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1. Introduction 
The Foundations of Quantum Mechanics, J. Schwinger and Groupoids

Symbolic language
Julian S. Schwinger  (1918-1994)
“The laws of atomic physics must be 
expressed in a non-classical mathematical 
language that constitutes a symbolic 
expression of the properties of microscopic 
measurements” In “Quantum Kinematics and 
Dynamics” (1991).

Deep impact in Mathematics (1930-) 

The puzzle of Quantum Mechanics

J. von Neumann’s Hilbert space 
formalism and the theory of rings of operators

Physics in the earlier 20th century

The bold leap was taken by Heisenberg in identifying observable effects associated with 
atoms being associated not with single stationary orbits but with jumps or transitions 
between two orbits, i.e.,with emission or absorption frequencies   Composition of 
frequencies which describes the groupoidal composition law was clearly written by 
Heisenberg in section 1 of his paper in Zs. f. Phys.33 (1925) 879-893.

Transitions (“quantum jumps”) 
N. Bohr, W. Heisenberg (1925)
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Vi invio una scansione di una figura dall'articolo di Ladenburg
The quantum-theoretical interpretation of the number of dispersion electrons
Zs. f. physik 4(1921) 451-468
"the central idea of this paper is to equate the classical expression for
the strength of an absorption line with the quantum theoretical
exspression.
This paper is included in the book
Sources of Quantum Mechanics by L:Van Der Warden at the suggestion made by
W.Pauli
Points (states)not connected by lines correspond to forbidden transitions.
It is clear that the picture is dominated by transitions (emission in on
direction and absorption in the opposite one),while the starting point
corresponds to the source and the ending point to the target.
This picture was the starting point for Heisenberg to discard the
unobservable periodic orbit of the electron and to concentrate on
transitions which were the observed quantities

R. Ladenburg.Zs.f. Physik, 4 (1921) 451-468 

J. Schwinger’s
Algebra of selective measurements (1960)

Ritz-Rydberg composition principle for emission or absorption frequencies of radiation for atoms
interacting with electromagnetic fields is properly understood as a groupoid

A. Connes (1995)

Groupoids

Categorical thinking in Physics
J. V. Neumann. Mathematische Begründung der Quantenmechanik. Springer, Berlin (1931).
 F.J. Murray, J. von Neumann, On rings of operators, Ann. Math. 37 (1936), 116--22



1. Groupoids and Transitions I: The Algebra 
of Selective Measurements

J. Schwinger’s Algebra of selective measurements (1960)

Groupoids

R. Feynman’s dynamical principle

Schwinger’s quantum variational principle
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Dirac’s question:  What is the role of the Lagrangian in 
Quantum Mechanics?
P.A.M. Dirac.  The Lagrangian in Quantum Mechanics.  Physikalische Zeitschrift der Sovietunion, Band 3, Heft 1 (1933). 



1. Groupoids and Transitions I: The Algebra 
of Selective Measurements

J. Schwinger’s Algebra of selective measurements (1960)

Groupoid

M(a0,a) E
E(a) = {S 2 E | a = hA : Si}

E(a0) = {S0 2 E | a0 = hA : S0i}

S

S0

M(a) := M(a,a)M(a00,a) := M(a00,a0) �M(a0,a)

M(a0,a) �M(a) = M(a0,a) M(a0) �M(a0,a) = M(a0,a)

M(a000,a00) � (M(a00,a0) �M(a0,a)) = (M(a000,a00) � (M(a00,a0)) �M(a0,a)

M(a0) = M(a0,a) �M(a,a0) M(a) = M(a,a0) �M(a0,a)

Symbolic mathematical language

Units:

Associativity:

Invertibility:

M(a0,a)

M(a00,a0)

= M(a00,a)



1.2. Groupoids and Transitions II

Axioms 
(derived from a few simple physical principles)

Outcomes: a, b, x, y, .. 2 ⌦
↵ : a ! b,� : x ! y 2 �Transitions:

s, t : � ! ⌦ s(↵) = a, t(↵) = b

�(2) = {(↵,�) 2 �⇥ � | s(↵) = t(�)}

� ◆ ⌦

(↵ � �) � � = ↵ � (� � �
1a : a ! a

↵ � 1a = 1b � ↵ = ↵

9↵�1 : b ! a
↵�1 � ↵ = 1a

Groupoid

↵ � ↵�1 = 1b

Associative

Units

Inverse
� : �(2) ! �Composition law:

Discrete output systems
Some simple examples

“Harmonic oscillator”A1 ◆ ⌦1

(Abstract) qubit A2 ◆ ⌦2 = {+,�}

↵n : n ! n+ 1 ↵�1
n : n+ 1 ! n

↵

↵�1

1+ 1�

Ciaglia, F.M.; AI.; Marmo, G. Schwinger's Picture of Quantum Mechanics I: Groupoids. Int. J. of Geom. Meth. in Mod. Phys. (2019}, 16, 1950119 (31). 



1. Groupoids and Transitions III

The statistical interpretation

Mackey-Hahn-Connes-Renault measure groupoids:

Kolmogorov’s spaces (1931): (⌦,B, P )

⌫ =

Z

⌦
⌫aP{da}

N.N. Cencov. “Statistical Decision Rules and Optimal Inference” AMS (1982).  

The job of the “theoretical physicist” is to construct a mathematical model 
of the random phenomena observed when studying a physical system: 

a 7! ⌫a , supp ⌫a ⇢ t�1(a) = �aTransverse function
↵ � ⌫a = ⌫b ↵ : a ! b

(� ◆ ⌦, [⌫])Measure groupoid

Action groupoids (von Neumann’s group-measure construction)
G group acting on ⌦, (g, x) 7! gx, g 2 G, x 2 ⌦

J. Renault: A Groupoid Approach to C*-Algebras, Lect. Notes in Math. 793, Springer-Verlag, Berlin 1980.
A. Connes. "Sur la théorie non commutative de l’intégration." Algébres d’opérateurs. Springer, Berlin, Heidelberg, 1979. 19-143

↵
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�
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(⌦, P ) Kolmogorov’s space G locally compact group
Measurable action, the measure P is G-cuasi-invariant

�(G,⌦) = G⇥ ⌦ ◆ ⌦ , s(g, x) = x, t(g, x) = gx (g0, gx) � (g, x) = (g0g, x)



1. Groupoids and Transitions IV

M spacetime, metric ⌘

R(M ) = {Tyx : TxM ! TyM | T ⇤
yx⌘y = ⌘x} ◆ M

P(M ) = {(py, Tyx, px) 2 T ⇤M ⇥R(M )⇥ T ⇤M | T ⇤
yxpy = px} ◆ T ⇤M

Kinematical groupoids (Lie groupoids)

Riemann groupoid

Poincaré groupoid

Wigner’s program: Elementary Quantum Systems
Irreducible unitary representations of the Poincaré group
Irreducible unitary representations of Poincaré’s groupoid

Wigner, E. "On unitary representations of the inhomogeneous Lorentz group." Annals of Mathematics (1939): 149-204
Landsmann, N.P.. “Lie groupoids and Lie algebroids in Physics and Noncommutative Geometry." J. Geom. Phys., 56 (2006): 24-54

Theorem. There is a one-to-one correspondence between (irreducible) unitary
representations of Poincaré’s grouped and (irreducible) unitary representations
of the isotropy group along the orbits pµpµ = m2.



2. Algebras of Observables I 
From von Neumann to Connes

The algebra of observables of a quantum system

The von Neumann algebra of a measure groupoid 

Hilbert space    H

� ◆ ⌦ countable

� : C[�] ! B(L2(�)), (�(↵) )(�) =  (↵�1 � �), t(↵) = t(�))

⌫(�) = �(C[�])00 = �(C[�])
WOT

M = M00
, M closed in the WOT (SOT)

Von Neumann algebras M ⇢ B(H) M = M†

Convolution algebra

f, g 2 Cc(�), f ? g(↵) =
R
f(�)g(��1 � ↵)d⌫t(↵)(�)

�(f) = f ? ⌫(�) = �(Cc(�))



The type of a quantum system

2. Algebras of Observables II 

Simple examples
Discrete output systems

Qubit ⌫(A2) = M2(C) Factor Type In
Harmonic oscillator ⌫(A1) = B(l2) Factor Type I1

Action groupoids �(G,⌦) ◆ ⌦
⌫(�(G,⌦)) = L1(⌦, µ)oG Crossed product algebra

M such that M \M0 = C1 is called a factor

⇢ : ⌫(�) ! C ; ⇢ � 0 ; ⇢(1) = 1States:
GNS representation ⇡⇢ : ⌫(�) ! B(H⇢) H⇢ = ⌫(�)/J⇢

J⇢ = {a | ⇢(a⇤a) = 0}⇡⇢(a)[b] = [ab]

Non-degenerate representation: ' : � ! C positive-definite function
P

⇣̄i⇣j'(↵
�1
i � ↵j) � 0, i, j = 1, . . . , N , 8N 2 N, ↵i 2 �, ⇣i 2 C.



3. Classical systems and the cuasi-
classical approximation 

Von Neumann (and Birkhoff) again
M von Neumann algebra of observables

P(M) = {p = p† = p2} lattice of projections

Classical system (P(M),_,^,0 ) is Boolean

Theorem. The system described by the measure groupoid (� ◆ ⌦, ⌫) is
classical i↵ it is totally disconnected and its isotropy groups are Abelian, in
which case the von Neumann algebra ⌫(�) is Abelian.

� ◆ ⌦ Lie groupoid, (A(�), µ) its Lie algebroid.

�

⌦

A(�)⇤
L

A(�)
Exp

Non-commutative 
probability space

Classical 
probability space

⌫(�)

L1(⌦, P )

C1(A(�)⇤)
Poisson algebra

Quantization

F.M. Ciaglia, F. Di Cosmo, AI, G. Marmo. Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics, Entropy, 22 (11), 1292 (2020)

N.P. Landsman, Deformation quantization and the Baum-Connes conjecture, Comm. Math. Phys. 237 (2003) 87–103. 

Birkhoff,  G.; J., Von Neumann. The Logic of Quantum Mechanics.  Annals of Mathematics (1936) 37, 823–843

⌫(�) ⇠= L1(e⌦, µ)



4. Dynamics

von Neumann algebras are dynamical

Groupoid (Quantum mechanical system)(� ◆ ⌦, [⌫])

One-parameter groups of automorphisms 't : ⌫(�) ! ⌫(�)

Fundamental vector (cyclic) |0i = [1]

Tomita-Takesaki theory:
J : H⇢ ! H⇢ antilinear isometry

� = �† � 0 non-negative self-adjoint

Separating
⌫(�) ⇠= ⇡⇢(⌫(�))|0i ⇢ H⇢

J⌫(�)J = ⌫(�)0 �it⌫(�)��it = ⌫(�)

Is this sensible?

State ⇢, GNS representation ⇡⇢ supported on H⇢.

't(a) = �ita��itModular flow:



4. Schwinger’s variational Principle II

Dynamics via variational principles
Schwinger’s quantum variational principle

Histories on groupoids �� paths

w0
x1,t1 � wx0,t0(s) =

⇢
wx0,t0(s) t0  s  t1
w0

x1,t1(s) � wx0,t0(t1) t1  s  t2

s(wx0,t0) = (x0, t0) , t(wx0,t0) = (t(wx0,t0)(t1)), t1)

The class of �-paths form a measurable category C(�) ◆ ⌦ ⇥ R, whose
groupoidification G(�) ◆ ⌦⇥ R is the groupoid of histories of � ◆ ⌦.

�'b,t1;a,t0 = ihb, t1|�
Z t1

t0

L(s)ds|a, t0i

= hb, t1|G1 �G0|a, t0i
⌃ ⌃0

H H
0

M
t

L(x)

x

t0 t1

|b, t1i|a, t0i
G1G0

wx0,t0 : [t0, t1] ! � , wx0,t0(t0) = 1x0 , �(s) = t(wx0,t0(s))

⌦

t

wx0,t0(s)

x(s)

�x = s�1(x)

1x0

x0



4. Schwinger’s variational Principle III

Histories as Lie algebroid-paths 

Universal histories
Homomorphisms of groupoids: w : P (R) = R⇥ R ! �, w(s, t) : x(t) ! x(s)

�-path: wx0,t0(s) = w(s, t0), x0 = x(t0).

w⇤ : A(P (R)) = TR ! A(�), A(�)-path.

Dirac-Feynman-Schwinger states
G(�) groupoid of histories

'(w) =
p

p(s(w))p(t(w))eiS (w)

p probability distribution on ⌦⇥ R

S is an action, i.e., S (w2 � w1) = S (w2) + S (w1), S (w�1) = �S (w)

Theorem. The function ' : G(�) ! C is positive-definite, hence it defines a state
called a DFS state.

F.M. Ciaglia, AI, G. Marmo. Schwinger's Picture of Quantum Mechanics III: The Statistical Interpretation. Int. J. of Geom. Meth. in Mod. Phys. (2019), 16. 



4. Schwinger’s variational Principle IV

Main example: S (w) =

Z t1

t0

L(ẇ(s) � w�1(s))ds

GNS representation associated to a DFS state

 : ⌫(G(�)) ! H'

⇡'(a) b =  a?b

ker = J' HDFS = ⌫(G(�))/J' = L2(⌦⇥ R, p)

Theorem. A DFS function ' defines a dynamics in the sense of Tomita-Takesaki
(generalised) theory on the space of wave functions HDFS.

F.M. Ciaglia, F. Di Cosmo, AI., G. Marmo, L. Schiavone, A. Zampini. (2021). A quantum route to the classical Lagrangian formalism. Modern Physics Letters A, 36(15), 2150091

H' = L2(⌦⇥ R, p) Space of wave-functions

 a(x, t) =

Z

G(�)(x,t)

a(w)e
i
~S (w)d⌫(w)

a : G(�) ! C
Feynman’s representation 

of wave functions

F.M. Ciaglia, F. di Cosmo,  A. Ibort, G. Marmo. The groupoidal picture of Quantum Mechanics. J. Geom. Phys., 197, 105095 (2024).



Bell inequalities

Causality

Cramer-Rao

Symmetry



Thanks for your attention!


