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0. INTRODUCTION

These notes are intended to provide an introduction to Intersection Theory and the al-
gebraic theory of Chern classes. They grew out of several lectures on the subject in
Kaiserslautern within the programme Mathematics International. It is supposed that
the reader is familiar with the basic language of schemes and sheaves as presented in
Harteshorne’s book [9] or in sections of EGA.

Concerning the general Intersection Theory, the intention is to explain fundamental no-
tions, definitions, results and some of the main constructions in Fulton’s Intersection
Theory [7] without trying to achieve an alternative approach. Often the reader is refered
to [7] for a proof, when a statement has been made clear and the proof doesn’t contain

major gaps.

Besides the fundamentals of Intersection Theory, emphasis is given to the theory of Chern
classes of vector bundles, related degeneracy classes and relative and classical Schubert

varieties.

Most of the notation follows that of [7]. A scheme will always mean an algebraic scheme
over a fixed field k, that is, a scheme of finite type over Spec(k). In particular, such
schemes are noetherian. A variety will mean a reduced and irreducible scheme, and a
subvariety of a scheme will always mean a closed subscheme which is a variety.

For a closed subscheme A of a scheme X we use the following notation. If A <5 X is the

underlying continuous embedding, we identify the sheaves
i"(Ox/Za) =04 and .04 =0x/Z4
such that we have an exact sequence
0—Z4—0O0x — 04— 0.

Given two closed subschemes A, B of X, the subscheme AN B is defined by Z4, + Zp and

there are isomorphisms

Ousng = Ox/IA +1p = OX/IA & Ox/IB =04 ® 0.

1. RATIONAL FUNCTIONS

Let U be an open subset of a scheme X and let Y be its complement. U is called s—dense

(or schematically dense), if for any other open set V' of X the restriction map
rV,0x) - T(VNnUOx)

is injective. Since the kernel is T'y (V, Ox) = ['(V, H%Ox), the condition is equivalent to
HYOx = 0, where H) denotes the subsheaf of germs supported on Y.

1.1. Lemma: If U is s—dense it is also dense. The converse holds if X is reduced.
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Proof. Let U be s—dense and V # (). If UNV = (), then T'(V,Ox) — 0 is not injective.
Therefore U NV # () and U is dense. Let conversely U be dense. In order to show that
HYOx = 0 we may assume that X is affine. Assume that there is a non—zero element
[ € Ty(X,0x) with flU = 0. Then U C Z(f) and by density X C Z(f). This implies
rad(f) = rad(0) = 0 and then f = 0, contradiction. O

1.2. Lemma: Let X be an affine scheme and g € A(X). Then D(g) is s—dense if and
only if g is a NZD (non—zero divisor).

Proof. Let g be a NZD. It is enough to show that I'(X, Ox) — I'(D(g), Ox) is injective.
Let f be a section of Oy with f | D(g) = 0. Then there is an integer m with ¢™f = 0.
Since ¢ is a NZD, f = 0. Conversely, if D(g) is s—dense and f-g = 0 in A(X), then
fID(g) = 0 and by s—density f = 0. O

1.3. Lemma: Let X be an affine scheme and g € A(X). Then D(g) is dense if and only
of
I(g) ={a€ A(X) | g"a=0 for somem > 0}

1s contained in the radical of 0.

Proof. 1f I(g) C rad(0) and D(g) is not dense, there is an element f € A(X) such that

D(fg)=D(f)NnD(g) =0

but D(f) # 0. Then fg € rad(0) or f™g™ = 0 for some m > 1. Then f™ € I(g) C rad(0)
and f™ = 0 for some n > 1. O

The proof of the following Lemma is left to the reader.
1.4. Lemma: Let X be a scheme and let U,V C X be nonempty open parts.

(i) If U and V are dense (s—dense), then so is UNV.
(ii)) If U C V is dense (s—dense) in V, and V is dense (s—dense) in X, then U is
dense (s—dense) in X.

1.5. Lemma: Let X be an affine scheme. Then the system of D(g)’s with g a NZD is
cofinal with the system of all s—dense subsets, i.e. any open s—dense U contains a D(g)
for some NZD gq.

Proof. Let U be s—dense, Y = X\ U = V(a). We have to show that there is a NZD g € a.
Then D(g) C U. Let p, = Ann(a,) be the associated primes of A(X), such that the set
ZD(A(X)) of zero divisors is py U---Up,. If a C ZD(A(X)), then a C p, for some v.
Then a-a, =0and a, | U =0. Then I'( X, Ox) — ['(U, Ox) would not be injective. O

1.6. Example: Let X C A? be defined by the relations zy = 0,y? = 0 of the coordinate
functions. So X is the affine line with an embedded point. The open set D(x) is dense
because I(z) = (y) C rad(0). But D(x) is not s—dense because = is a ZD.
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1.7. Example: Let X C A? be the double line defined by y? = 0. Since Z(y*) = Z(y) =
X, we have D(g) = (). Now any D(f) # 0 is given by a NZD f because (y) is the set of
zero divisors. Therefore in X the dense and s—dense open subsets coincide.

1.8. Definition: Let X be a scheme. Two pairs (f1,U;) and (fs, Us) of regular functions
f, € Ox(U,) on s—dense open sets U, are called s—equivalent if there is an s—dense open
U C Uy NU, such that f1|U = fo|U. We let Ry(X) be the set of s—equivalence classes,

Ry(X)=A{[f,U]s | f € Ox(U), U s—dense}.

It is easy to see that Rs(X) is a ring under the obvious definition of addition and multi-
plication. Similarly we define the ring R(X) of rational functions using the usual dense
open subsets.

R(X)=A{[f,U] | f € Ox(U), Udense}

There is a natural ring homomorphism
Ry(X) — R(X)
by [f,Uls — [f,U]. If X is reduced, this is an isomorphism. Moreover, if U C X is any

open subset, we have natural restriction homomorphisms
Ry(X) — Rs(U) and R(X)— R(U).

We thus obtain presheaves of rational functions whose associated sheaves will be denoted
by Rs and R. There is a homomorphism R; — R, which is an isomorphism if X is
reduced.

1.9. Lemma: 1) If U is dense, R(X) = R(U) is an isomorphism.

2) If U is s-dense, Ry(X) = Ry(U) is an isomorphism.

Proof. only for 2). The map [f,V]s — [f|UNV,UNV], is well-defined and injective. For,
if there is an s—dense subset W C UNV with f|W = 0, then W is also s—dense in X and

so [f,V]s =0. Given [f,V]s with V' C U s—dense in U, V is also s—dense in X and [f, V],
is already in R4(X). O

1.10. Remark: If X isirreducible, the presheaf R is a sheaf, R = R, and thus R(X) —
R(U) is an isomorphism for any nonempty open subset U. So R is a simple sheaf in the
sense of [1], 8.3.3 in this case.

1.11. Lemma: If X is affine, then Ry(X) = Q(A(X)), the total ring of fractions of the
coordinate ring.
Proof. Let @ = Q(A(X)). We have a natural homomorphism @ — Ry (X) well defined

) Lo Lo

s
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because for a NZD ¢ as denominator, D(g) is s—dense. This homomorphism is injective:
if f/g|U =0 as a function with U C D(g) s—dense, there is a NZD h with D(h) C U, see
1.5. Because D(h) C D(g),h"™ = ag for some n,a. We get h? f = 0 for some p, and then
f = 0. Surjectivity: given [p, Ul]s € Rs(X), there is some D(g) C U with g a NZD. Then
w|D(g) € A(X), and ¢|D(g) = f/g™ for some m, g. Now

L 1oID(), Dg)]. = [, U], O

m

1.12. Remark: In general R (X) — R(X) is neither injective nor surjective. As an
example consider the line X C A? with embedded point as in 1.6. Let z,y be the
generators of the coordinate ring A(X) with relations zy = 0,y? = 0. Then D(x) is dense
but not s—dense. The element [1/x, D(x)] € R(X) is not in the image: Assume it is equal
to some [f/g,D(g)] with g a NZD. Then there is a dense subset D(h) C D(xg) with
1/x = f/g in A(X)p. Then there is an integer m with

W"(xf —g) =0.

But g — zf is a NZD because the set of ZD of A(X) is just the prime ideal (x,y). If
g—zf € (x,y), then also g € (z,y), contradiction. Now h = 0 contradicting D(h) # 0.

Now consider [y, X|s € Rs(X). This is not 0. Otherwise there is a NZD g € A(X) and
y|D(g) = 0 or g™y = 0 for some m, and then y = 0. But [y, X] = 0 in R(X), because
ly, X] = [y, D(z)] = 0 since D(z) is dense and y|D(z) = 0.

1.13. Lemma: Let X be an integral scheme with generic point . Then R(X) is a field

and isomorphic to Ox .

Proof. For any open affine subset U # () we have R(X) = R(U) <& Q(Ox(U)) and
Q(Ox(U)) is a field since Ox(U) is a domain. On the other hand U is dense in X if and
only if £ € U. By the definition of R(X) we have R(X) = Ox. O

1.14. Examples:

(1) R(A}) = k(x1,...,x,) the field of rational functions in the indeterminants z1, ..., z,.
(2) R(Pnk) = R(AL) = k(3E,...,3%) where xo,...,z, are the standard homogeneous
coordinates. We also have

R(P,, ) = {f

= | f, g homogeneous of the same degree with g # O} .
g
For that use

)
)
(3) R(Pg X Pry) = {% | f,g bihomogeneous of the same bidegree, g # 0},

f(.’lfo,...,l‘n) f(lvi_(l)a"'a
Z1

g(xo, ..., Tp) g1, 2.,

g |k

with f = f(zo,. -+ Tm, Yo, -+, Yn) and g = g(To, - -+, Ty Yoy - « - » Yn)-
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(4) Let X be a reduced algebraic scheme over k and let X,..., X, be the irreducible

components of X. Then

R(X) = PR(X.).
Proof. X!, := X, \ ;J X, is dense in X, and X' := UX] = [[ X] is dense in X. Therefore
UFAV

R(X) =~ R(X') = PR(X)u) = OR(X,). O

1.15. The local ring of a subvariety

Let X be an algebraic scheme over k. A subvariety, i.e. an integral closed subscheme Y
of X, has a unique generic point such that ¥ = m Therefore, for any open set U C X
we have UNY # () if and only if n € U. In this case U NY is also dense in Y. It follows
that

OX,n = OY,X = {[va] | f € Ox(U) and UNY 7é @}
Here the equivalence classes are defined as in the case of R(X) under the additional

assumption - Or eacn representative. 1imilar € maximal ideal m, O X.p Call De
ption 1 € U for each representative. Similarly th imal ideal m, of Ox,, can b

described as
my =Smyx = {[U,f] | f GIy(U) and UNY 7é @}
Note that Oy x is a noetherian local ring.

Lemma: Oy x/myx = R(Y) for any subvariety Y C X.

Proof. [U, f] — [UNY, f] with f = f mod Zy defines a homomorphism Oy x — R(Y).
It is surjective. To show this, let [W, ¢] € R(Y") and choose an affine open subset U in X
with @ 2 U NY C W. Then [W,¢] = [UNY,y]. Because I'(U,Ox) — I'(U NY,Oy) is
surjective there is an element f € Ox(U) with f = ¢. Now [U, f] = [W, ¢]. On the other
hand my, x is obviously the kernel of the homomorphism. O

1.16. Dimension: Recall that the dimension of an algebraic scheme X can be charac-

terized as the maximal length n of chains
0=VocVic...cV,cX
Z F 7

of closed integral subschemes. If X is integral,
dim X = trdeg(R(X)/k).

If Y is a subvariety, the codimension codimxY is the maximum of integers d such that

there is a chain

Y=VycVicC..CcV;CcX
# # #

of closed integral subschemes.
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1.17. Lemma: Let Y be a closed integral subscheme of X. Then for any open subset U

of X withUNY # 0,
codimyY NU = codimyY .

Proof. Given a chain YNU = Z, % g Z4 C U of integral subschemes, also Z,NU = Z,,.
Therefore

codimyY NU < codimxY.
On the other hand, if Y = 1} g g V3 C X is a chain in X, then also V,NU # V, .1 NU
because V,, NU is dense in V,,. Moreover V,, NU is also integral. This implies that the two

codimensions are equal. O

1.18. Lemma: Let Y be an integral subscheme of X. Then
dim Oy x = codimxY.

If also X s integral, then Oy x is integral.

Proof. Let U be open and affine in X, UNY # ). Let A = Ox(U) be the affine coordinate
ring of U and p C A the prime ideal of Y N U. Then

Oy x = Oyruy = Ox,y = A,

The prime ideals p’ C p correspond to varieties U D Z’ D Y NU. Therefore the Krull
dimension of Oy x equals the codimension of Y N U in U or of ¥ in X. If X is also
integral, then any U # () is dense in X and we obtain a homomorphism Oy x — R(X)
by [U, fly +— [U, f]. This is injective. For, if [U, f] = 0, then f|V = 0 for some V C U.
But Ox(U) — Ox(V) is injective and hence f = 0. Since R(X) is a field, Oy x has no
zero divisors. 0

1.19. Corollary: If both Y and X are integral and Y has codimension 1, then Oy x is a

1-dimensional integral domain. Moreover,
Q(Oyx) = R(X).

Proof. Tt remains to verify the last statement. As in the previous proof we may assume
that X is affine and Y corresponds to a prime ideal p C A = A(X). Now Oy x = A, and
R(X) = Q(A). By the assumption A, C Q(A) and it follows that Q(A,) = Q(A). O

1.20. Proposition: Let Y C X and both be integral with codimyxY = 1. IfY ¢ Sing(X),
then Oy x is a reqular ring and o discrete valuation ring.

Proof. The generic point 7 of Y is not in Sing(X') and therefore Oy, is a regular ring. If
U is an open affine subset of X with n € U C X \ Sing(X), then U NY is given by one
equation in the smooth variety U, which is the generator of my x = mynyy = m,,. 0]
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1.21. Corollary: Let Y C X be as in proposition 1.20 with Y ¢ Sing(X), and let
r € R(X). If ordy(r) > 0 (see 3.3 for definition), then r € Oy x.
Proof. We have r = f/g with f,g € Oy x and f = ut™, g = vt" where u,v are units in
OY,X and My x = (t) Then

0 < ordy(r) = ordy (f) — ordy(g) = m — n.

Therefore r = uv™'t™™™ € Oy x. O

2. MEROMORPHIC FUNCTIONS AND DIVISORS

Let X be an algebraic scheme over k and for an open set U C X let
S(U) c Ox(U)

be the subset of those f for which f, € Ox, is a NZD for any point. Then S defines a
subsheaf of Ox which is multiplicatively closed. If U is an affine open set, then S(U) is
the subset of NZD. For, if A = Ox(U) and f € A is a NZD, then f, is a NZD for any
prime ideal p : Let f-(g/s) =0 with s ¢ p. Then tfg = 0 for some ¢ ¢ p and then tg = 0
or g/s = 0. Now we define the sheaf M = My of meromorphic functions as the sheaf

associated to the presheaf
U MU) =SU)0x(U).
This is a sheaf of Ox—algebras. A reference for meromorhpic functions is [3] §20.

2.1. Lemma: For any x € X the stalk M, is the total ring of fractions of Ox ;.

Proof. Let Q, = Q(Ox ) denote the total ring of fractions. For any open neighbourhood
U of z let

MU) — Q,
be defined by f/g +— f./g.. It is easy to see that this is well-defined and that it induces

a homomorphism
My — Qs

It is also immediately verified that this map is bijective. O

2.2. Lemma: Ox — Mx and Mx is a flat Ox-module.

Proof. The canonical homomorphism Oy — My is the embedding Ox , — Q(Ox,) for
any stalk. It is also well-known that Q(Ox ,) is a flat Oy ,—module for any =. O

2.3. Lemma: On any scheme X there is a natural isomorphism M x Z, R,.
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Proof. Let U be any open subset and g € S(U). Then the sheaf H%(g)(OU) = 0 because g
is a NZD at any point and H%( g)((’)U) is annihilated by the powers of g locally. Therefore,
U, =U N Z(g) is s—dense. Now the map f/g — [U,, f/gls

S(U)0x(U) — Ry(U)
is well-defined and induces a sheaf homomorphism
Mx — R,.
For any affine open set U the composed homomorphism
S(U)Ox(U) = Ry(U) = Q(Ox(V))

is the identity because S(U) is then the system of NZD’s. This proves that My — R is

an isomorphism. 0

2.4. Proposition: Let X be integral and U C X an affine open set. Then we have the
commutative diagram

M(X) R(X) == Ox¢

of natural homomorphisms with indicated isomorphisms.

Proof. 1 is an isomorphism because U is dense. The arrows 2 are isomorphisms because
M ~Rs~TR. 3is an isomorphism because U is affine and 4 are isomorphisms because
R is a constant sheaf. If follows that » on R is an isomorphism as well as . OJ

A sheaf A of abelian groups on X is called simple if the restriction A(X) — A(U) is an
isomorphism for any nonempty open subset U of X. It is shown in [1], Ch 0, 3.6.2, that
A is already simple if it is locally simple. Any simple sheaf is also flabby.

2.5. Corollary: If X s integral, then

(i) Mx is a simple and hence a flabby sheaf.
(i) any stalk Mx . and any Mx(U) for a nonempty open subset U of X is a field.
(iii) the sheaf MY of invertible meromorphic functions is a simple and hence a flabby

sheaf.



10

Proof. (i) an arbitrary nonempty open subset U contains a nonempty open affine subset
V, such that the composition Mx(X) — Mx(U) — Mx(V) is an isomorphism. Also
the second restriction is an isomorphism because U is integral as well. Hence, the first
restriction is an isomorphism, too.

(ii) follows from (i) because any R(U) is a field.

(iil) M%(X) — M (U) is injective because this is true for M. Let f € M*(U) and let
F e Mx(X) with FIU = f. We have (F|U)g = 1 with ¢ = 1/f. Let G|U = g. Then
FG|U = 1. Because U is s-dense, FG = 1 on X. This proves that M% (X) — M% (U)

is bijective. O

2.6. Remark: Let F be a coherent sheaf on X, and X integral. Then

F ®@oy Mx =2 M% for some r > 0 (with M® = 0), and the kernel of the canonical
homomorphism F — F o, Mx is the subsheaf T of F of all torsion elements.

The number r is called the rank of F.

Proof. (i) We use the abbreviations M = My, O = Ox, Fy = F|U etc., and
M(F) = F ®o, Mx. We first show that M(F) is locally simple, hence also globally
simple. For that, notice, that any point of X has an affine open neighbourhood U with a

presentation OF, LN Of, — Fuy — 0. After tensoring one obtains the exact sequence
M S ME - M(F)y — 0.

Let 7 := q — rkyu) (F). Because M(U) is a field for any open U, the cokernel of F' is an
M (U)—vector space of dimension r, so that we have an exact sequence

MP(U) S MUU) = MT(U) = 0.

It follows that M(F)y = M, and then that M(F)y is simple. In order to show that
M(F) = M" globally, we choose any open subset U, on which the two sheaves are

isomorphic and consider the diagram

MF)U) — e M)

L)

M(F)WUNUy) == M"(UN )

for any other open subset U. It follows that the collection of the ¢(U) defines a global
isomorphism M (F) = M".
(ii) By defintion of the canonical homomorphism F — F ®p, Mx each stalk 7, of the

kernel consists of the germs ¢, which are annihilated by some NZD ¢, € O,. Hence 7T is
the subsheaf of all torsion germs of F. If r =0, then 7 = F. O



11

2.7. Cartier divisors and line bundles

Let O% C Ox and M% C Mx be the subsheaves of units of Ox and M x. For any open
subset U of X we have

Ox(U) = {feOx({U)| f, isaunitin Ox, for any =z € U}
{f€eOx(U)| f isaunitin Ox(U)}.

and similarly for MY . The sheaf M?% /O% with multiplicative structure is called the sheaf

of (Cartier—)divisors. We have the exact sequences
11— 0% - My - My /0% — 1

and

div

(X, 0%) — D(X, M) —= D(X, M} /0%) “— H'(X, 0%)

Div(X) Pic(X)

Note here that for a sheaf A of abelian groups there is a canonical isomorphism between
the first C'ech cohomology group and the standard first cohomology group of A, such that

we have homomorphisms
H'U,A) — HY(X,A) ~ H(X, A)
for open coverings U compatible with refinements, see [9], Ch III, Ex. 4.4.

Any divisor D € I'(X, M% /O%) can be obtained by a system (f,) of meromorphic func-
tions f, € M*%(U,) with f, — D|U, for an open covering. This is the property of any
quotient sheaf. Now g.3 = fo/fs € O%(Uap) and (gap) is a cocycle of a line bundle or
invertible sheaf on X. Now §(D) is the image of [(gag)] under the canonical map

H'(U, 0%) — H'(X, 0%).
The invertible sheaf can be directly defined as the Ox—submodule
Ox(D) c Mx

which on U, is generated by 1/f,. It follows easily that Ox (D) is independent of the
choice of the system (f,) and the covering (U,). Then [(gag)] < [Ox(D)] under the
isomorphism

HY(X;O0%) = Pic(X).

2.8. Proposition: 1) The image of § consists of the isomorphism classes of those invert-

ible sheaves which are Ox—submodules of M x.
2) If X is integral, & is surjective.
Proof. 1) Each Ox(D) is an Ox submodule of M. If conversely £ C M, choose a

trivializing covering (U,) and let g, : Ox|Us — LUy — Mx|U,. Then g, is a NZD at
each point, because its homomorphism is injective, and g, € I'(U,, MY%). Let f, = 1/ga.
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We have f, = gapfs on U,g, where (gop) is the cocycle of L. Therefore (f,) defines a
divisor D on X, and £ = Ox (D) by definition.

2) As a simple sheaf M% is flabby and hence H'(X, M%) = 0. This implies that § is

surjective. 0

2.9. Effective divisors : Let X be a scheme and D € I'(X, M*/O*) a Cartier divisor.
D is called effective if it has a representing system (f,) with f, € T'(U,, O N M*). Then
any such system consists of regular functions. This means that the effective divisors are
the sections of the sheaf D which is the image of O N M* in M*/O*. We write D > 0
if D is effective. If D > 0, then O(D) has a section, namely 1 € M(X), because locally
1 = fo(1/fs). This means that Ox — Mx factorizes through Ox (D). The section is
also described by f, = gagfs. We thus have a homomorphism Ox — Ox (D) and dually
an ideal sheaf Ox(—D) — Ox. Its zero locus Z has the equation f, =0 on U,. For any
Cartier divisor D there is the

Supp(D) = |D = {z € X|fae & Ok, if x € Us}

where (f,) is a representing system. It is clear that this condition is independent of the
choice of the system. If D is effective, then |D| coincides with the zero locus Z of the

canonical section of Ox (D), because z € Z if and only if f,, € m,.

3. CYCLES AND WEIL DIVISORS

If Y is a codimension 1 subvariety of a variety X, then Oy x is a local ring of dimension
1. 'Y ¢ Sing(X), then by 1.20 this ring is regular and my x = (¢) is generated by
an element ¢. Then any a € Oy x can uniquely be written as a = ut™ with a unit u
and m > 0. This defines an order function R(X)* = Q(Oy.x) — Z with ord(a/b) =
exponent(a) — exponent(b). This order is the vanishing order of r along Y. If Oy x is not
regular, the exponent can be replaced by the length of Oy x/aOy x for any a € Oy x,
using the

3.1. Lemma: Let A be a 1-dimension noetherian local integral domain. Then for any
non—zero a € A the ring A/aA has finite length.

Note that any noetherian A-module M has a composition series M 2 M, 2 o 2 M, =0

with M;/M; 1 = A/p; where p; is a prime ideal. If all the prime ideals equal the maximal
ideal, M is said to have finite length k. In this case there are only finitely many prime
ideals with M, # 0 which are all maximal, and the number £ is independent of the
composition series. This number is called the length of M and denoted length (M) or
I(M).

Proof. Let A/aA 2 M, 2 2 M. a composition series with A/p; = M;/M;,,. Then
p; # 0. Otherwise there is a surjective homomorphism M; — A with some z; — 1. Since
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M; C AJaA,azx; =0 and then a = 0. Because A is 1-dimensional, p; = m for each of the

prime ideals. This proves the lemma. O

3.2. Lemma: Let 0 — M’ — M — M"” — 0 be an exact sequence of A-modules with
length(M"), length(M") finite. Then M has finite length and

length (M) = length (M') + length (M").

Proof. Consider composition series
M/M' > M /M > ...OMy/M' =0 and M' D My D...D My =0.
7 7 # £ 7

Then M, 2 o 2 M.y is a composition series of M. O

Let now A be as in 3.1 and a € A. We define ord(a) := length (A/aA). By 3.2 we obtain
ord(ab) = ord(a) + ord(b)
for two elements of A because there is the exact sequence
0 — aA/abA — AJabA — AJaA — 0
and A/bA = aA/abA. Tt follows from this formula that the order function
Q) 52
given by

a

ord( ;

) = ord(a) — ord(b)

is a well-defined homomorphism.

3.3. Vanishing order of rational functions and divisors

Let Y be a codimension 1 subvariety of a variety X, both integral by our convention.
Then Oy x is a 1-dimensional local integral domain and Q(Oy x) = R(X). Therefore, we
are given an order function

RX) — Z

ordy

defined by ordy(g) = length(Oy x/fOy x) — length(Oy x /9Oy, x) where f,g € Oy x.

We can as well write
ord, = ordy

where 7 is the generic point of Y. Then

ord,, <§) = length(Ox,/fOx ) — length(Ox ,/9O0x )
where f and g are germs in Ox,. For any rational function » € R(X)* we can now define

cye(r) = Z ordy (r)Y,

the (finite, see 3.4 below) sum being taken over all 1-codimensional subvarieties.
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Exercise: Let C' C A be an integral curve and F = Z(f),G = Z(g) two other curves

which don’t contain C' as a component. Then r = f/g has the order
Ordp(’r) = ”(pv C, F) - ,u(p, C, G)
at any point, where 1 denotes the intersection multiplicity, see 7.5, [7].
Let now D € I'(X, M% /O%) be a Cartier divisor and let (f,), fo € M*(U,) be a repre-

senting system of meromorphic functions. Then

ordy (D) := ord,( fay) = ordynu, (fa)

for n € U, is independent of o because different choices differ only by unit factors in O%

which have order 0. By definition

ordy (f) = ordy (div(f))
where f € M*(X) = R(X)* and div(f) is its image in ['(X, M?% /O%).
Lemma: Let X be an integral scheme. Then any non-zero divisor D € I'(X, M% /O%)
has |D| = Supp(D) # X.

Proof. Let (f,) be a representing system and let f, = ao/by With aq, by € Ox(Uy), U,
affine, both NZD’s. Then |D|NU, C Z(ay) U Z(b,) because = € Z(aq) U Z(b,) would
imply that a,, and b,, are units in Ox, and hence fu, € O, But Z(a,) U Z(ba) # Ua,
otherwise rad(anb,) = (0) and a,b, would be zero divisors. O

3.4. Associated cycles

We are now able to assign to any Cartier divisor on an integral scheme X a Weil-divisor.

For that we denote by
Zn-1(X)

the free Abelian group generated by the codimension 1 subvarieties of X, where n =
dimX. If D € I'(X, M%/O%), then ordy(D) = 0 for any Y ¢ Supp(D), because
then the generic point n of Y is not contained in Supp(D), i.e. fa, € Ok, and has
order 0. Because Supp(D) # X, there are only finitely many codimension 1 subvarieties
Y C Supp(D), namely the components of Supp(D), for which ordy (D) # 0. We put

cyc(D) := Zordy(D)Y € Zn-1(X).
We thus get a homomorphism
(X, M%/0%) =Div(X) 2% 7, 1 (X).
For a rational function r € R(X)* = I'(X, MY%) we take the composition and write
cyc(r) = cye(div(r)).

If D is an effective divisor, then ordy (D) > 0 for any Y because the representing functions

fo are regular in this case. In this case the Weil-divisor cyc(D) is also called effective.
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4. CHOW GROUPS Ai(X)

In the following X will always denote an algebraic scheme over a base field k and Z;(X)
the group of k—cycles, the freely generated Z-module over the set of integral subschemes
(subvarieties) of dimension & > 0. If necessary to distinguish the subvariety V' C X
from its basis element in Z(X), we also write [V]. If W C X is a (k 4+ 1)-dimensional
subvariety and r € R(W)* a rational function, we are given the cycle

cye(r) = Zordv(r)V € Z,(W) C Zy(X)
A cycle a € Z(X) is called rationally equivalent to 0, written as o ~ 0, if « = 0 or if
there are finitely many (k + 1)—dimensional subvarieties Wy, ..., W, C X together with
rational functions r, € R(W,)* such that

a= Z cye(ry).

14

These cycles form a subgroup Bi(X) C Z.(X). Note that cyc(r=') = —cyc(r). We put
Ap(X) = Zi(X)/Br(X).
Since X and X,.q have the same subvarieties, we have
Ar(X) = Ap(Xiea)
for any k.

4.1. Example: Let A" = A7. Given an integral hypersurface Y C A", we have Y = Z(f)
for a regular function (polynomial) f such that Y = cyc(f). Therefore A, _1(A") = 0.
Similarly we have Ag(A™) = 0 by using a line as W through a given point. Later we will
be able to show that Ai(A") = 0 for all k& < n. Clearly Ax(A") = 0 for £ > n. But
A,(A™) = Z. Note that [A"] € Z,(A™) must be a basis element, and is the only one.
Therefore, Z — Z,,(A") = A,(A"™) is an isomorphism, m — m[A"]. We have B,,(A") =0

by definition. [A"] is also called the fundamental class.

4.2. Example: If X is n—dimensional and Xi, ..., X, are its irreducible n—dimensional
components, then Z" = A, (X). This follows as in the case of A" with [X3],...,[X,] as a
basis of Z,(X) = A,(X).

4.3. Example: Let P, = P, ;. Since P, is irreducible, A,(P,) = Z. However, also
Ap_1(P,) = Z. To verify this, let Y be an integral hypersurfaces, Y = Z(g), of degree
d = deg(g). Then z3% is a rational function on W = P,, and

cye(zylg) =Y — dH,

where Hy is the hyperplane zq = 0. Therefore, Y ~ dHy. It follows that d — d[H,] is a
surjection Z — A, _1(P,). It is also injective: If d[Hy| ~ 0, there exist r1,...,7, € R(P,)*
such that

d[Hy| = Z cyce(r,) = cye(ry ... rp).
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It follows that r =ry - ... - r,, is a homogeneous polynomial of degree 0, and d = 0:

Let r = f{" -+ fts/g* ... g;* with irreducible forms f,, g, without common factor. Then

cye(r) =Y peZ(fo) = > v Z(gr) = dH,.

It follows that all v, = 0 and all except one u, = 0. But

Z o deg(fy) = Z v, deg(g,) = 0.
Then also the last p, = 0 and so dHy = 0 in Z,,_1(P,). This implies d = 0.

With a similar argument using lines through two points we can show that Aq(P,) = Z.

It will be shown later that Ag(P,) = Z with generator [E], E any k—dimensional plane.

4.4. Example: Let X C A} be the affine cone with equation zy = 2%, where z,y, 2
denote the residue classes of the coordinate functions as elements of A(X) = k[x,y, 2] =
kj[l‘ayv Z]/(:Ey - 22)' Let

A=Z(x)=Z(x,z) and B = Z(y) = Z(y, 2)
The prime ideal of A respectively B is
p=(z,2) and q=(y,2).

We also have Z(z) = AU B.
Claim 1: p and q are not principal.

Claim 2: cyc(z) = 24, cyc(y) = 2B, cyc(z) = A+ B. Note that A(X) ist not a UFD
and that as rational functions we have z/z = z/y. Then cyc(z/z) = cyc(z/y) mirrors

2A—(A+B)=(A+ B) —2B.

Proof of Claim 1: Assume that (z,z) = (f) for some f € A(X). Then x =af,z = bf for
some a,b € A(X), and therefore bz — az = 0. Now it is easy to prove that the relations
of x and —z are generated by the pairs (z,x) and (y, z). This implies b = az + By and
a = az + Bz. It follows that x, 2 € m? where m is the maximal ideal of the origin of X.
Similarly y € m2. Hence m = m? which is impossible.

Proof of Claim 2: Since p is the generic point of A, we have
Oax = Oxp 2 k[r,y, 2] (2.)
and
max = (2, y2)k[2,y, 2]z = 2k[T, Y, 2] (2,2),

the last equality following from zy = 2? with y a unit in the localized ring. We obtain

the exact sequence
0— (z,2)/(x) = Oax/2O0sx — Osax/max — 0

with an isomorphism O4 y/max = O4 x/204x = (x,2)/(z) because of zy = 22. This
proves that ords(z) = 2. But Supp div(z) = A and therefore ordg(z) = 0 for any
other integral hypersurface. This proves cyc(z) = 2A. By the same argument we obtain
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cyc(y) = 2B and cyc(z) = A + B. If A, B denote the residue classes of A, B in A;(X),
we have shown that

2A=0,2B=0, A+ B =0.
We will show later that A generates A;(X) and that A # 0. Then Z/2Z = A;(X). That
Ap(X) =0 and Ay(X) = Z can be shown as for A",

4.5. Proposition: Let Y be a closed subscheme of X. Then there is an exact sequence
Ap(Y) 25 Ap(X) D A (X NY) =0

for any k > 0. The homomorphism i, is induced by the inclusion Y < X and 7% s
induced by restricting a subvariety V to V 'Y, such that

PO Vi) = m(ViNY),

Vigy

Proof. 1) Both maps are well-defined. For i, this follows directly from the definition of
2) If V. .C W are two subvarieties of X of dimension k and k 4+ 1 and if {n} =V ¢ Y,

then R(W) = R(W \Y) = Q(Ow,,), because n € W \ Y and this set is open and dense
in W. It follows from the definition of the order that then for any r € R(WW)* we have

ordy (r) = ord,(r) = ordy _y (r|W \Y).

It follows that for any W C X of dimension k£ + 1 and any r € R(W)*
jreye(r) = 5* Zordv(r)V = Z ordy (r)V = cyc(r|W \Y)
Vey

This proves j*(Bg(X) C Be(X \Y).

3) If V. C X \ Y is an integral subscheme of dimension k, then also its closure V in X is

integral. It follows that j* is surjective. To proves exactness, let a € Z(X) and j*a ~ 0.
Then

Ja= Z cye(ry)

with r, € R(W,)* and W,, C X \ 'Y integral of dimension & + 1. Let W, be the closure

in X. We have R(W,) = R(W,) and there are rational functions 7, € R(W,)* extending
r,. As shown in 2), j*cyc(r,) = cyc(r,).

Now 3 = a — ) cyc(r,) is a chain representing the class a with j*3 = 0. This means
that all the components of 3 are contained in Y and therefore & = 4, 0. O

4.6. Example: Let Y C P, be any reduced hypersurface of degree d. We then have

the exact sequence

A (V) 25 A4 (P) — A (PaNY) — 0
I I
/Al N Z.
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Let Y7, ...,Y, be the irreducible components of Y of degrees d, ..., d,. Since ¢.Y, ~ d,H
for some hyperplane H, the map « is just (nq,...,n,) — Y n,d,. It follows that

An—l(]P)n AN Y) = Z/(dl, ey dr)
where (dy,...,d,) is the GCD of the degrees.

4.7. Example: Affine cone X C A}, continued. Let A, B C X be the lines defined by

2 we obtain

x =0resp. y =0. Then X \ B = Spec k[z,y, z],. Using the relation zy = z
isomorphisms

klo,y, 2)< 2 kly,y™', 2] = kly, 2,
Therefore X \ B = A%~ A!. From 4.5 we have the exact sequence

Al(AQ) — Al(AQ AN Al) — 0

and therefore A;(X \ B) = 0. Again by 4.5 we have a surjection Z = A;(B) — A;(X)
given by 1 <+ B — i,B = B This proves that B or A generate A;(X). In order to show
that A # 0, assume that there is a rational function r € R(X)* with A = cyc(r). Let p
be the prime ideal (z, z) of Ain A(X). Now ords(r) = 1 and ordy () = 0 for any integral
curve Y C X different from A.

Claim: r € p C A(X).

Proof: All local rings Oy x = Ox, are regular of dimension 1, hence discrete valuation
rings. Let (t) = m,. Then r, € Q(Ox,) can be written as 7, = ut™ with a unit u in
Ox . Now m =1 for n = p and m = 0 for n # p. It follows that

r € NA(X), C QUA(X))
with the intersection taken over all prime ideals of height 1. But it is well known that

this intersection equals A(X). Since A(X),/rA(X), has length 1, r € p. O

Let now g € p be any element, g # 0. Then ords(g) > 1,ordy(g) > 0 for any other
integral curve in X. Then the rational function g/r has ordy(g/r) > 0 for any Y. By
the same proof as for the claim we get g/r = a € A(X). Hence ¢ = ar. Then p
would be a principal ideal =(r), contradicting claim 1 of 4.4. This completes the proof of
A (X) = Z/)27.

4.8. Proposition: Let X;, X5 be closed subschemes of X. Then for any k > 0 there is

an exact sequence

Ap(X1 N X2) 5 A(X1) 8 Ap(Xa) 2 Ap(X; U Xs) — 0

Proof. 1) The mappings are induced by the natural mappings
Zi(X1 N X2) S Z4(X1) @ Zi(X2) 2 Zi(X1 U X)

on the level of cycles, a as inclusion and b as difference of the inclusion. They are both

well-define on the Chow groups.
2) If o € Zp(X1NX3) then a(a) = a®a and boa(a) = a—a = 0. So we have a complex.
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3) b is surjective on the level of cycles and then surjective onto A, (X;UX5): If Y C X;UX,
is integral, then Y C X; or Y C X,. Therefore, given a cycle «, it can be written as a

difference oo = ay — ay with a,, € Z(X,).

4) Let now «, € Z(X,) and oy — ag ~ 0 in Z(X; U X3). Then
o — g = chc('r’,,)

with r, € R(W,)*, Wy,..., W, C X; U X, integral of dimension k£ + 1. We may assume
that
Wi, ..., W, C Xy and Wy4q,..., W, & X;.
Then
o= — chc(’r,,) =y + chc(r,,)

v<p p<v
has all its components in X; N Xs: If Y is a component of the left hand side,then Y C Xj,
by the choice of p. If Y ¢ Xs, it cannot occur in the right hand side, because W, C
X, for p < v and ay has its components in X5. Now [a] is mapped to ([a]1, [a]s) =

([aa]1, [a]2)- ]

5. AFFINE BUNDLES

For the affine space A" = A} we distinguish the following groups of automorphisms
GL, (k) g Aff(A™) g Aut(A")

which are all different. For simplicity we assume that k is algebraically closed and that
A™ and all its subschemes are determined by A™(k) = k™ and its subscheme of closed

points. The group Aff(A™) consists of all transformations
v gu+ €

with g € GL, (k) and £ € k". But Aut(A"™) contains transformations which are not affine.
For example (z,y) — (y + f(x),z) with any polynomial f is an automorphism of k™ and

defines an automorphism of A™.

5.1. Affine bundles: A morphism E %> X of schemes over k is called a general affine
bundle of rank n if each point of X admits an open neighbourhood U together with an
isomorphism Ey = p~1(U) — U x; A" which is compatible with the projections. It is
locally trivial, but the coordinate transformations need not be affine in the fibres.

If in addition the local isomorphisms Ey — U X A™ can be chosen to be affine on the

fibres or if the coordinate transformations are of the type
(z,0) = (2, g55(2)v + &),

using only the k-valued points, F %> X is called an affine bundle. The cocycle condition
then splits into the two conditions

9i595k = g and g4 &k + Sij = ks
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where U;; EER GL, (k) and Uj; S, . They are equivalent to the condition

(g(;j f{‘j) (gék g{k>:<gék %k) (B)

This means that together with E 2 X we are given two locally free sheaves £ and F, the
first defined by the cocycle (g;;) and the second defined by the cocycle (B), together with

an extension sequence

0—-€&—=F—-0—=0.

We let P(€) and P(F) denote the associated projective bundles of lines with fibres PE(x)
and PF(x) respectively, where £(z) = &,/m,E,.

5.2. Lemma: F =~ P(F)~ P(£).

Proof. We consider only the geometric points. Let (U;) with (g;;) and (&;;) be the
trivializing covering for E. We have the natural embedding k" = P,(k) \ P,_1(k)
given by v « (v,1), and the isomorphisms U; x k" 25 U; x (P, (k) ~ P,_1(k)). Let
a;j(x,v) = (z, gij(x)v + &;(x)), and let

a;j = (g(i)j gij ) modulo £*

be the cocycle of P(F) ~ P(€). Then

Pi O Qyj = Q5 O P

and therefore the system (¢;) defines an isomorphism F = P(F) \ P(&). O

The system (&;;) of translations of the cocycle of E' can be interpreted as a cocycle in
Z' U, ). Namely, if £|U; = O"|U; is the trivialization of £|U; with o; 0 0; ' = g;;, and
if (i; = a;lﬁij over U;;, we have
Gij + Cjk = Cik-

Then ((;;) defines a class in H'(U,E) = H'(X,E) which corresponds to the extension
class [F] € Ext!(X, 0, &) under the canonical isomorphism between the two groups. The
class of ((;;) is zero if and only if there is a chain ((;) with ¢;; = ¢; — ¢; and if and only if
the extension sequence splits. Indeed, if §; = 0;(; in this case, we have

&ij = 9665 — & (S)

I, —G gij 0 Ly ¢ _ | 9 Gij
0 1 0 1 0 1 0 1 '

which means that F =2 £ & O. On the other hand, condition (S) means that the affine
bundle with cocycle a;; has a section s with local components ;. But his in turn means

and therefore
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that as an affine bundle E is isomorphic to the affine bundle associated to the bundle
space £ — 0 0f &: If v;;(z,v) = (x, g;;(x)v) and a;(z,v) = (x,v + &, (x)) we have

-1
Qi = O Q.

Altogether we have the

5.3. Lemma: For an affine bundle E 2 X with associated extension sequence 0 — & —

F — O — 0 the following conditions are equivalent.

(1) F=E®O as an extension
(2) E= P(F)~ P(€) has a section
(3) E is a vector bundle

Let now E % X be a general affine bundle of rank n. Then the fibres of p are isomorphic
to the affine space A} and for any k—dimensional subvariety Y of X we obtain a (k+n)-
dimensional subvariety p~!(Y) of E. We thus obtain a homomorphism

Zi(X) 5 Zin(B).
If W C X is a (k+ 1)-dimensional subvariety and » € R(W)*, then p*cyc(r) = cyc(rop)
as can be easily verified. This implies that p* is well-defined as a homomorphism

A(X) 5 Apn(B).
If E % X is an affine bundle with E = P(F) ~\ P(€) we get a diagram

Appn(P(E)) — Agin(P(F)) —— Agn(E) — 0

Ap(X)

5.4. Theorem: For a general affine bundle E 2 X of rank n the homomorphism
Ae(X) L Apin(E) is surjective for any k > 0.

Proof. Step 1: We first check the simplest but essential case where X is affine and integral
and F = X x;, Al and where k =n — 1,n = dim X.
We are going to show that for any integral subscheme Y C E of dimension n there is a
cycle £ € Z,_1(X) and a rational function r € R(E)* such that

Y = p*& + cye(r).

Then A, _1(X) — A,(F) is surjective. To find £ and r we distinguish the cases p(Y) = X
or p(Y) a subvariety of dimension n — 1. Because p is locally trivial with fibre A', we

have n — 1 < dimp(Y) < n.

Ifn—1 = dimp(Y), we have Y = p~!p(Y") because both are n—dimensional and irreducible.
In this case there is nothing to prove. So we assume that p(Y) = X and Y dominates X.
Let

pCA(E) = AX)[1] € R(X)[1]
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be the prime ideal of Y. Because R(X) is a field, the ideal pR(X)[t] is generated by an
element r € R(X)[t]. There is an element 0 # b € A(X) such that

[

r==

b
with f € p. Then also f = br generates pR(X)[t] and we may assume that r» € p. Next
we observe that
pNAX)=0.
Otherwise there would be an element 0 # f in p N A(X) and then p*Z(f) D Z(p) =Y
with Z(f) # X. We are going to show now that r vanishes along Y in order 1. This is
equivalent to
pA(E)P = TA(E)FH
because the quotient modulo pA(E), has length 1. For that let f/g € p with f € p
and g € p. Because r generates pR(X)[t], f = rh/b, 0 # b € R(X), h € A(E). Then
f/g € rA(E),. Now we have
cye(r) =Y + Z n;Y;
with Y; # Y. We show that no Y; can dominate X. Assume that p(Y;) = X. Let as before
f €p with bf = hr,b # 0. Since r is a regular function and n; # 0, r vanishes along Y;.

Because b doesn’t vanish identically on X, f vanishes along Y; (use generic points). But
this implies that Y; C Z(p) =Y, contradicting Y; # Y as both are of the same dimension.
Now dimp(Y;) =n — 1 and Y; = p~p(Y;). This finally proves

Y =— Z nip*p(Y:) + cye(r)

which completes step 1.

Step 2: If X is affine and integral and k < n — 1 arbitrary, then Ay (X) — Ap;1(X x A})
k

is still surjective. To see this, let Y C E be integral of dimension k + 1. If dimp(Y) = k
then Y = p~!p(Y) and there is nothing to prove. If, however, dimp(Y) = k + 1, we

consider
A1 (Exy) — Ap(E)

T T

Ap(p(Y)) — Ar(X)
By step 1 there exists a k—chain n € Z,(p(Y)) C Zx(X) with [Y] = p*(7).
Step 3: The theorem is true for integral affine X and £ = X >k< A}
Proof: By induction n. We have

E=XxA"1x Al
ok Rk

and hence that p* as the composition
k k

of two surjective maps is surjective.
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Step 4: The theorem is true for any affine X and X x A}.
k

Proof: If X = X; U X’ is a decomposition with X; irreducible we use the diagram
Ap1(E1) @ Apsn(E) — Apsn(E)

where E; resp. E’ are the restrictions of the bundle F to the components and do induction

on the number of components.

Step 5: The theorem is true in general. We do induction on the dimension of X. We

may assume that the theorem is true for dim X < m. If dim X = m, we may assume that

X is irreducible by step 4. Then choose an affine open set U C X such that Ey = U x A}
k

Let Z = X \U. Then dim Z < m. The exact diagram
Apin(Ez) — Apn(E) — Apin(Ey) — 0
s

gives the result for X by the surjectivity of p}, and pj; OJ

5.5. Remark: We shall see later that for a rank n vector bundle £ 2 X all the maps

Ap(X) r, Ag1n(FE) are isomorphisms. In particular

AL(X) = Apal(X X A7)

are isomorphisms. All this follows from the existence of a section X 4 X x A" which
k

gives rise to a diagram

AR(X) = A (X > AT)

~N

AR(X)

5.6. Remark: If £ & X is a locally trivial fibration with typical fibre an open set
U C A7, then also Ap(X) — Agin(E) is surjective for any k. This can be shown with a

similar proof.

6. EXAMPLES

In this section theorem 5.4 will be applied to get information about the Chow groups of
affine and projective spaces, of Grassmannians and more generally of cellular varieties.
All schemes will be defined over k.
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6.1. Proposition: Let U be a nonempty open set of A™. Then Ax(U) =0 for k < n and
A (U) = Z.

Proof. By induction n. For n = 1 this is known. For n > 2 there is a projection A" — A"~}
with fibre A'. Tt follows that Ay (A"™1) — A;(A") is surjective for 1 < k < n. If k < n,
the groups are zero. If k = n, both groups are isomorphic to Z. It had already been
shown that Ag(A™) = 0. If U is an open set of A", we have a surjection Ag(A") — Ax(U)
for any k. U

6.2. Proposition: Ai(P,) = Z for any 0 < k < n and this group is generated by the
class [Hy] of any k—plane Hy, C P,,.

Proof. The result had been shown for £ = n — 1 and n. We proceed by induction on n

with £ < n. Let H C P, be any hyperplane. We have the exact sequence

Ap(H) — Ag(P,) — Ap(P, N~ H) — 0

Z
with H 2 P,y and P, ~ H = A". Then Ai(P,) for k < n is generated by the class of
any k—plane Hy. It remains to show that Z — Ay (IP,) is injective. Let dZ be the kernel.

There are (k 4 1)-dimensional subvarieties V,, and rational functions r, € R(V,)* such
that
dH; = chc(ru).
w
Let Z =V, U...UV,. There is a linear subspace L of dimension n — k — 2 such that
LNZ=1(. (If k=n =1 there is nothing to prove). If d # 0, the formula implies that
H, C Z. Now Z C P, ~ L and there is the central projection

m:Z —=P,~NL— Pryy

as composition. The morphism Z 5 Py, is proper with finite fibres. Because H,NL = ()
we find that 7(Hy) = Hj, is a k—plane in Py, with Hy — Hj.

By 7.4 and 7.1 we have m,[Hy] = [H]] and d[H]] = 0. But from Z = Ap(Pyy1) we
conclude that d = 0. O

6.3. Question: Let S C P, be a hypersurface with components Sy,...,.S, of degrees
dy,...,d,. We had shown in 4.6 that A,,_1(P, \S) is isomorphic to Z/(d,...,d,). What
can be said about A (P, \ S) for £ < n — 17 As an example let S C P3 be a quadric
surface, S = P; x P;. We shall see later that A;(S) = Z x Z with generators the classes
of a line in each system of lines in S. Then the homomorphism A;(S) — A;(P3) is given
as Z* — Z by (a,b) — a + b. Therefore, the cokernel A;(P3~ S) = 0.
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6.4. Projective cones: Let P, ~ {pt} = P, be the central projection from a point,
which is a line bundle. If Y C P, is a subvariety, let X be the closure of 77*(Y"). Then
X ~ {pt} — Y is also a line bundle and we have isomorphisms

A(Y) ~ A1 (X N\ pt) = A (X).
Let in particular X C IP3 be the subvariety by a3 —zox; = 0. It is a cone over the smooth
conic {x3 — zoxr; = 0} N {z3 =0} = C. Because C' = P; we have isomorphisms

Z = Ay(C) = Ai(X N A{p}) = Ai(X)
where p = (0,0,0,1). We have C' C X and the exact sequence

I I

7 o7

Let L = 7=1(p) be one of the lines of X. Then [L] is the generator of A;(X). The zero
scheme of zy in X is the union of two lines Ly, Ly C X. Now the cycle
0 ~ cyc(xo/x3) = Ly + Ly — C
and we get [C] = [L1] + [Lq] = 2[L].
Therefore h(a) = 2a and A} (X \ C) = Z/2Z.

6.5. Cellular varieties: As we have already realized, it is often easier to determine
generators of the Chow groups Ay(X) but more difficult to determine the relations. Gen-
erators can also easily be found for so-called cellular varieties. These are varieties X with

a filtration
X=X,0X,1D2---DXoDX 1=10
by closed reduced subschemes such that

X, N X, =[]0,

I

with U,, = A™» or more generally U,, open in some affine space. Let Z,, = Uyu the

closure. Then the classes [Z,,] generate the group

A(X) = PAX).

k>0

The proof follows by induction from the graded exact sequence
A (X, 1) = Ad(X)) — Ad(XL N X1) — 0.
Let us consider the special case with X, of pure dimension v. Then we have

Ap(Xn1) — Ap(X) —— An(X N Xp0) — 0.

1
0.
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Now A, (X ~\ X,_1) is generated by the open fundamental cycles U, and then A,(X) is
generated by the closures Z,,. In this case we even have A,(X) = ZP» where p, is the

number of the U,,. Next we have the exact sequence

0.
for k < n. By induction we may assume that Ay(X,,_1) is generated by the classes [Z,],
which then also generate Ay(X). Note that P, is a cellular variety of this type.

6.6. The Grassmannian Go,: Let G = G(2,V) C PA?V be the Grassmannian of 2
dimensional subspaces of a 4-dimensional k—vector space V. Let eg, ..., e3 be a basis of V
with induced basis e; A e; of A2V Let poy, . .., pe3 be the dual basis for A2V*, also called
Pliicker coordinates. Then G' C PA%V is given by the non—degenerate quadratic equation

Po1P23 — Po2P13 + Pozpiz = 0 (%)
(€ € A%V is decomposable if and only if £ A& =0 in AV).
Let @) C G be the hyperplane section given by pg; = 0. Then @ is the set of all lines in
PV = P3 meeting the line P(ey, e3) < (€3 A e3). Now G\ Q = A* is an affine chart of G
with local coordinates po2/po1, Pos/Pot1, P12/Po1, P13/Po1 (P23 is determined by (x)).
Next we consider a—planes and [-planes (classical names). Let P, C G be the set of
all lines through (e3). It is determined by the equations py; = po2 = p12 = 0 and
hence P, = Py. Dually we have the set P C G of all lines contained in the plane
H = P(eq, e9, e3) spanned by (e1), (e2), (e3). It has the equations pg; = po2 = pos = 0 and
so Pz =2 Py. Now P, U Pj is determined by the equations py; = ppe = 0. It follows that
P,UP; CQ and

Q AN Pa U Plg = A3

with local coordinates pia/poz, Pos/Po2s P23/po2. Finally P, N Ps = L,g is the set of lines
in the plane H through (e3). It is isomorphic to Py by intersecting each line [ € L,z with
the line P(e;, es) C H. We have the open sets

Uy = Po~ Log 2 A* and Us = Py \ Log = A
and we have
P, U Pg N Lag = UaUUﬁ.
Finally, there is the point p = (ea A e3) € Lag and Lap ~ {p} = A'. Altogether we have
the filtration
GDQDP,UP;D Lag D {p}
with
GNQ=AY, QNP,UP;=A® P,UPs~ Lag 2 A?UA%,  Los~ {p} = A"

By the procedure above we find:
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[G] generates Ay(G)
Q) generates Asz(G)
[P.],[Ps] generates As(G)
[Lags] generates A;(G)
[p] generates Ag(G).

The subvarieties @), Py, Pg, Log are the classical Schubert cycles in this case. One can

even prove that
A4<G) = Z7 A3<G> = Z7 AQ(G) = Z27 A1<G) = Z7 A(](G) =7

with the above generators.

6.7. Kiinneth map: Let X and Y be two algebraic schemes over k. If V C X and
W C Y are subvarieties of dimension ¢ and j respectively, then V' x W is one of X x Y
of dimension ¢ + j. Then

(V] W]) = [V x W]
defines a homomorphism
Zi(X) ® Z(Y) % Zis(X x Y)
also called Kiinneth homomorphism.

Ifa~0in Z;(X)and 8 ~ 0in Z;(Y), it follows from 7.16 below that then also o x 5 ~ 0.
Thus we are given homomorphisms
Sk(X,Y) = @) Ai(X) @ 4;(Y) = Ap(X xY)
i+j=k
for any k. It is an easy exercise to show that this homomorphism is surjective if X is

cellular.

7. PUSH FORWARD AND PULL—BACK

It is not clear how to define push forward of cycles for general morphisms. Proper mor-
phisms allow this in an easy way. We refer to Hartshorne’s book II, §4 for proper mor-
phisms. A morphism X L, ¥ of schemes is called proper it it is separated, of finite type

and universally closed. The following rules are useful:

(a) closed immersions are proper

(b) projective morphisms are proper

(c) properness is stable under base extension

(d) products f x g of proper morphisms f and g are proper
(e) compositions of proper morphism are proper

()

()

If f o g is defined and proper and if g is separated, then f is proper
properness is a local property with respect to the base space.
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An algebraic scheme/k is called complete if X — Spec(k) is proper.
X LvYisa proper morphism and V' C X an integral subscheme with W = f(V'), then

we have

RW)—L 5 R(V)

T

OW,Y/m‘My ;) OV,X/mV,X

T T

OW,Y(L) Ov.x
and R(V) is a field extension of R(W). If V and W have equal dimension, there is an
open dense subset W/ C W over which fy = f|V has finite fibres. Since also fy is proper,
fv is finite, see [11], prop. 6.25. The open set W' can be chosen to be affine. Then also
V' = f;}(W') is affine and A(W’) — A(V’) is a finite integral extension and therefore
R(W)=RW') — R(V') = R(V) is a finite field extension. The degree of this extension
is used to define the multiplicity of W in Z(Y) when k& = dim V' = dim W.

7.1. Let X LY be a proper morphism and £ > 0. The homomorphism
Z(X) > Zu(Y)
is defined by
0 if dim f(V) <k
[V = o1
deg(V/f(V)) - f(V) if dim f(V) = k
where deg(V/f(V)) =deg(R(V) : R(f(V)) and V is a subvariety of X of dimension k.

7.2. Let @ C P, be a nonsingular quadric with equation 23 + ... + 22 = 0 and let
p = (1,0,...,0). Then p € Q and the composition f : Q C P, ~ {p} = P,_; of the
inclusion and the central projection is a 2 : 1 proper morphism which is surjective. For
the field extension

R(Pn1) — R(Q)

we have the minimal equation

2
Tu\"_ St T,
Lo

such that R(Q) is an algebraic extension of degree 2.

For £ =n — 1 there is the diagram

An_l(Q) — An—l(]P)n ~ {p}) :

In this diagram each of the groups is isomorphic to Z and both i, and f, correspond to
multiplication with 2. Moreover, if V' C (@) is a linear subspace of dimension k, then also
f(V) =m(V) is a linear subspace of the same dimension and we would have f,V = f(V).
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7.3. Lemma: Let X LY % 7 be proper morphisms. Then (g o f)s = g« o fi« on the

level of cycles.

Proof. Let U C X a subvariety of dimension k, V = f(U), W = g(V). If all of the three
subvarieties have the same dimension, then

deg(U|W) = deg(U|V). deg(V|W)

because

RW)cC R(V) C R(U)
are both finite field extensions. If the dimensions are not equal, one of f.U or ¢g.V would
be zero and then (g o f).U = 0. In either case we have (g o f).U = g. f.U. O

7.4. Theorem: Let X LY be a proper morphism and o € Zy(X). If a ~ 0, then also
fra ~ 0.

Proof. 1f we replace X by the (k+1)-dimensional subvariety on which the rational function
r of a component cyc(r) of « is defined, the following has to be shown. Let X LY be
a proper morphism of (integral) varieties and r € R(X)*. Then f.cyc(r) is 0 or equal to
cyc(s) for some s € R(Y)*. In fact, we prove

(i) if dim X = dim Y, then f.cyc(r) = cyc(N(r)) where N(r) is the determinant of
the multiplication map R(X) — R(X) as an R(Y)-linear isomorphism
(ii) if dim X > dim Y, then f.cyc(r) =

a) Since f.cyc(r) = > ordy(r)deg(V/f(V
1 subvarieties V' of X with dim f(V) =
subvariety W C Y

)f ( V') with the sum taken over all codimension

)
dimV, (i) will follow if for any codimension 1

> ordy(r) deg(V/W) = ordw (N (r)). (1)
fV)=w

For now fixed W we may assume that there are components Vi,. .., V; of f~1(W) which
dominate W and have the same dimension. Otherwise f~1(W) would equal X and f
could not be surjective. Then the generic point w of W has the finite fibre {&;,..., &}
where &; is the generic point of V; (W = f(V;) = f({&}) = {f(&)} and hence f(&) = w.
If f(€) =w, then f({€}) = {f(©)} = {f(€)} = W because f is closed and {€} is one of
the V;). Therefore there is an affine open neighbourhood Y’ of w in Y over which f is

finite. Since (1) is unchanged when we replace Y by Y’ we may assume that both X and
Y are affine, f is finite and

W)y =viu--- UV
b) Now w is the prime ideal p C A(Y) of W and &; is the prime ideal q;, C A(X) of V;
with q; N A(Y) = p, and the ¢, are all prime ideals with this property. Let A(X), be the
ring A(X)(A(Y) ~p)~!. The natural map

A(Y)p = A(X)p = A(X) ®apr) A(Y )y
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is also injective and a finite integral extension. Then we have the pull-back diagram

SpecA(X)y—— X
lf lf

SpecA(Y )y —— Y
with injective horizontal morphisms and finite vertical morphisms. The ideals m; =
q; A(X), satisty

m; NAY), =pAY),
and are maximal by the ”going up” theorem, see e.g. [11], 6.8, p. 102. By this theorem
we also conclude that the ideals

(0),myq,...,my

are the only prime ideals of A(X), because (0) and pA(Y’), are the only prime ideals of
A(Y),.

c) We put B = A(X)y, B; = B, A= A(Y), and q = pA(Y),. With this notation we
have

(c1) A(X)q = B and R(X) = A(X)) = By = Q(B)

(c2) RY)=Q(A), RV, =B;/mB;, R(W)=A/q

(c.3) A(X) @) R(Y) = R(X)

The isomorphisms of (c.1) are induced by A(X) — B and the definition of the lo-
calizations.  (c.2) follows from A = A(Y), = Owy and R(V;) = Oxg/mg =
A(X) g /0iA(X)q = Bi/myB;, and R(W) =2 A(Y),/pA(Y), = A/q. (c.3) is induced
by A(X) ®ar) A(Y) =2 A(X) and the fact that A(Y) C A(X) is an integral extension,
because any nonzero G € A(X) satisfies an equation

1
5+040+OZ1G+"'+04me:0

with ay, € Q(A(Y)) = R(Y).
d) Formula (1) follows if for any b € B

Z I, (B;/bB;)[B;/m;B; : A/q] = ord 4(det(b)) (2)

where for det(b) = o/ € Q(A) we have orda(a/B) = la(A/aA) —l4(A/BA).

Proof of (2): By (c.1) Ip,(B;/bB;) = ordy,(b) with b considered as an element of R(X),
and by (c.2) [B;/m;B; : A/q] = [R(V;) : R(W)], while ords(det(b)) = ordy (N(b)). If
r € R(X)* is general, it is the quotient b/a with b,a € B. Since the order functions and
determinant are homomorphisms, (2) implies (1).

e) Finally (2) follows from fundamental properties of the length. Because (0), my, ..., my
are the only prime ideals of B and since B;/bB; = By, /bBp, have finite length over A and
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By = bB(g) (note that the multiplication operator b is injective and hence an injective
operator of the finite dimensional R(Y )-vector space R(X)), B/bB has finite length and

A(B/bB) = ZzA (B;/bB;).

By [8], appendix A.2.3,
[A(B;/bB;) = lp,(B;/bB;)[B;/m;B; : A/q]
and hence finite. On the other hand, [8], appendix A.3, guarantees that
l4(B/bB) = orda(det(b)).
This proves (2) and finally (i).

f) In case n = dim Y < dim X we may assume that dim X = n+1. Otherwise dim f(V) <

dim V for any n—dimensional subvariety V' C X. Now
fecyc(r) = Z ordy (r) deg(V/Y)Y
fV)=y

because for any component V' of cyc(r) with f(V) # Y we have dim f(V) < dim V. Let
Vi,..., Vs be the components of S = Supp div(r) which are mapped onto Y. We have to
show that

Zordv )deg(V;/Y) = 0.

Let now &; resp. 1 be the generic points of V; resp. Y, and let X,, be the (1-dimensional)
fibre of . Then

ordy; (1) = orde,(r | X,)

and
deg(Vi/Y) = [R(V})/R(Y)] = [(Ox, ¢;/me,) /Oy ] -

Therefore we may assume that X is a complete curve over Spec(K) with K = R(Y').
g) We consider first the case where X = Py i and R(X) = K(t) with ¢t = x1/z9. Now
we may assume that r € K[t] is an irreducible polynomial because the order function is a
homomorphism. Let P € Pk be the prime ideal (r) C KJt]. Then ordp(r) = 1 and the
only other point () with ordg(r) # 0 is ) =< 0,1 >. In the affine neighbourhood of @

the local coordinate function is s = 1/t and we have
ordg(r) = —d
with d = deg(r). On the other hand, the field of P is R(P) = K|t]/(r) while the field of
Q@ is R(Q) = K. Therefore,
cyc(r) = P —dQ
and then
fecye(r) =dY —dY = 0.

h) If X is a general complete curve over Spec(K), we consider the normalization XL X
for which we have R(X) = R(X) and cyc(r) = g.«cyc(r), where 7 is the rational function
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corresponding to r. There is now a finite morphism X P,k over Spec(K) with fog =

po h, where p is the structural morphism of P;x. Now
feeye(r) = fugeeyce(r) = pohicyc(r).
By (i) hscyc(F) = cyc(N(r)) and by g) p.cyc(N(r)) = 0. O

Theorem 7.4 says that a proper morphism X LY defines a homomorphism
AW(X) % A(Y)

for any k and that f +— f, is a functor on the category of proper maps. The theorem also
provides a new proof of Bezout’s theorem for plane projective curves:

7.5. Example: If X is complete, X — Spec(k) is a proper map, then Ay(X) — Ag(pt) =
Z is nothing but the degree map. Let now F' C Py (over k) be an integral curve and L a

line, which is not a component of F'. Then the intersection multiplicity

p(p, I L) = Z(OL,p/prLm)

is defined at any closed point p € L N F', where f is the equation of F. If I’ is any other

line with equation z, then r = f / 2" is a rational function on Py, where n = deg(f). Then

cyc(r Z,u (p, F, L)p — npy € Zy(Py),
peEL
where py is the intersection point L N L'. By theorem 7.4
0=> ulp,F,L)—n.
pEL

Let now m be any integer and G = Z(g) a curve of degree m. Then
1(p, F,G) = UOFyp/9,0F,p)
where g, is the germ of the local function of g at p. Similarly
1(p, F, L) = H(Opp/u,'Opp) = m - (Opp(uyOpyp) = m - u(p, F, L),

where u denotes the equation of L and L,, is the multiple line «™ = 0. Now s = g/u™ is

a rational function and

cyc(s ZMP,FG Zup,FL

peEL peEF

> wp,F,Gy=m-> u(p,F,L)=

peEF peF

It follows that

7.6. Flat morphisms: A morphism X I, ¥ of schemes is called flat if the local ring
Ox ., is a flat Oy, y(,y~module for any x € X. It is shown in commutative algebra that this
is equivalent to

Tory (O, j@) /M), Ox.a) = 0
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for any x. Then
Tor; (M, Ox ;) =0
for any finitely generated Oy, s)-module. In terms of exact sequences this can be ex-
pressed as follows. If 0 — F/ — F — F” — 0 is an exact sequence of coherent Oy—
modules on an open set U C Y, then the lifted sequence 0 — f*F — f*F — f*F" — 0
is exact over f~1(U). Here f*F denotes the sheaf f*F ® o0, Ox where f*F is the topo-
logical pull-back. It is enough to test this for resolutions for the ideal sheaves m(y) of
points y € Y,
0—R— O} - m(y) — 0.

7.7. Example: Let X C A? be the subvariety defined by zy = 0, and let X EN A} be
the first projection. Then f is not flat along the fibre of 0. Here we have the resolution
0 — k[t]w L k[t] ) — k — 00of Op19/mg = k and the lifted homomorphism at any closed
point (0,b) € f71(0) is the localization of the complex

0 — Klz,y]/(zy) = Klz,y]/(z,y) —

which is not injective.

7.8. Example: Instead let X C A now be given by y*> —x? = 0. Here the lifted sequence

is the localization of the complex

0 — klz,yl/(y* — 2°) = K[z, 9]/ (y* — 2?) —

which is exact. The same can be said for any other point of A! or of X.

7.9. Example: Let V be a finite dimensional vector space and let X C PV x PS4V*
be defined by pairs ((v), (f)) with f(v) = 0. Then the induced projection X — PS4V*
is flat. This is also called the universal hypersurface. If 2y, ..., 2, is a basis of V*, i.e.
homogeneous coordinates of PV and if ¢,,, ,, with v+ ---+ v, = d are the homogeneous
coordinates of PS?V* (dual to the basis 2°...2%» of S4V*), then X is the hypersurface

n

defined by the (1, d)-homogeneous equation
f= Zt,,o___,,nzgo L2 =0.

This is a section of the line bundle
Opgay+(1) W Opy (d) = Opgay-xpv (1, d)
and we have the resolution
0 — Opgayxpyv(—1, —d) L Opgiverpy — Ox — 0.
For a fixed point
a= <Z Ay 20 " ZZ”> = (f,) ePSW* =Y

the structure sheaf of the fibre X, ist obtained as the tensor product

Ox ®je0, f*Oy/f*M(a)
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where M(a) is the ideal shaef of a. Tensoring the above sequence with f*Oy /f*M(a) we
get the sequence

0 — O]pv(—d) fﬁa OPV — Oxa — O,

which is exact. This proves flatness at any point of X.

7.10. Example: Let X C A? be the hypersurface ty —z? = 0 and let X — A} be defined
by the projection to the t—axis. We have the exact sequence
2
0—>OA3ty—>OA3—>OX—>O
and for any fixed ¢, the exact sequence
toy—a?

OHOA2%OA2—>0X%HO

because toy — x® # 0. This shows that X — A} is flat. Here X; is a parabola for any
t # 0 and a double line for ¢t = 0, see [9] II, Example 3.3.1.

7.11. Proposition: (see [9] III, 9.5, 9.6)
If X L yisa flat morphism of finite type between noetherian schemes, then
dim, X, = dim, X — dim, Y

for any x € X with y = f(x). In particular, if X and Y are pure dimensional, then all

fibres are pure dimensional.

7.12. Flat morphisms of fixed relative dimension:

In [7] only flat morphisms of fixed relative dimension (or fixed fibre dimension) are con-
sidered for pulling back cycles.

This means that for any subvariety V' C Y and any irreducible component V' of f~1(V),
dim V' =dimV +n

where n is fixed. By the above, this is fulfilled if f is flat between integral algebraic
schemes over some field. Then f is of finite type. The following are flat morphisms of

fixed relative dimension.

e open immersions
e projections of fibre bundles onto a pure—dimensional base scheme

e dominant morphisms from an integral scheme to a non—singular curve.

7.13. Fundamental cycle of a scheme

Let X be an algebraic scheme over k£ and let Xi,..., X, be the irreducible components
of X,eq. Each X, has a generic point §, which is not contained in any other component
Xy,0 # p. Then the local rings

OXPvX = OXvé.P = OYP7£P
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where Y, = X \ ;J X, have finite length, because
o#p
dim pr,gp = COdimprp =0.

Let u, be the length of Oy, x. This can be interpreted as the multiplicity of X, in X.

If all the X, have the same dimension n we obtain the cycle

[X] = ZNp[Xp] € An(X).

If there are different dimensions, we consider the direct sum

AX) = PAX)

k>0

and obtain a fundamental class [X] € A,(X).

7.14. Example X C A? with equation zy* = 0. X; = Z(y),Xs = Z(z) and [X] =
2[X1] 4 [Xs]. If A(X) is the coordinate ring, we have the exact sequence

0 — yAX)y) — AX) @ — AX) @) /yAX)y — 0

with yA(X) ) = A(X) ) /yA(X) ) because y? =0 in A(X),).
Hence length A(X),) = 2.

7.15. pull-back by flat morphisms

Let X L Y be a flat morphism of relative dimension n. Given a subvariety V' C Y of
dimension k. Then f~!(V) has pure dimension & +n, but need not be reduced. Then the

cycle
PV ==YV,
is defined as the fundamental cycle of f~'V where Vi,...,V, are the irreducible compo-

nents of (f7'V)ieq with a, = length Oy, ;-1,. We thus obtain a homomorphism

Zp(Y) L, Zn(X).

7.16. Theorem: Let X LY be flat of relative dimension n and o € Zp(Y). If a ~ 0,
then also f*a ~ 0 in Zyin(X).

For a proof see [8], section 1.7. The theorem says that f defines a homomorphism

*

Ak<Y> - Ak+n<X>-

It follows from the definition that for two flat morphism X Ly and Y & Z of relative

dimensions m and n, (¢f)* = f*g*.



36

7.17. Projection formula: Let

X 2= X

L
Y/ L} Y

be a Cartesian diagram with ¢ flat of relative dimension n and f proper. Then also f’ is

proper and ¢’ is flat of the same relative dimension n and for any cycle a € Z;(X)

fig"a=g"fa

For the easy proof see [8], prop. 1.7.

8. INTERSECTION WITH CARTIER DIVISORS

As before X will denote an algebraic scheme over k and D a Cartier divisor on X. We
are going to define an intersection class DNV = D.V in Aj;_1(X) for each k—dimensional

subvariety V' and by this an intersection homomorphism
Ap(X) 25 A1 (X).
The image of this will be contained in Ay_1(|D|). To begin with D.V, let V/ <5 X be the

inclusion. Then j*Ox (D) is a line bundle (invertible sheaf) on V. Since V is integral,

there is a Cartier divisor C' on V' with
J*O0x (D) = Oy (C),
see 2.8. This divisor is only determined modulo principal divisors. If Oy (C) = Oy (C"),

there is a rational function » on V such that
C' = C + div(r) and then cyc(C") = cyc(C) + cye(r).

Therefore
D.V = D.[V] :=[cyc(O)] € Ap_1(V)

is uniquely determined.

8.1. Lemma: D.V € A;,_1(V N |DJ).
Proof. 1f V' C |D|, there is nothing to prove. If V' ¢ |D|, we can define a Cartier divisor

j*D as follows. Let (f,) represent D, each f, being a rational function in M*(U,).

IfVNU, #0, then VU, |D| # 0 because V \ |D] # 0 and V is irreducible. Then
the residue class f, = fo|V N U, . |D| is defined and

fa € OL(VNUL,N|D|) C MV NU).

The system (f.),V N U, # 0, defines a Cartier divisor j*D on V. It has cocycle (gas)
where g,z is the cocycle of D. Therefore

J"O0x(D) = Oy (5" D).
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Now cyc(5*D) € Z_1(V N |D|) because each f, is in Of(V NU, ~ |D|). This proves the

Lemma. ]

8.2. Intersection with D
Given a cycle o = > n;V; in Z(X), we can define
D.a =Y nD.V; € A1(|D N |al) € A4_1(|D]) C Ap_a(X)
where || is the union of the V;. This defines a homomorphism
Zu(X) 25 Ap_1(ID]) C Ap_1(X).

We are going to show that this is defined on Ax(X), i.e. if @ ~ 0, then D.av ~ 0, see 8.6.1
This intersection pairing (D, ) — D.« satisfies the rules

(a) D.(a+a')=D.a+ D.o/

(b) (D+D").aa=D.a+ D'«

(¢) div(r).ac = 0 for rational functions r € M*(X).
which follows directly from the definition.

If X is a smooth surface and V' C X an irreducible curve, then Div(X) = I'(X, M*/O*) =
Z1(X) and we obtain the pairing Z;(X) x Z1(X) — Ap(X) — Z written as («, ) —
eg

deg(D,.) where D, is the Cartier divisor defined by the Weil divisor a.

8.3. Chern classes of a line bundle

For an invertible sheaf £ on X and a k-dimensional subvariety V' C X there is also a
Cartier divisor C' on V' with j*£ = Oy (C) and a unique class ¢, (L) NV € Ax_1(V) C
Ag_1(X). As before we obtain a homomorphism

Z1(X) — Ap_1(X) denoted a — ¢1(£) Nav.

This operator is also called the first Chern class of £. If X is itself integral of dimension

n, the intersection with the fundamental cycle X in Z,(X) gives the class
Cl(ﬁ) = Cl(ﬁ) NnNX e An,1<X)

which is nothing but the class [cyc(C)] where £ = Ox(C). Note that this is only defined
modulo rational equivalence. If X =P, (over k), we have isomorphisms

Pic(P,) = Ap_1(Py) — Z

and the isomorphism class [£] is determined by an integer.

8.4. Projection formula: Let X’ L X be a proper morphism, let D € Div(X) a
Cartier divisor, and a € Z;(X'). Then the induced morphism

DN N lal % D10 f(lal)
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on the closed subscheme is also proper. If f*D can be defined as ¢*D, e.g. in case X’ is
integral and f~1(|D|) ; X', then
(d) 9x((f*D).c) = D.f. () in Ap_1(X).
For a proof see [7], 2.3. If f*D cannot be defined as a divisor, it is defined as a pseudo—

divisor. This is the reason why pseudo—divisors had been introduced in [7], 2.2. However,

(d) is true in general in the form

g«(c1(f*Ox (D)) Na) = D.f.(a)

8.5. Flat pull-back formula: Let X’ 7. X be flat of relative dimension n,D €
Div(X),« € Zg(X). Then the induced morphism

FHDIN |al) % [DIN ol
is also flat of relative dimension n and
() (f'D).(f'a)=g"(D.c) in Appp1(X")

if f*D is defined. In general the formula reads

a(f*Ox(D) N fra=g"(D.a)

8.6. Theorem: Let X be an n—dimensional integral scheme and let D, D’ be divisors on
X. Then

D.cyc(D") = D'.cyc(D).
For a proof see [7], 2.4.

8.6.1. Corollary: Let D be a divisor on an algebraic scheme/k and o € Zy(X). If
a~ 0, then D.a = 0.

Proof. Let V' C X be a (k + 1)-dimensional subvariety, r € R(V)* and a = cyc(r). We
have to show that D.a = 0. Now on V' we have cyc(r) = cyc(div(r)) and for any Cartier
divisor C on V: C.cyc(r) = C.cyc(div(r)) = div(r).cyc(C) = 0.

If j*Ox (D) = Oy(C), then

D.ocv = D.cyc(r) = C.cyc(r) =0. O
8.6.2. Corollary: For two Cartier divisors D and D" on X and any o € Zy(X),
D.(D'.a) = D'.(D.a) in Ap_o(|D|N|D'| N |af).
Proof. We may assume o = V for a k-dimensional subvariety V' <, X. Let 7 Ox(D) =
Oy (C) and 7*Ox(D') = Oy (C"). Then D.a = [cyc(C)] and D'.ac = [cyce(C")] and

D.(D'.a) = D.cyc(C') = C.cyc(C)
= ('.cyc(C) = D' .cyc(C) = D'.(D.«a)

in Ay_o(V N |D|N|D]). O
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8.7. Intersection with polynomials of divisors: By the preceding corollaries we
are now able to define intersections D.[a] = D.« for classes [a] € Ai(X) and iterated

intersections
(Dy-...-Dy).Ja] =D1.(Dy-...-Dy).[a]

by induction. This product is multilinear and commutative in the D’s. This identity
holds in

Arn(je] N [Dy N D)) if a € Zy(X).

More generally, if P(1y,...,T,) € Z[T},...,T,] is a homogeneous polynomial of degree d,

P(Ty,....T.) = ay, ., 1 ... T,
we obtain a class
P(Dy,...,Dyp).o =Y ay,.0,(Dy" ...  Di").ov € Ap_y(X)

for any k—cycle a and any subscheme Y containing (|D;| U ... U |D,|) N |al.
Examples: see [8], 2.4.4 to 2.4.9.

8.8. Intersection formulas with line bundles:

Let £ be an invertible sheaf on an algebraic scheme X over k. By 8.3 and 8.6.1 there is
the intersection operator

a(L)N: Ag(X) — Ap_1(X)
for any k defined by ¢;(£) NV = [cyc(C)] if L]V = Oy (C). It is clear that the formulas

for the intersection with divisors transcribe into

(@) a(L)Nnea(L)Na=c(l)Nna(l)Na
(b) (projection formula) If X’ L Xisa proper morphism, £ is a line bundle on X
and « a k—cycle on X', then

fular(f*L)Na) =1 (L) N fua in Ap_1(X).

(c) (flat pullback) If X’ L X is a flat morphism of relative dimension n, and £ and
« are given on X, then

al(f*C)n ffa=f(alL)Na) in Ag,1(X).

alLL)Na = g)Na+ca(L)Na
a(L)Na = —a(f)Na

It P(Ty,...,T,) € Z[T},...,T,] is a homogeneous polynomial of degree d, then

there is the intersection operator

P(cr(L1), ... er(La))N s Ap(X) — Ap_a(X).
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Examples: see [8], 2.5.2 to 2.5.6.

On P,, we have ¢1(Op, (H)) N [Hy] = [Hg_1] for projective linear subspaces H, Hy, Hy_; of
dimensions n — 1, k,k — 1. Since [Hy| is the free generator of Ag(P,) = Z,

e1(Op, ()N : Ag(P,) = Ay 1(Py)

is an isomorphism.

9. THE GYSIN HOMOMORPHISM

Given an effective divisor D € Div*(X) we can consider D also as a scheme structure on
|D| = Dyeq and define A(X) AN Ak—1(D) as above by « +— D.« with the Cartier divisor
D. This is the Gysin homomorphism. We are going to describe its rules.

9.1. Normal bundle: Let X be any scheme and let D be the image of O N M* in
M*/O*. Tt is called the sheaf of effective divisors, see 2.9. Divt(X) = ['(X,D") is the
group of effective divisors. If D € Div*(X), then cyc(D) has only positive coefficients, see
3.3. We thus have a homomorphism Div'(X) — ZF | (X) if X is a variety of dimension
n. When D if effective, the line bundle Ox (D) has a regular section Ox — Ox(D)
vanishing exactly on |D|. By abuse of notation we denote the zero scheme of this section
also by D. It has the ideal sheaf Ox(—D) with exact sequence

OHOX<—D) —>OX H(’)D — 0.

The cokernel of the dual sequence is called the normal bundle N' = Np /x of D in X with
exact sequence
0— Ox — Ox(D) — Np,;x — 0.

Denoting F (D) = F @ Ox (D) for any sheaf, we get, by tensoring this sequence with Op:
Tor%*(N,0p) = 0Op and  Op(D) = N.

9.2. Zero section of a line bundle: Let £ be an invertible sheaf on an algebraic scheme
X over k and let L & X be its bundle space. Then X has an embedding X <5 I as the
zero section. As such, X is an effective divisor: if (U,) is a trivializing covering of £ or L
such that Ly, = U, x; Al let t,, be the pull bak of the coordinate function of A, which
is the equation of X N Ly,. On Ly, N Ly, we have

toa = (gap 0 D)t
where (ga5) is the cocycle of L, and therefore O (X) has the cocycle (gas o p).

This means that
Moreover,

Nyjp = i*Op(X) 2 i'p"L = L.
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9.3. Gysin homomorphism

Let D € Div'(X) on an algebraic scheme over k and let D s X be the inclusion as a
subscheme. Then a — D.a € Ay_1(|D|) = Ag—1(Dyea) = Ar—1(D) defines a homomor-
phism

Ap(X) 5 A4 (D),

called the Gysin homomorphism. For this intersection operator we have the following

rules

(a) i.i*(a) = 1(Ox(D)) N« a € Ag(X)
(b) i*iv(a) = 1(Np)x) Nv € Ap(D)
(¢) If X is purely n—dimensional, i*[X] = [D]
(d) If £ is a line bundle on X,

(a(L)Na)=ca(@™L)Ni'a  in  Ag_o(D).

Proof. (a) follows from the definition. If o = [V] is the class of a subvariety of dimension
k,

*(a) = D.[V] = [eye(C)] = er(Ox (D)) N [V] in Ag (V)
where j*Ox (D) = Oy(C). Then i.i*(«) is the same class in A;_1(X). To prove (b), let
V < D with j =ioe. Then i,[V] = [V] in A,(X) and
i*1.[V] = D.[V] = [eyc(C)] € Ay (V) C Ak—1(D)

with
Ov(C) = j*Ox(D) = E*Z*Ox(D) = 5*ND/X-

(c) Let X, be the irreducible components of X, all of dimension n = dim X. Then
[X] = > m,[X,] with multiplicities m,,, see 7.13. Then

:Zm,,D X

Let C, C X, be defined by j;Ox(D) = Ox,(C,). Then C, can be chosen as the com-
ponent of D in X, and it has the same multiplicity m, with respect to D, see [8], 1.7.2.

Therefore,

= Y myfeye(CL)] = D)

(d) follows from ¢;(Ox (D)) N (c1(L) Na) = 1 (L) N (e1(Ox (D)) Nex) and the observation
that

alLyNnp=c@L)ynp for e A_1(D). O

9.4. Chow groups of line bundles:



42

Let L & X be the bundle space of an invertible sheaf £ on X and let X <5 L be the zero

section. If V' is a k—dimensional subvariety, we have the pull-back diagram
Lyl
[ lp
veo X
Claim: *p*[V] = [V]
Proof: p*[V] = [p~'V] = [Ly] and i*[Ly/] is defined as [cyc(C')] where j; Or(X) = Op, (C).

But O, (C) = j;OL(X) = jip*L = pyj L = O, (V) and this proves that [cyc(C)] =
[V]. As a conclusion we get

9.4.1. Proposition: Let L 2 X be a line bundle on an algebraic scheme X over k.
Then the flat pull-back homomorphism Ay(X) 25 Ay (L) is an isomorphism for any k.

Proof. By 5.4 p* is surjective. Because ¢*p* = id, it is also injective. O
9.4.2. Corollary: With the same notation

a(f)Na=i‘i,a forany a € Apiqi(X).

Proof. There is the exact diagram

Ak+1 —) Ak+1 —) Ak+1<X AN L) — 0
N ﬂ
By 9.3, (b), we have i*i,a = cl(NX/L) Na and by 9.2 Ny, = L. 0

10. CHERN CLASSES OF VECTOR BUNDLES

In this section ' — X denotes an algebraic vector bundle of rank e + 1 over an algebraic
scheme over k and P(E) & X the associated projective bundle whose fibre at a closed
point is the projective space P(F,) of 1-dimensional subspaces of E,, which is isomorphic
to P.(k). We let € denote the locally free sheaf corresponding to E. There is a tautological
line subbundle Op(—1) C p*€ whose restriction to P(E,) is isomorphic to Op(g,)(—1) C
E, ®Op(g,). The cokernel of Og(—1) is the locally free sheaf 7pg), x ® Op(—1) of relative
tangent vectors in twist —1. The dual sequence is the relative Euler sequence

0— Q}—"(E)/X<1) —p"&’ — Op(1) — 0.

Note that Og(1) depends on £ and not only on the scheme P(FE). If L is a line bundle
on X, then P(E® L) = P(E) but Oggr(1) = Op(1l) @ p*LY. If X is a variety, then also
P(E) is integral and there is a divisor H C P(F) such that Og(1) = Opg)(H). Then
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H induces the hyperplane divisor H, C P(FE,) for each x on the fibre. The divisor H
is effective because locally P(F)y, = U, x P, and Og(1) | P(E)y, is the pull-back of
Op, (1). Therefore there are locally regular equations defining H.

10.1. Segre classes s;(F). Because p is a proper and flat morphism, for any class
a € Ak(X) the class

si(E) N = p.(c1(Op(1)) Npa)
is well-defined in Aj_;(X). We thus have defined an operator
s (E
A() 25 A (X)

for any ¢ and any k, called the i-th Segre class of E.