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This page is an introduction to spectral sequences. We motivate spectral sequences of filtered complexes
from the computation of cellular cohomology via stratum-wise relative cohomology. In the end we generalize
to spectral sequences of filtered spectra.

For background on homological algebra see at Introduction to Homological algebra.

For background on stable homotopy theory see at Introduction to Stable homotopy theory.

For application to complex oriented cohomology see at Introduction to Cobordism and Complex Oriented
Cohomology.

For application to the Adams spectral sequence see Introduction to Adams spectral sequences.
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In Introduction to Stable homotopy theory we have set up the concept of spectra  and their stable
homotopy groups •( ) (def.). More generally for  and  two spectra then there is the graded stable
homotopy group [ , ]• of homotopy classes of maps bewteen them (def.). These may be thought of as

generalized cohomology groups (exmpl.). Moreover, in part 1.2 we discussed the symmetric monoidal smash
product of spectra ∧ . The stable homotopy groups of such a smash product spectrum may be thought of
as generalized homology groups (rmk.).

These stable homotopy and generalized (co-)homology groups are the fundamental invariants in algebraic
topology. In general they are as rich and interesting as they are hard to compute, as famously witnessed by
the stable homotopy groups of spheres, some of which we compute in part 2.

In general the only practicable way to carry out such computations is by doing them along a decomposition
of the given spectrum into a “sequence of stages” of sorts. The concept of spectral sequence is what
formalizes this idea.

(Here the re-occurence of the root “spectr-” it is a historical coincidence, but a lucky one.)

Here we give a expository introduction to the concept of spectral sequences, building up in detail to the
spectral sequence of a filtered complex.

We put these spectral sequences to use in

part 2 -- Adams spectral sequences.

part S -- Complex oriented cohomology theory

1. For filtered complexes

We begin with recalling basics of ordinary relative homology and then seamlessly derive the notion of
spectral sequences from that as the natural way of computing the ordinary cohomology of a CW-complex
stagewise from the relative cohomology of its skeleta. This is meant as motivation and warmup. What we
are mostly going to use further below are spectral sequences induced by filtered spectra, this we turn to
next.

Ordinary homology
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Let  be a topological space and ↪  a topological subspace. Write •( ) for the chain complex of singular
homology on  and •( ) ↪ •( ) for the chain map induced by the subspace inclusion.

Definition 1.1. The (degreewise) cokernel of this inclusion, hence the quotient •( )/ •( ) of •( ) by the
image of •( ) under the inclusion, is the chain complex of -relative singular chains.

A boundary in this quotient is called an -relative singular boundary,

a cycle is called an -relative singular cycle.

The chain homology of the quotient is the -relative singular homology of 

( , ) ≔ ( •( )/ •( )) .

Remark 1.2. This means that a singular ( + 1)-chain ∈ + ( ) is an -relative cycle precisely if its
boundary ∂ ∈ ( ) is, while not necessarily 0, contained in the -chains of : ∂ ∈ ( ) ↪ ( ). So the
boundary vanishes possibly only “up to contributions coming from ”.

We record two evident but important classes of long exact sequences that relative homology groups sit in:

Proposition 1.3. Let ↪  be a topological subspace inclusion. The corresponding relative singular
homology, def. 1.1, sits in a long exact sequence of the form

⋯ → ( ) ⎯⎯
( )

( ) → ( , ) ⎯⎯− − ( ) ⎯⎯⎯⎯⎯− ( )
− ( ) → − ( , ) → ⋯ .

The connecting homomorphism : + ( , ) → ( ) sends an element [ ] ∈ + ( , ) represented by an
-relative cycle ∈ + ( ), to the class represented by the boundary ∂ ∈ ( ) ↪ ( ).

Proof. This is the homology long exact sequence, induced by the defining short exact sequence

0 → •( ) ↪ •( ) → coker( ) ≃ •( )/ •( ) → 0 of chain complexes.  ▮

Proposition 1.4. Let ↪ ↪  be a sequence of two topological subspace inclusions. Then there is a long
exact sequence of relative singular homology groups of the form

⋯ → ( , ) → ( , ) → ( , ) → − ( , ) → ⋯ .

Proof. Observe that we have a short exact sequence of chain complexes, def.
\ref{ShortExactSequenceOfChainComplexes}

0 → •( )/ •( ) → •( )/ •( ) → •( )/ •( ) → 0 .

The corresponding homology long exact sequence, prop. \ref{HomologyLongExactSequence}, is the long
exact sequence in question.  ▮

We look at some concrete fundamental examples in a moment. But first it is useful to make explicit the
following general sub-notion of relative homology.

Let  still be a given topological space.

Definition 1.5. The augmentation map for the singular homology of  is the homomorphism of abelian
groups

: ( ) → ℤ

which adds up all the coefficients of all 0-chains:

: : ↦ .

Since the boundary of a 1-chain is in the kernel of this map, by example
\ref{BasicExamplesOfChainBoundaries}, it constitutes a chain map

: •( ) → ℤ ,

where now ℤ is regarded as a chain complex concentrated in degree 0.

Definition 1.6. The reduced singular chain complex ˜
•( ) of  is the kernel of the augmentation map,

the chain complex sitting in the short exact sequence

0 → ˜
•( ) → •( ) → ℤ → 0 .

The reduced singular homology ˜ •( ) of  is the chain homology of the reduced singular chain complex
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˜ •( ) ≔ •( ˜ •( )) .

Equivalently:

Definition 1.7. The reduced singular homology of , denoted ˜ •( ), is the chain homology of the
augmented chain complex

⋯ → ( ) → ( ) → ( ) → ℤ → 0 .

Let  be a topological space, •( ) its singular homology and ˜ •( ) its reduced singular homology, def. 1.6.

Proposition 1.8. For ∈ ℕ there is an isomorphism

( ) ≃
˜ ( ) for ≥ 1

˜ ( ) ⊕ ℤ for = 0

Proof. The homology long exact sequence, prop. \ref{HomologyLongExactSequence}, of the defining short

exact sequence ˜ •( ) → •( ) → ℤ is, since ℤ here is concentrated in degree 0, of the form

⋯ → ˜ ( ) → ( ) → 0 → ⋯ → 0 → ⋯ → ˜ ( ) → ( ) → 0 → ˜ ( ) → ( ) → ℤ → 0 .

Here exactness says that all the morphisms ˜ ( ) → ( ) for positive  are isomorphisms. Moreover, since ℤ
is a free abelian group, hence a projective object, the remaining short exact sequence

0 → ˜ ( ) → ( ) → ℤ → 0

is split, by prop. \ref{SplittingLemma}, and hence ( ) ≃ ˜ ( ) ⊕ ℤ.  ▮

Proposition 1.9. For = *  the point, the morphism

( ) : ( ) → ℤ

is an isomorphism. Accordingly the reduced homology of the point vanishes in every degree:

˜ •( * ) ≃ 0 .

Proof. By the discussion in section 2) we have that

( * ) ≃
ℤ for = 0

0 otherwise
.

Moreover, it is clear that : ( * ) → ℤ is the identity map.  ▮

Now we can discuss the relation between reduced homology and relative homology.

Proposition 1.10. For  an inhabited topological space, its reduced singular homology, def. 1.6, coincides
with its relative singular homology relative to any base point : * → :

˜ •( ) ≃ •( , * ) .

Proof. Consider the sequence of topological subspace inclusions

∅ ↪ * ↪ .

By prop. 1.4 this induces a long exact sequence of the form

⋯ → + ( * ) → + ( ) → + ( , * ) → ( * ) → ( ) → ( , * ) → ⋯ → ( ) → ( , * ) → ( * ) ⎯⎯⎯
( )

( ) → ( , * ) →

Here in positive degrees we have ( * ) ≃ 0 and therefore exactness gives isomorphisms

( ) →≃ ( , * ) ∀ ≥

and hence with prop. 1.8 isomorphisms

˜ ( ) →≃ ( , * ) ∀ ≥ .

It remains to deal with the case in degree 0. To that end, observe that ( ) : ( * ) → ( ) is a
monomorphism: for this notice that we have a commuting diagram
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( * ) → ( * )

( ) ↓ ( ) ↗ ↓≃
( )

( ) ⎯⎯
( )

ℤ

,

where : → *  is the terminal map. That the outer square commutes means that ( ) ∘ ( ) = ( ) and
hence the composite on the left is an isomorphism. This implies that ( ) is an injection.

Therefore we have a short exact sequence as shown in the top of this diagram

0 → ( * ) ⎯⎯⎯
( )

( ) → ( , * ) → 0

≃ ↘ ↓ ( )

ℤ

.

Using this we finally compute

˜ ( ) ≔ ker ( )

≃ coker( ( ))

≃ ( , * )

.

  ▮

With this understanding of homology relative to a point in hand, we can now characterize relative homology
more generally. From its definition in def. 1.1, it is plausible that the relative homology group ( , )

provides information about the quotient topological space / . This is indeed true under mild conditions:

Definition 1.11. A topological subspace inclusion ↪  is called a good pair if

 is closed inside ;1. 

 has an neighbourhood ↪ ↪  such that ↪  has a deformation retract.2. 

Proposition 1.12. If ↪  is a topological subspace inclusion which is good in the sense of def. 1.11, then
the -relative singular homology of  coincides with the reduced singular homology, def. 1.6, of the
quotient space / :

( / ) ≃ ˜ ( , ) .

The proof of this is spelled out at Relative homology – relation to quotient topological spaces. It needs the
proof of the Excision property of relative homology. While important, here we will not further dwell on this.
The interested reader can find more information behind the above links.

Cellular homology

With the general definition of relative homology in hand, we now consider the basic cells such that cell
complexes built from such cells have tractable relative homology groups. Actually, up to weak homotopy
equivalence, every Hausdorff topological space is given by such a cell complex and hence its relative
homology, then called cellular homology, is a good tool for computing singular homology rather generally.

Definition 1.13. For ∈ ℕ write

↪ ℝ ∈ Top for the standard -disk;

− ↪ ℝ ∈ Top for the standard ( − 1)-sphere;

(notice that the 0-sphere is the disjoint union of two points, = * ∐ * , and by definition the
(−1)-sphere is the empty set)

− ↪  for the continuous function that includes the ( − 1)-sphere as the boundary of the -disk.

Example 1.14. The reduced singular homology of the -sphere  equals the − -relative homology of the
-disk with respect to the canonical boundary inclusion − ↪ : for all ∈ ℕ

˜ •( ) ≃ •( , − ) .

Proof. The -sphere is homeomorphic to the -disk with its entire boundary identified with a point:

≃ / − .

Moreover the boundary inclusion is a good pair in the sense of def. 1.11. Therefore the example follows with
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prop. 1.12.  ▮

When forming cell complexes from disks, then each relative dimension will be a wedge sum of disks:

Definition 1.15. For { : * → }  a set of pointed topological spaces, their wedge sum ∨  is the result of

identifying all base points in their disjoint union, hence the quotient

/ * .

Example 1.16. The wedge sum of two pointed circles is the “figure 8”-topological space.

Proposition 1.17. Let { * → }  be a set of pointed topological spaces. Write ∨ ∈ Top for their wedge sum

and write : → ∨  for the canonical inclusion functions.

Then for each ∈ ℕ the homomorphism

( ˜ ( )) : ⊕ ˜ ( ) → ˜ ( ∨ )

is an isomorphism.

Proof. By prop. 1.12 the reduced homology of the wedge sum is equivalently the relative homology of the
disjoint union of spaces relative to their disjoint union of basepoints

˜ ( ∨ ) ≃ ( , * ) .

The relative homology preserves these coproducts (sends them to direct sums) and so

( , * ) ≃ ⊕ ( , * ) .

  ▮

The following defines topological spaces which are inductively built by gluing disks to each other.

Definition 1.18. A CW complex of dimension (−1) is the empty topological space.

By induction, for ∈ ℕ a CW complex of dimension  is a topological space  obtained from

a CW-complex −  of dimension − 1;1. 

an index set Cell( ) ∈ Set;2. 

a set of continuous maps (the attaching maps) { : − → − } ∈ ( )3. 

as the pushout

≃
∈ ( ) ∈ ( ) −

in

∐ ∈ ( )
− ⎯

( )

−

↓ ↓

∐ ∈ ( ) →

,

hence as the topological space obtained from −  by gluing in -disks  for each ∈ Cell( )  along the

given boundary inclusion : − → − .

By this construction, an -dimensional CW-complex is canonically a filtered topological space, hence a
sequence of topological subspace inclusions of the form

∅ ↪ ↪ ↪ ⋯ ↪ − ↪

which are the right vertical morphisms in the above pushout diagrams.

A general CW complex  then is a topological space which is the limiting space of a possibly infinite such
sequence, hence a topological space given as the sequential colimit over a tower diagram each of whose
morphisms is such a filter inclusion
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∅ ↪ ↪ ↪ ⋯ ↪ .

The following basic facts about the singular homology of CW complexes are important.

Now we can state a variant of singular homology adapted to CW complexes which admits a more systematic
way of computing its homology groups. First we observe the following.

Proposition 1.19. The relative singular homology, def. 1.1, of the filtering degrees of a CW complex , def.
1.18, is

( , − ) ≃
ℤ[Cells( ) ] if =

0 otherwise
,

where ℤ[Cells( ) ] denotes the free abelian group on the set of -cells.

Proof. The inclusion − ↪  is a good pair in the sense of def. 1.11. The quotient / −  is by definition
of CW-complexes a wedge sum, def. 1.15, of -spheres, one for each element in Cell( ) . Therefore by prop.

1.12 we have an isomorphism ( , − ) ≃ ˜ ( / − ) with the reduced homology of this wedge sum. The
statement then follows by the respect of reduced homology for wedge sums, prop. 1.17.  ▮

Proposition 1.20. For  a CW complex with skeletal filtration { }  as above, and with , ∈ ℕ we have for

the singular homology of  that

( > ) ⇒ ( ( ) ≃ 0) .

In particular if  is a CW-complex of finite dimension dim  (the maximum degree of cells), then

( > dim ) ⇒ ( ( ) ≃ 0) .

Moreover, for <  the inclusion

( ) →≃ ( )

is an isomorphism and for =  we have an isomorphism

image( ( ) → ( )) ≃ ( ) .

Proof. By the long exact sequence in relative homology, prop. 1.3 we have an exact sequence of the form

+ ( , − ) → ( − ) → ( ) → ( , − ) .

Now by prop. 1.19 the leftmost and rightmost homology groups here vanish when ≠  and ≠ − 1 and
hence exactness implies that

( − ) →≃ ( )

is an isomorphism for ≠ , − 1. This implies the first claims by induction on .

Finally for the last claim use that the above exact sequence gives

− + ( , − ) → − ( − ) → − ( ) → 0

and hence that with the above the map − ( − ) → − ( ) is surjective.  ▮

We may now discuss the cellular homology of a CW complex.

Definition 1.21. For  a CW-complex, def. 1.18, its cellular chain complex • ( ) ∈ Ch• is the chain
complex such that for ∈ ℕ

the abelian group of chains is the relative singular homology group, def. 1.1, of ↪  relative to

− ↪ :

( ) ≔ ( , − ) ,

the differential ∂ + : + ( ) → ( ) is the composition

∂ : + ( + , ) →⎯ ( ) → ( , − ) ,

where ∂  is the boundary map of the singular chain complex and where  is the morphism on relative
homology induced from the canonical inclusion of pairs ( , ∅) → ( , − ).

Proposition 1.22. The composition ∂ ∘ ∂ +  of two differentials in def. 1.21 is indeed zero, hence • ( )

is indeed a chain complex.
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Proof. On representative singular chains the morphism  acts as the identity and hence ∂ ∘ ∂ +  acts as
the double singular boundary, ∂ ∘ ∂ + = 0.  ▮

Remark 1.23. This means that

a cellular -chain is a singular -chain required to sit in filtering degree , hence in ↪ ;

a cellular -cycle is a singular -chain whose singular boundary is not necessarily 0, but is
contained in filtering degree ( − 2), hence in − ↪ .

a cellular -boundary is a singular -chain which is the boundary of a singular ( + 1)-chain coming
from filtering degree ( + 1).

This kind of situation – chains that are cycles only up to lower filtering degree and boundaries that come
from specified higher filtering degree – has an evident generalization to higher relative filtering degrees. And
in this greater generality the concept is of great practical relevance. Therefore before discussing cellular
homology further now, we consider this more general “higher-order relative homology” that it suggests
(namely the formalism of spectral sequences). After establishing a few fundamental facts about that we will
come back in prop. 1.46 below to analyse the above cellular situation using this conceptual tool.

In theorem 1.48 we conclude that cellular homology and singular homology agree of CW-complexes agres.

First we abstract the structure on chain complexes that in the above example was induced by the
CW-complex structure on the singular chain complex.

Filtered chain complexes

Definition 1.24. The structure of a filtered chain complex in a chain complex • is a sequence of chain
map inclusions

⋯ ↪ − • ↪ • ↪ ⋯ ↪ • .

The associated graded complex of a filtered chain complex, denoted • •, is the collection of quotient
chain complexes

• ≔ •/ − • .

We say that element of • are in filtering degree .

Remark 1.25. In more detail this means that

[⋯ →⎯ ⎯⎯− − → ⋯] is a chain complex, hence { } are objects in  ( -modules) and {∂ } are
morphisms (module homomorphisms) with ∂ + ∘ ∂ = 0;

1. 

For each ∈ ℤ there is a filtering •  on  and all these filterings are compatible with the
differentials in that

∂( ) ⊂ −

2. 

The grading associated to the filtering is such that the -graded elements are those in the quotient

≔
−

.

Since the differentials respect the grading we have chain complexes • in each filtering degree .

3. 

Hence elements in a filtered chain complex are bi-graded: they carry a degree as elements of • as usual,
but now they also carry a filtering degree: for , ∈ ℤ we therefore also write

, ≔ +

and call this the collection of ( , )-chains in the filtered chain complex.

Accordingly we have ( , )-cycles and -boundaries. But for these we may furthermore refine to a notion
where also the filtering degree of the boundaries is constrained:

Definition 1.26. Let • • be a filtered chain complex. Its associated graded chain complex is the set of
chain complexes

• ≔ •/ − •

for all .
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Then for , , ∈ ℤ we say that

+  is the module of ( , )-chains or of ( + )-chains in filtering degree ;1. 

the module

, ≔ ∈ + | ∂ = 0mod − •

= ∈ + | ∂( ) ∈ − + − / − +

is the module of -almost ( , )-cycles (the ( + )-chains whose differential vanishes modulo terms
of filtering degree − );

2. 

, ≔ ∂( + − + + ) ,

is the module of -almost ( , )-boundaries.

3. 

Similarly we set

, ≔ { ∈ + | ∂ = 0}/ − + = ( + )

, ≔ ∂( + + ) .

From this definition we immediately have that the differentials ∂ : + → + −  restrict to the -almost
cycles as follows:

Proposition 1.27. The differentials of • restrict on -almost cycles to homomorphisms of the form

∂ : , → − , + − .

These are still differentials: ∂ = 0.

Proof. By the very definition of ,  it consists of elements in filtering degree  on which ∂ decreases the
filtering degree to − . Also by definition of differential on a chain complex, ∂ decreases the actual degree
+  by one. This explains that ∂ restricted to ,  lands in − , + −

• . Now the image constists indeed of
actual boundaries, not just -almost boundaries. But since actual boundaries are in particular -almost
boundaries, we may take the codomain to be − , + − .  ▮

As before, we will in general index these differentials by their codomain and hence write in more detail

∂ , : , → − , + − .

Proposition 1.28. We have a sequence of canonical inclusions

, ↪ , ↪ ⋯ , ↪ , ↪ ⋯ ↪ , ↪ , .

The following observation is elementary, and yet this is what drives the theory of spectral sequences, as it
shows that almost cycles may be computed iteratively by homological means themselves.

Proposition 1.29. The ( + 1)-almost cycles are the ∂ -kernel inside the -almost cycles:

,
+ ≃ ker( , →⎯ − , + − ) .

Proof. An element ∈ +  represents

an element in ,  if ∂ ∈ − + −1. 

an element in ,
+  if even ∂ ∈ − − + − ↪ − + − .2. 

The second condition is equivalent to ∂  representing the 0-element in the quotient

− + − / − − + − . But this is in turn equivalent to ∂  being 0 in

− , + − ⊂ − + − / − − + − .  ▮

With a definition of almost-cycles and almost-boundaries, of course we are now interested in the
corresponding homology groups:

Definition 1.30. For , , ∈ ℤ define the -almost ( , )-chain homology of the filtered complex to be the
quotient of the -almost ( , )-cycles by the -almost ( , )-boundaries, def. 1.26:

, ≔ ,

,

=
∈ + | ∈ − + −

( + − + + )⊕ − +
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By prop. 1.27 the differentials of • restrict on the -almost homology groups to maps

∂ : , → − , + − .

The central property of these -almost homology groups now is their following iterative homological
characterization.

Proposition 1.31. With definition 1.30 we have that • , •
+  is the ∂ -chain homology of • , • :

,
+ =

ker(∂ : , → − , + − )

im(∂ : + , − + → , )
.

Proof. By prop. 1.29.  ▮

This structure on the collection of -almost cycles of a filtered chain complex thus obtained is called a
spectral sequence:

Definition 1.32. A homology spectral sequence of -modules is

a set { , } , , ∈ℤ of -modules;1. 

a set {∂ , : , → − , + − } , , ∈ℤ of homomorphisms2. 

such that

the ∂ s are differentials: ∀ , , (∂ − , + − ∘ ∂ , = 0);1. 

the modules ,
+  are the ∂ -homology of the modules in relative degree :

∀ , , ,
+ ≃

ker(∂ − , + − )

im(∂ , )
.

2. 

One says that • , •  is the -page of the spectral sequence.

Since this turns out to be a useful structure to make explicit, as the above motivation should already
indicate, one introduces the following terminology and basic facts to talk about spectral sequences.

Definition 1.33. Let { , } , ,  be a spectral sequence, def. 1.32, such that for each ,  there is ( , ) such

that for all ≥ ( , ) we have

,
≥ ( , ) ≃ ,

( , ) .

Then one says that

the bigraded object

≔ { , } , ≔ { ,
( , )} ,

is the limit term of the spectral sequence;

1. 

the spectral sequence abuts to .

Example 1.34. If for a spectral sequence there is  such that all differentials on pages after  vanish,
∂ ≥ = 0, then { } ,  is a limit term for the spectral sequence. One says in this cases that the spectral

sequence degenerates at .

Proof. By the defining relation

,
+ ≃ ker(∂ − , + − )/im(∂ , ) =

the spectral sequence becomes constant in  from  on if all the differentials vanish, so that ker(∂ , ) = ,

for all , .  ▮

Example 1.35. If for a spectral sequence { , } , ,  there is ≥ 2 such that the th page is concentrated in

a single row or a single column, then the spectral sequence degenerates on this pages, example 1.34,
hence this page is a limit term, def. 1.33. One says in this case that the spectral sequence collapses on
this page.

Proof. For ≥ 2 the differentials of the spectral sequence

∂ : , → − , + −

have domain and codomain necessarily in different rows an columns (while for = 1 both are in the same
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row and for = 0 both coincide). Therefore if all but one row or column vanish, then all these differentials
vanish.  ▮

Definition 1.36. A spectral sequence { , } , ,  is said to converge to a graded object • with filtering • •,

traditionally denoted

, ⇒ • ,

if the associated graded complex { + } , ≔ { + / − + } of  is the limit term of , def. 1.33:

, ≃ + ∀ , .

Remark 1.37. In practice spectral sequences are often referred to via their first non-trivial page, often also
the page at which it collapses, def. 1.35, often already the second page. Then one tends to use notation
such as

, ⇒ •

to be read as “There is a spectral sequence whose second page is as shown on the left and which
converges to a filtered object as shown on the right.”

Definition 1.38. A spectral sequence { , } is called a bounded spectral sequence if for all , ∈ ℤ the
number of non-vanishing terms of total degree , hence of the form , − , is finite.

Definition 1.39. A spectral sequence { , } is called

a first quadrant spectral sequence if all terms except possibly for , ≥ 0 vanish;

a third quadrant spectral sequence if all terms except possibly for , ≤ 0 vanish.

Such spectral sequences are bounded, def. 1.38.

Proposition 1.40. A bounded spectral sequence, def. 1.38, has a limit term, def. 1.33.

Proof. First notice that if a spectral sequence has at most  non-vanishing terms of total degree  on page
, then all the following pages have at most at these positions non-vanishing terms, too, since these are the

homologies of the previous terms.

Therefore for a bounded spectral sequence for each  there is ( ) ∈ ℤ such that , − = 0 for all ≤ ( ) and
all . Similarly there is ( ) ∈ ℤ such − , = 0 for all ≤ ( ) and all .

We claim then that the limit term of the bounded spectral sequence is in position ( , ) given by the value

,  for

> max( − ( + − 1), + 1 − ( + + 1)) .

This is because for such  we have

− , + − = 0 because − < ( + − 1), and hence the kernel ker(∂ − , + − ) = 0 vanishes;1. 

+ , − + = 0 because − + 1 < ( + + 1), and hence the image im(∂ , ) = 0 vanishes.2. 

Therefore

,
+ = ker(∂ − , + − )/im(∂ , )

≃ , /0

≃ ,

.

  ▮

The central statement about the notion of the spectral sequence of a filtered chain complex then is the
following proposition. It says that the iterative computation of higher order relative homology indeed in the
limit computes the genuine homology.

Definition 1.41. For • • a filtered complex, write for ∈ ℤ

•( ) ≔ image( •( ) → •( )) .

This defines a filtering • •( ) of the homology, regarded as a graded object.

Proposition 1.42. If the spectral sequence of a filtered complex • • of prop. 1.31 has a limit term, def.
1.33 then it converges, def. 1.36, to the chain homology of •
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, ⇒ + ( •) ,

i.e. for sufficiently large  we have

, ≃ + ( ) ,

where on the right we have the associated graded object of the filtering of def. 1.41.

Proof. By assumption, there is for each ,  an ( , ) such that for all ≥ ( , ) the -almost cycles and
-almost boundaries, def. 1.26, in +  are the ordinary cycles and boundaries. Therefore for ≥ ( , )

def. 1.30 gives , ≃ + ( ).  ▮

This says what these spectral sequences are converging to. For computations it is also important to know
how they start out for low . We can generally characterize ,  for very low values of  simply as follows:

Proposition 1.43. We have

, = + = + / − +

is the associated p-graded piece of + ;

, = + ( •)

Proof. For = 0 def. 1.30 restricts to

, =
+

− +
= +

because for ∈ +  we automatically also have ∂ ∈ +  since the differential respects the filtering
degree by assumption.

For = 1 def. 1.30 gives

, =
{ ∈ + | ∂ = 0 ∈ + }

∂( + )
= + ( •) .

  ▮

Remark 1.44. There is, in general, a decisive difference between the homology of the associated graded
complex + ( •) and the associated graded piece of the genuine homology + ( •): in the former
the differentials of cycles are required to vanish only up to terms in lower degree, but in the latter they
are required to vanish genuinely. The latter expression is instead the value of the spectral sequence for
→ ∞, see prop. 1.42 below.

Comparing cellular and singular homology

These general facts now allow us, as a first simple example for the application of spectral sequences to see
transparently that the cellular homology of a CW complex, def. 1.21, coincides with its genuine singular
homology.

First notice that of course the structure of a CW-complex on a topological space , def. 1.18 naturally
induces on its singular simplicial complex •( ) the structure of a filtered chain complex, def. 1.24:

Definition 1.45. For ↪ ↪ ⋯ ↪  a CW complex, and ∈ ℕ, write

•( ) ≔ •( )

for the singular chain complex of ↪ . The given topological subspace inclusions ↪ +  induce chain
map inclusions •( ) ↪ + •( ) and these equip the singular chain complex •( ) of  with the
structure of a bounded filtered chain complex

0 ↪ •( ) ↪ •( ) ↪ •( ) ↪ ⋯ ↪ •( ) ≔ •( ) .

(If  is of finite dimension dim  then this is a bounded filtration.)

Write { , ( )} for the spectral sequence of a filtered complex corresponding to this filtering.

Proposition 1.46. The spectral sequence { , ( )} of singular chains in a CW complex , def. 1.45
converges, def. 1.36, to the singular homology of :

, ( ) ⇒ •( ) .

Proof. The spectral sequence { , ( )} is clearly a first-quadrant spectral sequence, def. 1.39. Therefore it is
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a bounded spectral sequence, def. 1.38 and hence has a limit term, def. 1.40. So the statement follows with
prop. 1.42.  ▮

We now identify the low-degree pages of { , ( )} with structures in singular homology theory.

Proposition 1.47.

= 0 – , ( ) ≃ + ( )/ + ( − ) is the group of − -relative (p+q)-chains, def. 1.1, in ;

= 1 – , ( ) ≃ + ( , − ) is the − -relative singular homology, def. 1.1, of ;

= 2 – , ( ) ≃
( ) for = 0

0 otherwise

= ∞ – , ( ) ≃ + ( )/ − + ( ).

Proof. By straightforward and immediate analysis of the definitions.  ▮

As a result of these general considerations we now obtain the promised isomorphism between the cellular
homology and the singular homology of a CW-complex :

Theorem 1.48. For ∈ Top a CW complex, def. 1.18, its cellular homology, def. 1.21 • ( ) coincides with
its singular homology •( ):

• ( ) ≃ •( ) .

Proof. By the third item of prop. 1.47 the ( = 2)-page of the spectral sequence { , ( )} is concentrated in
the ( = 0)-row and hence it collapses there, def. 1.35. Accordingly we have

, ( ) ≃ , ( )

for all , . By the third and fourth item of prop. 1.47 this non-trivial only for = 0 and there it is equivalently

( ) ≃ ( ) .

Finally observe that ( ) ≃ ( ) by the definition of the filtering on the homology, def. 1.41, and using
prop. 1.20.  ▮

2. For filtered spectra

Definition 2.1. A filtered spectrum is a spectrum  equipped with a sequence • : (ℕ, > ) ⟶ Spectra of spectra
of the form

⋯⟶ ⟶ ⟶ ⟶ = .

Remark 2.2. More generally a filtering on an object  in (stable or not) homotopy theory is a ℤ-graded
sequence • such that  is the homotopy colimit ≃ lim→⎯⎯ •. But for the present purpose we stick with the

simpler special case of def. 2.1.

Remark 2.3. There is no condition on the morphisms in def. 2.1. In particular, they are not required to be
n-monomorphisms or n-epimorphisms for any .

On the other hand, while they are also not explicitly required to have a presentation by cofibrations or
fibrations, this follows automatically: by the existence of model structures for spectra, every filtering on a
spectrum is equivalent to one in which all morphisms are represented by cofibrations or by fibrations.

This means that we may think of a filtration on a spectrum  in the sense of def. 2.1 as equivalently being
a tower of fibrations over .

The following remark 2.4 unravels the structure encoded in a filtration on a spectrum, and motivates the
concepts of exact couples and their spectral sequences from these.

Remark 2.4. Given a filtered spectrum as in def. 2.1, write  for the homotopy cofiber of its th stage,
such as to obtain the diagram

⋯ ⟶ ⟶ ⟶ ⟶

↓ ↓ ↓ ↓

where each stage
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+ ⟶

↓ ( )

is a homotopy fiber sequence.

To break this down into invariants, apply the stable homotopy groups-functor (def.). This yields a diagram
of ℤ-graded abelian groups of the form

⋯ ⟶ •( ) →⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯
•( )

•( )

↓ ↓ ↓ ↓

•( ) •( ) •( ) •( )

.

Each hook at stage  extends to a long exact sequence of homotopy groups (prop.) via connecting
homomorphisms •

⋯ → • + ( ) →⎯⎯⎯• + •( + ) →⎯⎯⎯⎯
•( )

•( ) ⟶ •( ) ⟶• • − ( + ) → ⋯ .

If we understand the connecting homomorphism

: •( ) ⟶ •( + )

as a morphism of degree -1, then all this information fits into one diagram of the form

⋯ ⟶ •( ) →⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯
•( )

•( ) →⎯⎯⎯⎯
•( )

•( )

↓ ↖ ↓ ↖ ↓ ↖ ↓

•( ) •( ) •( ) •( )

,

where each triangle is a rolled-up incarnation of a long exact sequence of homotopy groups (and in
particular is not a commuting diagram!).

If we furthermore consider the bigraded abelian groups •( •) and •( •), then this information may
further be rolled-up to a single diagram of the form

•( •) →⎯⎯⎯⎯•
( •)

•( •)

↖ ↓ •( ( •))

•( •)

where the morphisms •( •), •(cofib( •)) and  have bi-degree (0, −1), (0, 0) and (−1, 1), respectively.

Here it is convenient to shift the bigrading, equivalently, by setting

, ≔ − ( )
ℰ , ≔ − ( ) ,

because then  counts the cycles of going around the triangles:

⋯ → + , + →⎯⎯⎯⎯⎯⎯
− ( ) , →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

− ( ( ))
ℰ , ⟶ + , → ⋯

Data of this form is called an exact couple, def. 2.6 below.

Definition 2.5. An unrolled exact couple (of Adams-type) is a diagram of abelian groups of the form

⋯ ⟶ , • ⟶ , • ⟶ , • ⟶ , •

↓ ↖ ↓ ↖ ↓ ↖ ↓

ℰ , • ℰ , • ℰ , • ℰ , •

such that each triangle is a rolled-up long exact sequence of abelian groups of the form

⋯ → + , + ⟶ , ⟶ ℰ , ⟶ + , → ⋯ .

The collection of this “un-rolled” data into a single diagram of abelian groups is called the corresponding
exact couple.

Definition 2.6. An exact couple is a diagram (non-commuting) of abelian groups of the form
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⟶

↖ ↓

ℰ

,

such that this is exact sequence exact in each position, hence such that the kernel of every morphism is
the image of the preceding one.

The concept of exact couple so far just collects the sequences of long exact sequences given by a filtration.
Next we turn to extracting information from this sequence of sequences.

Remark 2.7. The sequence of long exact sequences in remark 2.4 is inter-locking, in that every − ( )
appears twice:

↘ ↗

− − ( + )

− ↗ ↘ − − ( ( + )) ↗

− ( ) →⎯⎯⎯⎯⎯⎯
: , − − ( + ) →⎯⎯⎯⎯⎯⎯⎯⎯

: + ,

− − ( + )

↗
− −
+ ↘ ↗

− − ( ( + ))

− − ( + )

↗ ↘

This gives rise to the horizontal composites , , as show above, and by the fact that the diagonal
sequences are long exact, these are differentials: = 0, hence give a chain complex:

⋯ ⟶ − ( ) →⎯⎯
,

− − ( + ) →⎯⎯⎯⎯⎯
+ ,

− − ( + ) ⟶ ⋯ .

We read off from the interlocking long exact sequences what these differentials mean: an element
∈ − ( ) lifts to an element ^ ∈ − − ( + ) precisely if = 0:

^ ∈ − − ( + )

↘ − − ( + )

− − ( + )

− ↗ ↘ − − ( ( + ))

∈ − ( ) →⎯⎯
, − − ( + )

This means that the cochain cohomology of the complex ( •( •), ) produces elements of •( •) and hence
of •( ).

In order to organize this observation, notice that in terms of the exact couple of remark 2.4, the
differential

, ≔ − − (cofib( + )) ∘ −

is a component of the composite

≔ ∘ .

Some terminology:

Definition 2.8. Given an exact couple, def. 2.6,

• , • ⟶ • , •

↖ ↓

ℰ • , •

its page is the chain complex

( • , • , ≔ ∘ ) .

Definition 2.9. Given an exact couple, def. 2.6, then the induced derived exact couple is the diagram
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˜ ⟶
˜
˜

˜ ↖ ↓
˜

ℰ̃

with

ℰ̃ ≔ ker( )/im( );1. 

˜ ≔ im( );2. 

˜ ≔ | ( );3. 

˜ ≔ ∘ (im( ))− ;4. 

˜ ≔ | ( ).5. 

Proposition 2.10. A derived exact couple, def. 2.9, is again an exact couple, def. 2.6.

Definition 2.11. Given an exact couple, def. 2.6, then the induced spectral sequence, def. 1.32, is the
sequence of pages, def. 2.8, of the induced sequence of derived exact couples, def. 2.9, prop. 2.10.

Example 2.12. Consider a filtered spectrum, def. 2.1,

⋯ ⟶ ⟶ ⟶ ⟶

↓ ↓ ↓ ↓

and its induced exact couple of stable homotopy groups, from remark 2.4

⟶

↖ ↓

ℰ

→⎯⎯⎯⎯⎯⎯
(− , − )

( , ) ↖ ↓( , )

ℰ

with bigrading as shown on the right.

As we pass to derived exact couples, by def. 2.9, the
bidegree of  and  is preserved, but that of  increases by
(1, 1) in each step, since

deg( ˜) = deg( ∘ im( )− ) = deg( ) + (1, 1) .

Therefore the induced spectral sequence has differentials of
the form

: ℰ , ⟶ ℰ + , + − .

This is also called the Adams-type spectral sequence of the
tower of fibrations + → .

This we discuss in detail in part 2 -- Adams spectral sequences.

3. References

A gentle exposition of the general idea of spectral sequences is in
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A concise account streamlined for our purposes is in section 2 of

John Rognes, The Adams spectral sequence (following Bruner), 2012 (pdf)
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