This page is a detailed introduction to basic topology. Starting from scratch (required background is just a basic concept of sets), and amplifying motivation from analysis, it first develops standard point-set topology (topological spaces). In passing, some basics of category theory make an informal appearance, used to transparently summarize some conceptually important aspects of the theory, such as initial and final topologies and the reflection into Hausdorff and sober topological spaces. The second part introduces some basics of homotopy theory, mostly the fundamental group, and ends with their first application to the classification of covering spaces.

main page: Introduction to Topology

this chapter: Introduction to Topology 1 – Point-set topology

next chapter: Introduction to Topology 2 -- Basic Homotopy Theory

For introduction to more general and abstract homotopy theory see instead at Introduction to Homotopy Theory.

Point-set Topology

1. Metric spaces
 Continuity
 Compactness
2. Topological spaces
 Examples
 Closed subsets
3. Continuous functions
 Examples
 Homeomorphisms
4. Separation axioms
 T_n spaces
 T_n reflection
5. Sober spaces
 Frames of opens

Context

Topology
The idea of topology is to study “spaces” with “continuous functions” between them. Specifically one considers functions between sets (whence “point-set topology”, see below) such that there is a concept for what it means that these functions depend continuously on their arguments, in that that their values do not “jump”. Such a concept of continuity is familiar from analysis on metric spaces, (recalled below) but the definition in topology generalizes this analytic concept and renders it more foundational, generalizing the concept of metric spaces to that of topological spaces. (def. 2.2 below).

Hence topology is the study of the category whose objects are topological spaces, and whose morphisms are continuous functions (see also remark 3.3 below). This category is much more flexible than that of metric spaces, for example it admits the construction of arbitrary quotients and intersections of spaces. Accordingly, topology underlies or informs many and diverse areas of mathematics, such as functional analysis, operator algebra, manifold/scheme theory, hence algebraic geometry and differential geometry, and the study of topological groups, topological vector spaces, local rings, etc.. Not the least, it gives rise to the field of homotopy theory, where one considers also continuous deformations of continuous functions themselves (“homotopies”). Topology itself has many branches, such as low-dimensional topology or topological domain theory.

A popular imagery for the concept of a continuous function is provided by deformations of elastic physical bodies, which may be deformed by stretching them without tearing. The canonical illustration is a continuous bijective function from the torus to the surface of a coffee mug, which maps half of the torus to the handle of the coffee mug, and continuously deforms parts of the other half in order to form the actual cup. Since the inverse function to this function is itself continuous, the torus and the coffee mug, both regarded as topological spaces, are “the same” for the purposes of topology, one says they are homeomorphic.

On the other hand, there is no homeomorphism from the torus to, for instance, the sphere, signifying that these represent two topologically distinct spaces. Part of topology is concerned with studying homeomorphism-invariants of topological spaces which allow to detect by means of algebraic manipulations whether two topological spaces are homeomorphic (or more generally homotopy equivalent). This is called algebraic topology. A basic algebraic invariant is the fundamental group of a topological space (discussed below), which measures how many ways there are to wind loops inside a topological space.

Beware that the popular imagery of “rubber-sheet geometry” only captures part
of the full scope of topology, in that it invokes spaces that \textit{locally} still look like \textbf{metric spaces}. But the concept of topological spaces is a good bit more general. Notably \textbf{finite topological spaces} are either \textit{discrete} or very much unlike \textbf{metric spaces} (example 4.3 below), they play a role in \textbf{categorical logic}. Also in \textbf{geometry} exotic topological spaces frequently arise when forming non-free \textit{quotients}. In order to gauge just how many of such “exotic” examples of topological spaces beyond locally \textbf{metric spaces} one wishes to admit in the theory, extra \"\textit{separation axioms}\" are imposed on topological spaces (see below), and the flavour of topology as a field depends on this choice.

Among the separation axioms, the \textbf{Hausdorff space} axiom is most popular (see below) the weaker axiom of \textit{soberness} (see below) stands out, on the one hand because this is the weakest axiom that is still naturally satisfied in applications to \textbf{algebraic geometry} (schemes are sober) and \textbf{computer science} (Vickers 89) and on the other hand because it fully realizes the strong roots that topology has in \textbf{formal logic}: \textit{sober topological spaces} are entirely characterized by the union-, intersection- and inclusion-relations (logical \textit{conjunction}, \textit{disjunction} and \textit{implication}) among their \textbf{open subsets} (\textit{propositions}). This leads to a natural and fruitful generalization of \textbf{topology} to more general \textit{“purely logic-determined spaces”}, called \textit{locales} and in yet more generality \textbf{toposes} and \textbf{higher toposes}. While the latter are beyond the scope of this introduction, their rich theory and relation to the \textbf{foundations} of mathematics and geometry provides an outlook on the relevance of the basic ideas of \textbf{topology}.

In this first part we discuss the foundations of the concept of \textit{“sets equipped with topology”} (\textbf{topological spaces}) and of \textbf{continuous functions} between them.

\section{Metric spaces}

The concept of continuity was made precise first in \textbf{analysis}, in terms of \textbf{epsilontic analysis} of \textit{open balls}, recalled as def. 1.8 below. Then it was realized that this has a more elegant formulation in terms of the more general concept of \textbf{open sets}, this is prop. 1.12 below. Adopting the latter as the definition leads to a more abstract concept of \textit{“continuous space”}, this is the concept of \textbf{topological spaces}, def. 2.2 below.

Here we briefly recall the relevant basic concepts from \textbf{analysis}, as a motivation for various definitions in \textbf{topology}. The reader who either already recalls these concepts in analysis or is content with ignoring the motivation coming from analysis should skip right away to the section \textbf{Topological spaces}.

\textbf{Definition 1.1. (metric space)}

A \textbf{metric space} is

1. a \textit{set} \(X\) (the \"underlying set\“);

2. a \textit{function} \(d : X \times X \to [0, \infty)\) (the \"distance function\“) from the \textbf{Cartesian}
product of the set with itself to the non-negative real numbers

such that for all \(x, y, z \in X\):

1. (symmetry) \(d(x, y) = d(y, x)\)
2. (triangle inequality) \(d(x, y) + d(y, z) \geq d(x, z)\).
3. (non-degeneracy) \(d(x, y) = 0 \iff x = y\)

Definition 1.2. Let \((X, d)\), be a **metric space**. Then for every element \(x \in X\) and every \(\epsilon \in \mathbb{R}_+\) a **positive real number**, we write

\[
B^o_x(\epsilon) := \{y \in X | d(x, y) < \epsilon\}
\]

for the open ball of radius \(\epsilon\) around \(x\). Similarly we write

\[
B_x(\epsilon) := \{y \in X | d(x, y) \leq \epsilon\}
\]

for the closed ball of radius \(\epsilon\) around \(x\). Finally we write

\[
S_x(\epsilon) := \{y \in X | d(x, y) = \epsilon\}
\]

for the sphere of radius \(\epsilon\) around \(x\).

For \(\epsilon = 1\) we also speak of the **unit open/closed ball** and the **unit sphere**.

Definition 1.3. For \((X, d)\) a **metric space** (def. 1.1) then a **subset** \(S \subset X\) is called a **bounded subset** if \(S\) is contained in some open ball (def. 1.2)

\[
S \subset B^o_x(r)
\]

around some \(x \in X\) of some radius \(r \in \mathbb{R}\).

A key source of metric spaces are **normed vector spaces**:

Definition 1.4. **(normed vector space)**

A **normed vector space** is

1. a **real vector space** \(V\);
2. a function (the **norm**)

\[
\| - \| : V \to \mathbb{R}
\]

from the underlying set of \(V\) to the **real numbers**, such that for all \(c \in \mathbb{R}, v, w \in V\) it holds true that

1. (linearity) \(\|cv\| = c\|v\|\);
2. (triangle inequality) \(\|v + w\| \leq \|v\| + \|w\|\);
3. (non-degeneracy) if \(\|v\| = 0 \) then \(v = 0 \).

Proposition 1.5. Every normed vector space \((V, \|\cdot\|)\) becomes a metric space according to def. 1.1 by setting

\[
d(x, y) := \|x - y\|.
\]

Examples of normed vector spaces (def. 1.4) and hence, via prop. 1.5, of metric spaces include the following:

Example 1.6. For \(n \in \mathbb{N} \), the Cartesian space

\[
\mathbb{R}^n = \{ \mathbf{x} = (x_i)_{i=1}^n \mid x_i \in \mathbb{R} \}
\]

carries a norm (the Euclidean norm) given by the square root of the sum of the squares of the components:

\[
\|\mathbf{x}\| := \sqrt{\sum_{i=1}^n (x_i)^2}.
\]

Via prop. 1.5 this gives \(\mathbb{R}^n \) the structure of a metric space, and as such it is called the Euclidean space of dimension \(n \).

Example 1.7. More generally, for \(n \in \mathbb{N} \), and \(p \in \mathbb{R}, \, p \geq 1 \), then the Cartesian space \(\mathbb{R}^n \) carries the \(p \)-norm

\[
\|\mathbf{x}\|_p := \sqrt[p]{\sum_i |x_i|^p}
\]

One also sets

\[
\|\mathbf{x}\|_\infty := \max_{i \in I} |x_i|
\]

and calls this the supremum norm.

The graphics on the right (grabbed from Wikipedia) shows unit circles (def. 1.2) in \(\mathbb{R}^2 \) with respect to various \(p \)-norms.

By the Minkowski inequality, the \(p \)-norm generalizes to non-finite dimensional vector spaces such as sequence spaces and Lebesgue spaces.

Continuity

The following is now the fairly obvious definition of continuity for functions between metric spaces.

Definition 1.8. (epsilonic definition of continuity)

For \((X, d_X)\) and \((Y, d_Y)\) two metric spaces (def. 1.1), then a function
is said to be \textit{continuous at a point} $x \in X$ if for every positive real number ε there exists a positive real number δ such that for all $x' \in X$ that are a distance $< \delta$ from x then their image $f(x')$ is a distance at most ε from $f(x)$:

$$
(f \text{ continuous at } x) \equiv \forall \varepsilon \in \mathbb{R} \left(\exists \delta > 0 \left((d_X(x, x') < \delta) \Rightarrow (d_Y(f(x), f(x')) < \varepsilon) \right) \right).
$$

The function f is said to be \textit{continuous} if it is continuous at every point $x \in X$.

\textbf{Example 1.9. (polynomials are continuous functions)}

Consider the real line \mathbb{R} regarded as the 1-dimensional Euclidean space \mathbb{R} from example 1.6.

For $P \in \mathbb{R}[X]$ a polynomial, then the function

$$
f_P : \mathbb{R} \to \mathbb{R}
$$

$$
x \mapsto P(x)
$$

is a \textit{continuous function} in the sense of def. 1.8.

On the other hand, a \textit{step function} is continuous everywhere except at the \textit{finite number} of points at which it changes its value, see example 1.13 below.

We now reformulate the analytic concept of continuity from def. 1.8 in terms of the simple but important concept of \textit{open sets}:

\textbf{Definition 1.10. (neighbourhood and open set)}

Let (X, d) be a \textit{metric space} (def. 1.1). Say that

1. A \textit{neighbourhood} of a point $x \in X$ is a subset $U_x \subset X$ which contains some open ball $B_x^*(\varepsilon) \subset U_x$ around x (def. 1.2).

2. An \textit{open subset} of X is a subset $U \subset X$ such that for every $x \in U$ it also contains an open ball $B_x^*(\varepsilon)$ around x (def. 1.2).

3. An \textit{open neighbourhood} of a point $x \in X$ is a neighbourhood U_x of x which is also an open subset, hence equivalently this is any open subset of X that contains x.

The following picture shows a point x, some open balls B_i containing it, and two of its neighbourhoods U_i:
Example 1.11. (open/closed intervals)

Regard the real numbers \mathbb{R} as the 1-dimensional Euclidean space (example 1.6).

For $a < b \in \mathbb{R}$ consider the following subsets:

1. $(a, b) := \{ x \in \mathbb{R} | a < x < b \}$ (open interval)
2. $(a, b] := \{ x \in \mathbb{R} | a < x \leq b \}$ (half-open interval)
3. $[a, b) := \{ x \in \mathbb{R} | a \leq x < b \}$ (half-open interval)
4. $[a, b] := \{ x \in \mathbb{R} | a \leq x \leq b \}$ (closed interval)

The first of these is an open subset according to def. 1.10, the other three are not. The first one is called an open interval, the last one a closed interval and the middle two are called half-open intervals.

Similarly for $a, b \in \mathbb{R}$ one considers

1. $(-\infty, b) := \{ x \in \mathbb{R} | x < b \}$ (unbounded open interval)
2. $(a, \infty) := \{ x \in \mathbb{R} | a < x \}$ (unbounded open interval)
3. $(-\infty, b] := \{ x \in \mathbb{R} | x \leq b \}$ (unbounded half-open interval)
4. $[a, \infty) := \{ x \in \mathbb{R} | a \leq x \}$ (unbounded half-open interval)

The first two of these are open subsets, the last two are not.

For completeness we may also consider

- $(-\infty, \infty) = \mathbb{R}$
which are both open, according to def. 2.2.

We may now rephrase the analytic definition of continuity entirely in terms of open subsets (def. 1.10):

Proposition 1.12. (rephrasing continuity in terms of open sets)

Let \((X, d_X)\) and \((Y, d_Y)\) be two metric space (def. 1.1). Then a function \(f : X \to Y\) is continuous in the epsilontic sense of def. 1.8 precisely if it has the property that its pre-images of open subsets of \(Y\) (in the sense of def. 1.10) are open subsets of \(X\):

\[
(f \text{ continuous}) \iff ((O_Y \subset Y \text{ open}) \Rightarrow (f^{-1}(O_Y) \subset X \text{ open})).
\]

principle of continuity

Continuous pre-Images of open subsets are open.

Proof. Observe, by direct unwinding the definitions, that the epsilontic definition of continuity (def. 1.8) says equivalently in terms of open balls (def. 1.2) that \(f\) is continuous at \(x\) precisely if for every open ball \(B^o_{f(x)}(\epsilon)\) around an image point, there exists an open ball \(B^o_X(\delta)\) around the corresponding pre-image point which maps into it:

\[
(f \text{ continuous at } x) \iff \forall \epsilon > 0 \left(\exists \delta > 0 (f(B^o_X(\delta)) \subset B^o_{f(x)}(\epsilon)) \right).
\]

With this observation the proof immediate. For the record, we spell it out:

First assume that \(f\) is continuous in the epsilontic sense. Then for \(O_Y \subset Y\) any open subset and \(x \in f^{-1}(O_Y)\) any point in the pre-image, we need to show that there exists an open neighbourhood of \(x\) in \(f^{-1}(O_Y)\).

That \(O_Y\) is open in \(Y\) means by definition that there exists an open ball \(B^o_Y(x)(\epsilon)\) in \(O_Y\) around \(f(x)\) for some radius \(\epsilon\). By the assumption that \(f\) is continuous and using the above observation, this implies that there exists an open ball \(B^o_X(\delta)\) in \(X\) such that \(f(B^o_X(\delta)) \subset B^o_Y(x)(\epsilon) \subset Y\), hence such that \(B^o_X(\delta) \subset f^{-1}(B^o_Y(x)(\epsilon)) \subset f^{-1}(O_Y)\). Hence this is an open ball of the required kind.

Conversely, assume that the pre-image function \(f^{-1}\) takes open subsets to open subsets. Then for every \(x \in X\) and \(B^o_X(x)(\epsilon) \subset Y\) an open ball around its image, we need to produce an open ball \(B^o_X(\delta) \subset X\) around \(x\) such that \(f(B^o_X(\delta)) \subset B^o_Y(x)(\epsilon)\).
But by definition of open subsets, \(B^*_f(x)(\epsilon) \subset Y \) is open, and therefore by assumption on \(f \) its pre-image \(f^{-1}(B^*_f(x)(\epsilon)) \subset X \) is also an open subset of \(X \). Again by definition of open subsets, this implies that it contains an open ball as required. □

Example 1.13. (step function)

Consider \(\mathbb{R} \) as the 1-dimensional **Euclidean space** (example 1.6) and consider the **step function**

\[
\begin{align*}
\mathbb{R} & \to \mathbb{R} \\
\chi & \mapsto \begin{cases}
0 & |x| \leq 0 \\
1 & |x| > 0
\end{cases}
\end{align*}
\]

graphics grabbed from Vickers 89

Consider then for \(a < b \in \mathbb{R} \) the **open interval** \((a, b) \subset \mathbb{R} \), an **open subset** according to example 1.11. The **preimage** \(H^{-1}(a, b) \) of this open subset is

\[
H^{-1} : (a, b) \mapsto \begin{cases}
\emptyset & |a| \geq 1 \text{ or } b \leq 0 \\
\mathbb{R} & a < 0 \text{ and } b > 1 \\
\emptyset & |a| \geq 0 \text{ and } b \leq 1 \\
(0, \infty) & 0 \leq a < 1 \text{ and } b > 1 \\
(-\infty, 0] & a < 0 \text{ and } b \leq 1
\end{cases}
\]

By example 1.11, all except the last of these pre-images listed are open subsets.

The failure of the last of the pre-images listed to be open witnesses that the step function is not continuous at \(x = 0 \).

Compactness

A key application of **metric spaces** in **analysis** is that they allow a formalization of what it means for an infinite **sequence** of elements in the metric space (def. 1.14 below) to **converge** to a **limit of a sequence** (def. 1.15). Of particular interest are therefore those metric spaces for which each sequence has a converging subsequence: the **sequentially compact metric spaces** (def. 1.18).

We now briefly recall these concepts from **analysis**. Then, in the above spirit, we reformulate the epsilontic definition of sequential compactness equivalently in terms of **open subsets**. This gives a useful definition that generalizes to **topological spaces**, the **compact topological spaces** discussed further below.

Definition 1.14. (sequence)
Given a set X, then a sequence of elements in X is a function

$$x_{(-)} : \mathbb{N} \rightarrow X$$

from the natural numbers to X.

A sub-sequence of such a sequence is a sequence of the form

$$x_{i(-)} : \mathbb{N} \hookrightarrow \mathbb{N} \rightarrow X$$

for some injection i.

Definition 1.15. (convergence to limit of a sequence)

Let (X, d) be a metric space (def. 1.1). Then a sequence

$$x_{(-)} : \mathbb{N} \rightarrow X$$

in the underlying set X (def. 1.14) is said to converge to a point $x_{\infty} \in X$, denoted

$$x_{i \rightarrow \infty} \rightarrow x_{\infty}$$

if for every positive real number ϵ, there exists a natural number n, such that all elements in the sequence after the nth one have distance less than ϵ from x_{∞}.

$$(x_{i \rightarrow \infty} \rightarrow x_{\infty}) \Leftrightarrow \left(\forall \epsilon \in \mathbb{R} \exists n \in \mathbb{N} \left(\forall i \in \mathbb{N} \left(i > n \Longrightarrow d(x_{i}, x_{\infty}) \leq \epsilon \right) \right) \right).$$

Here the point x_{∞} is called the limit of the sequence. Often one writes $\lim_{i \rightarrow \infty} x_{i}$ for this point.

Definition 1.16. (Cauchy sequence)

Given a metric space (X, d) (def. 1.1), then a sequence of points in X (def. 1.14)

$$x_{(-)} : \mathbb{N} \rightarrow X$$

is called a Cauchy sequence if for every positive real number ϵ there exists a natural number $n \in \mathbb{N}$ such that the distance between any two elements of the sequence beyond the nth one is less than ϵ

$$(x_{(-)} \text{ Cauchy}) \Leftrightarrow \left(\forall \epsilon \in \mathbb{R} \exists n \in \mathbb{N} \left(\forall j \in \mathbb{N} \left(i, j > n \Longrightarrow d(x_{i}, x_{j}) \leq \epsilon \right) \right) \right).$$

Definition 1.17. (complete metric space)

A metric space (X, d) (def. 1.1), for which every Cauchy sequence (def. 1.16) converges (def. 1.15) is called a complete metric space.
A **normed vector space**, regarded as a metric space via prop. 1.5 that is complete in this sense is called a **Banach space**.

Finally recall the concept of **compactness** of **metric spaces** via **epsilontic analysis**:

Definition 1.18. (sequentially compact metric space)

A **metric space** (X,d) (def. 1.1) is called **sequentially compact** if every **sequence** in X has a subsequence (def. 1.14) which **converges** (def. 1.15).

The key fact to translate this **epsilontic** definition of compactness to a concept that makes sense for general **topological space** (below) is the following:

Proposition 1.19. (sequentially compact metric spaces are equivalently compact metric spaces)

For a **metric space** (X,d) (def. 1.1) the following are equivalent:

1. X is sequentially compact;

2. for every set $\{U_i \subset X\}_{i \in I}$ of open subsets U_i of X (def. 1.10) which cover X in that $X = \bigcup_{i \in I} U_i$, then there exists a finite subset $J \subset I$ of these open subsets which still covers X in that also $X = \bigcup_{i \in J \subset I} U_i$.

The **proof** of prop. 1.19 is most conveniently formulated with some of the terminology of topology in hand, which we introduce now. Therefore we postpone the proof to below.

In **summary** prop. 1.12 and prop. 1.19 show that the purely combinatorial and in particular non-**epsilontic** concept of **open subsets** captures a substantial part of the nature of **metric spaces** in **analysis**. This motivates to reverse the logic and consider “**spaces**” which are only characterized by what counts as their open subsets. These are the **topological spaces** which we turn to now in def. 2.2 (or, more generally, these are the “**locales**”, which we briefly remark on further below in remark 5.6).

2. Topological spaces

Due to prop. 1.12 we should pay attention to **open subsets** in **metric spaces**. It turns out that the following closure property is what characterizes the concept:

Proposition 2.1. (closure properties of open sets in a metric space)

The collection of **open subsets** of a **metric space** (X,d) as in def. 1.10 has the following properties:

1. The **union** of any **set** of open subsets is again an open subset.
2. The **intersection** of any **finite number** of open subsets is again an open subset.

In particular
- the **empty set** is open (being the union of no subsets)

and
- the **whole set** \(X \) itself is open (being the intersection of no subsets).

Proposition 2.1 motivates the following generalized definition, which abstracts away from the concept of **metric space** just its system of **open subsets**:

Definition 2.2. (topological spaces)

Given a set \(X \), then a **topology** on \(X \) is a collection \(\tau \) of **subsets** of \(X \) called the **open subsets**, hence a **subset** of the **power set**

\[
\tau \subset P(X)
\]

such that this is closed under forming

1. finite **intersections**;
2. arbitrary **unions**.

A set \(X \) equipped with such a **topology** is called a **topological space**.

Remark 2.3. In the field of **topology** it is common to eventually simply say “space” as shorthand for “**topological space**”. This is especially so as further qualifiers are added, such as “Hausdorff space” (def. 4.1 below). But beware that there are other kinds of **spaces** in mathematics.

Remark 2.4. The simple definition of **open subsets** in def. 2.2 and the simple implementation of the **principle of continuity** below in def. 3.1 gives the field of **topology** its fundamental and universal flavor. The combinatorial nature of these definitions makes topology be closely related to **formal logic**. This becomes more manifest still for the “**sober topological space**” discussed below. For more on this perspective see also the remark on **locale** below, remark 5.6. An introductory textbook amplifying this perspective is (**Vickers 89**).

Here is some common **further terminology** regarding topological spaces:

There is an evident **partial ordering** on the set of topologies that a given set may carry:

Definition 2.5. (finer/coarser topologies)

Let \(X \) be a **set**, and let \(\tau_1, \tau_2 \in P(X) \) be two **topologies** on \(X \), hence two choices of **open subsets** for \(X \), making it a **topological space**. If
hence if every open subset of X with respect to τ_1 is also regarded as open by τ_2, then one says that

- the topology τ_2 is **finer** than the topology τ_2
- the topology τ_1 is **coarser** than the topology τ_1.

With any kind of **structure** on sets, it is of interest how to “**generate**” such structures from a small amount of data:

Definition 2.6. (basis for the topology)

Let (X, τ) be a **topological space**, def. 2.2, and let

$$\beta \subset \tau$$

be a **subset** of its set of **open subsets**. We say that

1. β is a **basis for the topology** if every open subset $O \in \tau$ is a **union** of elements of β;

2. β is a **sub-basis for the topology** if every open subset $O \in \tau$ is a **union** of **finite intersections** of elements of β.

Often it is convenient to define topologies by defining some (sub-)basis (def. 2.6). Examples are the the **metric topology** below def. 2.8, the **binary product topology** below in def. 2.15 below, and the **compact-open topology** on **mapping spaces** below in def. 6.11. To make use of this, we need to recognize sets of open subsets that serve as the basis for some topology:

Lemma 2.7. Let X be a set.

1. A collection $\beta \subset P(X)$ of **subsets** of X is a **basis** for some topology $\tau \subset P(X)$ (def. 2.6) precisely if

 1. every point of X is contained in at least one element of β;

 2. for every two subsets $B_1, B_2 \in \beta$ and for every point $x \in B_1 \cap B_2$ in their intersection, then there exists a $B \in \beta$ that contains x and is contained in the intersection: $x \in B \subset B_1 \cap B_2$.

2. A subset $B \subset \tau$ of opens is a sub-basis for a topology τ on X precisely if τ is the coarsest topology (def. 2.5) which contains B.

Examples

We discuss some basic examples of **topological spaces** (def. 2.2).

Our motivating example now reads as follows:
Example 2.8. (metric topology)

Let (X, d) be a metric space (def. 1.1). Then the collection of its open subsets in def. 1.10 constitutes a topology on the set X, making it a topological space in the sense of def. 2.2. This is called the metric topology.

The open balls in a metric space constitute a basis of a topology (def. 2.6) for the metric topology.

While the example of metric space topologies (example 2.8) is the motivating example for the concept of topological spaces, it is important to notice that the concept of topological spaces is considerably more general, as some of the following examples show.

The following simple example of a (metric) topological space is important for the theory:

Example 2.9. (the point)

On a singleton set $\{1\}$ there exists a unique topology τ making it a topological space according to def. 2.2, namely

$$\tau := \{\emptyset, \{1\}\}.$$

We write

$$* := (\{1\}, \emptyset, \{1\})$$

for this topological space and call it the point.

Of course this is equivalently the metric topology (example 2.8) on \mathbb{R}^0, regarded as the 0-dimensional Euclidean space (example 1.6).

Example 2.10. On the 2-element set $\{0, 1\}$ there are (up to permutation of elements) three distinct topologies:

1. the codiscrete topology (def. 2.12) $\tau = \{\emptyset, \{0, 1\}\};$
2. the discrete topology (def. 2.12), $\tau = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\};$
3. the Sierpinski space topology $\tau = \{\emptyset, \{1\}, \{0, 1\}\}.$

Example 2.11. The following shows all the topologies on the 3-element set (up to permutation of elements)
Example 2.12. (discrete and co-discrete topology)

Let \(S \) be any set. Then there are always the following two extreme possibilities of equipping \(X \) with a topology \(\tau \subset P(X) \) in the sense of def. 2.2, and hence making it a \textit{topological space}:

1. \(\tau := P(S) \) the set of \textit{all} open subsets;

 this is called the \textit{discrete topology} on \(S \), it is the \textit{finest topology} (def. 2.5) on \(X \),

 we write \(\text{Disc}(S) \) for the resulting topological space;

2. \(\tau := \{ \emptyset, S \} \) the set containing only the \textit{empty} subset of \(S \) and all of \(S \) itself;

 this is called the \textit{codiscrete topology} on \(S \), it is the \textit{coarsest topology} (def. 2.5) on \(X \)

 we write \(\text{CoDisc}(S) \) for the resulting topological space.

The reason for this terminology is best seen when considering \textit{continuous functions} into or out of these (co-)discrete topological spaces, we come to this in example 3.14 below.

Example 2.13. Given a set \(X \), then the \textit{cofinite topology} or \textit{finite complement topology} on \(X \) is the \textit{topology} (def. 2.2) whose \textit{open subsets} are precisely

1. all \textit{cofinite subsets} \(S \subset X \) (i.e. those such that the \textit{complement} \(X \setminus S \) is a \textbf{finite set});

2. the \textit{empty set}.

If \(X \) is itself a \textbf{finite set} (but not otherwise) then the cofinite topology on \(X \) coincides with the \textit{discrete topology} on \(X \) (example 2.12).

Example 2.14. For \(\{(X_i, \tau_i)\}_{i \in I} \) a \textit{set} of topological spaces, then their \textit{disjoint union}
is the topological space whose underlying set is the disjoint union of the underlying sets of the summand spaces, and whose open subsets are precisely the disjoint unions of the open subsets of the summand spaces.

In particular, for \(I \) any index set, then the disjoint union

\[
\bigcup_{i \in I}^* \]

of \(I \) copies of the point (example 2.9) is equivalently the discrete topological space (example 2.12) on that index set.

Example 2.15. (binary product topological space)

For \((X_1, \tau_1)\) and \((X_2, \tau_2)\) two topological spaces, then their product topological space has as underlying set the Cartesian product \(X_1 \times X_2\) of the corresponding two underlying sets, and its topology is generated from the basis (def. 2.6) given by the Cartesian products \(U_1 \times U_2\) of the opens \(U_i \in \tau_i\).

Beware that for non-finite products, the descriptions of the product topology is not as simple. This we turn to below in example 7.7, after introducing the general concept of limits in the category of topological spaces.

Example 2.16. (subspace topology)

Let \((X, \tau_X)\) be a topological space, and let \(S \subset X\) be a subset of the underlying set. Then the corresponding topological subspace has \(S\) as its underlying set, and its open subsets are those subsets of \(S\) which arise as restrictions of open subsets of \(X\).

\[
(U_S \subset S \text{ open}) \iff \left(\exists_{U_X \in \tau_X} U_S = U_X \cap S \right).
\]

(This is also called the initial topology of the inclusion map.)

Notice that this makes the inclusion function

\[
(S, \tau_S) \hookrightarrow (X, \tau_X)
\]

a continuous function.

The picture on the right shows two open subsets inside the square, regarded as
a **topological subspace** of the **plane** \(\mathbb{R}^2 \):

graphics grabbed from Munkres 75

Example 2.17. (quotient topological space)

Let \((X, \tau_X)\) be a **topological space** (def. 2.2) and let

\[R_\sim \subset X \times X \]

be an **equivalence relation** on its underlying set. Then the **quotient topological space** has

- as underlying set the **quotient set** \(X_\sim \), hence the set of **equivalence classes**,

and

- a subset \(O \subset X_\sim \) is declared to be an **open subset** precisely if its **preimage** \(\pi^{-1}(O) \) under the canonical **projection map**

\[\pi : X \to X_\sim \]

is open in \(X \).

This is also called the **final topology** of the projection \(\pi \).

Often one considers this with input datum not the equivalence relation, but any **surjection**

\[\pi : X \to Y \]

of sets. Of course this identifies \(Y = X/\sim \) with \((x_1 \sim x_2) \iff (\pi(x_1) = \pi(x_2))\). Hence the **quotient topology** on the codomain set of a function out of any topological space has as open subsets those whose pre-images are open.

To see that this indeed does define a topology on \(X/\sim \) it is sufficient to observe that taking pre-images commutes with taking unions and with taking intersections.

The above picture shows on the left the **square** (a **topological subspace** of the **plane**), then in the middle the resulting **quotient topological space** obtained by identifying two opposite sides (the **cylinder**), and on the right the further quotient obtained by identifying the remaining sides (the **torus**).

graphics grabbed from Munkres 75
Sometimes it is useful to recognize topological quotient projections via saturated subsets (essentially another term for pre-images of underlying sets):

Definition 2.18. (saturated subset)

Let \(f : X \to Y \) be a function of sets. Then a subset \(S \subset X \) is called an \(f \)-saturated subset (or just saturated subset, if \(f \) is understood) if \(S \) is the pre-image of its image:

\[
(S \subset X \text{ f-saturated}) \iff (S = f^{-1}(f(S))).
\]

Here \(f^{-1}(f(S)) \) is also called the \(f \)-saturation of \(S \).

Example 2.19. (pre-images are saturated subsets)

For \(f : X \to Y \) any function of sets, and \(S_Y \subset Y \) any subset of \(Y \), then the pre-image \(f^{-1}(S_Y) \subset X \) is an \(f \)-saturated subset of \(X \) (def. 2.18).

Observe that:

Lemma 2.20. Let \(f : X \to Y \) be a function. Then a subset \(S \subset X \) is \(f \)-saturated (def. 2.18) precisely if its complement \(X \backslash S \) is so.

Proposition 2.21. A continuous function

\[
f : (X, \tau_X) \to (Y, \tau_Y)
\]

whose underlying function \(f : X \to Y \) is surjective exhibits \(\tau_Y \) as the corresponding quotient topology (def. 2.17) precisely if \(f \) sends open and \(f \)-saturated subsets in \(X \) (def. 2.18) to open subsets of \(Y \). By lemma 2.20 this is the case precisely if it sends closed and \(f \)-saturated subsets to closed subsets.

Example 2.22. (image factorization)

Let \(f : (X, \tau_X) \to (Y, \tau_Y) \) be a continuous function.

Write \(f(X) \subset Y \) for the image of \(f \) on underlying sets, and consider the resulting factorization of \(f \) through \(f(X) \) on underlying sets:

\[
f : X \xrightarrow{\text{surjective}} f(C) \xrightarrow{\text{injective}} Y.
\]

There are the following two ways to topologize the image \(f(X) \) such as to make this a sequence of two continuous functions:

1. By example 2.16 \(f(X) \) inherits a subspace topology from \((Y, \tau_Y) \) which makes the inclusion \(f(X) \to Y \) a continuous function.

Observe that this also makes \(X \to f(X) \) a continuous function: An open subset of \(f(X) \) in this case is of the form \(U_Y \cap f(X) \) for \(U_Y \in \tau_Y \), and \(f^{-1}(U_Y \cap f(X)) = f^{-1}(U_Y) \), which is open in \(X \) since \(f \) is continuous.
2. By example 2.17 $f(X)$ inherits a **quotient topology** from (X, τ_X) which makes the surjection $X \to Y$ a **continuous function**.

Observe that this also makes $f(X) \to Y$ a continuous function: The preimage under this map of an open subset $U_Y \in \tau_Y$ is the restriction $U_Y \cap f(X)$, and the pre-image of that under $X \to f(X)$ is $f^{-1}(U_Y)$, as before, which is open since f is continuous, and therefore $U_Y \cap f(X)$ is open in the quotient topology.

These constructions of **discrete topological spaces**, **quotient topological spaces**, **topological subspaces** and of **product topological spaces** are simple examples of **limits** and of **colimits** of topological spaces. The category Top of topological spaces has the convenient property that all limits and colimits (over small diagrams) exist in it. We discuss this below in **Universal constructions**.

Closed subsets

The **complements** of open subsets in a **topological space** are called **closed subsets** (def. 2.23 below). This simple definition indeed captures the concept of closure in the **analytic** sense of convergence of sequences (prop. 2.26 below). Of particular interest for the theory of topological spaces in the discussion of **separation axioms** below are those closed subsets which are "**irreducible**" (def. 2.27 below). These happen to be equivalently the "**frame homomorphisms**" (def. 2.30) to the **frame of opens** of the point (prop. 2.33 below).

Definition 2.23. (closed subsets)

Let (X, τ) be a **topological space** (def. 2.2).

Then a **subset** S of X is called a **closed subset** if its **complement** $X \setminus S$ is an **open subset**:

$$S \subset X \text{ is closed } \iff X \setminus S \text{ is open}.$$

graphics grabbed from Vickers 89

If a **singleton** subset $\{x\} \subset X$ is closed, one says that x is a **closed point** of X.

Given any subset $S \subset X$, then is **topological closure** $\text{Cl}(S)$ is the smallest closed subset containing S.

Definition 2.24. (topological interior)

Let (X, τ) be a **topological space** (def. 2.2) and let $S \subset X$ be a **subset**. Then the **topological interior** of S is the largest **open subset** $\text{Int}(S) \in \tau$ still contained in S, $\text{Int}(S) \subset S \subset X$:

$$\text{Int}(S) \subset S \subset X.$$
\[\text{Int}(S) := \bigcup_{U \in \tau} \left(\bigcup_{o \in S} U \right). \]

Lemma 2.25. Let \((X, \tau)\) be a topological space (def. \ref{TopologicalSpaces}) and let \(S \subset X\) be a subset. Then the topological interior of \(S\) (def. 2.24) equals the complement of the topological closure \(\text{Cl}(X \setminus S)\) of the complement of \(S\):

\[\text{Int}(S) = X \setminus \text{Cl}(X \setminus S). \]

Proof. By taking complements once more, the statement is equivalent to

\[X \setminus \text{Int}(S) = \text{Cl}(X \setminus S). \]

Now we compute:

\[
\begin{align*}
X \setminus \text{Int}(S) &= X \setminus \left(\bigcup_{U \text{ open}} \left(\bigcup_{U \subset S} U \right) \right) \\
&= \bigcap_{U \subset S} X \setminus U \\
&= \bigcap_{C \text{ closed}} C \\
&= \text{Cl}(X \setminus S)
\end{align*}
\]

\[
\blacksquare
\]

Proposition 2.26. (convergence in closed subspaces)

Let \((X, d)\) be a metric space (def. 1.1), regarded as a topological space via example 2.8, and let \(V \subset X\) be a subset. Then the following are equivalent:

1. \(V \subset X\) is a closed subspace according to def. 2.23.

2. For every sequence \(x_i \in V \subset X\) (def. 1.14) with elements in \(V\), which converges as a sequence in \(X\) (def. 1.15) it also converges in \(V\).

Proof. First assume that \(V \subset X\) is closed and that \(x_i \xrightarrow{i \to \infty} x_\infty\) for some \(x_\infty \in X\). We need to show that then \(x_\infty \in V\). Suppose it were not, then \(x_\infty \notin X \setminus V\). Since by definition this complement \(X \setminus V\) is an open subset, it follows that there exists a real number \(\epsilon > 0\) such that the open ball around \(x\) of radius \(\epsilon\) is still contained in the complement: \(B^*_x(\epsilon) \subset X \setminus V\). But since the sequence is assumed to converge in \(X\), this means that there exists \(N_\epsilon\) such that all \(x_i > N_\epsilon\) are in \(B^*_x(\epsilon)\), hence in \(X \setminus V\). This contradicts the assumption that all \(x_i\) are in \(V\), and hence we have proved by contradiction that \(x_\infty \in V\).

Conversely, assume that for all sequences in \(V\) that converge to some \(x_\infty \in X\) then \(x_\infty \in V \subset W\). We need to show that then \(V\) is closed, hence that \(X \setminus V \subset X\) is an open subset, hence that for every \(x \in X \setminus V\) we may find a real number \(\epsilon > 0\) such that the open ball \(B^*_x(\epsilon)\) around \(x\) of radius \(\epsilon\) is still contained in \(X \setminus V\). Suppose on the
contrary that such \(\varepsilon \) did not exist. This would mean that for each \(k \in \mathbb{N} \) with \(k \geq 1 \) then the intersection \(B(x, 1/k) \cap V \) is non-empty. Hence then we could choose points \(x_k \in B(x, 1/k) \cap V \) in these intersections. These would form a sequence which clearly converges to the original \(x \), and so by assumption we would conclude that \(x \in V \), which violates the assumption that \(x \in X \setminus V \). Hence we proved by contradiction \(X \setminus V \) is in fact open. ■

A special role in the theory is played by the “irreducible” closed subspaces:

Definition 2.27. (irreducible closed subspace)

A closed subset \(S \subset X \) (def. 2.23) of a topological space \(X \) is called **irreducible** if it is non-empty and not the union of two closed proper (i.e. smaller) subsets. In other words, \(S \) is irreducible if whenever \(S_1, S_2 \subset X \) are two closed subspace such that

\[
S = S_1 \cup S_2
\]

then \(S_1 = S \) or \(S_2 = S \).

Example 2.28. For \(x \in X \) a point inside a topological space, then the closure \(\text{Cl}([x]) \) of the singleton subset \(\{x\} \subset X \) is irreducible (def. 2.27).

Sometimes it is useful to re-express the condition of irreducibility of closed subspace in terms of complementary open subsets:

Proposition 2.29. (irreducible closed subsets in terms of prime open subsets)

Let \((X, \tau) \) be a topological space, and let \(P \in \tau \subset \mathcal{P}(X) \) be a proper open subset, so that the complement \(F := X \setminus P \) is an inhabited closed subspace. Then \(F \) is irreducible in the sense of def. 2.27 precisely if whenever \(U_1, U_2 \in \tau \) are open subsets with \(U_1 \cap U_2 \subset P \) then \(U_1 \subset P \) or \(U_2 \subset P \):

\[
(X \setminus P \text{ irreducible}) \iff \left(\forall U_1, U_2 \in \tau \left((U_1 \cap U_2 \subset P) \Rightarrow (U_1 \subset P \text{ or } U_2 \subset P) \right) \right)
\]

Proof. Every closed subset \(F_i \subset F \) may be exhibited as the complement

\[
F_i = F \setminus U_i
\]

for some open subset \(U_i \in \tau \). Observe that under this identification the condition that \(U_1 \cap U_2 \subset P \) is equivalent to the condition that \(F_1 \cup F_2 = F \), because it is equivalent to the equation labeled \((*)\) in the following sequence of equations:
\[F_1 \cup F_2 = (F \setminus U_1) \cup (F \setminus U_2) \]
\[= (X \setminus (P \cup U_1)) \cup (X \setminus (P \cup U_2)) \]
\[= X \setminus (P \cup (U_1 \cap U_2)) . \]
\[\implies X \setminus P \]
\[= F \]

Similarly, the condition that \(U_i \subset P \) is equivalent to the condition that \(F_i = F \), because it is equivalent to the equality (\(\ast \)) in the following sequence of equalities:

\[F_i = F \setminus U_i \]
\[= X \setminus (P \cup U_i) \]
\[\implies X \setminus P \]
\[= F \]

Under these equivalences, the two conditions are manifestly the same. □

We will consider yet another equivalent characterization of irreducible closed subsets. Stating this requires the following concept of "frame" homomorphism, the natural kind of homomorphisms between topological spaces if we were to forget the underlying set of points of a topological space, and only remember the set \(\tau_X \) with its finite intersections and arbitrary unions:

Definition 2.30. (frame homomorphisms)

Let \((X, \tau_X)\) and \((Y, \tau_Y)\) be topological spaces (def. 2.2). Then a function

\[\tau_X \leftarrow \tau_Y : \phi \]

between their sets of open subsets is called a frame homomorphism if it preserves

1. arbitrary unions;

2. finite intersections.

In other words, \(\phi \) is a frame homomorphism if

1. for every set \(l \) and every \(l \)-indexed set \(\{U_i \in \tau_Y\}_{i \in l} \) of elements of \(\tau_Y \), then

\[\phi\left(\bigcup_{i \in l} U_i \right) = \bigcup_{i \in l} \phi(U_i) \in \tau_X , \]

2. for every finite set \(J \) and every \(J \)-indexed set \(\{U_j \in \tau_Y\} \) of elements in \(\tau_Y \), then

\[\phi\left(\bigcap_{j \in J} U_j \right) = \bigcap_{j \in J} \phi(U_j) \in \tau_X . \]

Remark 2.31. A frame homomorphism \(\phi \) as in def. 2.30 necessarily also
preserves inclusions in that

- for every inclusion $U_1 \subset U_2$ with $U_1, U_2 \in \tau_Y \subset P(Y)$ then
 $$\phi(U_1) \subset \phi(U_2) \in \tau_X.$$

This is because inclusions are witnessed by unions

$$(U_1 \subset U_2) \iff (U_1 \cup U_2 = U_2)$$

and by finite intersections:

$$(U_1 \subset U_2) \iff (U_1 \cap U_2 = U_1).$$

Example 2.32. For

$$f : (X, \tau_X) \to (Y, \tau_Y)$$

a [continuous function](#), then its function of [pre-images](#)

$$\tau_X \leftarrow \tau_Y : f^{-1}$$

is a frame homomorphism according to def. 2.30.

For the following recall from example 2.9 the [point](#) topological space

$$* = (\{1\}, \tau_* = \{\emptyset, \{1\}\}).$$

Proposition 2.33. (irreducible closed subsets are equivalently frame homomorphisms to frame of opens of the point)

For (X, τ) a [topological space](#), then there is a [bijection](#) between the [irreducible closed subspaces](#) of (X, τ) (def. 2.27) and the [frame homomorphisms](#) from τ_X to τ_*, given by

$$\operatorname{Hom}_{\text{Frame}}(\tau_X, \tau_*) \xrightarrow{\cong} \operatorname{IrrClSub}(X)$$

$$\phi \mapsto X \setminus U_{\emptyset}(\phi)$$

where $U_{\emptyset}(\phi)$ is the [union](#) of all elements $U \in \tau_X$ such that $\phi(U) = \emptyset$:

$$U_{\emptyset}(\phi) := \bigcup_{U \in \tau_X \atop \phi(U) = \emptyset} U.$$

See also (Johnstone 82, II 1.3).

Proof. First we need to show that the function is well defined in that given a frame homomorphism $\phi : \tau_X \to \tau_*$ then $X \setminus U_{\emptyset}(\phi)$ is indeed an irreducible closed subspace.

To that end observe that:

(*) If there are two elements $U_1, U_2 \in \tau_X$ with $U_1 \cap U_2 \subset U_{\emptyset}(\phi)$ then $U_1 \subset U_{\emptyset}(\phi)$ or $U_2 \subset U_{\emptyset}(\phi)$.

This is because

\[
\phi(U_1 \cap U_2) = \phi(U_1) \cap \phi(U_2) \\
\subseteq \phi(U_0) \\
= \emptyset
\]

(where the first equality holds because \(\phi\) preserves finite intersections by def. 2.30, the inclusion holds because \(\phi\) respects inclusions by remark 2.31, and the second equality holds because \(\phi\) preserves arbitrary unions by def. 2.30). But in \(\tau_* = \{\emptyset, \{1\}\}\) the intersection of two open subsets is empty precisely if at least one of them is empty, hence \(\phi(U_1) = \emptyset\) or \(\phi(U_2) = \emptyset\). But this means that \(U_1 \subset U_0(\phi)\) or \(U_2 \subset U_0(\phi)\), as claimed.

Now according to prop. 2.29 the condition \((*)\) identifies the complement \(X \setminus U_0(\phi)\) as an irreducible closed subspace of \((X, \tau)\).

Conversely, given an irreducible closed subset \(X \setminus U_0\), define \(\phi\) by

\[
\phi : U \mapsto \begin{cases}
\emptyset & \text{if } U \subset U_0 \\
\{1\} & \text{otherwise}
\end{cases}
\]

This does preserve

1. arbitrary unions

because \(\phi(\bigcup_i U_i) = \{0\}\) precisely if \(\bigcup_i U_i \subset U_0\) which is the case precisely if all \(U_i \subset U_0\), which means that all \(\phi(U_i) = \emptyset\) and \(\bigcup_i \emptyset = \emptyset\);

while \(\phi(\bigcup_i U_i) = \{1\}\) as soon as one of the \(U_i\) is not contained in \(U_0\), which means that one of the \(\phi(U_i) = \{1\}\) which means that \(\bigcup_i \phi(U_i) = \{1\}\);

2. finite intersections,

because if \(U_1 \cap U_2 \in U_0\), then by \((*)\) \(U_1 \in U_0\) or \(U_2 \in U_0\), whence \(\phi(U_1) = \emptyset\) or \(\phi(U_2) = \emptyset\), whence with \(\phi(U_1 \cap U_2) = \emptyset\) also \(\phi(U_1) \cap \phi(U_2) = \emptyset\);

while if \(U_1 \cap U_2\) is not contained in \(U_0\) then neither \(U_1\) nor \(U_2\) is contained in \(U_0\) and hence with \(\phi(U_1 \cap U_2) = \{1\}\) also \(\phi(U_1) \cap \phi(U_2) = \{1\} \cap \{1\} = \{1\}\).

Hence this is indeed a frame homomorphism \(\tau_X \to \tau_*\).

Clearly these two operations are inverse to each other. ■

3. Continuous functions

With the concept of topological spaces (def. 2.2) it is now immediate to formally implement in abstract generality the statement of prop. 1.12:
principle of continuity

Continuous pre-Images of open subsets are open.

Definition 3.1. (continuous function)

A continuous function between topological spaces (def. 2.2)

\[f: (X, \tau_X) \to (Y, \tau_Y) \]

is a function between the underlying sets,

\[f: X \to Y \]

such that pre-images under \(f \) of open subsets of \(Y \) are open subsets of \(X \).

We may equivalently state this in terms of closed subsets:

Proposition 3.2. Let \((X_1, \tau_{X_1})\) and \((Y, \tau_Y)\) be two topological spaces (def. 2.2). Then a function

\[f : X \to Y \]

between the underlying sets is continuous in the sense of def. 3.1 precisely if pre-images under \(f \) of closed subsets of \(Y \) (def. 2.23) are closed subsets of \(X \).

Proof. Taking pre-images commutes with taking complements. ■

Remark 3.3. (the category of topological spaces)

For \(X_1, X_2, X_3 \) three topological spaces and for

\[X_1 \xrightarrow{f} X_2 \quad \text{and} \quad X_2 \xrightarrow{g} X_3 \]

two continuous functions (def. 3.1) then their composition

\[f_2 \circ f_1 : X_1 \xrightarrow{f} X_2 \xrightarrow{f_2} X_3 \]

is clearly itself again a continuous function from \(X_1 \) to \(X_3 \). Moreover, this composition operation is clearly associative, in that for

\[X_1 \xrightarrow{f} X_2 \quad \text{and} \quad X_2 \xrightarrow{g} X_3 \quad \text{and} \quad X_3 \xrightarrow{h} X_4 \]

three continuous functions, then

\[f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1 : X_1 \to X_3. \]

Finally, the composition operation is also clearly unital, in that for each topological space \(X \) there exists the identity function \(\text{id}_X : X \to X \) and for \(f : X_1 \to X_2 \) any continuous function then

\[\text{id}_{X_2} \circ f = f = f \circ \text{id}_{X_1}. \]
One summarizes this situation by saying that:

1. **topological spaces** constitute the **objects**
2. **continuous functions** constitute the **morphisms** (homomorphisms)

of a **category**, called the **category of topological spaces** (“Top” for short).

It is useful to depict collections of **objects** with **morphisms** between them by **diagrams**, like this one:

graphics grabbed from Lawvere-Schanuel 09.

Beware that in general a continuous function itself (as opposed to its pre-image function) neither preserves **open subsets**, nor **closed subsets**:

Example 3.4. Regard the **real numbers** \mathbb{R} as the 1-dimensional **Euclidean space** (def. 1.6) equipped with the **metric topology** (def. 2.8). For $a \in \mathbb{R}$ the **constant function**

$$\mathbb{R} \xrightarrow{\text{const}_a} \mathbb{R}$$

maps every **open subset** $U \subset \mathbb{R}$ to the **singleton set** $\{a\} \subset \mathbb{R}$, which is not open.

Example 3.5. Write $\text{Disc}(\mathbb{R})$ for the set of **real numbers** equipped with its **discrete topology** (def. 2.12) and \mathbb{R} for the set of **real numbers** equipped with its **Euclidean metric topology** (def. 1.6, def. 2.8). Then the **identity function** on the underlying sets

$$\text{id}_\mathbb{R} : \text{Disc}(\mathbb{R}) \to \mathbb{R}$$

is a **continuous function** (see also example 3.14). A **singleton subset** $\{a\} \in \text{Disc}(\mathbb{R})$ is open, but regarded as a subset $\{a\} \subset \mathbb{R}$ it is not open.

Example 3.6. Regard the set of **real numbers** \mathbb{R} equipped with its **Euclidean metric topology** (def. 1.6, def. 2.8). The **exponential function**

$$\exp(-) : \mathbb{R} \to \mathbb{R}$$

maps all of \mathbb{R} (which is a closed subset $\mathbb{R} = \mathbb{R}\setminus\emptyset$) to the **half-open interval**
\((0, \infty) \subset \mathbb{R}\), which is not closed.

Those continuous functions that do happen to preserve open or closed subsets get a special name:

Definition 3.7. (open maps and closed maps)

A continuous function \(f : (X, \tau_X) \to (Y, \tau_Y)\) (def. 3.1) is called

- an open map if the image under \(f\) of an open subset of \(X\) is an open subset of \(Y\);
- a closed map if the image under \(f\) of a closed subset of \(X\) (def. 2.23) is a closed subset of \(Y\).

Example 3.8. For \((X_1, \tau_{X_1})\) and \((X_2, \tau_{X_2})\) two topological spaces, then the projection maps

\[\pi_i : (X_1 \times X_2, \tau_{X_1 \times X_2}) \to (X_i, \tau_{X_i}) \]

out of their product topological space (def. 2.15) are open maps (def. 3.7).

Below in prop. 6.17 we find a large supply of closed maps.

Lemma 3.9. (saturated open neighbourhoods of saturated closed subsets under closed maps)

Let

1. \(f : (X, \tau_X) \to (Y, \tau_Y)\) be a closed map (def. 3.7);
2. \(C \subset X\) be a closed subset of \(X\) (def. 2.23) which is \(f\)-saturated (def. 2.21);
3. \(U \supset C\) an open subset containing \(C\);

then there exists a smaller open subset \(V\) still containing \(C\)

\[U \supset V \supset C \]

and such that \(V\) is \(f\)-saturated.

Proof. We claim that the complement of \(X\) by the \(f\)-saturation (def. 2.18) of the complement of \(X\) by \(U\)

\[V := X \setminus (f^{-1}(f(X \setminus U))) \]

has the desired properties. To see this, observe first that

1. the complement \(X \setminus U\) is closed, since \(U\) is assumed to be open;
2. hence the image \(f(X \setminus U)\) is closed, since \(f\) is assumed to be a closed map;
3. hence the pre-image $f^{-1}(f(X\setminus U))$ is closed, since f is continuous (using prop. 3.2), therefore its complement V is indeed open;

4. this pre-image $f^{-1}(f(X\setminus U))$ is saturated (example 2.19) and hence also its complement V is saturated, by lemma 2.20.

Therefore it now only remains to see that $U \supset V \supset C$.

The inclusion $U \supset V$ means equivalently that $f^{-1}(f(X\setminus U)) \supset X\setminus U$, which is clearly the case.

The inclusion $V \supset C$ means that $f^{-1}(f(X\setminus U)) \cap C = \emptyset$. Since C is saturated by assumption, this means that $f^{-1}(f(X\setminus U)) \cap f(C) = \emptyset$. This in turn holds precisely if $f(X\setminus U) \cap f(C) = \emptyset$. Since C is saturated, this holds precisely if $X\setminus U \cap C = \emptyset$, and this is true by the assumption that $U \supset C$. □

Examples

We discuss some basic examples of continuous functions (def. 3.1) between topological spaces (def. 2.2).

Example 3.10. For (X, τ) any topological space, then there is a unique continuous function

$$X \rightarrow *$$

from X to the point (def. 2.9).

Remark 3.11. In the language of category theory (remark 3.3), example 3.10 says that the point $*$ is the terminal object in the category Top of topological spaces.

Example 3.12. For (X, τ) a topological space then for $x \in X$ any element of the underlying set, there is a unique continuous function

$$* \rightarrow X$$

from the point (def. 2.9), whose image in X is that element. Hence there is a natural bijection

$$\text{Hom}_{\text{Top}}(*, (X, \tau)) \cong X$$

between the continuous functions from the point to any topological space, and the underlying set of that topological space.

Definition 3.13. A continuous function $f: X \rightarrow Y$ (def. 3.1) is called locally constant if every point $x \in X$ has a neighbourhood on which the function is constant.

Example 3.14. Let S be a set and let (X, τ) be a topological space. Recall from example 2.12
1. the **discrete topological space** \(\text{Disc}(S) \);
2. the **co-discrete topological space** \(\text{CoDisc}(S) \)

on the underlying set \(S \). Then **continuous functions** (def. 3.1) into/out of these satisfy:

1. every function (of sets) \(\text{Disc}(S) \to X \) out of a discrete space is **continuous**;
2. every function (of sets) \(X \to \text{CoDisc}(S) \) into a codiscrete space is **continuous**.

Also:

- every **continuous function** \((X, \tau) \to \text{Disc}(S) \) into a discrete space is **locally constant** (def. 3.13).

Example 3.15. For \(X \) a set, its **diagonal** \(\Delta_X \) is the function

\[
\begin{align*}
X & \xrightarrow{\Delta_X} X \times X \\
x & \mapsto (x,x)
\end{align*}
\]

For \((X, \tau) \) a **topological space**, then the diagonal is a **continuous function** to the **product topological space** (def. 2.15) of \(X \) with itself.

\[
\Delta_X : (X, \tau) \to (X \times X, \tau_{X \times X}).
\]

To see this, it is sufficient to see that the **preimages** of basic opens \(U_1 \times U_2 \) in \(\tau_{X \times X} \) are in \(\tau_X \). But these pre-images are the **intersections** \(U_1 \cap U_2 \subset X \), which are open by the axioms on the topology \(\tau_X \).

Homeomorphisms

With the **objects** (topological spaces) and the **morphisms** (continuous functions) of the category \(\text{Top} \) thus defined (remark 3.3), we obtain the concept of “sameness” in topology. To make this precise, one says that a **morphism**

\[
X \xrightarrow{f} Y
\]

in a category is an **isomorphism** if there exists a morphism going the other way around

\[
X \xleftarrow{g} Y
\]

which is an **inverse** in the sense that

\[
f \circ g = \text{id}_Y \quad \text{and} \quad g \circ f = \text{id}_X.
\]

Since such \(g \) is unique if it exist, one often writes \(f^{-1} \) for this inverse **morphism**. However, in the context of topology then \(f^{-1} \) usually refers to the **pre-image** function of a given function \(f \), and in these notes we will stick to this
usage.

Definition 3.16. (homeomorphisms)

An **isomorphism** in the category Top of topological spaces with continuous functions between them is called a **homeomorphism**.

Hence a **homeomorphism** is a **continuous function**

$$f : (X, \tau_X) \to (Y, \tau_Y)$$

such that there exists a **continuous function** the other way around

$$(X, \tau_X) \leftarrow (Y, \tau_Y) : g$$

such that their **composites** are the **identity functions** on X and Y, respectively:

$$f \circ g = \text{id}_Y \quad \text{and} \quad g \circ f = \text{id}_X.$$

Remark 3.17. If $f : (X, \tau_X) \to (Y, \tau_Y)$ is a **homeomorphism** (def. 3.16) with inverse continuous function g, then of course also g is a homeomorphism, with inverse continuous function f.

The underlying function of sets $f : X \to Y$ of a homeomorphism f is necessarily a **bijection**.

But beware that not every **continuous function** which is **bijective** on underlying sets is a homeomorphism. While an inverse g will exists on the level of functions of sets, this inverse may fail to be continuous:

Example 3.18. Consider the **continuous function**

$$[0,2\pi) \to S^1 \subset \mathbb{R}^2$$

$$t \mapsto (\cos(t), \sin(t))$$

from the **half-open interval** (def. 1.11) to the unit circle $S^1 := S^0(1) \subset \mathbb{R}^2$ (def. 1.2), regarded as a **topological subspace** (def. 2.16) of the **Euclidean plane** (def. 1.6).

The underlying function of sets of f is a **bijection**. The **inverse function** of sets however fails to be continuous at $(1,0) \in S^1 \subset \mathbb{R}^2$. Hence this f is not a...
homeomorphism.

Indeed, below we see that the two topological spaces \([0, 2\pi)\) and \(S^1\) are distinguished by topological invariants and hence not homeomorphic. For example \(S^1\) is a compact topological space (def. 6.4) while \([0, 2\pi)\) is not, and \(S^1\) has a non-trivial fundamental group, while that of \([0, 2\pi)\) is trivial (def. \ref{FundamentalGroup}).

Below in example 6.22 we discuss a criterion under which continuous bijections are homeomorphisms after all.

Example 3.19. (open interval homeomorphic to the real line)

Regard the real line as the 1-dimensional Euclidean space (example 1.6).

The open interval \((-1, 1)\) (def. 1.11) is homeomorphic to all of the real line

\[
(0, 1) \cong_{\text{homeo}} \mathbb{R}^1.
\]

An inverse pair of continuous functions is for instance given by

\[
f : \mathbb{R}^1 \to (-1, +1) \\
x \mapsto \frac{x}{\sqrt{1+x^2}}
\]

and

\[
f^{-1} : (-1, +1) \to \mathbb{R}^1 \\
x \mapsto \frac{x}{\sqrt{1-x^2}}.
\]

Generally, every open ball in \(\mathbb{R}^n\) (def. 1.2) is homeomorphic to all of \(\mathbb{R}^n\).

Example 3.20. (interval glued at endpoints is homeomorphic to the circle)

As topological spaces, the closed interval \([0, 1]\) (def. 1.11) with its two endpoints identified is homeomorphic (def. 3.16) to the standard circle:

\[
[0,1] / (0 \sim 1) \cong_{\text{homeo}} S^1.
\]

More in detail: let

\[
S^1 \hookrightarrow \mathbb{R}^2
\]

be the unit circle in the plane

\[
S^1 = \{(x,y) \in \mathbb{R}^2, x^2 + y^2 = 1\}
\]

equipped with the subspace topology (example 2.16) of the plane \(\mathbb{R}^2\), which itself equipped with its standard metric topology (example 2.8).

Moreover, let
be the quotient topological space (example 2.17) obtained from the interval $[0,1] \subset \mathbb{R}^1$ with its subspace topology by applying the equivalence relation which identifies the two endpoints (and nothing else).

Consider then the function

$$f : [0,1] \to S^1$$

given by

$$t \mapsto (\cos(t), \sin(t)) .$$

This has the property that $f(0) = f(1)$, so that it descends to the quotient topological space $[0,1] \to [0,1]/(\sim)$.

We claim that \tilde{f} is a homeomorphism (definition 3.16).

First of all it is immediate that \tilde{f} is a continuous function. This follows immediately from the fact that f is a continuous function and by definition of the quotient topology (example 2.17).

So we need to check that \tilde{f} has a continuous inverse function. Clearly the restriction of f itself to the open interval $(0,1)$ has a continuous inverse. It fails to have a continuous inverse on $[0,1)$ and on $(0,1]$ and fails to have an inverse at all on $[0,1]$, due to the fact that $f(0) = f(1)$. But the relation quotiented out in $[0,1]/(\sim)$ is exactly such as to fix this failure.

Similarly:

The square $[0,1]^2$ with two of its sides identified is the cylinder, and with also the other two sides identified is the torus:

If the sides are identified with opposite orientation, the result is the Möbius strip:
Important examples of pairs of spaces that are not homeomorphic include the following:

Theorem 3.21. (topological invariance of dimension)

For \(n_1, n_2 \in \mathbb{N} \) but \(n_1 \neq n_2 \), then the Cartesian spaces \(\mathbb{R}^{n_1} \) and \(\mathbb{R}^{n_2} \) are not homeomorphic.

More generally, an open set in \(\mathbb{R}^{n_1} \) is never homeomorphic to an open set in \(\mathbb{R}^{n_2} \) if \(n_1 \neq n_2 \).

The proof of theorem 3.21 is surprisingly hard, given how obvious the statement seems intuitively. It requires tools from a field called algebraic topology (notably Brouwer's fixed point theorem).

We showcase some basic tools of algebraic topology now and demonstrate the nature of their usage by proving two very simple special cases of the topological invariance of dimension (prop. \ref{TopologicalInvarianceOfDimensionFirstSimpleCase} and prop. \ref{topologicalInvarianceOfDimensionSecondSimpleCase} below).

Example 3.22. (homeomorphism classes of surfaces)

The 2-sphere \(S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} \) is not homeomorphic to the torus \(T^2 = S^1 \times S^1 \).

Generally the homeomorphism class of a closed orientable surface is determined by the number of "holes" it has, its genus.

4. Separation axioms

The plain definition of topological space happens to allow examples where distinct points or distinct subsets of the underlying set of a topological space appear as as more-or-less unseparable as seen by the topology on that set. In many applications one wants to exclude at least some of such degenerate examples from the discussion. The relevant conditions to be imposed on top of the plain axioms of a topological space are hence known as separation axioms.
These axioms are all of the form of saying that two subsets (of certain forms) in the topological space are ‘separated’ from each other in one sense if they are ‘separated’ in a (generally) weaker sense. For example the weakest axiom (called T_0) demands that if two points are distinct as elements of the underlying set of points, then there exists at least one open subset that contains one but not the other.

In this fashion one may impose a hierarchy of stronger axioms. For example demanding that given two distinct points, then each of them is contained in some open subset not containing the other (T_1) or that such a pair of open subsets around two distinct points may in addition be chosen to be disjoint (T_2). This last condition, T_2, also called the Hausdorff condition is the most common among all separation axioms. Often in topology, this axiom is considered by default.

However, there are respectable areas of mathematics that involve topological spaces where the Hausdorff axiom fails, but a weaker axiom is still satisfied, called sobriety. This is the case notably in algebraic geometry (schemes are sober) and in computer science (Vickers 89). These sober topological spaces are singled out by the fact that they are entirely characterized by their partially ordered sets of open subsets and may hence be understood independently from their underlying sets of points.

separation axioms

<table>
<thead>
<tr>
<th>T_0 = Kolmogorov</th>
<th>T_1 = sober</th>
<th>T_2 = Hausdorff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All separation axioms are satisfied by metric spaces (def. 1.1), from whom the concept of topological space was originally abstracted above. Hence imposing some of them may also be understood as gauging just how far one allows topological spaces to generalize away from metric spaces

T_n spaces

Definition 4.1. Let (X, τ) be a topological space (def. 2.2).

For $x \neq y \in X$ any two points in the underlying set of X which are not equal as elements of this set, consider the following propositions:

- **(T0)** There exists a neighbourhood of one of the two points which does not contain the other point.
- **(T1)** There exist neighbourhoods of both points which do not contain the other point.
There exists \textit{neighbourhoods} of both points which do not intersect each other._

graphics grabbed from \textit{Vickers 89}

The topological space X is called a T_n-\textit{topological space} or just T_n-space, for short, if it satisfies condition T_n above for all pairs of distinct points.

A T_0-topological space is also called a \textit{Kolmogorov space}.

A T_2-topological space is also called a \textit{Hausdorff topological space}.

Notice that these propositions evidently imply each other as $T2 \Rightarrow T1 \Rightarrow T0$.

For definiteness, we re-state these conditions formally. Write $x, y \in X$ for points in X, write $U_x, U_y \in \tau$ for open \textit{neighbourhoods} of these points. Then:

- (T0) $\forall x \neq y \left(\exists U_y \left(\{x\} \cap U_y = \emptyset \right) \lor \left(\exists U_x \left(U_x \cap \{y\} = \emptyset \right) \right) \right)$

- (T1) $\forall x \neq y \left(\exists \left(U_x \cap \{y\} = \emptyset \right) \land \left(U_x \cap \{y\} = \emptyset \right) \right)$

- (T2) $\forall x \neq y \left(\exists U_x, U_y \left(U_x \cap U_y = \emptyset \right) \right)$

\textbf{Example 4.2. (metric spaces are Hausdorff)}

Every \textit{metric space} (def 1.1), regarded as a \textit{topological space} via its \textit{metric topology} (def. 2.8) is a \textit{Hausdorff topological space} (def. 4.1).

\textbf{Example 4.3. (finite T_1-spaces are discrete)}

For a \textit{finite topological space} (X, τ), hence one for which the underlying set X is a \textit{finite set}, the following are equivalent:

1. (X, τ) is T_1 (def. 4.1);

2. (X, τ) is a \textit{discrete topological space} (def. 2.12)

\textbf{Proposition 4.4.} Let (X, τ) be a \textit{topological space} satisfying the T_1 \textit{separation axiom} according to def. 4.1. Then also every \textit{topological subspace} $S \subset X$ (def. 2.16) satisfies T_i.

\textbf{Proof.} Let $x, y \in S \subset X$ be two distinct points. We need to construct various open
neighbourhoods of these in \(S \) not containing the other point and possibly (for \(T_2 \)) not intersecting each other. Now by assumptions that the ambient space \((X, \tau)\) satisfies the given axiom, there exist open neighbourhoods with the analogous properties in \(X \). By the nature of the subspace topology, their restriction to \(S \) are still open, and clearly still satisfy these properties. ■

Separation in terms of topological closures

The conditions \(T_0, T_1 \) and \(T_2 \) have the following equivalent form in terms of topological closures (def. 2.23):

Proposition 4.5. (\(T_0 \) in terms of topological closures)

A topological space \((X, \tau)\) is \(T_0 \) (def. 4.1) precisely if the function \(\text{Cl}(-) \) from the underlying set of \(X \) to the set of irreducible closed subsets of \(X \) (def. 2.27, which is well defined according to example 2.28), is injective:

\[
\text{Cl}(-) : X \leftrightarrow \text{IrrClSub}(X)
\]

Proof. Assume first that \(X \) is \(T_0 \). Then we need to show that if \(x, y \in X \) are such that \(\text{Cl}\{x\} = \text{Cl}\{y\} \) then \(x = y \). Hence assume that \(\text{Cl}\{x\} = \text{Cl}\{y\} \). Since the closure of a point is the complements of the union of the open subsets not containing the point, this means that the union of open subsets that do not contain \(x \) is the same as the union of open subsets that do not contain \(y \). Hence every open subset that does not contain \(x \) also does not contain \(y \), and vice versa. By \(T_0 \) this is not the case when \(x \neq y \), hence it follows that \(x = y \).

Conversely, assume that if \(x, y \in X \) are such that \(\text{Cl}\{x\} = \text{Cl}\{y\} \) then \(x = y \). We need to show that if \(x \neq y \) then there exists an open neighbourhood around one of the two points not containing the other. Hence assume that \(x \neq y \). By assumption it follows that \(\text{Cl}\{x\} \neq \text{Cl}\{y\} \). Since the closure of a point is the complements of the union of the open subsets not containing the point, this means that there must be at least one open subset which contains \(x \) but not \(y \), or vice versa. By definition this means that \((X, \tau)\) is \(T_0 \). ■

Proposition 4.6. (\(T_1 \) in terms of topological closures)

A topological space \((X, \tau)\) is \(T_1 \) (def. 4.1) precisely if all its points are closed points (def. 2.23).

Proof. Assume first that \((X, \tau)\) is \(T_1 \). We need to show that for every point \(x \in X \) we have \(\text{Cl}\{x\} = \{x\} \). Since the closure of a point is the complement of the union of all open subsets not containing this point, this is the case precisely if the union of all open subsets not containing \(x \) is \(X \setminus \{x\} \), hence if every point \(y \neq x \) is member of at least one open subset not containing \(x \). This is true by \(T_1 \).

Conversely, assume that for all \(x \in X \) then \(\text{Cl}\{x\} = \{x\} \). Then for \(x \neq y \in X \) two
distinct points we need to produce an open subset of \(y \) that does not contain \(x \).
But as before, since \(\text{Cl}(\{x\}) \) is the complement of the union of all open subsets that do not contain \(x \), and the assumption \(\text{Cl}(x) = \{x\} \) means that \(y \) is member of one of these open subsets that do not contain \(x \). □

Proposition 4.7. \((T_2 \text{ in terms of topological closures})\)

A topological space \((X, \tau_X)\) is \(T_2 = \text{Hausdorff} \) (def. 4.1) precisely if the diagonal function \(\Delta_X : (X, \tau_X) \to (X \times X, \tau_{X \times X}) \) (example 3.15) is a closed map (def. 3.7).

Proof. If \((X, \tau_X)\) is Hausdorff, then by definition for every pair of distinct points \(x \neq y \in X \) there exists open neighbourhoods \(U_x, U_y \in \tau_X \) such that \(U_x \cap U_y = \emptyset \). In terms of the product topology (example 2.15) this means that every point \((x, y) \in X \times X\) which is not on the diagonal has an open neighbourhood \(U_x \times U_y \) which still does not contain the diagonal. By definition, this means that in fact every subset of the diagonal is a closed subset of \(X \times X \), hence in particular those that are in the image under \(\Delta_X \) of closed subsets of \(X \). Hence \(\Delta_X \) is a closed map.

Conversely, if \(\Delta_X \) is a closed map, then the full diagonal (i.e. the image of \(X \) under \(\Delta_X \)) is closed in \(X \times X \), and hence this means that every points \((x, y) \in X \times X\) not on the diagonal has an open neighbourhood \(U_x \times U_y \) not containing the diagonal, i.e. such that \(U_x \cap U_y = \emptyset \). Hence \(X \) is Hausdorff. □

Further separation axioms

Clearly one may and does consider further variants of the separation axioms \(T_0 \), \(T_1 \) and \(T_2 \) from def. 4.1.

Definition 4.8. Let \((X, \tau)\) be topological space (def. 4.1).

Consider the following conditions

- **(T3)** \((X, \tau)\) is \(T_1 \) (def. 4.1) and for \(x \in X \) a point and \(C \subset X \) a closed subset (def. 2.23) not containing \(x \), then there exist disjoint open neighbourhoods \(U_x \supset \{x\} \) and \(U_C \supset C \).

- **(T4)** \((X, \tau)\) is \(T_1 \) (def. 4.1) and for \(C_1, C_2 \subset X \) disjoint closed subsets (def. 2.23) then there exist disjoint open neighbourhoods \(U_{C_i} \supset C_i \).

If \((X, \tau)\) satisfies \(T_3 \) it is said to be a \(T_3 \)-space also called a regular Hausdorff topological space.

If \((X, \tau)\) satisfies \(T_4 \) it is to be a \(T_4 \)-space also called a normal Hausdorff topological space.

Observe that:

Proposition 4.9. The separation axioms imply each other as
Proof. The implications

\[T_2 \Rightarrow T_1 \Rightarrow T_0 \]

and

\[T_4 \Rightarrow T_3 \]

are immediate from the definitions. The remaining implication \(T_3 \Rightarrow T_2 \) follows with prop. 4.6. ■

Hence instead of saying “\(X \) is \(T_1 \) and ...” one could just as well phrase the conditions \(T_3 \) and \(T_4 \) as “\(X \) is \(T_2 \) and ...”, which would render the proof of prop. 4.9 even more trivial.

In summary:

the main **Separation Axioms**

<table>
<thead>
<tr>
<th>numbername</th>
<th>statement</th>
<th>reformulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_0)</td>
<td>Kolmogorov</td>
<td>given two distinct points, at least one of them has an open neighbourhood not containing the other point</td>
</tr>
<tr>
<td>(T_1)</td>
<td>Hausdorff</td>
<td>given two distinct points, both have an open neighbourhood not containing the other point</td>
</tr>
<tr>
<td>(T_2)</td>
<td>regular Hausdorff</td>
<td>given two distinct points, they have disjoint open neighbourhoods</td>
</tr>
<tr>
<td>(T_3)</td>
<td>normal Hausdorff</td>
<td>all points are closed; and given two disjoint closed subsets, at least one of them has an open neighbourhood disjoint from the other closed subset</td>
</tr>
<tr>
<td>(T_4)</td>
<td>normal Hausdorff</td>
<td>all points are closed; and given two disjoint closed subsets, both of them have open neighbourhoods not intersecting the other closed subset</td>
</tr>
</tbody>
</table>

Notice that there is a whole zoo of further variants of separation axioms that are considered in the literature. But the above are maybe the main ones. Specifically \(T_2 = \) Hausdorff is the most popular one, often considered by default in the literature, when topological spaces are considered.
T_n reflection

Not every universal construction of topological spaces applied to T_n-spaces results again in a T_n topological space, notably quotient space constructions need not (example 4.10 below).

But at least for T_0, T_1 and T_2 there is a universal way, called reflection (prop. 4.12 below), to approximate any topological space “from the left” by a T_n topological spaces.

Hence if one wishes to work within the full subcategory of the T_n among all topological space, then the correct way to construct quotients and other colimits (see below) is to first construct them as usual for topological spaces, and then apply the T_n-reflection to the result.

Example 4.10. (line with two origins)

Consider the disjoint union $\mathbb{R} \sqcup \mathbb{R}$ of two copies of the real line \mathbb{R} regarded as the 1-dimensional Euclidean space (def. 1.6) with its metric topology (def. 2.8). Moreover, consider the equivalence relation on the underlying set which identifies every point x_i in the ith copy of \mathbb{R} ($i \in \{0, 1\}$) with the corresponding point in the other, the $(1 - i)$th copy, except when $x = 0$:

$$(x_i \sim y_j) \Leftrightarrow ((x = y) \text{ and } ((x \neq 0 \text{ or } (i = j)))) .$$

The quotient topological space by this equivalence relation (def. 2.17)

$$(\mathbb{R} \sqcup \mathbb{R})/ \sim$$

is called the line with two origins.

This is a basic example of a topological space which is a non-Hausdorff topological space:

Because by definition of the quotient space topology, the open neighbourhoods of $0_i \in (\mathbb{R} \sqcup \mathbb{R})/ \sim$ are precisely those that contain subsets of the form

$$(-\epsilon, \epsilon)_i := (-\epsilon, 0) \cup \{0_i\} \cup (0, \epsilon) .$$

But this means that the “two origins” 0_0 and 0_1 may not be separated by neighbourhoods, since the intersection of $(-\epsilon, \epsilon)_0$ with $(-\epsilon, \epsilon)_i$ is always non-empty:

$$(-\epsilon, \epsilon)_0 \cap (-\epsilon, \epsilon)_1 = (-\epsilon, 0) \cup (0, \epsilon) .$$

Example 4.11. Consider the real line \mathbb{R} regarded as the 1-dimensional Euclidean space (def. 1.6) with its metric topology (def. 2.8) and consider the equivalence relation \sim on \mathbb{R} which identifies two real numbers if they differ by a rational number:
\[(x \sim y) \iff \left(\exists p/q \in \mathbb{Q} \subset \mathbb{R} \quad x = y + p/q \right).\]

Then the **quotient topological space** (def. 2.17)
\[
\mathbb{R}/\mathbb{Q} \equiv \mathbb{R}/\sim
\]
is a **codiscrete topological space** (def. 2.12), hence in particular a **non-Hausdorff topological space** (def. 4.1).

Proposition 4.12. \((T_n\text{-reflection})\)

Let \(n \in \{0, 1, 2\}\). Then for every **topological space** \(X\) there exists a \(T_n\text{-topological space} \ T_nX\) for and a **continuous function**
\[
t_n(X) : X \to T_nX
\]
which is the “closest approximation from the left” to \(X\) by a \(T_n\text{-topological space}, in that for \(Y\) any \(T_n\text{-space}, then** **continuous functions** of the form
\[
f : X \to Y
\]
are in **bijection** with **continuous function** of the form
\[
\tilde{f} : T_nX \to Y
\]
and such that the bijection is constituted by
\[
f = \tilde{f} \circ t_n(X) : X \xrightarrow{h_X} T_nX \xrightarrow{\tilde{f}} Y.
\]

Here \(X \xrightarrow{t_n(X)} T_n(X)\) may be called the \(T_n\text{-reflection of} \ X. For n = 0 this is known as the **Kolmogorov quotient** construction (see prop. 4.15 below). For \(n = 2\) it is known as **Hausdorff reflection** or Hausdorffication or similar.

Moreover, the operation \(T_n(-)\) extends to **continuous functions** \(f : X \to Y\)
\[
(X \to Y) \mapsto (T_nX \xrightarrow{T_nf} T_nY)
\]
such as to preserve **composition** of functions as well as **identity functions**:
\[
T_ng \circ T_nf = T_n(g \circ f) \quad , \quad T_n\text{id}_X = \text{id}_{T_nX}
\]

Finally, the comparison map is compatible with this in that the follows **squares commute**:
\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow h_X & & \downarrow h_Y \\
T_nX & \xrightarrow{T_nf} & T_nY
\end{array}
\]

Remark 4.13. (reflective subcategories\)**
In the language of *category theory* (remark 3.3) the T_n-reflection of prop. 4.12 says that

1. $T_n(-)$ is a **functor** $T_n : \text{Top} \to \text{Top}_{T_n}$ from the category Top of topological spaces to the **full subcategory** $\text{Top}_{T_n} \hookrightarrow \text{Top}$ of Hausdorff topological spaces;

2. $t_n(X) : X \to T_n X$ is a **natural transformation** from the identity functor on Top to the functor $\iota \circ T_n$;

3. T_n-topological spaces form a **reflective subcategory** of all topological spaces in that T_n is **left adjoint** to the inclusion functor ι; this situation is denoted as follows:

$$\begin{array}{c}
\text{Top}_{T_n} \\
\downarrow \iota
\end{array}$$

There are various ways to see the existence and to construct the T_n-reflections. The following is the quickest way to see the existence, even though it leaves the actual construction rather implicit.

Proposition 4.14. Let $n \in \{0,1,2\}$. Let (X,τ) be a topological space and consider the equivalence relation \sim on the underlying set X for which $x \sim y$ precisely if for every surjective continuous function $f : X \to Y$ into any T_n-topological space Y we have $f(x) = f(y)$.

Then the set of equivalence classes

$$T_n X := X / \sim$$

equipped with the quotient topology is a T_n-topological space, and the quotient map $t_n(X) : X \to X / \sim$ exhibits the T_n-reflection of X, according to prop. 4.12.

Proof. First we observe that every continuous function $f : X \to Y$ into a T_n-topological space Y factors uniquely via $t_n(X)$ through a continuous function \tilde{f}

$$f = \tilde{f} \circ h_X$$

where

$$\tilde{f} : [x] \mapsto f(x).$$

To see this, first factor f through its **image** $f(X)$

$$f : X \to f(X) \hookrightarrow Y$$

equipped with its **subspace topology** as a subspace of Y (example 2.22). By prop. 4.4 also $f(X)$ is a T_n-topological space if Y is.

It follows by definition of $t_n(X)$ that the factorization exists at the level of sets as
stated, since if \(x_1, x_2 \in X \) have the same equivalence class \([x_1] = [x_2]\) in \(T_n X\), then by definition they have the same image under all continuous surjective functions to a \(T_n\)-space, hence in particular under \(X \to f(X)\). This means that \(f\) as above is well defined.

What remains to be seen is that \(T_n X\) as constructed is indeed a \(T_n\)-topological space. Hence assume that \([x] \neq [y] \in T_n X\) are two distinct points. We need to open neighbourhoods around one or both of these point not containing the other point and possibly disjoint to each other.

Now by definition of \(T_n X\) this means that there exists a \(T_n\)-topological space \(Y\) and a surjective continuous function \(f : X \to Y\) such that \(f(x) \neq f(y) \in Y\). Accordingly, since \(Y\) is \(T_n\), there exist the respective kinds of neighbourhoods around these image points in \(Y\). Moreover, by the previous statement there exists a continuous function \(\tilde{f} : T_n X \to Y\) with \(\tilde{f}([x]) = f(x)\) and \(\tilde{f}([y]) = f(y)\). By the nature of continuous functions, the pre-images of these open neighbourhoods in \(Y\) are still open in \(X\) and still satisfy the required disjunction properties. Therefore \(T_n X\) is a \(T_n\)-space. □

Here are alternative constructions of the reflections:

Proposition 4.15. (Kolmogorov quotient)

Let \((X, \tau)\) be a topological space. Consider the relation on the underlying set by which \(x_1 \sim x_1 \) precisely if neither \(x_i\) has an open neighbourhood not containing the other. This is an equivalence relation. The quotient topological space \(X \to X/\sim\) by this equivalence relation (def. 2.17) exhibits the \(T_0\)-reflection of \(X\) according to prop. 4.12.

Example 4.16. The Hausdorff reflection \((T_2\)-reflection, prop. 4.12) \(T_2 : \text{Top} \to \text{Top}_{\text{Haus}}\)

of the line with two origins from example 4.10 is the real line itself:

\[
T_2((\mathbb{R} \sqcup \mathbb{R})/\sim) \cong \mathbb{R}.
\]

5. Sober spaces

The alternative characterization of the \(T_0\)-condition in prop. 4.5 immediately suggests the following strengthening, different from the \(T_1\)-condition:

Definition 5.1. (sober topological space)

A topological space \((X, \tau)\) is called a **sober topological space** precisely if every irreducible closed subspace (def. 2.28) is the topological closure (def. 2.23) of a unique point, hence precisely if the function

\[
\text{Cl}([-]) : X \to \text{IrrClSub}(X)
\]
from the underlying set of \(X \) to the set of irreducible closed subsets of \(X \) (def. 2.27, well defined according to example 2.28) is bijective.

Proposition 5.2. (sober implies \(T_0 \))

Every sober topological space (def. 5.1) is \(T_0 \) (def. 4.1).

Proof. By prop. 4.5. □

Proposition 5.3. (Hausdorff implies sober)

Every Hausdorff topological space (def. 4.1) is a sober topological space (def. 5.1).

More specifically, in a Hausdorff topological space the irreducible closed subspaces (def. 2.27) are precisely the singleton subspaces (def. 7.2).

Proof. The second statement clearly implies the first. To see the second statement, suppose that \(\mathcal{F} \) is an irreducible closed subspace which contained two distinct points \(x \neq y \). Then by the Hausdorff property there are disjoint neighbourhoods \(U_x, U_y \), and hence it would follow that the relative complements \(\mathcal{F} \setminus U_x \) and \(\mathcal{F} \setminus U_y \) were distinct proper closed subsets of \(\mathcal{F} \) with

\[
\mathcal{F} = (\mathcal{F} \setminus U_x) \cup (\mathcal{F} \setminus U_y)
\]

in contradiction to the assumption that \(\mathcal{F} \) is irreducible.

This proves by contradiction that every irreducible closed subset is a singleton. Conversely, generally the topological closure of every singleton is irreducible closed, by example 2.28. □

By prop. 5.2 and prop. 5.3 we have the implications on the right of the following diagram:

<table>
<thead>
<tr>
<th>separation axioms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_2 = \text{Hausdorff})</td>
</tr>
<tr>
<td>(T_1)</td>
</tr>
<tr>
<td>(\nabla)</td>
</tr>
<tr>
<td>(T_0 = \text{Kolmogorov})</td>
</tr>
</tbody>
</table>

But there there is no implication between \(T_1 \) and sobriety:

Proposition 5.4. The intersection of the classes of sober topological spaces (def. 5.1) and \(T_1 \)-topological spaces (def. 4.1) is not empty, but neither class is contained within the other.

That the intersection is not empty follows from prop. 5.3. That neither class is contained in the other is shown by the following counter-examples:
Example.

- The **Sierpinski space** (def. 2.10) is sober, but not T_1.
- The **cofinite topology** (example 2.13) on a non-finite set is T_1 but not sober.

Frames of opens

What makes the concept of **sober topological spaces** special is that for them the concept of **continuous functions** may be expressed entirely in terms of the relations between their **open subsets**, disregarding the underlying set of points of which these open are in fact subsets.

Recall from example 2.32 that for very **continuous function** $f : (X, \tau_X) \to (Y, \tau_Y)$ the **pre-image** function $f^{-1} : \tau_Y \to \tau_X$ is a **frame homomorphism** (def. 2.30).

For sober topological spaces the converse holds:

Proposition 5.5. If (X, τ_X) and (Y, τ_Y) are **sober topological spaces** (def. 5.1), then for every **frame homomorphism** (def. 2.30)

$$\tau_X \leftarrow \tau_Y : \phi$$

there is a unique **continuous function** $f : X \to Y$ such that ϕ is the function of forming **pre-images** under f:

$$\phi = f^{-1}.$$

Proof. We first consider the special case of frame homomorphisms of the form

$$\tau_* \leftarrow \tau_X : \phi$$

and show that these are in bijection to the underlying set X, identified with the continuous functions $* \to (X, \tau)$ via example 3.12.

By prop. 2.33, the frame homomorphisms $\phi : \tau_X \to \tau_*$ are identified with the irreducible closed subspaces $X \setminus U_\phi(\phi)$ of (X, τ_X). Therefore by assumption of **sobriety** of (X, τ) there is a unique point $x \in X$ with $X \setminus U_\phi(\phi) = \text{Cl}([x])$. In particular this means that for U_x an open neigbourhood of x, then U_x is not a subset of $U_\phi(\phi)$, and so it follows that $\phi(U_x) = \{1\}$. In conclusion we have found a unique $x \in X$ such that

$$\phi : U \mapsto \begin{cases}
\{1\} & \text{if } x \in U \\
\emptyset & \text{otherwise}
\end{cases}.$$

This is precisely the **inverse image** function of the continuous function $* \to X$ which sends $1 \mapsto x$.

Hence this establishes the bijection between frame homomorphisms of the form $\tau_* \leftarrow \tau_X$ and continuous functions of the form $* \to (X, \tau)$.
With this it follows that a general frame homomorphism of the form $\tau_X \xleftarrow{\phi} \tau_Y$
defines a function of sets $X \xrightarrow{f} Y$ by composition:

$$X \xrightarrow{f} Y \quad (\tau_s \xleftarrow{\tau_X}) \mapsto (\tau_s \xleftarrow{\tau_X} \phi \xleftarrow{\tau_Y})$$

By the previous analysis, an element $U_Y \in \tau_Y$ is sent to $\{1\}$ under this composite precisely if the corresponding point $* \xrightarrow{f} X \xrightarrow{f} Y$ is in U_Y, and similarly for an element $U_X \in \tau_X$. It follows that $\phi(U_Y) \in \tau_X$ is precisely that subset of points in X which are sent by f to elements of U_Y, hence that $\phi = f^{-1}$ is the pre-image function of f. Since ϕ by definition sends open subsets of Y to open subsets of X, it follows that f is indeed a continuous function. This proves the claim in generality.

Remark 5.6. (locales)

Proposition 5.5 is often stated as saying that sober topological spaces are equivalently the "locales with enough points" (Johnstone 82, II 1.). Here "locale" refers to a concept akin to topological spaces where one considers just a "frame of open subsets" τ_X, without requiring that its elements be actual subsets of some ambient set. The natural notion of homomorphism between such generalized topological spaces are clearly the frame homomorphisms $\tau_X \xleftarrow{\tau_Y}$ as above. From this perspective, prop. 5.5 says that sober topological spaces (X, τ_X) are entirely characterized by their frames of opens τ_X and just so happen to "have enough points" such that these are actual open subsets of some ambient set, namely of X.

Sober reflection

We saw above in prop. 4.12 that every topological space has a "best approximation from the left" by a Hausdorff topological space. We now discuss the analogous statement for sober topological spaces.

Recall again the point topological space $* := (\{1\}, \tau_*) = (\emptyset, \{1\})$ (example 2.9).

Definition 5.7. Let (X, τ) be a topological space.

Define SX to be the set

$$SX := \text{Hom}_{\text{Frame}}(\tau_X, \tau_*)$$

of frame homomorphisms from the frame of opens of X to that of the point. Define a topology $\tau_{SX} \subset P(SX)$ on this set by declaring it to have one element \hat{U} for each element $U \in \tau_X$ and given by

$$\hat{U} := \{\phi \in SX \mid \phi(U) = \{1\}\}.$$

Consider the function
which sends an element \(x \in X \) to the function which assigns inverse images of the constant function \(\text{const}_x : \{1\} \to X \) on that element.

Lemma 5.8. The construction \((SX, \tau_{SX})\) in def. 5.7 is a topological space, and the function \(s_X : X \to SX \) is a continuous function

\[
s_X : (X, \tau_X) \to (SX, \tau_{SX})
\]

Proof. To see that \(\tau_{SX} \subseteq P(SX) \) is closed under arbitrary unions and finite intersections, observe that the function \(\tau_X \xrightarrow{\sim} \tau_{SX} \)

\[
U \mapsto \hat{U}
\]

in fact preserves arbitrary unions and finite intersections. Whith this the statement follows by the fact that \(\tau_X \) is closed under these operations.

To see that \(\sim \) indeed preserves unions, observe that (e.g. Johnstone 82, II 1.3 Lemma)

\[
p \in \bigcup_{i \in I} \hat{U}_i \iff \exists i \in I p(U_i) = \{1\}
\]

\[
\iff \bigcup_{i \in I} p(U_i) = \{1\}
\]

\[
\iff p\left(\bigcup_{i \in I} U_i \right) = \{1\},
\]

\[
\iff p \in \bigcup_{i \in I} \overline{U}_i
\]

where we used that the frame homomorphism \(p : \tau_X \to \tau_* \) preserves unions.

Similarly for intersections, now with \(I \) a finite set:

\[
p \in \bigcap_{i \in I} \overline{U}_i \iff \forall i \in I p(U_i) = \{1\}
\]

\[
\iff \bigcap_{i \in I} p(U_i) = \{1\}
\]

\[
\iff p\left(\bigcap_{i \in I} U_i \right) = \{1\},
\]

\[
\iff p \in \bigcap_{i \in I} \overline{U}_i
\]

where now we used that the frame homomorphism \(p \) preserves finite intersections.

To see that \(s_X \) is continuous, observe that \(s_X^{-1}(\hat{U}) = U \), by construction. ■

Lemma 5.9. For \((X, \tau_X)\) a topological space, the function \(s_X : X \to SX \) from def. 5.7 is

1. an injection precisely if \(X \) is \(T_0 \).
2. a **bijection** precisely if \(X \) is sober.

*In this case \(s_X \) is in fact a **homeomorphism**.*

Proof. By lemma 2.33 there is an identification \(SX \cong \text{IrrClSub}(X) \) and via this \(s_X \) is identified with the map \(x \mapsto \text{Cl}(\{x\}) \).

Hence the second statement follows by definition, and the first statement by this prop.

That in the second case \(s_X \) is in fact a homeomorphism follows from the definition of the opens \(\hat{U} \): they are identified with the opens \(U \) in this case (...expand...). ■

Lemma 5.10. For \((X, \tau)\) a **topological space**, then the topological space \((SX, \tau_{SX})\) from def. 5.7, lemma 5.8 is sober.

(e.g. Johnstone 82, lemma II 1.7)

Proof. Let \(SX \backslash \hat{U} \) be an **irreducible closed subspace** of \((SX, \tau_{SX})\). We need to show that it is the **topological closure** of a unique element \(\phi \in SX \).

Observe first that also \(X \backslash U \) is irreducible.

To see this use this prop., saying that irreducibility of \(X \backslash U \) is equivalent to \(U_1 \cap U_2 \subset U \Rightarrow (U_1 \subset U) \text{or}(U_2 \subset U) \). But if \(U_1 \cap U_2 \subset U \) then also \(\hat{U}_1 \cap \hat{U}_2 \subset \hat{U} \) (as in the proof of lemma 5.8) and hence by assumption on \(\hat{U} \) it follows that \(\hat{U}_1 \subset \hat{U} \) or \(\hat{U}_2 \subset \hat{U} \). By lemma 2.33 this in turn implies \(U_1 \subset U \) or \(U_2 \subset U \). In conclusion, this shows that also \(X \backslash U \) is irreducible.

By lemma 2.33 this irreducible closed subspace corresponds to a point \(p \in SX \). By that same lemma, this frame homomorphism \(p : \tau_X \rightarrow \tau_* \) takes the value \(\emptyset \) on all those opens which are inside \(U \). This means that the **topological closure** of this point is just \(SX \backslash \hat{U} \).

This shows that there exists at least one point of which \(X \backslash \hat{U} \) is the topological closure. It remains to see that there is no other such point.

So let \(p_1 \neq p_2 \in SX \) be two distinct points. This means that there exists \(U \in \tau_X \) with \(p_1(U) \neq p_2(U) \). Equivalently this says that \(\hat{U} \) contains one of the two points, but not the other. This means that \((SX, \tau_{SX})\) is **T0**. By this prop. this is equivalent to there being no two points with the same topological closure. ■

Proposition 5.11. For \((X, \tau_X)\) any **topological space**, for \((Y, \tau^\text{sob}_Y)\) a sober **topological space**, and for \(f : (X, \tau_X) \rightarrow (Y, \tau^\text{sob}_Y) \) a **continuous function**, then it factors uniquely through the soberification \(s_X : (X, \tau_X) \rightarrow (SX, \tau_{SX}) \) from def. 5.7, lemma 5.8.
Proof. By the construction in def. 5.7, we the outer part of the following square commutes:

\[
(X, \tau_X) \xrightarrow{f} (Y, \tau_Y^{\text{sub}}) \\
S_X \downarrow \quad \gamma_3! \quad \downarrow \quad S_X \\
(SX, \tau_{SX}) \xrightarrow{Sf} (SSX, \tau_{SSX})
\]

By lemma 5.10 and lemma 5.9, the right vertical morphism S_{SX} is an isomorphism (a homeomorphism), hence has an inverse morphism. This defines the diagonal morphism, which is the desired factorization.

To see that this factorization is unique, consider two factorizations $\tilde{f}, \bar{f} : (SX, \tau_{SX}) \to (Y, \tau_Y^{\text{sub}})$ and apply the soberification construction once more to the triangles

\[
(X, \tau_X) \xrightarrow{f} (Y, \tau_Y^{\text{sub}}) \\
S_X \downarrow \quad \gamma_{\tilde{f}, \bar{f}} \quad \downarrow \quad S_X \\
(SX, \tau_{SX}) \xrightarrow{Sf} (SSX, \tau_{SSX})
\]

Here on the right we used again lemma 5.9 to find that the vertical morphism is an isomorphism, and that \tilde{f} and \bar{f} do not change under soberification, as they already map between sober spaces. But now that the left vertical morphism is an isomorphism, the commutativity of this triangle for both \tilde{f} and \bar{f} implies that $\tilde{f} = \bar{f}$. □

6. Compact spaces

From the discussion of compact metric spaces in def. 1.18 and prop. 1.19 it is now immediate how to generalize these concepts to topological spaces.

The most naive version of the definition directly generalizes the concept via converging sequences from def. 1.18:

Definition 6.1. (converging sequence in a topological space)

Let (X, τ) be a topological space (def. 2.2) and let $(x_n)_{n \in \mathbb{N}}$ be a sequence of points (x_n) in X (def. 1.14). We say that this sequence converges in (X, τ) to a point $x_\infty \in X$, denoted

\[
x_n \xrightarrow{n \to \infty} x_\infty
\]

if for each open neighbourhood U_{x_∞} of x_∞ there exists a $k \in \mathbb{N}$ such that for all
\[n \geq k \text{ then } x_n \in U_{x_{\infty}} : \]

\[(x_n \xrightarrow{n \to \infty} x_{\infty}) \Leftrightarrow \forall U_{x_{\infty}} \in \tau_X \left(\exists k \in \mathbb{N} \left(\forall x_n \in U_{x_{\infty}} \right) \right). \]

Definition 6.2. (sequentially compact topological space)

Let \((X, \tau)\) be a topological space (def. 2.2). It is called sequentially compact if for every sequence of points \((x_n)\) in \(X\) (def. 1.14) there exists a sub-sequence \((x_{n_k})_{k \in \mathbb{N}}\) which converges according to def. 6.1.

But prop. 1.19 suggests to consider also another definition of compactness for topological spaces:

Definition 6.3. (open cover)

An open cover of a topological space \(X\) (def. 2.2) is a set \(\{U_i \subset X\}_{i \in I}\) of open subsets \(U_i\) of \(X\), indexed by some set \(I\), such that their union is all of \(X\):

\[\bigcup_{i \in I} U_i = X. \]

Definition 6.4. (compact topological space)

A topological space \(X\) (def. 2.2) is called a compact topological space if every open cover \(\{U_i \to X\}_{i \in I}\) (def. 6.3) has a finite subcover in that there is a finite subset \(J \subset I\) such that \(\{U_i \to X\}_{i \in J}\) is still a cover of \(X\) in that \(\bigcup_{i \in J} U_i = X.\)

Remark 6.5. (terminology issue regarding "compact")

Beware that the following terminology issue persists in the literature:

Some authors use “compact” to mean “Hausdorff and compact”. To disambiguate this, some authors (mostly in algebraic geometry) say “quasi-compact” for what we call “compact” in prop. 6.4.

Example 6.6. A discrete topological space (def. 2.12) is compact (def. 6.4) precisely if its underlying set is finite.

In terms of these definitions, the familiar statement about metric spaces from prop. 1.19 now equivalently says the following

Proposition 6.7. (sequentially compact metric spaces are equivalently compact metric spaces)

If \((X, d)\) is a metric space, regarded as a topological space via its metric topology (def. 2.8), then the following are equivalent:

1. \((X, d)\) is a compact topological space (def. 6.4).
2. \((X, d)\) is a sequentially compact topological space (def. 6.2).
Proof. of prop. 1.19 and prop. 6.7

Assume first that \((X,d)\) is a **compact topological space**. Let \((x_k)_{k \in \mathbb{N}}\) be a **sequence** in \(X\). We need to show that it has a sub-sequence which **converges**.

Consider the **topological closures** of the sub-sequences that omit the first \(n\) elements of the sequence

\[F_n := \text{Cl}([x_k \mid k \geq n]) \]

and write

\[U_n := X \setminus F_n \]

for their **open complements**.

Assume now that the **intersection** of all the \(F_n\) were **empty**

\[\bigcap_{n \in \mathbb{N}} F_n = \emptyset \]

or equivalently that the **union** of all the \(U_n\) were all of \(X\)

\[\bigcup_{n \in \mathbb{N}} U_n = X, \]

hence that \(\{U_n \to X\}_{n \in \mathbb{N}}\) were an **open cover**. By the assumption that \(X\) is compact, this would imply that there is a **finite subset** \(\{i_1 < i_2 < \cdots < i_k\} \subset \mathbb{N}\) with

\[X = U_{i_1} \cup U_{i_2} \cup \cdots \cup U_{i_k} = U_{i_k}. \]

This in turn would mean that \(F_{i_k} = \emptyset\), which contradicts the construction of \(F_{i_k}\).

Hence we have a **proof by contradiction** that assumption \((\ast)\) is wrong, and hence that there must exist an element

\[x \in \bigcap_{n \in \mathbb{N}} F_n. \]

By definition of **topological closure** this means that for all \(n\) the **open ball** \(B_x^r(1/(n + 1))\) around \(x\) of **radius** \(1/(n + 1)\) must intersect the \(n\)th of the above subsequence:

\[B_x^r(1/(n + 1)) \cap \{x_k \mid k \geq n\} \neq \emptyset. \]

Picking one point \((x'_n)\) in the \(n\)th such intersection for all \(n\) hence defines a sub-sequence, which converges to \(x\).

This proves that compact implies sequentially compact for metric spaces.

For the converse, assume now that \((X,d)\) is sequentially compact. Let \(\{U_i \to X\}_{i \in I}\) be an **open cover** of \(X\). We need to show that there exists a finite sub-cover.
Now by the **Lebesgue number lemma**, there exists a positive real number $\delta > 0$ such that for each $x \in X$ there is $i_x \in I$ such that $B_x^\delta(\delta) \subset U_{i_x}$. Moreover, since **sequentially compact metric spaces are totally bounded**, there exists then a **finite set** $S \subset X$ such that

$$X = \bigcup_{s \in S} B_s^\delta(\delta).$$

Therefore $\{U_{i_s} \to X\}_{s \in S}$ is a finite sub-cover as required. ■

In contrast to prop. **6.7**, for general topological spaces being sequentially compact neither implies nor is implied by being compact (...examples...).

In *analysis*, the **extreme value theorem** asserts that a **real**-valued **continuous function** on the **bounded closed interval** (def. 1.11) attains its **maximum** and **minimum**. The following is the generalization of this statement to general topological spaces:

Lemma 6.8. (continuous surjections out of compact spaces have compact codomain)

Let $f: (X, \tau_X) \to (Y, \tau_Y)$ be a **continuous function** between **topological spaces** such that

1. (X, τ_X) is a **compact topological space**;
2. $f: X \to Y$ is a **surjective function**.

Then also (Y, τ_Y) is **compact**.

Proof. Let $\{U_i \subset Y\}_{i \in I}$ be an **open cover** of Y. We need show that this has a finite sub-cover.

By the continuity of f the pre-images $f^{-1}(U_i)$ are **open subsets** of X, and by the surjectivity of f they form an **open cover** $\{f^{-1}(U_i) \subset X\}_{i \in I}$ of X. Hence by compactness of X, there exists a **finite subset** $J \subset I$ such that $\{f^{-1}(U_i) \subset X\}_{i \in J \subset I}$ is still an open cover of X. Finall, using again that f is assumed to be surjective, it follows that

$$Y = f(X) = f\left(\bigcup_{i \in J} f^{-1}(U_i)\right) = \bigcup_{i \in J} U_i$$

which means that also $\{U_i \subset Y\}_{i \in J \subset I}$ is still an open cover of Y, and in particular a finite subcover of the original cover. ■

Corollary 6.9. (continuous images of compact spaces are compact)
If \(f : X \to Y \) is a continuous function out of a compact topological space \(X \) which is not necessarily surjective, then we may consider its image factorization

\[
f : X \to \text{im}(f) \hookrightarrow Y
\]

as in example 2.22. Now by construction \(X \to \text{im}(f) \) is surjective, and so lemma 6.8 implies that \(\text{im}(f) \) is compact.

The converse to cor. 6.9 does not hold in general: the pre-image of a compact subset under a continuous function need not be compact again. If this is the case, then we speak of proper maps:

Definition 6.10. (proper maps)

A continuous function \(f : (X, \tau_X) \to (Y, \tau_Y) \) is called proper if for \(C \in Y \) a compact topological subspace of \(Y \), then also its pre-image \(f^{-1}(C) \) is compact in \(X \).

Definition 6.11. (mapping space)

For \(X \) a topological space and \(Y \) a locally compact topological space (in that for every point, every neighbourhood contains a compact neighbourhood), the mapping space

\[
X^Y \in \text{Top}
\]

is the topological space

- whose underlying set is the set \(\text{Hom}_{\text{Top}}(Y, X) \) of continuous functions \(Y \to X \),

- whose open subsets are unions of finitary intersections of the following subbase elements of standard open subsets:

* the standard open subset \(U^K \subset \text{Hom}_{\text{Top}}(Y, X) \) for

 - \(K \hookrightarrow Y \) a compact topological space subset

 - \(U \hookrightarrow X \) an open subset

is the subset of all those continuous functions \(f \) that fit into a commuting diagram of the form

\[
\begin{array}{ccc}
K & \xhookrightarrow{f} & Y \\
\downarrow & & \downarrow \downarrow f. \\
U & \xhookrightarrow{} & X
\end{array}
\]

Accordingly this is called the compact-open topology on the set of functions.

The construction extends to a functor

\[
(-)^{-} : \text{Top}_{\text{lc}}^{\text{op}} \times \text{Top} \to \text{Top}.
\]
Relation to Hausdorff spaces

We discuss some important relations between the concepts of compact spaces and of Hausdorff topological spaces.

In analysis the key recognition principle for compact spaces is the following:

Proposition 6.12. (Heine-Borel theorem)

For $n \in \mathbb{N}$, regard \mathbb{R}^n as the n-dimensional Euclidean space via example 1.6, regarded as a topological space via its metric topology (def. 2.8).

Then for a topological subspace $S \subset \mathbb{R}^n$ the following are equivalent:

1. S is compact according to def. 6.4,
2. S is closed (def. 2.23) and bounded (def. 1.3).

In general topological spaces, the generalized analogue of the Heine-Borel theorem is the following:

Proposition 6.13. (closed subspaces of compact Hausdorff spaces are equivalently compact subspaces)

Let (X, τ) be a compact Hausdorff topological space (def. 4.1, def. 6.4) and let $Y \subset X$ be a topological subspace. Then the following are equivalent:

1. $Y \subset X$ is a closed subspace (def. 2.23);
2. Y is a compact topological space.

Proof. By lemma 6.14 and prop 6.16. ■

Lemma 6.14. (closed subsets of compact spaces are compact)

Let (X, τ) be a compact topological space (def. 6.4), and let $Y \subset X$ be a closed topological subspace. Then also Y is compact.

Proof. Let $\{V_i \subset Y\}_i \in I$ be an open cover of Y. We need to show that this has a finite sub-cover.

By definition of the subspace topology, there exist open subsets U_i of X with

$$V_i = U_i \cap Y.$$

By the assumption that Y is closed, the complement $X \setminus Y$ is an open subset of X, and therefore

$$\{X \setminus Y \subset X\} \cup \{U_i \subset X\}_i \in I$$

is an open cover of X. Now by the assumption that X is compact, this latter cover has a finite subcover, hence there exists a finite subset $J \subset I$ such that
\{X \setminus Y \subset X\} \cup \{U_i \subset X\}_{i \in J \subset I}

is still an open cover of \(X\), hence in particular intersects to a finite open cover of \(Y\). But since \(Y \cap (X \setminus Y) = \emptyset\), it follows that indeed
\[
\{V_i \subset Y\}_{i \in J \subset I}
\]
is a cover of \(Y\), and in indeed a finite subcover of the original one. ■

Lemma 6.15. (separation by neighbourhoods of points from compact subspaces in Hausdorff spaces)

Let

1. \((X, \tau)\) be a **Hausdorff topological space**;
2. \(Y \subset X\) a **compact subspace**.

Then for every \(x \in X \setminus Y\) there exists

1. an **open neighbourhood** \(U_x \ni \{x\}\);
2. an **open neighbourhood** \(U_Y \ni Y\)

such that

- they are still disjoint: \(U_x \cap U_Y = \emptyset\).

Proof. By the assumption that \((X, \tau)\) is Hausdorff, we find for every point \(y \in Y\) disjoint open neighbourhoods \(U_{x,y} \ni \{x\}\) and \(U_Y \ni \{y\}\). By the nature of the **subspace topology** of \(Y\), the restriction of all the \(U_Y\) to \(Y\) is an **open cover** of \(Y\):

\[
\{(U_Y \cap Y) \subset Y\}_{y \in Y}.
\]

Now by the assumption that \(Y\) is compact, there exists a finite subcover, hence a **finite set** \(S \subset Y\) such that
\[
\{(U_Y \cap Y) \subset Y\}_{y \in S \subset Y}
\]
is still a cover.

But the finite intersection
\[
U_x := \bigcap_{s \in S \subset Y} U_{x,s}
\]
of the corresponding open neighbourhoods of \(x\) is still open, and by construction it is disjoint from all the \(U_s\), hence in particular from their union
\[
U_Y := \bigcup_{s \in S \subset Y} U_s.
\]

Therefore \(U_x\) and \(U_Y\) are two open subsets as required. ■
This immediately implies the following:

Proposition 6.16. *(compact subspaces of Hausdorff spaces are closed)*

Let \((X, \tau)\) be a **Hausdorff topological space** (def. 4.1) and let \(C \subset X\) be a **compact** (def. 6.4) **topological subspace** (def. 2.16). Then \(C \subset X\) is also a **closed subspace** (def. 2.23).

Proof. Let \(x \in X \setminus C\) be any point of \(X\) not contained in \(C\). We need to show that there exists an **open neighbourhood** of \(x\) in \(X\) which does not intersect \(C\). This is implied by lemma 6.15. ■

Proposition 6.17. *(maps from compact spaces to Hausdorff spaces are closed and proper)*

Let \(f : (X, \tau_X) \to (Y, \tau_Y)\) be a **continuous function** between **topological spaces** such that

1. \((X, \tau_X)\) is a **compact topological space**;
2. \((Y, \tau_Y)\) is a **Hausdorff topological space**.

Then \(f\) is

1. a **closed map** (def. 3.7);
2. a **proper map** (def. 6.10).

Proof. For the first statement, we need to show that if \(C \subset X\) is a **closed subset** of \(X\), then also \(f(C) \subset Y\) is a closed subset of \(Y\).

Now

1. since **closed subsets of compact spaces are compact** (lemma 6.14) it follows that \(C \subset C\) is also compact;
2. since **continuous images of compact spaces are compact** (cor. 6.9) it then follows that \(f(C) \subset Y\) is compact;
3. since **compact subspaces of Hausdorff spaces are closed** (prop. 6.16) it finally follow that \(f(C)\) is also closed in \(Y\).

For the second statement we need to show that if \(C \subset Y\) is a **compact subset**, then also its **pre-image** \(f^{-1}(C)\) is compact.

Now

1. since **compact subspaces of Hausdorff spaces are closed** (prop. 6.16) it follows that \(C_{\text{sub}}Y\) is closed;
2. since **pre-images** under continuous of closed subsets are closed (prop. 3.2), also \(f^{-1}(C) \subset X\) is closed;
3. since closed subsets of compact spaces are compact (lemma 6.14), it follows that \(f^{-1}(C) \) is compact.

Proposition 6.18. (continuous bijections from compact spaces to Hausdorff spaces are homeomorphisms)

Let \(f: (X, \tau_X) \rightarrow (Y, \tau_Y) \) be a continuous function between topological spaces such that

1. \((X, \tau_X) \) is a compact topological space;
2. \((Y, \tau_Y) \) is a Hausdorff topological space.
3. \(f: X \rightarrow Y \) is a bijection of sets.

Then \(f \) is a homeomorphism, i.e. its inverse function \(Y \rightarrow X \) is also a continuous function.

In particular then both \((X, \tau_X) \) and \((Y, \tau_Y) \) are compact Hausdorff spaces.

Proof. Write \(g: Y \rightarrow X \) for the inverse function of \(f \).

We need to show that \(g \) is continuous, hence that for \(U \subset X \) an open subset, then also its pre-image \(g^{-1}(U) \subset Y \) is open in \(Y \). By prop. 3.2 this is equivalent to the statement that for \(C \subset X \) a closed subset then the pre-image \(g^{-1}(C) \subset Y \) is also closed in \(Y \).

But since \(g \) is the inverse function to \(f \), its pre-images are the images of \(f \). Hence the last statement above equivalently says that \(f \) sends closed subsets to closed subsets. This is true by prop. 6.17.

Proposition 6.19. (compact Hausdorff spaces are normal)

Every compact Hausdorff topological space is a normal topological space (def. 4.8).

Proof. First we claim that \((X, \tau) \) is regular. To show this, we need to find for each point \(x \in X \) and each disjoint closed subset \(Y \subset X \) disjoint open neighbourhoods \(U_x \supset \{x\} \) and \(U_Y \supset Y \). But since closed subspaces of compact spaces are compact, the subset \(Y \) is in fact compact, and hence this is in fact the statement of lemma 6.15.

Next to show that \((X, \tau) \) is indeed normal, we apply the idea of the proof of lemma 6.15 once more:

Let \(Y_1, Y_2 \subset X \) be two disjoint closed subspaces. By the previous statement then for every point \(y_1 \in Y \) we find disjoint open neighbourhoods \(U_{y_1} \subset \{y_1\} \) and \(U_{y_2 \cdot y_1} \supset Y_2 \). The union of the \(U_{y_1} \) is a cover of \(Y_1 \), and by compactness of \(Y_1 \) there is a finite
subset \(S \subset Y \) such that
\[
U_{Y_1} := \bigcup_{s \in S \subset Y_1} U_{Y_1}
\]
is an open neighbourhood of \(Y_1 \) and
\[
U_{Y_2} := \bigcap_{s \in S \subset Y} U_{Y_2,s}
\]
is an open neighbourhood of \(Y_2 \), and both are disjoint. ■

Relation to quotient spaces

Proposition 6.20. *(continuous surjections from compact spaces to Hausdorff spaces are quotient projections)*

Let
\[
\pi : (X, \tau_X) \to (Y, \tau_Y)
\]
be a *continuous function* between *topological spaces* such that

1. \((X, \tau_X)\) is a *compact topological space* (def. 6.4);
2. \((Y, \tau_Y)\) is a *Hausdorff topological space* (def. 4.1);
3. \(\pi : X \to Y\) is a *surjective function*.

Then \(\tau_X\) is the *quotient topology* inherited from \(\tau_X\) via the surjection \(f\) (def. 2.17).

Proof. We need to show that an subset \(U \subset Y \) is an *open subset* \((Y, \tau_Y)\) precisely if its *pre-image* \(\pi^{-1}(U) \subset X\) is an open subset in \((X, \tau_X)\). Equivalently, as in prop. 3.2, we need to show that \(U \) is a *closed subset* precisely if \(\pi^{-1}(U)\) is a closed subset.

The implication
\[
(U \text{ closed}) \Rightarrow (f^{-1}(U) \text{ closed})
\]
follows via prop. 3.2 from the continuity of \(\pi\). The implication
\[
(f^{-1}(U) \text{ closed}) \Rightarrow (U \text{ closed})
\]
follows since \(\pi\) is a *closed map* by prop. 6.17. ■

Proposition 6.21. *(quotient projections out of compact Hausdorff spaces are closed precisely if the codomain is Hausdorff)*

Let
\[
\pi : (X, \tau_X) \to (Y, \tau_Y)
\]
be a *continuous function* between *topological spaces* such that
1. \((X, \tau)\) is a **compact Hausdorff topological space** (def. 6.4, def. 4.1);

2. \(\pi\) is a **surjection** and \(\tau_Y\) is the corresponding **quotient topology** (def. 2.17).

Then the following are equivalent

1. \((Y, \tau_Y)\) is itself a **Hausdorff topological space** (def. 4.1);
2. \(\pi\) is a **closed map** (def. 3.7).

Proof. The implication \(((Y, \tau_Y)\) Hausdorff) \(\Rightarrow (\pi\) closed) is given by prop. 6.17. We need to show the converse.

Hence assume that \(\pi\) is a closed map. We need to show that for every pair of distinct point \(y_1 \neq y_2 \in Y\) there exist **open neighbourhoods** \(U_{y_1}, U_{y_2} \in \tau_Y\) which are disjoint, \(U_{y_1} \cap U_{y_2} = \emptyset\).

Therefore consider the **pre-images**

\[C_1 := \pi^{-1}(\{y_1\}) \quad C_2 := \pi^{-1}(\{y_2\}) . \]

Observe that these are **closed subsets**, because in the Hausdorff space \((Y, \tau_Y)\) the singleton subsets \(\{y\}\) are closed by prop. 4.6, and since pre-images under continuous functions preserves closed subsets by prop. 3.2.

Now since **compact Hausdorff spaces are normal** it follows (by def. 4.8) that we may find disjoint open subset \(U_1, U_2 \in \tau_X\) such that

\[C_1 \subset U_1 \quad C_2 \subset U_2 . \]

Moreover, by lemma 3.9 we may find these \(U_i\) such that they are both **saturated subsets** (def. 2.18). Therefore finally lemma 3.9 say that the images \(\pi(U_i)\) are open in \((Y, \tau_Y)\). These are now clearly disjoint open neighbourhoods of \(y_1\) and \(y_2\).

Example 6.22. Consider the function

\[
[0, 2\pi] / \sim \quad \rightarrow \quad S^1 \subset \mathbb{R}^2 \\
\quad t \quad \mapsto (\cos(t), \sin(t))
\]

- from the **quotient topological space** (def. 2.17) of the **closed interval** (def. 1.11) by the **equivalence relation** which identifies the two endpoints

\[(x \sim y) \iff ((x = y) \text{ or } (x \in \{0, 2\pi\} \text{ and } y \in \{0, 2\pi\})) \]

- to the unit **circle** \(S^1 = S_0(1) \subset \mathbb{R}^2\) (def. 1.2) regarded as a **topological subspace** of the 2-dimensional **Euclidean space** (def. 1.6) equipped with its
metric topology (def. 2.8).

This is clearly a continuous function and a bijection on the underlying sets. Moreover, since continuous images of compact spaces are compact (cor. 6.9) $[0, 1]$

Hence by prop. 6.18 the above map is in fact a homeomorphism $[0, 2\pi]/\sim \cong S^1$.

Compare this to the counter-example 3.18, which observed that the analogous function $[0, 2\pi) \to S^1 \subset \mathbb{R}^2$ $t \mapsto (\cos(t), \sin(t))$

is not a homeomorphism, even though this, too, is a bijection on the underlying sets. But the half-open interval $(0, 2\pi)$ is not compact, and hence prop. 6.21 does not apply.

7. Universal constructions

One point of the general definition of “topological space” is that it admits constructions which intuitively should exist on “continuous spaces”, but which do not in general exist, for instance, as metric spaces.

We discuss universal constructions in Top, such as limits/colimits, etc.

Definition 7.1. Let $\{X_i = (S_i, \tau_i) \in \text{Top}\}_{i \in I}$ be a class of topological spaces, and let $S \in \text{Set}$ be a bare set. Then

- For $\{S \overset{f_i}{\to} S_i\}_{i \in I}$ a set of functions out of S, the initial topology $\tau_{initial}\left(\{f_i\}_{i \in I}\right)$ is the topology on S with the minimum collection of open subsets such that all $f_i:(S, \tau_{initial}(\{f_i\}_{i \in I})) \to X_i$ are continuous.

- For $\{S_i \overset{f_i}{\to} S\}_{i \in I}$ a set of functions into S, the final topology $\tau_{final}(\{f_i\}_{i \in I})$ is the topology on S with the maximum collection of open subsets such that all $f_i:X_i \to (S, \tau_{final}(\{f_i\}_{i \in I}))$ are continuous.

Example 7.2. For X a single topological space, and $i_S:S \hookrightarrow U(X)$ a subset of its underlying set, then the initial topology $\tau_{initial}(i_S)$, def. 7.1, is the subspace topology, making $i_S:(S, \tau_{initial}(i_S)) \hookrightarrow X$ a topological subspace inclusion.

Example 7.3. Conversely, for $p_S:U(X) \to S$ an epimorphism, then the final topology $\tau_{final}(p_S)$ on S is the quotient topology.
Proposition 7.4. Let I be a small category and let $X : I \to \text{Top}$ be an I-**diagram** in Top (a functor from I to Top), with components denoted $X_i = (S_i, \tau_i)$, where $S_i \in \text{Set}$ and τ_i a topology on S_i. Then:

1. The **limit** of X, exists and is given by the topological space whose underlying set is the limit in Set of the underlying sets in the diagram, and whose topology is the initial topology, def. 7.1, for the functions p_i which are the limiting cone components:

$$\lim_{i \in I} S_i$$

$$p_i \downarrow \downarrow_{\ S_i \rightarrow S_j}$$

Hence

$$\lim_{i \in I} X_i \simeq \left(\lim_{i \in I} S_i, \tau_{\text{initial}}(\{p_i\}_{i \in I}) \right)$$

2. The **colimit** of X, exists and is the topological space whose underlying set is the colimit in Set of the underlying diagram of sets, and whose topology is the final topology, def. 7.1 for the component maps u_i of the colimiting cocone

$$S_i \rightarrow S_j$$

$$u_i \downarrow \downarrow_{\ i \rightarrow j}$$

$$\lim_{i \in I} S_i$$

Hence

$$\lim_{i \in I} X_i \simeq \left(\lim_{i \in I} S_i, \tau_{\text{final}}(\{t_i\}_{i \in I}) \right)$$

(e.g. Bourbaki 71, section I.4)

Proof. The required **universal property** of $\left(\lim_{i \in I} S_i, \tau_{\text{initial}}(\{p_i\}_{i \in I}) \right)$ is immediate: for

$$f_i \downarrow \downarrow_{\ X_i \rightarrow X_j}$$

any cone over the diagram, then by construction there is a unique function of underlying sets $S \rightarrow \lim_{i \in I} S_i$ making the required diagrams commute, and so all that is required is that this unique function is always **continuous**. But this is precisely what the initial topology ensures.

The case of the colimit is formally dual. ■
Examples of (co-)limits of topological spaces

Example 7.5. The limit over the empty diagram in Top is the point \ast with its unique topology.

Example 7.6. For $\{X_i\}_{i \in I}$ a set of topological spaces, their coproduct $\coprod_{i \in I} X_i \in \text{Top}$ is their disjoint union (example 2.14).

Example 7.7. For $\{X_i\}_{i \in I}$ a set of topological spaces, their product $\prod_{i \in I} X_i \in \text{Top}$ is the Cartesian product of the underlying sets equipped with the product topology, also called the Tychonoff product. In the case that S is a finite set, such as for binary product spaces $X \times Y$, then a sub-basis for the product topology is given by the Cartesian products of the open subsets of (a basis for) each factor space.

Example 7.8. The equalizer of two continuous functions $f, g : X \rightarrow Y$ in Top is the equalizer of the underlying functions of sets

$$\text{eq}(f, g) \hookrightarrow S_X \xrightarrow{f/g} S_Y$$

(hence the largests subset of S_X on which both functions coincide) and equipped with the subspace topology, example 7.2.

Example 7.9. The coequalizer of two continuous functions $f, g : X \rightarrow Y$ in Top is the coequalizer of the underlying functions of sets

$$S_X \xrightarrow{f/g} S_Y \twoheadrightarrow \text{coeq}(f, g)$$

(hence the quotient set by the equivalence relation generated by $f(x) \sim g(x)$ for all $x \in X$) and equipped with the quotient topology, example 7.3.

Example 7.10. For

$$\begin{array}{ccc}
A & \xrightarrow{g} & Y \\
\downarrow{f} & & \downarrow{g, f} \\
X & \rightarrow & X \sqcup_A Y
\end{array}$$

two continuous functions out of the same domain, then the colimit under this diagram is also called the pushout, denoted

$$\begin{array}{ccc}
A & \xrightarrow{g} & Y \\
\downarrow{f} & \downarrow{g, f} & \downarrow{g, f} \\
X & \rightarrow & X \sqcup_A Y
\end{array}$$
(Here g_* f is also called the pushout of f, or the **cokernel** of f along g.) If g is an inclusion, one also write $X \cup_f Y$ and calls this the **attaching space**.

By example 7.9 the pushout/attaching space is the **quotient topological space**

$$X \cup_A Y \simeq (X \cup Y) / \sim$$

of the disjoint union of X and Y subject to the **equivalence relation** which identifies a point in X with a point in Y if they have the same pre-image in A.

(graphics from Aguilar-Gitler-Prieto 02)

Example 7.11. As an important special case of example 7.10, let $$i_n : S^{n-1} \to D^n$$

be the canonical inclusion of the standard $(n-1)$-sphere as the **boundary** of the standard n-disk (both regarded as topological spaces with their **subspace topology** as subspaces of the **Cartesian space** \mathbb{R}^n).

Then the colimit in **Top** under the diagram, i.e. the **pushout** of i_n along itself,

$$\left\{ D^n \xrightarrow{i_n} S^{n-1} \xrightarrow{i_n} D^n \right\},$$

is the **n-sphere** S^n:

$$\begin{align*}
S^{n-1} & \xrightarrow{i_n} D^n \\
i_n & \downarrow \quad (\text{po}) \quad \downarrow \\
D^n & \to S^n
\end{align*}$$

(graphics from Ueno-Shiga-Morita 95)

Next section **Introduction to Topology -- 2.**

8. References
Introductory textbooks to topology include

See also

- **Alan Hatcher**, *Algebraic Topology*

and see also the references at *algebraic topology*.

Lecture notes include

- **Friedhelm Waldhausen**, *Topologie* ([pdf](#))
- Alex Kuronya, *Introduction to topology*, 2010 ([pdf](#))
- Anatole Katok, Alexey Sossinsky, *Introduction to modern topology and geometry* ([pdf](#))

Discussion of **sober topological spaces** is in

See also

- **Topospaces**, a Wiki with basic material on topology.

Revised on April 17, 2017 17:54:13 by **Urs Schreiber**