Universal property of Kasparov bivariant K-theory

Hvedri Inassaridze* (Correspondent member of the Georgian Academy of Sciences) A.Razmadze Mathematical Institute Georgian Academy of Sciences

Abstract

It will be proved that Kasparov's bivariant K-theory is the theory of satellites of the Grothendieck functor of homotopy classes of homomorphisms with respect to pre(co)sheaves of semi-split extensions of separable C^* -algebras.

To this end the theory of satellites of arbitrary functors with respect to (co) presheaves of categories (constructed in [2]) will be used.

In what follows we will work in the category $\underline{A}^*_{\mathbf{C}}$ of separable C^* -algebras. So all considered C^* -algebras will be separable. The basic notion we shall need is the notion of semi-split extension of C^* -algebras.

Recall some definitions and results concerning extensions of C^* -algebras ([1,3,4]) needed to expose the main theorem.

Let

$$0 \longrightarrow B \xrightarrow{\varphi} X \xrightarrow{\psi} A \longrightarrow 0 \tag{1}$$

be an extension of A by B, i.e. the sequence (1) is an exact sequence of C^* -algebras. It will be said that (1) is a split extension if there is a commutative diagram of C^* -algebras

^{*}The research described in this publication was made possible in part by INTAS Grant No 93-2618 and by Grant No GM1-115 of the U.S. CRDF

where $0: B \longrightarrow B$ is the trivial map. We will investigate only extensions of the form $E: 0 \longrightarrow K \otimes B \xrightarrow{\varphi} X \xrightarrow{\psi} A \longrightarrow 0$ where K is the C*-algebra of compact operators on the infinite dimensional Hilbert space and $K \otimes B$ is the spatial tensor product of K and B.

Two extensions E and E' of A by $K \otimes B$ will be called isomorphic if there is a commutative diagram

Let $E^1(A, B)$ be the set of equivalence classes of isomorphic extensions of A by $K \otimes B$. If $f : A' \longrightarrow A$ is a homomorphism of C^* -algebras the map

$$E^1(f,B): E^1(A,B) \longrightarrow E^1(A',B)$$

is defined in the usual way. Namely for $E: 0 \longrightarrow K \otimes B \xrightarrow{\varphi} X \xrightarrow{\psi} A \longrightarrow 0$ take the fiber product X' of $X \xrightarrow{\psi} A \xleftarrow{f} A'$. Then $E^1(f, B)([E]) = [E']$ where $E': 0 \longrightarrow K \otimes B \xrightarrow{\varphi'} X' \xrightarrow{\psi'} A' \longrightarrow 0$ with φ' and ψ' natural maps. $E^1(-, B)$ becomes a contravariant functor from \underline{A}^*_C to the category <u>Sets</u>.

For any extension (1) of C^* -algebras there is a uniquely defined commutative diagram

where M(B) is the multiplier algebra of B, σ is the natural injection and $\eta: M(B) \longrightarrow O(B) = M(B) \prime \sigma(B)$ is the canonical surjection. The homomorphism τ_E is called the Busby invariant associated to the given extension E of A by B.

 $E^1(A, B)$ can be defined also as a covariant functor in the second variable. In effect let $g : B \longrightarrow B'$ be a homomorphism of C^* -algebras. Take by Lemma 1.2 [4] the homomorphism

$$(K \otimes g)_{\neq} : M(K \otimes B) \longrightarrow M(K \otimes B').$$

For $E: 0 \longrightarrow K \otimes B \xrightarrow{\varphi} X \xrightarrow{\psi} A \longrightarrow 0$ one gets a commutative diagram

with $(K \otimes g)_{\neq} : K \otimes B \longrightarrow K \otimes B'$ and let E' be the extension of A by $K \otimes B'$ whose Busby invariant is $\lambda_g \tau_E$. Then define

$$E^1(A,g): E^1(A,B) \longrightarrow E^1(A,B')$$

by $[E] \longmapsto [E']$. So $E^1(A, -)$ becomes a covariant functor from \underline{A}^*_C to <u>Sets</u>.

A sum \oplus is defined on the set $E^1(A, B)$ as follows.Let τ_{E_1} and τ_{E_2} be the Busby invariant of E_1 and E_2 respectively where $[E_1]$, $[E_2] \in E^1(A, B)$. Consider the homomorphism $\tau : A \longrightarrow O(K \otimes B)$ given by

$$\tau(a) = \begin{pmatrix} \tau_{E_1}(a) & 0\\ 0 & \tau_{E_2}(a) \end{pmatrix} \in M_2 \otimes O(K \otimes B) \approx O(K \otimes B)$$

and take the extension E denoted by $E_1 \oplus E_2$ with Busby invariant τ . Define

$$[E_1] \oplus [E_2] = [E] .$$

We arrive to the definition of a semi-split extension of A by $K \otimes B$. Let A and B be C^* -algebras. An extension E of A by $K \otimes B$ is called a semi-split extension if there is an extension E_- of A by $K \otimes B$ such that $E \oplus E_-$ is a split extension.

It will be said that two semi-split extensions E_1 and E_2 of A by $K \otimes B$ are unitary equivalent up to splitting if there exists split extensions F_1 , F_2 of A by $K \otimes B$ and a unitary element $u \in M(K \otimes B)$ such that there is a commutative diagram

where ad u is a derivation given by $x \mapsto \sigma^{-1}(u \ \sigma(x) \ u^*)$ with $x \in K \otimes B$ and $\sigma : K \otimes B \longrightarrow M(K \otimes B)$.

Let $ext^1(A, B)$ be the set of semi-split extensions of A by $K \otimes B$. Then $ext^1(-, -)$ is a subbifunctor of $E^1(-, -)$. Moreover $ext^1(A, B)$ is a commutative monoid under the sum \oplus and its quotient set $Ext^1(A, B)$ by the unitary equivalence up to splitting becomes an abelian group with sum induced by \oplus and it is a bifunctor from \underline{A}^*_C to the category \underline{Ab} of abelian groups. It was proved by Kasparov [3] that in fact $Ext^1(A, B)$ is isomorphic to $KK^1(A, B)$ and so is a homotopy functor under both variables .

Define a presheaf **G** of categories over the category \underline{A}_{C}^{*} of separable C^{*} algebras as follows. For any $A \in Ob \ \underline{A}_{C}^{*}$ the objects of the category $\mathbf{G}(A)$ are semi-split extensions E of the C^{*} -algebra A

$$E: 0 \longrightarrow K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \longrightarrow 0 .$$

A morphism of $\mathbf{G}(A)$ is a triple $(\alpha, \beta, 1_A) : E \longrightarrow E'$ such that the diagram

is commutative. If $f : A' \longrightarrow A$ is a homomorphism of C^* -algebras then the covariant functor $\mathbf{G}(f) : \mathbf{G}(A) \longrightarrow \mathbf{G}(A')$ is given by

$$\mathbf{G}(f)(E) = ext^1(f, K \otimes X)(E)$$

for $E: 0 \longrightarrow K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \longrightarrow 0 \in Ob \ \mathbf{G}(A)$ and for a morphism $E \longrightarrow E'$ of $\mathbf{G}(A)$ the morphism $\mathbf{G}(f)(E) \longrightarrow \mathbf{G}(f)(E')$ is defined in a natural way. The trace (S, s) in the category \underline{A}_C^* of the presheaf \mathbf{G} is given by $S_A(E) = K \otimes X$ for $E: 0 \longrightarrow K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \longrightarrow 0$ and for any C^* -algebra A, and $S_A(\alpha, \beta, 1_A) = \alpha$ for $(\alpha, \beta, 1_A) : E \longrightarrow E'$. If $f: A' \longrightarrow A$ is a homomorphism of C^* -algebras then for $E: 0 \longrightarrow K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \longrightarrow 0$

and $A \in Ob \underline{A}_{C}^{*}$ the homomorphism $s_{E}(f) : S_{A}(\mathbf{G}(f)(E)) \longrightarrow S_{A}(E)$ is the identity map $1_{K \otimes X} : K \otimes X \longrightarrow K \otimes X$.

We see that the presheaf $\mathbf{G}(S, s)$ of semi-split extensions over \underline{A}_{C}^{*} is completely analogous to the presheaf of short exact sequences of modules with its trace over the category of modules [2].

Let A and B be two C^{*}-algebras and let $hom(A, K \otimes B)$ be the set of all C^{*}-homomorphisms from A into $K \otimes B$. Let $hom^*(A, K \otimes B)$ be the set of equivalence classes of homotopic C^{*}-homomorphisms from A into $K \otimes B$. Then one can define on $hom(A, K \otimes B)$ a sum \oplus by $f \oplus g = h$ where

$$h(a) = \begin{pmatrix} f(a) & 0 \\ 0 & g(a) \end{pmatrix} \in M_2 \otimes (K \otimes B) \approx K \otimes B$$

for $a \in A$ and $f, g \in \text{hom}(A, K \otimes B)$. The sum \oplus induces on hom $*(A, K \otimes B)$ a structure of commutative monoid and let $K \text{ hom } *(A, K \otimes B)$ be its Grothendieck group. One gets a bifunctor K hom *(-, -) from \underline{A}_{C}^{*} to \underline{Ab} .

Definition 1. It will be said that a connected pair (T^0, ϑ, T^1) of contravariant functors from \underline{A}_C^* to $\underline{A}\underline{b}$ with respect to the presheaf $\mathbf{G}(S, s)$ of semi-split extensions satisfies condition (i) if for any unitary element $u \in M(K \otimes B)$ the equality

$$\delta_E T^0(ad\ u) = \delta_E$$

holds for any $E: 0 \longrightarrow K \otimes B \xrightarrow{\varphi} X \xrightarrow{\psi} A \longrightarrow 0 \in Ob \ \mathbf{G}(A), A \in Ob \ \underline{A}_{C}^{*}$.

Denote by **L** be the class of all connected pairs of functors satisfying condition (i). Let $E: 0 \longrightarrow K \otimes X \xrightarrow{\varphi} Y \xrightarrow{\psi} A \longrightarrow 0 \in \mathbf{G}(A)$. Define a homomorphism

$$\widetilde{\vartheta}_E : \hom^*(K \otimes X, K \otimes B) \longrightarrow Ext^1(A, B)$$

by $\widetilde{\vartheta}_E([g]) = ext^1(A,g)(E)$ for $g: K \otimes X \longrightarrow K \otimes B$ and extend $\widetilde{\vartheta}_E$ to a homomorphism

$$\vartheta_E: K \hom^*(K \otimes X, K \otimes B) \longrightarrow Ext^1(A, B).$$

Theorem 2. The pair $(K \hom^*(-, K \otimes B), \vartheta, Ext^1(-, B))$ is a right universal pair of contravariant functors with respect to the class **L**.

Let **H** be the copresheaf of categories of semi-split extensions over the category $S\underline{A}_{C}^{*}$ of stable separable C^{*} -algebras with its (dually defined) natural trace (S, s) in the category \underline{A}_{C}^{*} .

Definition 3. It will be said that a connected pair (T_0, κ, T_1) of functors $T_0: \underline{A}_C^* \longrightarrow \underline{A}\underline{b}$, $T_1: S\underline{A}_C^* \longrightarrow \underline{A}\underline{b}$ with respect to $\mathbf{H}(S, s)$ satisfies condition (j) if for any unitary element $u \in M(K \otimes B)$ the equality

$$T_1(ad \ u)\kappa_E = \kappa_E$$

holds for any $E: K \otimes B \longrightarrow X \longrightarrow Y \in Ob \mathbf{H}(K \otimes B), K \otimes B \in Ob S\underline{A}_C^*$. For any $E: K \otimes B \longrightarrow X \longrightarrow Y$ define a connecting homomorphism

 $\eta_E: K \hom^*(A, Y) \longrightarrow Ext^1(A, B)$

given by $[g] \mapsto [ext^1(g, K \otimes B)]$ where A is a separable C^{*}-algebra.

Theorem 4. The pair $(K \text{ hom }^*(A, -), \eta, Ext^1(A, -))$ is a universal pair of functors with respect to the class of all connected pairs of functors satisfying condition (j).

Note that Theorems 2 and 4 can be extended in a natural way to the functors Ext^n .

References

1. J.Cuntz, Generalized homomorphisms between C^* -algebras and KKtheory, Lecture Notes in Math., Springer-Verlag, 1046 (1982), 55-79.

2. H.Inassaridze, Some topics in homological and homotopical algebra and applications, Proc. A.Razmadze Math. Inst. 48 (1975) (in Russian).

3. G.Kasparov, The operator K-functor and extensions of C^* -algebras, Izv. Acad. Nauk SSSR, Ser. Math. 44 (1980), 571-636.

4. R.Zekri, A new description of Kasparov's theory of C^* -algebra extensions, J. Funct. Analysis 84, No2, (1989), 441-471.