder factors of F' satisfy thein-
equality A(gr!H (F)) < A(F) for all 4.

Proof. Assumefirst that an arbitrary filtration of F* with torsion freefactors F; of rank r;
and first Chern classes v; isgiven. Letr := Y .r; = rk(F)and vy := Y . v = 1 (F).
Recall that the Chern character and the discriminant are related by 2r - chy = ¢ — A.
The additivity of the Chern character in short exact sequences therefore provides the first
equality in the following identity and a direct calculation gives the second:
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AF) A(F) «7 1 v u\’
D S DL ot I G

i i<j g

Now if the factors F; arise from a Jordan-Holder filtration of F', then (vy; /r; —~;/r;).H =
0, and therefore (v;/r; — v;/r;)*> < 0 for all 4, j, by the Hodge Index Theorem. Since
A(F;) > 0 by Bogomolov's Inequality, we get

MF) AR A
r; r — rj
J#i
which is even stronger than the assertion of the corollary. |

We can rephrase the Bogomolov | nequality asfollows: if A(F') < 0 for sometorsionfree
sheaf F', then F' must be p-unstable with respect to all all polarizations H on X . Indeed,
the next theorem implies that one can find a single subsheaf which is destabilizing for all
polarizations. Before stating the theorem, we introduce some notations: let Num denotethe
free Z-module Pic(X)/ =, where = means numerical equivalence. Itsrank p is called the
Picard number of X. The intersection product defines an integral quadratic form on Num,
whose real extension to Numg, is of type (1, p — 1) by the Hodge Index Theorem. Let K+
denote the open cone

K* ={D € Numg|D? > 0, D.H > 0 for dl anple divisors H}.

Note that the second condition is added only to pick one of the two connected components
of the set of all D with D2 > 0. This cone contains the cone of ample divisors and in turn
is contained in the cone of effective divisors. K+ satisfies the following property:

DeK"e D.L>0fordl LeK+)\{0}. (7.4)
For any pair of sheaves G, G' with nonzero ranks | et
¢arq =1 (@) )1k(G') — e1(G) /rk(G) € Numg.

Theorem 7.3.3 —Let F' be atorsion free coherent sheaf with A < 0. Then thereis a non-
trivial saturated subsheaf F' with ¢ p € K. Equivalently, if F' is a torsion free sheaf
which is u-semistable with respect to a divisor in K+, then A(F') > 0.

Beforewe provethetheoremthereader may check thefollowingidentities: let0 — F' —
F — F" — 0 beashort exact sequence of non-trivia torsion free coherent sheaves. If
G C F'isanon-trivial subsheaf, then

§a,F =&r F + &G - (7.5)

And if G" C F" isaproper subsheaf of rank s and G the kernel of the surjection ' —
F"/G", then
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! "
fG’,F = H 'EF’,F + 7“'—j—8 . £G’”,F”, (7-6)
where, of course, r, v’ and r"’ aretheranksof F', F’ and F"', respectively. Note that in both
cases the coefficientsin the linear combinations are positive numbers.

Proof of thetheorem. If p = 1, the claim follows directly from the previoustheorem: any
saturated destabilizing subsheaf suffices. So assumethat p > 2. For any nonzero¢ € Nump
let C(¢) denote the open subcone { D € K+|D.¢ > 0}. Property (7.4) saysthat ¢ isin K+
if and only if C(¢) = K+ \ {0}.

Ifr =1,thenF =2 L ® 7z, where L isalinebundle and 7, the ideal sheaf of a zero-
dimensional subscheme Z C X, and A(F) = 2¢(Z) > 0. Now assumethat A(F) < 0.
Let F' beasaturated destabilizing subsheaf with respect to some polarization H, and let F"'
be the quotient F'/ F'. Then writing the identity (7.3) in the form

A A" Ay

2
—+ FEF’,F,

! T

1"

r r

we seethat either £3, - > 0, and wearedone, or that A’ or A" arenegative. In this case we
can assume by induction that thereis either a saturated subsheaf G C F' withég pr € KT
or asaturated subsheaf G C F" withég pv € K. Inthelatter case, let G bethekernel of
F — F"[G".Inany case, £, r isapositivelinear combination of {#/ » and some element
¢ € K* by (3.4) and (7.3). Now by assumption, {g+ r isnotin K+ and thereforeC (£ )
is a proper subcone of K+ \ {0}. But ¢ is dtrictly positive on the closure of C(&7 ) in
K+ \ {0}. ThusC(&¢,r) containsthis closure and afortiori C (¢ ) as proper subcones.
Hence replacing F' by G gtrictly enlarges the cone C (€, 7). Repeating this process we
get a sequence of drictly increasing subconesof K+ \ {0} until at some point f‘fw,,F > 0.
All we are left with is to prove that this process must terminate: let H,. .. , H, be ample
divisors whose classes in Numg form an R-basis and are contained in C({r 7). Let G be
any subsheaf of F' with C(ég,r) D C(r,r). Then {q, r iscontained in the lattice %Num
and satisfies the relations

0 < &ar Hj < i (F) — p™i (F)
foral j. Thatis, £ iscontained in abounded discrete and hence finite subset of Numg. O

Having found a subsheaf F’ C F with {p p € K the next step is to improve the
theorem in a quantitative direction by giving alower bound for the positive square f%,’ e

Theorem 7.3.4 —Let F' be atorsion free coherent sheaf with A < 0. Then thereis a sat-
urated subsheaf F’ with £ € K satisfying the inequality

2
e — .
€F JF = 7‘2(7‘ 1)
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Proof. If F’ C F isasaturated subsheaf with (g p € KT, then the Hodge Index The-
oremimplies

G p < (& H)?JH? < (ul (F) — " (F))* H

for any ampledivisor H. In particular, the numbers £2., _ forvarying F are bounded from
above. Let F' besuchthat {7, 1 attainsitsmaximumvalue. Asbefore, let F bethequotient
F/F'. Supposenow that A’ < 0 andlet G C F' beasaturated subsheaf with (¢ pr € K.
Sinceéq,r and{p r areboth elementsin the positive cone K T, the Hodge Index Theorem
shows that

léa,rl =¢a,r +&pr p| > [€ar | + &7 p| > |€p P,

contradicting the maximality of F’. Here we have used the notation |¢| = (¢2)'/2. Hence
A’ > 0. Assume now that

A

— < —r(r- 1)5%,71;.
Using the additivity relation (7.3) again, we get

AN,
st FfFQF <

r'r(r—1) — o' —1

T.II

rr! . .
& p=-—r &np <0, (1.7

,r.ll
Arguing by induction on the rank, we can now apply thetheoremto F”'. Asbeforelet G C
F" be adestabilizing subsheaf of rank s satisfying the relation

" 7“2

2 2
fG'”,F” 2 _7“"2(1“” _ 1) > ,r/_/2€F',F'

For the last inequality use (7.7). Let G denotethe kernel of F¥ — F"'/G". Using (7.6) we
have

r'(r'" —s) s
> . ’ _ " "
léa,r| > CEIZ | p| + s & pr]
r'(r'" —s) s r
(r' + s)r’" [ Fl + r+s &pe p| = [Epe p -
Again this contradicts the maximality of F’, and therefore proves the theorem. a

We are now prepared to prove Bogomolov’s effective restriction theorem. Let » be an
integer greater than 1, and et R bethe maximum of thenumbers () (;=2) forall 1 < ¢ < r.
(Certainly the maximum is attained for £ = | £].)

Theorem 7.3.5 —Let F' be alocally free sheaf of rank r > 2. Assume F' is u-stable with
respect toanampleclass H € Kt N Num.Let C C X beasmooth curvewith [C] = nH.
If 2n > EA(F) + 1, then F|¢ isa stable sheaf.
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Proof. Suppose C' satisfies the conditions of the theorem and F'| has a destabilizing quo-
tient E of rank s. By taking exterior powers we wish to reduce the proof to the case s = 1.
Then A*F — ASE is still destabilizing and A*E is aline bundle, but A®F' need not be
u-stable. At this point we evokethe Theorem 3.2.11, that powers of u-stable bundlesare -
polystable. Recall, that the proof, which we only sketched, relies on the Kobayashi-Hitchin
correspondence (or the interpretation of stable bundleson acurveinterms of unitary repre-
sentations). We replace the numerical assumption 2n > %A(F) + 1 by thetwo inequalities

2n > A(A°F) 4+ 1 (7.8)
and
n’H? = C? > A(A°F). (7.9)

Indeed, (7.8) follows from rk(A*F) = (7) and A(A*F) = (2-}) () @. The second
inegquality is aconsequence of thefirst and A(A°F') > 0: dightly improving (7.8) by using
integrality wegetn > A(A*F)/2+1.Hencen’H? > n? > A(A*F)?/4+1+A(A°F) >
A(ASF).

Next consider the exterior power AF — A’F|c — A*E =: L, where L isaline
bundle with (L) = p(E) < p(F|e) = u(A®F|c), and the decomposition A°F & F;,
where the bundles F; are u-stable with slope i (F'). We may assumethat Fy — Fy|lc — L
is not trivial. Replacing L by the image of Fy — L, which has even smaller degree, and
using A(Fp) < A(ASF) by 7.3.2, we obtain a u-stable bundle Fy with a destabilizing line
bundle Fy|c — L suchthat 2n > A(Fp) + 1 and C? > A(Fp). Thecaserk(Fy) = 1
can be excluded by alemma stated after the proof. If rk(Fp) > 1 we have concluded our
reduction to the case of arank one destahilizing line bundle, i.e. we may assumethat F' is

p-stable of rank » > 2 with
2n > A(F) 4+ 1 (7.10)
and
C? > A(F) > A(F)/(r — 1) (7.12)

and that | — E isadestabilizing quotient of rank one.

Let G be the kernel of the composite homomorphism F — F|c — E. Then¢;(G) =
¢ (F)—Cand x(G) = x(F) — (deg(E) + 1 — g(C)). Expressing the Euler characteristic
of F'and G in terms of their discriminants we get (cf. 5.2.2)

A(G) = A(F) — 2(deg(F|C) — rdeg(E)) — (r — 1)C*.
Since E isdestabilizing, deg(F|C) — r deg(FE) > 0.

A(G) < A(F) — (r—1)C? < 0
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because of (7.11). By the previous theorem there is a saturated subsheaf G' C G of rank,
say, t with

A(G)
r2(r—1)
Thenée ¢ = &ar.r + %C. The stability of F' impliesthat (o ».C < 0, and since the
intersection product on Num takesintegral values,

fG’,G’ € K+ and fé’,G 2 -

2
n n’ __.
0<égaC<——+ —H2
rt r

For any two divisors D and D' in K theinequdity (DD')? > D?D'? holds. Apply this
to C and ¢,z and get

AG) 5. 2 2 n’ 2 N ?
——————n"H* <&, <|—H"——]) .
r2(r — 1)n <&eel < r rt

Using the estimate A(G) < A(F) — (r — 1)n* H? and cancelling common factors we get

A(F) 2n ., 1
S H?< - H 4 —
r—1 -t +t2’
hence
1
2n < A(F — < A(F 1
< 2 AF) + oz S AF) +1,
which contradicts (7.10). m|

In the proof we made use of the following lemma:

Lemma 7.3.6 — Let F' be a u-semistable vector bundle and A*F — M be a rank one
torsion free quotient with u(A°F) = u(M). If therestriction A°*F|c — M toacurve C
isthe s-th exterior power of a locally free quotient F'|» — E of rank s, then A°F — M
isinduced by a torsion free quotient ' — E of rank s. In particular, if F is u-stable, then
s =1k(F).

Proof. Thetechniqueto prove this was already used twicein Section 7.2. Let
Grass(F,s) C P(A°F)

be the Pliicker embedding of therelative Grassmannian. Itsideal sheaf isgeneratedby 7, C
SY(ASF). Infact, it is generated by the Pliicker relations which are the image of a homo-
morphismAst! F@A*~'F — S?(A*F). Thequotient A* F — M correspondsto asection
of P(A°F|y) — U,whereU = X\ Supp(M ™ /M). Theimageof thissectioniscontained
in Grass(F, s) if and only if the composite maps

T, — S*(A*F) — S*(M)
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vanish or, equivalently, if the composition
®:ANTIFRATIF = SPAF — S*(M)

vanishes. Standard calculations show p(A*~'F ® A*~'F) = 2su(F) and u(S?M) =
2su(F). Theexistenceof F'|¢ — E impliesthat thecurveC' C U ismappedto Grass(F, s)
by the cross section that correspondsto the homomorphism A*F |y — M|y. Hence ® isan
element in Hom(A* ™' F @ A*~1F, S?(M)(—C)). Using the p-semistability of A1 F ®
As7IF (cf. 3.210) and (A1 F @ A*71F) > u(S?M(-C)), thisyields® = 0, i.e. U
mapsto Grass(F, s). O

Remark 7.3.7 — Of course, the theorem remains valid if F' is only torsion free but the
curve C avoidsthe singularities of F'. One can al so weaken the assumption on the class H:
let H beanarbitrary classin K™ NNum andlet F' beau-stable vector bundlewith respect to
H. If we furthermore assume that also all exterior powersof F' are u-stable with respect to
H, which isautomatically satisfied if rk(F') < 3, then the conclusion of the theorem holds
true. In Chapter 11 this will be applied to minimal surfaces of general typeand H = Kx
which isonly big and nef.

Comments:

— We wish to emphasize that the results in Section 7.1 and 7.3 assume that the characteristic of
our basefield iszero. The restriction theorems of Mehta and Ramanathan are valid in positive charac-
teristic aswell. Unfortunately, it is not effective. In fact, an effective restriction theorem would settle
the open question whether families of semistable sheaves with fixed topological data are bounded in
positive characteristic.

— The proof of Flenner's Theorem 7.1.1 follows quite closely the original presentation in [63],
though we avoided the use of spectral sequences. Sinceits proof relies on the Grauert-Mlich Theo-
rem, and hence the Harder-Narasimhan filtration, it does not generalize to the case of p-stable sheaves.

— Thereferences for the theorems of Mehta and Ramanathan (7.2.1, 7.2.8) are of course [175] and
[176]. Also see[174]. The complete argument for the fact, used in Lemma 7.2.2, that the complement
of the integral divisors has codimension at least two can be found in [175].

— Tyurin generaized their arguments (cf. [250] and for amore detailed proof [111]) and showed
that afamily of p-stablerank two bundles on asurface restricts stably to ageneral ample curve of high
degree.

— One should also be aware of the following result due to Maruyama ([164], also [174]):

If X issmooth and projective and O(1) is very ample, then the restriction of a p-semistable sheaf of
rank < dim(X) to the generic hypersurface is again p-semistable.

The proof of itisrather easy, but asit has obviously no application to sheaves on surfaces, we omitted
the proof.

— Proofs of Theorem 7.3.5 for rank two bundles for specia cases can be found at various places.
O’ Grady in [205] treats the case Pic(X) = Z and Friedman and Morgan give a proof for the case
c1 = 0 [71]. The complete proof isin Bogomolov’s papers [29] and [31].

— In special cases one can improve the results. Hein [101] and Anghel [1] deal with the case of
rank two bundles on K3 surfaces and on abelian surfaces, respectively.
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8 LineBundleson the Moduli Space

This chapter is devoted to the study of line bundleson the moduli space. In Sections 8.1 and
8.2 we first discuss a general method for associating to a flat family of coherent sheaves a
determinant line bundle on the base of this family. The next step is to construct such de-
terminant bundles on the moduli space of semistable sheaves even if there is no universal
family. Having donethiswe study the propertiesof two particular linebundles £, and £, on
the moduli space of semistable torsion free sheaves on asmooth surface. Whereas £, @ £
is amplerelative to Pic(X) for sufficiently large m, the linear system | £7| contracts cer-
tain parts of the moduli space and in fact defines amorphism from the Gieseker-Maruyama
moduli space of semistable sheaves to the Donaldson-Uhlenbeck compactification of the
moduli space of pu-stable vector bundles. The presentation of the material is based on the
work of J. Le Potier and J. Li.

In thefinal sectionwe compare the canonical bundle of the good part of the moduli space
withthelinebundle £,. Thisisan application of the Grothendieck-Riemann-Rochformula

8.1 Construction of Determinant Line Bundles

Let X be a smooth projective variety of dimension n. The Grothendieck group K (X)) of
coherent sheaveson X becomesacommutativeringwith 1 = [Ox] by putting [F1]-[F>] :=
[F1 ® F>] for localy free sheaves F; and F5. Two classesw and v’ in K (X)) aresaid to be
numerically equivalent: u = ', if their differenceiscontained intheradical of the quadratic
form (a,b) — x(a - b). Let K(X)pum = K(X)/ =.If S € K(X) isany subset, let
S+ ¢ K(X) bethe subset of all elements orthogonal to S with respect to this quadratic
form. By the Hirzebruch-Riemann-Roch formulawe have

x(a-b) = /X ch(a)ch(b)td(X)

Thusthe numerical behaviour of a € K (X )num is determined by its associated rank rk(a)
and Chern classes ¢;(a).

A flat family £ of coherent sheaves on X parametrized by S defines an element [€] €
K°(S x X), and asthe projectionp : S x X — S isasmooth morphism, thereis awell
defined homomorphismp, : K°(S x X) — K°(S) (cf. 2.1.11).

Definition 8.1.1 —Let A\¢ : K(X) — Pic(S) bethe composition of the homomor phisms:

det,

KX 55 K0S x X) 2L K0(s x X)) 2 KO(S) 2% pic(S).
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Hereisalist of some easily verified properties of this construction:

Lemma8.1.2 —i)If0 = & — £ — £ — 0isashort exact sequence of S-flat families
of coherent sheavesthen A\g = A\g/ ® Agrr.

i) If £ isan S-flat family and f : S’ — S a morphismthen for any u € K(X) one has
Arge(u) = f*xe(u).

iii) If G isan algebraic group, S a schemewith a G-action and £ a G-linearized S-flat fam-
ily of coherent sheaves on X, then \¢ factors through the group Pic“(S) of isomorphism
classes of G-linearized linebundleson S.

iv) Let £ be an S-flat family of coherent sheaves of classc € K(X)num and let A be a
locally free Og-sheaf. Then Aggpear (1) = Ag (u)™* V) @ det(N)x(c®u),

Proof. The last assertion follows from the projection formula for direct image sheaves:
Rip,(E2p*N) = Rip, ()N, andthegeneral isomorphismdet(A® B) = det(A4)™F) g
det(B)™ (4) for arbitrary locally free sheaves. O

Examples8.1.3 —i) Letz € X beasmooth point and u = [0, ] the class of the structure
sheaf of x. Let E be an S-flat family of sheaveson X and E, — E afinitelocaly free
resolution. Then by 8.1.21)

Ar () = @ A, (u) ™" = &) det(R*p. (F; © O)) V"
Now det(R*p. (E; @ O0)) = det(p«Ei|sx21) = P«(det(E;)|sx(2})- HENCE
Ap(u) = p. ®det(Ei)(71)i|S><{x} = p*(det(E)|S><{x})-

i) Let H C X beavery ampledivisor and let h = [O] beitsclassin K(X). Then
[Ox(0)] = 1 —h)~¢ =1+ ¢h+ (“5")h% + .... In Section 4.3 we used the line bun-
diesdet(pi(F ® ¢*Ox (£))) on the quotient scheme Quot (7, P) in the construction of the
moduli spaces. These bundles are very amplefor ¢ >> 0. Using the A\-formalism above we
can express them asfollows:

det(pi(F @ ¢*Ox(0)) = ([0x(0)])
Z+n—1)‘

Af
= M)Az @ x0T
In particular, det(p: (F®q* Ox (£))) doesnot, ingeneral, depend linearly on ¢ and projective
embeddings given by multiples of thisline bundle might be quite different for different /.

iii) Let £ beauniversal family parametrized by the moduli space M ®. As above we find

that the dominant term in the ¢-expansion of A¢ ([Ox (¢)]) is /\g(h”)(Hz_l). Now A" =
S8 010,,where . .., zqeq(x) aretheintersection pointsof n general hyperplanes.

According to the examplein i) we can write



180 8 LineBundlesonthe Moduli Space

deg(X) -

A = Q) et are sy

If £ isreplaced by £ ® p* L for someline bundle L on M ¢, the expression on theright hand
l4+n—1

side changesby L(€) des(X)("27) Thus, if L isvery negative, Aes 1 ([Ox (£)]) becomes

very negativefor £ > 0. a

For any class ¢ in K (X )pum, We write ¢(m) := ¢ - [Ox(m)] and denote by P(c) the
associated Hilbert polynomial P(c,m) = x(c(m)). If F isan S-flat family of coherent
sheaves with Hilbert polynomial P(c) the points s € S such that F is of class ¢ form an
open and closed subschemeof S. Thisfollowsfrom thefact that for aflat family F' the Euler
characteristic s — x(F5) isalocally constant function. Asaconseguence the moduli space
M (P) decomposes into finitely many open and closed subschemes M (¢;), where ¢; runs
through the set of classes with P(¢;) = P. A universal family £ on M*(c) x X iswell-
defined only up to tensorizing with aline bundle on M*(c¢). Part iv) of the lemma shows
that \¢ (u) isindependent of thisambiguity, if x(c® u) = 0, i.e. if u isorthogonal to c. We
therefore define:

Definition 8.1.4 —For agivenclassc € K(X)num let
K.=ct and Keg=ctn{l,hh? ... A"}t

Thefollowing theorem saysthat theconditionc L « isa so sufficient to get awell-defined
determinant line bundle on M #(c) by means of u. More precisely:

Theorem 8.1.5 — Let ¢ be a class in K (X )num- Then there are group homomor phisms
A K. — Pic(M*(c)) and A : K. g — Pic(M(c)) with the following properties:

1. dand A\* commutewith theinclusion K. i C K. and therestriction homomor phism
Pic(M(c)) — Pic(M?(c)).

2. If £ isaflat family of semistable sheaves of class ¢ on X parametrized by S, and if
¢e : S — M(c) istheclassifying morphism, then A and \¢ : K (X) — Pic(S) com-
mute with the inclusion K. i C K (X) and the homomorphism ¢3 : Pic(M (c)) —
Pic(S).

3. If £ isaflat family of stable sheaves of class ¢ on X parametrized by S, then A* and
As : K(X) — Pic(S) commute with theinclusion K. C K(X) and the homomor-
phism ¢% : Pic(M*(c)) — Pic(S).
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In order to prove the theorem we have to recall the set-up of the construction of M (c) in
Section 4.3: we choose a very large integer m, fix avector space V' of dimension P(c, m)
andlet’H = V ® Ox(—m). Let R(c) C Quot(#, P) denote the open subscheme of
those quotients[¢ : H — F| for which F is a semistable sheaf of class ¢ and ¢ induces an
isomorphism V' — H°(F(m)). Thereis a universa family Op.) @ H — F.1f m was
chosen large enough and £ >> 0, R(c) isthe set of semistable pointsin R(c) with respect
to the action of SL(V") and the canonical linearization of A ([Ox (£)]). Moreover, M (c) =

R(c)/SL(V). The determinant bundle det (F") of the universal family induces amorphism
det : R(c) — Pic(X) suchthat det(F) = det’ (P) @ p*.A where P is the Poincaré line
bundleon Pic(X) x X and .4 somelinebundleon R(c). (Of course, det : R(c) — Pic(X)
can be the constant morphism, for example if dim(¢) = deg(P(c)) < dim(X) — 2.) We
fix these notationsfor the rest of this section.

Proof of thetheorem. Let u € K (X),.m beanarbitrary classand consider theline bundle
L := Az(u) on R(c). L inheritsa GL(V)-linearization from F. We want to know whether
L descendsto aline bundleon M (c) or M*(c).

According to the criterion of Theorem 4.2.15 we must control the action of the stabi-
lizer subgroup in GL(V') of pointsin closed orbits. The orbit of apoint[q : H — F|] €
R(c) isclosed if and only if F' is apolystable shedf, i.e. if it isisomorphic to a direct sum
@, Fi ®r W; with distinct stable sheaves F; and k-vector spaces ;. The stabilizer of [g]
thenisisomorphicto Aut(F') 2 [] GL(W;),andanelement (44, ... , 4¢), A; € GL(W;),
acts on thefibre

L) = @ (det (B ([F] - )™ ™) © (det(17:))X(17))

2

viamultiplication with the number [, det(A;)X(*[F:D) (cf. the remarks following 2.1.11).
Let ¢; = [F;], and let r and r; be the multiplicities of F' and F;, respectively. By construc-
tion, we havefor al £:

rix(c-[Ox(0)]) = riP(F(£)) = rP(Fi(£)) = rx(ci - [Ox (0)])-

Thisisequivaentto: x((rc; —ric) - h*) = 0foral ¢, i.e. (re; — ric) € {1,h,... A"},

Now distinguish two cases: if F'isin fact stable, so that Aut(F) = G,,, andif u € K.,
then A € G,, (k) acts by AX(*©) = A" = 1.If on the other hand F is not stable but
u € K., thenwe have x((rc; — ric) - u) = 0, since (re; — ric) € {1,h,... h"}+.
Therefore x(c; - u) = “x(c-u) = 0. Thus, again, any element in the stabilizer subgroup
actstrivialy. It followsthat v € K. or u € K, g are sufficient conditions on « to let the
line bundle L descend to bundles A% (u) on M*#(c), or A(u) on M (c), respectively.

It remainsto check the commutativity relations. Part 1 of thetheoremistrivial. To get the
universal properties2 and 3 proceed asfollows: suppose £ isan S-flat family of semistable
sheaves of classc. Let 7 : S = Isom(V, p. (€ ® Ox(m))) = S bethe frame bundle (cf.
4.2.3) associated to the locally free sheaf p, (€ ® Ox(m)), and let ¢z : S — R(c) be
the classifying morphism for the quotient V' ® Oz, , — 7*& which is the composition
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of the tautological trivialization (4.2.6) and the eval uation map. b is aGL(V)-eguivariant
morphism, and 7 o ¢g = ¢¢ o, Where ¢¢ : S — M isthe classifying morphism for the
family €.

§ %5 R
7| K
RN Vs

We obtain the following sequence of GL(V')-equivariant isomorphisms
T OENu) = ppmA(u) = PENf(u) = Nje (W) = Areg () = 7 Ae ().

Assertions 2 and 3 follow from this and the fact that 7* : Pic(S) — PicS"(V)(S) isinjec-
tive. (cf. 4.2.16). m|

Beforewe describe natural line bundlesin theimage of A\, wewant to rai se the question of
how many line bundles one can construct thisway. The best result in thisdirectionisdueto
J. Li. Unfortunately, the techniques devel oped here are not sufficient to cover hisresult. In
particular, we have not explained therel ation to gauge theory essential for its proof. We only
state the following special case of the result in [151] which can be conveniently formulated
in the language introduced above.

Theorem 8.1.6 —If X isaregular surface, i.e. ¢(X) = 0, then
A K(X).®Q — Pic(M?(2,09,¢2)) ®Q

issurjectivefor co > 0. a

Let X beasurface. Wewill seein Example8.1.8ii) bel ow that only the degree of classesu
inC H?(X) mattersfor therestriction of \(u) tothemoduli space M (r, Q, c») of semistable
sheaveswith fixed determinant Q, i.e. we canreducefrom K (X) tothegroup Z & Pic(X ) &
Z,sending u to the triple (rk(u), det(u), x(u)). Moreover, the condition to be orthogonal
to ¢ imposes a linear condition on .

The above theorem gives reason to expect that for large second Chern number ¢, the Pi-
card group of the moduli space M*(r, Q, ¢2) contains a subgroup which is (roughly) of the
form Pic(X) @ Z.More evidenceis given by the following example:

Example8.1.7 — Let E bea u-stable locally free sheaf of rank r, determinant © and sec-
ond Chernclasscy(E) = ¢o — 1,andlet 7 : S := P(E) — X beits projectivization. Let
v:S — S x X bethegraph of 7w and let F' be the kernel of the surjective homomorphism

"E — q¢"Ely(s) = %7 E — 7.0x(1).

Then F' isan S-flat family with fibres
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Fy =ker(E = E(z) = k(z))

forz = n(s)ands € P(E(z)) = 7~ '(z) C S.AsE is u-stable, the same is true for
F. Moreover, there is a unique way of embedding F into E. Hence F;; and F; are non-
isomorphic for al s # s" in S, and F' induces an injective morphism S — M?#(r, Q, ¢3).
Applying A(u) to the short exact sequence

0> F—=q¢'E—~0:(1) =0
we get according to 8.1.2:
Ar(u) = Ag=p(uw) ® Ay 0, 1)(u)".
As~ isthe graph of ,
Ay 0. (1) (1) = det(Ox (1) ® 7°u) = Ox (rk(u)) @ m*(det(u)).

Hence Ap(u) =2 O (—rk(u)) ® 7*(det(u))”. We will seein the next chapter that sheaves
E as above always exist for large c2. The calculations then show that Pic(M*(r, Q, ¢s))
containsZ & Pic(X). |

In the following we investigate some particular classesin K (X ).,z and their associated
line bundles.

Examples8.1.8 — Let X beasmooth variety of dimensionn, H avery ampledivisor and
caclassin K(X)num-

i) For any pair of integers0 < i < j < n,theclassv;;(c) := —x(c-h?)-hi+x(c-hi)-hI
isan elementin K, g, asis rather obvious.

ii) Let Dy, D; € K(X) bethe classes of zero-dimensional sheaves of the same length,
andlet D = Do—D;.ThenD = 0, sothat D isinparticular anelementin K. i (X). More-
over, A\(D) = det* (M) for someline bundlie M on Pic(X ), wheredet : M (c) — Pic(X)
is the determinant morphism. It clearly sufficesto prove this assertion for the special case
that D; isthestructure sheaf of aclosed point ;. Then we have the following isomorphisms
of linebundleson R(c):

Ap(Di) = pu(det(F)| gy fa.y) = A @ det™ (Plpic(x)x {a:})s
where as before P isthe Poincaré line bundle on Pic(X') x X. Thus
Ag(D) = det™(Plpic(x)xfzo} @ P IPic(X)x{z1})-

iii) Observethat in the expression v;(c) := v;, (¢) = —x(c-h™) - hi + x(c - h?) - h" the
first coefficient x (c- h™) equalsrk(c) deg(X), whereas h™ isrepresented by deg(X') points
on X. Choose afixed base point z € X and define

ui(e) = =1 - b + x(e - 1) - [0,].
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Thenv;(c) = deg(X) - u;(c) + x(c- h?) - (h™ — deg(X) - [0,])). It follows from part ii)
that

A(vi(c)) = Mu;(€)?°8™) @ det* (M)

for some line bundle M on Pic(X). m|

Theline bundles A(u;(c)) play an important role in the geometry of the moduli spaces.
We therefore define:

Definition 8.1.9 —Let » € X beaclosed point, let u;(c) = —r - ' + x(c - h?) - [O,],
i >0,andlet £; € Pic(M (c)) betheline bundle

L; = AMui(c))
for i > 0. Therestriction of the line bundles £; to the fibres det_l(Q) of the determinant
det : M(c) — Pic(X) isindependent of the choice of z.

Proposition 8.1.10 —Let 7,,, : M (¢) — M (c(m)) be the isomorphism which is induced
by [F] — [F ® Ox(m)]. Then

TmLi = ®£5:571)-

v>0
Proof. Recall that [Ox (m)] = 3,5, ("F)"")h” € K(X), and of course [0, ] - hi = 0
fori > 0. Hence
ui(c(m)) - [Ox (mH)]
= (_7" -hi + Zuzo (mﬁ/il)X(C ' hH_V) ' [Ox]) : Ejzo (m+jjil)hj
= s (") (= W x(e - ) - [04))
= zuzo (mﬁfil)“iw(c)-

Applying A we get the isomorphism of the proposition. |

Theorem 8.1.11 — Let (X, H) be a smooth polarized projective variety, and let ¢ be the
class of a torsion free sheaf of rank » > 0. For m > 0 theline bundle £y on M (¢(m)) is
relatively ample with respect to the determinant morphismdet : M (¢(m)) — Pic(X).

Proof. Recall that inthegeneral set-up explained abovefor al points[q : H — F] € R(c)
the sheaf F'(m) isregularand V' — HO(F(ln)) is an isomorphim. Hence the universal
family yieldsisomorphisms V' ® O,y = p.F(m) and det(V') @ Og(.) = det pi(F(m)).
Sinceug(c(m)) = —r - [Ox] + P(m) - [O,], we get

Ay (Uo(c(m))) = det(V) ™" @ (detF| (o) (a3) ™)
2 det(V) " @ (AR det*P|pic(X)><{x})P(m)
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Theorem 4.A.1 says that A is ample relative to Pic(X') and that some tensor power of A
descends to a line bundle on M (c) which is again ample relative to Pic(X). This shows
that the line bundle £, on M (¢(m)) isamplerelativeto Pic(X). a

Remark 8.1.12 —i) If X isof dimensionone, only L isnon-trivial and the theorem says
that £, isamplerelativeto Pic(X). For the case of asurfaceonly £y and £, are non-trivial
and for m > 0 theline bundle £, ® £ on the moduli space M (c) is ample on the fibres
of det : M (c) — Pic(X).

ii) For later use we point out that the argument above shows that on any fibre of the mor-
phism “det’ thelinebundies A and A ,,,, (uo(c(m))) areisomorphic as SL(V')-linearized
line bundles.

8.2 A Moduli Spacefor p-Semistable Sheaves

Let X be a smooth projective surface with an ample divisor H. Fix aclassc € K (X )num
with rank r and Chern classes ¢; and ¢,, and aline bundle Q with ¢; (Q) = ¢;. Proposition
8.1.10 and Theorem 8.1.11 show that theline bundle £, ® L7 isampleon M (r, Q, c2) for
sufficiently large m. What can be said about £, itself? It is clear that the class of £; must
be contained in the closure of the ample cone. It will be shown that for sufficiently large
m the linear system | £7"| is base point free and leads to a morphism from M (r, Q, ¢3) to
the Donal dson-Uhlenbeck compactification of the moduli space of u-stable vector bundles
as defined in gauge theory. In fact the main purpose of this section is to construct a moduli
space MM = MH5(r; Q, ¢o) for u-semistable sheaves. The assertions about the linear
system |£}*] on M (r, Q, c2) will follow from this.

In order to demonstrate some properties of the linear system | £ |, we study the line bun-
dle A(u, ) in thefollowing examplesfor two particular families. These provide strong hints
which sheavesin M cannot possibly be separated and which on the contrary should be ex-
pected to be separable.

Example8.2.1 — Let E be atorsion free sheaf of rank » on X. For £ > 0 consider the
scheme Quot(E, £) that parametrizes zero-dimensional quotientsof E of length £. Thereis
auniversal exact sequence

0= F > 0qut®E—>T—0

of families on X parametrized by Quot(E, £). Let ¢ be the class of F; for somes € S
and let u; = wuq(c). From the short exact sequence one gets an isomorphism Ap(u;) =
AgE(u1) @ Ar(u1)” = Ar(uq)”. Recall that any zero-dimensional sheaf is semistable, so
that T induces a morphism & from Quot(E, £) to the moduli space M (¢) = S*(X), cf.
4.3.6. Since u; is orthogonal to any zero-dimensional sheaf we can apply Theorem 8.1.5



186 8 LineBundlesonthe Moduli Space

and concludethat Ap (u1) = @5 A(u1)”. We claim that A(uq)™ is an ample line bundle on
S*(X). To see this consider the quotient map 7 : X* — S*(X) for the action of the sym-
metricgroup. Letpr; : X¢ — X denotetheprojectiontothei-thfactor and O 4 thestructure
sheaf of thediagonal A C X x X.Then& := @le pri xOa isan equivariant flat family
of sheaveson X of length £ and 7 is the classifying morphism for £. Clearly

Ae(ug)” = ®1)7"Zde‘u(u1)v = ®pr2‘(’)x(r -H)

is an ample line bundle on X¢. On the other hand A¢(u;)” = 7*A(uy)”. Since 7 isfinite,
A(uy)” is ample as well. Since the fibres of & are connected, we conclude that for suffi-
ciently largen thecompletelinear system | A= (u)"| separatespointss and s’ in Quot(E, £)
if andonly if 7(T5) # 7 (Ts ). Notethat if E is u-semistable or u-stable then the same holds
foral Fy, s € Quot(E, ¢). O

Example8.2.2 — Let F' and F"' be coherent sheaveson X of rank ' and r”’, respectively.
The projectivespace P := P(Ext! (F", F')” @ k), parametrizesall extensionsof F"' by F,
including the trivial one, F' & F", and there is a tautological family

0= ¢*F'@p*Op(l) = F = ¢*F" -0
onP x X.Letu € K(X) beorthogona to F'. Then
AF () 2 Age prap-0.(1) (1) @ Ager () = Op(1)X78) = Op,

since x([F'] - u) = 0 by assumption. This appliesin particular to the following situation:
Let F' be a u-semistable sheaf of classc and let u = uy (¢). If F' C F is u-destabilizing,
then [F'] L w4 (c). Theargument above showsthat no power of A (u1) can separate F and
F' & F/F'. 0

We begin with the construction of AM##¢: the family of u-semistable sheavesof classcis
bounded (cf. 3.3.7), so that for sufficiently large m al of them are m-regular. Let R*** C
Quot(#, P) be the locally closed subscheme of al quotients[¢ : H — F] such that F is
p-semistable of rank r, determinant Q and second Chern class ¢, and such that ¢ induces
an isomorphism V. — H°(F(m)). The group SL(V') acts on R**¢ by composition. The
universal quotient G : Ogus» ® H — F allowsto construct aline bundle

N = Ag(ui(c)).
on RH%3,

Proposition 8.2.3 — Thereisan integer v > 0 such that the line bundle N is generated
by SL(V')-invariant global sections.
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The main technique to prove the proposition consist in the following: if S parametrizes
afamily F of y-semistable sheaves, andif C' € |aH | isageneral smooth curveand a > 0,
then restricting F' to S x C' produces a family of generically p-semistable sheaves on C
(cf. Chapter 7) and therefore arational map S — M from S to the moduli space M of
semistable sheaves on the curve C'. Theamplelinebundle £y on M pulls back to a power
of Ar(u1(c)), and in thismanner we can produce sectionsin thelatter line bundle. In detail:

Leti : C — X beasmooth curvein the linear system |aH |. For any classw € K (X),
let w|c := i*w betheinduced classin K (C). In particular, ¢|¢ is completely determined
by its rank » and the restriction Q|¢. Clearly, P’ = P(c|¢) is aso given by P'(n) =
P(c,n) — P(c,n — a). Let m' be alarge positive integer, H' = O¢(—m')"' (™) and
let Qc C Quoty(H/, P’)~be the closed subset of quotients with determinant Q|¢. More-

over, let Og, ® H' — F' bethe universal quotient and consider the line bundle £, =
Aji (uo(cle)) on Qe . If m' is sufficiently large the following holds:

1. Givenapoint[q: H' — E] € Q¢, thefollowing assertions are equivalent :

1.1. Eisa(semi)stablesheaf and V' — H(E(m')) isan isomorphism.

1.2. [g] isa(semi)stable point in Q¢ for the action of SL(P’(m')) with respect to
the canonical linearization of L£j.

1.3. Thereisaninteger v and a SL(P’(m'))-invariant section o in (£{)” such that

o(lg]) # 0,

2. Two points[g; : H' — E;], i = 1,2 are separated by invariant sections in some
tensor power of £y, if and only if either both are semistable pointsbut £; and E» are
not S-equivalent or one of them is semistable but the other is not.

Suppose now that F' isan S-flat family of p-semistable torsion free sheaveson X. Theas
sumption that F istorsion freefor al s € S implies that the restriction F := F|sxc iS
still S-flat (Lemma2.1.4) and that there is an exact sequence

0>F®0x(—a) > F —>F—=0 (8.1)

Increasing m/' if necessary we can assume that in addition to the assertions 1 and 2 above
we also have:

3. Fsism/-regularforal s € S.

Thenp, (F(m')) isalocally free O-sheaf of rank P'(m/). Letw : S — S betheassociated
projectiveframebundle. It parametrizesaquotient Oz @ H' — 7*F ® O (1) whichinturn
inducesaSL(P'(m'))-invariantmorphism®~ : S — Q. If Gisanagebraicgroupacting
on S and if F carries alinearization with respect to this action, then S inherits a G-action
which commutes with the SL-action such that = and ®  are both equivariant for G x SL.

Before we go on, we need to compare certain determinant line bundles. Consider the fol-
lowing element in K (X )num:
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w = —x(e-hOe)) - 1+ x(c - [0c) - h
As[Oc¢] = ah — (5)h? € K(X) wehave

w—w(=a)=w-[0c] = —x(c-h[Oc])-[Oc]+ x(c-[Oc]) - h[Oc]
= a® (—x(ch?)-h+ x(c-h) h?)
= a’-vi(c) = a® deg(X) - uy(c).

and
w|le = —x(cle - hle) - 1+ x(cle) - hle = vo(cle) = adeg(X) - uo(clc)
From the short exact sequence (8.1) we get
Ap(w(=a))” ® Ap(w) = Ar(w)
and
Ar (o (] ) 485D 22 A p(w — w(—a)) = Ap(uy () 2085, (8.2)

Returning to the situation

S — QC
Tl
S
above we get:

5 (L) 45 = B (Mg (vo(cl0))) = A reo,(1)(vo(clo)) by 8.1.2i)
= Ar= 7 (vo(cle)) by 8.1.2iv)
= 1 Ar(vo(clc)) by 8.1.21i)
>~ 7% Ap(uy (c))2” des(X) by (8.2)

Assume now that o is an SL-invariant section in (£)? 4¢8(¢). Then &% (o) isaG x SL-
invariant section and therefore descendsto a G-invariant sectionin Az (u; (c))®” 4°8(X) |n
thisway we get alinear map
SL. ) G
Sp H° (QC’, (£6)V deg(C’)) — s O (S, )\F(Ul (C))l/a deg(X))
We conclude (cf. Theorem 4.3.3 and Definition 4.2.9):

Lemma8.2.4 —

1. If s € Sisapoint such that F;| is semistable then thereisaninteger v > 0 and a
G-invariant section g in Ar(u1 (¢))” suchthat 5(s) # 0.
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2. If sy and s, aretwo pointsin S such that either F;, | and Fs, | are both semistable
but not S-equivalent or one of them is semistable and the other is not, then there are
G-equivariant sectionsin some tensor power of Ar (v (c)) that separate s; and s,.0

Proposition 8.2.3 now follows trivially from the first part of the lemma: Just apply it to
thecase S = R*** and G = SL(V). O

If N’V is generated by invariant sections, we can also find afinite dimensional subspace
W C W, := H°(Rt5, NV)SL(V) that generates V. Let ¢y : R** — P(W) be the
induced SL( P (m))-invariant morphism. We claim that

Mw = ow (R"**)
is aprojective scheme. In fact, one has the following general result:

Proposition 8.2.5 —If T is a separated scheme of finitetype over &k, and if p : R#** — T
is any invariant morphism, then the image of ¢ is proper.

Proof. Thisis adirect consequence of Langton’s Theorem: let ¢, € ¢(RH*5) be aclosed
point. Then there is a discrete valuation ring A with quotient field K and a morphism f :
Spec(A) — T that mapsthe closed point &, to ¢, and the generic point £; toapoint ¢, inthe
image of . Lety; € = (¢;) beaclosed point in the fibre, then k(t;) C k(y:) isafinite
extension, and thereis afinite extension field K’ of K and a homomorphism k(y,) — K’
such that

K' < k()
T T
K <+ k(tl)

commutes. Let A’ C K' be adiscrete valuation ring that dominates A. Geometrically,
k(y1) — K' correspondsto a morphism g’ : Spec(K') — Spec(k(y1)) — R*** and
thusto aquotient [gx : K' @ H — Fi].

Spec(K") > RHss

¢
Spec(A’
l pe() l

Spec(K) — Spec(4) — T

According to Langton’s Theorem 2.B.1, the family F+ extendsto an A'-flat family F'4 of
u-semistable sheaves. Since A’ isalocal ring and therefore p, (F4- (m)) afree A’-module
of rank P(m), thereisaquotient [ga- : A' ® H — Fa]. Let f' : Spec(A’) — RHS
be the induced morphism. Since K’ ® Fu = Fg, the quotients K ® g4 and qx- differ
by an element in SL(V')(K"). But ¢ is an invariant morphism, so that ¢ o f'[spec(xr) =
pog = fom|spec(rr), Where : Spec(A’) — Spec(A) isthe natural projection. Since T
isseparated, wehave p o f' = f om. Thusif & isthe closed pointin Spec(A’), we seethat
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to = f(%) = f(7(£)) = @(f'(&))

and istherefore contained in the image of . m|

Proposition 8.2.6 —Thereisaninteger N > Osuchthat@,ZZO Wen isafinitely generated
graded ring.

Proof. Let v > 0 beaninteger suchthat \'” isgenerated by afinite dimensional subspace
W C W,.Ford > 1let W¢ betheimage of the multiplicationmap W @ ... @ W — Wy,
andlet W' c W, beafinitedimensional space containing W<, Then W< and W' generate
N and thereis afinite morphism .y : My — My suchthat ow = Ty /w0 pw
and T jw QM (d) = O, (1). Moreover, there are inclusions

we C w!
N N
HY(Mw,0(d)) c H(Mw,0(1)) C Wa

and 7y w isanisomorphism, if and only if H%(Myy, O(d)) = H®(Mw+O(1)). Clearly,
the projective system { My, myy yw } hasalimit sinceit is dominated by R***. If the limit
isisomorphicto, say, My with W C Wy, then H°(My,, O(k)) = Wy foral k > 0. O

Definition 8.2.7 — Suppose that NV is a positive integer as in the proposition above. Let
MHss = M#5(c) be the projective scheme

PI'Oj @HO(RMSS,NkN)SL(P(m))’
k>0

and let r : R*%% — M*#¢ be the canonically induced morphism.

Thisresemblesvery muchthe GIT construction of Chapter 4. The main differenceisthat
N isnot ample. And indeed, M#%¢ will in general not be a categorical quotient of RH5%.
Still, M ##% hasacertain universal property. Namely, let M*#$ denotethe functor which as-
sociatesto S the set of isomorphism classes of S-flat families of torsion free u-semistable
sheaves of class c on X. It is easy to construct a natural transformation M#55 — M#5S
with the property that for any S-flat family F' of p-semistable sheaves and classifying mor-
phism &5 : S — M*3s the pull-back of Opsuss (1) via @ isisomorphicto Ar (uq(c))™.
Furthermore, the triple (M*%,O(1), N) is uniquely characterized by this property up to
unique isomorphism and replacing (O(1), N) by some multiple (O(d), dN). In particular,
the construction of M ## does not depend on the choice of the integer m. We omit the de-
tails.

Definition and Theorem 8.2.8 —Because of the universal property of M the functor mor-
phism M — MH#5* induces a morphism
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v:M — MH3®

suchthat y*O(1) = LY. |

In order to understand the geometry of M #5% and the morphism ~y better, we need to study
themorphism= : R#*** — M*"%* in greater detail and seewhich pointsin R*** are separated
by = and which are not. The ultimate aim of this section is to show that at least pointwise
M*ss can be identified with the Donaldson-Uhlenbeck compactification. See also Remark
8.2.17.

Example8.2.9 — Recall that M (1, Ox,¢) = Hilb*(X). According to the calculations
in Example 8.2.1, there is an isomorphism £; = ¢g*£, where g : Hilb‘(X) — S(X)
is the morphism constructed in 4.3.6 and £ is an ample line bundle on S¢(X). It follows
from Zariski’s Main Theorem that HO(Hilb’(X), £¥) = H°(S!(X), £¥). Thisleadsto a
complete description of the morphism v in this particular case: M (1, Ox, £)*** = S*(X)
and~vy =g.

Definition 8.2.10 — Let F' be a p-semistable torsion free sheaf on X. Let gr* F' be the
graded object associated to a u-Jordan-Holder filtration of F' with torsion freefactors. Then
gr* Fistorsionfree. Let F** denotethe double dual of (¢gr# F'): itisa u-polystablelocally
free sheaf, andlet Ip : X — Ny bethe function z — £((EF™** /gr* F'), ), which can be con-
sidered as an element in the symmetric product S’ X with [ = ¢y (F) — e (F**). Both F**
and [ are well-defined invariants of F', i.e. do not depend on the choice of the p-Jordan-
Holder filtration (cf. 1.6.10).

Theorem 8.2.11 —Let F; and F;, betwo p-semistable sheaves of rank r and fixed Chern
classes ¢y, co € H*(X). Then Fy and F» definethe same closed point in A/##% if and only
if Fi"* =2 Fy*andlp, = lp,.

Proof. One direction is easy to prove: if F' is u-semistable, and if gr#(F') isthe torsion
free graded object associated to an appropriate u-Jordan Holder filtration of F', then we can
congtruct a flat family F parametrized by P! such that 7., = gr*(F) and F; = F for all
t # oo. Hence the induced classifying morphism &~ : P! — M#*% maps P! to asingle
point. Thismeansthat [F] = [gr*(F')] in M**¢. We may therefore restrict ourselvesto -
polystable sheaves: let F' be p-polystabletorsion free, and let £ = F** beits double dual.
Then F'is(non-uniquely) represented by aclosed point y in Quot(E, £), wherel = co(F) —
co(E). Any other p-polystable torsion free sheaf F' satisfies the conditions (F)** = F**
andlp =l if and only if F' isrepresented by aclosed point y’ in Quot(E, £), such that y
and ¢’ liein the same fibre of the morphism ¢ : Quot(FE, ) — S*(X). But any such fibre
is connected, and as we saw in Example 8.2.1, the restriction of N to afibreistrivial. This
meansthat any fibre of ¢ is contracted to asingle point by the morphism j : Quot(E, £) —
M#s¢ associated to the family F'. Thisprovesthe ‘if’—direction of the theorem.

The‘only if'—direction is done in two steps:
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Lemma8.2.12 —Let F; and F> be p-semistable sheaveson X. If a is a sufficiently large
integer and C' € |aH | a general smooth curve, then Fy | and F» | are S-equivalent if and
onlyif Fi** = Fiy*.

Proof. Let gr# (F}) be the graded object of a u-Jordan-Holder filtration of F; with tor-
sion free factors. Using the theorems of Mehta-Ramanathan 7.2.8 or Bogomolov 7.3.5 we
can choose a S0 large that the restriction of any summand of F}** to any smooth curvein
|aH| is stable again. Now choose C' in such away that it avoids the finite set of all singu-
lar points of gr#(Fy). Then gr#(F1)|c =2 F;*|¢ isthe graded object of a Jordan-Holder
filtration of Fi|c. This shows that for a general curve C' of sufficiently high degree Fi |¢
and F» | are S-equivalent if and only if Fi**|c = F5*|¢. Fora > 0andi = 0,1 we have
Ext'(Fy*, Fy*(—C)) = 0 (and the samewith the rdlesof F;* and Fi* exchanged), so that
Hom x (Fy*, Fy*) = Home (F}*|c, Fy*|c). Thismeansthat F;*|c = Fj*|c if and only
if Fr = Fy>, m

In particular, if Fi*™* 2 Fy* then any two points in R*** representing F; and F»> can
be separated by invariant sectionsin some tensor power of " by the second part of Lemma
8.2.4. Themost difficult case thereforeisthat of two sheaves F; and F» with Fj™* =2 Fi* =:
Ebutlp, #lp,. Letl = c3(F;) — c2(E) = ) x I (z). We have already seen that the
fibres of themorphism Quot (E, ¢) — S¢(X) are contracted to pointsby j : Quot(E, £) —
M#rss. AsSH(X) isnormal, j|quot(E,¢),., factorsthroughamorphismj : S¢(X) — M#ss,
Clearly, the proof of the theorem is complete if we can show the following proposition:

Proposition 8.2.13 —The morphismj : S¢(X) — M** isaclosed immersion.

Without further effort, just using what we have proved so far, we can at least state the
following: as 7*(Onruss (1)) is ample by Example 8.2.2, 7 must be finite. Moreover, using
Lemma 8.2.4 and Bogomolov’s Restriction Theorem 7.3.5, one can show that j separates
points s, s’ € Quot(E,¢) if the corresponding zero-dimensional sheaves T', T' have set-
theoretically distinct support. Hence j is, generically, an embedding. This does not quite
suffice to prove the proposition. The path to the proof begins with a detour:

Let pr; : X¢ — X bethe projection onto the i-th factor. If £ is an arbitrary line bundle
on X, then ®;pr; £ hasanatural linearization for the action of the symmetric group S, and
descendsto alinebundle £ on S¢(X). If y4,... ,~ are/ global sections, we can form the
symmetrized tensor

1
7 Z Yr(1) ® -+ - D Yr(e)
TES,
which descendsto asection, -. . .-+, of £. If C' isacurvedefined by asectionyin £, let C'
denotethe Cartier divisor on S*(X) givenby v-. . .-v. Itiseasy to seethat if -y runsthrough
an open subset of sectionin £ then the corresponding sectionsy-. . .-y span H°(S¢(X), £).
Furthermore, if £ isample, then £ isample aswell.



8.2 A Moduli Space for u-Semistable Sheaves 193

Lemma 8.2.14 —i) Let T be an S-flat family of zero-dimensional sheaveson X of length
¢, inducing a classifying morphism®7 : S — S(X). Let C ¢ X bea smooth curve and
letp : S x X — S bethe projection. The exact sequence T @ O(-C) - T = T|sxc
induces a homomorphism : p,T(—C) — p.T between locally free sheaves of rank £.
Then

{det(y) =0} = 7' (C) (8.3)

ii) Moreover, if S isintegral, and if T, N C = @ for some (and hence general) s € S, then
p«(T|sxc) isatorsion sheaf on S of projective dimension 1. If

0= A% B p(T|sxc) = 0

is any resolution by locally free sheaves A and B of necessarily the same rank, then (8.3)
holdsfor .

Proof. i) Let = : Drap — S denote the relative flag scheme (cf. 2.A.1) of all full flags
OCHRTC...CFT=Ts, s€S.

The factors of the universal flag parametrized by Drap have length one and induce a mor-
phism &7 : Drap — X ¢ so that the diagram

I

Drap —» Xt
m )
s X s4x)

commutes. As S is the scheme-theoretic image of # : Drap — S, it suffices to prove
(8.3) for 7=1(¢)) instead of +). Now 7~ (1) has diagonal form with respect to the filtra-
tions p, F, T(—C) and p, F, T of 7*p,.T(—C) and n*p. T, respectively. Hence if ¢);, i =
1,...,¢, are the induced maps on the factors, we have 7! (det())) = det(r 1(¢)) =
[1; det(s;). As7—1(C) = 3, pr; ' (), it suffices to show (8.3) for each ¢; instead of
1, i.e. for the case ¢ = 1. But this case can immediately be reduced to thecase S = X,
T = O, when the assertion is obvious.

i) It is clear that under the given assumptions p.T'|sx ¢ is a torsion sheaf. Hence, the
homomorphism p. T'(—C) — p.T isgenerically isomorphic and thereforeinjective every-
where, so that indeed p..T'| s« has projective dimension 1. It isamatter of local commuta
tive algebrato seethat the Cartier divisor defined by det (v) isindependent of theresol ution.

m|

Approaching our original goal, let £/ be alocally free sheaf and consider the variety S =
Quot(E, ¢) parametrizing a tautological families F' and T that fit into an exact sequence

0F >0sE—T—0.
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Let &7 : Quot(FE,¢) — S*(X) be the morphism associated to 7'. Let C' € |aH| be an
arbitrary smooth curve, andlet GG bealocally free sheaf on X withthe property that H' (F,®
G|c) =0=H"(E @ G|¢) foral s € S. Then thereis a short exact sequence

0 — pu(F & Glo) 5 pu(Os @ (E @ G)|c) — pulT ® Glc) —> 0.
Asthe conditions of part ii) of the lemma are satisfied, we get
div(det(y)) = 557(C) =1k(G) - 7' (C).

Now locally free sheaves G of the type above span K (X). Hence by linearity we get the
following result:

Lemma8.2.15 —For anyw € K (X) thefollowingholds: thehomomorphismF — Os®
E induces a rational homomorphism

"[} : /\F\ch(w) — /\(’)5®E\c(w) = 0s

with div(¢)) = rk(w) - &, (C), i.e. ¢ haszeros or poles depending on the sign of rk(w).0

Proof of Proposition 8.2.13. E isnow a u-polystable sheaf of rank » and determinant Q,
and ¢ = co(E) — c2(c). If a issufficiently large, and if C' € |aH| is an arbitrary smooth
curve, then E|¢ is again polystable by Bogomolov’'s Restriction Theorem 7.3.5. The two
families F and Es = Og ® E on S = Quot(E, £) induce homomorphisms

SL )
spe - HO (Qo, (£5)4800) ™ 5 HO (8, \p (un (E))" 4630} = HO(S, 0g)
and
SL R
sp i H (Qo (£6)7 95 00) ™ o HO (8, A (n (0) " 45 ).

On the complement U of &..1(C) in S the two line bundles on the right hand side are iso-
morphic and s, (0)|y = sr(o)|y for any invariant section o. Moreover, the rationa ho-
momorphism ¢» maps s (o) to sg, (o). Since E|¢ is polystable, there is an integer v and
asection op € H°(Qc, (Lh)V*98(X))SL such that s g4 (00) # 0. Therefore, sp(og) must
have zeros of precisely the same order as the poles of ¢ up to an additional factor n :=
va? deg(X). Hence, Lemma 8.2.15 says that the vanishing divisor of s (o) equalsn - 7 -
3" (C). Wefinaly conclude: o induces a section o) in some tensor power of O yzuss (1)
such that the vanishing divisor associated to j—' () on S¢(X) isamultiple of C'. But we
have seen before hat these divisors span avery ample linear system as C' runs through all

smooth curvesin thelinear system |a H | for sufficiently largea. Hence j isan embedding.O

Corollary 8.2.16 —~ : M — M"*$ embedsthe open subscheme M *!f ¢ M of u-stable
locally free sheaves. In particular, d := dim (M) > dim(M*!) and

RO (M, L%) ~ ¢4,
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Proof. Theorem 8.2.11 impliesthat y|,,..1s isinjective. But in fact, the proof of Lemma
8.2.12 shows that M !/ embedsinto the moduli space of stable sheaveson C', where C' is
any smooth curvein |a H | for sufficiently large C', which impliesthat +| 34,15 isan embed-
ding. The second assertion is clear, as O pyuss (1) isample. |

Remark 8.2.17 — Let M* P (r, Q,¢5) C M(r, Q, o) denote the subset representing
u-polystable locally free sheaves. The previous results can be interpreted as follows: set-
theoretically, there is a stratification

M*3(r, Q,c0) = H MEPY (1 Q ¢y — €) x SY(X).
>0

We will briefly indicate how thisisrelated to gauge theory: In order to study differentiable
structures on a simply connected real 4-dimensional smooth manifold V, Donadson in-
troduced moduli spaces M &°%(2,0, ¢») of irreducible antiselfdual SU(2)-connectionsin a
C'*°-complex vector bundle with second Chern class ¢, on N, equipped with a Rieman-
nian metric. He proved that if NV isthe underlying C'>°-manifold of a smooth complex pro-
jective surface X with the Hodge metric, then there is an analytic isomorphism between
ME54(2,0, ¢;) and the moduli space M%7 (2,0, ¢,) of u-stablelocally free sheaveson X
of rank 2 and the given Chern classes. In general, the space M **? is not compact. As Don-
aldson pointed out, results of Uhlenbeck can be interpreted as follows: the digoint union

TT 2524(2,0,05 — 0) x S*(N)

>0
can begiven anatural topology which makesthe digoint union acompact space and induces
the given topology on each stratum. The closure of A/%*? inthisunion is called the Donal d-
son-Uhlenbeck compactification. Li [148] and Morgan [180] show that there is a homeo-
morphism v(M) —s Masd extending the analytic isomorphism M#tf — Mres? con-
structed by Donaldson. For more information on the relation to gauge theory, see the books
of Donaldson and Kronheimer [46] and Friedman and Morgan [ 71] and thereferencesgiven
there.

8.3 The Canonical Class of the Moduli Space

Let My C M(r,Q,ce) be the open subscheme of stable sheaves F' with rank r, determi-
nant @, second Chern class ¢, and Ext2(F, F)o = 0. According to Theorem 4.5.4, M, is
smooth of expected dimension A — (r2 — 1) - x(Ox ). Wewill later seethat M, isdensein
M(r, Q, ¢2) for sufficiently large discriminant A and that the complement has large codi-
mension. The purpose of this section isto relate the canonical bundleof M, to theline bun-
dle £, studiedinthelast section. The maintechnical tool hereisthe Grothendieck-Riemann-
Roch formula. It states that for any class 3 € K°(X x S) one has
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ch(pB) = p«(ch(B).¢"td(X)) inCH™(S)q.

(Recall thatp: S x X — Sandq: S x X — X arethe projections.)
Let F' bean S-flat family of sheaveson X . Thenthereisabounded complex F'* of locally
free sheaves which is quasi-isomorphicto F', and

[Eat,(F,F)] = 3 (~1)'[€at}(F, F)] = p(F*" © F*)
i>0

isan elementin K°(S). If vy € CH*(S)g, let v; denote the homogeneous component of
of degreei.

Proposition 8.3.1 —Let F' be an S-flat family of sheaves on X of rank r, determinant Q
and Chern classes ¢; and ¢». Let

A(F) = 2rcy(F) — (r — 1)ey (F)? € CH*(S x X)
denote the discriminant of the family F'. Then the following equationshold in C H*(S)q.
) er([Exty(F, F)]) = 5 {p.(A(F).¢*Kx)};.
i) e1(Ap(u1)) = 5 {p(A(F).¢* H)},.

Proof. Both results are direct applications of the Grothendieck-Riemann-Roch formula.
i) By Grothendieck-Riemann-Roch we have

ci([Exty(FF)]) =a(p(F* @ F*)) = {p*(ch(F").ch(F').q*td(X))}1 .

As these Chern class calculations are purely formal, we can use the identity (3.4) on page
72 and write

ch(F*).ch(F®*) =1r* —co(F* @ F*)+...=r> = A(F) + ...,

wherethedots. .. indicate terms of degree > 4. On the other hand

FA(X) = 1 — %KX + %(c%(X) +es(X)).

Hencetheonly term of degree3inch(F*”).ch(F*).q*td(X) isA(F).¢* (K x), andterms
of other degrees do not contribute to the left hand side of the equationini).

ii) By definition, uy = —r-h+ x(c-h)-[O,]. Sincex(c-h) = ¢;.H —LH? - LH Kx
one gets

ch(uy) = —r-ch(h)+ x(c-h)-ch(O;)
1., r oo T

— —rH+c¢.H— gH.KX
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and therefore ch(u1).td(X) = —rH + ¢;.H. The assumption that the family F' hasfibre-
wise determinant Q impliesthat det(F) = p*S ® ¢* Q for somelinebundle S on S, so that
c1(F) =p*ei(S) + ¢*c1(Q) =: p*s + ¢*c1. Now

c1t(Ar(w)) = er(p(F - ¢7u)) = {ps (ch(F).q" (ch(u) td(X))}, .

After expansion of {ch(F).q*(ch(u1).td(X)) — $A(F).q*H }, and cancellation of most
termsthe only thing left is

1 1 1
§(cl(F)2 —2¢1(F).¢"c1).q"H = §(p*s2 +q¢*c).¢"H = ip*s2.q*H.
Integration of thisterm along the fibres of p gives 0, as asserted. |

As an immediate consequence of the proposition we see that if Kx and H are linearly
dependent over Q, i.e.if Kx = e+ H € Pic(X) ® Q, then, under the hypotheses of the
proposition, oneasohasc; ([Ext, (F, F)]) = e-c1 (Ar(u1)). Wecanreduceto thefollowing
Cases:

1l e=-1& —Kxisample i.e. X isaDel Pezzo surface.
2. e =0 & X isaminimal surface of Kodairadimension 0.

3. e =1« Kx isample, i.e. X isaminimal surface of general type without (—2)-
Ccurves.

Let My C M = M(r,Q,ce) be the open subset of points F' where F is a stable sheaf
with Ext?(F, F), = 0, and let R, be the pre-image of M, under the quotient morphism
m: R — M. Moreover, let F' denote the universal family on Ry x X. Then

Theorem 8.3.2 —n* Ky, = det[Ext,(F, F)).

Thisisadirect consequence of Theorem 10.2.1. Here, we must appeal to the patience of
the reader. m|
Theorem 8.3.3 —Let (X, H) be a polarized projective surfacewith Kx = ¢ H,e =
—1,00r 1. Then Ky, = £ modulo torsion line bundles.

Proof. It follows from the discussion above and the theorem, that

7 Ky = det([Ext,(F, F)]) = Mg (w1)° = 7*A(w)° = 7°L5

modulo torsion line bundleson Ry. As* isinjective (4.2.16), the assertion of the theorem
follows. |

Note that we can state the isomorphism of the theorem only up to torsion line bundles,
because the Chern class computations above were carried out in C H* (Ry) -
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Combining Theorem 8.3.3 and Corollary 8.2.16 we see that the canonical bundle on the
moduli space of p-stable vector bundlesis anti-amplefor Del Pezzo surfaces, istorsion for
minimal surfacesof Kodairadimension zero, and isamplefor surfaceswith ample canonical
bundle. This gives strong evidence that the moduli spaces of higher rank sheaves detect the
place of the surface in the Enriques classification.

Comments:

— The homomorphism A was introduced by Le Potier [144]. Theorem 8.1.5 is taken from that
paper. Le Potier also shows that £ is globally generated for sufficient divisible N, and that the in-
duced morphism ¢ £y separates the open part of p-stable locally free sheaves from its complement
in the moduli space. His approach is a generalization of [52]. The comparison with the Donal dson-
Uhlenbeck compactification in the case of rank two sheaves with trivial determinant was done by J.
Li [148]. The line bundle used by Li can be compared to £ by the following lemma:

Lemma83.4 —Ife; = 0andr = 2, then for any smoothcurve C' € |kH | and ¢ € Pic?©)~1(C)
one has [fc] = —£u; asclassesin K'(X). In particular, if a universal family £ exists, then £} =
detp;(é’ [ q*90)’2.

— The construction of the ‘moduli space’ of p-semistable sheaves is essentially contained in J.
Li’spaper [148]. The proof of 8.2.11 isamixture of methods from [144] and [148], though in order to
prove an equivalent of 8.2.13, Li variesthe curve C' € |aH| and uses relative moduli spaces for one-
dimensional families of curves, instead of varying [F] in Quot(E, ¢) aswedid in the proof presented
in these notes. One should also mention that both approaches of Le Potier and Li were motivated by
Donaldson’s non-vanishing result [47]. Li also showsin [148] that theimage of v : M — M**¢ is
homeomorphic to the Donaldson-Uhlenbeck compactification in gauge theory. For this see aso the
work of Morgan [180].

— The surjectivity of themap A (Theorem 8.1.6) for ¢(X') = 0 can be deduced from Li’sresultsin
[151] inthe case of rank two sheaves. He devel opes amore general technique to produce line bundles
by starting with the K -group of the product X x X . His proof relies on the computation of the second
cohomology of the moduli space via gauge theory [150]. It would be nice to have an algebraic argu-
ment of thispart. In the description of the Picard group of themoduli space of curvesthe same problem
arises. In order to show the surjectivity of a natural map to the Picard group one uses transcendental
information about the second cohomology.

— For information related to Lemma 8.2.14 see the paper of Knudson and Mumford [126].

— For details about the Grothendieck-Riemann-Roch formula see the book of Fulton [73].

— Theidentification (8.3.1, 8.3.3) of the canonical class of the ‘good’ part of the moduli spacein
the rank two case was done in [149] and [112].
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9 Irreducibility and Smoothness

For small discriminants, moduli spaces of semistable sheaves can look rather wild: their di-
mension need not be the expected one, they need not beirreducible nor need they bereduced
let alonenon-singular. Thischangesif the discriminant increases: the moduli spacesbecome
irreducible, if wefix the determinant, normal, of expected dimension, and the codimension
of thelocusof pointswhich are singular or represent -unstable sheavesincreases. Thisbe-
haviour isthe subject of the present chapter. Theresultsin this chapter are due to Gieseker,
Li and O’ Grady. Our main source for the presentation is O’ Grady’s article [ 208].

Let X beasmooth projective surface, H avery ampledivisor on X, and K a canonica
divisor. We write Ox (1) = Ox (H) for the corresponding line bundle.

9.1 Preparations

Fixarank » > 2, alinebundle @ € Pic(X) and Chernclasses ¢y = ¢1(Q), ¢ Let
A = 2rey — (r—1)c? and P bethe associated discriminant and Hilbert polynomial, respec-
tively. Let M = M(A) be short for the moduli space Mx (r, Q, ¢2). By the Bogomolov
Inequality 3.4.1 M (A) is empty, unless A > 0, as we will assume from now on. Recall
some elements of the construction of M (A) in Section 4.3: thereis an integer m >> 0 such
that the following holds: Let H = kP(™) @ Ox(—m) andlet R C Quoty (#, P) bethe
locally closed subscheme consisting of those quotientsq : 7 — F where F' is semistable,
H°(H(m)) — H°(F(m)) isanisomorphism, and det(F) = Q. Thenthereisamorphism
7 : R — M suchthat M isagood quatient for the SL(P(m))-actionon R. (Thesenotations
differ dightly from those in Chapter 4 as we have fixed the determinant!)

Let e beanonnegativereal number. Let R(e) bethe closed subset in R of quotients H —
F, where F'ise-unstable. (For e-stability see 3.A). Thisset is certainly invariant under the
group action, so that M (e) := w(R(e)) isclosed as well.

Theorem 9.1.1 —Thereisa constant B = B(r, H, X') such that

dim R(e)
dim M (e)

d(e) + end(H) — 1

<
< de) +r7 -1

with d(e) = (1 - )A + (3r — 1)e? + Tt e + B.
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Proof. Let F' be a semistable sheaf with [F] € R(e). Thenthereisafiltration0 C Ho C
Hi C ... C He = H suchthat Fy := H;/Ho isan e-destabilizing submodule of F' =
H/Ho,i.e u(Fy) > u(F) — e|H|/rk(F}), and such that Ho/H, C ... C H/Hs isthe
Harder-Narasimhan filtration of F'/F. Thisfiltration defines a point y in the flag-scheme
Y = Drap(H, P,), with P, = P(H;/H;—1) fori =0, ... ,£. Thereisanatural morphism
/Y — Rgivenby forgettingall of theflag except H, and R(e) isthe union of theimages
of all Y appearing in this way. By Grothendieck’s Lemma 1.7.9 the number of such flag-
schemesis finite. In order to bound the dimension of R(e) it is therefore enough to bound
the dimension of Y. By Proposition 2.A.12 and the definition of the groups Ext4 in 2.A.3
one has

dim(Y) < ext® (H,H) < end(H) — 1 + ext™ (%, H).
The estimate for dim R(e) follows from this and Proposition 3.A.2. Any fibreof 7 : R —
M contains a closed orbit whose dimension is given by the difference of end(#) and the
dimension of the stabilizer of a polystable sheaf of rank r. The dimension of this stabilizer
is bounded by r?. Hence for any point [F] € M one has dim 7' ([F]) > end(H) — r?,
and therefore dim M (e) < dim R(e) — (end(H) — r2). This provesthe second claim. O

Recall (cf. 4.5.8) that thereisanumber (3, such that for any point [F] € M#$(A) onehas
dimension bounds
A—(r* - 1)x(0x) < dimp M <A — (r? — 1)x(Ox) + Boo-

Using the theorem above we can, at least for sufficiently large discriminant A, exclude the
possibility of irreducible componentsin M which parametrize semistable sheaves which
arenot p-stable. Let R* and M * denote the open subschemes of p-stable sheavesin R and
M, respectively.

Theorem 9.1.2 —If A — (r> = 1)x(Ox) > (1 — 3=)A + B, then R* and M* are dense
in R and M, respectively. In particular, dim Z > A — (r? — 1)x(Ox) for all irreducible
components Z of M (A). Moreover, codim(M\M*, M) > = A—(r?—1)(x(Ox)+1)—B.

Proof. By definition, R — R* = R(0). The assumption of the theorem and the dimension
bound for R(0) of Theorem 9.1.1 give:
dimR(0) < d(0)+end(H) —1=(1— 2—1T)A +end(H)— 14 B
< A—(r*=1)x(Ox) +end(H) -1
By Proposition 4.5.9 for any point [¢] € R one has
A — (r* = 1)x(Ox) + end(H) — 1 < dimjy) R.

Thereforethe p-unstablelocusin R isof smaller dimension than any component of R, which
means that R* isdensein R. Hence M* isdensein M, too, and the remaining two esti-
mates of the theorem follow from dim M?® > exp dim M (A) = A — (r? — 1)x(Ox) and
dim M (0) < (1 - £)A+ B +r? - 1. O



9.2 The Boundary 201

9.2 TheBoundary

Let F' be aflat family of torsion free sheaves of rank r on X parametrized by a scheme S.
The boundary of S by definition is the set

0S = {s € S|Fs isnot localy free}
Lemma 9.2.1 — S isa closed subset of S, and if dS # (), then codim (89S, S) < r — 1.

Proof. Choose an epimorphism Lo — F with L, alocally freesheaf on.S x X of constant
rank £y. For example, Lo = p*p.(F ® ¢*O(n)) ® ¢* O(—n) for n > 0 would do. Then the
kernel L, isS-flat and fibrewiselocally free, hencelocally freeon S x X of rank ¢1 = £g—r-.
If ¢ denotesthe homomorphism L, — Lo, then: F; islocaly freeat z € X < F'islocally
freeat (s,z) & ¢(s,z) hasrank /. Hencetheset Y of points (s, ) where F' isnot locally
free can be endowed with a closed subscheme structure given by the /; x ¢;-minors of ¢,
and by the dimension boundsfor determinantal varietiesonegetscodim(Y, S x X) <r+1
(cf. [4] Ch. I1). Since fibrewise F' is torsion free and therefore locally free outside a zero-
dimensional subscheme, the projection Y — S isfinite with set-theoretic image 0S. This
provesthe lemma. m|

We want to extend the definition of the boundary to subsetsof A/, thoughin general there
isno universal family which could be used. Consider the good quotient morphismz : R —
M = M(A).If Z c M isalocally closed subset, say Z = Z N U for someopenU C M,
then 7= (Z) isclosed in 7= (U), and d7~1(Z) is an invariant closed subset in 7= (7)
and 71 (U). Thisimpliesthat 7 := =(0n '(Z)) isaclosed subset in Z. Consider the
boundary of the open subset Z* := {[F| € Z|Fisu-stable} C Z.If 0Z" # 0, then
codim(0Z*,Z*) < r —1.Form : R — M isaprincipa bundle at stable points, so that
the estimate of the lemma carries over to Z+.

In the following we will need the polynomial ¥(r) = (6r® — 52r? + 11r — 3)r. The
particular values of its coefficients are not really interesting unless one wantsto do specific
calculationsin which case they could most likely be improved.

Theorem 9.2.2 —There are constants 4, C;, C» dependingonr, x(Ox), H?, HK, and
K? suchthatif A > A; andif Z c M isanirreducible closed subset with

1_2

dim 7 > < 20(r)

)A+01\/Z+Cz

then 9Z* # 0.

The proof of this theorem will be givenin Section 9.5.
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9.3 Generic Smoothness

For any coherent sheaf F let
B(F) := ext*(F, F)o = hom(F, F ® K)y,

where the subscript 0 indicates the subspace of traceless extension classes and homomor-
phisms, respectively. If Z parametrizesafamily F, let 3(Z) := min{3(F})|s € Z}, which
isthegenericvalueof 8 on Z if Z isirreducible. If F' is u-semistable torsion free then we
have the uniform bound 3(F) < B (cf. 4.5.8).

Definition 9.3.1 — A sheaf F'isgood, if F'is u-stableand 8(F') = 0.

Itisclear from Corollary 4.5.4 that at good points the moduli space M (A) is smooth of
the expected dimension. If we want to bound the dimension of the locus of sheaves which
arenot good, then half of the problemissolved by Theorem 9.1.1. For the other half consider
the closed set

W = {[F] € M(A)|5(F) > 0}
(As before one ought to define W as the image of the corresponding closed subset in R).

Theorem 9.3.2 — There isa constant C's > (> depending on r, X, H, such that for all
A > A

r—1
1 < T — .
dim W < (1 Qﬁ(r))A+01VA+C3

Again we postpone the proof to a later section (see 9.6) and derive some consequences
first: Suppose that A satisfies the following conditions:

1. A>A
2 A—(r=1)x(0x)>(1—-5:)A+B+r?+1

3 A- (P =1)x(0x) > (1 - FH)A+CiVA+Cs +2.

Then we can apply Theorems 9.1.2 and 9.3.2 and conclude that the pointsin M (A) which
are not good form a closed subset of codimension at least 2. This leads to the following
result:

Theorem 9.3.3 — Thereisa constant A, dependingonr, X, H suchthatif A > A, then

1. Everyirreduciblecomponent of M (A) containsgood points. Inparticular, itisgener-
ically smooth and has the expected dimension.
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2. M(A)isnormal and M*(A) isalocal completeintersection.

Proof. Choose A, such that for A > A, the conditions (1)—(3) are smultaneoudly satis-
fied. Then the good points are dense in R. Hence R is generically smooth and has the ex-
pected dimension. By Proposition 2.2.8 R isalocal complete intersection. Moreover, the
singular points have large codimension. Hence R satisfies the condition S, and is normal
by the Serre-Criterion ([98] Il 8.23). Asa GIT-quotient of R, M isnormal, too. It follows
from Luna' s Etale Slice Theorem 4.2.12, that M $(A) isalocal completeintersection if this
holdsfor R. m|

9.4 Irreducibility

Assume now that A > A,, and let [F] € M(A) be agood point. Let F’ be the kernel
of any surjection F' — k(p), wherep € X isapoint at which F islocaly free and k(p)
is the structure sheaf of p. Then F' is p-stable and Hom (F', F' ® K) C Hom(F,F ®
K), implying that F' is again good. In particular, F’ is contained in a single irreducible
component of M(A'), A’ := A + 2r, and this component does not change if [F'] or the
morphism F' — k(p) vary in connected families. This provesthe following lemma:

Lemma9.4.1 —If A denotesthe set of irreducible components of M (A), then sending
[F] to [F'] induces a well-defined map ¢ : Aa — Aaqor. |

Our aimisto show that for sufficiently large A themap ¢ issurjectiveand that thisimplies
that Aa consists of asingle point.

Theorem 9.4.2 —Thereisa constant A such that for all A > A3 the following holds:

1. Every irreducible component of M containsa point [F] which represents a good lo-
cally free sheaf F.

2. Every irreducible component of M contains a point [F'] such that both F' and F~~
aregoodand £(F™/F) = 1.

Thisisarefinement of Theorem 9.3.3. Its proof uses the same techniques as the proof of
Theorem 9.3.2 and will also be given in Section 9.6.
Now we have collected enough machinery to prove

Theorem 9.4.3 —Thereisa constant A4 suchthat for all A > A4 themoduli space M (A)
isirreducible.
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Proof. Clearly part 2 of Theorem 9.4.2 impliesthat themap ¢ : Aa_2, — A iSsurjec-
tivefor A > As. Forif Z € A, pick agood point [F] € Z with ¢(F™/F) = 1 such that
F™~ isgood. Then the component containing F~ is mapped to Z.

Hence it suffices to show, that if [E) ], [E-] are any two good locally free sheaves, then
some power ¢¢ will map their componentsto the same pointin Aa 1 »,¢. This, together with
the surjectivity of ¢ and the finiteness of A, impliesthat Aa contains only one point for
sufficiently large A. Now E; (m) and E,(m) are globally generated for sufficiently large
m. Choosing » — 1 generic global sections one finds exact sequences (cf. 5.0.1)

0= 0(-m) "' 5B - 00Tz, -0

with O = Q@O((r—1)m) and zero-dimensional subschemes Z; ¢ X.LetZ, = 75, N1z,
and define sheaves F; C E; by

0 - O(m)y™' = E — 0®Iz; — 0

| T T
0 - O(=m)™" = F, - 0®Iz; — 0.

Fy and F;, aregood pointsin M (A + 2r¢) for £ = £(Z;) — ¢(Z) and determine the images
of the componentsof F; and E, under the map ¢*. The open subset in

P(Ext' (Q ® Tz, O(—m) 1))

that parametrizesgood pointsisnonempty, for it containsthe extensionsdefining £} and F5,
andiscertainly irreducible. Thisforces F; and F> to lie in the same component of M (A +
2rf). m|

9.5 Proof of Theorem 9.2.2

Proposition 9.5.1 —Let C € |nH| be a smooth curve and let M be the moduli space of
semistable sheaveson C of rank and determinant Q|¢. Let Z C M beaclosedirreducible
subvariety with 9Z = . If dim Z > dim M, thenthereisapoint [F'] € Z such that F|¢
is not stable.

Proof. Assume to the contrary that F'|¢ is stable for al [F] € Z. Then the restriction
F +— F|c definesamorphism ¢ : Z — Mc. By equation 8.2 in Section 8.2 we know
o (Lh)des(X) = 5?2 dee(X)| , where £/, is an ample line bundle on M (cf. 8.1.12).
Moreover, sectionsin somehigh power of £, definean embedding of M#\ oM (cf.8.2.16).
By assumption Z C M* \ M. Hencethelinebundle £ |z isample. Thus ¢ isfinite and
dim(Z) < dim(M¢) m|
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Proposition 9.5.2 —Let C bea smooth connected curve of genusg > 2, andlet 7 beaflat
family of locally free sheaves of rank » on C' parametrized by a k-scheme S of finite type.
Then the closed set

S = {s € S|Fs isnot geometrically stable}
is empty, or has codimension < %g inS.

As the moduli space need not be fine, the proposition cannot be applied to the moduli
space M itself. Indeed, the codimension of the subset parametrizing properly semistable
sheaves can be larger than predicted by the proposition.

Proof. Suppose F' = F; is not stable for some closed point s € S. Let m = reg(F') be
the regularity of F and ¢ : G := Oc(—m) ® H°(F(m)) — F the evaluation map. There
isan open neighbourhood U of s in S and amorphismU — Quot(G; P(F')) mapping s
to [¢] such that F | isthe pullback of the universal quotient. Hence, it sufficesto provethe
propositionfor thefollowing‘ universal example': F istheuniversal family parametrized by
the open subset S C Quot(G; P(F')) correspondingtoall points¢ : G — F suchthat F'is
an m-regular locally free sheaf and ¢ induces an isomorphism H° (G (m)) — H°(F(m)).

Let d bethedegreeof F'. For any pair (dq, ) of integerswith0 < 7y < rletry =r—ry,
dy = d —dyandlet P;(m) = rym + (d; + ri(1 — g)) denote the corresponding Hilbert
polynomial. Finally, let P, = P(G) — P(F). The relative Quot-scheme D(dy,r;) :=
Quot(F, P,) isan open subset of the flag-scheme Drap(G; Py, Pi, P»). Consider the can-
onical projectionr : D(dy,r1) — S.Theimageof 7 isprecisely the closed subset of points
sin S such that F, has a submodule of degree d; and rank r;. A pointy € D(d;,r) cor-
respondsto afiltration 0 C Gop C G; C G2 = G, and s := 7(y) then correspondsto the
quotient G — G /Gy =: F. Let F; = G;/G, betheinduced filtration of F'. The smooth-
ness obstruction for S is contained in Ext' (G, F). As Hom(G,G) = Hom(G, F) and
Ext‘(G, F) = 0fori > 1 by definition of S, we have Ext'(Gy, F) = Ext?(F,F) = 0,
since C' isacurve. Thus S is smooth. Moreover, there is an exact sequence

... — Ext’ (F,F) - Ext!(G,F) - Ext’ (G,G) —» Ext™" (F,F) - ... (9.1

(We leave it as an exercise to the reader to establish this sequence. Recall the definition
of the groups Ext. in Appendix 2.A and write down an appropriate short exact sequence
which leads to the desired sequence. Cf. [51]). Because of Ext’(G, F) = 0fori > 1, we
get Ext’, (G,G) = Ext™™' (F,F) = 0fori > 1 (Usethe spectral sequences 2.A.4 and
dim(C) = 1). Now Ext!, (G, G) isthe obstruction space for the smoothness of D(d;,r1)
(cf. Proposition 2.A.12). Hence D(dy, 1) is smooth as well. By Proposition 2.2.7 thereis
an exact sequence

0 = Hom(Fy, F/F}) = T,D(dy,r1) -5 T,S — Ext' (Fy, F/Fy) (9.2)

Infact, it follows from Ext’ (Fy, F/F;) = Ext’, (F, F), the long exact sequence
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... = BExt! (F,F) - Ext}, (G,G) — Ext"(Go, F) — Ext'"' (F,F) — ...

(again, we leave it to the reader to establish this sequence) and the vanishing results listed
above, that thelast homomorphismin (9.2) is surjective. Using Riemann-Roch, thisimplies
that
. 1 dl d2

COdlm(ﬂ'(D(dl,T’l)), S) S ext (Fl,F/Fl) = 7"17“2(g -1+ E — E) + hOm(Fl,Fg).
Now S*# isthe union of al 7(D(dy,r1)), where (dy,r ) satisfiesd, /ry > d/r. Note that
by the Grothendieck Lemma 1.7.9 there are only finitely many such flag varietieswhich are
nonempty.

Let V' be an irreducible component of S“#. Assumefirst that ageneral point of V' corre-
sponds to a semistable sheaf F'. Then V' istheimage of D(d,,r,) for apair (dy,r;) with
dl/’I“l = d/’l“ = d2/7"2. Hence

2
codim(V) < ryra(g — 1) + hom(Fy, F/F;) < rirag < %g.

Here we used that F'/ F; isaso semistable and thereforehom (Fi, F/Fy) < rqyrs.

Assume now that a general point of V' correspondsto a sheaf F' which is not semistable
and let (dy, ) denote degree and rank of the maximal destabilizing subsheaf of F'. Then
Hom(Fy, F/Fy) = 0. Therefore, D(dy,r1) — S is, generically, aclosed immersion with
image V/ of codimension codim(V, ) < rira(g — 1+ & — £). Incase

d1 @<T1+T2—1

roTe TiT2
weget codim(V, B) < rirag— (11 —1)(ra— 1) < %g, and we are done. Hence it suffices
to show that the alternative relation
d d +ry—1
1 az > Ty T 72

] T2 rir2
isimpossible. Otherwise, the dightly stronger inequality (dy — 1)/r1 > (dy + 1)/rs must
hold, since the involved degrees and ranks are integers.

Thismeansthat thekernel F of any surjection F; — k(P), P € C, isdtill destabilizing.
Hence thereis acomponent D' C D(d; — 1,r1) which surjects onto V. The fibre dimen-
sion of this morphism is greater than or equal to dim(D') — dim(V') = x(F{, F/F]) —
x(F1, F/Fy) = r1 4+ ry by the Riemann-Roch formula. But the tangent space to the fibre
of D' — V atapoint [FF — F/F]] € D' isgiven by

Hom(Fy, F/F]) = Hom(Fy, F/F,) ® Hom(F}, k(P)).
In order to get a contradiction it sufficesto show hom (Fy, F/F}) < r». But thisis equiv-
alent to the claim that Hom(F}, Fy) — Ext'(Op, F/F}) isnot surjective, and, by Serre

duality, that Hom(F'/Fy, F; ® we) — Hom(F/Fi,Op ® we) isnot trivia. But thisis
certainly true for an appropriate choice of Fi — k(P). |
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Proposition 9.5.3 —Let C' € |[nH | beasmooth curve, lete > 0 bea rational number and
let d(e) bethe quantity definedin Theorem9.1.1. Let Z C M bea closed irreducible subset
with 2 = (), and supposethat dim Z > dim Mc and dim Z > Z-g(C) + d(e) +r2. Then
thereisapoint [F] € Z suchthat F ise-stableand F'|¢ isunstable.

Proof. Since dim Z > dim M, by Proposition 9.5.1 thereis a point [F'] in Z such that
F|c isungtable. Let Z' C R be an irreducible component of the pre-image = —*(Z) under
themorphism = : R — M which mapsonto Z. Then

2
dim Z' > d(e) + end(H) + %g(c).

Let (Z')"# denotethe (nonempty!) closed subset corresponding to sheaveswhoserestriction
to C' is unstable. Then by Proposition 9.5.2and 9.1.1

dim(Z")** > d(e) + end(H) > dim R(e) .

Thisimpliesthat thereisapoint [H — F| € Z' suchthat F'|¢ isunstableand F' ise-stable.
]

Proposition 9.5.4 —Let Z C M be closed and irreducible. Let C' € |nH| be a smooth

curveande = (r — 1) % Supposethat Z containsa point [F] such that F' is e-stable but

Flo isunstable. If dim Z > expdim M + o + & — I510(C - K), then 97 # 0.

Proof. Assumeto the contrary that 7 = () so that all sheaves corresponding to pointsin
Z arelocally free. By assumption F'|~ isunstable, i.e. thereis an exact sequence

0> F - Flc—>F'—0

with locally free Oc-modules F' and F" with u(F") > p(F"). Let E bethe kernel of the
composite homomorphism

F = Flc — F".

Since F and F"" arelocally freeon X and C, respectively, E islocally free, too. F' can be
recovered from E and the homomorphism ¢, : E(C)|c — F' ® O¢(O):

0—F— EC)— F'(C)—0.

qo correspondsto aclosed point in the quotient scheme ¥ := Quot(E(C)|c , P(F'(C))).
Using Corollary 2.2.9, together with the notations introduced there, we can give a lower
bound for the dimension of X:

dimY > y(F",F'(C)) =r"r"(t/ +C% — " +1 - g(C))
> (O — %C(C + k) > Lo -kK).
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(Recall that i’ = p(F") > p" = p(F")!) Let ¢* E(C)|c — G bethe universa quotient
on ¥ x C and defineafamily F of sheaveson X by the exact sequence

0=>F = q¢"E(C) = i.G =0,

wherei : ¥ x C — ¥ x X istheinclusion. Then F is X-flat, 7, = F by construction and
F,isu-stablefor all pointse € X. Toseethislet A C F,, beasubshesf of rank rk(A) < r.
There areinclusions

ACF, CE(C)CF(C).
Hence the e-stability of F implies:

elH| r—rk(4) -1
xa) ~ M) T

u(A) < pu(F) + CH - CH < u(F) = u(F,).

The family F induces a morphism ¥ — M*. Let ¥ be an irreducible component of the

fibre product X X psx Z*. Then

dim Y/ dimZ 4+ dim¥ — dim M

Y

_ 2
T oK)+

> (expdim M + By — dim M) + (dim ¥ —

2
> —.
- 4

Since 0Z = (), X' must also be empty. But for any point o € ¥ corresponding to a short
exact sequence
0—-F, > EC)—>G,—>0

the sheaf 7, islocally freeon X if and only if G, islocally freeon C. Hence, ¥’ parame-
trizes locally free sheaves of rank ' on C' and thus induces a C'-morphism

0 : X' x C = Grass(E(C)|c,r"),

wherer’ = rk(F") asabove. Grass(E(C)|c, ') isalocaly trivial fibrebundleover C with
fibresisomorphic to Grass(k", r') and of dimension'(r — r') < %. Sincedim ¥’ > %
for afixed point ¢ € C' the morphism

o(e) : ' — Grass(E(C)(e),r")
cannot be finite. Let X" be acomponent of afibre of ¢(c) of dimension > 1. Then
Lp” = (p|glr><c Y'xC = Grass(E(C’)|C,r')

contractsthe fibre " x {c}. The Rigidity Lemma (cf. [194] Prop. 6.1, p. 115) then forces
" to contract all fibres and to factorize through the projection onto C'. But thiswould mean
that all pointsin X" parametrize the same quotient, which is absurd. m|
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We summarizetheresults: suppose C' isasmooth curveinthelinear system [nH|,n > 1.
Then

1 1

9(C)—1=-C(C+K)= 3

1
5 n2H2+§nKH

and, by Corollary 4.5.5,

2

dim Mo = (2 = 1)(9(C) = 1) = “——

What we have proved sofar isthefollowing: suppose Z C M isanirreducibleclosed subset
such that

(n’H? + nKH).

2

dmZ > (n*H? + nKH) =: ¢o(n)

. 1 3_ 99 o 2,2

dmZ > (1—2—)A+(3r r +5r—1)H"n
r

+(§7~2 — %r)[KH]Hl + %7‘2 + B =: ¢1(n)

8
r—1 r—1
2

— (r* = )x(0) =: ¢(n)

dmZ > A- H?n? + [KH]4n

2
r
(here ¢, ¢1 and ¢- are the constants of Propositions9.5.3 and 9.5.4fore = (r — I)C“Tff,
expressed as functions of n). Then 9.5.3 and 9.5.4 together imply that 87 # (). We need to
analyze the growth relations between ¢y, ¢1 and ¢,. First observethat ¢o(n) < ¢ (n) for
all n > 0. Next, consider the ‘leading terms’ of ¢, and ¢»:

1
(1- 2—T)A + (3r% — 5—857"2 + 5r — 1)H?n?
i) = A-T=

<

=

2
I

H?n? .
Then the equation ¢, () = ¢ () has the positive solution

_ A
"=\ v(r)H?”
whered(r) = 6r* — 52r3 + 11r* — 3r. The quadratic polynomials ¢, (z) and ¢, () attain
their minimum and maximum value at
(52 — 4r)[K H].
(4813 — 11072 + 80r — 16) H?2

xry = — <0

and z, = BH]+ respectively. Hence, if A > Ay := 9(r)H? - (2+ Z5]£)2 thenzy —2 >

To >0 >x1.Letng = La:OJ.ThennO > 1 and

¢1(no) < ¢1(x0), $2(n0) < d2(z0 — 1),
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asng isin therange where ¢, isincreasing and ¢, is decreasing. We conclude: if A > A,
anddim Z > max{¢;(z0), p2(zo— 1)} thendZ # (. Now express ¢, (zo) and ¢ (2o — 1)
intermsof A, using the definition of z(, and check that their maximum is not greater than
the constant given in Theorem 9.2.2. Therefore, if Z satisfies the assumptions of Theorem
9.2.2,then 8Z # (). Under the same assumptionslet Z' ¢ #='(Z) C R beanirreducible
component that dominates Z. Then 87’ # () and

dim 02" > dimZ' —(r—1) by9.2.1
> dim Z + (end(H) —r?) — (r — 1)
> ¢1(0) +end(H) — (12 +r —1)
1 1
(1— =)A+B+end(H) + (57 —r +1)
2r 4
1
> (1- 27>A+B+end(%) -1
> dim R(0) by 9.1.1.
Hence, 9(Z')* # 0, and thus9Z* # (. Thisfinishes the proof of the theorem. a

9.6 Proof of Theorem 9.3.2

Let F' beatorsion freesheaf of rank r on X andlet 7= F~/F. Since T is zero-dimensio-
nal, F' and F~ have the same rank and slope, £ is u-stable if and only if F'is u-stable;
and A(F) = A(F™) + 2r((T). Notethat Ext! (F, 0) = Ext?(T, O) is zero-dimensional
of length ¢(T'). Consider now aflat family F of torsion free sheaves parametrized by S and
let Ts = (F5)™/ Fs.

Lemma 9.6.1 — The function s — ¢(T) is semicontinuous. If S is reduced and ¢(T) is
constant then forming the double dual commutes with base change and F~ islocally free.

Proof. Choose a locally freeresolution 0 — Ly — Lo — F — 0. Dualizing yields an
exact sequence

0 = Hom(F,0) = Ly~ = L~ — Ext' (F,0) — 0.

This shows that F' +— Ezt' (F, O) commutes with base change and proves the semicon-
tinuity. If S is reduced and £(T5) is constant then £xt! (F, ©O) is S-flat. But then F~ =
Hom(F,O) isaso S-flat and forming the dual commutes with base change. a

The double-dual stratification of .S by definition is given by the subsets

S, = {s € S|(T,) > v}.
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These are closed according to the lemma.
Let Z C M(A) beaclosed irreducible subset and assume that 9Z* is nonempty and
B(Z) > 0. Define a sequence of triples

Y;'CZiCMiZM(Ai),Z.ZL...,TL,

by the following procedure: Ag = A, Z, = Z,Y; C 9Z! isanirreducible component of
the maximal open stratum of the double-dual stratification of 9Z*. Let ¢; be the constant
valueof £ onY;. Then sending [F] to [F™] definesamorphismY; — M; 11 = M (A1),
where A1 = A; — 2r/;. Finaly, let Z;1, bethe closure of the image of this morphism.
Thisprocess breaks off, say at theindex n, when'Y,, = 0. (It must certainly cometo an end,
asA; > 0 forall i by the Bogomolov Inequality).

Remark 9.6.2 — Strictly speaking we have defined the double dual stratification only for
schemes which parametrize flat families, i.e. on 9Z#* x ; R rather than on 97 itself. But
obviously the stratification is invariant under the group action on R and therefore projects
to astratification on 0Z*. Similarly, the morphism to M, etc. isdefined firss onY x5 R
but factors naturally through Y. |

How dodim Z; and 3(Z;) change?Let [E] € Z; beageneral point. Then by construction
E isapu-stablelocally free sheaf. Thereis a classifying morphism

Quot(E, £;) — oM} |

sending [¢ : E — T toker(¢). Thisis easily seen to be an injective morphism. If [F] €
Y;_1, thenthefibre of Y;_1 — Z; over [F"] is contained in the image of Quot(F™, ;).
But by Theorem 6.A.1 Quot(E, ¢;) isirreducible of dimension ¢;(r + 1). In particular,

dimZ; > dimY;_ 1 —/4;(r+1)

> dimZ;_ — (7“ — 1) — Zz(r + 1) by 9.21
Z dim Zi—l - (27“ - 1)[1 - 1,
and summing up:
dim Z,, > dim Z — (2r — 1) Zzi —N, (9.3)
i=1

where N isthe number of timesthat equality holdsin

Togetaboundon IV, consider ageneral sheaf [E] € Z; andashesf [F] € Y;—; withF C E.
ThenHom(F, F @ K) C Hom(E, E ® K) so that

B(Zi) = B(E) 2 B(F) = f(Zi-1) >0 (9.5
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What happensif equality holdsin (9.4)? In this case Quot(E, ¢;)req must be contained in
Y;_1, ginceit isan irreducible scheme. We claim that in this situation the strict inequality
B(F) < B(E) holdsfor F' = ker(¢), when [¢ : E — T] € Quot(E, ¢;) isageneral point:
namely, let ¢ : £ — E ® K beanontrivial tracelesshomomorphism. Then ¢(z) cannot be
amultipleof theidentity on E(z) forall z € X. Thusforagenera ¢ : E — T thekernel F
isnot preserved by ¢. Thus¢ ¢ Hom(F, F ® K) and 3(F) < S(E). Thisargument shows
that we can sharpen (9.5) each timethat equality holdsin (9.4): weget 3(Z,,) > 3(Zy)+N.
This can be used to give abound for N:

N < N + ﬁ(ZO) < ﬁ(Zn) < ﬁoo (96)
Recall that A,, = A —2r """ | ¢;. Using this, and the inequalities (9.3) and (9.6) we get:
1 1
i —(1-— > di — (1= =)A — Beo- )
dim Z,, — (1 2T)An >dimZ — (1 2T)A Boo (9.7
We are now ready to prove Theorem 9.3.2: define

Cs:= max{C'g + ﬂoo, ;l_; + 2500 - (T2 - I)X(OX)}'

If Theorem 9.3.2werefase, let Z C W be an irreducible component of W with

r—1
29

By the definition of W we also have 5(Z) > 0. Since C5 > C-, Theorem 9.2.2 can be
appliedto Z, sothat 9Z* # (). The procedure above leads to the construction of a closed
irreducible subset Z,, ¢ M(A,,) suchthat 8Z* = () and such that estimate (9.7) holds. It
suffices to show that C'3 was chosen large enough so that 7Z,, still satisfies the conditions of
Theorem 9.2.2 and therefore providesthe contradiction 2% # (. Firstly, Z,, parametrizes,
generically, u-stable sheaves. Hence

dim Z > (1 — YA + C1VA + Cs.

dim Z,, < expdim M (A,) + Boo = Ap + Boo — (r* — 1)x(Ox).

Thisand (9.7) give:
An/2r > (dimZ, — (1= £)A,) + ((r? = Dx(Ox) — B)
> (dimZ, — (1= 55)A) + ((r* = Dx(Ox) — 26x)
> (£ - A+ CiVA+ (Cs + (72 — )X (Ox) — 28x)
2 A1/2T,

since (3~ — 55+) > 0. Secondly, again using the estimate (9.7):
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dim Z,, — <(1 - %)An + O VA, + 02)

> dimZ — ((1 - T2_191)A+01\/Z+03>
(5~ A=A + (VA - V/A,)
+(C3 — C3 — B)
> 0,

where all the terms on the right hand side are nonnegative by the assumption on dim Z and
the definition of C5. O

Proof of Theorem 9.4.2

LetA; = Ay +2r(f%°1+1), andlet Z beanirreduciblecomponent of M (A) for A > As.
By the choice of the constants A; we have A3 > A, > A;. Thus, for A > Az Theorem
9.3.3appliesand saysthat Z hasthe expected dimension. Moreover, theconditions1.—3. on
page 202 are satisfied. Hence, Theorem 9.2.2 applies, and we can conclude that 2% # (.
Let Y bean irreducible component of the maximal open stratum of the double-dual stratifi-
cationof 9Z*, ¢ theconstantvaluel(Ts), s € Y, andlet Z' bethe closureof theimageof the
morphismY — M’ = M(A'), A’ = A—2r¢,asabove. Thendim Z' > dim Y — (r+1)Z.
Distinguish the following two cases:

Case 1. Suppose Z contains no points corresponding to good locally free sheaves. Then
Y isan open dense subset of Z and it follows:

dimZ' > expdimM — (r +1)¢ (9.8)
= expdim M' + (r — 1)L. (9.9)

Either A’ = A—2r¢ > A,,then M’ isgenerically good by Theorem 9.3.3, hencedim Z’ <
expdim M’', acontradiction; or A’ = A — 2r¢ < Ay, then2rl > A — Ay > A3 — Ay =
2r(£= 4 1) sothat (r — 1)¢ > B and

dim Z' > expdim M’ + B,

again a contradiction. This proves part 1 of the theorem.
Case 2. Suppose 0Z* is a proper subset of Z#. We must show that / = 1. In this case
dimY > dim Z — (r — 1) by 9.2.1, so that instead of (9.9) we get

dim Z' > expdim M' + (r — 1) — (r — 1) = expdim M’ + (r — 1)(¢ — 1).

The very same argumentsasin Case 1 lead to a contradiction, unless ¢ = 1 asasserted. O
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Comments:

— The main references for this chapter are articles of O’ Grady, Li and Gieseker-Li. The general
outline of our presentation followsthe article [208] of O’ Grady. The bounds O’ Grady givesfor A are
all explicit. Moreover, he can further improve these bounds in therank 2 case. Our presentationisless
ambitious: even though all bounds could easily be made explicit we tried to keep the arguments as
simple as possible. As aresult, some of the coefficients in the statements are worse than those in the
O’ Grady’s paper.

— Generic smoothness was first proved by Donaldson [47] for sheaves of rank 2 and trivial deter-
minant, and by Zuo [261] and Friedman for general determinants. Their methods did not give effective
bounds.

— Asymptotic irreducibility was obtained by a very different and also very interesting method by
Gieseker and Li for rank 2 sheavesin [81] and for arbitrary rank in [82].

— Asymptotic normality was proved by J. Li [149].
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10 Symplectic Structures

A symplectic structure on a non-singular variety M is by definition a non-trivial regular
two-form, i.e. aglobal section 0 # w € H°(M,3,). Any such two-form defines a ho-
momorphism Ty = Qa~ — Qar which we will aso denote by w. This homomorphism
satisfies w* = —w, i.e. w is dternating. Conversely, any such alternating map defines a
symplectic structure.

The symplectic structure w is called (generically) non-degenerateif w : Ty — Qp/ IS
(generically) bijective. The symplectic structure is closed if dw = 0. Sometimes we will
also call aregular two-form on asingular variety a symplectic structure. Note that our defi-
nition of a symplectic structureis rather weak. Usually one requires a symplectic structure
to be closed and non-degenerate.

Any non-degenerate symplectic structure defines an isomorphism A"w : Ky~ =2 Ky,
wheren = dim M. In particular, K3, = Oy. Using the Pfaffian one can in fact show that
K =2 Opn. Any generically non-degenerate sympl ectic structure is non-degenerate on the
complement of the divisor defined by A"w € H°(M, K3%,).

By definition acompact surfaceadmitsasymplectic structureif and only if p, > 0. Going
through the classification one checksthat the only surfaces with anon-degenerate symplec-
tic structure are K3 and abelian surfaces.

Thegeneral philosophy that moduli spaces of sheaveson asurfaceinherit propertiesfrom
the surface suggests that on a symplectic surface the moduli space should carry a similar
structure. That this is indeed the case will be shown in this lecture. We will also discuss
how holomorphic one-forms on the surface give rise to one-forms on the moduli space.

In Section 10.2 we give adescription of the tangent bundle of the good part of the moduli
spacein termsof the Kodaira-Spencer map. In Section 10.3 one- and two-formson the mod-
uli space are constructed using the Atiyah class of a (quasi)-universal family. The question
under which hypothesesthese forms are non-degenerateis studied in the final Section 10.4.
We begin with a discussion of the technical tools for the investigationsin this chapter.

10.1 Trace Map, Atiyah Class and Kodaira-Spencer Map

Inthis section werecall the definition of the cup product (or Yonedapairing) for Ext-groups

of sheavesand complexesof sheaves, thetrace map and the Atiyah class of acomplex. These

are the technical ingredientsfor the geometric results of the following sections.
Inthefollowing let Y be a k-scheme of finite type.
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10.1.1 The cup product — Let E* and F'* be finite complexes of locally free sheaves.
Hom?*(E*, F*) isthe complex with

Hom™(E*, F*) = @ Hom(E!, F+m)

and differential
d(p) =dpop — (=1)8¥ - p o dp. (10.1)
If G* isanother finite complex of locally free sheaves, compositionyieldsahomomorphism
Hom*(F*,G*) @ Hom®*(E*, F*) = Hom*(E*,G*) (10.2)
such that d(v o ) = d(¢)) o ¢ + (—1)3%8¥4) o d(y) for homogeneous elements ¢ and 1.
For any two finite complexes A® and B*® of coherent sheaveson X there isa cup product
M (A*) ® BV (B®) = H'™ (A®* ® B*),

most conveniently defined via Cech cohomology: let &/ = {U;};c; be an open affine cov-
ering of V', indexed by awell ordered set I. Theintersection U;,..;, = ﬂ;’zo U;; isagain
affine for any finite (ordered) subset {ip < ... < i,} C I. For any sheaf F' consider the
complex C*(F, ) of k-vector spaces with homogeneous components

crru)= [[ T(FU. i)
i< <ip

and differential
§ p+1

(da)i0~~~ip+1 = Z(_I)Jaio...%j...ip+1 |Ui0...ip+1 .

j=1
If F'* isafinite complex, we can form the double complex C* (F'*, ) with anticommuting
differentidlsd’ = d : C*(F7,U) — CPTY(F9,U) and d" = (—1)? - dp : CP(F',U) —
CP(F*+! 1{). The cohomology of the total complex associated to C'*(F*, /) computes
H* (F'*). Now define a cup product

CP(AY,U) ® CP (BY ,U) — CPT7' ((A® B)"H U)
by
(a® Big..ip,, = (-n' Qig...ip | Usg..5

Thus composition induces a product

p+p’ ® ﬁip“"P'H’l |Ui0"'ip+p’ ’

Ext'(F*,G*) ® Ext! (E*, F*) — Extt/(E*,G*).

Inparticular, Hom* (E*, E*) hasthe structure of asheaf of differential graded algebrasand
its cohomology Ext®(E®, E*) inherits a k-algebrastructure. If we interpret Ext’(E®, F'®)
asHomp (E*, F*[i]), where D isthe derived category of quasi-coherent sheaves, then the
cup product for Ext-groupsis simply given by composition.
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10.1.2 Thetrace map — For any locally free sheaf E let trg : End(E) — Oy denote
the trace map, which can be defined locally after trivializing E. More generally, if E® isa
finite complex of locally free sheaves, define atrace

trgs : Hom®*(E®, E®*) — Oy

by setting ¢ gs |20m(pi,Ei) = 0, exceptinthecasei = j, when we put trps |cpa(gi) =

ige : Oy — Hom®(E*, E*)

be the Oy -linear homomorphismthat maps1 +— ", idg:. Clearly,

trpe(igs(1)) = > _(—1)1k(E’) =: tk(E®).

If ¢» and ¢ are homogeneouslocal sectionsin Hom*(E*®, E*), then
trps (p o) = (—=1)*E7YEVtrp (1 o ). (103)

This relation can be easily seen as follows: we may assume that ¢ € Hom(E*, E/) and
Y € Hom(E™,E™). Thentrg-(p o) andtrgs (1 o p) arezerounlessj = m andi = n.
Moreover, trg: (v o ) = trgi (p o 7). Hence

(=1)'trp: (Y o) = (=1 trps (p o) - (=1)"7,

andi — j = deg(p) = deg(v)) = deg(p) deg(¢)) mod 2. Let d denote the differential in
the complex E*°. It follows from this and (10.1) that

tres (d(p)) = trgs(dg o @) — (—1)281) e rp (0 dg) = 0.

Thisshowsthat both i g. and ¢rg. are chain homomorphisms(where Oy isacomplex con-
centrated in degree 0) and induce homomorphisms

i: H(Y,Oy) = Ext'(E®, E*) and tr : Ext’(E®, E*) — H'(Y, Oy).
Lemma 10.1.3 — and ¢r have the following properties:
i) troi=rk(E®)-id.

ii) tr(p o) = (—1)des@ deg(®) . tr(4 o ) for any two homomogeneous elements
0, € Ext*(F*, F*).

Proof. Thefirst assertion clearly follows from the equivalent assertion for igs and trgs.
Asfor the second, suppose A®, B® arechaincomplexesandletT : A*® B* — B*® A® and
T : H(A®*)®H(B*) — H(B*)®H(A*) bethetwist operator ab — (—1)des(@)-des(t) peq
for any homogeneous elements a and b. Then the diagram
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H(A* © B*) "X H(B* © A%

al a

H(A*) ® H(B*) - H(B*)® H(A®)

commutes. Specialize to the situation A* = B* = Hom*(E*®, E*) and let m denote the
composition

t’I"E.

Hom*(E*, E*) ® Hom*(E*, E®) — Hom*(E*,E*) —— Oy
Then (10.3) can be expressed by saying that m = m o T'. Thus
tr =H(m) op=H(m) o H(T) o p=H(m) oppoT =troT,
which is the second assertion of the lemma. o
An easy modification of the construction leads to homomorphisms
i: H(Y,N) = Ext'(E*, E* @ N) and tr : Ext'(E*, E* @ N') — H (Y, N)
for any coherent sheaf A/ on'Y” which satisfy relations analogousto i) and i) in thelemma.

Definition 10.1.4 — Let F' be a coherent sheaf that admits a finite locally free resolution
F* — F.ThenExt'(F*, F* @ N') = Ext'(F, F @ \) for any locally free sheaf \/. Let

Ext’(F,F ® N)o := ker (tr : Ext'(F, F @ N') — H'(Y,N)).

10.1.5 TheAtiyah class— Letp;,p2 : Y x Y — Y bethe projectionsto the two factors.
Let Z betheideal sheaf of thediagonal A C Y x Y and let Osa = Oy »y /Z? denote the
structure sheaf of the first infinitesimal neighbourhood of A. AsOa isp- flat, the sequence

0—=Z/I? = Osn = Op — 0

remains exact when tensorized with p3 F" for any locally free sheaf F' on Y. Applying pi.,
we get an extension

0> F®Qy = pru(p3F @ O2pn) = F =0,
whose extension class A(F) € Ext'(F, F ® Qy) iscalled the Atiyah classof F'. Notethat
py' :D(FU) = D(ps F © Oaa, (Y x U)NA) = D(pr(p5F © O24),U)

provides a k-linear splitting of the extension. If s isan Oy -linear splitting, thenV = s —
p, ! F — F ® Oy isan dgebraic connectionon F, i.e. V satisfies the Leibniz rule

Vie-f)=da® f+a-V(f)
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for any local sectionsa € Oy and f € F. Conversely, if V isaconnection, then s =
V + p; ! is Oy-linear. Thus the Atiyah class A(F) is the obstruction for the existence of
an algebraic connectionon F'.

More generally, if F'* is afinite complex of locally free sheaves, one gets a short exact
sequence

02 F*® 0y = pr(psF* @ On) = F* = 0,

defining aclass A(F*) € Homp(F*, F*[1] ® Qy) = Ext' (F*, F* ® Qy).

A quasi-isomorphism F* — G* of finite complexes of locally free sheaves induces an
isomorphism Ext' (F*, F* @ Qy) = Ext'(G*,G* ® Qy) which identifies A(F*) and
A(G*). Inparticular, if F'isacoherent sheaf that admitsafinitelocally freeresolution F* —
F, then A(F*) isindependent of the resolution and can be considered as the Atiyah class
of F.

The class A(F*) can be expressed in terms of Cech cocyles: choose an open affine cov-
eringU = {U;|i € I} suchthat the restriction of the sequence

02 FIQy = p1u(p3F? @ Osn) = F1 — 0,

to U; splitsfor all ¢ and i. Thusthere arelocal connections VY : F?|y, — F1 ® Qy|y,.
(Note that the difference of two (local) connectionsis an O-linear map.) Define cochains

o € C'(Hom®(F*,F* @ Qy),U) and " € C°(Hom' (F*,F* @ Qy),U)
asfollows:

q — a
a - vio Uigiy Uigiy

iot1

anda"? = dp o V! — VI o dp,

q
— Vil

where dr isthe differential of the complex F*. Since

' _ Y| o
dF (aioh) - dF o ai0i1 ai0i1 Uigil ai1

" J M
odp = Qi Uigi, = —(da")igiy 5

theelement o = o’ + o/’ isacocylein thetotal complex associated to the double complex
C*(Hom*(F*,F* ® Qy),U). Thecohomology class of ais A(F*®).

This provides an easy way to identify the Atiyah class of the tensor product of two com-
plexes E* and F'*: check that if Vg and V  are (local) connectionsin locally free sheaves
Eand F,thenVEggr := Ve ®idr +idg ® Vr isa(local) connectionon £ ® F'. Whence
one deduces that

A(E* @ F*) = A(E*) ®idp +idg ® A(F*).

10.1.6 Newton polynomials — Assume again that F'* is a finite complex of locally free
sheaves. Let A(F*)* € Ext!(F*, F*® %) betheimageof thei-fold composition A(F*) o
...0 A(F*) € Ext'(F*, F* ® Q") under the homomorphism induced by Q" — Q. and
define the i-th Newton polynomial of F'* by
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YHF®) == tr(A(F*))) € HY(Y, Q).

These classes differ by afactor ¢! from the i-th component of the Chern character of F'°.
Asthe trace map does not see anything from a Cech cocyclein

H CP(Hom!(F*,F* @ Q%),U)
p+q=i
except the componentswith p = i, ¢ = 0, it followsthat v/ (F'*) dependsonly onthe a/-part
of thecocyclea’ + o that gives A(F*®). In particular, v (F*) = Y ,(— 1) (F*).

The k-linear differential d : Q% — Qi induces k-linear mapsd : HI(Y,Q%) —
HI (Y, Q). If Fisalocaly free sheaf, then v*(F) is d-closed, i.e. d(v*(F)) = 0 for all
i: as~" is additivein short exact sequences, we can reduce to the case of line bundles using
the splitting principle. If F' is aline bundle given by transition functions f;; € O*(U;;),
then dlog f;; = figldfij isaCech cocyclefor A(F) that clearly vanishes under d.

10.1.7 Relative versions — Let X be a smooth projective surface, S a base scheme of
finitetypeover kandletp : S x X — Sandqg : S x X — X bethe projections. Any
S-flat family F' of coherent sheaves admits afinite locally free resolution F'* — F' so that
we can apply the above machinery to F'.

Recall that £xt)(F, .) arethe derived functors of Hom,,(F, .) = p. o Hom(F, .). Itis
easy to seethat £zt (F, G) is the shedfification of the presheaf

U~ Eth(F|U><X7G|U><X)'

If F* — F isalfinitelocally freeresolution of F, then Ext (F'*, F'*) = Ext/ (F, F'). Thus
sheafifying the cup product and the maps i and ¢r defined for F'*, we get maps

Ext)(F,F) x Extd (F, F) — Exti*I (F, F),

tr: Ext) (F,F) — R/ p.Ogyx = Os ®p, H (X, 0x)
and
i: 05 @, H(X,0x) — Eaxt) (F, F),
satisfying the relations
troi=tk(F)-id and tr(po) = (—1)%8@)de8W) 1y o ).

10.1.8 The Kodaira-Spencer map — Let F' be an S-flat family on a smooth projective

surface X. Choosing a locally free resolution F'* — F' we can define the Atiyah class
A(F) = A(F*) € Extl(F',F° ® Qgxx) and consider the induced section under the
global-local map

Ext' (F*,F* ® Qsxx) — H°(S,Exty (F*, F* ® Qsxx))
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coming from the spectral sequence H'(S,Ext)) = Extf;;jx. The direct sum decomposi-
tionQsy x = p*Ns®qg*Qx leadstoan analogousdecomposition A(F) = A(F) +A(F)".
By definition, the Kodaira-Spencer map associated to the family F' is the composition

KS: 05" 25 007 @ gatl (F*, F* 0 p*Qg) —

—s Ext) (F*, F* @ p*(Qs” @ Q) — Ext)(F*, F*).

Example 10.1.9 — Let X be a smooth surface as aboveand S = Spec(k[¢]). Let 0 —

F 4 F 5 F — 0 beashort exact sequence representing an extension classv ¢
Ext (E, E). We can think of F asan S-flat family by letting  act on F as the homomor-
phismion. Decomposethe Atiyah class A(F) = A(F)'+ A(F)" according to the splitting

Extl, x (F,F ® Qsxx) = Extl, v (F,F @ p*Qs) ® Exts, x (F, F @ ¢*Qx).
Since g = k - de, and since F is S-flat, we have
Exth, x (F,F @ p*Qs) = Exth, x (F, F) = Ext (F, F).

We want to show that under these isomorphisms A(F)’ is mapped to ». According to the
definition of the Atiyah class wefirst consider the short exact sequence of coherent sheaves
over Spec(k[e1,e2]/(e1,82)%) x X

0—F- G F—so, (10.4)

wheree; and e, act trivially on F' and by i o = on F, and

G 2 kley] @ ]—'/6162}'% FoF

withactionse; = < 8 g ) ande; = < Zg g >.NOWA(.7:)' isprecisely theextension

class of (10.4), considered as a sequence of k[e1] ® Ox-modules. But it is easy to see that
thereisa pull-back diagram

™

0o — F 5 r I

F
R A

Ky

0o — F Y% @ % F — o0,

— 0

which showsthat A(F)" = v. O
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10.2 The Tangent Bundle

Let X be a smooth projective surface and let M ¢ be the moduli space of stable sheaves
on X of rank » > 1 and Chern classes ¢; and c,. The open subset My C M? of points
[F] suchthat Ext’ (F, F)o vanishesis smooth according to Theorem 4.5.4. Suppose there
existsauniversal family £ on My x X . The Kodaira-Spencer map associated to £ is asheaf
homomorphism

KS: Ty, — Emtll)(c‘:,c‘:).

It isthe goal of this section to show that this map is an isomorphism. In fact one can make
sense of the map K .S and the £xt-sheaf on the right hand side even if a universal family
does not exist. We will provethisfirst.

There are two waysto deal with the problem that auniversal family need not exist: either
one uses an étale cover of the moduli space, over which a family exists. Or one works on
the Quot-scheme that arisesin the construction of M ¢ and showsthat all constructionsare
equivariant and descend. We will follow this approach.

Let R®* C Quot(H, P) bethe open subset asdefinedin4.3sothat 7 : R® — M*isa
geometric quotient. If Og: @ H — F isthe universal quotient, we can form the sheaves
Ext! (F, F). These inherit a natural action of GL(V) ‘by conjugation’. In particular, the
centre of GL(V') actstrivially. Moreover, both the cup product and the trace map are equiv-
ariant. By descent theory, £z, (F°, ) and these two maps descend to acoherent sheaf £t
on M*# and homomorphisms

—i ~—it+j B i
Ext, @ Ext, — Ext,  and Ext, L5 HI(X,0x) @) Onse.
Suppose, a universal family £ exists. Then 7€ = p*A ® F for some appropriately lin-
earized line bundle A on R?. Therefore
" Exty,(E,E) = Eat, (7", n*E) = Ext,(F, F) @ End(A) = Ext (F, F).
Thus in the presence of a universal family £ we have ?ﬁ; = Exth(€,&). For this reason

wegiveinto thetemptation to usethenotation £zt (£, £) evenif auniversal family £ itself
does not exigt.

Theorem 10.2.1 — There are natural isomorphisms
8xt},(€,€)|M0 = Ty, and 8xtj,(€,€)|M0 ~ H'(X,0x) @, O, fori = 0,2.

(The theorem immediately implies Theorem 8.3.2.)
Proof. Ry = m~1(M,) and M, are smooth by Theorem 4.5.4. By the definition of M
we have Ext% (F, F)o = 0 for al [F] € M, and thisimplies that the homomorphisms

i: H*(X,0x) ® Og, = Ext2(F, F) and tr : Ext?(F, F) — H*(X,0x) ® O,
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are isomorphisms on the fibres over closed points, and hence are surjective as homomor-
phismsof sheaves. Sincetr oi = r-id, both mapsarein fact isomorphisms. Similarly, since
Hom(F, F), = 0 for stable sheaves, the same argument shows that £t3(F, F) 2 Og,.
From the first isomorphism one deduces that £ xt}, commutes with base change, and from
the second that £xt),(F, F) islocally free.

Now consider the Kodaira-Spencer map K'S : T, — Extl(F, F).Let[p: H — F] €
Ry beaclosed point. It follows from Example 10.1.9 and Appendix 2.A that the following
diagram commutes:

Tw

Ty Ro —— TinMo
% KS([o]) %l
Homy (ker(p), F) ——>—— Ext (F,F)

In the diagram the vertical isomorphisms come from deformation theory (cf. 2.A), and §
is the coboundary operator. We conclude that the Kodaira-Spencer map factors through an
isomorphism 7* Ty, — Sa:tzl,(ﬁ, F). Since the Atiyah classisinvariant, thisisomorphism
is equivariant and descends to an isomorphism 7, — £t (€, E). m|

10.3 Formson the Moduli Space

We are now going to describenatural one- and two-formson the moduli space asannounced
in the introduction.

Let F bean S-flat family of sheaveson asmooth projectivesurface X . The Newton poly-
nomias~y!(F) := v{(F*) € H'(Q%, x) areindependent of the choice of afinite locally
freeresolution F’* — F.SinceQgxx = p*Qs ® ¢*Nx,andsince A x islocaly free, there
is a Kiinneth decomposition

H"™(S x X, Q% x) = P H'(S,2%) © H" (X, Q% ).
ij
Let v'(F) and v (F) denote the components of v2(F) in H°(S,0%) ® H?(X,Ox) and
H°(S,Qg) ® H*(X,Qx), respectively.
Definition 10.3.1 —Let 77 and 0 » be the homomor phisms given by
s HOX, Kx) = H2(X,0x)" s H(S,02)

and
Sr s HO(X,Qx) =5 H2(X,Qx)” 2o HO(S, Q).
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(Here 22 is Serre duality.)

Proposition 10.3.2 —For any « € H°(X, Kx) or H°(X, ) the associated two-form
7r(c) or one-formér (), respectively, on S is closed.

Proof. The decompositiondsyxx = d; ® 1 + 1 ® dx induces similar splittings for the
Kiinneth components:

dsxx =ds @1+ 1®dx : H(Q) @ H* QY )
——H () o H QY ) o H(QL) o H (5 7.

Sincedsy x (7(F)) = 0,onehasdsx x (') = 0 = dsxx (v") aswell. Writey' = >, 1, ®
v, for elements uy € H°(Q%) and vy € H*(Ox). Then

0=dsux(y) =Y ds(pe)®ve+ Y pe @ dx(ve).
L 14
Since X isasmooth projective variety, one has dx (v) = 0 for any element v € H (%)
and therefore0 = >, ds(pe) ® vy. Hence

ds(tr(a)) = ds (Z fe - a('/l)) = ds(pe) - a(ve) =0
L

4

Similarly one shows ds(dr(a)) = 0. O

Lemma 10.3.3 — Supposethat S is smooth. Then for eacha € H°(X, K x) the two-form
To ON S isthe composition of the maps:

T,S x TyS —2XK5, pxtl (Fy, Fy) x Exth (Fy, Fy) —> Ext% (F}, Fy)

1 H2(X,0x) -2 H2(X,Kx) = k.
Proof. This follows readily from the definitions. |

In order to define forms on M ¢ we use quasi-universal families, which always exist by
Proposition 4.6.2. The following lemmaimplies that the construction is independent of the
choice of the quasi-universal family:

Lemma 10.3.4 — Let F' be an S-flat family of sheaves on X and let B be a locally free
sheaf on S. Theny'(F ® p*B) = rk(B) - v'(F) andvy"(F ® p*B) = rk(B) - " (F).

Proof. We have A(F @ p*B) = A(F) ® idp + idg ® p*A(B). The definition of >
shows, that only A(F) ® idp contributesto the H°(S, Q%) ® H?(X, Q%) component of
v?(F®p*B),whichisrelevantfory’ and+”. Sincetr(A(F)?®idg) = rk(B)-tr(A(F)?),
the assertion follows. |
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Definition and Theorem 10.3.5 —Let £ be a quasi-universal family on M*® x X. Then

._L . 0 0 s 2
T = rk(g)Tg.H (X,Kx)—)H (M 7QMS)
and
r
= — 70 HY(X,Q HOY(M®,Q
d I‘k((‘:)TE ( ) X)—) ( ’ Ms)

are independent of £.

Proof. If £ and £’ are any two quasi-universal families, then there arelocally free sheaves
B and B’ on M* suchthat £ @ p*B = £' ® p* B'. The assertion then follows from Lemma
10.3.4. m|

In order to make use of the differential forms § and 7 in the birational classification of
moduli spaces, it isimportant to extend them from M ¢ to the compactification M (r, ¢, ¢2)
(or M (r, Q, c2)). The case of the one-formislessinvolved and providesan aternative def-
inition:

Recall that for asmooth projectivevariety X the Albanesevariety isdefinedas Alb(X) =
H°(X,0Qx)"/H(X,Z) (cf. Section 5.1). This leads to a canonical isomorphism of the
spaces H?(AIb(X), Qain(x)) and H°(X,Qx). Under this identification the differential
H°(X,Qx) — H°(AIb(X),Qab(x)) of the Albanese morphism A : X — Alb(X)
equalsthe identity map.

Let M := M(r,Q,c) andfix apointz € X.

Proposition 10.3.6 — There is a natural morphism : M — Alb(X), which maps [E]
to A(é,(E)), where & (E) isthe second Chern class of E in the Chow-group CH2(X). If
HP(AIb(X), Qamn(x)) isidentified with H(X, Qx ), then o* (o) = —6(ax) on M*.

Proof. Any family F on S x X definesamorphism S — Alb(X) by mappingt € S
to A(é,(F})). Since M corepresents the moduli functor, we get a morphism ¢ : M —
Alb(X). The assertion on ¢*(«) is more complicated. For a smooth basis representing lo-
cally free sheaves, the proof can be found in [89]. But one can give an algebraic proof for
the general case as well, which we omit. a

Note that this provides an aternative definition of § and immediately showsthat 6(«) is
closed and extendsto the complete moduli space. In particular, we obtain aone-form on any
smooth model of M.

Not much is known about the morphism ¢ in general. For the rank one case, i.e. M =
Hilb(X), thereis the following theorem due to M. Huibregtse [110].

Theorem 10.3.7 —For ¢ > 0, themorphism : Hilb“(X) — Alb(X) issurjective and
all thefibresareirreducibleof dimension2c—h! (X, Ox). If ¢ > 0, themorphismissmooth
ifandonlyif A : X — Alb(X) issmooth. m|
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Proposition 5.1.5 and Theorem 5.1.6 in Section 5.1 give a first hint for the higher rank
case.

Corollary 10.3.8 —Ife¢> 0andr > 1,theny : M(r, Q,c) — Alb(X) issurjective. O

This can also be used to show the non-degeneracy of the one-formsd(«). In fact, 10.3.8
impliesthat for any a # 0 and ¢ > 0 the one-form §(«) is not trivial.

The consequences for the birational geometry of the moduli space will be discussed in
Chapter 11.

We certainly cannot expect to have an analogous situation for the two-forms(«). Since
the dimension of the moduli space growswith ¢, and, at least in special examples, 7(«) is
generically non-degenerate, 7(«) cannot be the pull-back of atwo-form on afixed finite di-
mensional variety Y under amorphism M# — Y. Work of Mumford on the Chow group of
surfaceswith p, > 0 suggeststhat Y should bereplaced by C'H?(X), whichisneither finite
dimensional nor avariety [192]. This‘non-geometric’ behaviour of = makesit more diffi-
cult to extend it over a suitable compactification of A7°. For many purposes the following
is sufficient.

Corollary 10.3.9 — There exists a morphisme) : M — M(r, ¢, ¢;) from a projective
variety M, whichisbirational over M# and such that the pull-back of any two-form 7(«)
on M* extendsto M.

Proof. Thisis aconsequence of 4.B.5. Indeed, if w(a) := 7¢(a), where £ isthe family
on M x X, then w(a)|y—1 sy = Te(@)|y-1(ars) = ¥*(7(a)), since the pull-back of a
quasi-universal family on M* x X to«~!(M?) isequivalent to £ constructed in 4.B.5. O

10.4 Non-Degeneracy of Two-Forms

In the previous section we constructed for each global sectiona € H°(X, K x) atwo-form
7(«r) on the stable part M# of the moduli space M (r, ¢1, ¢2). Moreover, if [E] is aclosed
point in the good part My C M*, i.e.if Ext®(E, E)o = 0, then Tjp) M* = Ext (E, E),
and with respect to this identification 7(«)([E]) is given by the map
7 : Ext' (E, E) x Ext' (E, E) = Ext*(E, E)
I H2(X,0x) % H*(X,Kx) = k.

(cf. 10.2.1 and 10.3.3.) Thus the question whether 7(«) is non-degenerate in good points
[E] € M, isanswered by the following ‘local’ proposition:
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Proposition 10.4.1 — The form 7 is non-degenerate if and only if multiplication by « in-
duces an isomorphism o, : Ext% (E,E) — Ext%(E,E ® Kx). Smilarly, the restric-
tion of 7 to the subspace Ext’; (E, E), is non-degenerateif and only if the homomorphism
o Exty (E, E)y — BExtk (E, E ® Kx)o isan isomorphism.

Proof. In order to prove the proposition, we need to relate the definition of 7 (involving
cup product and trace) to Serreduality. Let E* — E beafinitelocally freeresolution. Note
that the isomorphism Hom (E7, E?) = Hom(E?, E7)~ can be obtained by the pairing

. . . . ° . . tro;
Hom(E', E7) @ Hom(E?, E") = Hom(E’, B7) —2 Ox.

More generally, if A* = Hom®(E*®, E*), then
A% @ A =2 A 2 o

is a perfect pairing and leads to an isomorphism A* — Hom?®(A*, Ox). Hence for any
section o : Ox — K x thereisacommutative diagram

eval

(A*®Kx)®A* ———  Hom*(A*, Kx)® A* 2%, Ky

(1®a)®1[ Ia

A* ® A° | S N O
Passing to cohomology we get

Ext (E,E ® Kx) ® Ext’ (B,E) — Ext'(A*,Kx)®H (4°) — HY(X,Kx)

Ext (E, E) ® Ext’ (E, E) —  Ext(E,E) —%—  H(X,0x).
Observethat fori = j = 1, 7 isthe map from the lower left corner of the diagram to the
upper right corner.
Serre dudlity in its general form says that for a smooth variety X of dimensionn and a
bounded complex A*® of coherent sheaves the pairing

Ext" (A%, Kx) ® H' (X, A*) — H™(X,Kx) — k

is perfect (cf. [96]). If we apply thisto the diagram abovewith i = j = 1 inthe case of a
surface X, we get: 7 isanon-degenerateif and only if o, isan isomorphism, thus proving
thefirst part of the proposition.

For the second observe, that for any local section f € A*(U), U C X,and1:= ), idg:
onecertainly hastr(1- f) = tr(f). Thusthe splitting A* = Ox ® ker(¢rg. ) isorthogonal
with respect to the bilinear map A® ® A®* — A® 2 0. Thisimplies that the splitting
Exty (E,E) = H(X,0x) ® Ext'(E, E), is orthogonal with respect to 7. It is also re-
spected by Serre duality. Hence one concludes as before. a
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Corollary 10.4.2 —Let X be asurfacewith Kx = Oy, i.e. X iseither abelian or K3.
Then the pairing

7(1) : Exty (B, E) x Ext\ (E,E) - k

is a non-degenerate alternating form, and the same holds for therestriction of 7(1) to the
linear subspace Ext% (E, E)q. O

Combining this corollary with the fact that under the same hypotheses the smoothness
obstruction group Ext% (E, E), vanishes for any stable sheaf, we get Mukai’s celebrated
result on the existence of aholomorphic symplectic structure on the moduli space of sheaves
on K3 and abelian surfaces:

Theorem 10.4.3 —If X isa smooth projectivesurfacewith Kx = Ox,then M (r,¢1,c2)®
admits a non-degenerate symplectic structure. |

If Kx % Ox onedoes not expect 7(«) to be non-degenerate at every point of the mod-
uli space. The best one can hope for is a generic non-degeneracy. Of course, a hecessary
condition is that the moduli space is of even dimension. Suppose [F] € My C M*®isa
good point. According to Proposition 10.4.1, 7 («) is non-degenerate at [F] if and only if
. : Exty (E, E) — Ext) (F, E ® Kx) isan isomorphism.

Using the exact sequence 0 — Ox — Kx — Kx|p — 0, where D is the divi-
sor defined by o € H°(X, Kx), one sees that a sufficient condition is the vanishing of
Hom(E, E® Kx|p). If onerestrictsto the moduli space M (r, Q, ¢,) of sheaveswith fixed
determinant it sufficesto show Hom(E, E® K x|p)o = 0 in order to have non-degeneracy
of 7(«) at [E].

Thefollowingisacrucial result in the theory. It is only known for the rank two case but
hopefully true in general. Recently, Brussee pointed out that the assertion is a consequence
of the relation between Seiberg-Witten invariants and Donaldson polynomials and the fact
that the only Seiberg-Witten class of aminimal surface of general typeis +Kx.

Theorem 10.4.4 — Let X be a surface of general typeand let D = Z(a) € |[Kx| bea
reduced connected canonical divisor. If x(Ox) + ¢3(Q) = 0mod 2, then for ¢ > 0 the
symplectic structure 7(a)) on M (2, Q, ¢») is generically non-degenerate.

Proof. Note that the assumption x (Ox) + ¢(Q) = 0mod 2 isequivalent to dim M =
0 mod 2. Otherwise the symplectic structure could never be non-degenerate.

The proof of the theorem consists of two parts. First, one establishes the existence of a
rank two vector bundle ' on D such that Hom(F, FF ® Kx|p)o = 0. Next, one usesthisto
show that the restriction of the generic bundle E € M shares the same property. Once the
existence of F' is known, the proof goes through in the higher rank case as well. The first
step is highly non-trivial even when D is smooth. The proof is omitted.
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Let us sketch the second part of the proof. Here one makes use of some results in de-
formation theory. By the same method as in the proof of Theorem 9.3.3 one shows that
for c2 > 0 the genericsheaf E € M (r, Q, ;) satisfies Hom(E,E ® K%)o = 0, and
hence, Ext*(E, E ® (—Kx))o = 0. Theinfinitesimal deformationsof £ on X with fixed
determinant Q are given by Ext'(E, E), and of E|p by Ext},(Ep, Ep)o. For alocaly
free E the cokerndl of the natural map Ext' (E, E)o — Exth(E|p, E|p)o is contained
in Ext?(E, E(—Kx))o. Thus al infinitesmal deformations of E|p can be lifted to de-
formations of £ on X. The same procedure works for the deformations of higher order.
Consequently, there exists a deformation £’ of E which restricts to a generic bundle on
D. The assumption on the bundle F' implies that the generic bundle E'|p has vanishing
HOm(E'|D,EI|D®Kx)0. O

Comments:

— Mukal wasthefirst to construct algebraically asymplectic structure on the moduli space of sim-
ple sheaves on K3 and abelian surfaces [186]. Theorem 10.4.3 isdue to him. Later Tyurin [247] gen-
eralized his construction for surfaces with p, > 0. He also considered Poisson structures. Trace and
pairing were treated by Artamkin in connection with the deformation theory of sheaves [5], though
thesign (—1)*7 in 10.1.3 ismissing in [5].

— For avery detailed treatment of the Atiyah class of (complexes of) sheaveswerefer tothearticle
of Angeniol and Lejeune-Jalabert [2].

— 10.3.2 was proved by O'Grady [206] for smooth S and locally free £. Also compare [33]. A
reference for the Albanese mapping is [252].

— The existence of the bundle F' in the proof of 10.4.4 is due to Oxbury [213] and O’ Grady [206]
if D issmooth and to J. Li [149] in general.
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11 Birational properties

Moduli spaces of bundles with fixed determinant on algebraic curves are unirational and
very often even rational. For moduli spaces of sheaves on algebraic surfaces the situation
differsdragtically and, from the point of view of birational geometry, discloses highly inter-
esting features. Once again, the geometry of the surface and of the moduli spaces of sheaves
on the surface areintimately related. For example, moduli spaces associated to rational sur-
faces are expected to be rationa and, similarly, moduli spaces associated to minimal sur-
faces of genera type should be of general type. We encountered phenomena of this sort
already at various places (cf. Chapter 6).

There are essentially two techniques to obtain information about the birational geometry
of moduli spaces. First, one aims for an explicit parametrization of an open subset of the
moduli space by means of Serre correspondence, elementary transformation, etc. Second,
one may approach the question viathe positivity (negativity) of the canonical bundle of the
moduli space. Thefirst step was madein Section 8.3. The best result in this directionis due
to Li saying that on aminimal surface of general type with areduced canonical divisor the
moduli spaces of rank two sheaves are of general type. This and similar results concerning
the Kodairadimension are presented in Section 11.1. The use of Serre correspondencefor a
birational description isillustrated by means of two examplesin Section 11.3. Both exam-
plestreat moduli spaces on K3 surfaces, where this technique can be applied most success-
fully. In Section 11.2 we survey more results concerning the birational geometry of moduli
spaces. For precise statements and proofswe refer to the original articles.

11.1 Kodaira Dimension of Moduli Spaces

For the convenience of the reader we briefly recall some of the main conceptsin birational
geometry. As ageneral reference we recommend Ueno’s book [252].

Let X beanintegral variety of dimension n over an algebraicaly closed field. X isra-
tional if it is birational to P™. If there exists a dominant rational map P™ — X, then X is
called unirational. Note that by replacing P by a general linear subspace we can assume
m =n.

Definition 11.1.1 —Let X be a smooth complete variety. Its Kodaira dimension kod(X)
is defined by:

o Ifh°(X,0(mKx)) = 0 for all m > 0, thenkod(X) = —o0.



11.1 KodairaDimension of Moduli Spaces 231

o IfRO(X,O(mKx)) =0 or =1, but not always zero, then kod(X) = 0.
e If (X, 0(mKx)) ~ m”, thenkod(X) = k > 1.

It turns out that the Kodairadimension satisfies —oo < kod(X) < n. If X isnot smooth
or not complete but birational to asmooth complete variety X', then we definekod(X) :=
kod(X"). This definition does not depend on X’ dueto the fact that the Kodairadimension
isabirational invariant. Last but not least, anintegral variety X of dimensionn isof general
typeif kod(X) = n.

Let usbeginwith therank onecase. Obviously, Mg (1, ¢1,0) = Pic® (X) iseither empty
or an abelian variety. In particular, in the latter case the Kodairadimensionis zero. The mor-
phism My (r, c1,¢2) — Pic® (X)) defined by the determinant islocally trivia in the étale
topology (cf. the proof of 4.5.4). Thus one is inclined to study the geometry of the fibre
Mpy(r, Q,co) over Q € Pic™ (X)) separately. Since My (1, Q, c2) = Hilb?(X), thefol-
lowing result computes the Kodaira dimension in the rank one case.

Theorem 11.1.2 —If n > 0 then kod (Hilb" (X)) = n - kod(X).

Proof. We first introduce some notations: Let M := Hilb"(X), S := S™*(X), X" :=
Xx...xX,andletp : X" — Sandy : M — S bethe natura morphisms. The tensor
product & pf O(K x) isaline bundle on X™ with a natural linearization for the action of
thesymmetric group S,,. Theisotropy subgroupsof al pointsin X ™ act trivially. Therefore,
the line bundle descendsto aline bundlew on S. Moreover,

HO(S,w™) = H(X", Q) p; O(mKx))5" = S"H°(X,0(mKx)).

We use the following facts: i) O(K ) = ¢*w, which follows from alocal calculation in
points (z, z, x3,... ,x,) € S™(X) withz; # z, andii) 1.Opn = Og, which is an easy
consequence of the normality of M and S. Then H°(M, O(mKr)) 2 HO(M,p*w™) )
HO(S,w™) = S"H°(X,0(mKx)). Thisyieldskod(M) = n - kod(X). m]

Corollary 11.1.3 —If X isa surface of general type, then Hilb™ (X)) is of general type as
well. m|

Let us now come to the higher rank case. Here we first mention a consequence of The-
orem 5.1.6 in Chapter 5. Note that a surface with ¢(X) = h'(X,Ox) # 0 can never be
unirational. For such surfaces we have:

Theorem 11.1.4 —If X isan irregular surface, i.e. ¢(X) # 0, then the moduli spaces
My (r, Q,ce) arenot unirational for ¢ > 0.

Proof. Thisfollowseasily from the observation that for ¢, > 0 the Albanese map defines
asurjective morphism Mg (r, Q,¢2) — Alb(X) (cf. 5.1.6). Since Alb(X) isatorus, any
morphism P! — Alb(X') must be constant. 0
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Theorem 11.1.5 —Let X beaminimal surfaceof general type. Fixanampledivisor H and
alinebundle @ € Pic(X). Assume: i) there exists a reduced canonical divisor D € |K x|
and ii) x(Ox) + ¢2(Q) = 0(2). Then for ¢, > 0 the moduli space Mg (2, Q,cs) isa
normal irreducible variety of general type, i.e. kod(Mg (2, Q, c2)) = dim(Mg (2, Q, ¢2)).

Proof. We first prove the theorem under the additional assumption that X contains no
(—2)-curves. Thisis equivalent to K x being ample. We will indicate the necessary modi-
fications for the general case at the end of the proof. By the results of Chapter 9 (Theorem
9.3.3 and Theorem 9.4.3) we aready know that My (r, Q, ¢2) isnormal and irreduciblefor
sufficiently large co. Thusit remainsto verify the assertion on the Kodairadimension. The-
orem 4.C.7 showsthat for any two polarizations H and H' the corresponding moduli spaces
My (r,Q,ce) and My (r, Q, co) are birationa for co > 0. Therefore, it suffices to prove
the theorem in the case H = K x. To simplify notationswe write M = Mg, (2,9, ¢2)
and denote by 1M, the open subset of stable sheaves[F] € M with vanishing Ext?(E, E).
Note that M, is smooth (4.5.4).

In order to show that M is of general type we have to control the space of global sec-
tions HO(M, O(mK y;)) for some desingularization«) : M — M. Let W; denote the ir-
reducible components of codimension one of the exceptional divisor of . Then we claim
that O(nK ;) = *L] @ O3 a;W;), wheren is positiveand £, = A(uy) € Pic(M)
(for the notation see Section 8.1). Indeed, by Theorem 8.3.3 there exists apositive integer n
suchthat O(nKy,) =2 L]y, - Moreover, codim(M \ My) > 2, since M \ M, iscontained
in the subset of sheaves which are not good, i.e. either not u-stable or Ext?(E, E)o # 0,
and that this subset has at least codimension two isaconsequence of Theorem 9.3.2. Thisis
enough to concludethat «»* £} and O(nK ;) only differ by components of the exceptional
divisor.

By Corollary 8.2.16 wehave h® (M, ¢p* L) > hO(M, L) > ¢-m? + ¢ (m), whered =
dim(M), theconstant c ispositive, and ¢’ (m) comprisesall termsof lower degree. If a; > 0
for al 4, then ¢*LP C O(nK ) and hence HO(M,yp* L) ¢ HO(M,O(mnK ).
Hence M isof general type. The rest of the proof dealswith the case that at least one of the
coefficientsa; isnegative. Here we apply aresult of Chapter 10 (see 10.3.9and also 4.B.5),
where we constructed a desingularization 1) : M — M such that M admitsaregular two-
formw € HO(M, Q%) With w|y-1(a+) = ¢*7(a). Herea € H°(X, Kx) isthe section
defining D and M ¢ isthe open dense subset of stable sheaves.

From now on let r = 2. Then Theorem 10.4.4 applies and shows that 7(«), and hence
w, is generically non-degenerate. Let 3 be the Pfaffian of w. Then 8 € H°(M,O(K 7)) is
anon-vanishing section. We claim that 3 vanishes on all components W;: By construction,
the desingularization ) : M — M has the following properties: There exists a family £
over M x X of rank s -r such that for al ¢ € M the sheaf &, isisomorphicto E®¢ for some
semistable sheaf E with [E] = 1 (t). Moreover, w = (1/s)7s(a). In order to show that 4
vanishes on a component W; it suffices to show that w degenerates at the generic point of
W;. Asthisisalocal problemwe may use Luna sEtale Slice Theorem (see Theorem 4.2.12)
toassumethat s = 1,i.e. £ isafamily of semistable sheavesof rank r. Fix aninteger m > 0
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asin the construction of themoduli spaceandlet 7 : R — M betheprincipal PGL(P(m))-
bundle associated to p. (€ ® ¢*O(m)). With the notations of Chapter 4 and 9 there exists
aclassifying morphism® : R — R C Quot(V ® O(—m), P), where R — M isagood
quotient and aprincipal PGL(P(m))-bundleover M . Let W; bean irreduciblecomponent
of codimension one of the exceptional divisor of ¢ and let W; := 7~ ! (W;). Sowe havethe
following diagram.

T

VNViC
+

— T

2 R
!

W;, C M i) M

Moreover, & is an isomorphism over a dense open subset. The compatibility of the two-
forms congtructed in Chapter 10 gives7*w = #*7¢(a) = ®*75(a), where F isthe univer-
sal quotient sheaf over Rx X If ¢ (W;) € M\ M*,then®(1W;) c R(0), where R(0) isthe
closed subset of p-unstable sheaves. By Theorems9.1.1and 9.1.2 we havecodimR(0) > 2
for ¢; > 0. Hence & : W; — R has positive fibre dimension. If «»(1W;) N M* # (), then
1 : W; — M?* has positive fibre dimension and so has & : W; — R. Hence, in both cases
&*7(a) degenerates on the component T7;. But then the same is true for the two-form w
on W;.

Having proved that 3 vanishesalong > W; we may consider 3 as a section of the sheaf
O(Ky — > W;). Let a := max{—a;}. Then the multiplication with 3® defines an in-
jection

Lt = O(m(nKy — 32 ail;))
O(m((n +a)Ky =3 (ai + )W)
O(m(n +a)K ).

Hence h°(M,O(m(n + a)K ) > c - (mn)? + ¢'(mn) and therefore kod(M) =
kod(M) = d = dim(M), i.e. M isof general type.

We now cometo the casethat X contains (—2)-curves. Then K x isnolonger ample, but
gtill bigand nef. If £ : X — Y isthemorphism from X to its canonical model Y, then K x
isthe pull-back of an ampledivisor Hy onY'. Let H be an arbitrary polarization on X and
consider themoduli space M := Mpg(r, Q, c2). Asbefore, M isnormal and irreduciblefor
¢ > 0. Moreover, copying the arguments of the proof of Theorem 4.C.7 and using that
Kx isin the positive cone we find that for co > 0 the set of sheaves [F] € M which are
not y x  -stableis at least of codimension two.

The Bogomolov Restriction Theorem 7.3.5 (cf. Remark 7.3.7) applied to a smooth curve
C € |nKx| (n > 0)yieldsarational map ¢ : M — M¢ whichisregular on the open sub-
set of pu e, -stable sheaveswith singularitiesin X'\ C'. The complement of thisopen set hasat
least codimension two. As before, to concludethe proof it sufficesto verify that ¢ is gener-
ically injective. Let E and F' betwo locally free sheavesand let G = Hom/(E, F'). There-
gtriction homomorphism H° (X, G) — H°(C, G|¢) issurjectiveif and only if its Serredual
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H'(C,G7|c(Ke)) - H*(X,G7(Kx)) isinjective. If C avoidsall (—2)-curves, which
the generic curvein |nK x| does, then there is a commutative diagram

HY(X,G"|c(Ke) -  HYX,G7(Kx))
1 =
HY(C, f(G)lc(Ke)) — H(Y, f(GV)(Hy))
For the second vertical isomorphism use that R2 £, (G™) = 0 and that R! f.(G™) is zero-
dimensional and hence H'(Y, R f.(G”)(Hy)) = 0. The kernel of

H'(C, fu(G)|c(Ke)) = HX(Y, £.(G7)(Hy))

isaquotient of H'(Y, f.(G”)((n + 1)Hy')) which clearly vanishesfor n >> 0, since Hy
is ample. Therefore we may assume that for all localy free [E], [F] € M therestriction
Hom(E, F) - Hom(E|¢, F|¢) issurjective. In particular, if ac : E|c = F|c, thenthere
existsahomomorphisma : E — F with a|c¢ = a¢. Thus« is genericaly injective and
sincedet(E) = det(F), itisin fact bijective. Thus, forn > 0themap p : M — Mc¢ is
injective on the locally free part. a

Remark 11.1.6 — The proof has been presented in away indicating that the moduli spaces
My (r, Q, ce) for aminimal surface of general type are expected to be of general type with-
out the assumptionsi), ii) and » = 2. In fact, if the singularities of the moduli spaces are
canonical, i.e. al coefficients a; are nonnegative, then the proof goes through: For al three
assumptions were only used to ensure the existence of a generically non-degenerate two-
form which would not be needed in this case.

Along the same line of arguments, only much simpler, one also proves
Theorem 11.1.7 —Let X bea surface, H a polarization, Q € Pic(X), and ¢y > 0.

i) If X isaDel Pezzo surface, then My (r, Q, c2) isasmooth irreducible variety of Ko-
daira dimension —oo.

i) IfO(Kx) = Ox,i.e X isabelianor K3, then My (r, Q, ¢2) isanormal irreducible
variety of Kodaira dimension zero.

iii) If X isminimal and kod(X) = 0, then kod(Mg(r, Q,¢2)) < 0 and equality holds
ifall E € Mg(r,Q,c,) arestable and Ext?(E, E)g = 0.

Proof. Fori) andthecase H = — K x weuse O(—nK ) = L7 for somen > 0 (cf. The-
orem8.3.3) to conclude H® (M, O(mn.K 7)) = 0foral m > 0. For apolarization different
from K x weagainuse4.C.7ii) andiii) follow from O(nK s, ) = O for somen > 0 which
immediately yields HO (M, O(mnK ) C H®(My, Op,) = k and hencekod (M) < 0. If
O(Kx) = Ox, thenthe distinguished desingularization M — M constructedin Appendix
4.B admitsagenerically non-degeneratetwo-form. Hence H® (M, O(K 7)) # 0. Under the
additional assumptionsiniii) onehas M, = M andthusO(nK ;) = Oy whichaso gives
HO(M,O(nKy)) # 0. Hencekod (M) = 0 in both cases. ]
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Remark 11.1.8 — There are explicit numerical conditionson (H,r, Q, ¢2) such that for a
minimal surface of Kodairadimension zero al [E] € My (r, Q, co) are stable (cf. 4.6.8).
If the order of K x does not divide the rank r then Ext2(E, E)o = 0 for any stable sheaf.
Thusthe conditionsiniii) are frequently met.

11.2 More Results

Following the Enriques classification of algebraic surfaces we survey known results related
to the birational structure of moduli spaces.

11.2.1 Kodairadimension —oo. Letfirst X bethe projective planeP2. One certainly ex-
pects moduli spaces of sheaves on IP? to be rational. In general, it is not hard to prove that
they are unirational. Already in the seventies moduli spaces of stable rank-two bundles on
P2 were intensively studied. Barth [21] announced that the moduli spaces N (2, 0, ¢) of sta-
blerank-two bundleswith (¢;, c2) = (0, ¢) areirreducibleand rational. Notethat N (2, 0, ¢)
isnon-empty if and only if ¢ > 2. The analogous problem for odd first Chern number, i.e.
¢; = 1, wasdiscussed by Hulek [107]: N (2, 1, ¢) isrational andirreducible. Here N (2, 1, ¢)
isnon-empty if and only if ¢ > 1. Unfortunately, there was agap in Barth’s approach to the
rationality. Hulek remarked in [107] that for ¢; = 1 this could easily be filled. Ellingsrud
and Stremme [59, 60] proved the rationality of N(2,0,2n + 1) and N (2,1, ¢) with dif-
ferent techniques. They also proved the rationdity of an étale P1-bundle over N (2,0, n).
Maruyamadiscussed the problem further [169]. In an Appendix to his paper Noruki proved
therationality of N (2,0, 3). Partia results are known for the higher rank moduli spaces:. Le
Bruyn [140] proved that N (r,0,r) isrationa for r < 4. The rationality problem for the
rank two case was eventually solved by Katsylo [119]. He proved that N (r, 0, ¢) isrational
if g.c.d.(r,c) <4 or = 6,12 with the exception of finitely many cases.

Moregeneraly, let X bearational surface. Ballico[9] showed that thereexistsapolariza-
tion H suchthat Ng(r, ¢1, ¢c2) issmooth, irreducible and unirational. Combining this with
9.4.2 one finds that the moduli spaces My (r, ¢1, ¢2) are unirational for any polarization if
Cco > 0.

To completethe case of negative Kodairadimension, let X bearuled surface,i.e. X isthe
projectivization 7 : P(E) — C of arank two vector bundle E on acurve C' of genusg. As
in the genera situation there always exist two canonical morphismsdet : Mg (r,c1,c2) —
Pic™ (X) = Pic’(C) and ¢ : My (r,ci,c2) — Alb(X) = Alb(C) = Pic’(C) (cf. Chap-
ter 10). Loosely speaking, one expects the moduli space My (r, ¢1, c2) together with these
two morphismsto be birational to aprojective bundleover Pic?(C') x Pic®(C) or at least to
have unirational fibres over Pic’(C) x Pic®(C). For rational ruled surfaces, i.e. g = 0, this
iscertainly true ([9]). The rank two case has been studied in detail by many people. Hoppe
and Spindler [105] consideredthecase £ =2 O @ L, r = 2, and ¢; such that theintersection
¢;.f with the fibre class f is odd. They showed that indeed Ny (2, ¢, c2) is birational to
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P™ x Pic’(C) x Pic’(C). Brosius[37], [38] gave athorough classification of all rank two
bundles on ruled surfaces. He distinguishes between bundles of type U and E according to
whether ¢;.f is odd or even. Bundles of type U are constructed via Serre correspondence
asextenson0 - L - E - M ® Iz — 0and ¢(E) correspondsto O¢(n(Z)). Bun-
dles of type E can be described by means of elementary transformations along fibres of .
Inthis case p(F) correspondsto the divisor of the fibres where the elementary transforma-
tion is performed. Brosius' results allow to generalize the birational description of Hoppe
and Spindler. Friedman and Qin combined these results with a detailed investigation of the
chamber structure of aruled surface[217, 218]. One of theideasisthe following: The con-
tribution coming from crossing awall can be explicitely described. Inthecase ¢, .f = 1,
when for apolarization near the fibre class the moduli spaceisawaysempty (cf. 5.3.4), this
is enough to deduce the birational structure of the moduli space with respect to an arbitrary
polarization. For rational ruled surfaces and » > 2 this was further pursued in [154] and
[85]. For related results see also Brinzanescu’s article [34]. The explicit example N (2, 0, 2)
on the Hirzebruch surfaces X = P(O @& O(n)) — P! was treated by Buchdahl in [39].
Vector bundles of rank > 2 on ruled surfaces have aso been studied by Gieseker and Li
[82]. They use elementary transformations along the fibres to bound the dimension of the
‘bad’ locus of the moduli space.

11.2.2 Kodaira dimension 0. According to the classification theory of surfaces there are
four typesof minimal surfacesof Kodairadimension zero: K3, abelian, Enriques, and hyper-
elliptic surfaces. The Kodairadimension of the moduli spacesisby Theorem 11.1.7 known
for K3 and abelian surfacesand under additional assumptionsalso for Enriquesand hyperel-
liptic surfaces. According to aresult of Qin[215], with the exception of three special cases,
the birational type of the moduli space of u-stable rank two bundles does not depend on the
polarization.

Some aspects of moduli spaces on K3 surfaces were studied in Chapter 5, 6, and 10. The
upshot is that sometimes the moduli space is birational to the Hilbert scheme and that it
isin general expected to be a deformation of a variety birational to some Hilbert scheme.
The birational correspondenceto the Hilbert schemeis achieved either by using Serre cor-
respondence or, if the surfaceis elliptic, by elementary transformations. In the latter case
Friedman’'s result for general elliptic surfaces apply [67, 68]. There are also birational de-
scriptions of some moduli spaces of simple bundles on K3 surfaces available [224, 246].
Two examplesof moduli spaces of sheaves on K3 surfaceswill be discussed in the next sec-
tion. Moduli spaces on abelian surfaces behave in many respects similar to moduli spaces
on K3 surfaces. In particular, they are sometimes birational to Hilbert schemes or to prod-
ucts of them. For examples see Umemura's paper [254]. The Hilbert scheme itself fibres
via the group operation over the surface. Beauville showed that the fibres are irreducible
symplectic [25]. The same phenomenon should be expected for the higher rank case. The
Fourier-Mukai transformation, which can also be used to study birational properties of the
moduli space on abelian surfaces, was introduced by Mukai [185, 188]. It was further stud-
iedin[62], [159], [23].
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Theuniversal cover 7 : X — X of an Enriques surfaceis aK 3 surface. The pull-back of
sheaves defines a two-to-one map from the moduli space on X to a L agrangian of maximal
dimensioninthemoduli spaceon X . Thisand someexplicit birational description of moduli
spaces using linear systems on the Enriques surface can be found in Kim's thesis[122].

Hyperelliptic surfaces are special elliptic surfaces and, therefore, Friedman’s results ap-
ply. Specia attention to the hyperelliptic structure has been paid in the work of Takemoto
and Umemura[255], who studied projectively flat rank two bundles, i.e. bundleswith 4¢, —
cl =0.

11.2.3 Kodaira dimension 1. Surfacesin this range all are elliptic. Sheaves of rank two
have been studied by Friedman [67, 68]. As for ruled surface, sheaves of even and odd fi-
bre degree are treated differently. [67] deals with bundles with ¢; = 0. In particular, they
have even intersection with the fibre class. Friedman gives an upper bound (depending on
the geometry of the surface) for the Kodaira dimension of the moduli space of rank two
bundleswith ¢; = 0 and ¢, > 0 which are stable with respect to a suitable polarization
(cf. Chapter 5). Moreover, the moduli spaceisbirationaly fibred by abelian varieties. If the
elliptic surface has no multiple fibres then the base space is rational. Bundles with odd fi-
bre degreeare studied in[68] viaelementary transformations. Under certain assumptionson
the elliptic surface, e.g. if there are at most two multiple fibres, the moduli spaceis shown
to be birational to the Hilbert scheme of an elliptic surface naturally attached to the original
one. Hencethe Kodairadimensionisknownin these casesby 11.1.2. A result in the spirit of
11.1.5and 11.1.7ismissing. It would be interesting to see which K odairadimensions mod-
uli spaceson elliptic surfaces can attain. Do they fill the gap between varietieswith Kodaira
dimension zero and those of general type?

For the case that rank and fibredegreeare coprime O’ Grady [ 210] suggeststhat the canon-
ical model of the moduli space should be an appropriate symmetric product of the base curve
of the elliptic fibration. In particular, he expects that the Kodaira dimension of the moduli
space should be half its dimension.

11.2.4 Surfacesof general type. Theonly knownresultisLi’s Theorem 11.1.5. We do not
even know a single example where one can show that the moduli space is of general type
without refering to the general theorem. Note that thereis abig difference between surfaces
of general typewith p, > 0 and those with p, = 0. The Chow group of surfaces of thefirst
typeis huge [192], but according to a conjecture of Bloch the Chow group istrivial in the
latter case. Isthis reflected by the birational geometry of the moduli space?

Recently, O’ Grady [210] dlightly generalized Li’sresult 11.1.5. He showed that the higher
rank moduli spaces My (r, Q, ¢2) are also of general typefor ¢, >> 0 if onein addition as-
sumesthat the minimal surface of general type admitsa smooth irreducible canonical curve
C suchthat h°(K x|¢) = deg(Q|c)modr.
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11.3 Examples

We wish to demonstrate how Serre correspondence can be used to give a birational descrip-
tion of moduli spaces. Both examples deal with sheaves on a K3 surface. The techniques
can certainly be applied to other surfaces as well, but they almost never work as nicely as
in the following two examples.

Let X beaK3 surface and let H be an ample divisor on X . Consider the moduli space
Mpy(2,Q,cq) of semistable sheaves of rank two with determinant Q and second Chern
number c.. Sincetwisting with O(m H') doesnot change stability with respectto H, themap
E — E(mH) defines anisomorphism My (2, Q,c2) & My (2,Q(2mH),ca + m>H? +
meq(Q).H). Thus we may assume that Q is ample from the very beginning. We wish to
show that in many instances the birational structure of the moduli space Mg (2, Q, ¢2) can
be compared with the one of the Hilbert scheme of the same dimension. In order to state the
theorem we need to introduce the following quantities: k(n) := (n? +n + 1/2)c3(Q) + 3
andl(n) := (2n% + 2n + 1/2)c3(Q) + 3.

Theorem 11.3.1 —If Q isampleand n > 0, then the moduli space M (2, Q, k(n)) is
birational to Hilb'(™ (X).

Proof. By Theorem 4.C.7 the two moduli spaces My (2, Q, k(n)) and Mo(2, Q, k(n))
are birational for n > 0. Thuswe may assume O(H) = Q. Theorems 9.4.3 and 9.4.2 say
that for n > 0 themoduli space M (2, Q, k(n)) isirreducible and the generic shesf [E] €
Mo (2,9, k(n)) is u-stable and locally free. Let N € Mg(2, Q, k(n)) bethe open dense
subset of all u-stable locally free sheaves. We will construct arational map Hilb!(™ (X)) —
N which is generically injective. Since both varieties are smooth and dim Hilb!(™ (X) =
21(n) = 4k(n) — 2(Q) — 6 = dim(N), thisis enough to conclude that Hilb'™ (X)) and
Mg(2,9,k(n)) arebirational.

By the Hirzebruch-Riemann-Roch formula

(2n + 1)2

WX, Ox (20 + 1)) = =

H?+2=1I(n) - 1.

Hence for the generic [Z] € Hilb'"™ (X)) wehave H®(X,Zz((2n + 1)H)) = 0. Using the
exact sequence

0— H°(X,0x((2n+ 1)H)) - H*(X,0z) = H*(X,Zz((2n + 1)H)) — 0,

thisimpliesh!' (X, Zz((2n + 1)H)) = 1 for generic Z. In other words, for generic Z there
isaunique non-trivial extension

050x > F —>1z7(2n+1)H) — 0.
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Moreover, suchan F'islocally free, for (O((2n+1)H), Z) satisfies the Cayley-Bacharach
property (5.1.1). If Fisnot u-stable, thenthereexistsalinebundle £ C F with %H2 <
c1(£).H. Since such aline bundle £ cannot be contained in O C F, there exists a curve
C € |L£7((2n+1)H)| containing Z. We show that this cannot happen for generic Z. Since
X isregular, it sufficesto show that dim |£7((2n + 1) H)| can be bounded from above by
I(n)—1.LetC € |L£7((2n+1)H)|. Then h°(Oc(C)) = h®(we) = (29(C) —2)/2+1 =
C?/2+ 1 = 2EL((2n + 1)H? — 261 (£).H) + L < SO Together with the exact
sequence

0—O0x = Ox(C) = Oc(C) =0
this proves
h?(0x(C)) < ¢i(L£)/2 + 2.

) <
By Hodge Index Theorem ¢2 (L) < (e1(L).H)? /H2 and0 < ¢;(£).H < (2n+1)H?, for
L£co(@2n+1)H). HencehO(OX( ) < ZrE 2 4o = (n) —

Thus, for the generic [Z] € Hilb!™ (X) there exists a unique extension

00 —F; -T7(2n+1)H) >0

and Fz is pu-stable and locally free. Hence, associating the subscheme Z to the sheaf F
defines arational map Hilb!™ (X) — N, whichisinjective, since h°(X,Fz) =1. O

Our second example is very much in the spirit of the first one. We use Serre correspon-
denceto provethat certain moduli spaceson aK 3 surface of special typearebirational to the
Hilbert scheme. Specializing to elliptic K3 surfaces enables usto handle a more exhaustive
list of moduli spaces; in particular those of higher rank sheaves.

Letw : X — P! bean éliptic K3 surface with a section o C X . We assume that
Pic(X) =7 - O(o) ® Z - O(f), where f isthefibre class. In particular, al fibresareirre-
ducible. Let v = (v, v1,v2) beaMukai vector suchthat v; = o + £ f and consider sheaves
E withr := rk(E) = vy, ¢1(E) = vy, and cha(E) + r = v2. (For the definition of the
Mukai vector see Section 6.1.) If we consider stability with respect to asuitable polarization,
then a sheaf is u-semistable if and only if the restriction to the generic fibre is semistable
5.3.2.Since (¢ + (f).f = 1, any semistable sheaf on the fibre is stable. Therefore, with
respect to a suitable polarization semistable sheaveson X with¢; = o + £f are u-stable
(5.3.2,5.3.6). Moreover, since the stability on the fibre is unchanged when the sheaves are
twisted with O(f), asheaf E is u-stable with respect to a suitable polarization if and only
if E(f) isp-stable. Thus, by twisting with O(f) and using ch2(E(f)) = cha(E) + 1, we
can reduceto the case that the Mukai vector is of theform (r,o + £f,1 — r). Thefollowing
theorem is Proposition 6.2.6 in Section 6.2, which was stated there without proof.

Theorem 11.3.2 —Letv = (r,o0+¢f,1—r) andlet H = o+m f beasuitablepolarization
with respect to v. Then My (v) isirreducible and birational to Hilb™ (X), wheren = £ +
r(r —1).
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Proof. Let us begin with adimension check: dim Hilb™(X) = 2n = 2+ 2r(r — 1) and
dim My (v) = (v,v)+2 = 2r(r—1)—2+420+2 = 20+ 2r(r—1).Next, since H issuitable,
any [E] € My (v) is py-stable. Hence My (v) is smooth. Moreover, if [E] € My (v), then
E is p-stable with respect to o + m/ f for all m' > m. Thuswe may assume m > 0.

Theassertionisproved by induction over therank. Definev? := (i, o+ (n—i(i—1))f, 1—
i)fori =1,...,r. Notethat Mg (v') = Hilb"(X). We will define an open dense subset
U C Hilb"(X) and injective dominant morphisms ®! : U — My (v?). Since all varieties
are smooth of dimension 2n, this sufficesto prove the theorem.

Let U C Hilb"(X) be the open subset of al [Z] € Hilb"(X) with H*(X,Zz(c +
(n—1)f)) = 0. We show that U is non-empty: By the Hirzebruch-Riemann-Roch formula
x(O(e + (n — 1)f)) = n. Serre duality gives h?(O(c + (n — 1)f)) = h%(O(~0o —
(n —1)f)) = 0. The vanishing of the first cohomology H!(X,O(c + (n — 1)f)) can be
computed as follows: By the exact sequence

n—1
— H'(X,0(0)) = H'(X,0(0 + (n = 1))) = @ H'(F}, 0(0)|r;) =,
j=1
where Fy, ... , F,_ aredistinct generic fibers, one has

W(X,0(0 + (n—1)f) <h'(X,0(0)) + Y _ ' (F}, 0(0)|r,) = B (X, 0(0)).
The exact sequence
H°(X,0) - H%0,0,) = H'(X,0(-0)) = H'(X,0) =0,

and Serre duality imply h' (X, O(c + (n — 1)f)) < b1 (X, 0(0)) = R} (X,0(-0)) = 0.
Therefore, h°(O(a + (n — 1)f)) = x(O(c + (n — 1)f)) = n. Thus for the generic
[Z] € Hilb™(X) the cohomology H(X,Zz (o + (n — 1) f)) vanishes,i.e. U # 0.

Let &' betheinclusion U C Hilb" (X)) and assume we have already constructed an in-
jectivemorphism @ : U — My (v?) satisfying

(A)) If[Z] € U and E? := ®i(Z), then
WO(E¥(=2f)) = h2(B(=2f)) = hO(E¥(~f)) = 0.

(B;) Ifi > 1,then hO(E) = 1.

Note that (A;) holdstruefor i = 1 be definition of U. The Hirzebruch-Riemann-Roch for-
mulagives x(E(-2f)) = —1 and by (A;) one knows h' (E‘(—2f)) = 1. Hence there
exists a unique non-trivial extension

0— O — B & Ei(-2f) = 0.
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Thenv(E*!) = vt Sincec (FitY).f = ¢ (EY).f = 1 and H is suitable with respect
to v+, the sheaf E**+! (whichisin fact locally free, but we do not need this) is p-stable if
and only if the restriction of the extension to ageneric fibre F' is non-split. Since the exten-
sion space Ext' (E'(—2f),0) = H'(X,Ei{(—2f))” is one-dimensional, this is the case
if and only if the restriction homomorphism Ext' (E*(—-2f),0) — Ext'(F!|r,OF) is
non-trivia or, dualizing, if and only if H(F, Ei|r) — H'(X, Ei(—2f)) is non-trivial.
The kernel of the latter map is aquotient of H° (X, E*(— f)) which vanishesby (A;). The
space HO(F, E¢|r) is non-trivial. Indeed, for i > 1 this follows from (B;) and fori = 1
from HO(F,Zz(o + nf)|r) = H°(F,OFr(0)) # 0. Hence E**! is u-stable and we de-
fine amorphism ®+! : U — Mg (vi*t!) by [Z] — E+1. The map isinjective, because
1 < RO(EHY) < hO(0) + RO (Ei(=2f)) = 1 by (A;). Thisaso showsthat Fit! satisfies
(B;+1) for E**+1. To make the induction work we haveto verify (A;,;) for Ei+1. Thevan-
ishing of H°(X, E**1(-2f)) C H°(X, Ei+1(—f)) followsimmediately from (A;) and
H2(X,E"1(—2f)) isimplied by the stability of Ei+! with respect to a suitable polariza-
tion.

If we denote by V; C My (v?) the open subset of sheaves E° satisfying (A;) and (B;),
then the arguments show that there exists a morphism )¢ : V; — Mg (v**+!) commuting
with &' and &1,

To conclude the proof we have to show that My (v) isirreducible or, equivalently, that
®! : U — Mpg(v®) isdominant for al i. By construction () C V; for all i. Let us
first assume that the generic [E] € My (v) has exactly one global section, i.e. h°(E) = 1.
Then we provethe dominance of ¢ by induction over i. Assume & isdominant. Let [E] €
Mg (vi*1) with h°(E) = 1, then there exists an exact sequence

0—>0-%5FE—E —0.

Since E |y isstable for the genericfibre F', a can only vanish along divisors contained in
fibres. Since al fibres are irreducible, o could only vanish along complete fibers, which is
excluded by h°(E) = 1. Hence, o does not vanish along any divisor. Thisimpliesthat £’ is
torsion free and, as one easily checks, also p-stable. Thus [E? := E'(2f)] € My (v?). We
claimthat [E?] € V;. Indeed, the stability of £ and h°(E) = 1imply h%(E) = hl( ) =0.
Moreover, using the stability of E onthegenericfibre, onegetsh?(E(if)) = h*(E(if)) =
0 fori = 1,2. Next, the Hirzebruch-Riemann-Roch formula yields h°(E(f)) = 2 and
hP(E(2f)) = 1. Using the long exact cohomology sequence we obtain h? (Ei(—2f)) =
h(E') = h'(0) = 0, R°(E'(=f)) = R°(E'(f)) = h'(O(f)) = 0, and h*(E") =
hO(E'(2f)) = h*(O(2f)) = 1. Thus, indeed [E?] € V;. Hence, [E] isin the image of
Yt o Vi — My (vit!). Since by the induction hypothesis ®¢(U) is dense in V;, this is
enough to conclude that also &+ (U) isdensein M (vit!).

We still have to verify that the generic [E] € Mg (v) has exactly one global section.
Consider [E] € Mg (v) withh®(E) = ¢£+1.Sincer. E istorsionfreeof rank h° (E|r) = 1
(F agenericfibre), itisin fact alinebundleon P*. Using / + 1 = h°(E) = h°(w.E), we
concluder, E = O(¢). Thusthereis an exact sequence
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0= O0OUf)y - E—E =0

with h°(E") = 0. Moreover, since the restriction of E to the generic fibre is a stable bun-
dle of degree one, an explicit calculation shows that the same is true for E’. The generic
deformation of E also has (¢ + 1)-dimensiona space of globa sections if and only if the
inclusion O(¢f) C E deformsin all direction with E. We claim that this implies that the
natural map Ext' (E, E) — Ext*(O(Lf), E') istrivial.

Indeed, consider the relative Quot-scheme () that parametrizes quotients £ — E’. Then
Q) — Mg (v) isdominant, and hencefor generic E the tangent map is surjective. Using the
notations of Proposition 2.2.7 thisimplies that the obstruction map

T,S = TipMu(v) = Ext' (E, E) — Ext' (K, F) = Ext' (O(¢f), E')

vanishes. That the obstruction map isthe natural onefollowsfrom the argumentsin Section
2.A. We show that this leads to a contradiction whenever ¢ > 0. Note that Ext' (E, E) —
Ext'(O(¢f), E') factorizes through the injection Ext' (O(¢f), E) — Ext'(O(Lf), E').
Thus, it suffices to consider the homomorphism Ext!' (E, E) — Ext'(O((f), E) which
sitsin the exact sequence

Ext'(E, E) = Ext (O((f), E) — Ext*(E', E) — Ext*(E, E) — Ext*(O((f), E).

InthissequenceExt?(E, E) = k,andExt’(E', E) = k aswell, becauseof Ext*(E', E) =
Hom(E, E")” and the fact that any deformation of the quotient £ — E' would produce a
deformation of O(¢f) C E and thus more global sections of E (Here we use that F’ is
stable and, therefore, does not admit any non-scalar automorphisms). Furthermore, since
Ext?(O(¢f), E) = 0, the homomorphism Ext'(E, E) — Ext'(O(f), E) is surjective.
In the exact sequence

Ext' (O(Lf), O(Lf)) — Ext' (O(Lf), E) = Ext' (O(Lf), E') — Ext*(O(Lf), O(Lf))

the first term vanishes and the last term is isomorphic to k. This yields the lower bound
ext' (O(Lf), E) > h'(E'(—£f)) — 1. Using the stability of F, one checks that

h(E'(—Lf)) = h*(E'(=tf)) = 0,
and, hence,
WHE'(=Lf)) = =X (E'(=tf)) = —x(B(—Lf)) +2 = + 1.

Thusext! (O(£f), E) > ¢ and, therefore, the map Ext' (E, E) — Ext'(O((f), E) does
not vanish for ¢ > 0. a

Comments:
— Theorem 11.1.2 was communicated to us by Gottsche.
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— Theorem 11.1.4 in the special case of irrational surfaces of negative Kodaira dimension, which
aredl irregular, was proved by Ballico and Chiantini in [14].

— Theorem 11.1.5 isdueto J. Li [149]. Using the special desingularization M we could simplify
some of the arguments. In the original version there is a numerical condition on the intersection of
c1(Q) with the (—2)-curves. Li explained to us how this can be avoided.

— 11.1.7 can be found in [112] and were certainly also known to Li.

— Theorem 11.3.1 was proved by Zuo [262] for Q =2 Ox and generalized by Nakashima [197].
The case Pic(X) =2 Z was aso considered by O’ Grady [205]. The result holds in fact without the
assumption n > 0.

— Theorem 11.3.2 isdue to O’ Grady [209]. Our presentation is dlightly different, mostly because
we were only interested in the birational description, whereas O’ Grady aims for a description of the
universal family as well.
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| ndex

action of an algebraic group, 81
Albanese morphism, 225, 231
Albanese variety, 126, 225
Albanses morphism, 229

ample

— pseudo— divisor, 64

— vector bundle, 64

— — tensor product of, 66
ampleline bundle on moduli space, 184
ampleness criterion

— for Cartier divisors, 64

— for vector bundles on curves, 65
annihilator ideal sheaf, 3

Atiyah class, 218, 229
Auslander-Buchsbaum formula, 4

Bertini Theorem, 8
Bogomolov

— Inequality, 72, 171-173
— Restriction Theorem, 174
boundary, 201

boundedness

— Grothendieck Lemma, 29
— Kleiman Criterion, 29

— of afamily, 28

— of semistable sheaves, 70
— —oncurves, 28

canonica class of moduli space, 195
Cayley-Bacharach property, 123
chamber, see wall

cohomology class

— primitive, 151

connection, 61, 218

cup product, 216

deformation theory, 49

descent, 87

determinant bundle, 9, 37

— of afamily, 178

— on the moduli space, 180
determinantal variety, 121
differentials with logarithmic poles, 129
dimension

— expected of moduli space, 103

— of ashedf, 3

dimension estimate, 199-213

—for M?, 101

—for R, 104

— for flag schemes, 54

— for Quot-scheme, 44

— general, 53

discriminant, 71

Donaldson-Uhlenbeck compactification, 195

elementary transformation, 129, 137
Enriques classification, 235
equivariant morphism, 81

Euler characteristic

— of apair of sheaves, 141

— of ashedf, 9

extension

— small, 49

— universa, 37

exterior powers, 67

family

— bounded, 28

— flat, 32

— quasi-universal, 105

— universal, 105

— — existence of, 107
filtration

— Harder-Narasimhan, 16, 26
— —relative, 46

— — under base field extension, 17
— Jordan-Holder, 22, 26
—torsion, 3

finite coverings, 62
flag-schemes, 48

flatness criterion, 33

Flenner, Theorem of, 161
form

— one-, 223-226

— two-, 215, 223-226, 232
— — non-degeneracy of, 226-229
frame bundle, (projective), 83
framed module, 111
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Index

functor

— (universally) corepresentable, 38
— pro-represented, 53, 101

— representable, 38

functor category, 38

Geometric Invariant Theory, 85

Gieseker’'s construction, 109

Gieseker-stability, 13

GIT, see Geometric Invariant Theory

Grassmannian, 38

— tangent bundle of, 44

Grauert-Mulich Theorem, 57, 59, 61

Grothendieck group, 36, 178

Grothendieck Lemma, 29

Grothendieck’s Theorem 1.3.1 on vector bundles
onP', 14

Grothendieck-Riemann-Roch formula, 195

group

— algebraic, 81

— reductive, 85

Hermite-Einstein metric, 67
Hilbert polynomial, 9

— reduced, 10

Hilbert scheme, 41, 92

— Kodaira dimension, 231

— of K3 surface, 150, 156, 238
— — Hodge structure, 155

— smoothness, 104
Hilbert-Mumford Criterion, 86, 96
Hilbert-to-Chow morphism, 92
Hodge Index Theorem, 132, 172
Hodge structure

— of irreducible symplectic manifold, 155
— of moduli space, 148

— of surface, 146

invariant morphism, 82
irreducibility

— of moduli space, 203
— of Quot-scheme, 157
isotropic vector, 146
isotropy subgroup, 82

K -groups, see Grothendieck group
Kleiman Criterion, 29

Kleiman's Transversality Theorem, 121
K obayashi-Hitchin Correspondence, 67
Kodairadimension, 230

— of Hilbert scheme, 231

— of moduli space, 232
Kodaira-Spencer map, 221

Langton, Theorem of, 55, 189

L e Potier—Simpson Estimate, 68
limit point, 86, 96

linear determinant, 92

linearization

— of agroup action, 84

— of asheaf, 83

local complete intersection, 44, 103
— general criterion, 53

Luna’s Etale Slice Theorem, 86, 113

manifold

— hyperkahler, 150

— irreducible symplectic, 150

Mehta, Theorem of — and Ramanathan, 164
moduli functor, 80

moduli space

— canonica class of, 195

— differential formson, 225

— fine, 105

— locdl properties of, 101

— of p-semistable sheaves, 190

— of coherent sheaves, 80, 91

— — Hodge structure, 148, 156

— —onP? 235

— —onacurve, 100, 103, 187, 195, 204
— — on abelian surface, 228, 236

— —onédliptic K3 surface, 135, 152, 239
— —ondliptic surface, 139, 237, 239

— — on Enriques surface, 237

— — on fibred surface, 131

— — on hyperdlliptic surface, 237

— —onirregular surface, 231
——onK3surface, 133, 151, 156, 228, 236, 238
— — onrational surface, 235

— —onruled surface, 132, 235

— — on surface of genera type, 228, 232, 237
— — two-dimensional, 144

— — zero-dimensional, 143

— of framed modules, 112
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— of polarized K3 surfaces, 152
— of simple sheaves, 118

— tangent bundle of, 222

Mukai vector, 142

multiplicity of asheaf, 10

Mumford Criterion, see Hilbert-Mumford Crite-

rion
Mumford-Castelnuovo regularity, 28
Mumford-Takemoto-stability, 13

Nakai Criterion, 64

nef divisor, 64

Newton polynomial, 219

normality

— of hyperplane section, 8

— of moduli space, 202

numerically effective divisor, see nef divisor

obstruction, 43

— comparison of deformation —, 51

— for deformation of aflag of subsheaves, 51
— for deformation of a sheaf, 50

— theory, 49

obstruction theory, 53

open property, 35, 45

openness

— of semistability, 45

orthogonal, 178

period paint, 155

Picard group

— equivariant, 87, 179, 182
— of moduli space, 180, 182
Plucker embedding, 42

point

— (semi)stable, 85

— good, see good sheaf

— properly semistable, 85
Poisson structure, 229
polarization

— change of, 114

— suitable, 131

principal G-bundle, 83, 91
pro-represented functor, see functor
pseudo-ample divisor, 64
purity of asheaf, 3

quadratic form, 155, 156
Quot-scheme, 39

quotient

— (universal) categorical, 82
— (universal) good, 82

Ramanathan, Theorem of Mehta and, 164
reflexive hull of a sheaf, 6

regular section, 7

regular sequence, 4, 9, 28, 68
regularity, see Mumford-Castel nuovo —
resolution

— injective, 48

— locally free, 36

restriction of p-semistable sheaves

— Bogomolov's Theorems, 170-177
— Flenner’s Theorem, 160-164

— The Theorem of Mehta-Ramanathan, 164-170

restriction to hypersurface

— of p-semistable sheaf, 58-62
— of pure sheaf, 8

— of reflexive sheaf, 8

S-equivalence, 22, 80, 91

saturation of a subsheaf, 4
semistability

— behaviour under finite coverings, 63
— of exterior and symmetric powers, 67
— of tensor product, 61

Serre construction, see Serre correspondence
Serre correspondence, 123, 136, 238
— higher rank, 128

Serre subcategory, 24

Serre's condition Sy ¢, 4

sheaf

— m-regular, 27

— degree, 13

—dual of, 5

— good, 202

— maximal destabilizing sub-, 16

— polystable, 23, 63, 67

— pure, 3, 45

—rank of, 10

—reflexive, 6

— regularity of, 28

—simple, 12, 45

—dopeof, 14
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Index

— stable(semi), 11, 25

——p-, 14,26

——e, 74,207

— — geometrically, 12, 23

— — properly, 80, 108

singular points of a sheaf, 9

slope, see shesf

smoothness

— criterion, 102

— generic — of moduli space, 202

— of Hilbert scheme, 104

socle, 23

— extended, 23

— of atorsion sheaf, 157

splitting of vector bundles on P!, 14

stabilizer, see isotropy subgroup

stratification

— double-dual, 210

— flattening, 33

support of asheaf, 3

surface, abelian etc., see moduli space of coher-
ent sheaveson ...

symmetric powers, 67

symmetric product, 91

symplectic structure, 215, seealsoirreducible sym-
plectic manifold

— closed, 215

— non-degenerate, 215, 228

tangent bundle

— of P" isstable, 21

— of Grassmann variety, 44
— of moduli space, 222
trace map, 63, 102, 113, 217
traceless

— endomorphisms, 102, 202
— extensions, 102, 202

— — global bound for, 103
trivialization, universal, 85

variety

— of general type, 231

— rational, 230

— unirational, 230

vector bundle

— ample, see ample

— globally generated, 121

—onP"?, 19-21

—onP', 14

— stable

— — existence, 125, 128, 130

wall, 114, 118
weight, of a G, -action, 96

Yoneda Lemma, 38

Zariski tangent space, 42
— of flag scheme, 53

— of Grassmannian, 44
— of moduli space, 101
— of Quot-scheme, 44
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Glossary of Notations

Genera notations

lz]

[z]

[z]+
(), (<)
Q[T)a
Q[T4,ar
m
v
1%

~

round down of areal number z.

round up of area number x.

= max{z, 0} for areal number z.

convention used in the definition of semistability, seep. 11.
vector space of polynomials of degree < d, p. 25.

quotient vector space Q [T')a/Q[T]ar —1, p. 25.

maximal ideal in alocal ring.

connection, p. 61.

= Homy (V, k) dua of ak-vector space V.

Schemes, varieties, morphisms

k

B> Q

U(7)

deg(X)
dim, (X)
kod(X)
wx, KX
Pic(X)
Pic(X)
Alb(X)
CH(X)
Ko(X)
K°(X)
K(X)
KC

K n
Num(X)

Coh(X)
S4(X)

field, most of the time algebraically closed, in the second part of
the book in general of characteristic zero.

in genera scheme of finite type over k, in the second part of the
book asurface, which awaysmeans an irreducible smooth projec-
tive surface.

mostly a smooth projective curve.

Diagonal in aproduct X x X, but seealso: A(F) for asheaf E.
ideal sheaf of asubscheme Z C X.

=((Oz), length of azero-dimensiona scheme Z.

often an ample or very ample divisor on X.

degree of X with respect to some fixed ample divisor H.
dimension of X at = = dim(Ox ).

Kodairadimension of avariety X, p. 230.

canonical sheaf of a smooth variety.

Picard group of X.

equivariant Picard group of G-linearized linebundleson X, p. 87.
Albanese variety of X, p. 126.

Chow group of X, p. 126.

Grothendieck group of coherent sheaveson X.

Grothendieck group of locally free sheaves on X.

= K°%(X) = Ko(X), if X issmooth, p. 178.

=c¢t C K, p. 180.

=K.Nn{1,h,h?% ... }+ p. 180.

= Pic(X)/ =, = numerical equivalence, p. 172.

open cone in Num, p. 172.

category of coherent sheaveson X, p. 3.

symmetric product of X, p. 91.
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Hilb’(X) Hilbert scheme of subschemes of X of length ¢, p. 41.
Categories

(Sch/k) schemes of finite type over afield k.

(Sch/S) schemes of finite type over ascheme S.

(Sets) category of sets.

c category oppositeto C, i.e. with all arrows reversed.

Ob(C) objects of the category C.

Mor(C) morphisms of the category C.

Coh(X) coherent sheaveson X, p. 3.

Coh(X)q coherent sheaves on X of dimension < d, p. 24.

Coh(X)g,q quotient category Coh(X)a/Coh(X)y _1, p. 24.

C(p) category of semistable sheaves with reduced Hilbert polynomial

Coherent sheaves

~

E

Ely

E,
E(x)
Supp(E)
dim(E)
dh(E)
Ti(E)
T(E)
(1)
ED
EDD

E**

al(E‘)

rk(E)
p(E)
Pmax(E),pmin(E)

Pd,d’ (E)
deg(E)

H(E)

p, p. 24.

= Hom(E,Ox) dual shesf of E, but compare E”.

= {" F restriction of E' to asubschemei : Y — X.

stdkof Einz € X.

= E,/m,E, fibreof Einz € X.

support of acoherent sheaf E, p. 3.

dimension of a coherent sheaf E, p. 3.

homological dimension of a coherent sheaf E, p. 4.

maximal subsheaf of E of dimension < i, p. 3.

= T4im(r)—1(E) torsion subshesf of E, p. 4.

= length(T'), length of a zero-dimensiona sheaf.

= &xt&(E,wx), thedud of E, p. 5.

= ((E")7, reflexive hull of E.

reflexive hull of the graded object associated to a u-Jordan Holder
filtration of F, p. 191.

= dim H'(X, E) for acoherent sheaf on a scheme X.

= S (=1)'h'(E), Euler characteristic of a coherent sheaf, p. 9.
Hilbert polynomia of E, P(E,m) = x(E(m)), p. 9.
coefficientsof the Hilbert polynomial intheexpansion P(E, m) =
S o (B) 2, p. 10.

rank of asheaf E, p. 10.

= % reduced Hilbert polynomial of E, p. 10.

reduced Hilbert polynomial of thefirst (last) factor in the Harder-
Narasimhan filtration of E, p. 16.

classof p(E) inQ[T]4,q4 . p. 25.

=1 (E).H?™", degree of asheaf F with respect to an ample di-
visor on ad-dimensiona variety, p. 13.

= dee(") "qope of anon-torsion sheaf E on a projective variety,

— rk(E)
p. 14.
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A(E)

Mmax, fmin

o

hom(E, F)

ext'(E, F)

X(E, F)

e, P _ _

tr: Ext'(E,E) - H'(Ox)
End(F)o

Ext'(F, F)o

Exty (E, F)
det(FE)

= a;;;g;“ ) generalized slope of ad-dimensional sheaf E, p. 26.
minimal and maximal slope of the first (last) factor in a Harder-
Narasimhan filtration.

maximal distance of the slopesin a Harder-Narasimhan filtration,
p. 59.

= dim Hom(E, F') for two coherent sheaves on aprojective scheme
X.

= dim Ext% (E, F).

=Y (—1)’ext’(E, F), Euler characterigtic of the pair (E, F).
=c1(E)/tk(E) — c1(F)/rk(F), p. 172.

trace map, p. 218.

= ker(tr : End(F) — H*(Ox)), traceless endomorphisms, p.
218.

= ker(tr : Ext!(F,F) = H'(Ox)), traceless extensions, p.
218.

defined for filtered sheaves E and F', see Appendix 2.A.
determinant line bundle of a sheaf E that admits a finite locally
freeresolution, p. 9, 37.

Atiyah class of E, p. 219.

= F ® k(s) restriction of an S-flat coherent sheaf on S x X to
thefibre k(s) x X over apoint s € S, p. 32.
Harder-Narasimhan filtration of E, p. 16.

=@, FiE/F;, | E graded object associated to afiltration F, of
E.

Mumford-Castelnuovo regularity of E, p. 28.

i-th Chern classof E.

discriminant of E, p. 71.

Chern character of E.

Mukai vector of E, p. 142.

= ext?(E, E)o, p. 202.

uniform bound for 3(E), p. 103.

Serre’s condition, p. 4.

Group actions and invariant theory

G
p:GxG—G
c: XxG—>X
Ga:

Ve

x/G

X/G

Gm

A Gy =G
lim, 0 (2, A(9))
pu(z, A)
®:0"F — piF

an algebraic group, p. 81.

group multiplication, p. 81.

actionof G on X, p. 81.

stabilizer subgroup of apoint xz € X, p. 82.

subspace of invariant elements in a G-representation V, p. 82.
quotient functor, p. 82.

GIT quotient of X by G, p. 82.

multiplicative group scheme R +— R*, = A' \ {0}.
1-parameter subgroup, p. 86.

limit point of the orbit of = under A, p. 86.

weight of the action of lambda at the limit point of x, p. 86.
G-linearization of a sheaf F', p. 83.
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X°(L) set of semistable pointsin X with respect to thelinearization of L,
p. 85.

X°(L) set of stable pointsin X with respect to the linearization of L, p.
85.

Pic%(X) Picard group of G-linearized line bundles on X ,p. 87.

Constructions related to sheaves or families of sheaves

p:SxX—>S
q:SxX > X
P(E)

Grass(E, )
Quot(E, P)

Hilb!(X)
Drap(E, P.)

det : S — Pic(X)
<I)F S M
Exth(F, Q)

KS:Qs” — Extl(F*, F*)

projection to the ‘base’.

projection to the ‘fibre' .

Proj S* E projectivization of a coherent sheaf E.

Grassmann scheme of locally free quotients of E of rank r, p. 39.
Quot-scheme of flat quotients of E with Hilbert polynomial P, p.
40.

= Quot(Ox, £), Hilbert scheme, p. 41.

flag-scheme of flagsin E with flat factors with Hilbert polynomi-
as P;, P. 48.

morphism associated to aflat family of sheaves on asmooth vari-
ety X parametrized by S.

classifying morphism associated to an S-flat family F' of semi-
stable sheaves.

relative £xt-sheaf for amorphism p, right derived functors of the
composite functor p. o Ext, p. 220.

Kodaira-Spencer map, p. 221.

Construction of the moduli space, objects on the moduli space

M’, (MI)S
M=M/]~

Msz(M’)S/N

moduli functor for semistable and stable sheaves, resp., p. 80.
quotient functor of M’ for the equivlence F ~ F' & F ==
F' @ p*L for some L € Pic(S), p. 80.

as above for families of stable sheaves, p. 80.

= M (P) moduli space of semistable sheaves with Hilbert poly-
nomial P, p. 80.

C M open subspace of points corresponding to geometrically sta-
ble sheaves.

moduli space of semistable sheaves with respect to a polarization
H, in acontext where the polarization varies.

moduli space of semistable sheaves with Mukai vector v, p. 142.
scheme birational to M, constructed in Appendix 4.B.

moduli space of p-semistable sheaves, p. 190.

moduli space of semistable sheaves on acurve C.

moduli space of stable sheaves F with Ext?(F, F)o = 0, p. 222.
integer which is sufficiently large so that the conditions of Thm.
4.4.1 are satisfied.

k-vector space of dimension = P(m).

direct summand of the weight space decomposition of V' for aone-
parameter subgroup A, p. 96.
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H
R

R°CR
7n:R— M
(o] _
p:q¢H—>F
L,

R(F)
®r : R(F) = Quot(H, P)

A

\: Ko — Pic(M)
u; = u;(c)

L;

m(a)

o)

=V ®; Ox(—m), p. 88.

open subset in Quot(#, P) of al quotients [p : H — F] with F’
semistable and V' — H°(F(m)) an isomorphism, p. 88.

subset of points [p : H — F] with F stable, p. 88.

quotient morphism constructed with GIT, p. 91.

=[p:H — F],apointin R or Quot(H, P), p. 88.

the universal quotient family on Quot(#, P) x X, p. 90.

= det(p. (F®q*Ox (¢)), determinant linebundle on Quot(#, P),
p. 90.

frame bundle associated to afamily F, p. 89, 83.

classifying morphism for the frame bundle associated to a family
F.

line bundle on R arising in Gieseker’s construction App. 4.A.
group homomorphism, p. 180.

classesin K., m, p. 183.

line bundles on M constructed in Chapter 8, p. 184.

two-form on M #, p. 225.

one-formon M, p. 225.



