Universal property of Kasparov bivariant
K-theory

Hvedri Inassaridze*

(Correspondent member of the Georgian
Academy of Sciences)
A.Razmadze Mathematical Institute
Georgian Academy of Sciences

Abstract

It will be proved that Kasparov’s bivariant K-theory is the theory
of satellites of the Grothendieck functor of homotopy classes of homo-
morphisms with respect to pre(co)sheaves of semi-split extensions of
separable C^*-algebras.

To this end the theory of satellites of arbitrary functors with respect to
(co)presheaves of categories (constructed in [2]) will be used.

In what follows we will work in the category \mathcal{A}_{C^*} of separable C^*-algebras.
So all considered C^*-algebras will be separable. The basic notion we shall need
is the notion of semi-split extension of C^*-algebras.

Recall some definitions and results concerning extensions of C^*-algebras
([1,3,4]) needed to expose the main theorem.

Let

$$0 \longrightarrow B \xrightarrow{\varphi} X \xrightarrow{\psi} A \longrightarrow 0$$

(1)

be an extension of A by B, i.e. the sequence (1) is an exact sequence of C^*-
algebras. It will be said that (1) is a split extension if there is a commutative
diagram of C^*-algebras.

*The research described in this publication was made possible in part by INTAS Grant
No 93-2618 and by Grant No GM1-115 of the U.S. CRDF
where $0 : B \to B$ is the trivial map. We will investigate only extensions of the form $E : 0 \to K \otimes B \overset{\varphi}{\to} X \overset{\psi}{\to} A \to 0$ where K is the C^*-algebra of compact operators on the infinite dimensional Hilbert space and $K \otimes B$ is the spatial tensor product of K and B.

Two extensions E and E' of A by $K \otimes B$ will be called isomorphic if there is a commutative diagram

\[
\begin{array}{c}
0 \to B \overset{\varphi}{\to} X \overset{\psi}{\to} A \to 0 \\
\downarrow 0 \quad \downarrow \alpha \quad \| \quad \|
\end{array}
\]

\[
0 \to B \overset{\varphi}{\to} X \overset{\psi}{\to} A \to 0
\]

Let $E^1(A, B)$ be the set of equivalence classes of isomorphic extensions of A by $K \otimes B$. If $f : A' \to A$ is a homomorphism of C^*-algebras the map

\[
E^1(f, B) : E^1(A, B) \to E^1(A', B)
\]

is defined in the usual way. Namely for $E : 0 \to K \otimes B \overset{\varphi}{\to} X \overset{\psi}{\to} A \to 0$ take the fiber product X' of $X \overset{\psi}{\to} A \leftarrow f : A'$. Then $E^1(f, B)([E]) = [E']$ where $E' : 0 \to K \otimes B \overset{\varphi'}{\to} X' \overset{\psi'}{\to} A' \to 0$ with φ' and ψ' natural maps. $E^1(-, B)$ becomes a contravariant functor from \mathcal{A}_C^* to the category Sets.

For any extension (1) of C^*-algebras there is a uniquely defined commutative diagram

\[
\begin{array}{c}
E : 0 \to B \overset{\varphi}{\to} X \overset{\psi}{\to} A \to 0 \\
\downarrow \quad \| \quad \downarrow \tau_E
\end{array}
\]

\[
E : 0 \to B \overset{\sigma}{\to} M(B) \overset{\eta}{\to} O(B) \to 0
\]

where $M(B)$ is the multiplier algebra of B, σ is the natural injection and $\eta : M(B) \to O(B) = M(B)\sigma(B)$ is the canonical surjection. The homomorphism τ_E is called the Busby invariant associated to the given extension E of A by B.
$E^1(A,B)$ can be defined also as a covariant functor in the second variable. In effect let $g : B \to B'$ be a homomorphism of C^*-algebras. Take by Lemma 1.2 [4] the homomorphism

$$(K \otimes g)\neq : M(K \otimes B) \to M(K \otimes B').$$

For $E : 0 \to K \otimes B \xrightarrow{\psi} X \xrightarrow{\psi} A \to 0$ one gets a commutative diagram

\[
\begin{array}{cccccc}
E : 0 & \to & K \otimes B & \xrightarrow{\psi} & X & \xrightarrow{\psi} & A & \to 0 \\
0 & \to & K \otimes B & \to & M(K \otimes B) & \to & O(K \otimes B) & \to 0 \\
0 & \to & K \otimes B' & \to & M(K \otimes B') & \to & O(K \otimes B') & \to 0 \\
\end{array}
\]

with $(K \otimes g)\neq : K \otimes B \to K \otimes B'$ and let E' be the extension of A by $K \otimes B'$ whose Busby invariant is $\lambda g\tau_E$. Then define

$$E^1(A,g) : E^1(A,B) \to E^1(A,B')$$

by $[E] \mapsto [E']$. So $E^1(A,-)$ becomes a covariant functor from $A^1_{C^*}$ to $Sets$. A sum \oplus is defined on the set $E^1(A,B)$ as follows. Let τ_{E_1} and τ_{E_2} be the Busby invariant of E_1 and E_2 respectively where $[E_1], [E_2] \in E^1(A,B)$. Consider the homomorphism $\tau : A \to O(K \otimes B)$ given by

$$\tau(a) = \begin{pmatrix} \tau_{E_1}(a) & 0 \\ 0 & \tau_{E_2}(a) \end{pmatrix} \in M_2 \otimes O(K \otimes B) \approx O(K \otimes B)$$

and take the extension E denoted by $E_1 \oplus E_2$ with Busby invariant τ. Define

$$[E_1] \oplus [E_2] = [E].$$

We arrive to the definition of a semi-split extension of A by $K \otimes B$. Let A and B be C^*-algebras. An extension E of A by $K \otimes B$ is called a semi-split extension if there is an extension E_- of A by $K \otimes B$ such that $E \oplus E_-$ is a split extension.

It will be said that two semi-split extensions E_1 and E_2 of A by $K \otimes B$ are unitary equivalent up to splitting if there exists split extensions F_1, F_2 of A by $K \otimes B$ and a unitary element $u \in M(K \otimes B)$ such that there is a commutative diagram
where \(\text{ad } u \) is a derivation given by \(x \mapsto \sigma^{-1}(u \sigma(x) u^*) \) with \(x \in K \otimes B \) and \(\sigma : K \otimes B \to M(K \otimes B) \).

Let \(\text{ext}^1(A, B) \) be the set of semi-split extensions of \(A \) by \(K \otimes B \). Then \(\text{ext}^1(_ , _) \) is a subbifunctor of \(E^1(_ , _) \). Moreover \(\text{ext}^1(A, B) \) is a commutative monoid under the sum \(\oplus \) and its quotient set \(\text{Ext}^1(A, B) \) by the unitary equivalence up to splitting becomes an abelian group with sum induced by \(\oplus \) and it is a bifunctor from \(\mathbb{A}^*_C \) to the category \(\mathbb{A}^*_C \) of abelian groups. It was proved by Kasparov [3] that in fact \(\text{Ext}^1(A, B) \) is isomorphic to \(KK^1(A, B) \) and so is a homotopy functor under both variables.

Define a presheaf \(\mathcal{G} \) of categories over the category \(\mathbb{A}^*_C \) of separable \(C^* \)-algebras as follows. For any \(A \in \text{Ob} \mathbb{A}^*_C \), the objects of the category \(\mathcal{G}(A) \) are semi-split extensions \(E \) of the \(C^* \)-algebra \(A \)

\[
E : 0 \to K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \to 0.
\]

A morphism of \(\mathcal{G}(A) \) is a triple \((\alpha, \beta, 1_A) : E \to E'\) such that the diagram

\[
\begin{array}{ccc}
E : 0 & \to & K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \to 0 \\
& \downarrow \alpha & \downarrow \beta & \| \\
E' : 0 & \to & K \otimes X' \xrightarrow{\varphi'} Y' \xrightarrow{\psi'} A \to 0
\end{array}
\]

is commutative. If \(f : A' \to A \) is a homomorphism of \(C^* \)-algebras then the covariant functor \(\mathcal{G}(f) : \mathcal{G}(A) \to \mathcal{G}(A') \) is given by

\[
\mathcal{G}(f)(E) = \text{ext}^1(f, K \otimes X)(E)
\]

for \(E : 0 \to K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \to 0 \in \text{Ob} \mathcal{G}(A) \) and for a morphism \(E \to E' \) of \(\mathcal{G}(A) \) the morphism \(\mathcal{G}(f)(E) \to \mathcal{G}(f)(E') \) is defined in a natural way. The trace \((S, s)\) in the category \(\mathbb{A}^*_C \) of the presheaf \(\mathcal{G} \) is given by \(S_A(E) = K \otimes X \) for \(E : 0 \to K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \to 0 \) and for any \(C^* \)-algebra \(A \), and \(S_A(\alpha, \beta, 1_A) = \alpha \) for \((\alpha, \beta, 1_A) : E \to E'\). If \(f : A' \to A \) is a homomorphism of \(C^* \)-algebras then for \(E : 0 \to K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \to 0 \)
and $A \in Ob \mathcal{A}_C$, the homomorphism $s_E(f) : S_A(G(f)(E)) \rightarrow S_A(E)$ is the identity map $1_K : K \otimes X \rightarrow K \otimes X$.

We see that the presheaf $G(S, s)$ of semi-split extensions over \mathcal{A}_C^s is completely analogous to the presheaf of short exact sequences of modules with its trace over the category of modules [2].

Let A and B be two C^*-algebras and let $\text{hom}(A, K \otimes B)$ be the set of all C^*-homomorphisms from A into $K \otimes B$. Let $\text{hom}^*(A, K \otimes B)$ be the set of equivalence classes of homotopic C^*-homomorphisms from A into $K \otimes B$. Then one can define on $\text{hom}(A, K \otimes B)$ a sum \oplus by $f \oplus g = h$ where

$$h(a) = \begin{pmatrix} f(a) & 0 \\ 0 & g(a) \end{pmatrix} \in M_2 \otimes (K \otimes B) \approx K \otimes B$$

for $a \in A$ and $f, g \in \text{hom}(A, K \otimes B)$. The sum \oplus induces on $\text{hom}^*(A, K \otimes B)$ a structure of commutative monoid and let $K \text{hom}^*(A, K \otimes B)$ be its Grothendieck group. One gets a bifunctor $K \text{hom}^*(\mathcal{A}_C^s, \mathbf{Ab})$ from \mathcal{A}_C^s to \mathbf{Ab}.

Definition 1. It will be said that a connected pair (T^0, ϑ, T^1) of contravariant functors from \mathcal{A}_C^s to \mathbf{Ab} with respect to the presheaf $G(S, s)$ of semi-split extensions satisfies condition (i) if for any unitary element $u \in M(K \otimes B)$ the equality

$$\delta_E T^0(\text{ad } u) = \delta_E$$

holds for any $E : 0 \rightarrow K \otimes B \xrightarrow{\varphi} X \xrightarrow{\psi} A \rightarrow 0 \in \text{Ob } G(A)$, $A \in Ob \mathcal{A}_C^s$.

Denote by \mathbf{L} be the class of all connected pairs of functors satisfying condition (i). Let $E : 0 \rightarrow K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \rightarrow 0 \in G(A)$. Define a homomorphism

$$\vartheta_E : \text{hom}^*(K \otimes X, K \otimes B) \rightarrow \text{Ext}^1(A, B)$$

by $\vartheta_E([g]) = \text{ext}^1(A, g)(E)$ for $g : K \otimes X \rightarrow K \otimes B$ and extend ϑ_E to a homomorphism

$$\vartheta_E : K \text{hom}^*(K \otimes X, K \otimes B) \rightarrow \text{Ext}^1(A, B).$$

Theorem 2. The pair $(K \text{hom}^*(\mathcal{A}_C^s, \mathbf{Ab}), \vartheta), (\text{Ext}^1(\mathcal{A}_C^s, \mathbf{Ab}))$ is a right universal pair of contravariant functors with respect to the class \mathbf{L}.

5
Let H be the copresheaf of categories of semi-split extensions over the category \mathcal{A}_C^s of stable separable C^*-algebras with its (dually defined) natural trace (S,s) in the category \mathcal{A}_C^s.

Definition 3. It will be said that a connected pair (T_0, κ, T_1) of functors $T_0 : \mathcal{A}_C^s \to \mathbf{Ab}$, $T_1 : \mathcal{A}_C^s \to \mathbf{Ab}$ with respect to $H(S,s)$ satisfies condition (j) if for any unitary element $u \in M(K \otimes B)$ the equality

$$T_1(ad\ u)\kappa_E = \kappa_E$$

holds for any $E : K \otimes B \to X \to Y \in \text{Ob} H(K \otimes B)$, $K \otimes B \in \text{Ob} \mathcal{A}_C^s$.

For any $E : K \otimes B \to X \to Y$ define a connecting homomorphism

$$\eta_E : K \text{hom}^s(A,Y) \to \text{Ext}^1(A,B)$$

given by $[g] \mapsto [\text{ext}^1(g,K \otimes B)]$ where A is a separable C^*-algebra.

Theorem 4. The pair $(K \text{hom}^s(A,-), \eta, \text{Ext}^1(A,-))$ is a universal pair of functors with respect to the class of all connected pairs of functors satisfying condition (j).

Note that Theorems 2 and 4 can be extended in a natural way to the functors Ext^n.

References