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The quotient of a 3-manifold by an effective action of S!, without
fixed points, is a classical example of orbifold. But how does that
fit within the diffeological frame? That is what we discuss here.

We’ll talk about classical things and construction in differential ge-
ometry, but from the point of view of diffeoclogy. We’ll see how, in
this example, the vocabulary and constructions of diffeology fit the
needs of the problem. We shall consider in particular the diffeolo-
gical definition of an orbifold, that is, a diffeological space locally
diffeomorphic to a quotient R?/I", where I' is a finite subgroup of
the linear group GL(n, R), see [IKZ10] for the details.

Warning. One should not confuse what we call in this note a
"Seifert orbifold" with what topologists call "Seifert fibered orb-
ifold", as it appears in [BS85] for example. For us the orbifold is
the space of Seifert fibers of a Seifert fibered manifold, and not an
orbifold that would be the total space of a Seifert fibration.

A Little Bit of Smooth Lie Group Actions

Let M be a smooth manifold and consider a smooth action of a
Lie group G on M.

A) — Diffeologically speaking, such an action is a smooth homo-
morphism g — gm, from G to Diff(M), where Diff(M) is equipped
with the functional diffeclogy [PIZ13, §7.4].

B) — Let x € M and H = St(x), the stabilizer of x. The orbit map
g — gm(x) from G to M is strict, that means that the projection
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class(g) — gm(x), defined on the coset G/H into M is an induction.
In other words, the map class : G/H — Oy is a diffeomorphism,
where G/H is equipped with the quotient diffeclogy and Ox C M
is equipped with the subset diffeclogy [IZK12, §1]: equipped with
the subset diffeology, the orbit Ox is a manifold diffeomorphic to
the coset G/H. Now, if G is compact, then this induction is an
embedding and the orbit is an embedded submanifold.

C) — If G is compact, the type of stabilizers (or orbits) of a smooth
action of G on a manifold M, is given by the Theorem of Principal
Orbits [Bre72, Theorem 3.1 of Part IV].

Theorem (Principal Orbits). There exists a maximum orbit type
G/H for G on M (i.e., H is conjugate to a subgroup of each isotropy
group). The union My) of the orbits of type G/H is open and
dense in M.

In particular, the stabilizers of any two points in M) are conju-
gate. The orbits of points in My are called principal orbits, the
other ones are called singular orbits. If a singular orbit has the
same dimension than the principal orbits, the orbit is said to be
exceptional.

D) — If G is compact, the Theorem 2.4 of part VI of Compact
Group Action on Manifolds [Bre72] states that:

Theorem (Smooth Linear Tube). Let x be any point in M, and
let H be the stabilizer of x. There exist a vector space V, an or-
thogonal action of H on V, and a local G invariant diffeomorphism
@ :GXgV — M, defined on G Xy V.

The space G Xy V is the quotient of G X V by the diagonal action
of H, hgxv : (g, v) — (gh_l,hv(v)), where h +— hy denotes the
action of H on V.

The image of the local diffeomorphism ¢ is an open invariant tube
about the orbit Ok, image by ¢ of the zero-section in G Xy V.

Circle actions on manifolds

Consider a smooth action of the circle S! on a manifold M. Accord-
ing to the Theorem of Principal Orbits of compact groups actions
on manifolds, there exists a Sl-invariant open dense subset of M
such that all of its points have the same principal stabilizer H, a
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closed subgroup of S'. And this principal stabilizer is contained
in every stabilizer.

If the principal stabilizer is S! then all stabilizers are S! and the
action is trivial.

If the action is not trivial then H is some cyclic group Zp, = {c |
m

e =1}

In the case of a non trivial action of S!, it is always possible to
consider the quotient group S'/H, which is isomorphic to S!, and
the situation is reduced to an effective action of Sl, that is, an
action with principal stabilizer {1}. This will be what we assume
now.

If the action has no fixed points then the singular orbits are ex-
ceptional, and conversely.

Seifert Orbifolds

Now, we can present the object of our note. We refer to [Sco83]
for the vocabulary and general context.

Definition — A Seifert Fibered Space (or Seifert fibration) is a
3-manifold M with an effective action of S! without fixed points.

Because all the stabilizers are cyclic, the fibers of the Seifert Fibered
Space, that is, the orbits of the action of the circle, are diffeo-
morphic to the circle, when equipped with their subset diffeclogy
[IZK12, §1]. What about the quotient space?

Theorem (Seifert Orbifolds). Let M be a 3-manifold with an effec-
tive action of S!, without fixed points. Then, the quotient space
Q = M/S! is a 2-manifold if the action is principal, or a 2-orbifold
with isolated conic singularities otherwise.

Proof. Thanks to the Linear Tube Theorem, every orbit Ox has
an equivariant open neighborhood diffeomorphic to a linear tube
of type sl Xz C, where Z,, is the stabilizer of x. Then, about
the orbit Ox € Q, the quotient space Q is locally diffeomorphic to
[st Xz Cl/S!, where the action of S! is given by tclass(z, Z) =
class(tz, Z). Note in particular that class(z, Z) = zclass(1, Z).

Consider the map J: C — 8! Xz C, defined by J(Z) = class(1, 2).
The map J is an induction. Indeed, it is clearly injective. More-
over, let r — ((r) be a plot in J(C) C st Xz C. Since class :
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sl xC — gt Xz C is a subduction, by construction, there ex-
ists always plots r — (z(r),Z(r)) in s! x C such that, locally,
U(r) = class(z(r), Z(r)). But since {(r) € J(C), for all r in the
domain of the plot there is Z' € C such that class(z(r), Z(r)) =
class(1,Z’). Thus z(r) € Zy, C C, and since Z, C C is diffeologi-
cally discrete, r — z(r) is locally constant, z(r) =€ € Z,,. Hence,
U(r) =joc class(l,cZ(r)), with r — c¢Z(r) smooth. Therefore, J is
an induction.

Next, every sl.orbit in 8! ><sz writes Sl-class(1, Z) = {class(z, Z) |
z € S13}, for some Z € C. Its intersection with J(C) is the set

(s!-class(1,2)) N I(C) = {class(1,e2) = J(€Z) | € € Zp}

Thus, there exists a natural bijection j: C/Zy — (S1 Xz, C)/S1
mapping every Zmp-orbit in C to the corresponding Sl-orbit in
st XZ. C.

j(class(2)) = St . class(1, Z).

Now, let pr: st XZm C— (Sl XZm C) /S! be the natural projection.
Let us prove that the restriction pr [ J(C) is a still a subduc-
tion. Let r — {(r) be a plot in (Sl Xz, C)/Sl, locally U(r) =
class(z(r), Z(r)), where r — z(r) and r — Z(r) are smooth. But,
class(z(r), Z(r)) = z(r)-class(1, z(r)Z(r)), then pr(class(z(r), Z(r)))
pr(class(1, z(r)Z(r))), and class(1, z(r)Z(zr)) belongs to J(C). Thus,
as claimed, pr [ J(C) is still a subduction.

Therefore, since class : C — C/Zy and pr [ J(C) : J(C) —
(S1 XZ. C)/ st are two subductions, since J is an induction, and
the factorization j : C/Zy — (S1 Xz C)/S1 is a bijection, j is a
diffeomorphism.

C%Slxzmc#l\/{

l |7 l

C/Z,, T> (Sl XZm C)/Sl T) M/Sl
Finally, the equivariant local diffeomorphism ¢ : st XZm C - M,
given by the Smooth Linear Tube Theorem above, projects on a
local diffeomorphism f : (Sl Xz C)/S1 — M/S!. The composite
fojis then a local diffeomorphism from C/Zp, into M/S!. There-
fore, M/S! is an orbifold according to [IKZ10, Definition 6]. The
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singular points are the images by f o j of class(0) € C/Zy,. They

are clearly isolated and conic. If there is no exceptional orbit, then

M/S?t is obviously just a manifold (which is just a consequence of
the Linear Tube Theorem). U
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