
Type theory and the informal language of mathematicsAarne RantaDepartment of Philosophy, P.O.Box 24,00014 University of Helsinki, Finland.September 1993.In the �rst comprehensive formalization of mathematics, the Begri�sschrift (1879), Fregegave up the structure of informal language, in order to reveal the structure of mathematicalthought itself. Attempts to apply Frege's formalism to informal discourse outside mathematicsfollowed in this century, e.g. by Russell, Carnap, Quine, and Davidson. In this tradition, theapplication of logical formalism to informal language is an exercise of skill, rather than analgorithmic procedure, precisely because the linguistic structure is di�erent from the logicalstructure.It was Chomsky (1957) who started the study of natural language itself as a formal system,inductively de�ned by the clauses of a generative grammar. But the structure he gave to hisfragment of English was quite di�erent from the structure of a logical formalism.Finally, Montague (1970) uni�ed the enterprises of Frege and Chomsky in an attempt togive a systematic logical formalization to a fragment of English. His grammar applies to a pieceof informal discourse outside mathematics. But as modern logic, even in the form employedby Montague, stems from Frege, who designed it for mathematics, a grammar like Montague'sshould be applicable, if at all, to the language of mathematics.Following roughly the format of Montague grammar, I have been working within the con-structive type theory of Martin-L�of. (See Martin-L�of 1984 and Nordstr�om& al. 1990 for the typetheory, and Ranta 1991 and 1993 for the grammar.) Type theory has proved to be structurallycloser to natural language than predicate calculus at least at the following points.First, type theory makes a distinction between substantival and adjectival terms, e.g. be-tween number and prime. These are formalized as N : set P : (N )prop, respectively, whereasin predicate calculus they are both formalized as one-place propositional functions.Second, type theory has quanti�er phrases, like every number| in type theory,�(N ) : ((N )prop)propand every prime number| in type theory,�(�(N ;P)) : ((�(N ;P))prop)prop:Predicate calculus dissolves these quanti�er phrases, because it does not have expressions cor-responding to them.Third, type theory has progressive connectives, i.e. a conjunction and an implication of thetype (X : prop)((X )prop)prop:Such connectives are abundant in informal language, in sentences like363



if this equation has a root it is negative.To express this in type theory, �rst look at the implicans this equation has a root . It is anexistential proposition, of the form �(R;E):To form the implicandum, use the propositional function x is negative de�ned for x : R, i.e.N : (R)propin the context of a proof of the implicans,z : �(R;E):Left projection gives p(z ) : R, whence N (p(z )) : propby application, (z )N (p(z )) : (�(R;E))propby abstraction, and �nally �(�(R;E); (z)N (p(z ))) : propto express the implication. Predicate calculus, which only has connectives of type(prop)(prop)prop;cannot compose the sentence from the implicans and the implicandum, but must use somethinglike (8x)(R(x)&E(x) � N (x));which does not have constituents formalizing the two subclauses of the sentence in question.This lack of compositionality has been �rst noted in the discussion of so-called donkey sentences,e.g. if John owns a donkey he beats itwhich has the same form as our mathematical example. Some linguists think such sentencesare arti�cially complicated, but they are certainly abundant in the informal language of math-ematics.1 Formalization and sugaringThere are two directions of grammatical investigation. One can ask:How is this sentence / mode of expression / fragment of discourse represented in theformalism?Questions put in this way, starting with what is given in the informal language, are questionsof formalization. But one can also start with what is given in the formalism and ask:How is this proposition / logical constant / theory expressed in natural language?364



These questions will be called questions of sugaring.A special case of formalization is parsing: given a string of words belonging to an inductivelyde�ned set of such strings, �nd the grammatical structure. This notion of parsing is of coursesecondary to the notion of generation, the inductive de�nition of the set of strings. Furthermore,as we can think of generation as the composition of (1) the de�nition of the formalism and (2)the sugaring of the formalism, we see that parsing is secondary to sugaring in the conceptualorder.2 Basic expressions of geometryIn what follows we shall, even if not de�ne a complete sugaring algorithm, look at mathematicsexpressed in type theory from the sugaring point of view. We shall apply the sugaring principlesof Ranta 1991, 1993, originally presented for everyday discourse (like the donkey sentences), tothe language of axiomatic geometry such as in Hilbert 1899 and, within type theory, von Plato1993.Start with simple set terms,point : set,line : set,plane : set.The sugaring of simple set expressions into common nouns is simple (in the absence of thesingular and plural number of nouns),point > point ,line > line,plane > plane.We use the form F > E to express the relationF can be sugared into E .Thus it is not an expression for a clause in a deterministic sugaring algorithm.Then some propositional functions sugared into verbs and adjectives.lie PL : (point)(line)prop;lie PL(a; b) > a lies on b,lie PPl : (point)(plane)prop;lie PPl(a; b) > a lies in b,lie LPl : (line)(plane)prop;lie LPl(a; b) > a lies in b,parallel : (line)(line)prop;parallel(a; b) > a is parallel to b,equal : (A : set)(A)(A)prop;equal(A; a; b) > a is equal to b.Observe how sugaring overloads the English expressions lies in and equal . The adjective equalis fully polymorphic, the verb lies in has two uses. The adjective parallel and the verb lies onare, in this fragment at least, uniquely typed.365



3 Logical constantsThere are quanti�er words likeevery : (X : set)((X )prop)prop,Indef : (X : set)((X )prop)prop,some : (X : set)((X )prop)prop.A quanti�ed proposition is sugared by replacing the bound variable by a quanti�er phrase,every(A; (x)B) > B [every A=x ],Indef(A; (x)B) > B [INDART(A) A=x ],some(A; (x)B) > B [some A=x ].INDART(A) is the inde�nite article corresponding to the sugaring of A, either a or an. Observethat if the number of occurrences of x in B is other than one, we may get odd results likeevery(line; (x)parallel(x ; x))> every line is parallel to every line.The uniqueness of replacements can be attained e.g. by using pronouns (see Section 6). It isone of the central problems of the logical formalization of natural language, stemming fromthe apparently quite di�erent modes of expression of quanti�cation in them. Following Frege(1879, x 9), we shall use the word main argument for the occurrence of x to be replaced by thequanti�er phrase. (See Ranta 1991, Section 5, for a de�nition of the main argument.)Another di�culty with the replacement procedure in the sugaring of quanti�ers is that therelative scopes of the quanti�ers get lost. The rules give e.g.some(point; (x)every(line; (y)lie PL(x ; y)))every(line; (y)some(point; (x)lie PL(x ; y))) ) > some point lies on every line;and such sentences are indeed considered ambiguous in Montague grammar. But it seems thatthe mathematician would without hesitation interpret the sentence as the �rst proposition,although it is a plainly false proposition. He would follow the principle according to which thescopes of the quanti�ers get narrower from left to right. (On this rule of precedence, as well assome other ones, cf. Ranta 1993, Chapters 3 and 9.)As for connectives, we introduce two progressive ones and one that is not progressive.if : (X : prop)((X )prop)prop;if(A; (x)B) > if A;B [�=x ],and : (X : prop)((X )prop)prop;and(A; (x)B) > A and B [�=x ],or : (prop)(prop)prop;or(A;B) > A or B ,where � is the ellipsis, the empty morph.Connective and quanti�er words are not type-theoretical primitives, but have the de�nitions366



every = � : (X : set)((X )prop)prop,Indef = � : (X : set)((X )prop)prop,some = � : (X : set)((X )prop)prop,if = � : (X : prop)((X )prop)prop,and = � : (X : prop)((X )prop)prop,or = + : (prop)(prop)prop.The main di�erence between quanti�ers and progressive connectives is in the sugaring ofthe �rst argument: for quanti�ers, it is a common noun, and for connectives, a sentence. Butthere is another di�erence, which has to do with the expressive capacities of the two modes ofexpression in English. We noted before that the sugaring of a quanti�ed proposition Q(A; (x)B)requires there to be precisely one main argument occurrence of x in B . For connectives, thereis no such restriction. Thus for instance the vacuous quanti�cation�(equal(N ; 0; 1); (x)equal(N ; 1; 10000))gives, by the sugaring rule for every, the falsity one is equal to ten thousand , and it is the rulefor if that gives the right true proposition,if zero is equal to one, one is equal to ten thousand.Thus connectives provide a more widely applicable means of expressing propositions than quan-ti�ers.4 Objects and expressionsSugaring is not a function on type-theoretical objects, such as propositions, but on expressionsfor those objects. For by the extensionality of functions, a proposition would be then sugaredin the same way, in whatever way expressed. But we certainly want to sugar every(A;B)di�erently from if(A;B), although they are both equal to �(A;B). Even more clearly, if weintroduce an abbreviatory expression by explicit de�nition, we want to sugar the de�niendumdi�erently from the much longer de�niens. Consider, for instance,triangle = �(line; (x)�(point; (y)outside PEl(y ; extended(x)))) : set;where outside PEl(a; b) says that the point a lies outside the extended line b, and extended(a)is the in�nite extension of the �nite line a.In general, we want to introduce so many de�nitional variants of type-theoretical expressionsthat there is a one-to-one correspondence between English and type-theoretical expressions.The propositions as types principle is, analogously, assumed for the objects of type theoryonly. We want the type prop to correspond to sentences, and the type set to common nouns.For type-theoretical objects. we have prop = set : type;but for expressions, this equation is not e�ective, whereas we assume the transformationthere = (X )X : (set)prop367



sugared there(A) > there is INDART(A) A:It may happen that some expression cannot be sugared, e.g. if it contains a quanti�er withno or multiple main arguments. In such a case, the sugaring of the proposition expressed mustproceed by �nding a de�nitional variant that can be sugared.5 Relative pronounsTo form complex set terms, we can use relative pronouns, e.g.that = � : (X : set)((X )prop)set;that(A; (x)B) > A that B [�=x ],such that = � : (X : set)((X )prop)set;such that(A; (x)B) > A such that B [�=x ].These de�nitions accord with Martin-L�of's (1984) explanation of such that as forming a set ofelements of the basic set paired with witnessing information. This treatment is necessary fora compositional formalization of quanti�er phrases whose domains are given by using relativeclauses, and reference is also made to the witnessing information; cf. Section 7 below. But atthe same time, we will have to sugar e.g.every(that(A;B); (x)C ) > C [that(A;B)=p(x)];i.e. not replace x but p(x). This can be accomplished by the general rulep(x) > x :The slight unnaturalness of the solution is, so it seems to me, one instance of the problems wehave in formalizing separated subsets by � and trying to get rid of the extra information insome cases, while having to keep it in some other cases.The di�erence between that and such that is analogous to the di�erence between quanti�ersand connectives: that requires there to be exactly one main argument in the relative clause,but such that does not. such that is thus more widely applicable than that.6 Anaphoric expressionsPronouns are introduced to our fragment of English by the rulesPron = (X )(x)x : (X : set)(X )X ;Pron(A; a) > PRO(A).In mathematical language, we do not need he or she, so PRO(A) is always it , and we could aswell haveit = (X )(x)x : (X : set)(X )X ;it(A; a) > it . 368



Observe that our de�nition of it as the polymorphic identity mapping whose argument is sugaredaway is very similar to the it of ML. The main di�erence is the interpretation rule stating inwhat situations it may replace a singular term. In ML, it always refers to the value of the latestvalue declaration. But this rule is too simple for the informal language of mathematics, whereit can have di�erent|yet de�nite|interpretations in one and the same clause, e.g.if the function f has a maximum, it reaches it at least twice.Our main rule regulating the use of pronouns (and other anaphoric expressions; see below)is thatthe interpretation of an anaphoric expression is an object of appropriate type givenin the context in which the expression is used.Context here is, in the technical sense of type theory, a list of declarations of variables assumedwhen the expression is formed. For instance, the proposition B in �(A; (x)B) is formed in thecontext x : A. To these variables we add the constant singular terms used in the same sentence.Moreover, we close the \universe of discourse" based on the context under selector operations(cf. Ranta 1993, Chapter 4, for more details).An interpretation a : A of a pronoun E in the English expression ���E ��� must thusful�l the following two conditions.Pron(A; a) > E ,there is a propositional function B(x) : prop (x : A)such that B(a) > �� � a � ��.As the only pronoun in the mathematical fragment is it , the �rst condition is always satis�ed.If there are many objects given in context, it is the second condition that saves the uniquenessof reference, expressed by the principle thatthe interpretation of an anaphoric expression must be unique in the context in whichit is used.There are other anaphoric expressions besides pronouns, more speci�c in the sense that theydo not suppress all information about the object referred to. A de�nite noun phrase formed bythe de�nite article the preserves the type of the object. A modi�ed de�nite phrase formed byMod makes explicit some more information given about the object in the context.the = (X )(x)x : (X : set)(X )X ;the(A; a) > theA.Mod = (X )(Y )(x)(y)x : (X : set)(Y : (X )prop)(x : X )(Y (x))X ;Mod(A;B ; a; b) > the A that B [�=x ].7 Example: the axiom of parallelsTo see how the sugaring principles work, take as an example the axiom of parallels in theformulation (written in lower level notation for readability)(�z : (�x : point)(�y : line)outside PL(x ; y))DAP(p(z ); p(q(z)));where 369



outside PL(a; b) > a lies outside b,DAP(a; b) = (9!x : line)(lie PL(a; x)&parallel(x ; b)) : prop for a : point; b : line;DAP(a; b) > a determines a parallel to b.To �nd the di�erent possibilities to express the axiom of parallels in English provided by ourgrammar, recall the de�nitional variantsevery and if for �,Indef, some, and, that, and such that for �,A and there(A) for A : set,Pron(A,a) and the(A,a) for a : A.Start sugaring from the outermost form of the proposition. First choose the de�nitionalvariant every for �. Then you must sugar the domain of quanti�cation(�x : point)(�y : line)outside PL(x ; y)into a set expression. The only choice for the �rst � is a relative pronoun, that or such that.The domain of this � must be sugared into the common noun point . The remaining part mustbe found a sentence-like expression. All ways of sugaring � are usable: if you choose the relativepronoun, just apply there. The domain of quanti�cation of the axiom of parallels thus has thefollowing sugarings, among others.point that lies outside a line,point that lies outside some line,point such that there is a line and it lies outside it.The third sugaring is a little strange, because the interpretation of the two occurrences of itseems not to be unique. The language of geometry overloads the verb lie outside, so thatoutside PL(x ; y)outside LP(x ; y) ) > x lies outside y ;whence it lies outside it has two interpretations that, although equivalent, are distinct proposi-tions. We cannot tell whether the sentence says that the point lies outside the line or that theline lies outside the point. But this explanation of the strangeness already contains the solution,which is to use de�nite noun phrases instead of pronouns,point such that there is a line and the point lies outside the line.To �nish the �rst way of sugaring the axiom of parallels, we replace the �rst argument inDAP(p(z ); p(q(z)))by the quanti�er phrase, as explained in Section 5, and the second argument by a pronoun ora de�nite phrase of the type line. Applying the sugaring rules for DAP and Pron and choosingthe expression for the domain to be the �rst one cited above, givesevery point that lies outside a line determines a parallel to it370



as an unambiguous statement of the axiom of parallels. The word-to-word formalization of thissentence is the de�nitional variantevery(that(point; (x)Indef(line; (y)outside PL(x ; y))); (z )DAP(p(z );Pron(line; p(q(z )))))of the original proposition.The reader can check that the proposition also has the following variants, and �nd somemore of them.if a point lies outside a line, it determines a parallel to it,if there is a point such that there is a line such that the point lies outside the linethe point determines a parallel to the line.Observe that the two occurrences of it in the �rst variant are uniquely interpretable, becausedetermines a parallel to is not overloaded. An early implementation of sugaring, written inProlog by Petri M�aenp�a�a, found 1128 variants of a donkey sentence with the same structure asthe axiom of parallels.8 Some uses of the pluralIn the informal language of mathematics, it is often possible to �nd clear and unambiguoususages of linguistic structures that appear as hopelessly complex, if an unlimited fragment ofnatural language is taken under consideration. One such structure is the plural, which has beena persistent problem in logical semantics of Montague style. It has several uses that, whencooccurring, lead to multiple ambiguities. Mathematical texts still make unambiguous use ofthe plural, e.g. in the sentencespoints A and B lie on the line a,A and B are equal points,all lines that pass through the center of a circle intersect its circumference.The �rst of these sentences shows what von Plato (1993) de�nes as the term conjunction,C (a:b) = C (a)&C (b) : prop for A : set, A : (A)prop, a : A, b : A.It is thus propositionally equal to the sentencethe point A lies on the line a and the point B lies on the line a,in which no plural form occurs. In this case, the plural is just used for �nding a more conciseexpression.The second sentence does not employ the term conjunction, but it is propositionally equalto the singular sentence A is equal to BThe di�erence between the �rst sentence and this one is an instance of the distinction betweenwhat is called distributive and nondistributive plural in linguistics. The distributive plural canbe analyzed as a conjunction of singular instances, but the nondistributive plural cannot. Forthis particular sentence, we do have a nonplural equivalent, but I am not sure whether we alwaysdo. The third sentence is propositionally equal to371



every line that passes through the center of a circle intersects its circumference.Here there is no di�erence between all lines and every line, except the number agreement ofthe verb.We have formulated a sugaring algorithm producing these uses of the plural (Ranta 1993,Chapter 9). In each of these cases, the plural forms of nouns and verbs are only producedin the sugaring process, and there is no type-theoretical operator corresponding to the plural.The rules we have discussed do not yet cover all uses of the plural in the informal language ofmathematics. (But as long as we work in the direction of sugaring only, it makes no harm thatall uses of an English mode of expression are not produced.) For instance, we do not yet quiteunderstand the nondistributive use of the quanti�er word all as inall lines that pass through the center of a circle converge.Nor do we quite understand the use of the plural pronoun they , which is sometimes distributive,paraphrasable by the term conjunction, e.g.if A and B do not lie outside the line a, they are incident on it,but sometimes used on the place of the \surface term conjunction", so that it fuses togetherthe arguments of a predicate, e.g.if a and b do not converge, they are parallel.9 Problems and prospectsAs indicated in the beginning of this paper, very little linguistic work has been done concerningthe informal language of mathematics. To capture the essential structure of mathematicaltext, a grammatical representation of it should, at least, be able to express the mathematicalpropositions precisely. This can hardly be expected from all grammars in standard linguistics,but requires a grammatical formalism that comprises logic. Moreover, the formal and theinformal language should be tied together by sugaring and parsing algorithms that satisfy thefollowing condition.A correct informal proof results, when parsed, in a correct formal derivation, andvice versa.There are two properties concerning ambiguity that can be stated. First,all expressions of the informal fragment are unambiguous.But this is maybe too severe a condition. It makes little harm if the English fragment recognizedcontains ambiguities, if only the parser can detect them and ask the user to disambiguate.Instead, one can pose the weaker condition thatevery proposition of the formal theory can be expressed by an unambiguous Englishsentence.A sugaring program satisfying this condition can provide a natural language interface to aformal proof system, stating theorems and their proofs in an easily readable form.When considering mathematical language, instead of the fragment of everyday languagefamiliar to the linguist, one soon realizes both a higher demand of unambiguity and a higher372



complexity of the propositions. There is still work to be done to �nd a sugaring algorithm thatgives unambiguous expressions for all propositions of a formal theory. One particular problemis that the context in which a proposition is formed can be arbitrarily large, so that there arenot enough anaphoric expressions to refer to each object uniquely. A very simple such contextis created by the opening given two lines, : : :formalizable by the quanti�er (�z : (�x : line)line)The anaphoric expressions that can be used for an arbitrary line are it and the line, but neitherof these refers uniquely in this context. One way to solve this problem is to use the expressionsthe �rst line, the second line. Another one, much more idiomatic in mathematical language, isto introduce variables, given two lines a and b, : : :whereafter reference can be made to the line a and to the line b. But this opening cannot beformalized as a quanti�er, because the variable names are not usable outside the scope of thequanti�er. The axiom of parallels in the formulationif a point A lies outside a line a, A determines a parallel to a.cannot thus be given the logical form we gave it in Section 7.A more general defect of our Montague style grammar is that it only concerns propositionsand not judgements, of which type theory has several forms that are all needed in preciseformalization of mathematics. What we have done here only su�ces for expressing axiomatictheories, in the format familiar from the metamathematical thinking of this century. Goingbeyond this format in mathematics, type theory also shows a model for grammar in general, toextend its views from propositions to judgements and other linguistic acts.ReferencesNoam Chomsky, Syntactic Structures, Mouton, The Hague, 1957.Gottlob Frege, Begri�sschrift, Louis Nebert, Halle, 1879.David Hilbert, Grundlagen der Geometrie, 1899; 2. Au
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