EQUIVARIANT ALGEBRAIC TOPOLOGY

by

Soren Illman

A DISSERTATION
PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE BY THE

DEPARTMENT OF MATHEMATICS

JANUARY 1972



ACKNOWLEDGMENTS

I am sincerely grateful to my adviser, William Browder,

for his encouragement and interest in my work.

I wish to thank Edgar H. Brown, Jr., Gary C. Hamrick

and Paul A. Schweitzer for inspiring conversations.

The constant support of my wife, Kerstin, contributed

in a profound way to the writing of this thesis.

I thank Miss Florence Armstrong for her skillful

typing of the manuscript.



CONTENTS

INTRODUCTION
TERMINOLOGY AND NOTATIONS
CHAPTER I. EQUIVARIANT CW COMPLEXES

1. Adjoining equivariant cells
2. Equivariant CW complexes
3. Equivariant Whitehead theorem
CHAPTER II. DIFFERENTIABLE G-MANIFOLDS ARE
EQUIVARIANT CW COMPLEXES
1. Equivariant simplexes
2. Equivariant triangulations

3. Equivariant triangulation of a differentiable
manifold with a differentiable action of a
compact Lie group

4. Three corollaries
CHAPTER IlI. EQUIVARJIANT SINGULAR THEORY

Coefficient systems
Equivariant singular homology and cohomology
A lemma

Construction of equivariant singular theory

1

2

3

4

5. The homotopy axiom
6. The excision axiom

7. The dimension axiom

8. Equivariant singular cohomology
9

An alternative construction

CHAPTER IV. FURTHER PROPERTIES OF EQUIVARIANT
SINGULAR HOMOLOGY AND COHOMOLOGY

1. Functoriality in the group

2. Transfer homomorphism

Page

17
32

38

38
41

44
71

74

74

82
86
95
108
121
138
156

160

161
168



3.

The Kronecker index and the cup-product

4. Free actions

5.

BIBLIOGRAPHY

ABSTRACT

Equivariant singular homology and cohomology
of equivariant CW complexes

187
191
196
206

208



INTRODUCTION

Our main objective is the construction of an equivariant singular
homology and cohomology theory, for spaces on which a compact Lie
group G acts, with coefficients in an arbitrary given covariant coefficient
system and contravariant coefficient system, respectively. See Definition
1.2 and Theorems 2.1 and 2.2 in Chapter III for precise statements.

Our construction is such that G besides being an arbitrary compact Lie
group also can be a discrete group or an abelian locally compact group.

For actions of discrete groups equivariant homology and cohomology
theories of this type exist before. G. Bredon has constructed an '"equivar-
iant classical cohomology theory' for CW complexes with a cellular action
of a discrete group, see G. Bredon [2] and [3]. Recently Th. Brdcker
constructed an equivariant homology and cohomology theory with pre-
described coefficients, for spaces with an action of a discrete g;'oup, see
Th. Brocker [4].

The key to our construction is the definition of an equivariant
simplex, see Definition 1.1 in Chapter II. The construction of equivariant
singular theory is then very much analogous to the construction of ordinary
singular theory. In our case the proof of the dimension axiom requires
some argument.

In Section 9 of Chapter IIl we describe an alternative construction
of an equivariant singular homology and cohomology theory. This construc-

tion is technically much easier to handle. We shall use this construction



on later occasions.

In Chapter I we define equivariant CW complexes and prove the equi-
variant versions of the homotopy extension property, the skeletal approxi-
mation theorem, and the Whitehead theorem.

In Chapter II we prove that every differentiable manifold on which a
compact Lie group acts differentiably is an equivariant CW complex, see
Theorem 3.1 and Corollary 4.1 in Chapter II. This result has also been
proved by Takao Matumoto, see [20] Proposition 4.4. Matumoto formulates
the definition of an equivariant CW complex (he calls them G-CW complexes)
in a different way than we do, but his Proposition 4.4 proves the same
result as our Theorem 3.1 . In fact his proof is much shorter. The exist-
ence of the article [20] was pointed out to me, when I had already completed
this work, by A. Wasserman. I also wish to thank G. Bredon for a very
illuminating conversation about the proof of the above result given in [20].

In Chapter IV we construct a transfer homomorphism both in equi-
variant singular homology and cohomology. We also define a '""Kronecker
index' and a cup-product in equivariant singular cohomology. In the last
section we prove that equivariant singular homology and cohomology of a
finite dimensional equivariant CW complex is isomorphic to its ''cellular
equivariant homology and cohomology,' respectively. From this it follows
that the equivariant singular homology and cohomology groups of a differ-
entiable G-manifold M vanish in degrees above the dimension of the mani-

fold M. If M moreover is compact, the equivariant singular homology



and cohomology groups are finitely generated R-modules if the coefficient

systems are finitely generated coefficient systems over a noetherian ring R.
We announced the results of Chapters I, II, III (under the assumption

that G is a compact Lie group), and Section 5 of Chapter IV in a talk at

the Conference on Transformation Groups at the University of Massachu-~

setts, Amherst, June 7-18, 1971, An article on this will appear in the

Proceedings of the Amherst conference.



TERMINOLOGY AND NOTATIONS

Let G be a topological group and X a topological space. A left
action of G on X is a continuous map ¢: G xX —> X such that ole, x) =x,
e = identity of G, for all x¢X, and (g, p(g’, %)) = o(gg, x) for all g,g’¢c G,
x¢X. We denote o(g,x) =gx. If Ac X we write GA={galgeG, acAl.
By a G-space X we mean a topological space X together with a left action
of G on X. A G-subsetof a G-space X 1is a subset A of X such that
GA = A, A G-pair (X,A) consists of a G-space X and a G-subset A of X.

Let X be a G-space, The orbit of a point x¢ X is the set Gx =
G{x}. The orbit space, which we denote by G\X, is the set G\X =
{Gx‘x € X} with the quotient topology from the projection m: X —> G\X,

m(x) = Gx, It is easy to see that T is an open map.

Amap f: X—>Y, X and Y are G-spaces, is called a G-map if
f(gx) = gf(x) for all ge¢G, x¢ X. Correspondingly we have the notion of
a‘G-homeomorphism, a G-retraction, etc.

Let X be a G-space. The isotropy group of x¢X is the subgroup
G, = {geGlgx=x]} of G. If {x} is closed in X then G_ is a closed
subgroup of G. For any xe¢ X the map @ G/Gx —= Gx C X, defined by
ax(ng) = gx, is a continuous one-to-one map onto the orbit Gx. Moreover
@ is a G-map, where G acts in the standard way on G/Gx, that is, by
(é,ng) — éngv. If G is compact and X is Hausdorff, then
@t G/Gx > Gx is a G-homeomorphism for each x¢ X.

Let H be a subgroup of G. We denote by (H) the collection of



all subgroups of G which are conjugate in G to H, thatis, (H) =
{gHg-IIg €G]}, Such a collection (H) is called 'a G-orbit type, or simple
orbit type when the group G is clear from the context. We say that a
point x of a G-space X has orbit type (H) if Gxe (H). If x¢X has
isotropy group Gx then gxe¢ X has isotropy group nggﬁl. Thus all
points on one orbit have the same orbit type (hence of course the name
orbit type), This allows us to speak about the orbit type of a point in the
orbit space G\X. Denote X'=G\X and let m X — X’ be the projection.
Thus we say that the point x'¢ X’ has orbit type (H) if G_e(H) where
mMx) = x’. We use the following notations (they are the standard ones),
Xm) = {xeX‘Gxe (H)}, and X, =m(X

(H (H)
for all he¢H]}.

(H))’ and also XH= {X€X|hx = x

Now assume that G is a compact Lie group, and consider only
G-orbit types which are represented by closed subgroups of G. Define
(H) < (K) to mean that there exists H'¢ (H) and K’¢(K) such that H c K’
Clearly (H) < (H), and if (H) <(K) and (K) < (L) then (H)< (L). More-
over if (H) < (K) and (K) < (H) then (H) = (K). This follows from the
fact that a closed subgroup H of a compact Lie group G is not conjugate
(in G) to a proper subgroup of itself. Thus < is a partial ordering.

Let X and Y be G-spaces, and f ,f,: X —> Y two G-maps. A

0’71

G-homotopy from fy to f; isa G-map H:IxX—>Y, (G acts onIxX

by acting trivially on I, that is, (g, (t,x)) > (t,gx), ge¢G, (t,x) eI xX)

such that H(0,x) = fo(x) and H(l,x) = fl(x) for all x¢X. A G-map



f: X=>7Y is a G-homotopy equivalence if there exists a G-map h: Y —> X

such that hf is G-homotopic to id,. and fh is G-homotopic to id

X Y’
Correspondingly we have the '"G-version'' of other related concepts. For
example the meaning of the expression: D:IxX —> X is a strong G-
deformation retraction from X to A, is now clear.
Let X be a topological space and {Aj}jeJ a family of closed sub-
sets of X such that ‘UJ A, =X, We say that X has the topology coherent
Je
with {AJ, }jeJ if the following is true. A subset B of X is closed in X
if and only if B nAJ. is closed in Aj for every je¢J. (The expression
'weak topology with respect to {Aj }jeJ” is also used in the literature.)
A Hausdorff space X is said to be compactly generated if X has
the topology coherent with the family of all compact subsets of X. Itis a
well-known fact that every locally compact space is compactly generated.

The following fact will be used on a number of occasions without

further reference.

Lemma. Let X be a topological space, and {Aj }jeT a family of closed
subsets of X which cover X, and assume that X has the topology coherent
with {Aj }jeJ' Let C be a compact space (also Hausdorff), then CxX

has the topology coherent with {C xAj}j‘cJ'

Proof. Let (J AJ. be the disjoint union of all Aj’ jeJ, and let
jeJ
p: U Aj —> X be the natural projection onto X. Then the statement,
jed

X has the topology coherent with {Aj }j is equivalent to the statement,

eJ’

p is a quotient map. We have Cx( UJ A)= {J(CxA.) as topological
jeJ 1 jeJ J



spaces. Since C is compact, it follows that id xp: C X('UJAj) —> CxX

Je
is a quotient map if p is a quotient map. (This is well known, for example
the second part of the proof of Theorem 4.4 in Steenrod [17], proves exactly

this.) This completes the proof.

Let us conclude this section by pointing out that the word "map"
will always mean ''a continuous map, ' and that the notation A c B always

includes the possibility A = B, These agreements were already used above.



CHAPTER 1

EQUIVARIANT CW COMPLEXES

In this chapter G denotes a compact topological group. We define
equivariant CW complexes. This definition is obtained from the definition
of an ordinary CW complex in a simple way. Instead of adjoining cells

n n-1 . n
E" by a map from S one adjoins G-spaces of the form E xG/H,
where Hc G is some closed subgroup (not fixed), by an equivariant map

from Sn-1

xG/H. The standard elementary properties like the homotopy
extension property, the skeletal approximation theorem, and the Whitehead
theorem, are also valid in the equivariant case, and the proofs are com-

pletely analogous to the proofs in the ordinary case, as for example given

in Spanier [16].

1. ADJOINING EQUIVARIANT CELLS

Definition 1.1, ILet X be a Hausdorff G-space, and A a closed G-subset

of X, and n a non-negative integer. We say that X is obtainable from
A by adjoining equivariant n-cells, if the following is true. There exists
a collection {C?}jeJ of closed G-subsets of X, such that the following

conditions are satisfied:

1. X=Ay (U c?), and X has the topology coherent with {A, C?}jGJ.
jeJ



2. Denote c;l= c? NA, then
(c; - n)ﬂ(c:-c)--(?) for j#i.
3
3. For each je¢J, there exists a closed subgroup Hj of G, anda

G-map

n-1

£ (EnxG/HJ., S xG/Hj) — (c?, é?)

such that fj(Enx G/Hj) = c?, and fj maps Enx G/Hj - Sn"l X G/Hj

homeomorphically onto c?— &,

Assume that X is obtainable from A by adjoining equivariant
n-cells. We shall show that a collection {c?}jelf of subsets of X, which
satisfies conditions 1-3 in the above definition, is uniquely determined by

the pair (X,A), and that so is the number n.

Lemma 1.2, Assume that X is obtainable from A by adjoining equi-
variant n-cells, and let {c;.1 }jeJ be a collection of closed G-subsets which
satisfies conditions 1-3 in Definition 1.1, Then c? - E:? is an open G-sub-
setof X, forany je J, the set c;l - c':? is open and closed in X - A,

. . . n .n n .n
and there does not exist a path in X - A connecting Cj - c:j and c, = Cly
if §#i.

Proof. Let jO ¢J, and consider the set B = A | ( UJC?). We have
JE
it
n n . g s n _ n .
BNA=A, BNnc, =c, for j#j., and BNc, =ANc?. Hence B is
b 0 Jo Jo

closed, by condition 1 in Definition 1.1, and thus c?- é;} =X ~-B is an
0 Y0



open set in X. Since X -A = | (2 - E:I.l) and the union is disjoint, it
jeJ
follows that c. - ¢. is closed in X - A. Hence for any path w:I—> X-A,

o o
the inverse image of a set c?- 'c? is both open and closed in I, thus

w_l(c!.l- E:l.a) =1 or @.
J J q.e.d.

Lemma 1.3, Let X, A and {c;‘l}jd be as in Lemma 1.2. Let ¢ bea

closed G-~subset of X, and let f be a G-map
£ (EnXG/H, Sn-le/H) — (Csé)a
where ¢ = c NA, H some closed subgroup of G, such that f(Enx G/H) =c,

n-1

and f maps E'xG/H - 7" xa/H homeomorphically onto ¢ - ¢, Then

n
c =Cj' for some jelJ.

Proof. Let us first show that the set ¢ - ¢ intersects at most one of the
sets c;.l - é?, jeJ. Assume the contrary and say that ¢ -~ ¢ intersects

the sets c? - E:;l and c? - é?, where i# j. Then there exist

°n °n n .n
(xo,gOH)eE XxG/H, and (xl,ng)eE xG/H, such that f(xo,goH)scj -cj

and f(x,,g, H) Ec‘i“ - cil Define w:I=> X - A by w(t)=£f((l-t)x_+tx g H)

ot ¥ 8o
n «
H) € Cj - Cj ’ and w(l) - f(xli gOH) -

1°81

ec-ccX~A. Thus, w(0)= f(xo,go

(gog-ll)f(xl,ng) € c’i‘ - c’l" which is impossible by Lemma 1.1. Hence

. n .n , . n .n
c-ccc, -c¢,, for some je¢J. We now show that ¢ ~c=¢c, ~¢,.

b Jo
Clearly the set ¢ - ¢ is closed in c? - c;l The G-homeomorphism

° o]
f: E'XG/H —> ¢ ~ & induces a homeomorphism I: E” —> G\(c-¢), and

. ©
similarly fj induces a homeomorphism fj: E" — G\(c? - é?). Let

1 c? - 'c?-—-> G\(c?- é?) be the projection. Since Trul(ﬂ(c-é)) =c-c, it
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follows that m(c-&) = G\(c-&) is a closed subset of G\(c?- é;‘). Now

consider the composite map
(o} T o
E® L g\(c-t) — G\(c;l— &) -l g2

(o] (]
and denote it by v: E" —> E®. Thus v is a closed and injective map, and

o o]
thus v induces a homeomorphism from E" onto v(En). By the "Invari-

o] =] [o]
. n, . . n R n .
ance of domain theorem' v(E") is an open set in E . Since v(E) is

(s}
o On o

both open and closed in En, we have v(En) = E, because V(En) is not

empty. Thus it follows that ¢ - ¢ = c?- &t Finally, it follows from the

J
properties of the map fj that c? - E:;1 = c?, and similarly from the proper-

ties of the map f that ¢ - ¢ = c. Hence c¢ = <l
q.e.d.

Corollary 1.4. Assume that X is obtainable from A by adjoining equi-

variant n-cells. Then there exists one and only one collection {C?}jeJ ,

of closed G-subsets of X, which satisfies conditions 1-3 in Definition 1.1.

Moreover, X is not obtainable from A by adjoining equivariant m-cells,

if m # n.

Proof. The uniqueness of the collection {C?}jEJ follows from Lemma 1.3,

Assume that X is obtainable from A, both by adjoining equivariant n-cells

{C,Iil}jeJ and by adjoining equivariant m-cells {Cfen),eeL' Then
u ch-&N =y (- ém), and we see in the same way as in the proof of
jed 31 gen t

n .n m .m
Lemma 1.3 that each set cj - cj intersects at most one set € "< and

vice versa. Thus 01,1- &t c;n- (.:;n for some £ and j, and since the
J J o o
orbit space of this G-space is homeomorphic to E~ and E, we have n=m.

g.e.d.
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Assume that X is obtainable from A by adjoining equivariant
n~cells. We call the G-subsets c;1 equivariant n-cells of (X,A). We

also say that X is obtained from A by adjoining the equivariant n-cells

{c?}jeJ. The open G-subsets c;l - é‘rjl are called equivariant open n-cells
of (X,A), and we denote g?= c;.l- A G-map fj: EnxG/Hj--—> c?, that

J
satisfies condition 3 in Definition 1.1, is called an equivariant character-
— n . . . n-1 .no. .
istic map for c5 and its restriction fj‘: S xG/Hj~—> & —> A, is
called an equivariant attaching map for c}l. Notice that a function u from
X into a topological space Y is continuous if and only if ulA and u‘c?,
all jeJ, are continuous, and that ulc?:c?'—? Y is continuous if and only
if (u')fj: EnxC}/I—Ij —> Y is continuous, where fj is some equivariant
characteristic map for c;.l.

Also observe that if n = 0, then X is a disjoint union of A and

G-spaces of the form G/Hj where each Hj is a closed subgroup of G.

Lemma 1.5, The G-space 0xE xG/H U1 xSnﬁle/H is a strong G-
deformation retract of IxE"xG/H.

Proof. Let D:1I xIx EY — 1 xEn be a strong deformation retraction of

1

IxE” to 0xE™ yIxS™". Then D=Dxid:IxIxE xG/H—>IxE xG/H is

a strong G-deformation retraction of I xEnxG/H to O xEnx G/H U1 xSndx G/H
g.e.d.

Lemma 1.6, Assume that X is obtainable from A by adjoining equivariant

n-cells. Then 0xX UYIxA is a strong G-deformation retract of IxX.

Proof. . Let {C?}jGJ be the collection of equivariant n-cells for (X,A).
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1

Let fj: (EnxG/H , s xG/Hj) — (c?, é?) be equivariant characteristic

i
maps for c?, jeJ. Let Dj': IxIxE"x Cr/Hj —>1 )(EnxG/Hj be a strong
G-deformation retraction of [ xEnx Gr/Hj to 0X B ><Cr/Hj Ul xSn-lx G/Hj'

Then we have the commutative diagram

D/
IxI xEnxG/Hj————-L———-> IxEnxG/Hj
id xid xf. bid x £,
i | j
- D‘ "
IxIxe J Ty
j j

where Dj is well-defined by the condition Dj(t, s,fj(x,gHj)) =

(id xfj) D; {t, s, x, gHj). Then Dj is continuous since id xid ><fj is a quotient
map. Thus Dj is a strong G-deformation retraction of I ><c§JL to

0x C? Ulx &

J

Define D,:IxIxA —>IxA by DA(t,s,a) = (s,a). Consider D

A A

and Dj’ jeJ, as G-maps into IxX, Since the G-maps D, and Dj’ jed

A

agree on any common set of definition, and since IxIxX has the topology

coherent with {IxIxA, IxI Xc?}j it follows that D, and Dj’ jed

eJ’ A

determine a unique G-map D:IxIxX—>IxX. Clearly D is a strong

G-deformation retraction of IxX to O0xX yIxA.
q.e.d.

Corollary 1.7. Assume that X is obtainable from A by adjoining equi-

variant n-cells. Then (X,A) has the G-homotopy extension property with

respect to any G-map.

Definition 1.8. Let (Y,B) be an arbitrary G-pair and n a non-negative
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integer., We say that (Y,B) satisfies condition L if the following is true.

For any closed subgroup H of G, any G-map

£: (E"xG/H, s*yarm) — (v, B)

1

is G-homotopic relative to s™" xG/H to a G-map from EnxG/H into B.

For n =0, this simply means that any G-map f: 0 xG/H—>Y can

be extended to a G-map H:IxG/H—+ 7Y such that H(l xG/H) ¢ B.

Definition 1.9, Let (Y,B) be an arbitrary G-pair. We say that (Y,B) is

equivariantly n-connected if (Y,B) satisfies condition m for k=0,...,n.

k’

Proposition 1.10. Let (Y,B) be an arbitrary G-pair and n.a non-negative

integer. Then the following three conditions are equivalent:

1. (Y,B) satisfies condition ™
n n-1 H _H
2. For any closed subgroup H of G any map s:(E ,S ")—= (Y ,B )
is homotopic relative to Sn-l to a map from E" into BH.
3. n = 0. For any closed subgroup H of G every path component of

YH intersects BH.

n>1. For any closed subgroup H of G we have TTn(YH, BH,'bO) =0,

for every b0 € BH.

Proof. The equivalence of conditions 2 and 3 is a standard fact, We shall
show that conditions 1 and 2 are equivalent.
First assume that (Y,B) satisfies condition TTn. Let H bea
n . n-1

closed subgroup of G and let s: (E ,S ") — (YH, BH) be an arbitrary

map., Consider the G-map f: (Enx G, Sn"le) —3 (Y, B) defined by
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'f(x,g) = gs(x). Since H s(x) = s(x) for all ern, it follows that f

factors through E"x G/H and thus determines a G-map

f: (EnxG/H, Sn-le/H) — (Y,B) and f£(x,gH) = gs(x). Thus there exists

. n-1 n n-1

a G-homotopy, relativeto S xG/H, F:Ix(E xG/H, S "xG/H)— (Y, B)

from f to a G-map from EnxG/H into B. Since all the points

(t,x,eH) ¢l xEnxG/H are fixed under H, it follows that we get a map

5: 1x(E®, 8°Y — (v' 8T by defining S(t,x) = F(t, x, eH). Clearly S

. . n-1 n . H

is a homotopy, relativeto S ~, from s to a map from E into B .
Now assume that the G-pair (Y,B) satisfies condition 2. Let H

be a closed subgroup of G, and let f: (EnxG/H, Sn~1xG/H)——>- (Y,B) be

an arbitrary G-map. Define s: (En, Sn—l) — (YH, BH) by s(x)=£{(x, eH),

n-1

-1 n
2=t sk, st

X € E". Thus there exists a homotopy, relative to S
— (YH, BH) from s to a map from En into BH. We define a G-map
FiIx(EPxG/H, S Ixa/H —> (Y,B) by F(t,x,gH) = gS(t,x). Clearly F

is a G-homotopy, relative to Sn-le/H, from f to a G-map from

E"XG/H into B.
gq.e.d.

Corollary 1.11, Let (Y,B) be an arbitrary G-pair. Then the following

three conditions are equivalent:

1, (Y,B) is equivariantly n-connected.
. H _H .
2. For each closed subgroup H of G the pair (Y ,B") is n-connected.
| H
3. For each closed subgroup H of G every path component of Y

H
intersects BH, and TTk(YH,BH,bO) = 0 for every bOeB and

k=1,...,n.
q.e.d.
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Remark., Let us comment on the case when B = § in Definitions 1.8 and
1.9, Lemma 1,10, and Corollary 1.11. Consider Definition 1.8. If

B=¢ and Y # ¢, then (Y,B) does not satisfy condition 11.. In fact the

0"
existence of a closed subgroup H of G such that BH =@ and yH # 0

implies that (Y,B) does not satisfy condition 1 On the other hand, if

o'
n>1 and B =¢ then (Y,B) satisfies condition ™ since the required
condition is satisfied in an empty way.
Thus, the G-pair (Y, @) is not equivariantly n-connected for any n.
Observe that Proposition 1.10 and Corollary 1.11 are true also in
the case when B = f. For example, if n >1 itis true that

H _H

TTn(Y , B ,bo) = 0 for every b eBH simply because BH= ¢.

0

Lemma 1.12, Let (Z,C) be a pair which is n-connected in the ordinary

sense, Let Y be an arbitrary G-space. Then the G-pair (ZxY, CxY)
is equivariantly n-connected.

Proof. Let H be a closed subgroup of G. Then ((Z xY)H,(C xY)H) =
(Z xYH,C xYH) is n-connected since (Z,C) is. Thus (ZxY, CxY) is

equivariantly n-connected by Corollary 1.11.
g.e.d.

Let M denote another, compact, Hausdorff topological group and
let (Y,B) be an arbitrary M-pair. Let ¢:G—> M bea continuous homo-
morphism. We make Y into a G-space by defining gy = ¢(g)y, for geG
and ye¢Y. We say that the M-space Y is made into a G-space through
the homomorphism @: G —> M. In this way (Y,B) becomes a G-pair.

If H is a closed subgroup of G, then we have (YH, BH) = (Y¢(H),B‘P(H)),
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Hence, we have

Corollary 1,13, Assume that the M-pair (Y,B) is equivariantly n-con-

nected. Let ¢: G—> M be any continuous homomorphism and make (Y, B)
into a G-pair through ¢. Then the G-pair (Y,B) is equivariantly n-con-

nected.
q.e.d.

Lemma 1.14, Assume that X is obtainable from A by adjoining equi-
variant n-cells. Let (Y,B) be a G-pair which satisfies condition T,
Then any G-map f: (X,A) —> (Y,B) is G-homotopic relative to A, to a

G-map from X into B.

Proof, Let {c;l} be the equivariant n-cells of (X,A), and let

jed
n n-1 n.n . . s
fj: (E xG/Hj, S xG/Hj) —_— (cj ,cj) be equivariant characteristic maps.
Consider the G-maps fo fj: (EnxG/Hj, Snde/Hj) —+ (Y, B). By assumption
. s n-1 ’ n n-1
there are G-homotopies, relative to S xG/Hj, szIx(E xG/Hj, S XG/Hj)
—>(Y,B), from f°f toa G-map from EnxG/Hj into B. We have the

commutative diagram

Ix(E” xG/H,, s““le/Hj>

id f. ‘
F

nln
Ix(c.,c.)
(J’J

> (Y,B)

where Fj is well-defined by Fj(t,fj(x, gH)) = Fj'(t,x, gH). Thus Fj is a

it

G-homotopy, relative to é? into B. Define FA: IxA—>Y by FA(t,a)

f(a). Since the G-maps E:q and Fj, jeJ agree on any common set of
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definition, and since IxX has the topology coherent with {IxA, I Xc?}jeJ
they determine a G-map F:IxX—Y. Clearly F is a G-homotopy from

f to a G-map from X into B.
q.e.d.

We shall end this section with one more lemma.

Lemma 1.15. Assume that X is obtainable from A by adjoining equi-

variant n-cells, If C is a compact subset of X then C is included in

the union of A and a finite number of equivariant n-cells of (X,A).

Proof. Assume the contrary and form an infinite set {xi} consisting of
one point in C from each equivariant open n-cells which C meets. Thus
the set {xi} is closed in X and so is all its subsets. Hence {xi} is an

infinite discrete subset of C. This is impossible since C is compact,
g.e.d.

2. EQUIVARIANT CW COMPLEXES

Definition 2, 1. An equivariant relative CW complex (X,A) consists of a

Hausdorff G-gspace X, a closed G-subset A of X, and an increasing
filtration of X by closed G-subsets (X,A)k, k=0,1,..., such that the

following conditions are satisfied:

1, (X,A)0 is obtainable from A by adjoining equivariant 0-cells, and
for k>1, (X,A)k is obtainable from (X,A)khl by adjoining
equivariant k-cells,

2, X = @ (X,A)k, and X has the topology coherent with {(X,A)k}k>0 ,
k=0 [
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The closed G-subset (X,A)k is called the k-skeleton of the
equivariant relative CW complex (X,A). Observe that they are part of
the structure, but the G-pair (X,A) can of course have many different
filtrations, which make (X,A) into an equivariant relative CW complex.

If A=¢ wecall X an equivariant CW complex, and denote the
k-skeleton b;)r Xk.

Let (X,A) be an equivariant relative CW complex. Then
(X, (X,A)k), any k>0, is an equivariant relative CW complex, with
skeletons defined as follows:

[ (x,a)% for m <k

J

km
) = m
I(X.A) for m > k.

(X, (X, A)

Likewise ((X,A)k,A), any k > 0, is an equivariant relative CW complex

with skeletons

(X, 4™ for m <k
(%, a5, Ay = j

L(x,8)" for m > k.

Also observe that if (Z,C) is a relative CW complex, in the ordinary
sense, with skeletons (Z, C)k, k=0,1,,..., and H is a closed subgroup
of G, then (Z xG/H, CxG/H) is an equivariant relative CW complex with
skeletons (Z, C)k x G/H.

Let (X,A) be an equivariant relative CW complex. If X= (X,A)n,
but X # (X,A)n_l, we say that dim(X,A) = n. If no such integer n exists
we say that dim(X,A) = w. We agree to have dim(A,A) = -1.

1t follows directly from Definition 2.1 and Corollary 1.4 that for
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an equivariant relative CW complex (X,A) the integer (or «) dim(X,A)

is well-defined. We shall prove below that dim(X,A) depends only on

the G-pair (X,A), and does not depend on the filtration which makes (X, A)
into an equivariant relative CW complex. This result also follows from
the fact that (G\X, G\A) is a relative CW complex in the ordinary sense,
and for such Va, pair dim(G\X, G\A) is independent of the skeleton filtra-
tion. But we shall not use this and instead give a complete proof for the

equivariant case.

Proposition 2.2, Let (X,A) be a G-pair which admits the structure of

an equivariant relative CW complex. Then dim(X,A) is well-defined,

that is, does not dependA on the skeleton filtration.

Proof., Assume that (X,A) is an equivariant relative CW complex with
skeletons (X,A.)O CovoCC (X,A)n = X and such that (X,A)n-I #X. We

o
shall show that if A c YO ccY e, .. , U v9 = X is another filtration
q=0

of X which gives (X,A) the structure of an equivariant CW complex,

then Y" = X and Yn"1 # X. This proves that dim(X,A) is well-defined.

- -1
We use the notation A = (X, A) ! and A=Y . First we prove

- -1
that X - (X,A)n ! Y. Let ¢" bean equivariant n-cell of (X, (X,A)r1 ),
-1
which exists since (X,A)n # X. Since s compact, there exists a
e n .n n q
finite integer q, suchthat (¢ -¢ )c c < Y* (see Lemma 2.2 below).
. . n .n m
Let m be the smallest integer for which (¢ - ¢ )c¥Y . Thus there
m _m-1

exists an equivariant m-cell e™ of (Y ,Y ) such that

(cn- én) n (em- ém) #¢ . Since c - & is an open subset of (X,A)n:: X
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(by Lemma 1.2), it follows that (- én) n (em- &™) is open in e ™

On the other hand (X - Ym) U (em-— ém) is an open subset of X since

e &™ s open in Y™, and thus the set (cn— 'cn) N - &™) =

(cn- én) n{x - Ym) U (em- 'em)) is open in - &®. It follows that
G\((c™- &™) n (™~ &™) is open in both G\(c"- &") and G\(e"- &"). But

. ; on °m ]
since these two spaces are homeomorphic to E and E, respectively,

it follows that m = n. Thus X - (X,A)n"l - Yo

Now assume by induction that X - (X,A)p Y™, We shall prove

~1 -
that X - (X,A.)p =Y"™., Thus we have to prove that (X,A)p - (X,A)p l<: v7

p

Assume the contrary and let ¢© be an equivariant p-cell of

—1 .
((X,A)p,(X,A)p ), such that P cchm, where m >n, and

. ~1
LS ¢ Y™, Thus there exists an equivariant m-cell e of

™, Y™ Yy suchthat (cP- &P) n (e™- &™) £ 4. Now (X-(X,A)P)y(cP- eP)

is an open subset of X, Since m > n, it follows from the induction assump-

m

&™) = (cP- &P) n (- &™), Thus

tion that ((X - (X,A)P) U (cP- &P)) n (-
(cp- (':P) n (em- ém) is open in e ém. We also have

(P Pynx - Y™ y ™ &™) = (P- Py n (e - &™), and thus

(P &) ne™- ™) is open in cP- &P since (X - ¥YT) u(e™- &™) is

an open subset of X. By the same argument as above we get that m = p.

-1
This is a contradiction since p <n <m. Hence X - (X,A)p o Yn. Thus

by induction X - A C Yn, and hence X c Y. It follows that X =Y.

-1
If X=Y" , then by what we just have proved it would follow that

X = (X,A)n-l, which is a contradiction. Thus we have X = Y™ and

1

xX=Y"". q.e.d.
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Lemma 2.3. Let (X,A) be an equivariant relative CW complex and let

C be a compact subset of X, Then there exists an integer m such that

Cc(x,4)".
Proof. The proof is the same as that of Lemma 1,15, gq.e.d.

Definition 2.4. Let (X,A) be an equivariant relative CW complex, Y a

closed G-subset of X. We say that (Y,Y nA) is a subcomplex of (X,A)
if the filtration Y n (X,A)k, k=0,1,... gives (Y,Y NA) the structure

of an equivariant relative CW complex.

Lemma 2,5. Let (Y,Y NA) bea cubsomplex of the equivariant relative
CW complex (X,A). Then (X,Y UA) is an equivariant relative CW com-

plex, with skeletons (X, Y U A)k =Y Uy (X,A)k.

Proof. First observe that X has the topology coherent with Y (X,A)k,
k=0,1,..., It remains to show that Y U (X,A)k is obtainable from

YUy (X,A)k_l by adjoining equivariant n-cells, for k=0,1,..,, where
(X,A)"1 =A. Clearly Y y (X,.A)0 is obtainable from Y U A by adjoining
equivariant O-cells. Now assume that k >1, and let ek be an equivariant
k-cell of (Y N (X,A4)%, ¥ n (X,4)%"). Then 5n(x,4)5"} -

k-1) = ék, and thus the closed G-subset ek satisfies the

k

e N(Yn(x,Aa)
s . k k .

conditions in Lemma 1.3, Hence e = Cj , for some je¢J, where

k . . . . k k-1

{cj }j 5 is the collection of all equivariant k-cells of (X, A)7, (X, A) 7).

€
-1
Thus every equivariant k-cell of (Y n (X,A)k, Yn (X,A)k ) is an

-1
equivariant k-cell of ((X,A)k, (X,A)k ). It is now easy to see that
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Yu (X,A)k is obtained from Y U (X,A)k-l by adjoining all the equivariant
k-cells of ((X,A)k, (X,A)k-l) which are not equivariant k-cells of

k k-1
(Y N(X,A), YN(X,A) ). q.e.d.

We shall now consider the product of two equivariant relative CW
complexes. Let M be another compact, Hausdorff, topological group.
Let (X,A) be a G-pair, and (Y,B) an M-pair. Assume that (X,A) is
an equivariant relative CW complex with skeletons (X,A)k, k=0,1,...,
and that the M-pair (Y,B) is an equivariant relative CW complex with
skeletons (Y,B)p, p=0,1,.., . Let GXxM acton XxY in the obvious
way and consider the (G xM)-pair (X,A)x(Y,B) = (XxY, ZXxB U A xY).

Define a filtration of X xY by closed (G xM)-subsets ((X,A)x(Y, B))n,

n=0,1,... , through the formula

(X, A) (LB = U (XA x¥,B)P.
k+p=n

‘"Here k and p denote arbitrary integers, and (X,A)k = A for k<0,
and (Y,B)® =B for p <0. Thus all the sets ((X,A)x(¥,B))", n=0,1,
contain XxB A x¥, and we also get ((X,A)x(¥,B)" = XxB UAXY,
for n <0,

Consider the (GxM)-pair ((X,A) x(Y, B) , (X, A) x(Y, B)) )

p

Let ck be an equivariant k«cell of (X,A), and e  an equivariant p-cell

of (Y,B), where k+p=n. Then (c ko eP) n (X, A) x (Y, BN b

. . k - .k
ckxep Uckxep. Let f: (E xG/H, Sk xG/H)-—#(c ,¢ ) and

2 (prM/N, Sp-lx M/N) — (ep, 'ep) be equivariant characteristic maps

) n . n-l k _k-1

-1
for ¢ and eP respectively. Let h: (E%,8"™)—= (E5 S  )x(EF,sP™)
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be 2 homeomorphism, and let h, and h2 be the factors of h to Ek and

1
Ep, respectively. Define a (GxM)-homeomorphism

n k Sk-l

B (E%, 8% x (GxM) /(HxN) — (EX 857 wa/m x (EP, sP7Y) xm/N

by hix, (g, m)(HxN)) = (b (x), gH, h,(x), mN). Then the (GxM)-map

n-1

(ExE)R: E, S™71) x (GxM) /(HXN) —> (cFxeP, cXxaP U &¥xeP) satisfies

condition 3 in Definition 1.1, Also observe that ((X,A) ><(Y,B))n is the

p

-1
)n and all sets of the form ckxe , Wwhere

union of ((X,A) x(Y,B)

k+p=n, and that the sets of the form ckx &P - (ckx P U E:kx ep) are disjoint

from each other., We now have:

Proposition 2.6. Let the notation be as above. If both X and Y are

locally compact or if X is compact and Y is arbitrary, then
(X,A) x(Y,B) = (XxY, XxB UA XY) is an equivariant relative CW complex

with skeletons as defined above.

Proof. We first prove that under the above assumptions X xY has the

topology coherent with {((X,A) ><(Y,B))n}n> 0 Let Fc XxY be a subset
such that F n ((X,A) x(Y,B))n is a closed set for all n > 0.

If X and Y are locally compact, then X xY is locally compact
and hence compactly generated. Thus in order to show that F 1is a closed
set, it is enough to show that F N C is closed for each compact subset

C of XxY. Let CcXxY be compact. Then TTX(C)CX and T_(C)cY

Y
are compact and hence it follows by Lemma 2.3 that C (X,A)px (Y, B)r
for some p and r. Thus FNC=F N ((X,A) )<(Y,B))P+r N C is a closed

set. Hence F 1is closed.
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m
If X is compact, then X = X 0 for some m_, by Lemma 2. 3.

0
Moreover X xY has the topology coherent with {X x (Y, B)n}n> o Since
n m+n -
now X x(Y,B) c((X,A)x(Y,B)) our claim follows. The fact that
under the above assumptions ((X,A) x(Y, B))n has the topology coherent
. . . n-1 k p
with the family consisting of ((X,A) x(Y, B)) and all n-cells ¢ xe*,

k+p=n, is proved by arguments which are completely analogous to the

ones above,
q.e.d.

Proposition 2.7. Let (X,A) be an equivariant relative CW complex.

Then (X,A) has the G-homotopy extension property with respect to any

G-map.

Proof., This follows from Corollary 1.7, using induction and the fact

that IxX has the topology coherent with {I x(X,A)k}k> 0"
= gq.e.d,

Proposition 2.8, Let (X,A) be an equivariant relative CW complex,

with dim(X,A) <n, andlet (Y,B) be an equivariantly n-connected G-pair.
Then any G-map f{: (X,A) —> (Y, B) is G-homotopic relative to A, to a

G-map from X into B.

Proof. The proof is by induction on n. If n =0, then X is obtainable
from A by adjoining equivariant O-cells, and our assertion follows from
Lemma 1.14. Now assume that our assertion is correct for the value
n-1, where n>1. We shall prove that it is correct for the value n.

Let f:(X,A)—> (Y,B) be a G-map, where dim(X,A) <n, and (Y,B) is

-1
equivariantly n-connected. Consider the G-map fl: ((X,A.)n ,A)— (Y, B).
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Since dim((X,A)nnl,A) <n-1 and since (Y,B) is equivariantly (n-1)-
connected, it follows by the induction assumption that there exists a
G-homotopy relative to A, F: Ix((X,A)n—l,A) — (Y, B), from f| toa
G-map from (X,A)n”1 into B. Then by the G-homotopy extension property,
there exists a G-homotopy F:IxX—>Y suchthat F:Ix (X,A)n"l = F and

F(0,x) = f(x), for x¢X. Define f,: (X, (X, A% — (v,B) by £,() =F (1, %).

Since (Y,B) satisfies condition TTn, and X = (X,A)n is obtainable from

(X,A)n“1 by adjoining equivariant n-cells, it follows by Lemma 1.14 that

f, is G-homotopic relative to (X,A)n“1 to a G-map from X into B.

1

Since f is G-homotopic relative to A to f., it follows that f is G~homo-

1

topic relative to A to a G-map from X into B. q.e.d

Corollary 2.9. Let (X,A) be an equivariant relative CW complex, and

let (Y,B) be equivariantly n-connected for all n. Then any G-map
f: (X,A) —> (Y,B) is G-homotopic relative to A, to a G-map from X

into B.

Proof. It follows by induction from Proposition 2.8 and Proposition 2.7

that there exist G-homotopies

F:Ix(X,A)— (¥,B), k=0,1,...

k
such that
1. FO(O,X) = {(x), for x¢X.
2. Fk(l,x) = Fk+1(0,x), for xe¢ X,
3. Fk is a G-homotopy relative to (X,A)k-l.

4. F (1 (X, 4)5) c B.
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Now define f:Ix(X,A)—> (Y,B) by the formula

1
[t-o-p V0
1 1 ’ "k k¢l ? T =
\k kt1 ,

_ k
F(1l,x) —Fk+1(1,x) , for xe(X,A) .

Ft,x) = Fk-l

It remains to show that F is continuous. Consider F\I x(X,A)m , wWhere

) is a finite union of closed subsets

m > 0. Since the set [0,1-—l—]x(X,A
- m+a

on which F is continuous it follows that F|[0, 1 - ~r-n~l:2] X (X,A)m is con-

tinuous. Since each G-homotopy Fm+p , where p>1, is relative to

m - 1
(X,A)"7, it follows that F(t,x) = Fm+1(l,x), for 1 - iz < t <1, and
y for xe(X,A)™, it follows that

xe¢(X,A) . Since also F(l,x) =F

m+1’

1
Fil - oy 1] x(X,A)m is continuous, and hence FlI )((X,A)m is con-~
tinuous. Thus F is continuous since IxX has the topology coherent with

K
Ix (XA ] o q.e.d.

For any two G-spaces X and Y we denote by [X;Y] the set of

G-homotopy classes of G-maps from X into Y.

Proposition 2.10. Let (Y,B) be an equivariantly n-~connected G-pair,

and denote by i: B —> Y the inclusion. The induced function
i#: [X, B] — [X, Y]
is surjective for all equivariant CW complexes X with dimX <n, and

i, is injective for all equivariant CW complexes with dimX < n - 1.

it

If (Y,B) is equivariantly n-connected for all n, then i# is a bijection

for all equivariant CW complexes X.
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Proof. Assume that (Y,B) is equivariantly n-connected. It follows
directly from Proposition 2.8 that i#é [X,B] — [X, Y] is onto if

dimX <n. Let dimX <n -1, and assume that the G-maps f,f': X —> B
are such that there exists a G-homotopy F:IxX—>Y from if to if’.
Thus F:(IxX, 0xX Ul xX)— (Y,B), and since dim(IxX, 0xX U IxX)<n
it follows by Proposition 2.8 that F is G-homotopic relative to
O0xXyUlxX toaG-map F:l xX~—>B. Thus F is.a G-homotopy in B
from f to f. This shows that iy is injective if dimX <n - 1. If
(Y,B) is equivariantly n-connected for all n, we use Corollary 2.9 to

show that i# is a bijection for all equivariant CW complexes X.
q.e.d.

Together with the mapping cylinder construction Proposition 2.10
will give us an equivariant Whitehead theorem. But we shall first con-

tinue towards the proof of an equivariant skeletal approximation theorem.

Lemma 2.11. Let Y be a G-space and f: EkXG/H —>Y a G-map.

Let {UJ_ }jeJ be a covering of Y by open G-subsets. Then there exists
a triangulation |K| ¥ Ek of Ek such that for any simplex s¢ K there
exists je¢J suchthat f(|s| xG/H) c Uj.

Proof. The sets (Ekx {eHhH N ful(U.l) form an open cover of

Ekx {eH]} = EX, Thus there exists a triangulation |K| ¥ Kk of EF such
that for any simplex s ¢K there exists je¢J such that

|s] < (E¥x {eH}) nf'l(Uj). Thus f(lsy)cuj and since U, is 2 G-subset

of Y we have f(|s| xG/H)cU..
J g.e.d.
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Lemma 2.12. Let X be obtainable from A by adjoining equivariant

n-cells where n >1. Then (X,A) is equivariantly (n-1)-connected.

k-1><C‘r/H) —> (X,A) be a G-map where H isa

Proof. Let f: (Eka/H, S
closed subgroup of G and 0 <k<n-1. Let {C?}jeJ be the collection
of equivariant n-cells of (X,A). Since the set f(Ekx G/H) is compact,

there exists by Lemma 1.15 a finite number of equivariant n-cells, say

n

Cl,

cees c:n, such that we have f(Ekx G/H) A U cll1 Ueoo U c:;l. For each
i, 1 <i<m, choose a point x. € c?- c? Then the sets

A=A U(clll—le) Ueoo U(c:n- me.) and c?— é?, l<i<m forma
covering of X by open G-subsets of X. By Lemma 2.11 there exists a
triangulation ‘Ki = Kk of Kk such that for every simplex s¢ K, we
have either f£(|s|xG/H) =A or f(|s|xG/H) c c?- Ez? for some i, l<i<m.
Let \L‘ be the subpolyhedron of |K\ = Ek, which is the space of all
simplexes s ¢K for which we have f(\sle/H) cA , and let ‘Li‘ be
the subpolyhedron which is the space of all simplexes s¢ K for which we
have f(|s|x G/H) cc] - c’: i=1,...,m. Wehave S~ c|L| and
Ek-“.-’lK!: EANY lLll Ueeo UL |, andif i#j then | {n lei = .
Denote ‘Ll\ = ‘Lil niL| = ‘Li NL|, i=1,...,m, andobserve that
(‘Li" l.Li‘) is a relative CW-complex, in the ordinary sense, with
dim(\Lil, l-Li\) <k<n -1, Thus (‘Li\x G/H, \.Li\x G/H) is an equivar-
iant relative CW complex and dim(\Lile/H, ‘Li\xG/H) <n - 1.

Now observe that the G-pair (cl.:- é?, (c?- é?) - Gxi) is

G-homeomorphic with the G-pair ((ER-8""1) xG/H,, ((E"- s7-1) - 0) xG/H,)



29

for some closed subgroup Hi of G,i=1,...,m. Since the pair
(En- Sn-l, (En- Sn-l) - 0) is (n~1l)~connected, in the ordinary sense, it

follows by Lemma 112 that the G-pair (E™-8"™)xG/H, (z-s™!

}-0)xG/H,)
is equivariantly (n-1)-connected. Thus it follows from Proposition 2.8

: n .n , n .n .
that the G-map f|: (| L, |xG/H, | L, [xG/H) — (c - ¢/, (¢, -¢) - Gx) is
G-homotopic relative to |L1l XxG/H to a G-map from ‘Li‘ xG/H into

(c?- c':?) - Gxi c A. Thus these G-homotopies together with the constant

homotopy on |L|xG/H , determine a G-homotopy relative to | L] xG/H,

F:1 xEkx G/H—> X from f to a G-map f{" Ekx G/H —>A. Since

k-1 . . . . k-1
S c |L] it follows that f is G-homotopic relative to S "xG/H to
f’:Ekx G/H—A. Clearly A is a strong G-deformation retract of A.

Thus f’ is G-homotopic relative to Sk-le/H to a G-map f":Eka/H—->'A.
Hence f is G-homotopic relative to Sk-lx G/H to a G-map from Ekx G/H

into A. q.e.d.

Corollary 2.13. Let (X,A) be an equivariant relative CW complex.

Then for any n > 0, (X, (X,A)n) is equivariantly n-connected.

Proof. We first prove by induction that ((X,A)m, (X,A)n) is equivariantly

n-connected for all m > n. Since (X,A)m_1 is obtainable from (X,A)n

by adjoining equivariant (n+l)-cells, it follows by Proposition 2.12 above

that our claim is true for the value m=n+1. Nowlet m>n+1 and
m m-1

assume that our claim is true for the value m-1l. Since ((X,A) , (X, A) )

is equivariantly (m-l)-connected, it is also equivariantly n-connected.
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Let f£: (Ekx G/H, Sk-le/H) — ((X,A)m, (X,A)n) be a G-map where
0 <k<n. Thus {f is G-homotopic relative to Sk-le/H to a G-map
£ Ekx G/H —> (X,A)m-l. Since ((X,A)m-l, (X,A)n) is equivariantly
n-connected by the induction assumption, it follows that f’ is G-homotopic

k

relative to sk‘le/H to a G-map f: E xG/H — (X,A)". Thus f is

G-homotopic relative to Sk~1x G/H to a G-map from Eka/H into (X,A)n
which shows that ((X,A)m, (X,A)n) is equiv#riantly n~connected. Now

let f: (Ekx G/H, Sn..le/H)-—%(X,(X,A)n) be any G-map, where 0 < k <n.
Since the set f(Eka/H) is compact, it follows by Lemma 2.3 that there
exists m such that f(Ekx G/H) c (X,A)m. Then by what we already proved,
f is G-homotopic reclative to Sk—le/H to a G-map from Eka/H into

n
A)T,
(X, 4) q.e.d.

We are now able to prove an equivariant skeletal approximation
theorem. Let again M denote another compact, Hausdorff, topological
group, and assume that the M-pair (Y,B) is an equivariant relative CW
complex with skeletons (Y, B)k, k> 0. Let ¢:G—> M be a continuous
homomorphism. Assume that the G-space (X,A) is an equivariant rela-
tive CW complex, with skeletons (X,A)k, k> 0. A map f:(X,A)—> (Y, B)
is called a p-map if f(gx) = p(g)f(x), forall geG, xeX. We say that a
p-map f: (X,A) —> (Y,B) is skeletal if f((X,A)k) c (Y, B)k, all k> 0.
Observe that f is a p-map if and only if { is a G-map into Y when Y is

made into 2 G-space through ¢: G —> M. But it is perhaps only as an

M-pair that (Y,B) is an equivariant relative CW complex and this is why
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we have formulated the concept of skeletal map in this generality.

Theorem 2.14. Let the G-pair (X,A) and the M-pair (Y,B) be equivar-

iant relative CW complexes, and let ¢: G —> M be a continuous homomor-
phism. Assume that the ¢p-map f: (X,A) —> (Y,B) is skeletal on the sub-
complex (X', X'NA) of (X,A). Then there exists a skeletal @-map

f:(X,A)—> (Y,B) which is ¢p-homotopic rel. X’ to f.

Proof. By Corollary 2.13 the M-~pair (Y, (Y,B)k) is equivariantly
k-connected, k= 0,1,... . Now make Y into a G-space through

p: G —> M. By Corollary 1.13 the G-pair (Y,(Y, B)k) is equivariantly
k-connected. From now on we shall consider Y as a G-space. Consider
the G-map f: ((X,A)O,A uxX’'n (X,A)O)) —= (Y, (Y, B)O). By Proposition
2.8 there exists a G-homotopy relative to A U (X' N (X,A)O),

0
FO:Ix(X,A)O —>Y from f[ to a G~-map from (X,A)O into (Y,B) .

0
Extend F, toa homotopy relative to X' U A, F(‘)': IX((X,A) UX)—Y.

By the G-homotopy extension property there exists a G-homotopy

-14‘_6: IxX—>Y from f{ which extends Fé . Thus -]5:‘0 is a homotopy rela-

= 0
tive to X' and to A, and Fo(l X (X,A)O) < (Y,B) . Define flz XY by

1 1
fl(x) = Fo(l,x). Then we have flz ((X,A)l, (X,A)0 U (X'n(X,A))—=(Y,(Y,B)).
Now in the same way as above using Proposition 2.8 and the G-homotopy

extension property we see that there exists a G-homotopy relative to X’

and to (X,A)o, ‘Fl: IxX—>Y from f,, and such that

1
E‘l(l X (X,A)l) c (Y, B)l . Continuing in this way we see that there exist

G-homotopies relative to X', Fk: IxX—>Y, k=0,1,..., such that
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1. Eo(o,x) = £(x), for xe¢ X.
2. Fk(l,x) = Fk+1(0,x), for xeX.
3. Ek is a homotopy relative to (X,A)k-l.

4. F 0 x(x,8) c(¥,B)".

Now define F:IxX —>Y, by the formula

F(t,x)=.bk_l "1‘-—"*—1—-——,}{ , for l-Est_{l_m, k>1.
.,k k+l
F(l,x) =F,  (1,x) for (x, A)F
¥ - k+1 )X’ o XE ’ -

It is easily seen that F is continuous (see the proof of Corollary 2.9).
Clearly the G-map f: (X,A) —> (Y, B) defined by £(x) = F(1,x) is a map

with the desired properties. q.e.d.

Corollary 2.15. Let the G-space X and the M-space Y be equivariant

CW complexes, and let ¢: G —> M be a continuous homomorphism.
Then any m~map from X to Y is p-homotopic to a skeletal p-map. If
skeletal p-maps from X into Y are ¢p-homotopic, there exists a skeletal

¢-homotopy between them. Qe d.

3. EQUIVARIANT WHITEHEAD THEOREM

Let X and Y be two arbitrary G-spaces, and f: X—>Y bea
G-map. We shall consider the mapping cylinder of f. Although there is

no difference between the ordinary and the equivariant case, we shall give
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the details in order to fix the notation and make it clear that the mapping
cylinder inherits a continuous G-action.
Let IxU Y be the disjoint union of IxX and Y; it is a G-space

in the obvious way. Define a relation ~ in IxX U Y by

(1,%) ~y and v~ (1,%) if f(x) =y, xeX, ye¥.
(1,X)~(1,x’) if (x):f(xl ) %, xlfx-
o ~ O for (zeIxX{JY.

Thus ~ is an equivalence relation in I xX i] Y. Let Zf denote the set

of equivalence classes, and let m: IxX 'UY —~3 Z . be the natural prcjec-

f
tion. We make Z £ into a topological space by giving it the quotient
topology from m. We denote m(t,x) = [t,x] and m(y) = [y]. Let

37: Gx(IxX I:JY) —>IxX UY be the G-actionon IxX (JY. If o~8,
where o, B¢ IxX UY, it follows, since f is a G-map, that (g, o)~ 7 (g, )

for all ge¢G. Thus we have the commutative diagram

Gx(IxXUY) —Y—IxXUY

idxnm J/ 5
4
Z

Y
Gfo > ¢

where y is well-defined by y(g,[a)) = [¥ (g, o).

Since G is compact and T is a quotient map, it follows that
id xT is a quotient map. Thus y is continuous and makes Zf into a
G-space.

We have the G-map i: X —> Z_, defined by i(x) = [0,x]. This is

f,
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an imbedding of X as a closed G-subset of Z_,. We shall consider X as

f.

a closed G-subspace of Z_ through i. We also have the G-~map j: Y— 2Z

f £’

defined by j(y) = [y]. We shall consider Y as a closed G-subset of Zf,

onto Y, r:Z —Y,

through j. Finally, we have a G-retraction from Zf p

defined by r[t,x] = [1,x] = [£(x)], for {t,x)e IXX,

and rly] =[yl, for yeY.

Exactly as in the ordinary case we now have

Proposition 3.1. Let the notation be as above. The diagram

X >Zf
Y

commutes. The G-retraction r is a G-homotopy equivalence, with

G-homotopy inverse j: Y —> Z More precisely, jor: Z_ —>Z_ is

£ f f

G-homotopic relative to Y, to the identity. Moreover (Zf, X) has the

G-homotopy extension property with respect to any G-map.

Proof. That the diagram commutes follows from the definitions. Define

F:Ix Zf"~‘> Zf by
F(r,[t,x]) = [st +1 - 7, %], for (r,t,x)elxIxX.
F(r, [yl = ly] , for yeY.

Then F is a G-homotopy relative to Y from jor to the identity.
It remains to show that (Zf, X) has the G-homotopy extension

property. Let h: Z,~—>W and H:IxX—> W be G-maps such that

f
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H'(0,x) = h([0,x]) for xe¢X. Then define H:Ifo-—>W by
2t-
( -ztjf_,x], 0<r<2t<?2, xe¢X
H(T’[t:x]) =
XH,(%?,X), O<2t<t<l,xeX
H(r,{y]) =hly], yeY.

Then H is a G-homotopy from h, and H extends H'. g.e.d

Definition 3.2. Let X and Y be two G-spaces. We say that a G-map

f: X—>Y is an equivariant n-equivalence if the G-pair (Zf, X) is equi-

variantly n-connected.

Proposition 3.3. A G-map f: X—>Y is an equivariant n-equivalence

if and only if the induced map fH: XH — YH is an n-equivalence in the

ordinary sense for every closed subgroup H of G.

Proof. It follows from Corollary 1.11 that f: X —> Y is an equivariant

n-equivalence if and only if ((Zf)H, XH) is n~connected for each closed

H
subgroup H of G. But it is easy to see that the pair ((Zf)H, X)) is

homeomorphic with the pair (Z XH). This completes the proof since

H’
H _H H £
f: X —>Y" is a n-equivalence if and only if (Z e

f

XH) is n~connected

(either by definition or a standard fact). g e.d

Remark. A map h: V-—>W between topological spaces is an n-equiv-~
alence if h*: rrk(V,v) — nk(W,h(v)) is bijective for 0 <k <n and onto
for k=n, for every veV. This is equivalent to (Zh, V) being n-con-

nected. Observe that if h: V—> W is a homotopy equivalence, then
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h*: Trk(V,v) — 'rrk(W,h(v)) is bijective for all k> 0, and all ve¢V, and
also observe that this fact needs a proof since a homotopy inverse to h

need not map h(v) back to v.

Corollary 3.4. A G-homotopy equivalence is an equivariant n-equivalence

for all n> 0.

Proof. If f: X-—>7Y is a G-homotopy equivalence, then clearly the induced

map fH: XH —n YH is a homotopy equivalence and thus an n-equivalence

for all n > 0.
gq.e.d.

Theorem 3.5. Let f: X—> Y be an equivariant n-equivalence. The

induced function

f,:[C;X] —[C;Y]

# L
is surjective for all equivariant CW complexes C with dimC <n, and
f# is injective for all equivariant CW complexes C with dimC <n - 1.

If £ is an equivariant n-equivalence for all n, then f# is a bijection for

all equivariant CW complexes C.

Proof. It follows from Proposition 3.1 that we have a commutative

diagram

[C;:X] >[C;Zf}

[c;Y]

where T, is a bijection. Our claim now follows by Proposition 2. 9.
g.e.d.
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Corollary 3.6, Let X and Y be equivariant CW complexes and f: X —> Y

an equivariant n-equivalence where max(dimX, dimY) <n-1. Then f is

a G-homotopy equivalence.

Proof. Since f#: [Y;X]—>[Y;Y] is onto there exists a G-map h: Y —> X

such that fh is G-homotopic to id,. Since f#: [X;X] —[X,Y] is injec-

tive and f#[hf] = [fhi] = [1dY f] = [f 1dY] = f#[ldX] it follows that hf is

G-homotopic to idX. Thus h:Y¥Y—> X is a G-homotopy inverse to f{.
gq.e.d.

Corollary 3.7. Let X and Y be equivariant CW complexes. Then a

G-map f: X —> Y is a G-homotopy equivalence if and only if for each
. H _H H .
closed subgroup H of G the inducedmap f : X —>Y induces a
H H
one-to-one correspondence between the path components of X and Y ,

and isomorphisms f]:: Trk(XH,x) — nk(YH, f(x)), for all k>1 and every

H
xeX . y.e.d.
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CHAPTER 11

DIFFERENTIABLE G-MANIFOLDS ARE EQUIVARIANT

CW COMPLEXES

In this chapter we prove that any differentiable manifold with a
differentiable action of a compact Lie group is an equivariant CW complex.
In fact a stronger result is proved. We prove that a differentiable G-
manifold has what we call an equivariant triangulation. C. T. Yang has
proved that the orbit space of a differentiable G-manifold is triangulable,
see C. T. Yang [18]. We prove that the part over a ''suitable" simplex
in the orbit space is an equivariant simplex of some type. These equi-
variant simplexes are defined in Definition 1.1. Our proof makes repeated
use of the ''differentiable slice theorem!'' and of the 'covering homotopy
theorem' of Palais in R. Palais [13].

In Section 4 we give a partially new proof of the result by Atiyah-
Segal that equivariant K-theory of a compact differentiable G-manifold
is finitely generated over R(G), the representation ring of G. The
equivariant Whitehead theorem of Chapter I gives a necessary and suffi-
cient condition for a G-map between differentiable G-manifolds to be a

G-homotopy equivalence.

1. EQUIVARIANT SIMPLEXES

In this section G denotes a locally compact, Hausdorff, topological
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group.

Let An be the standard n-simplex, that is

n
_ n+l _
An- {(xo,...,xn)eR. !E)Oxi-- 1, x.l_>_0}.

We consider A 0 <m < n, as a subset of An through the imbedding of

Am into An which is given by (xO, e ,xm) = (xo, KR O, “:O)

“him
Definition 1.1, ILet KO’ e ,Kn be a sequence of closed subgroups of G
such that KO D Kl D D Kn. We define the standard equivariant

n-simplex of type (KO, caey Kn) denoted by

(An;K .--,Kn)

O’

to be the G-space constructed in the following way. Consider the G-space

An xG, and define a relation ~ in An xG as follows:

1 - ! -
(%,8) ~ (x,8') <=>gK_=g'K_¢G/K_, where x¢4_=-A_ -

Thus ~ is an equivalence relation in An x G, and we define

(8,5 Koo oK) = (8_XG) ~.

0"

We denote by p: AnxG —tn (An; K . Kn) the natural projection and by

0"
[x,g]e (An; Kisooo ,K ) the image of (x,8) ¢ A xG under this projection.

We now have the commutative diagram

g

Gx(AnxG) > AnxG

id xp P
Gx(p 3K K ) s - (A K K )
X An, O!"', n An’ O?"'} n

where ¢ (g, (x,g)) = (x,88), and ¢ is well-defined by o(g, [x.g]) =[x,Eg].
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We shall show in Lemma 1.3 below that id xp is a quotient mapping.

Thus ; is continuous and makes (An; KO, .o ,Kn) into a G-space.

Lemma 1.2. The space (An; K . ,Kn) is Hausdorff.

0’°

Proof. Let [x,g] #[x,g'le (An; K,... ,Kn). If x+# x', we choose dis-

0

joint open neighborhoods U and U’ of x and ¥/, respectively, in A,
-1

We have p (p(UxQG)) = UxG, and similarly for U’. Thus p(UxG) and

p(U’ xG) are disjoint open sets containing [x,g] and [x/, g’] respectively.

If x=x', let m be suchthat x = x'¢ Ay~ A 0 <m <n. Since

m-1’
[x,g] # [¥,g'], we have gKm #Ag'ngG/Km. Since G/Km is Hausdorff
we can choose disjoint open neighborhoods V and V' of gKm and
g'Km respectively, in G/Km. Denote W = 6-1(V) and W'= 5_1(V'),
where §: G —> G/Km is the natural projection. Then W and W’ are
disjoint open subsets of G, and moreover we have WKm= W and

w’ K =W Thus WK.=W and W' Ki=W', for m <i<n, since

Ki < Km for m <i <n. From this it follows that

-1
P o(pUA-a  JxW)=(a -8 JxW
. ’ / .
and similarly for W'. Hence p((An- Am-l) XxW) and p((An-« Am“l)xW) are
disjoint open sets containing [x,g] and [x,g’], respectively. o e.d
Lemma 1.3, The map idxp: G x(AnxG) —= G x(An; KO’ .o ,Kn) is a

quotient map.

Proof. By a '"compactly generated space' we mean a space which is

compactly generated and Hausdorff. Since AnxG is locally compact and
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Hausdorff, it is compactly generated. Since we already showed that

(An; K Kn) is Hausdorff, it follows by 2.6 in Steenrod [17] that

0, L N ) >
(An; KO’ coey Kn) is compactly generated. Our claim now follows by

Theorems 4.3 and 4.4 in Steenrod [17], since G is locally compact and

Hausdorff.
g.e.d.

Remarks. The natural projection p: AnxG — (An; K Kn) is not

O,--.,

an open map in general. Let G = Sl, then p: A xSl — (Al; Sl, {e}l) is not

1
an open map.
The space (An; KO’ ey Kn) is not locally compact in general.

Let G = R, the additive group of the real numbers, then (Al; R,{0}) is

not locally compact.

2. EQUIVARIANT TRIANGULATIONS

In Definition 2.1 and Lemma 2.2 below G denotes a locally com-
pact group. As before a ''compactly generated space'' means a space

which is compactly generated and Hausdorff.

Definition 2. 1. Let X be a compactly generated G-space. An equivariant

triangulation of X is a triangulation t of the orbit space G\X
t: |C| —> G\X
such that for each n-simplex s ¢ C there exists closed subgroups

KO D D Kn of G and a G-homeomorphism

-1
hi (A Kgpe oo, K) ——> 11 (8] s]))

which induces
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An-&—> |s‘ —ﬂ—»t(‘s.)

on the orbit spaces. Here f: A — |s| denotes some linear homeomor-

phism.

Lemma 2.2. Let X be a compactly generated G-space and let

t: |C‘ —> G\X be an equivariant triangulation of X. Then X has the
topology coherent with the family {Tf-l(t(lcnl))}n> or Moreover for each
n the subspace nnl(t(l Cn])) has the topology coh:zrent with the family

{'ﬂ'-l(t(‘Cn“1 ‘)), Tr-l(t(|s|))} where s runs through all n-simplexes of C.

Proof. Let B c X be suchthat B nn_l(t(‘Cn‘)) is a closed set for all n.
We have to show that B is closed. Since X is compactly generated, it

is enough to show that B N F 1is a closed set for each compact subset F

of X. Let Fc X be compact. Since m(F) cG\X is compact and G\X
has the topology coherent with {t(‘Cnl ) }n> 0 it follows that there exists

m - -1 m
m such that m(F) ct(|C |). Thus the set BN F= BN (t(lc (N NF
is closed. This completes the proof of the first assertion in Lamma 2.2.

The other claim is proved in an analogous way. Qe d

Proposition 2.3. Let G be a compact group. Let X be a compactly

generated G-space which can be equivariantly triangulated. Then X is

an equivariant CW complex.

Proof. Let t: IC\ —> G\X be an equivariant triangulation of X. We
-1
claim that X is an equivariant CW complex with skeletons (™,

-1
n>0. Since X has the topology coherent with {m (t(\Cn‘))}n> 0 by
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-1
Lemma 2.2, it only remains to show that 17 (t(\Cnl)) is obtainable from
-1 n-1 s .
T (t(|c ])) by adjoining equivariant n-cells.
-1

We claim that the collection {m (t(|sl))}, where s runs through
all n-simplexes of C, satisfies conditions 1, 2, and 3 of Definition 1.1
in Chapter I. Condition 1 follows from Lemma 2.2. Observe that

- -1 .
n-1 |)) =17 (t(‘s[)) and that condition 2 is clear.

sy n e
Let

-1
hi (A5 Kgy oo o s K ) —> CUEL);

O)

be a G-homeomorphism which induces

a, 2 1s] > w(ls])

Y

on the orbit spaces. Here J denotes a linear homeomorphism. Denote

by (An; K Kn) the part of (An; K . ,Kn) which lies over An .

O,.oa, O,-.

The natural projection p: AnxG — (An; K .o, Kn) factors through

0’

p: AnXG/Kn — (An; KO’ e ,Kn). We have

pt (A XG/K_, A xG/IK ) == (&5 Kp, oo K)o (B 5Ky, o K )

and p restricts to a G-homeomorphism from A xG/K - A_XG/K_ to
n I n n

n .n-l1

; ~ (A . . : — ,.
(An’ K :K ) (An> K )Kn) Let (E :S ) (An An) be a

0 n 0"

homeomorphism. Then the G-map
- -1 -1 .
hplaxid): (E"XG/K_, 8" X G/K ) —> (n(t(|s ), 7 ((|5]))

shows that condition 3 is satisfied.
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3. EQUIVARIANT TRIANGULATION OF A DIFFERENTIABLE
MANIFOLD WITH A DIFFERENTIABLE ACTION OF A

COMPACT LIE GROUP

We shall prove that if a compact Lie group G acts differentiably
on a differentiable manifold M, then the G-space M can be equivariantly
triangulated. By a theorem of C. T. Yang, see [18], the orbit space of
such an action can be triangulated. This theorem is of course the basic
starting point for the proof of our result. In this chapter G will always
denote a compact Lie group.. By a differentiable G-manifold M, we
mean a differentiable manifold M together with a differentiable action of
G on M.

We shall first review some other basic results. Let us begin with
the '"differentiable slice theorem.' ILet G be a compact Lie group, and
K a closed subgroup of G. Thus K itself is a compact Lie group by a
classical result of E. Cartan. ILet V be an orthogonal representation
space for K, thatis V is a finite dimensional real euclidean space on
which K acts by orthogonal transformations. By \9'(1) and V(1), we
denote the open and closed disc, respectively, of radius = 1 in V. Then
\7’(1) is a differentiable K-manifold. Consider ’\3’(1) xG and define a
right K-action on V(1) xG by (v,g, k) =~ (k"*v,gk) where v¢V(l),
ge¢G and ke¢K. We denote by \7(1) xKG = (’\?‘(1) x G)/K the orbit space
of \3‘(1) x G under this right K-action and by {v,g} e\c}(l) XKG the image

of (v,g) g\cl"(l) X G under the natural projection.
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[o]
Define p: V(1) xKG —>G/K, by p({v,g}) =gK. Thus
[¢]
p: V(1) xKG — G/K is the fiber bundle with fiber ‘3’(1) associated with

the principal K-bundle p: G —> G/K. Thus '{J’(l) X,,G gets the structure

K

of a differentiable manifold. Moreover, we can define a left G-action on

O ~ ~ ~ o]
V(l)xKG by (g,{v,g}) > {v,gg}, where ge¢G and {v,g}qV(l)xKG.

O
In this way V(1) xKG becomes a differentiable G-manifold. We can

identify the differentiable G-manifold G/K with the O-section in '\c/)'(l) xKG
through the imbedding givenby gK > {0,g} ¢ \7’(1) xKG where gKge G/K.
The differentiable K-manifold ’\?(l) can be identified with the K-subset

of \(}(1) xKG consisting of all elements of the form {v,e} where ve\?'(l),

through the K-imbedding given by v +> {v,e}, v 5\7'(1) (observe that

{kv,e} = {v,k} =k {v,e}).

Differentiable slice theorem. Let M be a differentiable G-manifold, and

let x¢M. Then there exists an orthogonal representation space V for
GX, and a G-diffeomorphism

h: \7(1)XG G — U,
X

where U is an open G-neighborhood of Gx in M, and we have h({0,e}) =x.
This theorem was first proved by J. L. Koszul, see Koszul [9],

theorem on page 139. See also Montgomery, Samelson, Yang [10], Lemma

3.1. Let the notation be as above and denote h(\(}(l)) = 8. Then x¢S,

GS = U, and the restriction of h to \3’(1) is a K~diffeomorphism from

\7‘(1) onto S. It is the set S that is called a slice at xe¢M, and U is

called a tubular neighborhood of the orbit Gx. For the important
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generalization of the notion of slice to actions on topological spaces, and
a ''slice theorem!' for such ;,ctions see Montgomery, Yang [11], Definition
and Theorem ! on page 108, and Mostow [12], Theorem 3.1. For a good
exposition ofrthese questions see Palais [13]. We shall not need a direct
use of the general topological slice theorem, but it should be observed
that it is used in the proof of the ''covering homotopy theorem' by R.
Palais, which we shall use.

Let us next consider the following special situation. Assume that
X 1is a completely regular space on which G acts in such a way that the
action has only one orbit type, say = (H'). Let m: X —> G\X be the
projection onto the orbit space. By a theorem of A. M. Gleason, see
Gleason [7], Theorem 3.6, this projection is locally trivial. We shall
consider the situation in somewhat more detail. Let the closed subgroup
He(H') be an arbitrary representative for the orbit type. By N(H) we
denote the normalizer of H in G. Then the compact Lie group N(H)/H
acts freely on the completely regular space XH, and the projection onto
the orbit space of this action is 1r]: XH ——> G\X. Thus by Theorem 3.1
(or the already cited Theorem 3. 6) in Gleason [7], ﬁl: XH == G\X is a
principal (left) N(H)/H bundle, that is, it is locally trivial. Now N(H)/H
acts on G/H on the right by (gH,aH)> gaH, where gH¢G/H and
aHe¢ N(H)/H. Define a left N(H)/H action on G/H xXH by
(a.H,gH, x) — (g a'IH, ax), where aH¢N(H)/H and (gH,x)e¢G/H xxH,
and denote the orbit space under this action by G/H XN(H)/H XH, and

denote by {gH,x} the image of (gH,x) under the natural projection.
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H

Define p: G/H X% X" —G\X by p({gH,x}) =m(x). Thus p is the

N(H)/H
fiber bundle with fiber G/H associated with the principal (left) N(H)/H

bundle 1|: XH - G\X. Moreover, we can define a left G action on

G/H x xH by (g, {gH,x})— {ggH,x}. Now the mapping

N(H)/H

H
v: G/H XN(H)/HX —= X

defined by y({gH,x}) = gx, is a G-homeomorphism (see Borel [1], 1.1
and Lemma 1.2).

Finally, let us consider the ''covering homotopy theorem!'' of
Palais. In the following, X and Y denote completely regular G-spaces.
A G-map f: X—> Y is called isovariant if the induced map f|:Gx-——>G f(x)
is a bijection for each x¢ X. In this case f]: Gx—> Gi(x) is of course
a G-homeomorphism. For any G-map f: X—>Y we have GXC G

f(x)

for all x¢X, and f is isovariant if and only if GX= G for all x¢ X.

f(x)

Since a compact Lie group is not conjugate to a proper subgroup of itself,

oy for

it follows that f: X —> Y is isovariant if and only if (X (H)

(H)
every orbit type (H). It will be convenient to extend this terminology
as follows. Let X'=G\X and Y'=G\Y be the orbit spaces. A map
s: X’—> Y’ will be called isovariant if s(XZH)) c YEH) for every orbit
type (H). Thus if an isovariant map s: X'~ Y’ can be lifted to a G-map
f: X—» Y, then f is isovariant.

It is easy to see that if an isovariant G-map f: X —> Y, where X

is locally compact, induces a homeomorphism between the orbit spaces,

then f is a G-homeomorphism (see Proposition 1.1.18 in Palais [13]).
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(An; KO’ .o ,Kn) is Hausdorff, and since G now is assumed to be com-~

pact it follows that (An; K.,..., Kn) is compact Hausdorff. Thus

0’

(An; KO’ ceey Kn) is normal and hence completely regular by Urysohn's
theorem. Since An X G is second countable and p: AnxG - (An; KO,...,Kn')
is closed it follows by, for example, Theorem 12 in Chapter 3 and

Theorem 20 in Chapter 5 in Kelley's book [8], that (8K K ) is

o Ky
second countable. A differentiable manifold M is second countable by
definition and it is also completely regular, and thus any subset of M has

the same properties.

We now state:

Covering homotopy theorem. (R. Palais) ILet X and Y be locally

compact second countable G-spaces. ILet f: X—>Y be an isovariant
G-map, and f': X’—> Y’ the induced map on the orbit spaces. If
S:IxX'—> Y’ is any isovariant homotopy such that S(0, ) = f/, then
there exists an isovariant G-homotopy F:IxX —>Y which covers S and
such that F(0, ) = f.

This is Theorem 2.4.1 in Palais [13]. Observe that we are still
assuming that X and Y are completely regular spaces.

We shall now prove:

Theorem 3.1. Let M be a differentiable G-manifold. Then there exists

an equivariant triangulation of M.
Proof. We have the following basic result by C. T. Yang.

Theorem (C. T. Yang). Let M be a differentiable G-manifold. Then
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G\M can be triangulated in such a way that all points in the interior of
any simplex belong to the same orbit type.

This is the theorem in Yang [18]. The property of the triangula-
tion, that all points in the interior of any simplex belong to the same
orbit type, is not stated in [18], but it follows from the proof that the
constructed triangulation has this property. We denote G\M =Y. We
shall say that an imbedding

L p e
i A Y

is of type ((EO), cee, (En)) where (Ei)' 0 <i<n, are orbit types, if we
have

(K_)

for m=0,...,n. It follows immediately that (EO) > (iZl) > > (En).

We also say that a subset B Y is of type ((EO), ey (—I_{—n)) if there exists
an imbedding of An of type ((EO), cee, (En)) onto B. Thus in this case
(—IZO), oo, (En) represent the orbit types in B, but of course there need

not be n distinct orbit types in B; some (K,) may equal (EH It is

1)'

i
easy to show that the n-sequence ((KO), R (En)) is uniquely determined
by B when it exists.

Now consider a triangulation of Y in which all points of the
interior of any simplex belong to the same orbit type. Take the barycentric
subdisivion of this triangulation. Then it follows immediately by induction
that each n-simplex in this new triangulation is of type ((EO), ey (En))

for some orbit types (Ei), i=0,...,n. Hence it follows that in order to
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complete the proof of Theorem 1.1 we have to prove the following.

Lemma 3.2. Let the notation be as above. Let j: A, —> Y bean
imbedding of type ((Eo), ceey (En)). Then there exist closed subgroups

Ki € (Ei), i=0,...,n, and a G-homeomorphism f: (An; K .a, Kn) —>

0"
-1
7 (j(An)) such that B induces the map j: An — j(An) on the orbit spaces.

Here m: M —> Y is the projection.

Proof of Lemma. The proof is by induction on n. The case n =0 is

clear. Although the case n =1 is included in the induction proof, we
shall prove it separately in order to make the rest of the proof more clear.

Let
kE Ay —-—>Y

be an imbedding of type ((EO)’ (El))' Choose any x.¢M such that

0

‘n‘(xo) = j((1,0)) = J(AO), where (1,0) €A - Denote GXO= KO. Let

e
. ——
ho Vo(l) XKOG U

be a presentation of a tubular neighborhood U of Gx, in M, where

0

ho({O,e}) = X, and with corresponding Ko-slice SO: h (‘\ofo(l)). The

0
existence of all this is given by the 'differentiable slice theorem.'" Then
TT(SO) = m(U) is an open neighborhood of j{((1,0)) in Y. Thus there exists
0 < 50 <1 such that j((1-5,4)) en‘(SO) for 0 <f < 50. Choose any
-1 . _

X e (3(1-50,50)) N S0 , and denote le— Kl' Thus Kl CKO, and we
also have Koe (KO) and Kle (Kl)'

Now let {v,,e} ¢ \ (1) eV (1) XK G be the unique point for which

1 0 0 0

h({vl,e}) = x;. Define
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w: Al —_ SOC U,
by w((l-r,7)) = h({'rvl,e}), where (l1-7,7)eA;. Thus w((1,0))=x0 and
w((0, 1)) = x; - Moreover, every point in w(Al- Ao) has isotropy group

Kl’ and w(Ao) = x. has isotropy group KO' Thus the map

ai (Al; KO’K].) > U

0

defined by oll(l-7,7),g]) = gw((l-7,7)) is a well-defined isovariant G-map.
We wish to apply the ''covering homotopy theorem' of Palais to '"move"
o to a G-map that covers j: Al —> Y. We now proceed to do this.

Denote A,(8) = {(l-7,7) €4y |0 <7 <5}, Thus we have j(Al(ao)) CTT(SO).

-1
Consider the G-space ™ (j(Al(ﬁo) - AO)) < U. Since every point in it has

orbit type (El) = (Kl), and since j(Al(ﬁo) - A is contractible, it

o

follows that we have a commutative diagram

-1
(

T, (8) = Ag) <= G/E X8, (8,) - Ay)

| \\ / r,

j(Al({iO) - AO)

where vy is a G-homeomorphism. Thus there exists a map
-1 .
5t (A= A)) =T (3(8,(8) - AN S U

such that s((0,1)) = Xy and 1Ts = j l; (Al- AO) ~>7Y, where 35 A, > Y

1

5o 0

is defined by j(‘3 ((I=7,7)) = j((l—éo'r, 501')), and such that all points in
0
S(Al- AO) have isotropy group Kl'
Using the G-homeomorphism hO: \7‘0(1) XK G — U, we define
0
D:IxU—=1U
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by D(t,ho({v,g})) = ho({tv,g}). Thus D is a strong G-deformation

retraction of U to Gxo. At t=0, D gives the retraction of U onto

Gxo, and at t =1, D gives the identity. Observe that if x¢ U - G,xo

has isotropy group Gx’ then also every point D(t,x), where 0 <t<l,
has isotropy group Gx. Also observe that the map w: A1“—> SOC U we

defined before is given by w((l-7,7) = D(T,xl), where x eSOC U is as

1

before. Now we define a homotopy from w‘: (Al— AO) —» U to

s (Al- AO) —> U as follows. Define

H:Ix (Al- AO) —>U

by
( s((l-7,7)) » O0<(l-1)<t<1l, O<T.

H(t, (-7, 7)) =
‘ 113(?%, s((t,l-t))>, 0<t<(l-7) <1,

The space IXx (Al- AO) is the union of the two closed subsets,

{6, A-1, 7 eIx(a- AO)lO <(l-7)<t<l, 0<7} and

{(t, (1=, 7)) e Ix (8- AO)lO <t<(l-1) <1},

Since it is clear from the definition of H, that H restricted to these
closed subsets is continuous and since H is well-defined on the inter-
section, it follows that H is continuous.

Now, H(0,(l-7,7)) = D(r,s((0,1))) = D(r,%;) = o((l-7, 7)),

and H(l,(l-7,7)) = s({l-1,7)), where 0 <t <1l

Thus H is a homotopy from w[ to s. Moreover, observe that every
point in H(I x (Al- AO)) has isotropy group Kl' Thus

T =mH:Ix (A, - AO)"—'>-TT(U)C:Y

1

is a homotopy from n‘m\: (Al— AO) —>Y to j \: (Al- AO) —>Y, and

59
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moreover, T(Ix (Al— AO)) cY(k- ) We now claim that T can be extended
1

to a homotopy
T:Ixa, —>Y

by defining
0

il

S [(C ) I

T, (-7, 7)) =
T(t:(l-’r,T)), 0 <T§1'

We have to show that T is continuous. This is more or less obvious
from the definition of H, but we shall give a formal proof. We denote

j((1,0)) = jG {((1,0)) = YOGY- We have to show that T is continuous at
0
every point of the form (t,(1,0)) ¢ Ix Al’ 0<t<l. Thus it is clearly

enough to show the following. Given an open neighborhood B of y 0 in
m(U), there exists ¢ > 0, such that
T(Ix (l-1,7)) B, forall 0<r<e.

This is equivalent to showing that

1

HIx (l-r,7m)cm "(B), forall 0 «r<e.

-1
Since SO N (B) is an open neighborhood of x, in XO’ it follows that

0

there exists t1> 0, (t1-<— 1), such that hO({v,e}) CTT“I(B) if Hvu < tl'

Thus hO({V,g})CTT-l(B), if vl < tl’ for all g ¢G. Hence

-1
DitxU)c m (B), if 0O<t<t,.

-1 -
Next observe that since D(I xGxO) cm (B), we have I xGxOC D l(TT (B))

< IxU. Since both I and Gx, are compact, there exists an open neigh-

0
-1 -1
borhood W of Gxo in U suchthat IxWc D 1(TT (B)). Thus

D(IxW)c n"l(B).

Now choose €0> 0 (eO< 1) such that
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-1
s((l-7, ) em (B)N W, for O<r<e,
> 0, such that el/l-t

Denote 1-e¢_=t.. Next choose ¢

o=t =e:1/eo<t

1 0 1’
Thus especially € < eo. We claim that

-1
HIx(l-7,7))cm (B), forall 0<r<e.

Consider a point (t,{l-r,7)), where O <7t <¢ First, if 0<(l-1)<t< 1,

1

then we have
-1 ~1
Ht,(1-7,7) = s(l-7,7)em (B)YNWcn (B),

since 0 <t <€, <€,. Secondly, if 0 <t<(l-7) <l and t

1 0 <t< 1, then

0

H(t, (-7, 7) = D(705, 56, 1-8)) e 1 (B)

since in this case (1-t) < (l-to) =g and hence s(t,1-t) eTT—l(B) nNwWacWw,

O’
-1
and thus D(ﬁ,s(t,l-t))eD(I xW)c m (B). Thirdly, if 0O<t< (I-7) <1,

and 0_<_t_<__t0, then

-1
H(t, (1-7, 7)) = D(755, st 1-t))em (B),

€
since now (l-t) > (l1-t .} = ¢,, and thus I <—l—<t , and hence we have
= 0 0 1-t~eo 1
T - T -1
D(;5 s s(t, 1 t)eD(5 - xU)c ).

This completes the proof that T is continuous.

Consider Al as the orbit space of (AI;KO’KI)’ that is ‘AO has

orbit type (KO) = (E ), and every point in Ay A has orbit type

0 0

(Kl) = (—I—{-l)' Thus we have constructed an isovariant homotopy
T:1x A —>Y

from Tmw: Ay T Y to j_ ¢ 6 > Y. Recall the isovariant G-map
0



The figure below illustrates the case n=1.

i
N
JGO A
- Ly Ay
( ) TT(xl)
! \ y
\‘—\ \'I‘\.‘
Ix4,
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o (Al;K ’Kl) —> M and observe that ¢ induces the map Tw: A1—> Y.

0
Thus by the '"covering homotopy theorem' by Palais, the whole homotopy

T can be lifted; especially there exists an isovariant G-map

B: (83 Ky Ky) —> M

such that the induced map on the orbit spaces is jcS PA T Y. Since
0
j. is a homeomorphism onto j_ (A,) = j(A,(8,)), it follows that B gives
8, 50 1 1'70
a G-homeomorphism

= -1,
and B induces j‘5 : Al —> j50(A1) = j(Al((sO)) on the orbit spaces. To

0
see that there exists a G-homeomorphism

- = -1
B: (83K K =1 (§(4,)

such that ~B- induces j: Al — j(Al) on the orbit spaces, it only remains

to observe that j_ : A
60
and then apply the ''covering homotopy theorem' of Palais once more.

1 —> Y is isovariantly homotopic to j: Ay T Y,

This completes the proof of the case n =1,

We shall now turn to the general case, that is, to the induction
argument. We begin with some notations and remarks.
We denote,
n+lle :
A= {(ao,...,an)eR ‘i?oai:: 1, aizo, Osisn},

and for 0 < § <1,

5(8) = L@y, +-ra)en |1 -a <5

1
As before we denote d0= (1’0""’0)€An’ d = (0,1,0,...,0)eAn,...,d

]
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(0,...,0,1)¢ An’ and we also sometimes use the sum notation, that is,
n i n
we write (a.,...,a )=2 a,d, where J a,=1 and a,>0, 0<i<n.
0 n i=0 1 i=0 1 1= - -
Let 60, 51, ceny 6n 1 be positive real numbers such that

1> 502 6> > 6n-1 > 0. Consider the points

0 0
e =(1,0,...,0)=d GAn

1
e =(1"66:60’O"‘°:0)€A

2
e "(1"60:50“61)61s0,"‘:0)GAn

n

‘m
e *(1-50360‘. 61)"”5m_2_6

.

1By 00 e

m-1’ "m-1’

.

n
e - (1“603 60“ 61,.‘.’61’1-2“51‘1-1’ 5n_1) N

We denote the convex hull of the points SRR AN by An(so, ooy 5n~1)'
Thus An(ao, ey 5n) is so to speak ''a small n-simplex' inside An'
The reader should think about the 5i's as '"small' numbers. Observe

that if 5i= 1, i=0,...,n-1, then e'= dl, i=0,...,n. Also observe

that if 50= 61= trr = 611‘-1’ then An({)o: 61:"':5n_1) = An( 60)°

Define

i(Bgs e s b _y)i O~ &

n . n . .
by i(§.sv04,8 )( 2 a.dl) = 2 a,el, where the e''s are defined by the
0 n-1 o0 b =0

equations above. Thus 1(50,..., 6n 1) is a homeomorphism from An onto
An(ao, eens én-l)' Observe that we have

W8gs-v0 6 A= A JE(a -8 )

m m-l

Thus 1(50, cres Gn-l)' An An is an isovariant map when An is regarded
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as the orbit space of some (An;K ooy Kn).

0’
Denote
i i i .
e(t) = td + (1-t)e EAn’ i=0,...,n.
Thus e'(0) =e" and e(l)=d, i=0,...,n.
Now define a homotopy
H:Ix An —_— An

2
by H(t, 2, ad ) E a, e (t) Thus H is a homotopy from i{(§.,...,5 .)

. i 0 n-l1

i=0 i=0
to the identity. Moreover, we have

HIx(a - o e o, 0<mgn,

An"l) 3

that is H is an isovariant homotopy when An is regarded as the orbit

space of some (An;Ko,. ’Kn)'
Next define
b: (An— Ag) —> A
a a a
by b({(a a))= (0 ST -2 that is b ''‘pushes
y [t L LA ’l-ao’l-ao""’l-ao’ p

everything to the back face. "

Observe that

b(a_ - ) (a_- A

), for l<mc<n.
m rnl m m-l — =

Define a homotopy

B:Ix(A - Ag) —> &_

a (l-tag) a (l-ta))
n 0
by Bt (a,,...,2 )= (tao’ (I-ay) "777°" (1-a)

Observe that

B(1 X(Am- Am_l)) c (Am- Am—l)’ for l<mgn.
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Thus both b and B are isovariant whenever An is regarded as the

orbit space of some (An; K.,... ,Kn).

0)

Finally we point out the following. Let K0 o) K1 D D Kk be

closed subgroups of G, and let V be an orthogonal representation space

for KO' with open unit disc \of(l). Assume that the map

0.t A

X — V(1)

k-1
is such that all points in cb(Am- Am-l) have isotropy group Km+1’ where
0O<m<ck-1 We define

0
o: o —> V(1)

! ®k
(l“ao)ﬂ'b((l_a 1 1 a ))a ao# 1
a((ao’°"sa‘k)) = 0 0

=1
0 r 2y

Thus ¢ is continuous. Now observe that since the action by Ko in V is
linear, it follows that each point in o-(Am- Am-l) has isotropy group Km’
where O0<mc<k.

Let us now resume the proof.

Let
j: An —Y

be an imbedding of type ((EO), ey (iZn)). Let x,.¢M be any point such

0

that m(x. ) = j(do). Denote G =K _, and let
0 %, 0

O
. —
ho. Vo(l) xKOG UO

be a presentation, as given by the "differentiable slice theorem, ' of a
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tubular neighborhood U of Gx,., such that ho({O,e}) = x,, and with

0
3 3 o -— g » -
corresponding slice hO(VO(l) = SO' We have Koe (KO). Since T\‘(SO) -1T(U0)

is an open neighborhood of j(do) in Y there exists 1> 50> 0 such that

j(An(ﬁo)) cm(S,).

-1,
Let %) ™ (3(1-50,60,0,...,0))080, and denote le- Kl' Thus

K1 € (El)' Consider %, gSO as a point in the differentiable K -space S0

0

and apply the '"differentiable slice theorem' to this situation. Thus we

have a K_-diffeomorphism

0
o]
hl: Vl(l) XKIKO — U1 < SO
where U1 is a tubular neighborhood of KOXO in SO' and hl({O,e}) =%,
Here V1 denotes an orthogonal representation space for K,. Denote

the corresponding K, -slice at x, by S§;, thatis, §;= hl(Vl(l). Let

R e _ . .
Ty S0 KO\S0 be the projection from the KO space S0 to its orbit

0
space. Then TrKO(Sl) is open in KO\SO. Since KO\SO is homeomorphic
with G\G SO’ through the mapping T (so) — n(so) (see Proposition

0
1.7.6 in Palais [13]) it follows that m(S,) is open in G\G 84 = m(S,)-

But since TT(SO) is open in Y it follows that ﬂ(Sl) is openin Y. In
fact, it is good to already at this point observe that S1 is also a differ-

entiable Kl-slice at % in M. We can define

h: V. (1) X

1Y KG-———>-GSI=GU

) 1

by -ﬂl({v, gl = gh1 {v,e}, and GS, is an open tubular neighborhood of

le in M.
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Now W(Sl) is an open neighborhood of n(xl) =j(1—50, 50, 0,...,0)
in Y. Consider the composite map

lb‘ﬁolA i 4
n-l " bn “

A
where (ib(ao))(ao, co ’an-l) = (1-50, 503.0, e, 50an_1).

Then (jo ib(ao))(l, 0,...,0) =m(x;). Hence there exists 1> 5'1 > 0, such

that
(o1, (80(a_,)87) < T(S,).

— . 4
Denote 61— 50 51. Then we have
. ‘ ‘ - - -
(lb(ao)(l-éli 61:0"")0) - (1 50’60 61’61!0”"}0)'
Thus j(1-8,,6,-6,58;50;- - -,0) €T(S,).
-1
Let X, € (3(1-50,60-51,51, L., 0)N Sl’ and denote Gx=K . Thus

> 2

K, c K, and K2 € (EZ). Consider x, €S, 2as a point in the differentiable

2 1 1

Kl-space Sl’ and apply the ''differentiable slice theorem'' to this situa-
tion. Thus let S2 be a Kz-slice at x, in Sl. Now TT(SZ) is an open
neighborhood of Tr(xz) = j(l-—ao, 50- 51, 51, 0,...,0) in Y. Consider the

composite map

b 0 1>A J>Y
n-2 n

A
where lb(éo, 51)(3'0’ LI an-2) = (1“60, 60’61; 513’0.o = vy ‘51an_2)‘ Then
(o ib(50, 6;))(1,0,...,0) = mM(x,). Hence there exists 1> 5'2> 0, such
that

. . ¢
(o lb(a()’ 61))(An_2(5 2)) c "T(SZ) .

Denote §, ‘= 515'2. Then we have
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: 7 4 - - - -
i (890 61)(1=655 6%, 0,4+, 00 = (1-8, 8508158, =65 85205+« -, 0) and thus
J(1-8458,-51,8;-6,,6,; .-++0)€m(S,). Now continue as before, choose any
-1
x3€TT (J(l"ﬁo: 51'60) 51'62: 525'~-,0)) N SZ, and so on.
In this way we get points
xo,xl,...,xneM

with corresponding isotropy groups

Gx.= Ki’ i=0,...,n,
i
and differentiable slices
SODSl Deee D Sn-l’

and positive real numbers
12502512"' Zﬁn-l >0,
such that the following is wvalid.
We have xiesi, i=0,...,n=-1, ansn_l, and Si is a differ-~
entiable Ki—slice at x, in Si 1’ i=0,...,n -1 (here we interpret
S . =M). Thus K. DK, D+-- DKn.

-1 0 1

We also have
. R
Tr(Xi) - 3(1”50, 50"61: oty Gi-‘zhéiwl, 6113 0) ° e vy 0) o J(e )
for i=0,...,n, and hence Kie (Ei), i=0,...,n. Moreover, we have

P g4l
jfeh, &, e hems),  i=0,...,m- 1,

. . . 0
where {el, cee, en} denotes the convex hull of the points el, TRFL Y
We now construct a mapping

un: An S0

in the following way. We denote
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B ) = {(0,.. .0, 1,usa den ).

) T

Let hi: Vi(l) — Si’ i=0,...,n -1 be presentations of the slices Si’
thus Vi is an orthogonal representation space for Ki’ i=0,...,n-1.
Let

t:V.(1)—>V, (1), i=1,...,n-1,
i i i-1

be the mapping defined by ti(v) = hlj'l(hi(v)), v 5\7'1(1). Thus 'ci corre-

sponds to the inclusion Si Gy Si )3 more precisely the following

diagram is commutative:

L.__.___‘>. < S e .
Sp-1 Sh-2 So
bl ® b2 © byt =
£ £ t
o n-l o n-2 1 o
el S > .
Vo, V(1) V(1)

Observe that v and ’ci(v) always have the same isotropy groups.

o .
Now let v, € Vn_l(l) be the element for which hn-l(vn) =X € Sn-l'

Define
o]
: —
oy by (B) == V(1)
by o-l(an_l,an) = anvn. Then consider

o]
t 409 Ay (b) —> Vn-z(l)’

and extend this map to a map
]
. ———
0, 8,(0) = V(1)

n-2
by defining



a 1 an
.. -
( an-Z)tn-lal(l-a ' T-a )’ P
(a a a )= n-2 n-2
Ol3n.27%01"%" ©
0 , a =1
n-2
Then consider
=]
tn_zczz Az(b) — Vn_3(l)
and extend it to a map
(o]
: ——
0,1 by(B) —> V(1)
by defining
a a a
; n-2 n-1 n
(l"an-3)tn-202(1-a 'l-a ’1-a )’ *n-3
(a a)= n-3 n-3 n-3
03303723 ©
0 , a
n-3
Continuing in this way we construct the map
- V(1
Un’ An 0( ) .
Now define
w = hoo‘n: An"""‘> SO .
We have
i .
wn(d)—-xieM, i=0,...,n,
and moreover every point in
w (A _~A ) 0<m<n

has isotropy group exactly Km. Thus we get an isovariant G-map

Q. (An;KO,. ..,Kn) —> Uc M
by defining an([a.,g]) = gwn(a).

Induction hypothesis: Construct an isovariant G-map

63
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o (A K

’OOO’K)-—$U CM
n n 0 n

0
in the way it was done above. Then there exists an isovariant G-homotopy

F :Ix(A K e, K )™= U c M
n n n

0" 0

such that Fn(O, ) = o and the isovariant G-map

B =Fn(1, ):(An;K ..,Kn)-—-—> U0

n 0’°

induces the map
joilBys e+ n 8, )i A T TI(U ) = TI(Sy)

on the orbit spaces. Here 1(50, ey L)t A T An is as before.

n-1"" "n

We already proved this in the case n =1 (in the case n=0 there is
nothing to prove). Now assume that the "induction hypothesis'' has been
established for the value n - 1 where n> 2. We shall show that it is

valid for the value n.

Thus let all the notation be as before, and consider the imbedding
= jo i )o 0, —_—y
Jb"'J 1603"':611_1 en'. An—l H

that is jb: Ay

—>Y 1is the back face of jo 1(50, ceea by 1): An - Y.
Thus jb is of type (El)’ ey (En)'
Now consider the points

p-d .,xneM

10
with corresponding isotropy groups Gx =K, i=1,...,n, and the differ-
entiable slices

S DSZD“-DS

1 n-1’

(the index should be thought of as beginning at 0 instead of 1) and the
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real numbers

1:5 =-5-1=--- :-g

0 n-2 '

Recall that we already pointed out that S1 is not only a Kl-slice

at x:l

in S0 but also a Kl-slice at xy in M, and thus S1 "is a correct
i-1
start.' We also have T'r(xi) = jb(d1 ), i=1,...,n, and

i-1
jb({d1 yeva ,dn}) c TT(Si), i=1,...,n. Now observe that when we

construct

W1t by TS,

from the above data in the same way as we constructed w An — SO we

get exactly the map

4]
= : o
n-1 "~ “nn An-- 1 Sl

that is the back face of @ . Thus the corresponding o 4 is given by

- 0, .
« l"aen- (An-l’Kl’.‘.’Kn)——ﬁU

- n 1’

Thus by induction hypothesis there exists an isovariant G-homotopy

F o Ix(A

1 K

n-l; 1""’Kn) ——-—>U1,
such that

F (0, )= o ¢t (An_l;Kl, ceey Kn; — U’:

1 L

and such that
= : K, .. S
Bo® Byl Dby KK Yy
induces the map
. . g L n
J‘b: An"l B Jb(An"l) = J({e ye e }) o TT(UI)
on the orbit spaces. Next using the map Bn , We define an isovariant

G-map
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a a
. 1 n .
by y([(ao, - ,an),]> = Bn-l([(l-ao ey l-ao)’ g]) Then v induces the

map
1 1 . - ——
JO 1(60’ LR 6n~1) © b' (An Ao) TT(Uo)

on the orbit spaces, where b: (An- AO) — An is as before. To shorten

i G =joi ‘e : — .
the notation we denote j = jo 1(50, , 6n-1) An TT(UO) Then

iB:1 x(An- AO) e TT(UO)

is an isovariant homotopy from Fb to ;‘ (An- AO) — ﬂ‘(UO). Thus by
the "covering homotopy theorem'' of Palais there exists an isovariant
homotopy

FZ: Ix ((An; K

v K ) - (A K)) —> U

0" 0

such that F,(0, ) =7y, and suchthat F, induces .j—B:Ix(An- A

2 —> (U,

o
on the orbit spaces.
Now restrict the mapping Fz(l, ) to An- AO and call it
: - - .
S An AO UO

Thus s(a) = Fz(l,[a,e]), 2aeh - by We have

= 3 - — .
ms = i (A - Ag) T MU )
Observe that every point in

s(A = A 1) l<mg<n

has isotropy group Km.

Restrict F. to IxA and call it
1 n-1



hl:IXAn-I ——+U1 c UO.

That is h, is defined by h(t, a’) = F, (¢, [a’,e]). Define

1

hZ: IXAn-l — U0

by h,(t,a’) = Fz(t,[eg(a’), el).

Observe that h. (1, )=h2(0, ). Moreover, every point in

1 ¢

hy(Lx(a_= A& ) and h(Ix(a_-A_ )
has isotropy group Km+1’ O<mgn -1,
Recall the strong G-deformation retraction
D:1I xUO — U0
of UO to GXO' We define
HI: Ix(An- AO) —— U0
by
a a
H, (t,(a_,a a_)) =D<(1-—a )b (t (s 2
1 b 0’ 1""’ n 0}1 2 l_a,' ’l~a
0 0
and similarly
Hy s Ix(A = Bg) ™ U,
by
a a
H.(t, (2,2 a))=D((1-a)h<t( L D
2V T Tn 0’2 ’lwao’” ’l»-a,O

Now first observe that

Secondly, observe that the map

P = Hz(ly ): (An_ AO) —> U
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has the property that

<p(0,a1,...,an) = s(O,al,. ..,an),

that is, restricted to the back face of An- A ¢© and s agres.

0}

Now we define a homotopy from ¢ to s in the following way.

Define
: - —
HS'IX(An AO) U0
by
s(ao,...,an) s 0_<_a05_t_<_1, a.0<1
t sevy =
Hylty(@gseesap)) l1-a a, (1-t) a (1-t)
D( Os(‘c 1 o )\ O<tca_ <1
1-t°°\" l-ao et l-a0 /)’ =52 % )

Thus H3 is a continuous homotopy from ¢ to s.

Observe that all three homotopies Hl’ HZ’ and H_, have the property that

3

every point in

Hi(IX(Am- Am—l))’ 1_<_msn: 1= 1’2’ 3’
has isotropy group Km. Thus the homotopies
= : - —— i=12
T,= WH: Ix(A - 4,) mUy), 1=1,2,3

are isovariant homotopies, and together they form an isovariant homotopy

from
mon]: (8~ Bg) > m(U,)
to the map
il o - 8g) —> (U ).

We claim that each Ti’ i=1,2,3, can be extended to a homotopy

T.: — i=1,2,3,
Ti IXAn Tr(UO), i » 2,
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by defining

i
fon

31,0,...,0) = m(xy), @

Tyt (geeaad =y ) .
By, .e,a ), a.o .

~——

We shall show below that each Ti’ i=1,2,3 is continuous. Assume that
this has been done. Then the _T‘i's ,1=1,2,3 form an isovariant homo-

topy from
to the map

Since the isovariant G-map

0 (An; KO, cee ,Kn) — UO

induces the map me on the orbit spaces, it thus follows by the 'covering
homotopy theorem' of Palais that there exists an isovariant G-homotopy

Fn:Ix(An; K ...,Kn)————> u

0’ 0

from o, to a map

Bn: (An;K ...,Kn)--->U

0’ 0

such that Bn induces —3— An — n(UO) on the orbit spaces. This completes

the induction step. Observe that Bn is a G-homeomorphism from

-l .1

1
LK) onto T (j(a)) = m (i ({e ,e.,e'}). To geta

(An; Kol ..

G-homeomorphism

-1
Bn: (85 Kopree s By —>m (j (An))

it only remains to recall that _:]- = jo 1(50, ey 6n 1): An ’—>1T(UO) is isovar-

iantly homotopic to j: A, — TT(UO), and to apply the '"covering homotopy
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theorem'' by Palais once more.
To show that Ti: An'—>~ﬂ‘(U0), i=1,2,3 is continuous, it is clearly
enough to show that if B is an open neighborhood in rr(UO) of —j(l, 0,...,0)

= ﬂ(xo) =Yg then there exists € > 0 such that
H.(I e B
Ixlag,...,a))cm (B)
for all (ao,...,an)sAn- AO with 1 - a_<e.

0

Let tl >0 (f;l < 1) be such that

D(txU,) c i) i O<t<ty

and let W be an open neighborhood of GXO in UO such that

DI xW) c 1 (B).

Thus for Hl and H‘2 it is enough to take ¢ = t;. Consider H3. Choose
60 >0 (eo< 1) such that
-1 )
s(ao,...,an)c T B)n W, if 1 - a.o_<_e:O .
1. &
Denote 1 - ¢ _=t,. Then choose ¢ >0 such that =—=<t, . Thus
0 0 1 l-to € 1
especially €, <€, We claim that
~1 . ’
HB(Ix(aO,...,an))CW (B), if 1 - a0<€1.
Consider a point (t, (a.o, . ,an)) where 1 - a0< el‘ First if
1
05a0_<_t<1, ao< , then
-1 -1
Hylt, (g, -+, )) = s(ag,...,a )em (B)N W n (B)
Secondly, if 0 5t5a0< 1 and tos_ts_ 1, then
l-ao al(l-t) a.n(l—t) )
Hy(t, (ag, - oh2,)) = D(7op s st g0 oo ) e (B)

0 0
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since in this case 1 -t<1 - t0= eo, and hence

a.l(l-t) an(l-t) _
s(t, . >ng‘ (B) N Wc W, and thus the conclusion

3 . » a

1-a, 0

follows.

Thirdly, if 0<t<a, <1 and O<t<t then

0 0’
l-ao -1
Hy(t, (g, -+ +a) =D(37» s( .. ) )em (B)
l—ao €
since in this case 1 - t>1 - t0= 60, and hence 1% 5;— < tl, and

0
thus the conclusion follows. This completes the proof of Lemma 3.2 and

hence of Theorem 3.1.
q.e.d.

4. THREE COROLLARIES

The following corollary follows from Theorem 3.1 and Proposition

2.3.

Corollary 4.1. Let G be a compact Lie group and let M be a differen-

tiable G-manifold. Then M is an equivariant CW complex.

By Corollary 3.7 in Chapter I we thus have:

Corollary 4.2, Let G be a compact Lie group and let M and N be

differentiable G-manifolds. Then a G-map f: M—> N is a G-homotopy

equivalence if and only if for each closed subgroup H of G the induced

map fH: MI_I —> NH induces a one-to-one correspondence between the

path components of MH and NH, and isomorphisms fE:nk(MH,x) —

H H
nk(N ,£(x)), for all k>1 and every xeM . q.e.d.
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For a semi-free action, that is, an action in which the only iso-
tropy groups are G and {e}, Corollary 4.2 says that a G-map f:M —> N
is a G-homotopy equivalence if f: M —> N is an ordinary homotopy equiv~
alence, when we forget about the G-action, and the restriction to the fixed
point set fG: MG — NG is a homotopy equivalence.

The following result is due to Atiyah-Segal. See Proposition 5.4
in Segal [14]. The statement there is more general than the one we give

below. The proof in [14] uses the spectral sequence for equivariant

K-theory, and all the details are not given.

Corollary 4.3. (Atiyah-Segal) Let G be a compact Lie groupand M a

compact differentiable G-manifold. Then KZ(M) is a finitely generated
R(G)-module.

Proof. Since M is compact, it is a finite equivariant CW complex.

Denote it by X and the skeletons by X = Xm, ooy Xo. We have the exact

sequence
*,,0 n-1 J* %, N it %, n-1
KX, X77) < KE (X)) 2 kE (X)L
- i~ 1 -l

The module K(";(xn, 21y = %4 (x®/x™ 1) is a finite direct sum of
modules of the form

~k n i R(H), for % + n = even

% (" xa/u/ (b) xG/H) =

0 for % 4+ n = odd .

L. ’

By a theorem of Atiyah, R(G) is noetherian and R(H) is finitely gener-
ated over R(G) (see Proposition 3.2 and Corollary 3.3 in Segal [15]).

-1
Assume by induction that Kz;(Xn ) is finitely generated over R(G).
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Thus, in the short exact sequence
i
0 — im(j*) > Ké(Xn) L im(i*) —> 0
both im(j*) and im(i*) are finitely generated over R(G). Hence

Ké(Xn) is finitely generated over R(G). Since X = Xm, induction com-

pletes the proof.
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CHAPTER III

EQUIVARIANT SINGULAR THEORY

In this chapter G denotes a good locally compact group, by which
we mean that G is a compact Lie, or G is a discrete group, or G is
an abelian locally compact group. We construct an equivariant singular
homology and cohomology theory with coefficients in an arbitrary given
covariant coefficient system and contravariant coefficient system,
respectively, on the category of all G-spaces and G-maps. The construc-
tion is very much analogous to the construction of ordinary singular theory.
We use the equivariant simplexes, defined in Definition 1.1 in Chapter II,
in place of standard simplexes. Ordinary singular theory in its present
form is due to S. Eilenberg [5]. We have chosen the exposition in
Eilenberg-Steenrod [6] as the ground for our imitation. This applies
especially to the proofs of the homotopy and excision axioms. The proof of
the dimension axiom requires some argument, and it is here that we have

to assume that G is a good locally compact group, see Lemma 7. 3.

1. COEFFICIENT SYSTEMS

Recall that in this chapter G denotes a good locally compact group,
that is, a compact Lie group, a discrete group, or an abelian locally

compact group.

Definition 1.1. A family F of closed subgroups of G is called an orbit




75

type family for G, if the following condition is satisfied: if He% and H’
is conjugate to H, then H'¢%.

Thus, the family of all closed subgroups, and the family of all finite
subgroups of G, are examples of orbit type families for G. A more
special example is the following. Let G = O(n) and let F be the family
of all subgronps conjugate to O(m) (standard imbedding) for some m,
where 0 <m <n.

In the following R will denote an arbitrary ring with unit. By an

R-module we mean a unitary left R-module.

Definition 1.2. ILet # be an orbit type family for G. A covariant

equivariant coefficient system k for %, over the ring R, is a covariant
functor from the category of G-spaces of the form G/H, where H¢&,
and G-homotopy classes of G-maps, to the category of R-modules.

A contravariant equivariant coefficient system £ is defined by the
contravariant version of the above definition.

If o: G/H—> G/K is a G-map, and H,Ke¢F we denote

k(o)

o, k(G/H) —> k(G/K),

2

w

L

e

o : LG/K) — 4(G/H).

3

and 2(a)
Let k and k' be covariant equivariant coefficient systems for #. A
natural transformation

h: k —> k’
will be called a homomorphism of covariant equivariant coefficient

systems. If h is a natural equivalence, we call h an isomorphism.
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Similarly for contravariant equivariant coefficient systems.
From now on we shall shorten the terminology so that we simply

speak about ''coefficient systems. "

2. EQUIVARIANT SINGULAR HOMOLOGY AND COHOMOLOGY

Theorem 2.1. Let G be a good locally compact group. Let F be an

orbit type family for G and let k be an arbitrary covariant coefficient
system for Z.
. . . G .
Then there exists an equivariant homology theory H*( ;k), defined
on the category of all G-pairs and all G-maps, which satisfies all seven
equivariant Eilenberg-Steenrod axioms, and which has the given coeffi-
cient system k as coefficients.
This means:
. G
For each G-pair (X,A) we have an R-module Hn(X,A; k) for every
integer n.
Each G-map f: (X,A)—> (Y,B) induces a homomorphism

G G
f,: Hn(X,A; k) = Hn(Y,B; k)

for every integer n.

Each G-pair (X,A) determines a boundary homomorphism

d: HG(X,A; k) —— HG (A5 k)
n n-1
for every integer n.

In addition, the following axioms are satisfied.

A.l. If {=identity, then f = identity.
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A.2. If f:(X,A)—> (Y,B) and {:(Y,B)—> (Z,C) are G-maps, then
’ Y
(£9), = .6, .
A.3 For any G-map {: (X,A) —> (Y, B) we have

df, = (£|A), 3 .

A.4. (Exactness axiom). Any G-pair (X,A) gives rise to an exact

homology sequence

i jd i\b

% E sk

...<—-—HG (A;k)<~-—~a HG(X,A;k)< i HG(X; k) <— I-IG(A;k)<-———;3 .
n-1 n n n

A.5. (Homotopy axiom). If fo,fl: (X,A) —= (Y,B) are G-homotopic, then

Eo)a = 1)y
A.6. (Excision axiom). An inclusion of the form
i: (X-U,A-U) — (X,A)

where U c A° (U is a G-subset) induces an isomorphism

G & G
i,+H (X-U,A-U; k) —>H (X,A; k)
(3 n n

for every integer n.

A.7. (Dimension axiom). If He¢%, then

HZ(G/H; k) =0 for all m # 0.
Moreover, for every H¢F we have an isomorphism
G =
y: HO (G/H; k) —> k(G /H),

such that if also Ke¢% and a: G/H —> G/K is a G-map, then the diagram
Y

H(C)}(G/H; K)

G \L l, O commutes.
H?(G/K; k) X k(G /K)

> k(G /H)
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Moreover, this equivariant homology theory has no ''negative homology, "
that is, for any G-pair (X,A) we have

HG(X,A; k) =0 if m< 0.
m

We call this equivariant homology theory for ''equivariant singular homology

with coefficients in k."

Theorem 2.2. ILet G be a good locally compact group., Let ¥ be an

orbit type family for G, and let 4 be an arbitrary contravariant coefficient
system for &.

Then there exists an equivariant cohomology theory Hz‘;( ; ) defined
on the category of all G-pairs and all G-maps, which satisfies all seven
equivariant Eilenberg-Steenrod axioms and which has the given coefficient
system { as coefficients.

This means:

For each G-pair (X,A) we have an R-module Hg(X,A; 4) for
every integer n. Each G-map {: (X,A) —> (Y, B) induces a homomorphism
* n

: HE (Y, B; 4) ——-—>Hg<x,A; 2)

£ Hg

for every integer n. Each G-pair (X,A) determines a coboundary

homomorphism

5: Hm-l (A 4) —> HI1

for every integer n. In addition, the following axioms are satisfied.
S
A.l, If f = identity, then f = identity.
A.2. If £f: (X,A)—> (Y,B) and f':(Y,B) —> (Z,C) are G-maps, then

(f'f)* = £ .
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A.3. For any G-map f: (X,A)—> (Y,B) we have

% %
£6=58(f|la) .

A.4. (Exactness axiom). Any G-pair (X,A) gives rise to an exact

cohomology sequence

%
R Hé'l(A; PR

3k

R .
X,A; ) L Hg(x; 2) L»chA; 2)

n o)
> ...
ol

A.5. (Homotopy axiom). If fo’fl: (X,A) — (Y,B) are G-homotopic,

then

A.6. (Excision axiom). An inclusion of the form

i: (X-U,A-U) — (X,A),
where Uc A° » (U is a G-subset) induces an isomorphism

ES n oy n
i :HG(X,A; £) ——">—'HG(X-U,A—U; 4)

for every integer n.
A.7. (Dimension axiom). If He¢ %, then
m
HG (G/H; 8) =0, for all m # 0.

Moreover, for every He¢ %, we have an isomorphism

g B (G/H; 1) = 4 (G/H)

such that if also K¢F and o G/H —> G/K is a G-map, then the

diagram 0 £
HL(G/H; #) > 4(G/H)
% %k
o | T a commutes.
0
HG(G/K; £) > L(G/K)
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Moreover, this equivariant cohomology theory has no ''negative

cohomology, ' that is, for any G-pair (X,A) we have
Hg‘ (X,A; 4) =0, if m<O0.

We call this equivariant cohomology theory for ''equivariant singular

cohomology with coefficients in £."

Example. As a simple illustration, we determine the equivariant singular
homology of the following example. Let G = S1 the circle group and let
X= S2 the two-sphere. Assume that S1 acts on S2 by the standard
"free rotation' leaving the ''south and north poles' fixed. The following

picture describes the situation.

Fex
fixed point set 1 -
" 7x

2

Here X1 and X2 denote the northern and southern hemispheres,

respectively, and X = X1 N X2 is the equator.

0

It is a formal consequence of the axioms that we in this situation
have the following exact Mayer-Vietoris sequence

(i, ~i..)
G G 1% 2% G
HO (Xl,k)GBHO(XZ,k)< HO (Xo,k)

ps! G
< Hl(

—
G Ty "o
o+——HO(X;k)<—-—°——~—-‘2——-

X; k) <— 0.

Since both X and X, are G-homotopy equivalent to a point and

XO = G as G-spaces, it follows that the above sequence is
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(Pyer =Py
o<——1—1 (X; k) <~— k(G/G)éBk(G/G)<————-—-k(G)<——H (X; k) <— 0

where Py k(G)=> k(G/G) is induced by the G-map p: G —> G/G. Thus
G ~ / 1
H, (X; k) = (k(G/G)® k(G/G))/ {(py(a):~py(a))|aek(S)]}
H(i’ (X; k) = kez(p,: k(G) —* k(G/G))

HG(X;k)=O for m # 0,1,
m

Let us consider this result for some specific covariant coefficient systems.

Let the orbit type family % be the family of all closed subgroups of G = S1 s
and let the ring R be the integers Z.

1. Define a covariant coefficient system kl as follows. Let
kl(G/H) =Z if H#G and k(G/G) = ZZ’ and let p: G/H — G/G, where

H # G, induce the natural projection Z —> Z2 and all other induced

homomorphisms on k, are the identity on Z. Then

1
G >

: z

Hy (X5 k) = 2,
G -

H (X5 k) 2
G

H (X;k;)=0 for m # 0,1.
m 1

jov

Define k, by: k (G/{e}) =2, and k (C}/H) 0 for H ¢ {e}.

Then
G
HO(X, kz) =0
G ~
H. (X; kZ) =
G

1
Hm(X; kz) =0 for m # 0,1.

jw

Define k3 by: ks(G/H) =0 for H# G, and ks(G/G) = Z. Then
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G
HO(X, k3) =Z®Z

G
Hn(X, k3) =0 for n # O.

4. Define k4 by: k4(G/H) = Z for all closed subgroups H of G and

all induced homomorphisms are the identity on Z. Then
G ~
HO (X; k 4) = Z

G
Hn(X, k4) =0 for n# 0.

5. Define k5 by: kS(G/H) = 7 for all closed subgroups H of G, and

every G-map &:G/H—> G/K, where Hc K and H # K induces the zero

homomorphism. Then

G ~
HO(X, kS) = Z8Z

~

H?(X; k Z

5)
G

H (X;k_)=0 for m# 0,1,
m 5

3. A LEMMA

Recall the definition of the standard equivariant n-simplex

(An;k LK)

0" n

of type (K . ,Kn), see Definition 1.1 in Chapter II. We shall use the

0"

same notation as in Section 1 of Chapter II. Consider the standard

equivariant n-simplexes (An; KO, cees Kn) and (An; K'O, cea, K;) and let

h: (A 3 K JK)y—> (A K ,K')
n I

/
0,-.. n 0,.-. n

be a G-map which covers id: An —> An’ that is the following diagram

commutes.
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. h . 74 v
(8 KO,---,Kn)"‘">'(An,K0,-~-,Kn)
rrl, n’

id R
An . An

Thus h induces a G-map
-1 so-1
hlim (%) —> ()" (x)
for every x¢ An'

Assume that x¢ Am- A We define a G-map

m-1"

h :G/K_ —> G/K’
x m m

by requiring that the diagram

h
G/K —&F - G/K'
m m

*/xl Vel ¥
-1 h|

n-1
T (x) ———> ('] (»)

commutes. Here Yy and 'y;( are the G-homeomorphisms defined by

7, (8K ) = [x,g] ¢ (8,5 KyoerosK)
’ ’ = . 7 ’
and 7, (8K ) [x,g] ¢ (8 5 Kosene s K )

Definition 3.1, Let % be an orbit type family for G. We say that the

standard equivariant n-simplex (An; K.,... ,Kn) belongs to F if Kie? for

O}
i=0,...,n.
Lemma 3.2. Let k be a covariant coefficient system for the orbit type
3 . . ! ’
family %. Assume that (An, KO’ “ee ,Kn) and (An, KO’ cees Kn) belong to

¥, and that the G-map
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h: (An;K ..,Kn)—-—>-(An;K,...,Kn)

0’
covers id: An—->- An' Then h determines for each m, 0 <m<n aunique

homomorphism

(b )y KG/K ) —> KG/K )

and we have (hm)* =(h ), forany xe¢pA -~ A Moreover, for any

X% m “m-1°

m,q suchthat 0 < q<m<n, the diagram

(h_)
KG/K_) —2" K(G/K! )

. |5
(h ),
K(G/K ) e K(G/K)

is commutative. Here p: G/Km — G/Kq is the natural projection, that is,

P(gK ) = qu and correspondingly for p’.

If h is a G-homeomorphism, then (hm)* is an isomorphism, and
we have
-1 -1
(h D = ((h ) Dy

Proof. Let xeam- Am—l and z¢ Aq— Aqul where 0 <q<m<n. We

shall show that the following diagram of G-spaces and G-maps is G-homotopy

commutative.
h
G/K & —s G/Kl'n
p l ip’
hZ
G/K ———————>G/K’
q q

Since xeAm- Am-l and z¢ Aq-— Aq-l and 0 < gq<m<n, we have
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(l-t)x + tz ¢ Am- A

m.] for 0<t<l. Denote [x,z!={(1~t)x+tz€An|05t_<_l}.

We have the commutative diagrams

Y% 1 7; , =1
G/K ——-———>'rr (x) G/K —= (7)) (=)
m m =
P l lp and p’l lp’
‘yl
G/Kq 2 >l G/K, ——=> ") (2)
where p([x: g]) = [X, g] € (An; KO’ R :Kn)
and p'l[x,gh) =[z,8] ¢ (An; K;), e ,K;l). Now define the G-map

F:1xG/K —=> G/K’
m q

to be the composite

-1
- - r - (7 )
1xa/K_~Lonl|x 2 ) B 0 pa]) £ (e —E— G/,

where 'y(t,gKm) =[(1-t)x + tz,g] ¢ (An; KO’ .. ’Kn)
and p'li-t)x +tz,8]) = [z,8) € (A5 Kpo v oo, K ).
Now
7 -1 ! 4 I -l 14
F(, )= (')/z) o p'o (hi)°7X=P°(VX) °(h!)°7X:P°hx

and F(l, )= (y “O(h‘Opoy -(y - h])oy op”‘h °op .

Thus F:IxG/K_ —> C‘z/K":1 is a G-homotopy from p'o h to h op.

This completes the proof of Lemma 3. 2.
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4, CONSTRUCTION OF EQUIVARIANT SINGULAR HOMOLOGY

In this section we construct the equivariant singular homology
groups of a G-pair (X,A) with coefficients in a given covariant coefficient

system k.

Definition 4.1. A G-map

T:(a s K yK ) —> X

O,... n

LK) in X

is called an equivariant singular n-simplex of type (KO’ . 0

We call Kn for the main type of T, and denote

tT) = K_.

A
The equivariant singular (n-1)-simplex of type (KO, cee, Ki’ cees Kn)

G _ gt , : —_
TV =Te (A 5Ky Kyenn, K)—> X

is called the iithfaceof T, i=0,...,n.

Observe that we have

Definition 4.2. Let % be an orbit type family for G. We say that the

equivariant singular n-simplex T: (/_\,n; K,oou, Kn) ~= X belongs to F

0’

if (An; K Kn) belongs to %, that is, if KiE %, for i=0,...,n.

O’ ey
From now on we assume that we are given an orbit type family &
for G, and a covariant coefficient system k for ¥ over some ring R.

Given an equivariant singular n-simplex

. . —e
T: (An, K . ,Kn) X

0"
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which belongs to %, we form

Z_ ®k(G/t(T)) = Z

T T@ k(G/Kn).

Here ZT denotes the infinite cyclic group on the generator T, and the

tensor product is over the integers. The R-module structure on k(G/t(T))

makes ZT® k(G/t(T)) into an R-module such that i:k(G/t(T)) —>

ZT® k(G/t(T)) defined by i(a) = T® a is an isomorphism of R-modules.

AG
Definition 4.3. By Cn(X; k) we denote the direct sum

2:®(Z, . k(G/t(T))
T T

where the direct sum is over all equivariant singular n-simplexes in X,
2 G
which belong to % Thus for n< 0 we have C (X; K) = {03.

We define the boundary homomorphism
A A A
385 (x; ) — &S (x5 1)
n n n-1

A
as follows. For n< 0 we define an = 0. Assume n >0, and let T be
an equivariant singular n-simplex and ace¢ k(G/t(T)). Then we define

% (T® a) = % (-l)iT(i)®( ). (a) (AZ‘G (X; k)
n _'1::0 Pyl € pat e

)

Here (pi)*: k(G/t(T)) —> k(G/t(T(l )), i=0,...,n is the homomorphism

induced by the natural projection P, G/t(T) —> G/t(T(l)). Thus we have

A =l @) n_(n)
5 (Tea)= B (-D'TVea+ ()T o (b)), ().

1=0

A
This defines the R-module homomorphism an.
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A A
Lemma 4.4. d 3 = 0.
—_—— n-l n
A
Proof. For n ¢l this is clear since then an 1= 0. Thus assume n > 2,

Let T be an equivariant singular n-simplex. First notice that we then

have the identity

(@G - (@)D

) for 0 <j<ign.
(1),(3)

), the natural projection. Thus
pProj

Denote by p;: G/t(T(i)) — G/t((T"")

J

Lo = for 0 «cj<i<n
pjpiﬁpi_lp" SJ el

J
Assume that T belongs to ¥ and let aek(t(T)). Then

0's (Ve @), ()

A
o J(T@a)= n-1

£ e

(j)

f
Mo
g}
T
=
el
:w..
!

)yl e (p;)*(pi)*(a)

- o Ve pip) )

r 2 (e e gl

O<i<j<n J
The first sum equals

O<j<i<cn
Changing the notation so that i-1 becomes j and j becomes i, we see
that this sum is the negative of the second sum above, and thus the two

sums cancel.
q.e.d.

A
Thus we get a chain complex {C

A A ,
SG(X; k). Our main interest is not in S (X, k), but in a quotient of

A
S(X; k),an}. We shall denote it by
G

A
SG(X; k). We now proceed to define this quotient.
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Let for the moment cﬁn c ACS(X; k) denote the set of all elements
in 6:()(; k) that have at most one coordinate # 0. Every element in an
has a unique expression of the form

T®a .
where T is some equivariant singular n-simplex belonging to % in X,
and a¢ k(G/t(T)). We define a relation ~ in chn in the following way.
Let T®a and T‘®a’ be two arbitrary elements in cgn where

- . o ,t . 4 ’ s o,
T,(An,K ..,Kn) >X,T.(An,K,...,Kn) > X

R
are equivariant singular n-simplexes belonging to % in X and
2ek(G/K ), a'c k(G/K;l). We now define

T®a~ T'®a’<==> there exists a G-homeomorphism

h: (A.; K

> . / ’
n O,...,hn)~—~>(an,K ,..-,Kn)

covering id: An — An such that

T=Th and (h),(a)=a"

Here (hn)*: k(G/Kn) — k(G/K;l) is the isomorphism of R-modules deter-
mined by h as in Lemma 3.2. It is immediately seen that ~ is an

equivalence relation in es’fn.

Definition 4.5. Let the notation be as above. We define

=G AG
C (X; k) C (X; k)
n n

A
to be the submodule of CS(X; k) consisting of all elements of the form
S
22 (T.® a, - T!®al)
) i i i i

i=1

! N
where Ti®ai~ T;(g,ai for i=1,...,s.
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Definition 4.6. We define the R-module CS(X; k) by

G . -~ AG » ._G Y
Cixsm = &S 0/

Lemma 4.7. The boundary homomorphism

A A A
Jd ¢ CG(X; k) —> CG (X; k)
n n n-1

restricts to 2 homomorphism

=G =G
3t T (X k) —> T (X K)

and thus also induces a homomorphism

G
d @ CG(X; k) —> C X; k).
n n -~

1§

. A —
Proof. We must show that if T® a~T® a’ then ah(‘T® a-Tea’) ¢ C:} 1(X; k).
For this it is enough to show that we have

™ )00 ~ (™) 0 () 021,

R . T — v, . ! ’
Assume that T: (An, KO’ .. ,x{n) =X and T% (An, KO, “ee ,Kn) — X, and

hence that a ek(G/Kn), a'e k(G/K;). Since T® a ~ T'®a’, there exists a

3 » PP . ‘ / 3 " e
G-homeomorphism h: (An, KO, cen, Kn) > (An, KO, C e, Kn) which covers

id: A —> A suchthat T = Th and (h ),(a) =a’. Then h induces a
n n ;

n s

G-homeomorphism

h(i):(A K ..., K o, K)Y—> (A K ...IA{'...K')
n"']. O! 2 i., s n n"l’ 2 2 i’ 2 n
which covers id: An 1 — An 1 and we have T(l) = (T')(l)h(l), i=0,...,n.

The isomorphism

@, . (W, /()
() )yt KG/AHT' ) == K(G/E(T)))
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determined by h(l) equals

N ! ¢ - .
(h ), KG/K ) —> K(G/K])  for i=0,...,n=1

(h_ 4t KG/K _)—>K(G/K] ) for i=n
where (hn)* and (hn-l)* are the isomorphisms determined by h.
Thus for i=0,...,n-1 we have
() ) () (a) = (h) () = a’ = (p]) (a).
n-1'%Mg 0%k n' % 17X

This shows that T /® (p,)y(2) ~ e (P))(a)  for i=1,...,n-1.

Now consider the case i = n. By Lemma 3.2 we have

() (B )y = (B )P )y

(n)

Thus ((B™) ), ), () = (B ), (R ), (2) = (), (b)), (2) = (p])y(a). This

shows that

(h)

g p ), @) ~ )P (), ().

This completes the proof.

3 =0 and 9 3 = 0.

A A —_
Since 3 3 =0 it follows that 3
n-1l'n n-l1n

n-1"n

Thus we get the chain complexes

-G -G -
5% ) = {C % 0, 3}
n n
and
G G
$7(x; %) = {C] (X k), 5.}
. . G . . . .
It is the chain complex S (X; k) that gives us the equivariant singular
homology groups with coefficients in k of X.
Let (X,A) be a G-pair. The inclusion i: A “—= X incudes a

monomorphism of chain complexes
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1 8%a; 1 — 59 1.

A A A
Moreover, the image i(CS(A; k)) 1is a direct summand in Cg(X; k), for
AG A MG
all n. We identify Cn {A; k) with i(Cn (A; k)), that is, we consider
AG AG A
S” (A; k) as a subcomplex of S (X; k) through the monomorphism i. We
denote

A AG A
&8 x,a510 = Ex 0/ s
n n n
and the corresponding chain complex by
©\NG A A
S (X,A; k) = {CS(X,A; k), an}.

We have the short exact sequence of chain complexes

A A
0—> gG(A; k) = ASG(X; k) L, %G(X,A; k) — 0.

A
Clearly i restricts to
1:5%4; k) — 59 (x; 1)

A
and hence i induces a homomorphism of chain complexes

i SG(A; k) —> SG(X; k)

P A
Lemma 4.8. The homomorphism i: SG(A; k) > SG(X; k) induced by i

G . .
is a monomorphism. Moreover, i(Cn (A; k)) is a direct summand in

CS (X; k) for each n.

Proof. Consider the commutative diagram

$%a; ) ——5%x K

| l

A
i A
S ——5%x K
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Observe that the claim that the induced homomorphism (i:SG(A ;k)—%SG (X;k)

is a monomorphism is equivalent to the claim that we have
A G - -
%m0 0 5%x; 10 =5%4s 0.

We define a homomorphism

A A
b 8Cx 0) — 8§94 K

by
T® a if Im(T)c A

a(T®a) =
0 if Im(T) N (X-4A) #0¢ .

A A
Thus ¢ is a left inverseto i. If T® a ~ T'®a’, then Im(T) = Im(T’).

Thus it follows that cl;g restricts to
o gG(X; k) — .S—G(A; k)
A
and thus ¢ induces
G
s 890 k) — 5T(A; k)

and o is a left inverse to i.
g.e.d.

We denote

G G G .
CT (X, A5 k) = C(X; /cS ;K
n n n
and the corresponding chain complex by
G
s9x,a5 10 = {7 (X,Ai k), 3}
n n

Definition 4. 9. We define

1% (X,A; k)
n

G
to be the nth homology module of the chain complex S (X, A; k).
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By Lemma 4.8 and by definition we have the short exact sequence
of chain complexes
0 — SG(A; k) —> SG(X; k) —> SG(X,A; k) — 0.
This gives us the boundary homomorphism

G

01 K

o: HIC:(X,A; k) —>H

and the exact homology sequence in the standard way.
More or less as a side remark let us point out the following.
Define the chain complex -S_G(X,A; k) in the obvious way. Then

0 —5%x,4; k) — 8%x,4; 1) — sF(X, A; k) — 0

is a short exact sequence of chain complexes. This can either be seen
"'directly" or by drawing the obvious commutative 3 x 3 diagram and applying

the 3 x 3 lemma.

——

A
We denote the homology groups of SG(X,A; k) and SG(X,A; k) by

- A

HS(X,A; k) and HS (X,A; k) respectively. Thus we get a long exact

sequence
— A ——
e HT (X,A; k) <— HG(X,A; k) <— HG(X,A; k) < H (X,A;k) <= ...
n-1 n n n
Our main interest is in HS( ;k). But in the process of the proof of the
G

fact that H* ( ;k) satisfies all seven axioms, it will also be shown that
both II-\{*( ;k) and ﬁf( ; k) satisfy the first six axioms.
Let (X,A) and (Y,B) be G-pairs and let
f£: (X,A) —> (Y, B)
be a G-map. If T: (An; KO’ ey Kn) —> X is an equivariant singular

n-simplex of type (KO, ceay Kn) belonging to & in X, then
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fT: (An; KO, ey Kn) —> Y is an equivariant singular n-simplex of type

(K .y Kn) belonging to & in Y. Thus we get a homomorphism

07"

A AG NG
f,0 C_ (X,A; k) —> C (Y,B; k)
# "n n

by defining £,(T®a) = (fT)® a. Since ¢T) = 7 for ;. 0,...,n, it
follows that we have a homomorphism of chain complexes

G G

A
£,:57(X, A5 1) — 57(Y, B; k).

If T® a~ T'®a’, then f#(’l‘@) a) ~ f#(T'® a2’) and hence f# restricts to
?#: S%x, A; 1) —5%v,B; 1
A
and hence f# induces a chain homomorphism

f: s9(x,A; k) —> sS, B; k).

It is now clear that we have proved everything up to the exactness axiom
in the statement of Theorem 2.1. The homotopy, excision, and dimension

axioms will be proved in the following sections.

5. THE HOMOTOPY AXIOM

We define the standard equivariant n-prism (n>1) of type

(K ...,Kn 1) to be the G-space

O’

(rrn; KO’ e ’Kn—l) =]1x (An~l; KO, e, Kn~1)‘

We have the G-maps (n > 2)

for i=0,...,n-1, defined by ;;(t,x) = (t,;:l_l(x)). We also have the
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G-maps (n >1)

/&n: (An_ls Ko, oo, Kn_l) — (nn; Ko’ cee, Kn_l)
o’ (An_l; KO’ cee, Kn_l) —_— (rrn; KO’ e, Kn-l)

defined by zn(x) = (0,x) and En(x) = (1, x%).
The following identities follow directly from the above definitions.

TiTi _goTidl

r r = r for 0<j<i<n-~l, n>»3,
n n-1 n n-l = - -

T }— =},— el for 0 <i<n-1, n> 2,
n "n-1 n n-l -7 = -~

r'u _=u e for 0 <i < n-l, n> 2.
n n-l n n-l1 - = -

Definition 5.1. A continuous G-map

H H ce — 1
Pr(m Ky K ) X (n>1)
is called an equivariant singular n-prism of type (KO, coe ’Kn 1) in X.
We call Kn—l for the main type of P, and denote
t(P) = Kn__1 .
A
The equivariant singular (n-1)-simplex of type (KO, cey, Ki’ ce e, Kn 1)

P p3l. Koo, K ) > X, (02 2)

0y

is called the ith face of P, i = 0,...,n-1. An equivariant singular l-prism

has no faces. The equivariant singular (n-1)-simplexes of type (KO""’ anl)
P£ =P Jln: (An_l;KO, ey Kn—l) - X
= w : 3 .. —
Pu Pun. (An—l’KO’ vons Kn-l) X

are called the lower and upper base of P, respectively.

Observe that we have
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t(p(‘) = ¢(P) = K for i=0,...,n-2

(n-1)

n-1"

t(P ) =K

n-2’
and t(P,@) = t(Pu) = ¢(P) = Kn—l'

We also have the following identities

(p(i))(j) = (P(j))(i-l) for 0<j<i<n-1, n>3

(p(i)))6 = (Pﬂ)(i) for 0<i<n-1, nza

(P(i)) = (P )(i) for 0<i<n-1, n> 2.
u u -7 -

Thus we can write Pﬂ(’l) and P\il) without ambiguity.

Given an equivariant singular n-prism

P:(TTn;K LK )—»X, (n>1)

0’ n-1

which belongs to %, that is, K,1 €% i=0,...,n-1, we consider the

R-module

Z_® k(G/t(P)) = Z_Q® k(G/Kn“

P P 1)

where Zp denotes the infinite cyclic group on the generator P, and the

tensor product is over the integers.

Definition 5.2. By (AJSP(X; k) we denote the direct sum

E@(ZS® k(G/t(S)))
S

where the direct sum is taken over all equivariant singular n-simplexes
and all equivariant singular n-prisms belonging to % in X. We define the

boundary homomorphism

G

AAG A
d + C P(X; k) —=>C
n n n-

1P(X; k)
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as follows. If n <0, then an= 0. Assume that n>1 and let P be an
equivariant singular n-prism and a ¢ k(G/t(P)). Then we define

n-1 A
%n(p@a a)=P®a-P®a -Eo(-l)lp(l)@ () 4(2)-

A
For an equivariant singular n-simplex T we define an (T® a) by the same

A
formula as before. This defines the homomorphism CHE

A A
Lemma 5. 3. 3 3 = 0.
—————m— n-1l"n

Proof. The standard calculation works. q.e.d

Thus we get a chain complex {&EP(X; k), Sn} . We shall denote it by

A

SG P(X; k). We now proceed to define the chain complex SGP(X; k) which
2G

is a quotient of S~ P(X; k).

A
We define a relation ~ in the subset of CS(X; k) consisting of all

elements of the form T® a or P® a as follows. We define T® a ~ T'® a’

to mean the same thing as before. Consider the elements P® a and P% a’,
where

P:(ﬂn;K,...,K ) — X, P':(ﬂn;k{ , K’

K., ... ——
0’ nnl) X

0] n-1

)

are equivariant singular n-prisms belonging to ¥ in X, and a ek(G/Kn_1

a'e k(C—/K;1 We now define

1)

P®a ~ P'@a’<=> there exists a G-homeomorphism

. . 1! ’
h: (An-l’ KO’ ey Kn-—l) — (An-l’ I\O, veny Kn~1)
which covers id: An_l—--> An-l’ such that

P = Pl(ld xh), and (hn_l)*(a) = a’,
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. 74 - . » .
Here (hn-l)*' k(G/Kn-l) — k(G/Kn_l) is the isomorphism determined by

h as in Lemma 3. 2.

Definition 5.4. Let the notation be as above. We define

G

—G A
CP(X; k) cC P(X; k)

n
AG
to be the submodule of Cn P(X; k) consisting of all elements of the form
s t
2 (P.®a,- P/®a’) + 2 (T,®b,- T'¢b])
=1 L4 i1 o1 + b i
where P ®a, ~ P'®al for i=1,...,s and T.®b, ~ T/®b’ for i=1,...,t.
1 1 1 1 1 1 1 1

We then define

A ——
CSP(X; k) = CSP(X; k)/Cf P(X; k) .

Lemma 5.5. The boundary homomorphism

3 89w — &% P &
3t C. P(X; k) o P(X3 K
restricts to a homomorphism
5 :C9P(X ) —>CO . P(X; k)
n n n-1
and thus induces a homomorphism
D 3 GGr P(X; k) — CG P(X; k).
n n n-1

Proof. The proof is completely analogous to the proof of Lemma 4.7.
g.e.d.

Thus we get the chain complexes

s¢ p(x; K = {Efp(x; X), Sn}, and

G

sCp(x; k) = { -

P(X; k), an} :
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Let (X,A) be a G-pair. Then the inclusion i: A > X induces
an inclusion of chain complexes

G

A A AG
i: S P(A; k) =S P(X; k)

which again induces an inclusion

G
i: ST PA; k) > S7 P(X; k).
. G ‘ . . G
We define S P(X,A; k) to be the quotient chain complex of S P(X; k)

by SGP(A; k), and analogously for the "bar" and 'roof'" chain complexes.

A A
Now observe that SG(X; k) is a subcomplex of SGP(X; k) and

that this inclusion also induces an inclusion

85,85 1) — 89P(x,4; K) .
This inclusion again induces an inclusion

sC(x, A5 k) — SSP(X,A; k) .

We wish to construct a retraction

p: sCpix, A; k) — s9 (X, A5 X).

In order to do this it is convenient to introduce the "equivariant linear

LK) We

complex' of the G-spaces (An; K el

cew, K ) and (1 3 K
n n

0’ 0’

proceed to do this now.

We shall consider An as a subset of (An; K . ,Kn) through the

NEE
imbedding given by x > [x,e] and similarly m = 1 XAy asa subset
of (Trn; KO, cen, Kn-l) =1Ix (An_l; KO, cee, Kn-l) through the imbedding

given by (t,x) > (t,[x, e]) = [(t,x), e].
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Definition 5.6. Let

...,L )~_>(A y K ,--"K)
m I

T (Am; L 0 n

0)
be an equivariant singular m-simplex of type (LO, ey Lm) in

(An; KO’ ces, Kn). We say that T 1is linear if

T(Am) <, and T|: A, A

is linear in the ordinary sense. Similarly

: ; PICICIENS) — H
T (Am L Lm) (TTn K

0 9
is called linear if

T(Am) cm and T|: Am——>ﬂn

is linear in the ordinary sense.
Thus a linear equivariant singular m-simplex of type (LO, e L)

in (An; KO, e Kn) is determined by the values
T([a',e]) = [v',el, viea, i=0,...,m.

Similarly a linear equivariant singular m.simplex of type (LO, ey Lm) in

(TTn; KO’ cee Kn-l) is determined by the values
T([d"e]) =[w',e], wem , i=0,...,m.
Lemma 5.7. Let v ¢ An’ i=0,...,m, Then the assignment

T(d' e]) =[v,e], i=0,...,m
determines a linear equivariant singular m-simplex

T:(A_ ;L ,...,L )——>(An;K

m’ 0 m "Kn)

0’

if and only if Lic isotropy group of [vl, e] in (An; KO, ..., K ), 1i=0,...,m.
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i
Let w eﬂ'n, i=0,...,m. Then the assignment
i i .
T([d,e]) =[w,e], i=0,...,m
determines a linear equivariant singular m-simplex

: ; - —— ;
T (Am L L_) (nn K

07" m

)

0’ n-1

if and only if Lic: isotropy group of [Wl, e] in (TTn;K coo ’Kn 1), i=0,...,m

O’

Proof. Say that vqui - A.

——— 1
q q

NERE ,Kn) is Ki . Let v = max{lo, - ,1q}, where
q . q 4
0<M<q. Then Za,vJeA, ,if Za=1 and a,>0, 0 <j<q. Thus we
= o d i o J i= =0
j=0 g M j=0
have isotropy group of [Z a,vJ,e] in (A ;K.,...,K )oK DL
§=0 J n" 0 n i

1 © An’ 0 < g <m. Thus the isotropy group

of [vq, e] in (An; K

L
M q’

forall ¢q=0,...,m. Therefore the map Am i (An; K.,... ,Kn) given

0

.,L ).

m ) m .
J e J ] : _ .
by 25 ad b—> [,_/ a.jv ,e | determines a G-map from (A_; LO’ .

j=0 7 j=0

Similarly for the ''prism case.'" This proves the "if" part, the ''only if"

art is clear,.
P 18 ¢ ¥ q.e.d.

We denote the linear equivariant singular m-simplex

T: (Am; L ) Lm) — (An; K

O,..‘ O,-.. n

given by T(d', e]) =[v',e], i=0,...,m, by the symbol

0 m
(Lo,v | (Lm,v )

i .
For w errnc: (ﬂ'n;K ...,Kn), i=0,...,m the symbol

0)
0 m
(LO,W ) oo (LWt

has the analogous meaning. Thus Lemma 5.7 gives a necessary and
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sufficient condition for these symbols to be well-defined. Assume
0
that (Lg,v ) ... (L_,v") belongs to ¥ andlet a¢k(G/L_). With these

notations the boundary homomorphism is given by

G L ,v)® -rg(l)iL 0 L/\i L ,vMe
(g ¥ 1o (L V192) =8 (D) (L ¥ (¥ (L, V) B1p)(2)

The linear equivariant singular simplexes in (An; KO’ cees Kn) and
AG
(Trn, KO, cees Kn-l) generate subcomplexes of S ((An, KO, e e Kn), k) and
A
SG((ﬂ'n; KO’ e Kn_l); k) respectively. We denote these by

A G NG A
$7b_i Kys -+, K )i k) = {Cr0(a s Koo, K ), 3} and

0’°

AG AG A
s7Q(m ; K K1k ={C ol iR, . K ), 3,k

0’ AR ] n- O, . ] ™
The G-maps
2 ; — (7 _;
fen° (An_l’ Ko’ ey Kn_l) (TrnJ Ko’ ’ Kn-l)
U . — .
(85K K )) (M5 Koo n K )

induce chain homomorphisms

- AG AG
(2),: 87 Q8,13 Kgr - K 58 =87 QU Ky, K )ik
and (un)#.
Thus for example
— 0 m 0 m
(2) (Lo v ) e (L, VD) = (L 4v ) (L s 2,90,
where 4 : A —> T .
n “n-1 n
We now construct a chain homotopy
n AG AG
: ; e ey ; — ; FEPRRPEN 5
D:S Q((An_l KO Kn—l) k) S Q((Trn KO Kn-l) k)

from (En) p to (f,n) 4 in the following way. Define the homomorphism
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L Kn"l); k)

rG
K _1), k) —= Cm+1Q((Trn, KO’ .

p®:&%q LK
. m ((An-l, 0’ LA R ’

by the formula

D:;((Lo,vo). .. (Lm,vm)®a)

m
i 0 i i
= 1?0(-1) (L £,¥ ) (Ly, £ V(L w v ) (L yu v ) 82

This determines the homomorphism D:n. The formula

A Dn n A — —
Om+l"m * Dm-lam = (un)# N (f'n)#

is established by the same calculation as in the standard case (see Eilen-
The presence of the elements a and

berg-Steenrod [6], pp. 164-165).

(pi)*(a) does not affect the outcome,

The face maps

. 2 2 hd ? . 9 2 3 ]
en--l (An—Z 0 Kl Kn-l) (An 1”70
"i K K K ) —> (m ;K K
rn' (‘n‘ —1, O’ . ¥ 1’ 2 n-l) (TTnJ O’ LA | n-l)
induce chain homomorphisms
~i A G A A G
H M PP . ; e 3 3 ]
(en_l)#° S Q((An_z’Ko’ ’Ki, ’Kn"l)’k) S Q((An“'l KO I{ﬂ—l
and (_r_;)# correspondingly.
The formula
—1i n-1 n i
(x D - Dm (en—l)#

n)# m

is immediately verified.
We are now ready for

Lemma 5.8. There exists a chain homomorphism
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o: 5%p(x; 1), §%Pa; 1) — (%m0, §%a4; 1)

which is the identity on %G(X; k).

Proof. We define the homomorphism

A A A
D CGP(X; k) —> CG (X; k)
n n n

as follows. If T is an equivariant singular n-simplex belonging to # and
A
a e k(G/t{T)) we define pn(T®a) = T®a. Let

P:(m; K oL K ) —> X
n n-1

0"’

be an equivariant singular n-prism belonging to % and a gk(G/Kn We

l)'

then define

A A n 0 n-1
pn(P®a) = (P# Dn_l)((Ko,d Yoo (Kn-l’d 1®a).

A MG AG . .
Here P#. Cn Q((Trn, KO, e ’Kn—l)’ k) —= Cn (X; k) is the chain map

. 0
induced by P, and (Ko,d ) R (Kn-l’

-1
at ) is the identity mapping on

n-1

do). . .(Kn l’d )®a belongs to

(A K,... Kn-l) and thus (K

O} Ed

AG .
Cn-lQ((An-l’ K

n—l; 0’

A
. Kn 1); k). This determines the homomozrphism o

AR
It only remains to verify that f; is a chain map. This is done by

the same calculation as in the standard case (see Eilenberg-Steenrod [6],

p. 195). It is a straightforward calculation using the fact that D" is a

chain homotopy from (En)# to (Zn) and the fact that the chain homotopies

D" commute with the "face maps. " q.e.d

Lemma 5.9. The retraction ,'5 of Lemma 5.8 restricts to a retraction
- = = = =G
ot B9P(x; 1), 59 1) — %10, 5%(asK)

A
and thus p induces a retraction
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o: 59P(x: 1), s9PA;K) — (sS(x:1, sTAsK).

) —> X, P (m ;K LK) )—X

4
.’Kn.—l n’ O,-o n..l

Proof. Let P:(m ; K. ,..
— n” 0

and aek(G/Kn_l), a’ek(G/K;_l), and assume that P®a ~ P'®a

. . 7 1 _ -
Let h: (A KO""’Kn-l)“%(An—l’ KO,...,Kn_l) be a G-homeo

n-l;

morphism which covers id: A —= A and such that P=P’(id xh) and
n-1 n-1

(h ).(a) = a’. Now recall that we have
n-17%

?Jn(P®a) =

n-1
i 0 i i n-1
"]- LI B LI ) .
i?o( y PUKG, £, d). (K, 0 d)K e d) (K y,u d))@a

Thus it only remains to show that

0 i i n-1
P((KO, ,(?,nd Yoo (Ki’ fand )(Ki’und o . (K 1’ and N®a

0 i i -1
~ PK, £ d). .. (K], 4 d)(K],u d). .. (K] _,ud")ea’

for i=0,...,n-1,
The G-map
(K, 2.a%. . (K., 2 d) K, 0 d) . (K ,ud™h
0’ n 7TV n " 'n " n-1""n

(oK

Ky KLK LK

e K L.,
(TTn KO K ])

n-l) ne-l

is a G-homeomorphism onto its image, that is, it is a G-imbedding, and
the same is true for the '"prime' version. Therefore the G-map

K )—>(m ;K.,...,K
n-1

(id xh): (‘Tfn3 K n-1""0 n"'l)

O,...,

restricted to these images determines a G-homeomorphism

L KOKL LKD)

gt
)ﬁ(An’KO“ 1’774 n-1

0,... i i..‘ n-1
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n-1

and h covers id: An—?An' Since, moreover, h =h :(}/Kn "">'G/K;1

" d -1
it follows that (f{n)*(a) = (hn 1)*(a) =a’. Thus h is a G-homeomorphism

with the desired properties. q.e.d.

Proposition 5.10. Two G-homotopic maps

£08p 0 (X,A) —> (¥, B)

induce chain homotopic maps

G G
(fg)yr (£1) 2 87 (X, 8;K) —> S (Y, B; k).

The same is true for the "bar' and "roof' versions.

Proof. Let F:Ix(X,A)—> (Y,B) be a G-homotopy from fO to fl'

Given an equivariant singular n-simplex belonging to % in X

. . . S 3
T.(An,K . ,Kn) X

0’
we form the equivariant singular (n+l)-prism

F(idxT): (m K

5 vee, K )—>Y.
n+l n

O,
Thus we get a homomorphism

G

A ANG A
D:C (X; k)—C
n n n+

1 P(Y; k)
by defining

ﬁn(Tm) = (F (id xT))®a

A
where a ¢ k(G/t(T)) = kK(G/t(F (id x T))). The homomorphism Dn takes

A
&S (A; k) into (AZS_HP(B; k). It is clear from the definition that Dn

restricts fo

: : k) ——> ;
D_: C_(X; k) C_ P(Y; K

A
and hence Dn induces

1
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D_ c (X; k)————>CG ; P(Y, k).

A straightforward computation (compare with Eilenberg-Steenrod [6],
p. 196) now shows that

G G
o, Py C, (X k) —>C_ (Y3 k)

is a chain homotopy from (fl)# to (fo)#. Moreover, Opt1 Dn takes
Cg(A; k) into CS+1(B; k). Similarly for the '"bar' and "roof' versions.
gq.e.d.

This proves the homotopy axiom in Theorem 2.1 and also the homotopy

. . =G e
axiom for the theories H, ( ; k) and H, ( ; k).

6. THE EXCISION AXIOM

We shall again in this section use the notion of a linear equivariant

singular simplex in (An; K , Kn). We use the same notations as in

o'’
Section 5. First we construct ''subdivision'' maps on

%o s & K ); 1
(8, K )3 ).

0"

Consider the linear equivariant singular m-simplex

0 m )
o= (Lo,v Yoo (Lm,v ):(Am, LO, ce ,Lm) > (An,ho, Cee ,Kn)
i : :
where v eAnC (An; KO, «os ,Kn), i=0,...,m, The point
1 0 1 m .
b=y b v EE Y be Ky K
is called the barycenter point of ¢. Since the point
1
ce > seney i it 1
[(m+1’ rn+1) ]e(Am L, L ) has isotropy group L it follows

that
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Lm C isotropy group of po_ in (An;K Kn).

0r
We define the barycenter of g to be the linear equivariant singular
O-simplex b , defined by

K).

.
bg= (Lm,pch (AO,Lm) —> (An; Ko’ e K

Now given a linear equivariant singular g-simplex

= .q . .
)...(Lq,v ).,(Aq,LO,..., q o Koo Ky

p= (—I:,O,VO
with L, < L ,
m q

we define the linear equivariant singular (g+l)-simplex 0- bO‘ by

- (T, =0 7T g4
o) bo_— (LO,V )...(Lq,v )(Lm,bo_)
(Aq+1‘Lo""’Lq’Lm)“_'>(Ao’Ko"'"Kn)

Thus we see that the symbol p~b0_ is well-defined whenever t(g) c t(p).
Let us now for the moment consider the chain complex where the
mth chain group is the free abelian group on all linear equivariant singular
m-simplexes in (An; KO, e, Kn) and where the boundary is defined in the
natural way. To be precise we are considering the case in which the
coefficient system is given by k(G/H) = Z for all H (in %) and all induced

maps are the identity on Z. We denote this chain complex by

AG G A
STQUA Ky, -, K)) = {CTONA K, LK), 3 )}
Thus we have

Xe!
P-byeClyQUA Ky, .o K ).

The operation - bc extends uniquely to a homomorphism from the sub-

A
complex of SGQ((An; KO’ ceey Kn)) generated by all linear equivariant
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singular simplexes whose main type contain t(g). The formulas
A
al(p- bo_) = bc- fol for ¢=0

A oeb)=0 b +(-1¥ for g>1
C1+1p o qp o ~ =z

follow directly from the definitions. By linearity it thus follows that, if
¢ is a linear combination of linear equivariant singular g-simplexes
whose main type contain t(g), we have

A
al(c- bc) = In(c)bCr -c for q=20

g+l

A A
. b = . —1 f 1 .
aq+l(c 0‘) (ch) bcr +(-1)" "¢ or q>

A
Here In: COQ((An; K.,eono, Kn)) ~—2> 7, is the homomorphism determined

0}
by In(g) =1 for each linear equivariant singular O-simplex ¢.

After the above remarks we are now ready to define homomorphisms

sa : &Y ;K K ) — 900 3K K
8o 5Ky, K ) = ET QU8 5Ky, -+ K))

e e
R_:C QA Ky, - K))—> C QA 5Ky, -+, K))

for all m, inductively as follows. For m = 0 we define Sd0= identity
and R_.= 0. Then inductively we define for any linear equivariant singular

0

m-~simplex ¢, where m > 1

m A
Sd_(o) = (+1)7(sa_ ,(3_(a))-b_

N m-+l A
R_(0)= (-1 (0-8d4 (¢) - R ,(6 _0)):b_ .

Observe that both Sdm and Rm preserve main types in the following
sense. If o is a linear equivariant singular m-simplex, then Sdm(cr) is

a linear combination of linear equivariant singular m-simplexes which all
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have the same main type as ¢, and analogously for Rm(cr).

The homomorphisms Sdrn form a chain map Sd, and the homomeor-
phisms Rm form a chain homotopy from id to Sd. That is, we have the
formulas

A A
d_ Sd_ =8d )

m m me- m

1
3 R R A id - 8d
O+l m+ m-1 am =

These formulas are proved by induction on m. For m < 0 they are
correct. Let ¢ be a linear equivariant singular m-simplex, where m>1,

and assume that the above formulas hold for values <m. We then have
A A m A
384, (o) =3, ((-1)7(Sd_ (3 o)+ b)

= (-1 )m((gm_lscim_l(gmc)). bG+ (—l)dem_l(gmc))

= (-1) (s 52 b +Sd (>
=(-1)( dm—Z(am-lamc)). o m-l(amo)

i

A
Sdm_ 1 (amcr) .

A A A
If m=1 theterm 3 Sd (3 o) should be read as In{(Sd _(38,0)) =
m m-1"m 071

-1
In(glc) = 0. Also
_ A m+l A
S iR @ =8 (D™ osa_(0)-R_ (B _oN D)
= (1ME_0-54_(0) - R__(_a))-b_
m-+l, . m+l A \
+ P e s ) -r_ b _o))

= (-4 sd (> : sa (3 R (3 )b
= (VG _o-sa_ 6 _o)-b_o+sa_ 6 _o)»R (. 3 0N b
A A
+ (c—Sdm(G) - Rm_l(amc)) =g~ Sdm(o) -Rm_l(amc)
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A
Let us now return to consider CSnQ((An: K ,Kn);k). We shall

0ttt
use the following notation. Let a¢k(G/L) and let c = Zc-i where each
o; is a linear equivariant singular m-simplex such that t(o-i) D L. We
define c®p*(a) to be

c®p,(a) Zo- ®(p ), (a)
where (pi)*: k(G/L) — k(Cr/t(ci)) is induced by the natural projection
pi: G/L —> G/t(gi). Thus c®p*(a) € é?n((An; Ko’ ce e Kn); k). We now define
homomorphisms

AG
Sdm: CmQ((An,K ...,K ); k)—"—>C Q(('\ ;

0’ 0"" n

R :C%QUp 3K
88 o ;

AG
o Kl k) = G 08 5K, - KK

by
Sdm(o ®a) = Sdm(c) ®a

Rm(c Qa) = Rm(c) ®a

where o is a linear equivariant singular m-simplex and a ¢ k(G/t(g)).
(The reader should not be confused by the fact that we use the same symbol
to denote two different homomorphisms.) Observe that these definitions
are well-defined since both Sclm and Rm preserve main types. This
determines the homomorphisms Sdm and Rm. We claim that the
homomorphisms Sdm form a chain map Sd and that the homomorphisms
Rm form a chain homotopy from id to Sd. This is proved by the
calculations

5 Sd_(c®a) =3_((Sd_o)®a)

m m m m

A ’ A
= (3,54 _0)®p,la) = (5d_ 3 o)®p,.(a)
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= 8d__((6_0)®p,(a) =Sd__ (5_lo®a)),

A A
am+1Rm(cr®a) = am+1((Rmc)®a)

A
= (am+1 RmO‘) ®p,(a)

il

A
(@ -5d o-R_ ;3 0)8p.a)

o®p,(a) - (8d_0)®p,la) - (R,

1

A
amO’) ®p,(a)

A
=0®a-Sd o)®a-R_ (0 o®p,(a))

m~]

A
=g®a - Sdm(o-®a.) - Rm_l(am((r@a))'

The reader should observe that the ''new" Sdm‘s cannot directly be

A
defined by a recursive formula like Sd_ (o) = (-l)m(Sd (3 6))+b due
m m-1"m o)

(m)

A
to the fact that the 'part" ¢ in amo' may have main type strictly

greater than the main type of g. This is the only reason why we had to
proceed in the way we did above.

We now define homomorphisms

A
81 : 89 (x; 1) — &9 (x; k)
n n n

A AG AG .
Rn' Cn (X; k) —> Cn+1(X, k)
in the following way. Let

K ) ——> X

T: (An; KO,... o

be an equivariant singular n-simplex belonging to # and a gk(G/Kn).
We then define

é\ _ A S 0 n
dn(T®a) = (T# dn)((KO,d oo .(Kn,d )®a)

A _ A 0 n
Rn(T®a) = (T# Rn)((KO,d )...(Kn,d y®a) .

A AG AG . .
: ; 3>y ; ——>. ; = >
Here T# C(1 Q((An KO Kn) k) Cq Q(X;k) (g=n, n+1) is the chain

map induced by T, and (Ko,do). . (Kn,dn) is the identity mapping on
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(A_n; KO’ ey Kn). It is easy to see that the homomorphisms é:ln form a
chain map é:i and that the homomorphisms IA{n form a chain homotopy lA{
from id to §d. The proof of this is a formal computation using the fact
that both Sdm and Rm commute with the maps induced by the face maps

i . . . .
e on the linear equivariant chain complexes.

Lemma 6.1, The chain map

G G

P A A
Sd: $Y(X; k) — S (X; k)

restricts to

Sd: 5%(x; k) — 5 (X; k)
and thus ASd induces a chain map

Sd: SG(X; k) — SG(X; k).

A
The corresponding statement for the chain homotopy R is true.

Proof. Let T:(A ;K ,...,K)—X, T (A ;K ,...,K')—> X and
— n 0 n n O n
ae k(G/Kn), a'e k(G/K;l) and assume that T®a ~ T'®a’. Thus there exists

a G-homeomorphism h: (A ; K LK )Y—(A;K,,...,K') which covers
n n n 0 n

0,00

/

id: /_\n———> An’ such that T = T'h’ and (hn)*(a) =a,

~
Let us first consider the chain map Sd. We have to show that

& O ¢ n =G .
Sdn(T®a) - Sdn(T Ra’)e Cn (X; k), that is, that

A 0 n L ! 0 ’ n, . ¢

T#Sdn((KO,d )...(Kn,d y®a) - T#Sdn((Ko’d Yoo °(Kn'd y®a’)

-G
belongs to Cn (X; k).
0 n (n+1)!
Now Sd ((K.,d)...(K ,d)®a)= 2 ¢.®a, where each ¢, is a
n 0 n 5=1 ]

linear equivariant singular n-simplex in (An; K .y Kn) which, moreover,

0’ "
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is a G-homeomorphism onto its image. Let ¢ denote of the aj's and let

0

o' be the corresponding one in the expansion for Sdn((KZ)’d )...(K;l,dn)®a').

Then g is of the form

0 -1
o= (K, ,v)...(K v
0 n-~1
PAK, .o K LK) —> (8K
0 n-1

(Kn,p)

K)

O,..., n

and thus "= (K ,v )... (K; ’Vn-l)(K;l’ p), where p is the barycenter
0 n-1

in An' Since h covers id: An-‘—> An it follows that h restricts to a
G-homeomorphism h|:Im(g) — Im(c’). Thus, since both o and ¢’ are
G-homeomorphisms onto their images, it follows that h determines a
G-homeomorphism

~: ; s 8. —“———> ; ! LI A ] ! ;] !
h (An Ki » ’Ki )Kn) (An Ki. s ’K' K )

0 n-1 0 n-1

which covers id: An —n An and such that r:;'le = ho and moreover,

T =h :G/K — G/K’'. Hence
& P n n
(To)®a ~ (To')®a’

for Tg = T'heo = T'a’l?f and (Hn)*(a) = (hn)*(a.) = a’. This proves our

N
claim, and the statement in Lemma 6.1 has been proved for Sd.
A
The proof of the corresponding result for R requires a little more

care. Keeping the same notation as above, we have to show that

A 0 n A, ; .0
T Rn((KO,d Yoo .(Knd )®a) - T Rn((KO,d

] n ’
4 4 )...(Kn,d y®a’)

—G
belongs to Cn+1(X, k).

Now R ((K ,do). . (K ,d")®a) =0r.®a, where each 7. is a linear
n 0 n F b}

equivariant singular (n+l)-simplex in (An;K cey Kn). Let 7 denote one

(e
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of the Tj‘s. Then 7 is of the form

_ 0 n
T = (Kl sV )..‘(Ki » vV )(Kn:P)

0 n

K )

:(An-l-l;Ki "”'Ki ,Kn)f—"‘>(An;KO,..., n

0 n
and, moreover, it follows by induction from the definition of Rn that we

have 10 < 11

. . j . .
<. < i and that the point v ¢ (An, KO’ e ,Kn) has isotropy
group Ki y j=0,...,n. The point p g(An;K
j

Kn. From this it follows that the linear map 71|: A

RREE Kn) has isotropy group

— An’ which is

n+l
n+l i n ;
givenby 2 ad +—> 7 av +a__.p, ''preserves isotropy groups.'
i=0 1 j=0 1 n+l

Thus 7T restricted to one orbit is a G-homeomorphism. Let

7= (K; ,vo)...(K; ,vn

0 n
iR, .. K LK) —> (A 3K, .., K)
10 ln n n n

}K.,p)

: (An+1

be the linear equivariant singular (n+l)-simplex from the expansion for

Rn((Ka,dO). .. (K;l,dn)®a') which corresponds to 7. Consider the diagram
K K K T > K K
(An+1’ i, H ’ i 5 n) (!\n, 0) b4 n)
0 n
h h
/
Y . ’ / > ; ‘o ’
(An+1’KiO’ K ,Kn) (a5 Ky yK)

Since both 7 and 7' induce G-homeomorphisms on the orbits, it follows
that there is a unique T which both makes the above diagram commutative

and also covers id: A ,—>

nil LIE Thus if we denote h([b,e]) = [b,hz(b)],

we have



117

SRR ntl n
h([ 2 a.d, e:]) =| 2 ad, h2 ( 2 av+a lp>].
i=0 1 i=0 ! i=0 ! n+

~

It isnot difficult to see that h is continuous and hence it follows that T is

a G-homeomorphism. Now h

=h :G/K — G/K'. Hence
dn+1 P n n

/

(TT)®a ~ (T'1)®a

for Tr=Thr=(T't)h, and (h

La)(®) = (B, (a) = 2

This proves our claim and completes the proof of Lemma 6.1.
q.e.d.

Exactly as in the case of ordinary singular theory, the subdivision
chain map Sd: SG(X; k) —> SG(X; k) and the chain homotopy
R: SG(X; k) —> SG(X; k) are the crucial ingredients for the proof of the

excision axiom. We proceed to give the remaining details.

Definition 6.2. Let ¥ be a family of G-subsets of the G-space X. An

equivariant singular simplex T: (/_\n;K ceny Kn) —> X is said to be in ¥

O,

if T((An; K . Kn)) is contained in at least one of the sets of 7.

0"

Clearly all equivariant singular simplexes in X (belonging to F)
A
which are in ¥ ‘''generate' a subcomplex SG(X;k;‘Zr) of the chain complex

gG(X,A; k;¥) in the obvious way. We then have the inclusion

A A
e SG(X,A;k;?f) = SG(X,A.;k)

. . - =G <G A .
which restricts to n: S (X, A;k;7) —> S (X,A;k) and 7 induces again an

inclusion

e sS(x, A k1) —> sY(x, A; k).
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) P ———rry Pal
Denote Sdm =Sd ... Sd, and S4 7, Sdm similarly (Sdo = id). Thus
e ——
m
am o, m . . .
Sd induces Sd . Letus also point out that if B is a G-subsetof X

o]

then both Int(B) = B~ and B are G-subsets of X.

Lemma 6.3. Let ¥ be a family of G-subsets of X such that X= U BO.
Belr

Let T: (An; K,... ,Kn) —> X be an equivariant singular n-simplex in X,

0’
and a gk(G/Kn). Then there exists an integer m such that
8™ (T ea) ¢ 85X k7).

Proof. Consider the (ordinary) singular n-simplex ’I‘l: A, —> X. From
the corresponding result in the ordinary case we know that there exist m
such that Sd"(T|) ¢S(X;¥). Here Sd: S(X) —> S(X) is the subdivision

chain map on the ordinary singular chain complex of X. But since ¥ is

A
a family of G-subsets, it now follows from the way our Sd is defined

2 m AG
that we have Sd (T®a)eS (X;k; 7). q.e.d

For any equivariant singular simplex T in X we denote by m(T)

(T)(T®a)egG(X;k;?f). The element a

{i)

does not affect this situation at all. Clearly we have m(T®

2Am
the smallest integer such that Sd
) < m(T).
AG AG
If TRaeS (X;k;7) then m(T) =0, and if T®a ¢S (A;k) then also

é:im(T)

(T®a) €§G(A;k;v). Observe that if T®a ~ T'®a’ then m(T)=m(TH.
The following proposition corresponds to Theorem 8.2 on page 197 in
Eilenberg-Steenrod [6]. The proof we give follows the proof they give in
the Notes, at the end of Chapter VII, and not the proof they give in the text.

Note the remark on page 207 in Eilenberg-Steenrod [6].
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Proposition 6.4. Let ¥ be a family of G-subsets of X such that

o)
X= U B . Then, for any G-subset A of X, the inclusion
Be¥

n: 89X, A;k;7) — 9%, A3 )
A
is a homotopy equivalence. The inclusions 7 and 7 are also homotopy

equivalences.

a7

Proof. Let T be an equivariant singular n-simplex, belonging to % in

X and let a ¢ k(G/t(T)). Define
n . m(T)-1

r9a) = &8 M10a) + D (1)) 2 R&ITWe, ()
i=0  j=m(T'})
A m(T)-1 A .
D(T®a)= ~ R 8d'(T®a).
j=0

A A A A
Observe that 7(T®a)c¢ CS (X;k;¥) and that D(T®a) ¢ cfﬂ(x; k). This
defines homomorphisms
A NG A
T 80X, A0 — EC(X, A5 1)
n- n n

AG

A \NG
' : A — , A k).
Dn Cn (X, A; k) Cn+l(X A k)

A formal computation shows that

A A A A

A A
n+l Dn * Dn--lan =id - 7711

7.
n
A

Using this formula and the fact that 7 is an inclusion and a chain map,

A . . Aa . Aa .
we see that the Tn's form a chain map. Since 7 75=1id and % T is chain

A

homotopic to the identity, Fisa homotopy inverse to 7).

A ——— —
Since the maps 83 and R restrict to maps Sd and R and induce

maps Sd and R, and since m(T) = M(T’) if T®a ~ T®a’, it follows
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A — —~—
that both ér and D restrictto 71 and D and induce v and D. Thus 7T

is a homotopy inverse to 71 . q.e.d

Proposition 6.5. Let (X,A) be a G-pair, and let U be a G-subset of

X suchthat Uc A° . Then the inclusion
i (X-U,A-U) —> (X,A)
induces a homotopy equivalence
i#: SG(X-U,A—U; k) —* SG(X,A; k).
The corresponding 2 " and T# are also homotopy equivalences.

Proof. The family ¥ consisting of the two G-subsets A and X-U

satisfies the condition in Proposition 6.4. Since we have

G (% 17) = s%(x-Us 1) + sS(A;K)

sSmskm) = %Ak and

s9x-u;x) ns%@a; k) = sSA-U; k)
it follows (by the Noether isomorphism theorem) that

.. <G G

j: S (X-U,A-U; k) —> S (X,A;k; )
is an isomorphism, and thus especially a homotopy equivalence. Since
i#: nj where n: SG(X,A;k;?/) — SG(X,A;k) is a homotopy equivalence

by Proposition 6.4, it follows that i, is a homotopy equivalence.

#
e, 4 iy
Similarly for i and iy q.e.d.

This proves the excision axiom in Theorem 2.1 and also the excision

A
axiom for the theories ﬁg( ; k) and HE:( s k).
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7. THE DIMENSION AXIOM

Recall that G denotes a good locally compact, Hausdorff topological
group. Moreover, % denotes an orbit type family for G, and k is an
arbitrary covariant coefficient system for ¥ over the ring R. The most
natural case is of course the one where # is the family of all closed sub-
groups of G.

We shall determine the R-modules HS (G/H; k) for He¢%. From
now on we shall not explicitly mention the orbit type family #. It is
implicitly assumed that all the closed subgroups we deal with belong to &,
and one only has to observe that all the constructions we use do not take
us out from Z.

A
Definition 7.1. We define CS Iso(G/H; k) to be the submodule of

&g (G/H; k) generated by all elements of the form
V®a
where the equivariant singular n-simplex V is of the type
V: (An;K, o, K) = AnxG/K'—-—> GH
and, moreover, V is such that the restriction
V|: {x} xG/K —> G/H

is a G-homeomorphism for all x¢ B As usual a ¢ k(G/K).

Clearly the modules &S Iso(G/H; k) form a subcomplex
5S Iso(c/H; k) of §9(G/H;K).

We say that an equivariant singular n-simplex V is of type 'Iso"

if V is as in Definition 7.1.
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Given a G-map

T: (An;K, o0, K) = A xG/K —> G/H
we define the G-map

T: (3K ..., K) = AnxG/K-*-> AnXG/H
by  T(x, gK) = (x, T(x, gK)).

Thus '-I'~ covers id: A —> A .
n n

Lemma 7.2. An equivariant singular n-simplex of the form
T: A XxG/K—>G/H iscf type "Iso' if and only if T A XG/K—>p XxG/H

is a G~-homeomorphism.

Proof. If T is a G-homeomorphism, then clearly T = PT,o0 T is of
type 'Iso.' Here Pr,: AL X G/H —> G/H denotes the projection onto the
second factor.

Assume now that T is of type '"Iso." Then T: Anx G/K -—>Anx G/H
is a continuous bijection. It remains to show that _'f'l is continuous.
In case G is a compact Lie group or a discrete group, the continuity of
-‘f-l is clear. Assume now that G is abelian. It follows that H = K and
G/H is again a topological group. Denote the restriction of T to An by
@: p_~—>G/H. Thus T is given by T(a, gH) = (a,(gH)w(a)). Hence the
inverse E-l is given by E-l (a2, gH) = (a,(gH)(w(a))-l) which is a contin-

uous map. q.e.d.

Observe that it follows directly from Definition 7.1 that if
A
V®a ¢ CfIso(G/H;k) and V®a ~ T®a’, then also T’ is of type '"Iso",

A
that is T'®Qak CIC: 1so(G/H; k). The inclusion
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n: éflso(G/H;k) — &f(G/H; k)

induces again an inclusion

B CSIso(G/H;k) — CS I1so(G/H; k)

and, moreover, it follows from the above observation that in fact
CS 1s0(G/H; k) is a direct summand in CS (G/H; k). We shall show that n
is a homotopy equivalence. But first we determine the chain complex
SGIso(G/H;k) = {CgY (G/H; k), an} completely. Let

vV A, XxG/K — G/H

\Af A X G/K — G/H
be equivariant singular n-simplexes of type "Iso." It follows from Lemma
7.2 that there exists a unique G-homeomorphism h: Anx G/K —> A X G/K/,

—_ -1 —
namely h = (V') ° V, which makes the following diagram commutative

———

v
A XG/K ——> A xG/H

h id\G/H
LT

Xr!
A_XG/K' AN A_xG/H pr,

Thus it follows that h = (-\_T’)—1 v A_X G/H —> A X G/K’ is a G-homeomor-
phism which covers id: An —> A, and such that V = V'h; moreover, h is
the only G-map which satisfies these two conditions. This applies espe-
cially when V: A X G/K—> G/H and V'= ™A X G/H — G/H where M
is the projection onto the second factor. We then have V = TTn{; and thus
for any ac¢k(G/K) we get

Vea ~ Trn®(Vn)*(a)
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where (V),: k(G/K) —> k(G/H) (as described in Lemma 3.2)

In order to be able to be very specific, let us introduce one more
chain complex. Define Cf spec. (G/H;k) = er Qk(G/H), and let
SG spac.(G/H; k) = {CI? spec. (G/H; k),an} be trllxe corresponding chain
complex. Here m denotes the equivariant singular n-simplex
m A X G/H — G/H, which is projection onto the second factor. Since

nl(’li) =T,y 1= 0,...,n, itfollows that we have

mRa n even, n > 2

2 () n-1
an(ﬂ®a) =77 (-1) rrn Ra = { B
i=0 0 n odd

Hence it follows that
H_(S" spec. (G/H;k)) = { .
0 m#0

Every element in CG

o Spec. (G/H; k) = ZTr ®k(G/H) is a cycle and

0
the zero element is the only boundary. Thus the homomorphism given by
m,®2 > a, a¢k(G/H) gives the wanted isomorphism in degree zero.

We now define a homomorphism

A A
o CnGIso(G/H; k) — Cf spec. (G/H; k)

in the following way. Let V: A X G/K —> G/H be of type "Iso! and
aek(G/K). We then define

& (Voa) = & (¥ ), (a)

where n’n: Anx G/H —> G/H is the projection onto the second factor and
('w}n)*: k(G/K) — k(G/H) is as described in Lemma 3.2. Observe that in

this special case we have (Vn)* = (Vx)* for any xean, see Lemma 3.2,
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From this it follows that the homomorphisms &n form a chain map
a: 8% Iso(G/H; k) —> S spec. (G/H;K) .
Now assume that V®a ~ V®a’ where both V: A X G/K —> G/H and
v Anx G/K —> G/H are of type ''Iso." Then we know from earlier remarks

that (((”\}’)'l?f)n)*(a) =2/, and hence (V) (a) = (V/),(a'). Thus

A A A
an(V® a) = an(V’® a), and it follows that ¢ induces a chain map
G G
a: S Iso(G/H; k) —> S~ spec. (G/H;k).

G A
Denote by {V®al«¢ C: T50(G/H; k) the image of V®a ¢ Cf Iso(G/H; k) under
the natural projection. Thus an({V®a}) = Trn® (Vn)*(a). We claim that
the homomorphism

‘Bn: Cf spec. (G/H; k) —— Cflso(G/H;k)

defined by ﬁn(ﬂn®b) = {ﬂn®b}, b e k(G/H), is an inverse to o, Since

T =id: A x G/H —> A x G/H, we have g §_=id. Since V@®a~T ®(V ) (a),
n n n n"n n_ ' n’%

we have {V®al} = {Trn® (Vm)*(a)}, and hence Bnan= id. This shows that
o is an isomorphism of chain complexes.

Thus we have

G k(G/H) m = Q
H (S Iso(G/H;k)) = {
m 0 m+0

The isomorphism in degree zero is explicitly described as follows.

Let {V0®a} € C(?ISO(G/H;k) = HO(SG Iso(G/H; k)), where VO:G/K-—> G/H
is a G-homeomorphism and a ¢ k(G/X). Then {V0®a} F—->(VO)*(a) e k(G/H)
gives the wanted isomorphism. Here (VO)*: k(G/K) —> k(G/H) is the iso-

morphism induced by VO.
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We have now completely determined the chain complex SGIso(G/H; k).
The next step is to construct a homotopy inverse to the inclusion
G G
n: S Iso(G/H; k) —> S (G/H; k).
We proceed to do this now.

Let T: (8,3 Ky oo, K ) —> G/H

0’
be an arbitrary equivariant singular n-simplex in G/H. We define

T:(a 3K ,.0.,K)—>A xG/H
n n

n’ 0

by —'f([x, gl = (x, T(ix,gl)). Thus T isa G-map and T covers id:An—->An.
We shall study the mapping cylinder of T. We use the notation M(_’f‘-) for
this mapping cylinder and Tm:1I X(An; KO’ e, Kn) U Anx G/H — M(&‘_) denotes
the natural projection. This time we choose the notation so that

m(0, [x,g]) = mM(T([x,gl)). We shall denote m(t,[x,gl) = {t, [x,g]} and

m(x, gH) = {x,gH}. We consider (An;KO, e, Kn) as a closed G-subset of

M(E) through the G-imbedding i: (An; K Kn) — M(_'f), given by

O, * o 8 3
i([x,g]) = {1,[x,gl}, and also A X G/H as a closed G-subset of M(T)

through the G-imbedding j: A X G/H —> M(T) given by j(x,gH) = {x, gH].
Since both (An; KO, e, Kn) and A X G/H are Hausdorff, it follows that
M(T) is Hausdorff.

We shall show that M(E) is G-homeomorphic to what we could call
an equivariant skew prism. We first describe what we mean by an equi-
variant skew prism.

Let L,K . ,Kn be closed subgroups of G such that

0’

L> KO D... D Kn. We define the equivariant skew n-prism of type



127

(L; K ., Kn), denoted by

0"

(Txa LKy, ..., K )

0’

to be the G-space constructed in the following way. Consider the G-space

I XAnx G and define a relation in I xAnx G as follows.

(0,x,g) ~(0,x,8") <=> gL = g'L¢G/L, for any xe¢ A,

(t,x,g) ~(t,x,g") <= gKm= g'Kme G/Km, for t#0, x¢ Bon By
Thus ~ is an equivalence relation in I xAnx G, and we define

(IxAn;L;KO, s K ) =I><An>_< G/~ . By [t,x,g]e(IxAn;L;KO, -, K), we

denote the image of (t,x,g)elx Anx G under the natural projection. It is

easy to see that (I xAn; I; K Kn) is Hausdorff (see Lemma 1.2 in

EEER
Chapter II) and thus we see in the same way as in Lemma 1.3 in Chapter II

that the natural action by G on (Ix An; IL; K .o, Kn) is continuous.

0’°
The main step in the proof of the dimension axiom is the construction
M(T) together with the following lemma. We use Palais’ Y'covering homo-

topy theorem'' in the proof of the lemma (for the case, G is a compact Lie

group).

Lemma 7.3. Let G be a good locally compact group. Let

: Koo, —
T: (A K, K) G/H
be a G-map and define
T: (An;KO, e ,Kn) — Anx G/H

by T([x, gl) = (x, T([x,g])). Then there exists a closed subgroup L of G
such that L o K0 D...D Kn and a G-homeomorphism

k: (IXAn; L;KO, c.. ,Kn) —> M(T)



128
which covers id: Iy An —>1x An'

Proof. a) Assume that G is a compact Lie group. Define
a:lxp —> M(T)

to be the composite map
¢

o n -
IxAn“—*‘Ix(An,KO,-~-,Kn)“‘L>M(T)

where

, —
a’(t, (ao, .. .,an)) = (t,[(1-t+ta ,tal, R ,tah,),e]).

0
Thus g is continuous and we have

al(t, (ao, e, a.n)) = {t, [(l—t-htao,tal, e, ta.n), el)}.

Observe that every point in ((0, 1] x(Am- Am—l)) has isotropy group Km,
0 <m<n. The set ({0} xAn) consists of one point, namely the point

0 0 =,.0 0 0
(0.[a% e]} = {a", g;H}, where T([d, e])=(a", T([a", e]) = (a%g ) € A_xG/H.
This point has isotropy group gOHg(;1 = I.. Observe that L D KO. Thus

« determines an isovariant G-map

~: P W 2 s ey —
o: (1 xAn L KO Kn) M(T)
where _&([t,a,g]) = ga(t,a). The G-map o induces on the orbit spaces

the map ﬁ:IXAn——%IxAn given by

B(t, YRR an)) = (t, (1«t+ta0,tal, o u e ,tan)),
Define a homotopy
FiIx(Ixa )—>IxA
n n
by
F(s,t, (a.o, ce ,an)) = (t, (1-((1~-s)t+s) +((1-s)t+s)a0, ((1--s)1:+s)a.1
ER ) ((l-s)t+s)an)
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Thus F is a homotopy from B8 to id:I XA# —>1 xAn. Observe that

F(Ix(0,1]x(aA N e (0,1 x(a -4

m AIn--l m-l)

FIx{0o}xa )c {0}xa .
Thus it follows that F is an isovariant homotopy. Since
F(0, )=8:1 xAn —>1 XAn can be lifted (to Z) it follows by Palais'
"covering homotopy theorem!' (see Theorem 2.4.1 on page 51 in Palais

[13]; the spaces (I XAn;L;K Kn) and M(T) are second countable)

07
that F can be lifted to an isovariant G-map. Especially it follows that
there is an isovariant G-map

ki (IxA LKy, ..., K ) —> M(T)
which covers F(l, ) =1id:1 xAn —1I xAn. Thus k is a G-homeomorphism.
This completes the proof in the case a).
b) Assume that G is a discrete group. Define the map

y: Ix An — M(T)
by v(t,a) = {t,[a,e]}. Since G/H is discrete, it follows that we have
{0,[a,el}= {T([a,e])} = {a, T([a, e])} = {a, 5 H]

for some fixed gOHeG/H for all ac An' Denote L = gOHg(;l. Thus all
the points {0,[a,e]}¢ M(_T—), ac¢ An have isotropy group L and L D KO..
Hence <y determines a G-map

v (Ix pLiK g, K ) > M(T)
which is a continuous bijection and which covers id: I x A, 1 XAn' It is

—-1 -
easy to see that inverse function y is continuous, and thus ¥ is a

G-homeomorphism.
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c) Assume that G is an abelian locally compact group. Define the map
viIx An —_— M('—I‘—)
by y(t,a) = {t,[a,e]}. Since G is abelian, it follows that all points of the

form {0,[a,e]} = {-'Z-[‘-([a., el)} eM(TI‘-) have isotropy group H, and H D KO.

thus y determines a G-map

v (IxAn;H;K oy K ) > M(T)

0’

which is a continucus bijection and which covers id: Ix A, —>1xX A It

—-1
remains to show that ¥y is continuous. Consider the diagram

| i |

Ix(An;KO, .. .,Kn) U AnxG/H <————-Ix(An;KO, .. .,Kn)UAnxG/H
Kl ln
(IxAn;H;KO, e ,Kn) > M(T)

Here o (a,gH) = (a, (gH)(w(a))ﬁl) where w: An —> G/H is given by
w(a) = T([a,e]). The G-map K is defined by
k(t,[a,g]) = [t,a,g]
k(a,gH) =1[0,a,g]
Since ¥y k(a,gH) = {a,T(a,gH)} = {a,(gH) T[a,e]} = {2, (gH) w(a)}, it follows
that the above diagram commutes. Thus 3/'_1 is continuous since p is a

quotient map. g.e.d.

We are now ready to construct a homotopy inverse to the inclusion

nt S 1so(G/H; k) — S (G/H; k).

First we define homomorphisms
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?Pn: (“f‘(c,/H;k) — CS I1so(G/H; k), and

A AG G
Qn. Cn (G/H; k) —> Cn+l(G/H’k) .

Let T® a¢ CS(G/H; k), where

T: (A ;K ,...,K )—>=G/H
n n

0"
and ae¢k(G/H). Form M(_'I—’) and let

k: (Ixa;LiK ..,Kn)-——->M(‘1:)

(0

be a G-homeomorphism which covers id: Ix An —>1Ix A the existence of

which is given by Lemma 7.3, We have the commutative diagram

?Ji" - \\

k
K )-———>'M(T)——->'A xG/H~——->G/H

E S . . .
(*) (IXAnsL:KOJ ~

A

0
PSS
An x G/L an G/H

~

The meaning of all the maps in the diagram is clear.

Denote 2 = ((kl)n);l (a), where ((kl)n)*: k(G/Kn) > k(G/Kn) is the

isomorphism determined by k1 as described in Lemma 3.2. Denote

D=pr,rk: (IxA ;K ,K ) — G/H.
n n

2 0

Using these notations, we now define
A ot
o (T®a) = {(Di))®p, (&)}
where p,: k(G/Kn) —> k(G/L) is induced by the natural projection

p: G/Kn —> G/L. Observe that
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Dlo = pr, kO: AnxG/L — G/H
is of type 'Iso'" and thus

. ~ G
{(D 10)®p*(a)} € Cn 1s0(G/H; k).
A
We have to show that this definition of gon(T®a) is independent of the

choice of k. Let k' (I x{_\n; LK .oy Kn) — M(E‘_) be another G-homeo-

0’
morphism which covers id:Ix An —>1x An' We then have the commutative
diagram

i
0
AnxG/L —-->(I><An,L,KO,...,K )

f'L ) fj' /M("f)

Kn)

! > .17,
AnxG/L (IXAn;L,K

0,...,

-1
where f = (k') "k is a G-homeomorphism which covers id:I x An—-—> Ix An’
and thus f|: A% G/L —> A_X G/L is a G-homeomorphism which covers
id: A_—> A .
id An An

rk!, a’= ((K)) );1 (a), and let p':G/Kn—-—> G/L be

/ ——
Denote D' = pr 1

2

the natural projection. We must show that

(Di)®p,(a) ~ (D'if)®p,(a").

Since we have D io = D'ib(fl), it only remains to show that

(£])(py(3)) = P,
Consider the diagram

f
n
G/K (1, d%) > G/K
n n

/) ¥

Y
Q
<
L

G/L
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where f(l an) denotes f restricted to the orbit over (l,dn) el xAn, and
(£ |) 40 has the analogous meaning. Exactly in the same way as in Lemma

3.2 we see that this diagram is G-homotopy commutative. Since
-1
— ’
(1,qn) = (kl)dn (k1 )dn, we have

f

~ ~ -1 ~ e
\ (f])*p*(a) = p)'k(f(1 dn))* (a) = p;:((ki )n)* (a) = p;:(a'). Thus the definition

we have given for Qon('I‘®a) is well-defined. This determines the homo-

A
morphism § CG (G/H; k) — CGIso(G/H;k). It now follows immediately
<pl’). n n

that the homomorphisms ?’on form a chain map

;Ap: ASG(G/H;k) — SGISO(G/H;k).

Next we define homomorphisms

G

G
. —_...>. T
n (G/H; k) Cn+1(G/I-1,k)

A
$:C
n
and show that they form a chain homotopy from the natural projection
A AG G A AG G
: ; — ; : ; — s K).
P Cn (G/H; k) Cn (G/H; k) to e, Cn (G/H; k) Cn (G/H; k). Recall

the diagram (*). Denote ga = (0,a)¢l XAn and ua = (l,a)e(I xAn) for

aech, - We use the following linear equivariant singular (n+l)~simplexes

in (1 XAn;L;KO,...,Kn). Let
0 . .
(#d", L), .. (4d", L)(ud", K.). .. (ud”, K)
: sy, oo, LK, = H g0 ey
(A4 L L, K, K) (Lxa i LiK, K )

i+l
0 <i<n bethe G-map which is determined by the condition that it
restricts to a map An-}-l —>1IxA and that this restriction is the linear
n

map given by
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n+l . i . n .
2 ad —> T agdl+ T a._HudJ.
j=0 J j=0 j=id
Observe that each (zdo, L)... (,e,dl, L)(udl, Ki). . (udn, Kn) is a G-homeomor-

phism onto its image. We now define

A
@n(T® a)

={ > (-1)'D(2a®, L. . . (zdi,L)(udi,Ki). . (e’ K Do}
i=0
We have to show that this definition of &)(T@ a) is independent of the
choice of k. Let k': (Ix A L; Kyseens Kn) — M(T) be another G-homeo-
morphism which covers id: Ix An —>1Ix An’ and denote D'= pr, r k' and
al= ((k’l)n);l(a) as before. An argument completely analogous to the one

A
in 'the case cpn(T®a)” now shows that

p(2a°, ). . . 4a*, L)(ua, K (ud”, K )® g

~ D'(2d°, 7). .. (pal, L)(ud’, K.). . . (ud®, K_)® al

for i=0,...,n. Thus ?z:n(T® a) is well-defined. This determines the
. A AG G _
homomorphism cbn. Cn (G/H; k) —> Cn+l(G/H’k)'

A
We now compute an+1<1>n(T® a).

We have

A
Bn+1 @n(T® a)

n . i=1 . PN . . -
- {2 (-1)1[' 5 (-1°D(2a°, 1)... (2ad 1)... (2d} L)ual K)... (" K )@ a]
i=0 §=0 :

. 0 . . N
+ (-1)'D(ea’, L)... (2a' "L Lyal K,)... (ua® K )®3

+ (1" pea® 1)... (rad)walt k.

n ~
1‘{_1)... (ud, Kn)®p*(a)
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N

i+ 0 i i f n -
7D’ L. (4], LA K)o (0, K)o ,Kn)®p*(a)]} .

n

+ (-1
j=it+l

The sum over i of the two middle lines equals

{D(ud’, K)o (ud ", K ) ®3F - D(2a°, L)... (4a%, L)®p,(3a)}

= {(Di))®a} - {(Di))®p,(a)]).

Since D i1 = 'I‘kl (see diagram (*)), it follows directly that T®a ~ (D il)® a,

A
and thus this expression equals {T®a]} - 77<pn{T®a}. Since we already

showed that the definition of &’n is independent of the choice of the G-

homeomorphism k, it follows that in forming the expression for

(i)

"’)l’

""n-l(T ®(pi)*(a)) i=0,...,n, we can use diagram (¥) restricted to the
appropriate face. Thus we see that the remaining double sum in the
A
expression for an+l <1>n(T®a) above equals (change the order of summation)
A A

- (I)n-l an(T®a.). This shows that the homomorphisms

A AG G

& : C_(G/H;k) —> C_ . (G/H; k)

n n n+l

form a chain homotopy from f) to 7’!‘9\9

It now remains to show that :‘pn and &’n induce homomo rphisms

G
Q¢ Cn (G/H; k) —> CSISO(G/H;k), and

G G
: . — Y
?.:C, (G/H; k) CnH(G/H,k)
Thus assume that T®a ~ T'®a’ where
s (A K, .. —s “(pn K., ...,K)—> G/H
T: (An, KO, ,Kn) - G/H, T (An,KO, ,Kn) G/H
’ Y . . — KL ’
and a ek(G/Kn), a ek(G/Kn). Let h: (A ;Kj, ..., K ) (a_s Ky, JK.)

be a G-homeomorphism which covers id: An —> An’ and such that T=T'h
and (hn)*(a) =a’. Thus T = T/h and therefore h induces a G-homeomor-

phism
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h: M(T) —> M(T’)

which covers id: Ix A, —>1Ix An’ and such that the diagram

M(-T—) r
—};\L \ An XG/H
" /

M(T')

commutes. We also get the commutative diagram

s L > M(T
(I XAn, L; KO’ , Kn) M(T)

fi 1‘};

k’ —
> M(T’)

. / 4
(IXAn:L:K s"':Kn)

-1 —
where by definition f = (k') ~ hk, and thus f is a G-homeomorphism
which covers id: Ix An —>Ix An' Using these two commutative diagrams,

it is easily seen that we have
A A , R G
(pn('I‘®a.) = <pn(T ®a') ¢ Cn Iso(G/H; k) and

& (Toa) = ® (T'®a') ¢ C°O (G/H: k
n( ®a)—<1>n( ®a’) ¢ nJrl( s k) .

We now have

9 @n'*‘@_& =1d-nn(pn.

n+l n-1"n

Thus the chain map
no: 8T(G/H; k) — s (G/H; K
induces the identity on homology.
We claim that

on = id: SG Iso(G/H; k) —> SG Iso(G/H; k).



Let {V®a}e C, I1so(G/H; k), where V: A X G/K —> G/H is of type 'Iso"

and a ¢k(G/K). In this case the diagram (*) becomes

k

1
A XGIK ———>

~ A X G/K

4] o=
k. pr
IxA LK, ..o K) = M(V) —> A XG/H —> G/H

0 ‘{ TJ /d
K

o .
AnXG/L AnxG/I-l

(%)

~ ~ —1
Now ¢ {V®a} = {(pr,k )®p,(a)}, where 2= ((k)) ), (2) and
p: G/K—> G/L is the natural projection, L > K. We have

{(Vea} = {pr27k1® al.
We have

—_— _1—..
prZVkl-(przko)(ko) Vk1
-]1—

and (ko) Vk

id: An _— An' We claim that

] ~ ~
(k)" Vi))(F) = p, ().

This follows from the fact that the diagram

k
{a"} xG/K

~> {a"} xG/K

ol

1™} x G/ L—2— [a™} xG/H

is G-homotopy commutative. This again is proved using diagram (%%) in

exactly the same way as Lemma 3.2 was proved. Thus

13 A, X G/K —> A X G/L is a G-homeomorphism which covers

137
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{Vveal = {(pr27k1)®;} = {(pr2 k0)®p*(§)} = (pn{V® a}. This shows that
on = id. Hence the chain map
G G
p: S (G/H; k) — S~ 1so(G/H; k)

induces isomorphism on homology. Thus we have
H (87(G/H; ) & {
0 m # 0
It is easily seen that the explicit isomorphism in degree zero is given as
follows.
Let {TO® ale Cg} (G/H; k), where TO: G/K —> G/H. Then

{T®a}—> (T ), (a) cG/H
where (TO)*: k(G/K) —> k(G/H) is the homomorphism induced by TO'

Denote this isomorphism by

y+ HY (G/H; 1) —> K(G/H)
From the above explicit expression for v it follows at once that it com-
mutes with homomorphisms induced from G-maps as claimed in the
statement of the ''dimension axiom." This completes the proof of the

dimension axiom in Theorem 2.1.

This completes the proof of Theorem 2. 1.

8. EQUIVARIANT SINGULAR COHOMOLOGY

To construct equivariant singular cohomology we take the ''dual't of
the chain complex which gave us equivariant singular homology. But in
our situation with coefficient systems and ''all the rest' this requires some

more elaboration than just saying 'take Hom ( , )."
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We proceed as follows. Let R bea ring with unit. By £ we denote
a contravariant coefficient system for some orbit type family % over the
ring R. From now on we shall not usually mention the orbit type family
F. It is implicitly assumed that all the closed subgroups we deal with
belong to %. Thus, for example, all equivariant singular n-simplexes
are assumed to be equivariant singular n-simplexes which belong to #%.

Let X be a G-space. Denote

A

CG(X) = 287
n

T T

where the direct sum is over all equivariant singular n-simplexes in X.
. AG . . . . .
That is, Cn (X) is the free abelian group on all equivariant singular

n-simplexes in X. The boundary homomorphism

A A A

d :cG(X)—-> CG (X)

n n n-l
is defined by

A S gad ()

d(T)= L (-1)'T

n .

i=0

Then S 1 Sn = 0, and we thus have the chain complex
AG AG A
$7(x) = {C(X), 3_}.

That is,
A A
SG(X) = SG(X; k)

where k is the covariant coefficient system for which k(G/H) = Z for
every closed subgroup H of G and all the induced homomorphisms are
the identity on Z.

Denote

L =228 4(G/H)
H
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where the direct sum is over all closed subgroups H in G.

A
Definition 8.1. We define the R-module cg(x; 4) by

A A
& (X 1) = Hom (7 (X), 1).
G t' 'n
A
Here Homt(Cn (X), L) consists of all homomorphisms of abelian groups

c: c“:G (X) =2® 2z, —> L®4G/H) = L
o T T H

which satisfy the condition
c(T) € £ (G/t(T))
for every equivariant singular n-simplex T in X. The R-module structure

AG .
in L makes I-Icmz((é,‘(r:;r (X), L) into an R-module, and Homt(cn(X), L) is

an R-submodule of that module.

Definition 8.2. Let

AG

A A
o Cn (X) —= C

G
o (Y)

be a homomorphism. We say that & is ""type increasing'' if the following
condition is satisfied.

The homomorphism ¢ determines a natural number q >0, and
q+l integers mj,j=0, ...,q and order preserving functions
a.: {0,...,m}— {0,...,n} (i.e., asbr#aj(a)saj(b)) j=0,...,q,

J
such that if

: : v — X
T: (An, Ko’ ,Kn)
then
A q
a(T) :Zm.s-, m.ez
j=0 J ] J

where each Sj is an equivariant singular m-simplex in Y of the form
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K ) —> Y.

S.: ; y o s
i P .Kaj(O) o ()

In particular, we have

HT)SE(S)  j=0,...,q.

The boundary homomorphism

A AG 2 G
: —
3 : C (X) C. (X

is 'type increasing.' In this case we have g =n and
aj: {0,...,n-1}—> {0,...,n} is given by aj(a.) =a for 0<ax<j,
aj(a) = a+l for j<a<n-l.
For any G-map f: X —> Y the induced homomorphism
b &8 () —= & ()
is '"type increasing.!' In this case gq=0 and o= id: {0,...,n}—{0,...,n}.

The dual of a ''type increasing'' homomorphism

A
Let &: CS (X) — &gl(Y) be a ''type increasing' homomorphism.
We shall define a homomorphism
A m(Y z)—-—->c (X; )

which we call the dual of oz .

Let ceC (Y; ) = Homt(élc_}n(Y),L). The homomorphism

i AG An
o (c) ¢ Hom (G (X), L) = CL(X; 2)
is defined as follows.

Let T be an equivariant singular n-simplex in X and

A q
al(T)= 2 m.S,, m.eZ
j=0 13 j

where each Sj is an equivariant singular m-simplex in Y. We then define
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q
@enm =T m X )" e(5,) € 4G/ T
j=0
where (pj)*: z(G/t(Sj)) —> 4(G/t(T)) is the homomorphism induced by the

natural projection pj: G/t(T) —> G/t(S.), j=l,.<.,q.
& (C)eHom (C (X), L) = o (X £).

%
Since the homomorphisms (pj) above are homomorphisms of R-modules,

A A
it follows that oAg#: Crg (Y; 0) — Cg(X; 2) is a homomorphism of R-modules.

A A A A
Lemma 8.3. Let a:&i(X)*‘*éi(Y) and B: C?n(Y)'**CI?(Y/) be

A A
"type increasing' homomorphisms. Then B is "type increasing'' and

A

Bt = atpt.

Also id# = id and 0# = 0.

Proof. The proof is clear.
22008 g.e.d.

The boundary homomorphism a C (X) — C (X) is "type
increasing." We denote its dual by

An-1 A # An-l An
) = (an) : CG (X; 8) — CG(X, L).

Then %n %n—l ( ) (a ) = (d nAn+l)# = 0# = 0, and thus we get the

cochain complex
St x = (&2 %0, 53
G "e)"‘ G( :f/)» 61’1'
Let f: X—> Y be a G-map. Then the induced homomorphism
A AG AG
f#: Cn (X) — Cn (Y) is "type increasing.'” We denote its dual by
A# An An
: ; — s 4)-
f CG(Y £) CG(X £)

These homomorphisms commute with the coboundary and thus form a
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homomorphism of cochain complexes

t 8 v ) — 5 x;
. G( )Z) G( ’oel)'

Let (X,A) be a2 G-pair. We have the inclusion

Y e AG
i,: ——
1y Cn (A) Cn (X)
and also the homomorphism
A A NG
&: CF (%) —> &7 (a)
n n
which is a left inverse to i# (see the proof of Lemma 4.8). Both g# and

A A
o are ''type increasing.'' The dual of i, is

#

A An An

i P h) —> ;

i CG(X £) CG(A L)

A
and since i# &# = (& 3#)# = id# = id, it follows in particular that f# is onto.
A
Now define CE(X,A; 4) to be the submodule of Homt(&S(X), L) =

A
Cg(X; 4) consisting of all the homomorphisms that vanish on &S (A).

Thus we have the short exact sequence
A

An A i An
0— CG(X,A; ) —> C_(X; 4) — CG(A;z) —> 0.

ol
This completes the part dealing with the definition and some general
properties of the cochain complex g*(X; 4).

In constructing equivariant singular homology we took a quotient of
the 'roof' chain complex. Here, dually, in constructing equivariant

singular cohomology we shall consider an appropriate subcomplex of

(X; 4). We now define this one.

Definition 8.4. We define the submodule

n An AG
CG(X, AR CG(X, £) = H<:>mt(Cn (X), L)

A
to be the submodule consisting of all the homomorphisms cg¢ Homt(CS(X), L)
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which satisfy the following condition. Let T" (An; K.,..., K;l) — X be an

equivariant singular n-simplex in X, and let h: (An; K .y Kn) —

0’ LR
(A:K ,...,K') be a G-homeomorphism which covers id: A — A .
n n n n

Denote T = T'h: (An;K s ,Kn) —= X, Then

o'’

* 4
e(T) = ()" (T e UG/K ).

%
Here (hn) : ,e(G/K;l) — z(G/Kn) is the isomorphism determined by h as
described in Lemma 3.2.
We shall now define a condition on a 'type increasing' homomorphism
A AG AG
o Cn (X) — Cm(Y) which will guarantee that the dual
A # Am An
a": CCUTs 0) —> CL(X: )
restricts to a homomorphism

# m _ n,._.

Definition 8.5. Let

Y e A
a: C (X)""—>CG(Y)
n m

A
be a '"type increasing' homomorphism. We say that ¢ is "isomorphism
preserving'' if it satisfies the following condition.
Given a G-homeomorphism

: : .. e KO, ... K
h (An,K ,Kn) (An K., ,Kn)

0"
o also determines (besides the natural number q > 0, the integers mj
and order preserving functions aj: {0,...,m}—={0,...,n} j=0,...,q9)
G-homeomorphisms

aj(h); (Am; Kotj(o)' cers Kaj(m)) — (Am; Kaj(O), cee, Kaj(m))
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j=0,...,q, which cover id: Am —> Am and such that the following diagram

is G-homotopy commutative,

h n
G/K d > G/K’
n n
7
P P
h
m
G/K d > G/K'
aj(m) ocj(m)

(notations as in Lemma 3.2), and such that we have the property: If
T (A ;K.,...,K')—> X and T = T'h,
n n

and

j=0 77
then we have
A A 1 q 7/
@(T) = a(Th) = 2 m (S a.(h)).
=0 J 3]

A A AG
Lemma 8.6. Let o CS (X) —> Cm(Y) be a 'type increasing'' and

"isomorphism preserving'' homomorphism. Then its dual

A# Am An
o CG (Y; 4) — CG(X; 4) restricts to a homomorphism
f S (Y 0) > CR (X )
(62N G » X G Lay ©

m ) A# n
Proof. ILet ce CC— (Y; 2). We claim that o (c)e CG(X; 2)

Let T (A 3K.,...,K') == X and let
n 0 n

. —_— . 7 / . « N
h: (An, K .o Kn) > (An, KO, ey Kn) be a G-homeomorphism which

0’’

covers id: A, "7 A and denote T = T'h. We have to show that

(@*(en(m) = niia (NI e sia/K ).
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A 4 q ' A q 4
Let q(T) = Zm.S!, and hence o(T) = 2 m (S’ @.(h)). We have
j=0 I j=0 4 37

q *
GHeNT) = B map)™ (s’ a.th))
P 3%

% mp) (e’ e (8) = 3 m,h e e(s)
= m . . )= m, . .
§=0 S L B j=0 nPi %

o3

%, 4 % *
=h ('E m_ (p’) c(sg)) = hn(&#

(e)(T")

This completes the proof. g.e.d.

A AG A G
The boundary homomorphism an: C (X)—C

n n-—l(X) is "type

increasing' and "isomorphism preserving."

. . z / _ .
Let h: (An, K . Kn) — (An, KO, cen, Kn) be a G-homeomorphism

07"

which covers id: An —> An' In this case we simply have

— . R A . 12 AI ¢
o () =h|: (oK ..,Kj,...,Kn)~—>(An,KO,...,K.,...,K ).

0’ j n

A,
Thus §* restricts to

n+l

n _n
) CG(X L) CG

(X5 2)

and we get the cochain complex
% n n
Sg(Xi ) = {CL(X50), 6 3
A

A
For any G-map f: X —> Y the induced homomorphism f#: Cn(X)'*—> Cn (Y)

Aft
is "type increasing'’ and "isomorphism preserving' and thus f restricts

o
0

to a homomorphism of cochain complexes
f#

%*

G(X; £).

o
- . —
3 SG(Y, 1) S

A AG AG
Let (X,A) be a G-pair. Then both i#: Cn (A) — Cn(X) and its

A A
left inverse ¢: CS(X) — C(j(A) are ''type increasing' and "isomorphism



147

preserving.” Hence we have the short exact sequence of cochain complexes

" H#
* % i sk
0 — S . — . — . —_—
g * #
where, by definition, SG(X,A; 2) = keri .

Definition 8.7. We define

n
Ho(X,452)
to be the nth homology module of the cochain complex S(;(X,A; 2).
It is now clear that we have proved everything up to the exactness

axiom in the statement of Theorem 2.2.

Proposition 8.8. Two G-homotopic maps

f0£,1 (X,8) —> (Y, B)

induce cochain homotopic maps

4 £ = *
£,:8 (Y,B;4) —> S (X,A;40).

fO, 1

Proof. Let F:Ix(X,A)—=(Y,B) be a G-homotopy from fo to fl'

We shall use the same notations as in Section 5. Recall from the proof

of Proposition 5.10 the chain homotopy

5 D&% x) — % (v
Pan¥nt n( ) n+l( )
A A
: if T:(A CL K ) > X,
from (fl)# to (fO)#' Recall moreover that if r'(An’KO” ,Kn) X

then we have

n . . .
2 (-1)NF(id x TH(K,, zndo). (K, zndl)(Ki,undl). (K, undn)).
i=0
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A A
It only remains to show that Pas1 Dn is 'type increasing'' and
"isomorphism preserving,' our clain then follows using L.emma 8.6. But
this is exactly what is shown in the proof of Lemma 5.10, or one could

simply say that it is clear from the above expression. q.e.d.

Proposition 8.9. Let (X,A) be a G-pair and let U be a G-subset of X

such that U c A®. Then the inclusion
it (X-U,A-U) —> (X,A)
induces a homotopy equivalence

HE *
: 3 m— - -U; 4).
i SG(X,A 2) SG(X U,A-U; 1)

Proof. We shall use the same notations as in Section 6. Let ¥ be as in
Proposition 6.4. Recall the inclusion

A NG AG

i Cn (X:?f) —_—> Cn(X):

and that in the proof of Proposition 6.4 we defined homeomorphisms

I Ye) AG
T Cn (X) — Cn(X;’V)

AAG Xe
: —
D Cn(X) Cn+l(x)
A A AA AR A A A A
such that 117 =id and 9D + D3 =id - nr. We claim that both 7 and D

are '‘type increasing' and ''isomorphism preserving.'' From the definition
A A
of 7 and D given in the proof of Proposition 6.4, it follows that is is

enough to show that the homomorphisms

N A A
Sd: CG(X) —_— CG(X)
n n
A AG NG
N ————
R: Cn(X) Cn+1(X)

are ''type increasing' and "isomorphism preserving.' But this is exactly

what is proved in the proof of Lemma 6.1,
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Thus
# S* X;8) —> S* X
n G( 3 2) G( 3 4:7)
is a homotopy equivalence with homotopy inverse

* 8 (X5 437) —> S5 (X;
T G( 3 437) (%5 4.

Now let ¥ be the family consisting of the G-subsets A and X-U. Recall

the proof of Proposition 6.5. The map

A A A
i#: SG(X-U, A-U) —> SG(X,A)
equals the composite

AG ] G 7. AG

S7(X-U,A-U) = 57(X,A;7) > 57 (X, A)

A
where j is an isomorphism. It follows from what we showed above that
A % H*
7 induces a homotopy equivalence T!#: SG(X,A; L) — SG(X,A; ;7).
. .
Since both j and its inverse are ''type increasing' and "isomorphism
A

preserving" it follows that j induces an isomorphism

% 3
i sg (X, A5 57) —> S.,(X-U, A-U; 4).

Since i# = j# n# this completes the proof.

The dimension axiom

The construction of equivariant singular cohomology and the verifica-
tion of the first six axioms has consisted of showing that the homomorphisms
used in the corresponding homology version are 'type increasing'' and
"isomorphism preserving' and then applying Lemma 8.6. The proof of
the dimension axiom does not lend itself directly to this procedure. But
still the proof of the dimension axiom for equivariant singular cohomology

is completely dual to the proof in homology. We simply have to give direct
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definitions of the '"dual'' homomorphisms in each case. We use the contents
of Section 5 freely.
%
We shall determine the homology of the cochain complex SG(G/H; 2).

We denote, as before, T = Pr,: AnxG/H —> G/H. Define

Cg spec. (G/H; §) = Hom (ZTT , £(G/H)). This equals Homt(CSspec. (G/H), L).
n

o spec. (G/H; ¢) — ¢(G/H) given by c C(Tl’n) is an

The mapping CG

isomorphism of R-modules.

5%

G
2{G/H) m =0

We have the corresponding cochain complex S_ spec.(G/H; 4), and

* ~
H_(S. spec.(G/H;4)) = { .
moG 0 m # 0
spec. (G/H; ¢4) is a cocycle and the isomorphism

0
G

Every element in Cg}

*
from HO(SG spec.(G/H; £)) = C_ spec.(G/H; 4) to L(G/H) is given by

c —> C(TTO).

An AG
We define CG Iso (G/H; 4) = Homt(cn Iso (G/H), L) and
Cé Iso (G/H; ) c&é Iso (G/H; 4) to be the submodule consisting of all

homomorphisms that also satisfy the condition in Definition 8.4. Now

define

A A
a#: Cg spec. (G/H; 4) —> Cg Iso (G/H; 4)

A
as follows. Let ceC. spec.(G/H; 4) and VeCSIso (G/H). Then

G

@ @(V) = (V)7 elmy) e 4(G/EV))

— %
where (Vn) : (G/H) —= (G/E(V)).

A
It is immediately seen that in fact a#(c) € Cg Iso (G/H; 4). Thus we have
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the homomorphism

a#: Cg spec. (G/H; ¢) —> Cglso (G'H; 2).

Define

n

o 1so (G/H; 1) —> ct

#
g": C o

spec.{G/H; 2)

by (ﬁ#(c))(ﬂn) = c(ﬂn). Both oz# and B# are homomorphisms of cochain
complexes.

Let ceCo

o spec. (G/H; 4), then

(6" enemy) = @henm ) = wa )" et = ey,

Let c¢ Cé Iso (G/H; 4), then

(gt enm) = T @tenm) = ) e = ev
a B (c —nﬁcnn—ncﬂn)-c).

Thus 3#a# =id and a#ﬁ# = id.

Thus

" {.Z(G/H m=0
H_(S. Iso (G/H;g)) =
m= G 0 m+#0

and every element in CO Iso (G/H; 4) is a cocycle and the isomorphism

G

e
from HO(SG Iso (G/H; ) = COJ Iso (G/H; 4) to 4(G/H) is given by

G
¢ = (BHe)imy) = clmy).
We shall now dualize the proof of the fact that the inclusion
7t SG Iso (G/H; k) — SG(G/H; k)
is a homotopy equivalence.
The inclusion

A MG A£G
n: Cn Iso (G/H) —> Cn(G/H)
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induces

#

n' i Cg(G/H; 4) —= C;

G Is (G/H; 2).

Recall the construction of the homomorphisms
oA
©: CS(G/H) —_— Cglso (G/H)

A AG G
i Cn (G/H) Cn+1(G/H).

In particular, recall the diagram (¥) in Section 5 and the notations there.

Now define

A# n

o'+ Cg; Iso (G/H; £) — CL(G/H; 1)

n

G Iso (G/H; 4). Define

as follows., Let ce¢C

G
?p#(C) € &g(G/H; L) = Homt(en (G/H), L)

by the following. Let
. . —_—
T: (An,KO,...,Kn) G/H
and consider the diagram (*) for some G-homeomorphism k. Define

Ag O .
(o (eN(T) = ()} " p e(Dig) et (G/K ).

Here D iO = pr, kO: AnxG/L —> G/H is of type 'Iso' and

) ¢ ,@(G/KD) e ,Z(G/Kn). We have to show

b FS
p : 4(G/L)—> Z(G/Kn) and (kl N

that Zo# is well-defined, that is does not depend on the G-homeomorphism
k. The proof of this is completely analogous to the proof we gave in the
homology case. With the same notations as there, the details are as
follows.

We have to show that

® o1 k& . " , % -1 7 * tet
() )7 P e(Dig) = (()))7 () c(D'if).
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. n
Since c¢C

 1s0 (G/H;2) and Dij = (D'ig)(f]), it follows that

c(Di,) = (f|)* c(Di’)
o'~ n o’
Thus

* - * * 1.7
() e = (D e ] e(i))

- * -1 * 7 * ler
= (0) )7 () gny) @) c(D'if)

# -1 ’ -1 * 14 # 132
(tey) )77 () Bey) ) (P (D)

i

-1 PR ,os
) (p) (D).

Ky
(), 0

(]

A
Now it is easily seen that (p# is a homomorphism of cochain complexes.
Next we define the homomorphism

S co 1 aru; z)——>c (G/H; 1)

as follows. Let ceC (G/H 2). Define

8*(c) ¢ &2 (a/m; 0) = Hom (0 (a/m), 1)

by the following. Let

T: (An; K LK) > G/H

0r "

A
and consider the diagram (%) in Section 5 and the definition of cbn given

there. We define

@ et =

e

n
-,- -1 i 0 i i
= (k) (E (-1)'D((ed”, ). .. (2", Lywd" K.). . . (wd™, K ))).
=0 i n
It follows immediately that this definition of A@#(c) is independent of the

choice of the G-homeomorphism k in diagram (*). From the calculation

A A A
in Section 5 which showed that & is a chain homotopy from p to n¢, it
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follows that we now have

38 + 8ls=) - ot

A n An
where j: CG(G/H; L) — CG(_G/H; £) is the inclusion.

The next step is to show that in fact
A A
(p#(C) € Cg(G/H; Lc C?}(G/H; 4) and
A# n An .
d (c)e CG(G/H; L)< CG(G/H; 4). That is we have to show that

% A
if T=Th then (A(p#(c))(T)=hn(g#(c))(T’). This is proved using the same dia-
grams as in the proof of the corresponding homology statement. Thus we

have homomorphisms

n

#
cp.CG

Iso (G/H; g) —> Cg(G/H; £)

# _ntl . n .
@ : C, (G/H;p) —> Co(G/H; £)

and

5@# + 43#5 = id - (p#'r;#.

Finally one checks, using diagram (**) in Section 5, that n# <p# = id.
Thus

#

T .
n : SG(G/H, L) ——> SG

Iso (G/H; )
induces an isomorphism on the homology of these cochain complexes.

Thus

H (S_(G/H; ) = .
m G { 0 m#0

We have the homomorphism Cg(G/H; L) —+ L(G/H) given by
c > n#(c) > (n#(c)) (Tro) = c(TTO). This homomorphism restricted to the

cocycles in Cg(G/H; 4) gives the explicit isomorphism.
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Denote this isomorphism by

£: H.(G/H; 1) —> 4(G/H).
We shall show that £ commutes with homomorphisms induced from
G-maps. In the case of homology the corresponding assertion followed
directly from the description of the isomorphism. The cohomology case

is not completely equally direct. We need the following lemma.

Lemma 8.10. Let ce¢ Cg(G/K; £) be a cocycle. Let w:G/H —> G/K be

%
a G-map and g : £(G/K) —>4(G/H) the induced homomorphism on the
coefficient system.

Now regard ¢ as an equivariant singular 0-simplex in G/K of type

H, a: By X G/H —= G/K. Also consider the identity T K onG/K —> G/ K

as an equivariant singular 0-simplex in G/K of type K. We claim that

*
cla) = a c(m, K) ¢ L(G/H).

-1
Proof. Denote g(eH) = gOKeG/H. Then HC gOKgO and thus

-1

-1
g, He,< K. Denote H =g Hg . Thus H'c K, and let p:G/H —> G/K

0
be the natural projection, that is, p’(eI—I') = eK. We have the commutative

diagram of G-~spaces and G-maps

7

/
G/H' e p/

where h is the G-homeomorphism determined by h(eH) = gOH'.
Since ce¢ Cg(G/K; 1), we have

*
c(a) =h c(p’).
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Define
T,: (AI;K,H') —> G/K
by Tl([x, e]) = eKe¢G/K. Then
—— I -
a('rl) =p TTO,K'
Since §(c) = 0 it follows that

0 = (8())(T)) = "e(dT )" = c(p’) = (p") el ) € AG/H').

Thus

*

b3
cla) = h e’ =h(p') ¥elm. )= () em. ) =a o

0,K Mo, K 0,K"

q.e.d.
Let @:G/H —> G/K be a G-map.
0
Let ¢ eHG(G/K; 2), thatis ce¢ Cg(G/H; 4) and §c = 0. Then
® _ * d
a &lc) =« C(TTO,K) an
* - & B
Ea (c) = (v (c))("o,H) = C(omo’H) = cla).
Thus by the above lemma
% %
o £E=Eta .
This completes the proof of the dimension axiom for equivariant singular

cohomology. This completes the proof of Theorem 2.2.

9. ANALTERNATIVE CONSTRUCTION

In Chapter II we saw that a smooth G-manifold M (G = compact Lie

group) is built up by standard n-simplexes (An; K - Kn) as pieces.

0’
The construction of equivariant singular homology and cohomology we

have described in this chapter is of course inspired by that result. The

philosophy behind the construction is thus the following. The standard
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n-simplexes (An; KO’ ceay Kn) are the equivariant versions of the standard
n-simplexes by Hence, imitating the construction of ordinary singular
homology and cohomology, we consider all G-maps from standard equi-
variant simplexes into the G-space X, whose equivariant homology and
cohomology groups we want to define. The coefficient system is introduced
in order to distinguish between different orbit types. If

h: (An; K.,..., Kn) — (An; K.,..., K;1) is a G-homeomorphism which

0’

id: o —> i ; - K, oK
covers id ’An An’ we consider (An,K ,Kn) and (An KO’ ,Kn)

0’

only as different presentations of the same object. This leads to the

definition of the relation ~ , and thus to the identification we have used.
But further work with this construction reveals that it is technically

quite cumbersome to handle. A good example of this is the proof of

Proposition 2.3 in Chapter IV. The situation there is the following:

A is a closed subgroup of G of index m, and we wish to prove that (with

the appropriate assumptions on the coefficients systems kA and kG) the

1
transfer homomorphism 7' : HE(X; kG) — H‘:(X;kA) followed by the

. . A G, .. . . .
homomorphism i, Hn(X’ kA) — Hn(X, kG), induced by the inclusion

i: A —> G, equals multiplication by m on HS(X;k

G)' But on the chain

level this composite is not multiplication by m. It is only chain homotopic
to the homomorphism given by multiplication by m. However, the proof

shows that, if we were allowed to "identify' not only by G-homeomorphisms
h: (An; K

cey Kn) — (An, K ,Kn) which cover id: An An’ but h

0’ 0"

could be any G-map which covers id: An — An’ then this composite would

equal multiplication by m already on the chain level. On the other hand,
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if we '"identify" by any G-map h: (An;KO, ooy Kn) -— (An; L . Ln)

0
which covers id: An —_ A it is completely unnecessary to have different
orbit types present in the same standard equivariant n-simplex. We may
then as well take the G-spaces (An; K,...,K) = An X G/K as our equivariant
n-simplexes.

Thus another way to construct an equivariant homology theory
which satisfies all seven equivariant Eilenberg-Steenrod axioms and has
a given covariant coefficient system k as coefficients is the following.

Call the G-space AnxG/K, K is a closed subgroup of G, for the
standard equivariant n-simplex of type K. A G-map

T: A X G/K —* X

is called an equivariant singular n-simplex of type K in X. Denote
t{T) = K. Define

EC %K) = 2@ (2.8 k(G/HT))
n T T

where the direct sum is over all equivariant singular n-simplexes in X.

The boundary homomorphism %n: &S(X; k) — (ASS_I(X;k) is defined in the
ordinary way.

Define a relation ~ (it is not reflexive) among the elements of the
form T® a, aek(G/t(T)), in &S(X; k) as follows. Define T®a ~ T'®b

if there is a commutative diagram

A x G/K
n
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where h is a G-map which covers id: An — An and h*(a) =b. Now
.. -G rG . .
define Cn (X;k) to be the submodule of Cn(X; k) consisting of all elements

m
of the form 2 (T.® a, - T'® b.) where T.®a, ~ T'® b, or T'®b, ~ T.®a,,
i i i it % io i ii i i

i=1
i=l,...,m. Then define
G ¥e! —G
P = &0 (xik/ T (X310

A
and ocbserve that the boundary homomorphism 3 induces

G G
: B o —-——> - . e M
Bn Cn (X;:k) Cn-l(x’ k). Finally define

G
Hn(X; k) = nth homology of the
. G
chain complex {Cn (X; k), an}.
This construction is much easier to handle than our original construction.
The proof of the ""dimension axiom' becomes a triviality.
We shall use this simplified construction on later occasions, but we
stick to our original construction in Chapter IV.

The corresponding remarks also apply for cohomology.
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CHAPTER IV

FURTHER PROPERTIES OF EQUIVARIANT SINGULAR

HOMOLOGY AND COHOMOLOGY

When not otherwise specified, G denotes an arbitrary good locally
compact group as in Chapter III. We also assume in this chapter that the
orbit type family F is the family of all closed subgroups of G. In Section
1, we define the induced homomorphisms on equivariant singular homology
and cohomology by a homomorphism on the transformation groups.

Section 2 gives the construction of a transfer homomorphism both in
equivariant singular homology and cohomology. In Section 3, we define a
"Kronecker index,'' that is, a pairing between equivariant singular
homology and cohomology, whenever we are given a pairing of the coeffi-
cient systems. We also define a cup-product in equivariant singular
cohomology. A more detailed study of these questions is left to another
occasion.

We prove in Section 4 that equivariant singular homology and
cohomology of a principal G-bundle X is isomorphic to ordinary singular
homology and cohomology, respectively, of the orbit space G\X, whenever
the coefficient systems satisfy the appropriate condition.

In Section 5, we assume that G is a compact Lie group and consider
equivariant singular homology and cohomology of finite dimensional equi-
variant CW complexes. We prove that the spectral sequence, which arises

by filtering X by its skeletons, collapses. Another way to express this
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is to say that, equivariant singular homology and cochomology of a finite
dimensional equivariant CW complex is isomorphic to its ''cellular
equivariant homology and cohomology,' respectively. By the result of
Chapter II, this applies in particular to differentiable G-manifolds. It
thus follows that the equivariant singular homology and cohomology groups
of a G-manifold M vanish in degrees above the dimension of the mani-
fold M.

We conclude Section 5 by showing that if the coefficient system is
constant, that is, k(G/H) = A or £L(G/H) = A, where A is some R-module,
for each closed subgroup H of G, and all induced homomorphisms are
the identity on A, then equivariant singular homology and cohomology
of a finite dimensional equivariant CW complex X is isomorphic to
ordinary singular homology and cohomology, respectively, with coefficient

group A of the orbit space G\X.

1. FUNCTORIALITY IN THE GROUP

Let M and G be good locally compact groups and ¢o: M—> G a
continuous homomorphism such that for any closed subgroup N < M. the
subgroup @(N) @ G is closed. If both M and G are compact or if both
both are discrete groups, the above condition is automatically satisfied.

Let X be an M-space, Y a G-space, and f: X —>Y a p-map.
Thus f(mx) = o(m)f(x) for all me¢M and x¢X. Make Y into an M-space

through the homomorphism ¢: M —>G. Thatis, M actson Y by
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my = p(m)y. Denote the space Y together with this M-action by YM and

Y together with the original G-action by Y Then f is the composite

G

of the M-map f :X—>Y and the ¢-map id: Y

M M YG. From now

—
M
on we shall be considering the o-map

ids —
id YM YG

and define the homomorphisms it induces on equivariant singular homology
and cohomology.

Let
ot M/N —> M/N’
be an arbitrary M-map (N and N’ are closed subgroups of M). Denote
-1

o(eN) = mON’. Thus ¢(mN) = rnmoN'. We have NcC m, N'mo , and

hence @(N)C p(m, ) o(N') (p(mo)-l. Therefore we can define a G-map
wla): G/ p(N) —> G/p(N')

by the condition @(a)(ep(N)) = p(m ) p(N'). We have
pla)ge(N) = go(m ) o(N').

Now let kM be a covariant coefficient system for the group M over the

ring R, and k. a covariant coefficient system for G over the same

G
ring R. Let
&: kM — kG
be a natural transformation with respect to the homomorphism @: M —> G.
By this we mean that for any closed subgroup Nc M we have a homomor-
phism of R-modules

$: kM(M/N) — kG(G/qo(N))

such that if o: M/N—> M/N’ is an M-map, the following diagram commutes
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ky (M/N —% k. (G/p(N))

o‘*l i((p(a))*

7 @ 4
Ky (M/N') —F 1 (Gl (N'))

Proposition 1.1. Let the homomorphism ¢: M —> G and the natural

transformation &: k. — k

M G be as above. Let (YG’ BG) be a G-pair and

make it into an M-pair (Y BN) through the homomorphism . Then we
1

M)

have induced homomorphisms

M G
Oyt Hn (YM, BM;kM) —_— Hn (YG, BG;kG)
with the following properties.
1, P, commutes with the boundary homomorphism.

. —_ / ! . _
2, If s: (YG,BG) (YG,BG) is a G-map, then clearly

s: (Y BM) — (YIVI,B' ) is an M-map, and we have s o = Py e

M’ M
3. If both ¢ =id and & = id then Py = id.

4, If also (p': M'— M and &k ;> k

M M as above, then the

homomorphism @@+ M'—3> G and the natural transformation

®d': k., —> k , induce the homomorphism ((p(p’)* = ¢*<p:k,

M G

Proof. We define a chain mapping

AA AG
. aM . — .
oy My st ) — 85y i)

as follows. Let

: ; e e ey —>
Tt B3 Ny Nn) = ¥y

be an M-equivariant singular n-simplex of type (N .

sesey,N ) in Y
n

0 M

We define a G-equivariant singular n-simplex of type (<p(NO), ceey (p(Nn))
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in Y

T (A 0oMp) ey (N ) —> Y

by demanding that

T ([ elg) = Ty (lx, el )

and extending the definition of T_ to arbitrary elements by the require-

G

ment that T be a G-map. Observe that if x¢ Am- A

G then the point

m-1’

TM([x, e]M) eYM is fixed under the subgroup Nm' Thus the same point

'I'M([x, e]M) €Y . is fixed under the subgroup (p(Nm)c: G, and hence the

G

above definition of T is well-defined. Let ack

G M(M/Nn). We define

QO#(TM® a) = T, ® ®(a),

where &: kM(M/Nn) — kG(G/cp(Nn)). This defines the homomorphism

A AM AG en s s . A
¢# (YM,kM) i C (Y ,kG), and it is immediately seen that (p# com-
) into &G(B

kG).

mutes with the boundary. Clearly (o# maps C (BM M

It remains to show that go# restricts to (p# CM(Y vk )-> C ( )

. M G

and hence induces (p#. C (YM kM) > C (YG kC) Assume that

~ ’ ’ ¢, SN L Ep— !y ry.
TM® a TM® a’, where TM. (An, NO’ , Nn) YM and a’¢ kM(M/Nn)

: ; —> v, N - rphi
Let hM (An, NO , N ) (A NO’ ,Nn) be an M-homeomorphism

s s 1. — - I - ’/"
which covers id: An An’ such that TM TML thI and ((hl\/I)n)>1<(a) a
Define the maps in the diagram
M)

(A3 Nyseweo s N ) > (An;w(NO), cer s (N L))

el I

Alw) ) ,
> (An;o(NO), NP ,co(Nn))
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as follows. The map A(¢p) is defined by

Me)([x,m],) = [x, o)),

and it is immediately seen that A(p) is a well-defined continuous ¢-map.

Define hG on the subset Anc: (An;(o(NO), co ,LD(Nn)) by

h ([X,e] ) = Mo)by, ([x, e]
This defines a continuous map from 4  into (An”‘D(NE))’ . ,@(N;)). If
Xe Am- Am 1’ then the point A <p)h ([x, e] ) is fixed under the subgroup

(p(Nm) and thus the above definition of h_., on the subset An extends to

G

give a G-map

. . . ? ’
bt (8 56(NG), 0N ) = (8_50(Np), ..., 0(N))).
Moreover, the above diagram commutes and hG covers id: An - An'

, one constructs an inverse to h and thus h_, is a G~-homeo-

Using h G’ G

M

morphism.

Observe that T A(p) =id T,  and "J."Gr Alep) = id T! , where id

M M’
denotes the p-map id: YM —> YG. Hence we have
/
= id TMhM ([x, e]M)

1]

id T, ([x, e]M)

1]

T Mo)x, el )

1

Te((x, elg)-

. 4
Since TG’ TG and hG are G-maps, it follows that TG TGhG

. — ! . -
We claim that ((hG)n)*(Q(a)) = §(a’). Restricting hM and hG to

n ’
: ; - . —_
the orbit over d ¢ A gives the M-map (h.M)dn. M/N M/N’ and the
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G-map (hG) G/(p(Nn) il G/co(N;l) respectively. It follows from the

gn’
definitions that (hG) an = cp((hM) dn) and hence that

((he) ), ® = ®((By ) ),

Therefore ((hG)n)*(q}(a)) = ®(a’), as we claimed. Thus we have showed

that

TG® $(a) ~ TG® d(a’).

A
It now follows that Py induces a chain mapping

Py SM(Y B

G
e Bap F) T S (Y, B kg)-

GGG
This chain mapping induces the homomorphisms

M G
(P*' Hn (YM, BM! k-M) — Hn (YG” BG” kG)

and it is clear that the properties 1 - 4 are satisfied. g e.d

Let us now consider the cohomology version of Proposition 1.1.

Let the homomorphism ¢: M —> G be as before and let EM and EG be
contravariant coefficient systems for M and G, respectively, over the
ring R. Let

\E J&G —— EM
be a natural transformation with respect to the homomorphism ¢: M —> G.
This means that for any closed subgroup Nc M we have a homomorphism
of R-modules

V: 4 (Glo(N) — 2, ,(M/N)

such that if «: M/N -—> M/N’ is an M-map, then the following diagram

commutes
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¥
zG(G/qo(N')) zM(M/N’)

(ota)) l la*
¥

16(Gle(N) —— £ (M/N)

Proposition 1.2, Let the homomorphism ¢: M —> G and the natural

transformation I: 4., —> £ be as above. Let (YG’B

G M be a G-pair

G)

and make it into an M-pair (YM, BM) through the homomorphism .

Then we have induced homomorphisms

) —> H. (Y

£ n
oI HG(Y M

' B 2, )

GG M’ TM'™M

and the contravariant versions of the properties 1 - 4 in Proposition 1.1

are valid.

Proof. Define a cochain mapping

ot 5 Y. ia)

— &

M

A A
as follows., Let ce¢ Cé(Y and define eo#(c) by the following.

ol ic)

. ) N ) —> _ . . . s
Let TM. (An, NO’ R T\In) YM be an M-equivariant singular n-simplex
in YM. Define the G-~equivariant singular n-simplex

T .: ; e - i 3 3iti 1.1,

IG (An,cp(NO), , (p(Nn)) > YG as in the proof of Proposition

Then set

@ (T, ) = U(e(T) e 4, (M/N).

A ff

A
This defines the homomorphism (p#, and it is immediately seen that ¢
is a cochain mapping.

A
It remains to show that (_o# restricts to

4 % s
° —pn .
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Assume that ce¢ Cg(YG; ,e,G). Let the notation be the same as in the proof

Recall that T .= T_h_. and

hM' G GG

of Proposition 1.1, and let TM= T;\/I
(hG)dn = zp((hM)dn). Thus

(@ (DT = e (TQ) = W((hy) e(TL))

= (h % ’ B LY ’
= (By,)_ W(e(TL)) = (b)) (@ (DT )-

o (Y. ;4,.). This completes the proof

A
ot
Hence «of(c)e¢ CM M . q.e.d.

2. TRANSFER HOMOMORPHISM

In this section A denotes a fixed closed subgroup of G such that
the space of right cosets A\G is a finite set. Assume that A\G consists
of m elements, that is,

ANG = {Ag;,--- ,Agm}.
Since A is closed in G it follows that each point in A\G (A\G has the
quotient topology from the projection m: G —> A\G) is closed. Hence the
finite space A\G has the discrete topology.
We say that a G-map
B: G/H —— G/H/,
(H and H' are arbitrary closed subgroups of G) is of type "A'' if we have
B(eH) = aOH'

-1
where aoeA. In this case we have H C aOH'aO and hence
-1
ANHCc a.O(A n H) a Thus we can define an A-map
1
5':A/A0H——'>A/Aﬂ H’

1 1
by the condition B (e(A N H)) = 2, (AN H'). We have ﬁ'(a(Aﬂ-H))=a.aO(AﬂH'),
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1
a¢A. Moreover, the A-map B  depends only on the G-map B of type

"A'", and not on the specific choice of the element a_e¢A. For if

0

BleH) = alHﬁ where 2a,¢A, then (al)-laoe(AnH'), and hence aO(AﬂH')

1
= a;(AnH').

Observe that if HcH’, then the natural projection p:G/H —> G/H’
is of type "A'", and pl : A/JANH — A/ANH’ is the natural projection.

Now let kA and kG be covariant coefficient systems for A and G,

respectively, over the ring R. Let

t
.. _—
-l kG kA
be a natural transformation of transfer type with respect to the inclusion
A <> G. By this we mean that for any closed subgroup HcG we have a
homomorphism of R-modules
¥
- —
@ kG(G/H) kA(A/AﬂH)
such that if B: G/H —> G/H’ is a G-map of type ""A", then the following

diagram commutes.
!

P
kqo(G/H) —— k, (A/ANH)
6:}:1 J/ (ﬁ )*
f él I
kG(G/H ) ———> kA(A/AﬂH )

Let Y be a G-space. By restricting the G-action on ¥ to the
subgroup A, Y becomes an A-space. We shall construct a transfer

homomorphism
1
T2 HG

A
n(Y’kG) -‘—->Hn(Y,k )

A

for all n.
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We begin by defining for each element Ag ¢A\G an induced chain

homomorphism

AG A
(Agly: C (Yskg) == C (Yiky ).

Let ge¢ G. Given a G-equivariant standard n-simplex (An; K.,.., Kn)

0"
we form the A-equivariant standard n-simplex (An;An gKOg-l,...,An gKng—l)

and consider the map

-1 -1
(g).(An,AﬂgKog ,---,AﬁgKng )““‘>(An,K K )

O,... n

defined by (g)([x,a]) = [x,ag]. It is immediately seen that the map (g) is

well-defined and clearly (g) is an A-map whea (An; K . ,Kn) is con-

o'’

sidered as an A-space. We have the commutative diagram

-1 -1
(An,AﬂgKOg ,...,AﬂgKng ) > (An, KO,...,Kn)

l“ /
1 1 [&]

(An;gKOg ,---,gKng )

where 7([x,a]) = [x,2] and [g]([x,g]) = [x,8g]. Both n and [g] are
well-defined maps. The map 7 is an A-map, and [g] is a G-homeomor-
phism which covers id: A —> A .

n n

Now define

AG AA
(g)#: Cn(Y,kG) —> C (Y k

n A)

as follows. Let T: (An;K Kn) —>Y be a G-~equivariant singular

0,...,

n-simplex in Y, and bng(G/Kn). We define

“lb)).

n)*

(g),(T@b) = To(g)® (@ ([g]

The A-map To (g) is an A-equivariant singular n-simplex in Y of type
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-1 —1
(AﬂgKOg sees ,Ar'ngng ). The isomorphism

-1
((g] )y kG (G/eK g ) —> K (G/K )
is determined by [g] as described in Lemma 3:2 in Chapter III, and
& : k_(G/gK 1) — k, (A/ANgK -
P ko (GgK 8 ) A NegK & ).

This defines the homomorphism (g)#, and it is immediately seen that the
homomorphisms (g)# commute with the boundary.

Next we show that the chain mapping which is the composite of (g)#

A A

followed by the natural projection from Cﬁ(Y;kA) onto Cn (Y; kA)
depends only on the element Age¢A\G and not on the specific choice of
geG.

Let a¢A. We claim that (g)#(T® b) ~ (a.g)#('I‘® b). Consider the

commutative diagram

-1 -1
(An’ gKOg sr e gKng )

\ ~_ el
nT \
;ANgK gt A e PN K
(o ;ANgK g ..., ANgK g ) (A 3 Kgse oo K)
(*) fahy l l id
-1 -1 (ag) .
(8 ;AN (ag)K (ag) ... AN (ag)K (ag) ) T (A iKg, . K )

|

- -1
(b, (ag)Ky(28) - .-, (2g)K (ag) )

[ag]

where {a-l} is defined by {a-l}([x,a)=[x,§a—l]. The map {a~1} is

a well-defined A-homeomorphism which covers id: An A We have
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To(g) = (To(ag))o {a-l}. We claim that
() (2™ ),(@ (8] )3 ) = & ([ag] ). ).
n n n
Let [a.—l]n : C}/gKng_1 — C‘r/(aLg)Kn(a.g).1 be the G-homeomorphism defined
by the condition [a‘l]n(e(gxng'l)) = a'l((ag)Kn(agfl). Thus [a-l]n is of
type "A" and we have [a."l]i1 = {anl}n, where {aul}n is the A-map obtained

. -1
by restricting the A-map {a "} in diagram (%) to the orbit over a" ¢ A

Thus we have
Vo1 -1 !

& (271 ), = (a7} ), &
Now (*%) follows by restricting the commutative diagram (¥) to the orbits
over dne An. Thus we have showed that (g)#(T® b) ~ (ag)#(T ®b), and
hence that

AG A
: ; — ;
(8g)y: C (¥3kg) == C(¥sk,)

is well-defined.

We now define

A ANG A
'r#. Cn(Y,kG) — Cn(Y,kA)
to be the homomorphism
A m
= A .
i=1
N m
Thus 71,(T®b) = 2 (g.),{(T® b), where the elements g.,...,g_¢G form
. it i=1 i'd 1 m

some complete set of representatives for the set of right cosets A\G.

A
Clearly the homomorphisms 7, commute with the boundary and thus form

#

a chain mapping.
A
We shall prove that Ty induces a homomorphism

G A
Ty Cn(Y,kG) —> Cn(Y,kA).



173
The proof of this requires some preliminary considerations.

Let (An; K .o, Kn) be the standard G-equivariant n-simplex of

0"

type (KO, cees Kn). We also consider (An; K “oy Kn) as an A-space by

0’
restricting the action of G to the subgroup A. We shall consider a
special kind of A-imbeddings of standard A-equivariant n-simplexes into

(An; K oo, Kn). We make the following definition.

0’
Let (An; BO’ ey Bn) be a standard A-equivariant n-simplex. An
A-map
. M ¢ & .—_——.> M .« 5 @
o (An: Bo: ’ Bn) (An’ KO! ] Kn)

is called a special A-imbedding if ¢ is an A-homeomorphism onto its
image and ¢ covers id: An — An.
By restricting « to the orbit over a” € An we get the A-map
o :A/B —>G/K .
n n n
Denote an(eBn) = gKn. Now define w(a) to be the double coset
= A .
ola) = AgK e ANG/K_
Clearly w(w) is well-defined.
We say that two special A-imbeddings

. . . R s
a.(An,BO,.. ,Bn) (A ;K

A O,...,Kn) and

’, .’ AP . . s .
o (An, B.,..., Bn) (An, K Kn) are isomorphic if there is a com

0,-..,

mutative diagram
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where j is an A-homeomorphism which covers id: An —_> An' Observe
that j is unique if it exists. By restricting the maps in the above diagram
to the orbit over d" ¢ A we get the maps o, a;l and j . Denote

_ 7 ! - 4 . = I & =
an(eBn) = gKn, an(eBO) g Kn and Jn(eBn) aBn. Thus ag Kn gKn,
and hence

- - 2 - 7
wla) = AgKn— Ag Kn- wl(e ).

Denote by A(An;K o ’Kn) the set of isomorphism classes of special

0"

A-imbeddings into (An; KO’ cens Kn)' Thus we have constructed the function

(also denoted by w)

w: A Ky, ..., K ) > A\G/K .

0"’

Lemma 2.1, The function w: A(An; K,..., Kn) — A\G/KI1 is a bijection.

O’
Proof. For any element f eA\G/Kn we define a corresponding A-subset,

denoted by P of (An; K vy Kn) in the following way.

B! 0"

Let (An; K .oy Kn) — An be the projection onto the orbit space.

0"’
For any m, 0 <m <n, we have the map

-1
Pt ™ (Am- Am-—l) T A\G/Km

defined by pm([x,g]) = AgKm. If ye AP~ Ap-l and xe¢ b= b g
0O<pgmgn, then p(ly, gl) = pp_ ([x.g]), where p:A\G/K_— A\G/K_
is the natural projection, that is, p(Ag Km) = Ag Kpf Let

P A\G/Kn — A\G/Km be the natural projection. Let B¢ A\G/Kn and
define

-1 -1 -1
sz Py (pO(B)) Uey (pl(ﬁ)) U.e e U (B)-

Since p_(a[x,g]) = p_([x,agl) = p_([x,g]), for aeh, xepn -4
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0 <m <n, itfollows that P, is an A -subset of (An; K

B

Moreover, if pm([x, gl) = pm([x, g’]) then there exists a¢A such that

0,...,Kn).

a[x,g] = [x,g’]. Hence it follows that the A-subset PﬁC(An; KO, . ,Kn)
consists of exactly one A-orbit over each point xXeh .
We shall now show that if (An, BO, cee, Bn) (An, KO, C e, Kn) 1s
a special A-imbedding then Im(g) = P . Since P is an A-subset
wla) w(o)
of (An; KO, e, Kn) with exactly one A-orbit over each point xe¢ An’ it

follows that is enough to show that of[x,e]) ¢ Pw(cx) for all xe¢ A It
follows from the definitions that pna([dn, el) = w(a) eA\G/K_. Now
consider the element [x,e]¢ (An; BO’ cen, Bn) and let m be such that
Xe Am— Am 1 The existence of the closed interval between a" and x in

. . n _
A Ay shows that there is a path in A\G/Km from pmpna([d ,e]) =
pm(m(a)) to pm(a[x, e]). Since A\G/Km is a finite discrete set, it

-1

follows that pm(a[x, e]) = pm(w(a)). Hence a([X,e])epm(pm(w(a))) c Pw(a)'
It follows that a special A-imbedding ¢« into (An; KO, . Kn) is an
oK)

A -
VK ) = A\G/K_

A -homeomorphism onto the subset Pw c (An; K

(a)

From this it follows that the function m:A(An; KO, .

is injective. For if w(w) = w(g/) then both « and of are A-homeomor-

phisms onto the same set P (o)’ and hence it follows that ¢ and o are
w

isomorphic.

It remains to show that « is onto A\G/K. Assume that 8 eA\C‘r/Kn

and let g ¢ G be such that B = AgKn. It is easy to see that the A-map

-1 -1
. L] M LI )
(g): (8 sANEKE ., ANgK g ) —> (8 Ky, - K,



176

where (g)([%,2]) = [x,2g] is an A-homeomorphism onto its image. Thus

(g) is a special A-imbedding. We have g((g)) = AgKn= B-
q.e.d.

We are now ready to prove that the homomorphism

A AG A
. T . ___+ .
.Cn(.&, ) Cn(Y’kﬁ)

T4 kG

induces
G A
. ; B — ; .
T# Cn(Y kG) Cn(Y k,)
Let T and T’ be G-equivariant singular n-simplexes in Y and

b ek, (G/HT)), b'c k. (G/H(T")). Assume that T@b ~ T'® b’. Thus we

have a commutative diagram
O: e ey n \r
)

(An;Koi"'lK )

(An; K

where h is a G-homeomorphism which covers id: An e An and
N
(b ),(b) = b
Let SRR gmeG be a complete set of representatives for A\G,
that is, A\G = {Agl, cae ,Agm}, Consider the element
m
AA
2 (g;),(T®b) ¢ C (Y3ky).
i=1
. . Y A .
The image of this element under the projection onto Cn (Y; kA) is
A
independent of the choice of the representatives g, and equals T#(T®b).
Denote by hn: G/Kn —_— G/K; the G-homeomorphism we obtain by

restricting h to the orbit over dne An' Choose a fixed element geG

'_"" ’ - — ! —_
such that hn(eKn) = gKn. Thus hn(giKn) =g.8 Kn. Denote g.g =g - The
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elements gi, cae, g;n form a complete set of representatives for A\G.

Hence the element
m
/ l V4 A A. .
Z (g),(T'@b") ¢ C (Yik,)

i=1
is such that its image under the projection onto Cj(Y; kA) equals
A / ’
T#(T ® b’).
We claim that
(8;)y (T@D) ~ (g;)#(T’® b)), i=l,...,m.

Let us denote g =g, and g’ = g;, and consider the diagram

-1
> :
(ar sANgK g ;---,AﬂgKng ) (An,KO, yK)
il hl
* 4
(A ;ANg K( ')~l AngK' ( ,)-1)(3_1”‘& ; K K’)
n’ g Og LIRS ] g ng Il, 0:"': n

The composite ho (g) is a special A-imbedding into (An; K.,..., K;l),

I

0’
and so is (g’). Moreover w(ho (g)) = Ag'K;1 = w((g’)). Thus it follows by
Lemma 2.1 that ho(g) and (g’') are isomorphic and hence there exists

an A-homeomorphism j which covers id: An — An and which makes

the above diagram commutative. Recall that
! -1
(8), (T®B) = To(g) ®& ([g] ), (b)
/ i : -1 ’
(8, (T'@b") = To (g)@® ([g'] ), (b).

! -1
Since To (g) = (T'o(g’))oj it only remains to show that (jn)*(@ ([g]n)* (b))
! -
=& ([g’]n)*1 (b’). This last fact is easily verified by arguments completely

analogous to the ones after diagram (%). Thus (gi)#(T®b) ~ (g; )# (T'® b’)
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A A
for i=1l,...,m, and hence T#(T® b) = T#(T'® b’). We have proved that '}#

induces
G A
H ; ___._> ;
'r# Cn(Y kG) Cn(Y k:)

and the homomorphisms Ty form a chain mapping. Moreover, it is clear

from the way r, is constructed thatif B is a G-subset of Y then

#

G A , ]
74(C, (Bik)) € C (Bsk,). Alsoif f£:¥

>Y’ is a G-map, then
!
f# Tu = fr# f#. We denote the induced map on homology by r and call it

the transfer homomorphism. We have proved

Theorem 2.2. Assume that A is a closed subgroup of G such that A\G

is a finite set. Let kG and kA be covariant coefficient systems for G

1
and A, respectively, and let & : kG —> kA be a natural transformation

of transfer type. Then for any G-pair (Y,B) we have transfer homomor-

phisms
e
T :Hn(Y,B,kG)———»Hi“(Y,B,kA)

1
for all n. The homomorphisms 7 commute with the boundary homo-

morphism and with homomorphisms induced by G-maps.
gq.e.d.

We shall now study the composite of the transfer homomorphism

1
T  followed by the homomorphism induced by the inclusion i: A —> G. Let

L
k.,k, and & :k

. —> H: ]
RN k, be as above, and let & kA kG be a natural

G A
transformation with respect to i: A —> G.

Assume that the following condition is satisfied. For each closed

subgroup H of G the diagram
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1

=

> kA(A/An H) — kG(G/An H)

id

k. (G/H)

kG(G/ H)

is commutative. Here p: G/ANH —> G/H is the natural projection.

Proposition 2.3. Assume that A is a closed subgroup of G such that

1
& : k. —>k, and

A\G is a finite set of m elements. Let kG, kA’ a "
b: kA —> kG be as above. Then the composite
G ! A ! G
T *
. e . .
Hn(Y,kG) Hn(Y,kA)*—‘-#Hn(Y,kG}

equals multiplication by m.

Proof. Let g;,...,8 ¢€G be such that A\G = {Agl,...,Agm}. Let

T: (An; K Kn) —> Y be a G-equivariant singular n-simplex in Y,

NERES
and b ekG(G/Kn). Then the element

m

H -1 e
(1) El('ro (8N @2 ([g]), () e C (Yiky)

A
is such that its image in CS(Y;kG) equals i# T#(T@)b)v Recall that
To (gi) is the A-equivariant singular n-simplex in Y

1 (&) T
AN K B ) T (A K e K ) T Y

0’"

-1
(AnJA‘n giKOgi ’ .

and that (To (gi))G denotes the corresponding G-equivariant singular

n-simplex from the standard G-equivariant n-simplex

-1 -1
(An,AﬂgiKOgi P ’An‘giKngi ).

The element (1) should be compared with the element
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gy -1 Ye!
(2) El('ro [g.he gl ), (B e C (Yikg).
Here To [gi] denotes the G-equivariant singular n-simplexin Y

. gl T

-1 i
(A gKOg ,...,gKg ) >(An,KO,...,Kn)-——>-Y.

Since (To{g. ])®([g1]n 41 b) ~ T®b it follows that the image of the
element (2) in CIC:(Y;kG) equals m{T®b}, where {T® b} denotes the
image of the element T® b ¢ &S(Y;kG) in CS(Y;kG)' Also observe that
p, 8¢ ([g]); () = (8] )5 (), where p:G/(ANgK g])—>G/gK g  is

the natural projection.

Now let
A£G G
. . ———+ .
(gi)#. Cn (Y,kG) Cn (Y,kG)

be the chain mapping defined by

(8, ,(T®b) = {(To (), ® 0@ ([g,] )7 B)}.

We already know that this chain mapping only depends on the right coset
Agi ¢ A\G and not on the specific choice of the representative g; for the
right coset Agi.

Define the chain mapping

G
<g># Yk)—-——>c(YkG)

by

) (Teb) = {(Tolg e (g]); @)

Clearly also (gi)# only depends on the right coset Agi e A\G.

We shall construct a chain homotopy from (gi)# to (gi)#. Let
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(Ix An; i) denote the G-space obtained in the following way. Consider the G-
-1 -1
space I X(AﬁAngiKOgi y oo AN giKngi ), and at the end t = 0 collapse

_ . -1 -1 .
further so that the end t = 0 becomes (An’giKOgi Yo v, giKngi }, that is,

(Ix An; i) is the mapping cylinder of the natural projection

-1 -1 -1
p: (An;AﬂgiKogi ,o..ANg K g )—> (0 ;. K g ,...,g8.K ).

i n°1i n i o-i in

g

i

The G-map (To (gi)) determines in an obvious way a G-map

G

=, N
Ti (IXAn,z) Y

such that at t # 0, :Ei equals (To (g.))

Na and at t =0, T,1 equals T°[gi]-

Using the notion of a linear equivariant singular simplex in (IX 8, i) and
the same notation as in Sections 5, 6, and 7 of Chapter 1II, we now define

a homomorphism

B &8y ) — % vk
i’ n( ? G) n+1( ? G)

by (we denote in the formula below gi= g)
A
D;l(T ® b)

n Q—- . - 1
{2077 1% g g ). 1) g gl Angr g ™)
J=0 n -1 : ! -1 !
o AangK g ) )@ ee ([l ), ()}

Here /Z,dq= (O,dq) and udq:: (l,dq) as before. This defines the homomor-

A A
phism D.: CG(Y;k )y —> CGr (Y;k.). The standard calculation shows that
i n G n+l G

A 6 A _
aDi + ia = (gl)# - <g1>#'

A
The homomorphism D_1 depends only on the right coset Agi and not on

the specific representative g;- This is seen by an argument completely
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analogous to the one we used in showing that (Ag)#: &S(Y;kG) —*Cj(Y;kA)

is well-defined. Using this it follows that the homomorphism

m
A A

A G G
= : . .—é ;
D i?lDi Cn(Y,kG) Cn-{-l(Y kG)

is such that it induces a2 homomorphism

D: CG(Y;k
n

G
g 7 Canikg)

The argument for this is analogous to the proof that

A AG A G A
. . — . 3 . ) .
'r#.Cn(Y,kG) n(Y’k’) induces 7#. Cn(Y,kG)~‘>Cn(Y,k:).

A
By the remarks at the beginning of this proof it follows that D is a

to the chain map which is the

— M A
i Ty
A
natural projection from CS(Y;kG) onto Ci(Y;kG) followed by multiplica-~

chain homotopy from 2, n:l( gi) 4

tion by m. Thus the induced homomorphisms D form a chain map from
i uTy to the chain map given by multiplication by m. Hence i 4Ty induces
multiplication by m on the homology.
q.e.d.

The construction of the transfer homomorphism in cohomology is
dual to the construction of the transfer homomorphism in homology. We
shall give some details.

Let ’Q’A and ,(),G be contravariant coefficient systems for A and G,

respectively, over the ring R. Let

: —
U2 Ly Lo

be a natural transformation of transfer type with respect to the inclusion
A — X. By this we mean that for any closed subgroup Hc G we have

a homomorphism of R-modules
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: —_—
¥, -_@A(A/AHH) £G(G/H)
such that if B: G/H —> G/H’ is a G-map of type "A", then the following

diagram commutes

¥,
zA(A/AnH ) —> zG(G/H )

PoE *
B lﬁ

¥,
zaA(A/AnH)——-——-—> zG(G/H)

Let Y be a G-space. By restricting the G-actionon Y to the sub-
group A, Y becomes an A-space. We shall define a transfer homomor-
phism

n n
T Hy (Y50, ) 7> H(Y5 4,)
for all n.

We first define for each element Ag ¢A\G an induced homomorphism

ae)’: c2ov;g,) —> E50xs 1)

Let ge¢G and define
# A n

n
(8)": Cp(¥s50,) —> CLIY54)

as follows., ILet ce CX(Y; ,@A), and define (g)#(c) by the following. If
T: (An; KO, ey Kn) —>7Y 1is a G-equivariant singular n-simplex in Y we

define the value of (g)'(c) on T by

(@* N = (el )3}y, < (To @)
Here o(To(g)) ¢ £, (A/ANgK g ) and

¥, ¢ 4, (AANEK g) —> 4 (G/gK g™)

and
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(6] )5t 45(G/gK &™) —> 4_(G/K ).
n'* G n G n
This defines the homomorphism (g)# and it is immediately seen that it
commutes with the coboundary.
Let a¢ A. We claim that (g)# = (ag)#. This is easily seen using
the diagram (¥%). First it follows that we have
-1, % -1, %
(fa 1) & =%a"1).
. n . .
Since ce CA(Y, /&A) it thus follows that

(@) en(m = (el )t o(To (@)

- -1
= (gl );} g (T2 (ag)o {2 })

-1 -1 %
= (el )y @ ({a "}) c(Te(ag))
-1 -1
= (gl ); (271" g e(T o (ag))
-1
= ([ag] )} ¥ (T (2g)) = ((ag) (e))(T).

Thus (ag)# = (g)# and this gives us the cochain homomorphism

#

n An
. . .._...._;. . .
(Ag) : C! (Y; 2 CG(Y, ,?,G)

A)
We now define

A

n An
T 1 Cp(¥igy) —= CL(Y;45)
to be the homomorphism
A m #
= T (ag)".
. i
i=1
A m #
Thus T#(c) = 2 (gi) (c), where the elements 8y 8 form some

i=1
complete set of representatives for the set of right cosets A\G. Clearly

A
7'# is a cochain homomorphism.
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A
It only remains to show that the image of 7-# lies in CZ(Y; JZ,G) and

that 9-# therefore induces

i ° !( ,,ﬂe) G( ,zg)'

This is again proved by the '"dual' version of the proof of the corresponding
fact for homology. Let the notation be the same as in the discussion after
Lemma 2.1. One {first shows that
# ot .
((gi) (C))(T) - hn((gl) (C))(T ): 1'—‘1: e,

where T = T'h. Since g'l, . ,g;_n also form a complete set of repre-
sentatives for the set of right cosets A\G it follows that we have

A m #

(f(eN(T) = Z ()" (e)(T)

i=1

Dok AL =R .
Elhn((g’l) (eIT) =h_ i2=1(<g1> (c)NT)

b (rH(e))(T").
n
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A n
Hence 1#(c) € CG(Y; zG) as we claimed. Thus we have the cochain
homomorphism 1-#. It is clear from the way T# is constructed that if
. - # ~B . n . ;
B is a G-subsetof Y then 7 (CA(Y,B,!,A))C: CG(Y,B, f,G). Also if
f: Y —> Y’ is a G-map, then f# 7-# = 7# f#. We denote the homomorphism

7 induces on cohomology by 7, and call it the transfer homomorphism.

We have proved

Theorem 2.4. Assume that A is a closed subgroup of G such that

ANG is a finite set. Let 'eA and ZG be contravariant coefficient systems

for A and G, respectively, and let ¥, : ‘0’A — ,zG be a natural trans-

formation of transfer type. Then for any G-pair (Y,B) we have transfer

homomorphisms

n n
th s & — s D3
Ty FA(Y,B ﬁA) HG(Y B ZG)

for all n. The homomorphisms ¢, commute with the coboundary homo-

morphism and with homomorphisms induced by G-maps.
g.e.d.

+ A —_— B
Le !’G’ f’A and 4 EA zG be as above, and let ¥ ﬂG zA

be a natural transformation with respect to i: A —> G. Assume that the
following condition is satisfied. For each closed subgroup H of G the
diagram

¥
v !
zG(G/An H) —> 0, (A/AQNH) —> zG(G/H)

~
T~ %
— lp
~—

A
.@G(G/Aﬂ H)

is commutative. Here p: G/ANH —> G/H is the natural projection.
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The ""dual' of the proof of Proposition 2.3 gives us

Proposition 2.5. Assume that A is a closed subgroup of G such that

A\G is a finite set of m elements. Let ¢, ¢,, U: 4 —> 4, and

G’ G

¥, : zA — j&G be as above. Then the composite

* T

n i n !
H (Y;2 )—‘—*HA(Y,,QA) > H

G Y;zG)

2
G G

equals multiplication by m.

3. THE KRONECKER INDEX AND THE CUP-PRODUCT
In this section it is assumed that R is a commutative ring.

Definition 3.1. Let k and £ be a covariant and a contravariant coeffi-

cient system, respectively, over R. A pairing of k and £ consists of
the following. For each closed subgroup H of G we have a homomorphism

of R-modules

w: i’,(G/H)@Rk(G/H) — R

such that if g: G/H —> G/K is a G-map, and a¢ 4(G/K),b ¢ k(G/H) then

w(a®, a, (b)) = w(a*(a)®Rb).

R

n

A A
Now let X be a G-space, and c¢ CG

AAG
(X; 4) and GeCn(X;k). Assume

that o is a pairing of k and 4. Define (?::,3)5 R by the following. If
, m
o=2T ®a, we set

i=1 t t

m
A Ay A ’
{(c, o) = w<12=1C(Ti) XJRai).

It is immediately seen that this gives us a well-defined homomorphism of
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R-modules

A A
(. )i ColX; z)@RcS(x; k) —> R.

Let T be an equivariant singular (n+l)-simplex in X, and

a ¢ k(G/4(T)). Then we have
A A n+l ;i
(¢,3(T®a)y = (c, T (-1)'T
i=0

Do)

n+l i n+l1 .
(2 ei™e g (), a)) =0 (2(1)<p)c('r EXY

1t

A A

m(%ﬁ(TmRa) = (3¢, T®a).

it

Thus it follows that we have
AOAA AA A
<C; 50')=<6C, 0')'

Now assume that c¢ Cg(X; 2) and ge¢ CS(X; k). We claim that the

definition
A
{c,0) ={c, oYeR,

A AG s
where ¢ ¢ Cn(X; k) is any representative for ¢ gives us a well-defined
homomorphism

n G
. . . —_— R,
(. 2:G(Xp) @, C (X5k) R
This is seen as follows. Assume that T® a ~ T'® 2’, and let h bea
G-homeomorphism such that T = T'h, and (h )*( a) = a’. Since

ce C (X; £) it follows that we have

(¢, T®a) = u(e(T) @y ) = l(h) o(T)op 2)

w(c(T’ y@p(h ), () = w(c(T’ ) ®s a’)

{c, T'®a’).

fl

This proves our claim.
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Since we now have

(e, 30) = (6¢c,0),

it follows that ( , ) induces a homomorphism
( Y HL (X; 0)® HG(X- L) —> R
’ G R n""’

in the obvious way. We call this the Kronecker index.
The Kronecker index gives rise to the homomorphism
v Hé (X; g) — HomR(HS(X; k), R)
defined by v{(n)(£) = {n, & » o eHg (X;4) and ggHS(X;k).

We leave a further discussion of the homomorphism v to another
occasion.

We shall now define a cup product in equivariant singular cohomology
with coefficients in a contravariant ring coefficient system. We say that
a contravariant coefficient system £ is a ring coefficient system if
2(G/H) is a ring (with unit) for each closed subgroup H of G and all
induced homomorphisms are ring homomorphisms, and, moreover,
4(G/G) = R and the R-module structure on £4(G/H) is the same as the one
induced by the ring homomorphism p*: R = 2(G/G) — 4(G/H).

Assume that ¢ is a contravariant ring coefficient system. Let

n+m
G

n

AA A, Am ) AN, A
ce CG(X; 2) and c¢ CG (X; 4). We define the product cUc' ¢ C (X; 8)

as follows. Denote p =n-+m. Let T: (/_\p;K .. ,Kp) ~—> X be an

0"

equivariant singular p-simplex in X. Define

: ; 3 v . ' > ; E A )

and B ;Kn,...,Kp)—-——->-(AP;K,...,K)

m' 8y 0 .
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by
ozn([(xo, - ,xn),g]) = [(xo, - ,xn,O, cee,0),g]

and Brri([(xo’ - .,xm),g]) =[(0,..., 0,%y, - - ,xm),g].
Now define the value of Acug' on T by

A A, _ nm, x4 A,

(cU ¢ NT) =(-1) (p" (T N(c(TB_))e z(G/Kp)

where p: G/Kp — G/Kn is the natural projection.

Thus we have the homomorphism

The formula

is established by a standard calculation.

We now claim that if ce Cg(X; 2) and c'¢ Cg1 (X; 2) then also

n+m
G

h:(p 3K.,...,K)— (A ;K.\,...,K') be a G-homeomorphism which

cycecC (X;4). Let T (AP;K’ e ,K]'?) —-> X and let

covers id: AP — Ap' We have to show that
! I * I4 14
(c Uc'T h) = (hp) (c U NT).
The G-homeomorphism h determines a G-homeomorphism

h :(An;K

— (A 3K, oK i id: A —> 8
o Kn) (An,K s ,Kn), which covers id An An’ such

0,.¢.,

that h o, = 041 ha, and also a G-homeomorphism

S(A K, —> (A_K_,... i id: p > A
hﬁ. (Am, Kn’ , Kp) (Am, Kn’ , Kp), which covers id A b
such that hd =8’ h_. Observe that we have

“m m f
p*((h ) )* = (h )*p’*: L(G/K' ) —> 4(G/K )
an P n P
% % 7

d h =(h )": UG/K') —> 4G/K ).

an (( B)m) ( p) ( p) ( p)
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Thus we have

(¢ UeHT'B) = (-1 (p e(T'ha )’ (T'hB_))

* 1 7 7 ! nl
= (-1)"p e(T"o b (e’ (T Bmhﬁn

nm # # 7 7 ?
= (1™ (), o(T ey (T,
* I>:< 2 7 * 4 ! nt
= (1) P (T e (R ) e (T'BL )
nron

* %
h I r 1 7 ! nt
( p) ((p" (T e (AT B )
=(h) (c U NT).
P
This proves our claim, and hence we have the homomorphism

U c (X; )8 c (X; 2) — CoN(X; 0).

1'1
Ca
Since we have

slcUc) = geuc +(-1)"cuysc’

it follows that the homomeorphism ) induces

U: H . (% £)®H (X; z)-———>H x5 0).

4. FREE ACTIONS

In this section we assume that the G-space X is the total space of
a principal G-bundle, that is, G acts freely on X and the projection
m: X —> G\X is locally trivial.

We also assume that k is a covariant coefficient system for G with
the property that every G-map @: G —> G induces the identity

id: k(G) — k(G).
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Let T: (An; KO’ cee, Kn) — X be an equivariant singular n-simplex
in X. Since G acts freely on X it follows that {e} = K0=. . =Kn, and
thus (An;KO,. .,Kn) = Anx G.

We shall define a chain map
A AG
y#: Cn(X; k) —> Cn(G\X; k(G)).
Here Cn(G\X; k(G)) denotes the nth ordinary singular chain group, with
A
coefficient R-module k(G). Let T®ac¢ CS(X; k) where
T AnxG —> X

and a ¢k(G). Define
v(T): An —> G\X

by «w(T)(x) = mT(x,e), where xeAn and e is the identity element of G.
A
Now define y# by

YyT®a) =y(Tea.

Clearly the homomorphisms {\y# commute with the boundary, and thus
form a chain map.

If TRa ~ T'®a’, then y(T)=y(T'): b, G\X and since all
induced homomorphisms on k(G) are assumed to be the identity, it follows
that a =a’. Thus "‘y# induces

Yyt O (X5 k) = C_ QX3 K(G)).
We shall show that Y is an isomorphism. Let
S: An — G\X.
Then the induced principal G-bundle by S over A, is isomorphic to
Anx G. Thus there exists a G-map

B (S): AnxG‘—‘> X
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which covers S, and, moreover, B(S) is well-defined up to a G-homeoc-
morphism h: AnxG — AnxG which covers id: An — An' Hence we have

a homomorphism
G

B#: Cn(G\X; k(G)) —> Cn(X; k)
defined by ﬁ#(S® a) = {B(S)® a}, where ack(G) and {B(S)®a}¢ CS(X; k)
A
is the image of B(S)®ac¢ CS(X;k) under the natural projection. Clearly

g# is a two-sided inverse to Yy We have proved

Theorem 3.1. Assume that G acts freely on X such that the projection

m: X —> G\X 1is locally trivial. Let k be a covariant coefficient system
for G with the property that each G-map ¢: G —> G induces

id: k(G)—> k(G). Then there exists a natural isomorphism

G =
Vit Hn(X; k) ——> Hn(G\X;k(G))

for every n.
q.e.d.

We shall now prove the corresponding result for cohomology. Let
£ be a contravariant coefficient system for G with the property that
every G-map q: G —> G induces the identity id:1(G) —> L(G).

Denote as before L =2:® 4(G/H) where the direct sum is over all
closed subgroups of G. Sinf:{e every equivariant singular n-simplex in X

is of the formm T: AnxG — X it follows that

n

5™ (X; 4) = Hom, (G7(X), L) = Hom (C(X), 2(G
CG( 3 4) = Omt(Cn( ), L) = om(Cn( ), £(G))
(see Definition 8.1 in Chapter III).

The homomorphism

A A G
7y: C, (X) —> C_(G\X)



194

gives rise to the dual homomorphism
A# An
y": Hom (C_(G\X), 2(G)) —> Ch(X: )
A
where 'y#(c') = ¢ g/#.
If T AnxG — X, and h: AnxG —> AnxG is a G-homeomorphism
. . A A AL,
which covers 1d:An-—> An’ then ')/#(T'h) = 'y#(T’). Thus ‘}’# is a homo-

A
morphism into Cg(X; 4) < Cé(X; 4), and we denote this homomorphism by
i n
v :Hom(Cn(G\X), HG))y —> CG(X; ).

We claim that y# is an isomorphism. Define a homomorphism

g+ G2 (x; 1) —> Hom (C_(G\X), 4(G))

as follows. Let ce¢ Cg(X; 4), that is, ¢ is a homomorphism
czc":S(X) —3> 4(G) which satisfies the condition c{(T’'h) = (hn)*c('r’) = ¢(T')
for every T’ and h as above. If S: An —> G\X, we define the value of
the homomorphism ﬁ#(c) on S by

(87 (c))(8) = c(B(S)) € (G,
where pJ(S): AnxG —> X is some G-map which covers S: A, —> G\X.
This value is independent of the choice of £(S). This defines 3#. Clearly

B is a two-sided inverse to »y#. We have proved

<

Theorem 3.2. Assume that G acts freely on X such that the projection

m: X —> G\X is locally trivial. Let ¢ be a contravariant coefficient
system for G with the property that each G-map G —> G induces

id: 4(G) — £(G). Then there exists a natural isomorphism

n

¥ n
y sHMGAK; 4(G)) —> Hy,

(X; 2)

for every n.
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Remark 1. If G is connected, then any G-map o:G —> G is G-homotopic
to id:G —> G and hence it follows that any G-map o:G —> G induces

id: k(G) — k(G) and id: 4(G) —> 4(G) for every covariant coefficient
system k and contravariant coefficient system ¢. Thus Theorems 3.1
and 3.2 apply to principal G-bundles, G connected, for arbitrary coefficient

systems.

Remark 2. Let p:EG —> BG be the universal principal G-bundle over
the classifying space BG for G. Let M be an R-module. One can
define an equivariant homology theory hf:( ;M) and equivariant cohomol-

*
ogy theory hG( ;M) as follows. Let X be a G-space, and denote by

X Xe EG the orbit space of the diagonal action by G on X xEG. Then
define
hG(X'M) =H (X x. EG;M)
n VA =82y XG ’
and 2 (X; M) = H (X x_. EG; M)
G\ = XG s .

This theory is due to A. Borel.
Let k and 4 be as in Theorems 3.1 and 3.2. Then we have

hS(X; k(G)) = HS(X x EG; k)

and hé(x; 4G) T HL(X KEG; 1)

n
ol
Let R=2Z and M = Z. Thus by definition
hG({*}' Z) =H (BG; Z).
n b4 n L4
That is, the one-point set {*} has non-zero homology in positive degrees.

In our thecry the homology groups Hn(BG; Z) occur as the equivar-

iant homology groups of the G-space EG whenever the coefficient system
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is such that k(G) = Z and all induced homomorphisms on k(G) are the

identity on Z. Correspondingly for cohomology.

5. EQUIVARIANT SINGULAR HOMOLOGY AND COHOMOLOGY

OF EQUIVARIANT CW COMPLEXES

In this section we assume that G is a compact Lie group and that
the G~-space X is a finite dimensional equivariant CW complex. Let
-1 0 m . .
=X <X c...c X =X bethe skeleton filtration of X.

Let k be an arbitrary covariant coefficient system for G. We

shall show that the chain complex

(1) ...« Hg_l(xn"l, ™2y <> HG(Xn x2-t k)éa——HSH(XnH, X k) <— .

has nth homology isomorphic to HS(X; k). First we have

Lemma 5.1. Iet H be an arbitrary closed subgroup of G. Then
k(G/H) for p=n

-1 ~
n(E" xa/m, s x o/ I
P S0 for p # n.

Proof. This follows from the fact that HG( ; k) satisfies all seven
equivariant Eilenberg-Steenrod axioms and has k as its coefficients, in
the same way as the corresponding result for ordinary singular homelogy
follows from the ordinary Eilenberg-Steenrod axioms (see Section 16 of

Chapter I in Eilenberg-Steenrod [ 6 ]).
qg.e.d.
We shall now determine the R-modules

H(X x* L
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for all p. We have X = Xn-1 Uy c;l), where {C?}jiJ is the collection
0T

of all equivariant n-cells in X. Choose an equivariant characteristic map

fJ: (EnxG/Hj, sn’le/Hj) —_— (c?, é}‘)

for each equivariant n-cell c;l, jeJ. Denote fJ.(O, eH,) = x.¢ cr,1 - 'cl:l, and
let B=1J Gx.. Thus B is the disjoint union of exactly one orbit from

jeJ
the interior of each equivariant n-cell.

-1
Since s xG/H is a strong G-deformation retract of (En- {0}) xG/H,
it follows that Xn~l is a strong G-deformation retract of x"-B. Hence
n-1

it follows from the exact homology sequence of the pair (Xn- B, X ) that

G -
H (x*B, x® 4K =0, forall p.

From the exact homology sequence for the triple (Xn, x"- B, Xn-l) it

thus follows that
LH Gx? X" 1k)-——-—»»H (x®, x*-B; k)

is an isomorphism for all p.

1 1
Let En(z) be the set of all vectors in En of length <5 and denote

1 B n l
s c,=f(E () xG/H)).
3 <) = (B ) xG/H))
. n-1 n n
Let U be the open neighborhood of X in X~ such that X-U=U (2 J).
jed

By excision it follows that

~

G =
1;:Hp (XU, (X"-B) -U; k) —> HS(Xn, x"- B k)

is an isomorphism for all p.

We now have X-U = U(—c)and (X-B)-U =J (( c)-Crx) and
jeI ® jeg 2 i )

the pair ((‘ZC?),(EC?) - ij) is G-homeomorphic to (Enx G/Hj’ Sn-le/Hj)
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Therefore

G ~ G -
HO(X™-U, (X - B)- U;k) T Do H(E°XxG/H,, ™ 'xG/H ; k)
P .7 P J J
Je
(This additivity property of equivariant singular homology follows easily

from the way equivariant singular homology is constructed.) Thus alto-

gether we have

2) O, Xl EGBHG(EnxG/Hj, sn"le/Hj;k)
jed

and Lemma 5.1 tells us what the right-hand side is. Especially we have
(3) H (X,X “;k)=0 if p#n.

It follows from (3) that the chain complex (1) has nth homology iso-
G
morphic to Hn(X; k). One way to see this is as follows. Consider the

spectral sequence (E: ¢ dr) with

1 G 8 s-1
Es,t - I_Is+1:(X » X5k
and
d ' E —_ El
s, t s-1,¢
] s 5-1 g-2
equal to the boundary of the triple (X , X , X ). By (3) we have
1
E =0, if t# 0.
5,t
Thus it follows that
2
Es,t - Es,t
and
G

o
E . Hs+t(X’k)'

5,

This proves that the chain complex (1) has nth homology isomorphic to
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Hcr}l(X; k). Of course, it is not necessary to introduce spectral sequences
at all. Some simple arguments using the appropriate exact homology

sequences proves the same result. We have proved

Theorem 5.2. Let G be a compact Lie group and assume that the

G-space X is a finite dimensional equivariant CW complex. Let k bea
covariant coefficient system for G. Then the nth homology of the chain
complex

- - 3 -
(1) ...<———H§_I(Xn Lx™=2.0 <—-—HS(Xn, gy <

is isomorphic to HS(X; k). g.e.d

Corollary 5.3. If X is an m-dimensional equivariant CW complex, then

HG(X;k) =0 for p>m.
P q.e.d.

We call a covariant coefficient system k finitely generated if
k(G/H) is a finitely generated R-module for every closed subgroup H of G.
If X is a finite equivariant CW complex and k is a finitely generated
covariant coefficient system, it follows by (2) that all the modules in the
chain complex (1) are finitely generated R-modules. Thus, if we, more-
over, assume that the ring R is noetherian, it follows that the homology
groups of the chain complex (1) are finitely generated R-modules. Thus,

Theorem 5.2 gives us

Corollary 5.4. Let X be a finite equivariant CW complex and k a finitely

generated coefficient system over a noetherian ring R. Then the equivariant

singuiar homology modules I—fi(X;k) are finitely generated R-modules for



200

all n, and HG(X;k) =0 for p>dim X,
P q.e.d.

Let M be a differentiable G-manifold. By Corollary 4.1 in Chapter
II, M is an equivariant CW complex and it is clear that M is a finite
dimensional equivariant CW complex. To be precise, the dimension of
M as an equivariant CW complex is the same as the dimension of the
polyhedron G\M, and thus in any case not greater than the dimension of
the manifold M. If M, moreover, is compact it follows from Lemma 1.15
in Chapter I that M is a finite equivariant CW complex. Thus Corollaries
5.3 and 5.4 apply in the case of smooth actions. We formulate this as a

separate theorem.

Theorem 5.5. Let Mn be an n-dimensional differentiable G-manifold,

where G is a compact Lie group and k a covariant coefficient system
for G. Then

HS(Mn; k) = 0 for p > n.

I M is compact and k is a finitely generated coefficient system for G
over a noetherian ring R, then every H(:(Mn; k), s=0,1,... , is a finitely

generated R-module.
q.e.d.

The cohomology versions of the above results are proved in a com-
pletely analogous way. ILet f be a contravariant coefficient system for G.
It follows from the fact that Hz( ; 4) satisfies all seven equivariant
Eilenberg-Steenrod axioms and has 4 as its coefficients, that we have

~ [ L{(G/H) for p=n
)“{ 0

P, n-1 .
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Since equivariant singular cohomology of a disjoint union is the direct
product of the equivariant singular cohomology of the ''factors'' of the dis-

joint union, it follows that
- ~ T G -
1P (x®, x* L 0 T T 85(E"xa/m,, s xarH,; 1)
G o7 P J J
J€
where the product is over all equivariant n-cells of X. Thus we have

Hg(Xn, x* L =0 if p #n.

This gives us the following results.

Theorem 5.6. Let G be a compact Lie group and assume that the G-space

X is a finite dimensional equivariant CW complex. Let { be a contra-

variant coefficient system for G. Then the nth homology of the cochain

complex
5 - - - - 6
Rt R S B e R S B
is isomorphic to Hé(X; 2).

g.e.d.

Theorem 5.7. Let Mn be an n-dimensional differentiable G-manifold,

where G is a compact Lie group, and let ¢ be a contravariant coefficient
system for G. Then
Hg(Mn; £y =0 for p > n.

if M" is compact and 4 is a finitely generated coefficient system for G

]

G(Mn; 2) s=0,1,... , is a finitely

over a noetherian ring R, then every H

generated R-module.
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We conclude this section by showing that if the coefficient system is
constant, the equivariant singular homology and cohomology of X is iso-
morphic to the ordinary singular homology and cohomology, respectively,
of the orbit space G\X.

L.et P be an R-module. The covariant coefficient system k for
which k(G/H) = P, for every closed subgroup H of G, and all induced
homomorphisms are the identity on P 1is called constant and denoted by
P. In the same way the R-module P can also be thought of as a contra-
variant coefficient system.

We now define homomorphisms
A AG
: . — .
Vi Cn (X; P) Cn(G\X, P)

in the same way as in Section 4. That is, if T® a¢ &E(X;P), where

T: (An; KO’ .. ,Kn) —~>» X and ac¢P, then we denote by (T): An —> G\X

the map induced by T on the orbit spaces and define ;/#(TQD a)=y(T)®Da.

The homomorphisms ;/# commute with boundary homomorphisms and also

induce homomorphisms
7#: CS(X;P) et Cn(G\X;P),

The corresponding cochain homomorphism
# n n
A Hom(Cn(G\X), P) = CT(G\X; P) —> CG(X; P)

is again defined as in Section 4. This gives us the homomorphisms

G
Yk Hn(X; P) — Hn(G\X; P)

¥ n n
and y + H(G\X; P) —> H,(X; P)
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for all n. We shall show that y, and ‘y* are isomorphisms for every n.
If X = G/H, where H is some closed subgroup of G, then

HS(G/H;P) = P and HO({*};P) = P, and v, induces the identity on P.

If m#0 then Hi(C-/H;P) = Hm({*};P) = 0. For cohomology, the corre-

sponding fact holds. Thus vy, and -y* induce isomorphisms on the coeffi-

cients, that is, whenever X is of the form G/H. The fact that Yy and

y* are isomorphisms, for any finite dimensional equivariant CW complex

X, now follows from an equivariant '"Dold type uniqueness theorem'' given

below.

G G

Let h = {hn } be a generalized equivariant homology theory

¥ neZ

defined on the category of all G-pairs and G-maps. By this, we mean that
G
h* satisfies the first six equivariant Eilenberg-Steenrod axioms, and

moreover, we require the excision axiom to hold only under the assumption

that U is an open set (see A.6 in the statement of Theorem 3.2 in Chapter

II1).
G . . ps .
We say that h* is additive if
G,/ ~ G
| PR h )
h (U X)) _Esa n(XJ)

jeJ . jeJ

for any disjoint union U X, of G-spaces Xj and every ne¢ Z.
jeg

ES
A generalized equivariant cohomology theory hG is defined anal-

%
ogously and hG is called additive if

P

n - - .n
hG (.U Xj) >” hG(Xj)
Jeg JeJg

for every n¢ Z.
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Theorem 5.8. Let hg and -ﬁf
. G -G .
homology theories and ¢: h " h . 2 natural transformation. If

be two additive generalized equivariant

G = =G
i b (G/H) —> & (G/H)
n n
is an isomorphism for every ne¢Z and each closed subgroup H of G,
then
G S =G
: —
i B (X) —>h "(X)
is an isomorphism for every finite dimensional equivariant CW complex

X, and all ne Z.

Proof. In the same way as in the proof of Theorem 5.2, it follows that we

have

W, N 2 S S (®mPxerH., s xa/H)
P o1 j j

where the direct sum is over all equivariant n-cells in X. Moreover, we

have

W (E G/, st xa/m T nS (o/m)
P P-n

for every closed subgroup H of G. From this it follows that

~

G - = s -
o hp(Xn, 7 S h;(xn, x*Y

is an isomorphism for all p and n. Since X =X for some m, our

claim now follows using induction.
g.e.d.

% — %
The corresponding result for a natural transformation n:hG —_— hG
between additive generalized equivariant cohomology theories is valid and

proved in the same way.

Observe that the equivariant singular homology and cohomology
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theories are additive and that taking ordinary singular homology and
cohomology of the orbit spaces gives us an additive equivariant homology

and cohomology theory, respectively. Thus we have

Corollary 5.9. For any finite dimensional equivariant CW complex X we

have natural isomorphisms

~

G =
2% Hn(X, P} —> Hn(G\X, P)

% =
and y + H(G\X; P) —> HL(X; P)

for all n. In particular, this applies when X is a smooth G-manifold.
g.e.d.

Let H be a closed subgroup of G such that HNG consists of m
elements. Both for H and G we take the constant coefficient system
given by the R-module P. Then Theorems 2.2 and 2.4 and Propositions

2.3 and 2.5 together with Corollary 5.9 give us

Corollary 5.10. Let M be a smooth G-manifold and let H be a closed

subgroup of G such that H\G consists of m elements. Then we have
transfer homomorphisms

e H_(G\M; P) —> H_(H\M; P)

and 7, HY(H\M; P) — HY(G\M; P)

for all n. Moreover, the composite homomorphisms

!

P, : H (G\M;P) —> H_(G\M;P)

!

. % o n n
and T p t H(G\M; P) — H (G\M; P)

equal multiplication by m.
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ABSTRACT

Let G be a compact Lie group, a discrete group, or an abelian
locally compact group. By a covariant coefficient system k for G, over
the ring R, we mean a covariant functor from the category of G-spaces
of the form G/H, where H is a closed subgroup (not fixed) of G, and
G-homotopy classes of G-maps, to the category of R-modules. A contra-
variant coefficient system { is defined analogously.

We construct an equivariant homology theory HS( ; k) and an
equivariant cohomology theory HZ( ; 4), defined on the category of all
G-pairs and G-maps, which both satisfy all seven equivariant Eilenberg-
Steenrod axioms and which have the given covariant coefficient system k
and the contravariant coefficient system ¢ , respectively, as coefficients.
By the statement that Hi( ; k) satisfies the equivariant dimension axiom
and has k as coefficients we mean the following. If H is a closed sub-
group of G we have

HG(G/H;k) =0 for m+4 90
m
and there exists an isomorphism

G =
0 (G/H; k)

y: H > k(G/H)

which commutes with homomorphisms induced by G-maps o: G/H —> G/K.

%*

G( ;4). We call the equivar-

The corresponding explanation applies for H
iant homology theory Hf( ; k) for equivariant singular homology with

: *
coefficients in k and the equivariant cohomology theory HG( ; 4) for

equivariant singular cohomology with coefficients in 4.
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We also construct transfer homomorphisms both in equivariant
singular homology and cohomology, and define a '""Kronecker index'' and a
cup-product in equivariant singular cohomology.

Assume from now on that G is a compact Lie group. We define
equivariant CW complexes and prove the equivariant versions of the
homotopy extension property, the skeletal approximation theorem, and
the Whitehead theorem. Moreover, we prove that every differentiable
G-manifold M is an equivariant CW complex.

Finally, we show that equivariant singular homology and cohomology
of a finite dimensional equivariant CW complex is isomorphic to its
"cellular equivariant homology and cohomology,'" respectively. From
this it follows that the equivariant singular homology and cohomology
groups of a differentiable G-manifold M vanish in degrees above the
dimension of the manifold M. If M moreover is compact, the equivariant
singular homology and cohomology groups are finitely generated R-modules
if the coefficient systems are finitely generated coefficient systems over a

noetherian ring R.





