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nLab
* Introduction to Topology -- 1

This page is a detailed introduction to basic topology. Starting from scratch
(required background is just a basic concept of sets), and amplifying motivation
from analysis, it first develops standard point-set topology (topological spaces).
In passing, some basics of category theory make an informal appearance, used to
transparently summarize some conceptually important aspects of the theory, such
as initial and final topologies and the reflection into Hausdorff and sober
topological spaces. The second part introduces some basics of homotopy theory,
mostly the fundamental group, and ends with their first application to the
classification of covering spaces.

main page: Introduction to Topology

this chapter: Introduction to Topology 1 — Point-set topology

next chapter: Introduction to Topology 2 -- Basic Homotopy Theory

For introduction to more general and abstract homotopy theory see instead at
Introduction to Homotopy Theory.
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The idea of topology is to study “spaces” with “continuous functions” between
them. Specifically one considers functions between sets (whence “point-set
topology”, see below) such that there is a concept for what it means that these
functions depend continuously on their arguments, in that that their values do not
“jump”. Such a concept of continuity is familiar from analysis on metric spaces,
(recalled below) but the definition in topology generalizes this analytic concept
and renders it more foundational, generalizing the concept of metric spaces to
that of topological spaces. (def. 2.3 below).

Hence topology is the study of the category whose objects are topological spaces,
and whose morphisms are continuous functions (see also remark 3.3 below). This
category is much more flexible than that of metric spaces, for example it admits
the construction of arbitrary gquotients and intersections of spaces. Accordingly,
topology underlies or informs many and diverse areas of mathematics, such as
functional analysis, operator algebra, manifold/scheme theory, hence algebraic
geometry and differential geometry, and the study of topological groups,
topological vector spaces, local rings, etc.. Not the least, it gives rise to the field
of homotopy theory, where one considers also continuous deformations of
continuous functions themselves (“homotopies”). Topology itself has many
branches, such as low-dimensional topology or topological domain theory.

A popular imagery for the concept of a continuous function is provided by
deformations of elastic physical bodies, which may be deformed by stretching
them without tearing. The canonical illustration is a continous bijective function
from the torus to the surface of a coffee mug, which maps half of the torus to the
handle of the coffee mug, and continuously deforms parts of the other half in
order to form the actual cup. Since the inverse function to this function is itself
continuous, the torus and the coffee mug, both regarded as topological spaces,
are “the same” for the purposes of topology, one says they are homeomorphic.

On the other hand, there is no homeomorphism from the torus to, for instance,
the sphere, signifying that these represent two topologically distinct spaces. Part
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of topology is concerned with
studying homeomorphism- V7
invariants of topological spaces i
(“topological properties”) which ':{
allow to detect by means of
algebraic manipulations
whether two topological spaces
are homeomorphic (or more
generally homotopy equivalent) or not. This is called algebraic topology. A basic
algebraic invariant is the fundamental group of a topological space (discussed
below), which measures how many ways there are to wind loops inside a
topological space.

Beware that the popular imagery of “rubber-sheet geometry” only captures part
of the full scope of topology, in that it invokes spaces that /ocally still look like
metric spaces. But the concept of topological spaces is a good bit more general.
Notably finite topological spaces are either discrete or very much unlike metric
spaces (example 4.7 below), they play a role in categorical logic. Also in
geometry exotic topological spaces frequently arise when forming non-free
quotients. In order to gauge just how many of such “exotic” examples of
topological spaces beyond locally metric spaces one wishes to admit in the theory,
extra “separation axioms” are imposed on topological spaces (see below), and the
flavour of topology as a field depends on this choice.

Among the separation axioms, the Hausdorff space axiom is most popular (see
below) the weaker axiom of soberity (see below) stands out, on the one hand
because this is the weakest axiom that is still naturally satisfied in applications to
algebraic geometry (schemes are sober) and computer science (Vickers 89) and
on the other hand because it fully realizes the strong roots that topology has in
formal logic: sober topological spaces are entirely characterized by the union-,
intersection- and inclusion-relations (logical conjunction, disjunction and
implication) among their open subsets (propositions). This leads to a natural and
fruitful generalization of topology to more general “purely logic-determined
spaces”, called locales and in yet more generality toposes and higher toposes.
While the latter are beyond the scope of this introduction, their rich theory and
relation to the foundations of mathematics and geometry provides an outlook on
the relevance of the basic ideas of topology.

In this first part we discuss the foundations of the concept of “sets equipped with
topology” (topological spaces) and of continuous functions between them.

1. Metric spaces

The concept of continuity was first made precise in analysis, in terms of epsilontic
analysis on metric spaces, recalled as def. 1.8 below. Then it was realized that
this has a more elegant formulation in terms of the more general concept of open
sets, this is prop. 1.13 below. Adopting the latter as the definition leads to a more
abstract concept of “continuous space”, this is the concept of topological spaces,
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def. 2.3 below.

Here we briefly recall the relevant basic concepts from analysis, as a motivation
for various definitions in topology. The reader who either already recalls these
concepts in analysis or is content with ignoring the motivation coming from
analysis should skip right away to the section Topological spaces.

Definition 1.1. (metric space)

A metric space is

1. a set X (the “underlying set”);

2. a function d : X x X - [0, ) (the “distance function”) from the Cartesian
product of the set with itself to the non-negative real numbers

such that for all x,y,z € X:

1. (symmetry) d(x,y) = d(y, x)

2. (triangle inequality) d(x,z) < d(x,y) + d(y, 2).
3. (non-degeneracy) d(x,y) =0 © x=y

Definition 1.2. Let (X,d), be a metric space. Then for every element x € X and
every € € R, a positive real number, we write

Bx(e) = {yeX | d(xy) <€}

for the open ball of radius € around x. Similarly we write

By(e) = {yeX | d(xy) <€}
for the closed ball of radius € around x. Finally we write
Sx(€) = {yeX|d(xy) = ¢}

for the sphere of radius € around x.

For e = 1 we also speak of the unit open/closed ball and the unit sphere.

Definition 1.3. For (X,d) a metric space (def. 1.1) then a subset S c X is called a
bounded subset if S is contained in some open ball (def. 1.2)

S c By(r)
around some x € X of some radius r € R.

A key source of metric spaces are normed vector spaces:

Dedfinition 1.4. (normed vector space)

A normed vector space is
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1. a real vector space V;

2. a function (the norm)

I|=Il : V—Rsy

from the underlying set of V to the non-negative real numbers,

such that for all ¢ € R with absolute value |c| and all v,w € V it holds true that

1. (linearity) ||cv|| = |c|||v||;

2. (triangle inequality) ||v+ w|| < ||v]| + |Iwll;

3. (non-degeneracy) if ||v|| = 0 then v = 0.

Proposition 1.5. Every normed vector space (V,||—||) becomes a metric space
according to def. 1.1 by setting

d(x,y) = |lx =yl .

Examples of normed vector spaces (def. 1.4) and hence, via prop. 1.5, of metric
spaces include the following:

Example 1.6. For n € N, the Cartesian space

R™ = {X = (x;);, |x; ER}

carries a norm (the Euclidean norm ) given by the square root of the sum of the
squares of the components:

Via prop. 1.5 this gives R" the structure of a metric space, and as such it is
called the Euclidean space of dimension n.

Example 1.7. More generally, forn e N, and p € R,
p > 1, then the Cartesian space R" carries the p-norm

Il =2 Y bel?
i

%], = max |x;]|
el

One also sets

and calls this the supremum norm.

The graphics on the right (grabbed from Wikipedia) shows unit circles (def. 1.2)
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in R with respect to various p-norms.

By the Minkowski inequality, the p-norm generalizes to non-finite dimensional
vector spaces such as sequence spaces and Lebesgue spaces.

Continuity

The following is now the fairly obvious definition of continuity for functions
between metric spaces.

Definition 1.8. (epsilontic definition of continuity)

For (X,dy) and (Y,d,) two metric spaces (def.
1.1), then a function

f:X—>Y

is said to be continuous at a point x € X if for
every positive real number e there exists a
positive real number § such that for all x" € X
that are a distance smaller than § from x then
their image f(x') is a distance smaller than ¢

from f(x):

(f continuousatx) = V | 3 ((dy(x,x")<8) = (dy(f(x),f(x"))<e€))

€ER| SeR
€>0 §>0

The function f is said to be continuous if it is continuous at every point x € X.

Example 1.9. (polynomials are continuous functions)

Consider the real line R regarded as the 1-dimensional Euclidean space R from
example 1.6.

For P € R[X] a polynomial, then the function
fp + R —> R

x = P(x)

is a continuous function in the sense of def. 1.8.

Similarly for instance
e forming the square root is a continuous function \/f—):RZO - Rxg;

e forming the multiplicativ inverse is a continuous function
1/(-) : Ry = Ry,
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On the other hand, a step function is continuous everywhere except at the finite
number of points at which it changes its value, see example 1.14 below.

We now reformulate the analytic concept of continuity from def. 1.8 in terms of
the simple but important concept of open sets:

Definition 1.10. (neighbourhood and open set)

Let (X,d) be a metric space (def. 1.1). Say that:

1. A neighbourhood of a point x € X is a subset U, c X which contains some
open ball By(e) c U, around x (def. 1.2).

2. An open subset of X is a subset U c X such that for every x € U it also
contains an open ball B;(e) around x (def. 1.2).

3. An open neighbourhood of a point x € X is a neighbourhood U, of x which is
also an open subset, hence equivalently this is any open subset of X that
contains x.

The following picture shows a point x, some open balls B; containing it, and two of
its neighbourhoods U;:

graphics grabbed from Munkres 75

Example 1.11. (the empty subset is open)

Notice that for (X,d) a metric space, then the empty subset @ c X is always an

open subset of (X,d) according to def. 1.10. This is because the clause for open
subsets U c X says that “for every point x € U there exists...”, but since there is
no x in U = @, this clause is always satisfied in this case.

Conversely, the entire set X is always an open subset of (X,d).

Example 1.12. (open/closed intervals)
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Regard the real humbers R as the 1-dimensional Euclidean space (example
1.6).

For a < b € R consider the following subsets:
1. (a,b) ={x € R|a < x < b} (open interval)
2. (a,b] ={x €ER|a< x < b} (half-open interval)
3. [a,b) ={x ER|a < x < b} (half-open interval)
4. [a,b] ={x € R|a < x < b} (closed interval)

The first of these is an open subset according to def. 1.10, the other three are
not. The first one is called an open interval, the last one a closed interval and
the middle two are called half-open intervals.

Similarly for a,b € R one considers

1. (—o,b) :={x € R|x < b} (unbounded open interval)

2. (a,0) :={x€R|a < x} (unbounded open interval)

3. (—0,b] :={x € R|x < b} (unbounded half-open interval)

4. [a,») :={x € R|a < x} (unbounded half-open interval)
The first two of these are open subsets, the last two are not.
For completeness we may also consider

* (—w,00) =R

® (a,a) =0
which are both open, according to def. 2.3.

We may now rephrase the analytic definition of continuity entirely in terms of
open subsets (def. 1.10):

Proposition 1.13. (rephrasing continuity in terms of open sets)

Let (X,dy) and (Y,dy) be two metric space (def. 1.1). Then a function f:X - Y is

continuous in the epsilontic sense of def. 1.8 precisely if it has the property that
its pre-images of open subsets of Y (in the sense of def. 1.10) are open subsets

of X:

(f continuous) < ((0y Y open) = (f '(0y) c X open)) .
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principle of continuity

Continuous pre-Images of open subsets are open.

Proof. Observe, by direct unwinding the definitions, that the epsilontic definition
of continuity (def. 1.8) says equivalently in terms of open balls (def. 1.2) that f is
continous at x precisely if for every open ball By, (e) around an image point, there
exists an open ball B;(6) around the corresponding pre-image point which maps
into it:

(f continuous at x) & v ( 3 (f( By(6)) c B}(x)(e)))

eE>0\8>0

o v,(,3,8:0 < 1 (Bj(®)))

E>0\5>0
With this observation the proof immediate. For the record, we spell it out:

First assume that f is continuous in the epsilontic sense. Then for 0, c Y any open
subset and x € f '(0y) any point in the pre-image, we need to show that there
exists an open neighbourhood of x in f *(0y).

That 0y is open in Y means by definition that there exists an open ball B (e) in
Oy around f(x) for some radius e. By the assumption that f is continuous and
using the above observation, this implies that there exists an open ball B;(§) in X
such that f(B(8)) € Bjx)(e) € Y, hence such that B;(8) © f (B () © f (Oy).
Hence this is an open ball of the required kind.

Conversely, assume that the pre-image function f ! takes open subsets to open
subsets. Then for every x € X and By, (e) ¢ Y an open ball around its image, we

need to produce an open ball B;(8) ¢ X around x such that f(Bx(8)) € Bf(e).

But by definition of open subsets, B, (e) c Y is open, and therefore by
assumption on f its pre-image f_l(B}(x)(e)) c X is also an open subset of X. Again

by definition of open subsets, this implies that it contains an open ball as
required. B

Example 1.14. (step function)

Consider R as the 1-dimensional Fy

Euclidean space (example 1.6) and
consider the step function

H &
R — R
0 |x<0.
X =
1 |x>0 ¥

graphics grabbed from Vickers 89
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Consider then for a < b € R the open interval (a,b) c R, an open subset according
to example 1.12. The preimage H *(a, b) of this open subset is

(0 la>1 or b<0
R |la<0 and b >1
H?': (@b~ 0O la>0 and b <1

(0,0) |0<a<1land b>1
(=,0] |a<0and b<1

By example 1.12, all except the last of these pre-images listed are open
subsets.

The failure of the last of the pre-images to be open witnesses that the step
function is not continuous at x = 0.

Compactness

A key application of metric spaces in analysis is that they allow a formalization of
what it means for an infinite sequence of elements in the metric space (def. 1.15
below) to converge to a limit of a sequence (def. 1.16 below). Of particular
interest are therefore those metric spaces for which each sequence has a
converging subsequence: the sequentially compact metric spaces (def. 1.19).

We now briefly recall these concepts from analysis. Then, in the above spirit, we
reformulate their epsilontic definition in terms of open subsets. This gives a useful
definition that generalizes to topological spaces, the compact topological spaces
discussed further below.

Definition 1.15. (sequence)
Given a set X, then a sequence of elements in X is a function
X(_) :N— X

from the natural numbers to X.

A sub-sequence of such a sequence is a sequence of the form

LX)
Xy i NoN—0X
(=)
for some injection .

Definition 1.16. (convergence to limit of a sequence)

Let (X,d) be a metric space (def. 1.1). Then a sequence

X(_):N—>X
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in the underlying set X (def. 1.15) is said to converge to a point x., € X, denoted

i— oo
Xi 7 X

if for every positive real number ¢, there exists a natural number n, such that all
elements in the sequence after the nth one have distance less than ¢ from x.

i— oo
X; — X S W4 3 V d(x;,x,) <€
( t OO) €eER\ neN\| i€eN ( v oo) -

€>0 i>n

Here the point x, is called the limit of the sequence. Often one writes ilingo x; for

this point.

Definition 1.17. (Cauchy sequence)

Given a metric space (X,d) (def. 1.1), then a sequence of points in X (def. 1.15)

X(_):N—>X

is called a Cauchy sequence if for every positive real number e there exists a
natural number n € N such that the distance between any two elements of the
sequence beyond the nth one is less than ¢

(x(_) Cauchy) aadll N NEN i’])vE’N d(x;,xj) <€

€>0 i,j>N

Definition 1.18. (complete metric space)

A metric space (X,d) (def. 1.1), for which every Cauchy sequence (def. 1.17)
converges (def. 1.16) is called a complete metric space.

A normed vector space, regarded as a metric space via prop. 1.5 that is
complete in this sense is called a Banach space.

Finally recall the concept of compactness of metric spaces via epsilontic analysis:

Definition 1.19. (sequentially compact metric space)

A metric space (X,d) (def. 1.1) is called sequentially compact if every sequence
in X has a subsequence (def. 1.15) which converges (def. 1.16).

The key fact to translate this epsilontic definition of compactness to a concept
that makes sense for general topological spaces (below) is the following:

Proposition 1.20. (sequentially compact metric spaces are equivalently
compact metric spaces)

For a metric space (X,d) (def. 1.1) the following are equivalent:
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1. X is sequentially compact;

2. for every set {U; c X}, _, of open subsets U; of X (def. 1.10) which cover X in
that X = Y U;, then there exists a finite subset | c I of these open subsets
L

which still covers X in that also X = ,EL]J . U;.
L [
The proof of prop. 1.20 is most conveniently formulated with some of the

terminology of topology in hand, which we introduce now. Therefore we postpone
the proof to below.

In summary prop. 1.13 and prop. 1.20 show that the purely combinatorial and in
particular non-epsilontic concept of open subsets captures a substantial part of
the nature of metric spaces in analysis. This motivates to reverse the logic and
consider more general “spaces” which are only characterized by what counts as
their open subsets. These are the topological spaces which we turn to now in def.
2.3 (or, more generally, these are the “locales”, which we briefly consider below in
remark 5.6).

2. Topological spaces

Due to prop. 1.13 we should pay attention to open subsets in metric spaces. It
turns out that the following closure property, which follow directly from the
definitions, is at the heart of the concept:

Proposition 2.1. (closure properties of open sets in a metric space)

The collection of open subsets of a metric space (X,d) as in def. 1.10 has the
following properties:

1. The union of any set of open subsets is again an open subset.

2. The intersection of any finite number of open subsets is again an open
subset.

Remark 2.2. (empty union and empty intersection)

Notice the degenerate case of unions Y U; and intersections n U; of subsets
L l

U; c X for the case that they are indexed by the empty set I = @:
1. the empty union is the empty set itself;
2. the empty intersection is all of X.

(The second of these may seem less obvious than the first. We discuss the
general logic behind these kinds of phenomena below.)
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This way prop. 2.1 is indeed compatible with the degenerate cases of examples
of open subsets in example 1.11.

Proposition 2.1 motivates the following generalized definition, which abstracts
away from the concept of metric space just its system of open subsets:

Definition 2.3. (topological spaces)

Given a set X, then a topology on X is a collection 7 of subsets of X called the
open subsets, hence a subset of the power set P(X)

T C P(X)
such that this is closed under forming

1. finite intersections;

2. arbitrary unions.
In particular (by remark 2.2):

e the empty set @ c X is in 7 (being the union of no subsets)
and

e the whole set X c X itself is in t (being the intersection of no subsets).

A set X equipped with such a topology is called a topological space.

Remark 2.4. In the field of topology it is common to eventually simply say
“space” as shorthand for “topological space”. This is especially so as further
qualifiers are added, such as “Hausdorff space” (def. 4.4 below). But beware
that there are other kinds of spaces in mathematics.

Remark 2.5. The simple definition of open subsets in def. 2.3 and the simple
implementation of the principle of continuity below in def. 3.1 gives the field of
topology its fundamental and universal flavor. The combinatorial nature of these
definitions makes topology be closely related to formal logic. This becomes
more manifest still for the “sober topological space” discussed below. For more
on this perspective see the remark on /ocales below, remark 5.6. An
introductory textbook amplifying this perspective is (Vickers 89).

Before we look at first examples below, here is some common further
terminology regarding topological spaces:

There is an evident partial ordering on the set of topologies that a given set may
carry:

Definition 2.6. (finer/coarser topologies)

Let X be a set, and let 7,7, € P(X) be two topologies on X, hence two choices of
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open subsets for X, making it a topological space. If
T4 C Ty

hence if every open subset of X with respect to t, is also regarded as open by
7,, then one says that

e the topology t, is finer than the topology 1,
e the topology 7, is coarser than the topology t;.

With any kind of structure on sets, it is of interest how to “generate” such
structures from a small amount of data:

Definition 2.7. (basis for the topology)

Let (X,7) be a topological space, def. 2.3, and let

pcrt

be a subset of its set of open subsets. We say that

1. B is a basis for the topology 7 if every open subset 0 € 7 is a union of
elements of B;

2. B is a sub-basis for the topology if every open subset 0 € t is a union of
finite intersections of elements of g.

Often it is convenient to define topologies by defining some (sub-)basis as in def.
2.7. Examples are the the metric topology below, example 2.9, the binary product
topology in def. 2.18 below, and the compact-open topology on mapping spaces
below in def. 6.17. To make use of this, we need to recognize sets of open
subsets that serve as the basis for some topology:

Lemma 2.8. (recognition of topological bases)
Let X be a set.

1. A collection p c P(X) of subsets of X is a basis for some topology t c P(X)
(def. 2.7) precisely if

1. every point of X is contained in at least one element of B;

2. for every two subsets B,,B, € B and for every point x € B, N B, in their
intersection, then there exists a B € B that contains x and is contained
in the intersection: x € B € By N B,.

2. A subset B c Tt of opens is a sub-basis for a topology t on X precisely if T is
the coarsest topology (def. 2.6) which contains B.
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Examples

We discuss here some basic examples of topological spaces (def. 2.3), to get a
feeling for the scope of the concept. But topological spaces are ubiquituous in
mathematics, so that there are many more examples and many more classes of
examples than could be listed. As we further develop the theory below, we
encounter more examples, and more classes of examples. Below in Universal
constructions we discuss a very general construction principle of new topological
space from given ones.

First of all, our motivating example from above now reads as follows:

Example 2.9. (metric topology)

Let (X,d) be a metric space (def. 1.1). Then the collection of its open subsets in
def. 1.10 constitutes a topology on the set X, making it a topological space in
the sense of def. 2.3. This is called the metric topology.

The open balls in a metric space constitute a basis of a topology (def. 2.7) for
the metric topology.

While the example of metric space topologies (example 2.9) is the motivating
example for the concept of topological spaces, it is important to notice that the
concept of topological spaces is considerably more general, as some of the
following examples show.

The following simplistic example of a (metric) topological space is important for
the theory (for instance in prop. 2.35):

Example 2.10. (empty space and point space)

On the empty set there exists a unique topology. We write @ also for the
resulting topological space, which we call the empty topological space.

On a singleton set {1} there exists a unique topology T making it a topological
space according to def. 2.3, namely

7:=1{0,{1}}.
We write
* 1= ({1},‘[ = {Q):{l}})

for this topological space and call it the point topological space.

This is equivalently the metric topology (example 2.9) on R°, regarded as the
O0-dimensional Euclidean space (example 1.6).

Example 2.11. On the 2-element set {0,1} there are (up to permutation of
elements) three distinct topologies:

1. the codiscrete topology (def. 2.13) t = {@,{0,1}};

15 0f 96 29.04.17,22:25



Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

2. the discrete topology (def. 2.13), t = {@,{0},{1},{0,1}};

3. the Sierpinski space topology = = {®, {1}, {0, 1}}.

Example 2.12. The following shows all the topologies on the 3-element set (up
to permutation of elements)

graphics grabbed from Munkres 75

Example 2.13. (discrete and co-discrete topology)

Let S be any set. Then there are always the following two extreme possibilities
of equipping X with a topology t c P(X) in the sense of def. 2.3, and hence
making it a topological space:

1. 7= P(S) the set of all open subsets;

this is called the discrete topology on S, it is the finest topology (def. 2.6)
on X,

we write Disc(S) for the resulting topological space;

N

. 7:={@,S} the set contaning only the empty subset of S and all of S itself;

this is called the codiscrete topology on S, it is the coarsest topology (def.
2.6) on X,

we write CoDisc(S) for the resulting topological space.

The reason for this terminology is best seen when considering continuous
functions into or out of these (co-)discrete topological spaces, we come to this
in example 3.8 below.

Example 2.14. (cofinite topology)

Given a set X, then the cofinite topology or finite complement topology on X is
the topology (def. 2.3) whose open subsets are precisely

1. all cofinite subsets S c X (i.e. those such that the complement X\S is a
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finite set);

2. the empty set.

If X is itself a finite set (but not otherwise) then the cofinite topology on X
coincides with the discrete topology on X (example 2.13).

We now consider basic construction principles of new topological spaces from
given ones:

1. disjoint union spaces (example 2.15)

2. subspaces (example 2.16),

3. quotient spaces (example 2.17)

4. product spaces (example 2.18).

Below in Universal constructions we will recognize these as simple special cases of
a general construction principle.

Example 2.15. (disjoint union)

For {(X;,7))},., @ set of topological spaces, then their disjoint union

e (Xi70)

is the topological space whose underlying set is the disjoint union of the
underlying sets of the summand spaces, and whose open subsets are precisely
the disjoint unions of the open subsets of the summand spaces.

In particular, for I any index set, then the disjoint union of I copies of the point
space (example 2.10) is equivalently the discrete topological space (example
2.13) on that index set:

U x= = Disc(]) .

i€l

Example 2.16. (subspace topology)

subset of the underlying set. Then the corresponding
topological subspace has S as its underlying set, and

its open subsets are those subsets of S which arise as
restrictions of open subsets of X.

Let (X,7yx) be a topological space, and let Sc X be a @

(UScSopen)<:>( 3 (U5=UXnS)).
Ux€ety

(This is also called the initial topology of the inclusion
map. We come back to this below in def. 8.5.)
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The picture on the right shows two open subsets inside the square, regarded as
a topological subspace of the plane R?:

graphics grabbed from Munkres 75

Example 2.17. (quotient topological space)

Let (X,74) be a topological space (def. 2.3) and let

R.cXxX

be an equivalence relation on its underlying set. Then the guotient topological
space has

e as underlying set the quotient set X/ ~, hence the set of equivalence
classes,

and

e asubset 0 c X/ ~ is declared to be an open subset precisely if its
preimage n~1(0) under the canonical projection map

m:X->X/~
is open in X.

(This is also called the final topology of the projection =. We come back to this
below in def. 8.5. )

Often one considers this with input datum not the equivalence relation, but any
surjection

m: X—>oY

of sets. Of course this identifies Y = X/ ~ with (x; ~ x;) © (n(x;) = 7(x,)). Hence
the guotient topology on the codomain set of a function out of any topological
space has as open subsets those whose pre-images are open.

To see that this indeed does define a topology on X/ ~ it is sufficient to observe

that taking pre-images commutes with taking unions and with taking
intersections.

Example 2.18. (binary product topological space)

For (X1,7x,) and (X, 7x,) two topological
spaces, then their binary product v,
topological space has as underlying set A
the Cartesian product X; x X, of the

v WL
corresponding two underlying sets, and
its topology is generated from the basis T —— 3
(def. 2.7) given by the Cartesian products —— g
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U, x U, of the opens U, € ;.

graphics grabbed from Munkres 75

Beware that for non-finite products, the descriptions of the product topology is
not as simple. This we turn to below in example 8.11, after inroducing the
general concept of limits in the category of topological spaces.

The following examples illustrate how all these ingredients and construction
principles may be combined.

The following example we will examine in more detail below in example 3.29,
after we have introduced the concept of homeomorphisms below.

Example 2.19. Consider the real numbers R as the 1-dimensional Euclidean

space (example 1.6) and hence as a topological space via the corresponding
metric topology (example 2.9). Moreover, consider the closed interval [0,1] c R

from example 1.12, regarded as a subspace (def. 2.16) of R.

The product space (example 2.18) of this interval with itself

[0,1] x [0,1]

is a topological space modelling the closed square. The gquotient space (example
2.17) of that by the relation which identifies a pair of opposite sides is a model
for the cylinder. The further quotient by the relation that identifies the
remaining pair of sides yields a model for the torus.

.
-

Ly

graphics grabbed from Munkres 75

Example 2.20. (spheres and disks)

For n € N write

e D" for the n-disk, the closed unit ball (def. 1.2) in the n-dimensional
Euclidean space R" (example 1.6) and equipped with the induced subspace

topology (example 2.16) of the corresponding metric topology (example
2.9);

e s" ! for the (n-1)-sphere (def. 1.2) also equipped with the corresponding
subspace topology;

e i, :S" 1o D™ for the continuous function that exhibits this boundary
inclusion.

19 0of 96 29.04.17,22:25



Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

Notice that

e S ' =0 is the empty topological space (example 2.10);

e 5% =« U « is the disjoint union space (example 2.15) of the point
topological space (example 2.10) with itself, equivalently the discrete
topological space on two elements (example 2.11).

Closed subsets

The complements of open subsets in a topological space are called closed subsets
(def. 2.21 below). This simple definition indeed captures the concept of closure in
the analytic sense of convergence of sequences (prop. 2.27 below). Of particular
interest for the theory of topological spaces in the discussion of separation axioms
below are those closed subsets which are “irreducible” (def. 2.28 below). These
happen to be equivalently the “frame homomorphisms” (def. 2.32) to the frame of
opens of the point (prop. 2.35 below).

Definition 2.21. (closed subsets)

Let (X,7) be a topological space (def. 2.3).

1. A subset S c X is called a closed
subset if its complement X\S is an
open subset: open closed neither

(Sc Xisclosed) < (X\S c X isopen).
graphics grabbed from Vickers 89
2. If a singleton subset {x} c X is closed, one says that x is a closed point of X.

3. Given any subset S c X, then its topological closure CI(X) is the smallest
closed subset containing S:

CI(S) = ©) .

N
Cc X closed
SccC

4. A subset S c X such that CI(S) = X is called a dense subset of (X,1).

Remark 2.22. (de Morgan's law)

In reasoning about closed subsets in topology we are concerned with
complements of unions and intersections as well as with unions/intersections of
complements. Recall therefore that taking complements of subsets exchanges
unions with intersections (de Morgan's law):

Given a set X and a set of subsets
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{Si ©S}iey
then
(Y s) = 000s)
and
N\(05) = u@s).

Also notice that taking complements reverses inclusion relations:

(S €5;) & (X\S cX\Sy).

Often it is useful to reformulate def. 2.21 of closed subsets as follows:

Lemma 2.23. Let (X,7) be a topological space and let S c X be a subset of its
underlying set. Then a point x € X is contained in the topological closure CI(S)

(def. 2.21) precisely if every open neighbourhood U, c X of x intersects S:

(xeCl(s)) & = UCEIX\S (xeU)

U c X open

Proof. In view of remark 2.22 we may rephrase the definition of the topological
closure as follows:

CI(S) - ©

N
SccC
Cc X closed
- Uc{}{\S (X\U)

U c X open

- X\ U ch(\S

U c X open

Definition 2.24. (topological interior and boundary)

Let (X,7) be a topological space (def. 2.3) and let S c X be a subset. Then the
topological interior of S is the largest open subset Int(S) € 7 still contained in S,

Int(S) c S c X:

Int($) = U, V).

O c X open

The boundary aS of S is the complement of its interior inside its topological
closure (def. 2.21):

9S = CI(S)\Int(S) .

21 of 96 29.04.17,22:25



Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

Lemma 2.25. (duality between closure and interior)

Let (X,7) be a topological space and let S c X be a subset. Then the topological
interior of S (def. 2.24) is the same as the complement of the topological
closure CI(X\S) of the complement of S:

X\Int(S) = CI(X\S)
and conversely
X\CI(S) = Int(X\S) .

Proof. Using remark 2.22, we compute as follows:

X\Int(S)zX\( U U)

UcXopen
= n_ (X\U)

UcsS
Uc X open

= n (0

CoX\S
C closed

= CI(X\S)
Similarly for the other case. i

Example 2.26. (topological closure and interior of closed and open
intervals)

Regard the real humbers as the 1-dimensional Euclidean space (example 1.6)
and equipped with the corresponding metric topology (example 2.9) . Let
a < b € R. Then the topological interior (def. 2.24) of the closed interval [a,b] c R

(example 1.12) is the open interval (a,b) c R, moreover the closed interval is its
own topological closure (def. 2.21) and the converse holds (by lemma 2.25):

C((ab)) = [ab]  Int((ab)) = (ab)
Cl([a, b]) = [a b] nt([a,b]) = (ab)

Hence the boundary of the closed interval is its endpoints, while the boundary
of the open interval is empty

d[a,b] = {a}u{b} d(ab)=0.

The terminology “closed” subspace for complements of opens is justified by the
following statement, which is a further example of how the combinatorial concept
of open subsets captures key phenomena in analysis:

Proposition 2.27. (convergence in closed subspaces)

Let (X,d) be a metric space (def. 1.1), regarded as a topological space via
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example 2.9, and let V c X be a subset. Then the following are equivalent:

1. Vc X is a closed subspace according to def. 2.21.

2. For every sequence x; € V c X (def. 1.15) with elements in V, which
converges as a sequence in X (def. 1.16) to some x,, € X, then x,, € V c X.

Proof. First assume that V c X is closed and that x; =% x., for some x., € X. We
need to show that then x,, € V. Suppose it were not, hence that x,, € X\V. Since,
by assumption on V, this complement X\V c X is an open subset, it would follow
that there exists a real number € > 0 such that the open ball around x of radius e
were still contained in the complement: B;(¢) c X\V. But since the sequence is
assumed to converge in X, this would mean that there exists N, such that all x; y_

are in B,(e), hence in X\V. This contradicts the assumption that all x; are in V, and
hence we have proved by contradiction that x., € V.

Conversely, assume that for all sequences in V that converge to some x,, € X then
X €V c X. We need to show that then V is closed, hence that X\V c X is an open
subset, hence that for every x € X\V we may find a real number € > 0 such that
the open ball B;(e) around x of radius ¢ is still contained in X\V. Suppose on the
contrary that such e did not exist. This would mean that for each k € N with k> 1
then the intersection B;(1/k) nV were non-empty. Hence then we could choose
points x;, € By(1/k) NV in these intersections. These would form a sequence which
clearly converges to the original x, and so by assumption we would conclude that
x € V, which violates the assumption that x € X\V. Hence we proved by
contradiction X\V is in fact open. N

A special role in the theory is played by the “irreducible” closed subspaces:

Definition 2.28. (irreducible closed subspace)

A closed subset S c X (def. 2.21) of a topological space X is called irreducible if
it is non-empty and not the union of two closed proper (i.e. smaller) subsets. In
other words, a non-empty closed subset S c X is irreducible if whenever

S1,S, c X are two closed subspace such that

S = 51 U Sz
then S, =SorS, =S.
Example 2.29. (closures of points are irreducible)

For x € X a point inside a topological space, then the closure Cl({x}) of the
singleton subset {x} c X is irreducible (def. 2.28).

Example 2.30. (no nontrivial closed irreducibles in metric spaces)

Let (X,d) be a metric space, regarded as a topological space via its metric
topology (example 2.9). Then every point x € X is closed (def 2.21), hence
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every singleton subset {x} c X is irreducible according to def. 2.29.

Let R be the 1-dimensional Euclidean space (example 1.6) with its metric
topology (example 2.9). Then for a < ¢ c R the closed interval [a,c] € R (example
1.12 ) is not irreducible, since for any b € R with a < b < c it is the union of two
smaller closed subintervals:

[a,c] = [a,b]U[b,c] .

In fact we will see below (prop. 5.3) that in a metric space the singleton subsets
are precisely the only irreducible closed subsets.

Often it is useful to re-express the condition of irreducibility of closed subspaces
in terms of complementary open subsets:

Proposition 2.31. (irreducible closed subsets in terms of prime open
subsets)

Let (X,7) be a topological space, and let P € t be a proper open subset of X,
hence so that the complement F := X\P is a non-empty closed subspace. Then F
is irreducible in the sense of def. 2.28 precisely if whenever U,,U, € t are open
subsets with Uy nU, c P then U, c P or U, c P:

(X\P irreducible) < ( v (UyNnU,cP) > (U,cPorlU,c P))) :
2€T

Uq,

THe open subset P c X with this property are also called the prime open subsets
in ty.

Proof. Observe that every closed subset F; ¢ F may be exhibited as the
complement

Fl' = F\Ul

of some open subset U; € T with respect to F. Observe that under this
identification the condition that U; n U, c P is equivalent to the condition that
F,UF, =F, because it is equivalent to the equation labeled () in the following
sequence of equations:

FL{UF, = (F\U;) VU (F\U;)
= (X\(PUU;))U(X\PUU,)
=X\((PuUy)Nn(PUU,))
=X\(PU(U;NnU,))
62 X\P
=F.

Similarly, the condition that U; c P is equivalent to the condition that F; = F,
because it is equivalent to the equality () in the following sequence of equalities:
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Fi = F\Ul
=X\(PUU))

* X\P
=F

Under these identifications, the two conditions are manifestly the same. &

We consider yet another equivalent characterization of irreducible closed subsets,
prop. 2.35 below, which will be needed in the discussion of the separation axioms
further below. Stating this requires the following concept of “frame”
homomorphism, the natural kind of homomorphisms between topological spaces
if we were to forget the underlying set of points of a topological space, and only
remember the set ty with its operations induced by taking finite intersections and
arbitrary unions:

Definition 2.32. (frame homomorphisms)

Let (X,7x) and (Y, ty) be topological spaces (def. 2.3). Then a function

Tx < Ty : @

between their sets of open subsets is called a frame homomorphism if it
preserves

1. arbitrary unions;

2. finite intersections.

In other words, ¢ is a frame homomorphism precisely if

1. for every set I and every I-indexed set {U; € 1y}, _, of elements of z,, then

d)(iLEJIUi) = Yoy €,

2. for every finite set J and every J-indexed set {U; € Tr}je of elements in 1y,
then

¢( n Uj) = 0 eUy ey

jeJ
Remark 2.33. (frame homomorphisms preserve inclusions)

A frame homomorphism ¢ as in def. 2.32 necessarily also preserves inclusions
in that

e for every inclusion U, c U, with U,,U, € Ty c P(Y) then
$Uy) € p(U3) €Ty .

This is because inclusions are witnessed by unions
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U, cUy) & (U VU, =U,)
or alternatively because inclusions are witnessed by finite intersections:
U,cUy) & (UynU, =U,y).

Example 2.34. (pre-images of continuous functions are frame
homomorphisms)

Let (X,7x) and (Y,7y) be two topological spaces. One way to obtain a function
between their sets of open subsets

Ty — Ty - ¢
is to specifiy a function
f:X—>Y

of their underlying sets, and take ¢ := f ' to be the pre-image operation. A
priori this is a function of the form

P(Y) —P(X): f!

and hence in order for this to co-restrict to ty ¢ P(X) when restricted to 7, c P(Y)
we need to demand that, under f, pre-images of open subsets of Y are open
subsets of Z. Below in def. 3.1 we highlight these as the continuous functions
between toopological spaces.

f : (X'TX) - (Y'TY)
In this case then
Tx < Ty f_l

is @ frame homomorphism in the sense of def. 2.32.

For the following recall from example 2.10 the point topological space

« = ({1} = {2, {1}D.

Proposition 2.35. (irreducible closed subsets are equivalently frame
homomorphisms to opens of the point)

For (X,t) a topological space, then there is a natural bijection between the
irreducible closed subspaces of (X,1) (def. 2.28) and the frame homomorphisms
from 15 to 1,, and this bijection is given by

FrameHom(ty,7,) — IrrClSub(X)
¢ = X\(Up(9)

where Uy(¢) is the union of all elements U € 7, such that ¢(U) = @:
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Ug(p)= U (U).

Uety
PWU)=0

See also (Johnstone 82, IT 1.3).

Proof. First we need to show that the function is well defined in that given a
frame homomorphism ¢:17x — 7, then X\Uy(¢) is indeed an irreducible closed

subspace.
To that end observe that:

(=) If there are two elements U, U, € tx with Uy nU, c Uy(¢p) then U, c Uy(¢p) Or
Uz € Ugp(¢).

This is because

dU) NPUy) = dp(Uy NU,)
c oUp(9))
=0

where the first equality holds because ¢ preserves finite intersections by def.
2.32, the inclusion holds because ¢ respects inclusions by remark 2.33, and the
second equality holds because ¢ preserves arbitrary unions by def. 2.32. But in
7, = {0,{1}} the intersection of two open subsets is empty precisely if at least one
of them is empty, hence ¢(U,) = @ or ¢(U,) = @. But this means that U, c Uy(¢) or
U, c Uy(¢), as claimed.

Now according to prop. 2.31 the condition (*) identifies the complement X\Uy(¢)
as an irreducible closed subspace of (X, 7).

Conversely, given an irreducible closed subset X\U,, define ¢ by

@ |ifUcU,
¢o:Uwm .
{1} |otherwise
This does preserve
1. arbitrary unions
because ¢( U U,) = {@} precisely if UU; c U, which is the case precisely if all
L l

U; c Uy, which means that all ¢(U;) = ¢ and because U ¢ = ¢;

while ¢(U U,) = {1} as soon as one of the U; is not contained in U,, which
means that one of the ¢(U;) = {1} which means that v ¢(U;) = {1};

2. finite intersections

because if U; nU, c U,, then by (x) U, € U, or U, € U,, whence ¢(U,) =@ or
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¢(U,) = 0, whence with ¢(U; nU,) =0 also ¢p(U;) np(U,) = 0;

while if U; n U, is not contained in U, then neither U; nor U, is contained in
U, and hence with ¢(U, nU,) = {1} also ¢(U;) N p(U,) = {1} n {1} = {1}.

Hence this is indeed a frame homomorphism 5 — 7.,.

Finally, it is clear that these two operations are inverse to each other. i

3. Continuous functions

With the concept of topological spaces in hand (def. 2.3) it is now immediate to
formally implement in abstract generality the statement of prop. 1.13:

principle of continuity

Continuous pre-Images of open subsets are open.

Definition 3.1. (continuous function)
A continuous function between topological spaces (def. 2.3)

f:(X'TX) - (YITY)

is a function between the underlying sets,
f:X—>Y

such that pre-images under f of open subsets of Y are open subsets of X.

We may equivalently state this in terms of closed subsets:

Proposition 3.2. Let (X,,75) and (Y,ty) be two topological spaces (def. 2.3). Then
a function

f:X—>Y

between the underlying sets is continuous in the sense of def. 3.1 precisely if
pre-images under f of closed subsets of Y (def. 2.21) are closed subsets of X.

Proof. This follows since taking pre-images commutes with taking
complements. R

Before looking at first examples of continuous functions below we consider now
an informal remark on the resulting global structure, the “category of topological
spaces”, remark 3.3 below. This is a language that serves to make transparent
key phenomena in topology which we encounter further below, such as the

28 of 96 29.04.17,22:25



Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

Tn-reflection (remark 4.23 below), and the universal constructions.

Remark 3.3. (concrete category of topological spaces)

For X,,X,, X5 three topological spaces and for

x, Lx, and x,%x,

two continuous functions (def. 3.1) then their composition

f
foof, i Xy x, 25 X,

is clearly itself again a continuous function from X; to X;. Moreover, this
composition operation is clearly associative, in that for

h
X, 5x, and X, 5X, and X, -5X,
three continuous functions, then

f3°(f2°f1):(f3°f2)of1 :Xl_)X3'

Finally, the composition operation is also clearly unital, in that for each
topological space X there exists the identity function idy:X — X and for f:X; — X,
any continuous function then

idXzof:f:foidxl'
One summarizes this situation by saying that:

1. topological spaces constitute the objects,

2. continuous functions constitute the morphisms (homomorphisms)

of a category, called the (hog)of
category of topological
spaces (“Top” for short). hog

It is useful to depict 73 /;"—-\h\

collections of objects with 4
morphisms between them by v
diagrams, like this one: gof

graphics grabbed from Lawvere-Schanuel 09.

There are other categories. For instance there is the category of sets (“Set” for
short) whose
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1. objects are sets,

2. morphisms are plain functions between these.
The two categories Top and Set are different, but related. After all,

1. an object of Top (hence a topological space) is an object of Set (hence a
set) equipped with extra structure (namely with a topology);

2. a morphism in Top (hence a continuous function) is @ morphism in Set
(hence a plain function) with the extra property that it preserves this extra
structure.

Hence we have the underlying set assigning function
U
Top — Set

Xt — X

from the class of topological spaces to the class of sets. But more is true: every
continuous function between topological spaces is, by definition, in particular a
function on underlying sets:

U
Top — Set

X tx) — X
L e U
(Y' TY) N Y

and this assignment (trivially) respects the composition of morphisms and the
identity morphisms.

Such a function between classes of objects of categories, which is extended to a
function on the sets of homomorphisms between these objects in a way that
respects composition and identity morphisms is called a functor. If we write an
arrow between categories

U : Top — Set

then it is understood that we mean not just a function between their classes of
objects, but a functor.

The functor U at hand has the special property that it does not do much except
forgetting extra structure, namely the extra structure on a set X given by a
choice of topology 7. One also speaks of a forgetful functor.

This is intuitively clear, and we may easily formalize it: The functor U has the
special property that as a function between sets of homomorphisms (*hom
sets”, for short) it is injective. More in detail, given topological spaces (X,7y) and
(Y, ty) then the component function of U from the set of continuous function
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between these spaces to the set of plain functions between their underlying sets

X continuous % . U % y
{( ’TX) ( 'TY)} ' { function }

function

is an injective function, including the continuous functions among all functions
of underlying sets.

A functor with this property, that its component functions between all hom-sets
are injective, is called a faithful functor.

A category equipped with a faithful functor to Set is called a concrete category.

Hence Top is canonically a concrete category.

Example 3.4. (product topological space construction is functorial)

For ¢ and D two categories as in remark 3.3 (for instance Top or Set) then we
obtain a new category denoted ¢ x D and called their product category whose

1. objects are pairs (c,d) with ¢ an object of ¢ and d an object of D;

e morphisms are pairs (f,g9):(c,d) - (c¢’,d") with f:c - d a morphism of ¢ and
g:d - d" a morphisms of D,

e composition of morphisms is defined pairwise (f',g' ) e (f,g9) == (f" o f,g" > g).

This concept secretly underlies the construction of product topological spaces:

Let (Xq,7x,), (X2,7x,), (Y1,7y,) @nd (Y,,1y,) be topological spaces. Then for all

pairs of continuous functions

fi: Ktx,) = Vi, 7y))

and
fz : (XZ'TXZ) - (YZITYZ)

the canonically induced function on Cartesian products of sets

f1xf
Xl XXZ 1—2> Y]_XYZ

(x1,%2) = (fl(x1)’f2(x2))

is a continuous function with respect to the binary product space topologies
(def. 2.18)

fl sz : (Xl XXZ’TX1XX2) - (Y].’ XYZ’TY1XY2) "

Moreover, this construction respects identity functions and composition of
functions in both arguments.

In the language of category theory (remark 3.3), this is summarized by saying

31 of 96 29.04.17,22:25



Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

that the product topological space construction (—) x (—) extends to a functor
from the product category of the category Top with itself to itself:

(=) %X (=) : Top X Top — Top .

Examples

We discuss here some basic examples of continuous functions (def. 3.1) between
topological spaces (def. 2.3) to get a feeling for the nature of the concept. But as
with topological spaces themselves, continuous functions between them are
ubiquituous in mathematics, and no list will exhaust all classes of examples.
Below in the section Universal constructions we discuss a general principle that
serves to produce examples of continuous functions with prescribed “universal

properties”.

Example 3.5. (point space is terminal)

For (X,t) any topological space, then there is a unique continuous function

X — *

from X to the point topological space (def. 2.10).

In the language of category theory (remark 3.3), this says that the point * is
the terminal object in the category Top of topological spaces.

Example 3.6. (constant continuous functions)

For (X,t) a topological space then for x € X any element of the underlying set,
there is a unique continuous function (which we denote by the same symbol)

x: x> X

from the point topological space (def. 2.10), whose image in X is that element.
Hence there is a natural bijection

{* ER X|f continuous} ~ X

between the continuous functions from the point to any topological space, and
the underlying set of that topological space.

More generally, for (X,tyx) and (Y,1y) two topological spaces, then a continuous
function X - Y between them is called a constant function with value some point
y €Y if it factors through the point spaces as

3! y
consty:X—>*—>Y.

Definition 3.7. (locally constant function)
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For (X.tyx), (Y,7y) two topological spaces, then a a continuous function
f:(X,tx) » (Y,7y) (def. 3.1) is called /locally constant if every point x € X has a
neighbourhood on which the function is constant.

Example 3.8. (continuous functions into and out of discrete and
codiscrete spaces)

Let S be a set and let (X,7) be a topological space. Recall from example 2.13

1. the discrete topological space Disc(S);

2. the co-discrete topological space CoDisc(S)

on the underlying set S. Then continuous functions (def. 3.1) into/out of these
satisfy:

1. every function (of sets) Disc(S) — X out of a discrete space is continuous;
2. every function (of sets) X — CoDisc(S) into a codiscrete space is continuous.

Also:

e every continuous function (X,7) — Disc(S) into a discrete space is locally
constant (def. 3.7).

Example 3.9. (diagonal)

For X a set, its diagonal Ay is the function from X to the Cartesian product of X
with itsef, given by

A
X X xxx

x = (xx)

For (X,t) a topological space, then the diagonal is a continuous function to the
product topological space (def. 2.18) of X with itself.

Ay : (X,1) = (X X X, Txyxx) -

To see this, it is sufficient to see that the preimages of basic opens U; x U, in
Tyxx are in ty. But these pre-images are the intersections U; n U, c X, which are
open by the axioms on the topology 7y.

Example 3.10. (image factorization)

Let f: (X,7x) — (Y,1y) be a continuous function.

Write f(X) c Y for the image of f on underlying sets, and consider the resulting
factorization of f through f(X) on underlying sets:

surjective injective

fiX £ Y.
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There are the following two ways to topologize the image f(X) such as to make
this a sequence of two continuous functions:

1. By example 2.16 f(X) inherits a subspace topology from (Y, y) which
evidently makes the inclusion f(X) — Y a continuous function.

Observe that this also makes X - f(X) a continuous function: An open
subset of f(X) in this case is of the form Uy n f(X) for Uy, € 1y, and
YUy n f(X)) = f ' (Uy), which is open in X since f is continuous.

2. By example 2.17 f(X) inherits a quotient topology from (X, tx) which
evidently makes the surjection X — f(X) a continuous function.

Observe that this also makes f(X) — Y a continuous function: The
preimage under this map of an open subset Uy € 1, is the restriction

Uy N f(X), and the pre-image of that under X - f(X) is f *(Uy), as before,
which is open since f is continuous, and therefore U, n f(X) is open in the
quotient topology.

Beware that in general a continuous function itself (as opposed to its pre-image
function) neither preserves open subsets, nor closed subsets, as the following
examples show:

Example 3.11. Regard the real numbers R as the 1-dimensional Euclidean space
(example 1.6) equipped with the metric topology (example 2.9). For a € R the
constant function (example 3.6)

const,
—— R

X (g a

maps every open subset U c R to the singleton set {a} c R, which is not open.

Example 3.12. Write Disc(R) for the set of real numbers equipped with its
discrete topology (def. 2.13) and R for the set of real numbers equipped with its

Euclidean metric topology (example 1.6, example 2.9). Then the identity
function on the underlying sets

idg : Disc(R) — R

is a continuous function (a special case of example 3.8). A singleton subset
{a} € Disc(R) is open, but regarded as a subset {a} € R it is not open.

Example 3.13. Consider the set of real humbers R equipped with its Euclidean
metric topology (example 1.6, example 2.9). The exponential function

exp(—=): R—R

maps all of R (which is a closed subset, since R = R\@) to the open interval
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(0,0) c R, which is not closed.

Those continuous functions that do happen to preserve open or closed subsets get
a special name:

Definition 3.14. (open maps and closed maps)

A continuous function f:(X,tx) - (Y, 1y) (def. 3.1) is called

e an open map if the image under f of an open subset of X is an open subset
of Y;

e a closed map if the image under f of a closed subset of X (def. 2.21) is a
closed subset of Y.

Example 3.15. (projections are open)

For (X,,7x,) and (X,,ty,) two topological spaces, then the projection maps

Tt (X1 X Xp, Ty, xx,) — (XiyTx,)

out of their product topological space (def. 2.18)

X, xX, 3 X,

(x1,x2) +— x4
2

s
X, xX, = X,
(X1, %) V> x
are open maps (def. 3.14).

Below in prop. 6.24 we find a large supply of closed maps.

Sometimes it is useful to recognize quotient topological space projections via
saturated subsets (essentially another term for pre-images of underlying sets):

Definition 3.16. (saturated subset)

Let f : X — Y be a function of sets. Then a subset S c X is called an f-saturated
subset (or just saturated subset, if f is understood) if S is the pre-image of its
image:

(S © X f-saturated) = (S = f'(f(S))) -
Here £ ~1(f(S)) is also called the f-saturation of S.

Example 3.17. (pre-images are saturated subsets)

For f : X - Y any function of sets, and Sy, c Y any subset of Y, then the
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pre-image f '(Sy) € X is an f-saturated subset of X (def. 3.16).

Observe that:

Lemma 3.18. Let f:X — Y be a function. Then a subset S c X is f-saturated (def.
3.16) precisely if its complement X\S is saturated.

Proposition 3.19. (recognition of quotient topologies)

A continuous function (def. 3.1)
f : (X'TX) - (Y'TY)

whose underlying function f:X — Y is surjective exhibits ty, as the corresponding
quotient topology (def. 2.17) precisely if f sends open and f-saturated subsets
in X (def. 3.16) to open subsets of Y. By lemma 3.18 this is the case precisely if
it sends closed and f-saturated subsets to closed subsets.

We record the following technical lemma about saturated subspaces, which we
will need below to prove prop. 6.28.

Lemma 3.20. (saturated open neighbourhoods of saturated closed
subsets under closed maps)

Let

1. f: (X,tx) — (Y,1y) be a closed map (def. 3.14);

2. C c X be a closed subset of X (def. 2.21) which is f-saturated (def. 3.16);

3. U > C be an open subset containing C;

then there exists a smaller open subset V still containing C

UV >C
and such that V is still f-saturated.

Proof. We claim that the complement of X by the f-saturation (def. 3.16) of the
complement of X by U

V= X\(f T (fF(x\U)))
has the desired properties. To see this, observe first that

1. the complement X\U is closed, since U is assumed to be open;

2. hence the image f(X\U) is closed, since f is assumed to be a closed map;

3. hence the pre-image f '(f(x\U)) is closed, since f is continuous (using prop.
3.2), therefore its complement V is indeed open;
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4. this pre-image f '(f(X\U)) is saturated (by example 3.17) and hence also its
complement V is saturated (by lemma 3.18).
Therefore it now only remains to see that U oV o C.

By de Morgan's law (remark 2.22) the inclusion U o V is equivalent to the
inclusion f *(f(X\U)) o X\U, which is clearly the case.

The inclusion V o C is equivalent to f *(f(X\U)) n € = @. Since C is saturated by
assumption, this is equivalent to f *(f(X\U)) n £ (f(C)) = @. This in turn holds
precisely if f(X\U) n f(C) = @. Since C is saturated, this holds precisely if
X\UnC =@, and this is true by the assumptionthatu>¢. i

Homeomorphisms

With the objects (topological spaces) and the morphisms (continuous functions)
of the category Top thus defined (remark 3.3), we obtain the concept of
“sameness” in topology. To make this precise, one says that a morphism

XLY

in a category is an isomorphism if there exists a morphism going the other way
around

xZLy

which is an inverse in the sense that both its compositions with f yield an identity
morphism:

feg=idy and geof =idy.

Since such g is unique if it exsist, one often writes “f ~'” for this inverse
morphism. However, in the context of topology then f ! usually refers to the
pre-image function of a given function f, and in these notes we will stick to this
usage and never use “(—) '” to denote inverses.

Definition 3.21. (homeomorphisms)

An isomorphism in the category Top (remark 3.3) of topological spaces (def.
2.3) with continuous functions between them (def. 3.1) is called a
homeomorphism.

Hence a homeomorphism is a continuous function

f : (X'TX) - (Y'TY)

between two topological spaces (X,ty), (Y,ty) such that there exists another
continuous function the other way around
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Xtx) —X,ty) 1 g

such that their composites are the identity functions on X and Y, respectively:

feg=idy and gof =idy .

f
—
X Y
1
P
v
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We notationally indicate that a continuous function is a homeomorphism by the

n

symbol “=",
f : (XITX) = (YITY) .

If there is some, possibly unspecified, homeomorphism between topological
spaces (X,17yx) and (Y,1y), then we also write

X, 7¢) = (Y, 7y)
and say that the two topological spaces are homeomorphic.

A property/predicate P of topological spaces which is invariant under
homeomorphism in that

((X'TX) = (YITY)) = (P(X'TX) And P(Y'TY))

is called a topological property or topological invariant.

Remark 3.22. If f:(X,7x) — (Y,1y) is @ homeomorphism (def. 3.21) with inverse
coninuous function g, then

1. also g is a homeomophism, with inverse continuous function f;

2. the underlying function of sets f:X - Y of a homeomorphism f is
necessarily a bijection, with inverse bijection g.

But beware that not every continuous function which is bijective on underlying
sets is a homeomorphism. While an inverse function g will exists on the level of

functions of sets, this inverse may fail to be continuous:

Counter Example 3.23. Consider the continuous function

[0,2m) — St c r?

t = (cos(t),sin(t))
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from the half-open interval (def. 1.12) to the unit circle S* := S,(1) c R? (def.

1.2), regarded as a topological subspace (example 2.16) of the Euclidean plane
(example 1.6).

The underlying function of sets of f is a bijection. The inverse function of sets
however fails to be continuous at (1,0) € S* c R% Hence this f is not a
homeomorphism.

Indeed, below we see that the two topological spaces [0,2n) and s are
distinguished by topological invariants, meaning that they cannot be
homeomorphic via any (other) choice of homeomorphism. For example St is a
compact topological space (def. 6.4) while [0,2r) is not, and S* has a non-trivial
fundamental group, while that of [0,2nr) is trivial (this prop.).

Below in example 6.29 we discuss a practical criterion under which continuous
bijections are homeomorphisms after all. But immediate from the definitions is
the following characterization:

Proposition 3.24. (homeomorphisms are the continuous and open
bijections)

Let f : (X,tx) — (Y,1y) be a continuous function between topological spaces (def.
3.1). Then the following are equivalence:

1. f is @ homeomorphism;

2. f is a bijection and an open map (def. 3.14);
3. f is a bijection and a closed map (def. 3.14).

Proof. 1t is clear from the definition that a homeomorphism in particular has to
be a bijection. The condition that the inverse function Y « X:g be continuous
means that the pre-image function of g sends open subsets to open subsets. But
by g being the inverse to f, that pre-image function is equal to f, regarded as a
function on subsets:

g t=f:PX)-P(Y).

Hence g ! sends opens to opens precisely if f does, which is the case precisely if
f is an open map, by definition. This shows the equivalence of the first two items.
The equivalence between the first and the third follows similarly via prop. 3.2. 1

Now we consider some actual examples of homeomorphisms:

Example 3.25. (concrete point homeomorphic to abstract point space)

Let (X,7x) be a non-empty topological space, and let x € X be any point. Regard
the corresponding singleton subset {x} c X as equipped with its subspace
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topology t(,; (example 2.16). Then this is homeomorphic (def. 3.21) to the

abstract point space from example 2.10:

{x} Tay) = * .

Example 3.26. (open interval homeomorphic to the real line)

Regard the real line as the 1-dimensional Euclidean space (example 1.6) with

its metric topology (example 2.9).

Then the open interval (—1,1) c R (def. 1.12) regarded with its subspace
topology (example 2.16) is homeomorphic (def.3.21) to all of the real line

(-1,1) = R*.

An inverse pair of continuous functions is for instance given (via example 1.9)

by
f : RY - (-1,+1)
e

and

g : (-1,+41) — R!

But there are many other choices for f and g that yield a homeomorphism.

Similarly, foralla<beR

1. the open intervals (a,b) c R (example 1.12) equipped with their subspace

topology are all homeomorphic to each other,

2. the closed intervals [a, b] are all homeomorphic to each other,

3. the half-open intervals of the form [a, b) are all homeomophic to each

other;

4. the half-open intervals of the form (a, b] are all homeomophic to each other.

Generally, every open ball in R™ (def. 1.2) is homeomorphic to all of R™:

(Bg(e) c R™) = R™.

While mostly the interest in a given homeomorphism is in it being non-obvious
from the definitions, many homeomorphisms that appear in practice exhibit
“obvious re-identifications” for which it is of interest to leave them consistently

implicit:

Example 3.27. (homeomorphisms between iterated product spaces)
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Let (X,1y), (Y,7y) and (Z,t;) be topological spaces.

Then:

1. There is an evident homeomorphism between the two ways of bracketing
the three factors when forming their product topological space (def. 2.18),
called the associator:

tyyz (X Tx) X (V,7y)) X (Z,72) —— (X, 7x) % (Y, 7y) X (Z,72)) -

2. There are evident homeomorphism between (X,t) and its product

topological space (def. 2.18) with the point space * (example 2.10), called
the left and right unitors:

Ay ¢ * X (X, Ty) —— (X, Ty)
and
pX : (XITX) X * ;)(XITX) .

3. There is an evident homeomorphism between the results of the two orders
in which to form their product topological spaces (def. 2.18), called the
braiding:

Byt (X 1x) X (V,7y) —— (V,7y) X (X, ) .

Moreover, all these homeomorphisms are compatible with each other, in that
they make the following diagrams commute (recall remark 3.3):

1. (triangle identity)

ax «Y
(XX *x)xXY — XX (*XY)

\ 4

pxXidy idX X/ly

XXxXY

2. (pentagon identity)

(WxX)x(YxZ)

AW xX,Y,Z V4 \“W.X,YXZ
(WxX)yxY)xZ (W x (X x (Y xZ)))
aw,x,y xidz | tdw xax,y,z
(WX (XxY)xZ m WX (XXY)XZ)

3. (hexagon identities)
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g

XxV)xZ 2X% xxvxz) 25 (yxZ)xX

1Bxy xidz 1%v.zx
ay x,Z idY><ﬁX,Y

YXX)XZ —> YX(XXZ) — YX(ZXxX)
and

axy,z Bxxy,z

XX (YXZ) —> (XxY)xZ — Zx(XXY)
lldXxBY,Z lalZI;lX,Y )

a B xid
Xx(@ZxY) =25 xxz)xy ZZ 5 ZxX)xY
4. (symmetry)

ﬁy,X oﬁx,y = id : (Xl XXZTXlxXZ) - (Xl XXZTXlxXZ) '

In the language of category theory (remark 3.3), all this is summarized by
saying that the the functorial construction (—) x (—) of product topological
spaces (example 3.4) gives the category Top of topological spaces the structure
of a monoidal category which moreover is symmetrically braided.

From this, a basic result of category theory, the MacLane coherence theorem,
guarantees that there is no essential ambiguity re-backeting arbitrary iterations
of the binary product topological space construction, as long as the above
homeomorphsims are understood.

Accordingly, we may write
(X1,7T1) X (X2, T2) X -+ X (X, T)

for iterated product topological spaces without putting parenthesis.

The following are a sequence of examples all of the form that an abstractly
constructed topological space is homeomorphic to a certain subspace of a
Euclidean space. These examples are going to be useful in further developments
below, for example in the proof below of the Heine-Borel theorem (prop. 6.23).

e Products of intervals are homeomorphic to hypercubes (example 3.28).

e The closed interval glued at its endpoints is homeomorphic to the circle
(example 3.29).

e The cylinder, the Mébius strip and the torus are all homeomorphic to
guotients of the square (example 3.30).

Example 3.28. (product of closed intervals homeomorphic to hypercubes)

LetneN, and let [a;,b;] c R for i € {1,--,n} be n closed intervals in the real line
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(example 1.12), regarded as topological subspaces of the 1-dimensional
Euclidean space (example 1.6) with its metric topology (example 2.9). Then the
product topological space (def. 2.18, example 3.27) of all these intervals is
homeomorphic (def. 3.21) to the corresponding topological subspace of the
n-dimensional Euclidean space (example 1.6):

[ay,by] X [ag, by] X -+ X [an,by] = {X € R™| V(a; < x; < b)} cR".

Proof. There is a canonical bijection between the underlying sets. It remains to
see that this, as well and its inverse, are continuous functions. For this it is
sufficient to see that under this bijection the defining basis (def. 2.7) for the
product topology is also a basis for the subspace topology. But this is immediate
from lemma 2.8. i

Example 3.29. (closed interval glued at endpoints homeomorphic circle)

As topological spaces, the closed interval [0,1] (def. 1.12) with its two endpoints
identified is homeomorphic (def. 3.21) to the standard circle:

- el
[0,1] 4oy = S*.

More in detail: let
Sl TN RZ
be the unit circle in the plane
St ={(x,y) e R, x?+y% =1}

equipped with the subspace topology (example 2.16) of the plane R?, which is
itself equipped with its standard metric topology (example 2.9).

Moreover, let

10,1101y

be the guotient topological space (example 2.17) obtained from the interval
[0,1] € R! with its subspace topology by applying the equivalence relation which

identifies the two endpoints (and nothing else).

Consider then the function
f:[01] —s*
given by
t = (cos(t),sin(t)) .

This has the property that f(0) = f(1), so that it descends to the guotient
topological space
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0,1] — [0.1],_y,
N V
Sl

We claim that f is a homeomorphism (definition 3.21).

First of all it is immediate that f is a continuous function. This follows
immediately from the fact that f is a continuous function and by definition of
the quotient topology (example 2.17).

So we need to check that f has a continuous inverse function. Clearly the
restriction of f itself to the open interval (0,1) has a continuous inverse. It fails
to have a continuous inverse on [0,1) and on (0,1] and fails to have an inverse
at all on [0,1], due to the fact that f(0) = f(1). But the relation quotiented out in
[0,1] ) g~1) IS exactly such as to fix this failure.

Example 3.30. (cylinder, Mobius strip and torus homeomorphic to
quotients of the square)

The square [0,1]% with two of its sides identified is the cylinder, and with also the
other two sides identified is the torus:

b

by
I

N
)

If the sides are identified with opposite orientation, the result is the Mébius

strip:
a N @.\%.\.‘_ﬂ
A \\\\@\@

I"i“ 3
1 Ig"""
TR
“llllllllﬂmﬂll_l!. ‘“R\\‘*

graphics grabbed from Lawson 03

Important examples of pairs of spaces that are not homeomorphic include the
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following:

Theorem 3.31. (topological invariance of dimension)

For ny,n, € N but n; # n,, then the Euclidean spaces R™ and R™2 (example 1.6,
example 2.9) are not homeomorphic.

More generally, an open subset in R™ js never homeomorphic to an open
subset in R"2 if n, # n,.

The proofs of theorem 3.31 are not elementary, in contrast to how obvious the
statement seems to be intuitively. One approach is to use tools from algebraic
topology: One assigns topological invariants to topological spaces, notably classes
in ordinary cohomology or in topological K-theory), quantities that are invariant
under homeomorphism, and then shows that these classes coincide for R™t — {0}

and for R"2 — {0} precisely only if n; = n,.

One indication that topological invariance of dimension is not an elementary
consequence of the axioms of topological spaces is that a related “intuitively
obvious” statement is in fact false: One might think that there is no surjective
continuous function R™ - R"2 if n; < n,. But there are: these are called the Peano
curves.

4. Separation axioms

The plain definition of topological space (above) happens to admit examples
where distinct points or distinct subsets of the underlying set appear as
more-or-less unseparable as seen by the topology on that set.

The extreme class of examples of topological spaces in which the open subsets do
not distinguish distinct underlying points, or in fact any distinct subsets, are the
codiscrete spaces (example 2.13). This does occur in practice:

Example 4.1. (real numbers quotiented by rational numbers)

Consider the real line R regarded as the 1-dimensional Euclidean space
(example 1.6) with its metric topology (example 2.9) and consider the
equivalence relation ~ on R which identifies two real humbers if they differ by a
rational number:

(x~y)=>( (x=y+p/q))-

3
p/q€QcR
Then the guotient topological space (def. 2.17)

R/Q = R/ ~

is a codiscrete topological space (def. 2.13), hence its topology does not
distinguish any distinct proper subsets.
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Here are some less extreme examples:
Example 4.2. (open neighbourhoods in the Sierpinski space)

Consider the Sierpinski space from example 2.11, whose underlying set consists
of two points {0,1}, and whose open subsets form the set t = {@,{1},{0,1}}. This

means that the only (open) neighbourhood of the point {0} is the entire space.
Incidentally, also the topological closure of {0} (def. 2.21) is the entire space.

Example 4.3. (line with two origins)

Consider the disjoint union space R LU R (example 2.15) of two copies of the real
line R regarded as the 1-dimensional Euclidean space (example 1.6) with its
metric topology (example 2.9), which is equivalently the product topological
space (example 2.18) of R with the discrete topological space on the 2-element
set (example 2.13):

RUR = Rx Disc({0,1})

Moreover, consider the equivalence relation on the underlying set which
identifies every point x; in the ith copy of R with the corresponding point in the
other, the (1 — i)th copy, except when x = 0:

(xi~y,) & ((x=y)and((x#0)or (i = ))) .

@

The guotient topological space by this #
equivalence relation (def. 2.17)

(RUR)/ ~

is called the line with two origins. These “two origins” are the points 0, and
0.

We claim that in this space every neighbourhood of 0, intersects every
neighbouhood of 0.

Because, by definition of the quotient space topology, the open neighbourhoods
of 0; e (RUR)/ ~ are precisely those that contain subsets of the form

(—€€);, = (=60 U{0;}u(0,¢€) .

But this means that the “two origins” 0, and 0, may not be separated by
neighbourhoods, since the intersection of (—¢,¢€), with (—¢,¢€), is always

non-empty:

(—€6),N(—-€€), = (-0 U (06 .
In many applications one wants to exclude at least some such exotic examples of

topologial spaces from the discussion and instead concentrate on those examples
for which the topology recognizes the separation of distinct points, or of more
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general disjoint subsets. The relevant conditions to be imposed on top of the plain
axioms of a topological space are hence known as separation axioms which we
discuss in the following.

These axioms are all of the form of saying that two subsets (of certain kinds) in
the topological space are ‘separated’ from each other in one sense if they are
‘separated’ in a (generally) weaker sense. For example the weakest axiom (called
T,) demands that if two points are distinct as elements of the underlying set of
points, then there exists at least one open subset that contains one but not the
other.

In this fashion one may impose a hierarchy of stronger axioms. For example
demanding that given two distinct points, then each of them is contained in some
open subset not containing the other (T,) or that such a pair of open subsets
around two distinct points may in addition be chosen to be disjoint (T,). This last
condition, T,, also called the Hausdorff condition is the most common among all
separation axioms. Historically this axiom was originally taken as part of the
definition of topological spaces, and it is still often (but by no means always)
considered by default.

However, there are respectable areas of mathematics that involve topological
spaces where the Hausdorff axiom fails, but a weaker axiom is still satisfied,
called soberity. This is the case notably in algebraic geometry (schemes are
sober) and in computer science (Vickers 89). These sober topological spaces are
singled out by the fact that they are entirely characterized by their sets of open
subsets with their union and intersection structure (as in def. 2.32) and may
hence be understood independently from their underlying sets of points.

separation axioms
T, = Hausdorff

T, sober
A\ 74

T, = Kolmogorov

All separation axioms are satisfied by metric spaces (def. 1.1), from whom the
concept of topological space was originally abstracted above. Hence imposing
some of them may also be understood as gauging just how far one allows
topological spaces to generalize away from metric spaces

T, spaces

There are many variants of separation axims. The classical ones are labeled T,

(for German “Trennungsaxiom”). These we now introduce in def. 4.4 and def.
4.13:

Definition 4.4. (the first three separation axioms)
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Let (X,7) be a topological space (def. 2.3).

For x # y € X any two points in the underlying set of X which are not equal as
elements of this set, consider the following propositions:

two distinct points e (TO) There exists a neighbourhood of one of the two
points which does not contain the other point.

e (T1) There exist neighbourhoods of both points which
do not contain the other point.

e (T2) There exists neighbourhoods of both points which
do not intersect each other._

disjoint open sets

graphics grabbed from Vickers 89

The topological space X is called a T,,-topological space or just T, -space, for
short, if it satisfies condition T,, above for all pairs of distinct points.

A T,-topological space is also called a Ko/lmogorov space.

A T,-topological space is also called a Hausdorff topological space.

For definiteness, we re-state these conditions formally. Write x,y € X for points
in X, write U,,U,, € t for open neighbourhoods of these points. Then:

e (TO) VvV (( 3 (x}nuU, = Q))) 0r< 3 (U, n{y}= @)))
X#Yy Uy Uy

e ((T1) vV ( 3 ((fx}nU, =0)and (U, N {y} = @)))

x#zy\ Uy, Uy

e (T2) V <Ua (anUyz(ZS))

X*EY x'Uy
The following is evident but important:
Proposition 4.5. (T, are topological properties of increasing strength)

The separation properties T, from def. 4.4 are topological properties in that if

two topological spaces are homeomorphic (def. 3.21) then one of them satisfies
T, precisely if the other does.

Moreover, these properties imply each other as

T2=>T1=>T0.

Example 4.6. Examples of topological spaces that are not Hausdorff (def. 4.4)
include

1. the Sierpinski space (example 4.2),
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2. the line with two origins (example 4.3),

3. the guotient topological space R/Q (example 4.1).

Example 4.7. (finite T,-spaces are discrete)

For a finite topological space (X, 1), hence one for which the underlying set X is a
finite set, the following are equivalent:

1. (X,7) is T, (def. 4.4);

2. (X,7) is a discrete topological space (def. 2.13).

Example 4.8. (metric spaces are Hausdorff)

Every metric space (def 1.1), regarded as a topological space via its metric
topology (example 2.9) is a Hausdorff topological space (def. 4.4).

Example 4.9. (subspace of T,,-space is T,,)

Let (X,7) be a topological space satisfying the T,, separation axiom for some
n € {0,1, 2} according to def. 4.4. Then also every topological subspace S c X
(example 2.16) satisfies T,,.

Separation in terms of topological closures

The conditions T, T, and T, have the following equivalent formulation in terms of
topological closures (def. 2.21).

Proposition 4.10. (T, in terms of topological closures)

A topological space (X,7) is T, (def. 4.4) precisely if the function CI({—}) that

forms topological closures (def. 2.21) of singleton subsets from the underlying
set of X to the set of irreducible closed subsets of X (def. 2.28, which is well
defined according to example 2.29), is injective:

Cl({—}) : X < IrrClSub(X)

Proof. Assume first that X is T,. Then we need to show that if x,y € X are such
that Cl({x}) = Cl({y}) then x = y. Hence assume that Cl({x}) = Cl({y}). Since the
closure of a point is the complement of the union of the open subsets not
containing the point (lemma 2.23), this means that the union of open subsets
that do not contain x is the same as the union of open subsets that do not contain

y.
Uc}(Jopen (U) - Uc)k(Jopen (U)
UcX\{x} UcXx\{y}

But if the two points were distinct, x # y, then by T, one of the above unions
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would contain x or y, while the other would not, in contradiction to the above
equality. Hence we have a proof by contradiction.

Conversely, assume that if x,y € X are such that Cl{x} = Cl{y} then x = y. We need
to show that if x # y then there exists an open neighbourhood around one of the
two points not containing the other.

Hence assume that x # y. By assumption it follows that Cl({x} # Cl({y}), hence that
now

y (U) # U (U).

Uc Xopen U c X open
UcX\{x} UcX\{y}

This means that there must be at least one open subset which contains x but not
y, or vice versa. i

Proposition 4.11. (T, in terms of topological closures)

A topological space (X,t) is T, (def. 4.4) precisely if all its points are closed
points (def. 2.21).

Proof. Assume first that (X, 1) is T,. We need to show that for every point x € X we
have CI({x}) = {x}. Since the closure of a point is the complement of the union of

all open subsets not containing this point, this is the case precisely if the union of
all open subsets not containing x is X\{x}, hence if every point y # x is member of

at least one open subset not containing x. This is true by T,.

Conversely, assume that for all x € X then Cl({x}) = {x}. Then for x # y € X two
distinct points we need to produce an open subset of y that does not contain x.
But as before, since CI({x}) is the complement of the union of all open subsets that
do not contain x, the assumption Cl{x} = {x} means that y is member of one of
these open subsets that do not contain x. N

Proposition 4.12. (T, in terms of topological closures)

A topological space (X,ty) is T,=Hausdorff (def. 4.4) precisely if the diagonal
function Ay:(X,1x) — (X X X, 74« x) (example 3.9) is a closed map (def. 3.14).

Proof. If (X,tyx) is Hausdorff, then by definition for every pair of distinct points

x # y € X there exists open neighbourhoods U,,U, € tx such that U, nU,, = @. In
terms of the product topology (example 2.18) this means that every point

(x,¥) € X x X which is not on the diagonal has an open neighbourhood U, x U,,
which still does not contain the diagonal. By definition this means that in fact
every subset of the diagonal is a closed subset of X x X, hence in particular those
that are in the image under 4y of closed subsets of X. Hence 4y is a closed map.

Conversely, if 4y is a closed map, then the full diagonal (i.e. the image of X under
Ay) is closed in X x X, and hence this means that every points (x,y) € X x X not on
the diagonal has an open neighbourhood U, x U, not containing the diagonal, i.e.
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such that U, nU, = @. Hence X is Hausdorff. B

Further separation axioms

Clearly one may and does consider further variants of the separation axioms T,
T, and T, from def. 4.4. We consider two more:

Definition 4.13. Let (X,7) be topological space (def. 4.4).

Consider the following conditions

e (T3) The space (X,7) is T, (def. 4.4) and forxe X a pointand Cc X a
closed subset (def. 2.21) not containing x, then there exist disjoint open
neighbourhoods U, o {x} and U, o C.

e (T4) The space (X,7) is T, (def. 4.4) and for C,,C, c X disjoint closed
subsets (def. 2.21) then there exist disjoint open neighbourhoods U, > C;.

If (X,7) satisfies T; it is said to be a T;-space also called a regular Hausdorff
topological space.

If (X,7) satisfies T, it is to be a T,-space also called a normal Hausdorff
topological space.

Observe that:

Proposition 4.14. The separation axioms from def. 4.4, def. 4.13 imply each
other as

T,=>T;=>T,=>T;1>T,.
Proof. The implications
T,=T:>T,
and
T,=Ts

are immediate from the definitions. The remaining implication T; = T, follows with
prop. 4.11: This says that by assumption of T, then all points in (X,7) are closed,
and with this the condition T, is manifestly a special case of the condition for

T;. N

Hence instead of saying "X is T, and ...” one could just as well phrase the
conditions T; and T, as “X is T, and ...", which would render the proof of prop.
4.14 even more trivial.
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As before we have equivalent reformulations of the further separation axioms.
Further separation axioms in terms of topological closures

Proposition 4.15. (T, in terms of topological closures)

A topological space (X,t) is regular Hausdorff space (def. 4.13), precisely if all
points are closed and for all closed subsets x € X with open neighbourhood

U o {x} there exists a smaller open neighbourhood V o {x} whose topological
closure CI(V) is still contained in U:

{x}cVcCl(V)cU.

The proof of prop. 4.15 is the direct specialization of the following proof for prop.
4.16 to the case that ¢ = {x} (using that by T, which is part of the definition of T3,
the singleton subset is indeed closed by prop. 4.11).

Proposition 4.16. (T, in terms of topological closures)

A topological space (X,t) is normal Hausdorff space (def. 4.13), precisely if all
points are closed and for all closed subsets C c X with open neighbourhood U o> C
there exists a smaller open neighbourhood V o C whose topological closure CI(V)
is still contained in U:

CcVccCl(V)cU.

Proof. In one direction, assume that (X,7) is normal, and consider C c U. It
follows that the complement of the open subset U is closed and disjoint from C:

cCnxX\U=09.

Therefore by assumption of normality of (X, 1), there exists open neighbourhoods
Vo Cand W o X\U with

Vnw=¢9¢.
But this means that
VcX\w

and since the complement X\IW of the open set W is closed, it still contains the
closure of vV, so that we have

CcVcll(V)ycX\WcU.

In the other direction, assume that for every open neighbourhood U o C of a
closed subset C there exists a smaller open neighbourhood V with

C cV cCl(V) c U. Consider disjoint closed subsets C,,C, c X. We need to produce
disjoint open neighbourhoods for them.

From their disjointness it follows that X\C, o €, is an open neighbourhood. Hence
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by assumption there is an open neighbourhood v with
C,cVcCl(V)cX\C,.

Thus V o €, and X\CI(X) o C, are two disjoint open neighbourhoods, as
required. W

In summary, the main separation axioms and their reformulation are the

following:
numbername statement reformulation
iven two distinct points, at . .
?east one of them Eas an’ open every irreducible closed
T, Kolmogorov P subset is the closure of at

neighbourhood not containing
the other point

given two distinct points, both
T, have an open neighbourhood |all points are closed
not containing the other point

given two distinct points, they

most one point

the diagonal is a closed

T, Hausdorff  |have disjoint open ma
neighbourhoods P
Ts, T, and... all points are closed and...
equiar  subset not containing I, they ~€VerY nelghbouriood of
Ts reguiar g% y point contains the closure

Hausdorff  |have disjoint open

neighbourhoods of an open neighbourhood

...every neighbourhood of a
closed set also contains the
closure of an open
neighbourhood

...given two disjoint closed
subsets, they have disjoint
open neighbourhoods

normal
Hausdorff

Notice that there is a whole zoo of further variants of separation axioms that are
considered in the literature. But the above are the main ones. Specifically T, =
Hausdorff is the most popular one, often considered by default in the literature,
when topological spaces are considered.

We discuss a few more properties related to the separation axioms that we will
need further below.

1. the shrinking lemma, lemma 4.17 below;

2. Urysohn's lemma, prop. 4.19 below.

Lemma 4.17. (shrinking lemma)
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Let X be a topological space which is normal (def. 4.13) and let {U; c X},_, be an
open cover.

Then there exists another open cover {V; c X},_, such that the topological
closure CI(V;) of its elements (def. 2.21) is contained in the original patches:

v (V;cCl(Vy) cUy).
i€l

The following concept if Urysohn functions is another approach of thinking about
separation of subsets in a topological space, not in terms of their neighbourhoods,
but in terms of continuous real-valued “indicator functions” that take different
values on the subsets. But the Urysohn lemma (prop. 4.19 below) implies that

this concept of separation is in fact equivalent to that of normality of Hausdorff
spaces.

Definition 4.18. (Urysohn function)

Let X be a topological space, and let A, B c X be disjoint closed subsets. Then an
Urysohn function separating A from B is

e a continuous function f:X — [0,1]

to the closed interval equipped with its Euclidean metric topology, such that

e it takes the value 0 on 4 and the value 1 on B:
f(A)={0} and  f(B)={1}.

Proposition 4.19. (Urysohn's lemma)

Let X be a normal (or T,) topological space, and let A,B c X be two disjoint

closed subsets of X. Then there exists an Urysohn function separating A from B
(def. 4.18).

Remark 4.20. Beware that the function in prop. 4.19 may take the values 0 or 1
even outside of the two subsets. The condition that the function takes value 0
or 1, respectively, precisely on the two subsets corresponds to “perfectly normal
spaces”.

Proof. of Urysohn's lemma, prop. 4.19

Set
Co=A U, =X\B.
Since by assumption
ANB=0.
we have

CocU;.
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Notice that (by this lemma) if a space is normal then every open neighbourhood
U o C of closed subset C contains a smaller neighbourhood V together with its

closure CI(V)

UcVcCl(V)ccC.

Apply this fact successively to the above situation to obtain the following infinite
sequence of nested open subsets U, and closed subsets C,

CO c Ul
Co c Uij2 © Cipz c Uy
Co © Uyjy © Cyjy © Uyyp © Cyyp © Uszyy © C3/4 © Uy

and so on, labeled by the dyadic rational numbers Qe cQ within (0, 1]

{UT c X}re (0,1] nQdy

with the property

re(o,;v],nQdy(A c U, c X\B)

and

Tllrze(‘gfl]n(@dy ((r1 <1p) = (UT1 c CI(

Define then the function T

f:X—101] Us

to assign to a point x € X the N - .
infimum of the labels of those
open subsets in this sequence
that contain x:

f(x)= lim r

Ur 2 {x}

Here the limit is over the directed set of those U, that contain x, ordered by
reverse inclusion.

This function clearly has the property that f(4) = {0} and f(B) = {1}. It only
remains to see that it is continuous.

To this end, first observe that

()  (xedWp) = (fw<r
(* *) (xeU,) e (f@w<r)

Here it is immediate from the definition that (x € U,) = (f(x) <r) and that
(f(x) <r)= (x €U, c Cl(U,)). For the remaining implication, it is sufficient to
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observe that
(x € 0U;) = (f(x) =1),
where U, := Cl(U,)\U, is the boundary of U,..

This holds because the dyadic numbers are dense in R. (And this would fail if we
stopped the above decomposition into U, ,,n-s at some finite n.) Namely, in one

direction, if x € U, then for every small positive real number e there exists a
dyadic rational number " with r <’ <r+¢, and by construction U,, o Cl(U,) hence
x € U,,. This implies that lim =r.
Ur 2 {x}

Now we claim that for all « € [0,1] then

L f7 (@1 =y (X\Cl(U,))

2. fY([0,@))= U U,

r<a

Thereby f '((a,1]) and £ '([0,a)) are exhibited as unions of open subsets, and
hence they are open.

Regarding the first point:

x€f ((@1])
S f(x)>a
o 3 (f)>7)
= 3 (xeaw,)

S xe U (X\Cl(U,))

and
X€ U (X\Cl(U,)
© 3 (x&CU)
> 3,80
=3 fw=n)

e f(x)>a

e xef ((a1])

Regarding the second point:
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x€fH([0,a))
o f)<a
e 3 (<

Y3 weu)

r<a

< x€ U U,

r<a
and

xX€ U U,

r<a

< 3 (xeU,)
r<a

= 3 (x € Cl(U,))
r<a

= 3 fwsn

e fo)<a
e xef([0,a))

(In these derivations we repeatedly use that (0,1] n Qqy is dense in [0,1], and we
use the contrapositions of () and (x *).)

Now since the subsets {[0, @), (a, 1]} | form a sub-base for the Euclidean metric

a€lo,1
topology on [0, 1], it follows that all pre-images of f are open, hence that f is
continuous. N

As a corollary we obtain:

Proposition 4.21. (normality equivalent to existence of Urysohn
functions)

A T,-space/Hausdorff space (def. 4.4) is normal (def. 4.13) precisely if it admits
Urysohn functions (def 4.18) separating every pair of disjoint closed subsets.

Proof. In one direction this is the statement of the Urysohn lemma, prop. 4.19.

In the other direction, assume the existence of Urysohn functions (def. 4.18)
separating all disjoint closed subsets. Let A, B c X be disjoint closed subsets, then
we need to show that these have disjoint open neighbourhoods.

But let f:X — [0,1] be an Urysohn function with f(4) = {0} and f(B) = {1} then the
pre-images

Us=f"1([0,1/3)  Ug:=f"((2/3,1]

are disjoint open neighbourhoods as required. N
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T,, reflection

Not every universal construction of topological spaces applied to T,-spaces results
again in a T,, topological space, notably guotient space constructions need not (as
in example 4.3).

But at least for T,, T, and T, there is a universal way, called reflection (prop. 4.22
below), to approximate any topological space “from the left” by a T,, topological
spaces.

Hence if one wishes to work within the full subcategory of the T,, among all
topological space, then the correct way to construct quotients and other colimits
(see below) is to first construct them as usual quotient topological spaces
(example 2.17), and then apply the T, -reflection to the result.

Proposition 4.22. (T,-reflection)

Let n € {0,1,2}. Then for every topological space X there exists a T, -topological
space T,X and a continuous function

ta(X) 1 X — T, X

which is the "closest approximation from the left” to X by a T, -topological
space, in that for'Y any T, -space, then continuous functions of the form

f:X—>Y

are in bijection with continuous function of the form

f:T,X—Y
and such that the bijection is constituted by

- tn (X f
fF=Fot,00: x28r x Ly,

Here X ) T,(X) is called the T,-reflection of X.

e For n =0 this is known as the Kolmogorov quotient construction (see prop.
4.25 below).

e For n = 2 this is known as Hausdorff reflection or Hausdorffication or
similar.

Moreover, the operation T, (—) extends to continuous functions f:X - Y

T
xLy) o ax™r v

such as to preserve composition of functions as well as identity functions:

ThgeTnf =Th(g°f) Tpidy = id-TnX
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Finally, the comparison map is compatible with this in that the following squares
commute:

X ER Y

hx | L,

ToX = Ty¥

Remark 4.23. (reflective subcategories)

In the language of category theory (remark 3.3) the T, -reflection of prop. 4.22
says that

1. T,(-) is a functor T,, : Top — Toan from the category Top of topological

spaces to the full subcategory Toan 4 Top of Hausdorff topological spaces;

2. t,(X):X » T, X is a natural transformation from the identity functor on Top
to the functor (o T,

3. T,,-topological spaces form a reflective subcategory of all topological spaces
in that T, is left adjoint to the inclusion functor ; this situation is denoted
as follows:

il
Toan i) Top .
L

Generally, an adjunction between two functors

L:CoD:R

is for all pairs of objects c € ¢, d € D a bijection between sets of morphisms of
the form

{L() = d} ={c = R} .

Homq (L(c), d) %% Hom¢(c,R(d))

|Il

and such that these bijections are “natural” in that they for all pairs of
morphisms f:¢' - c and g:d —» d' then the folowing diagram commutes:

Homg (L(c), d) % Hom¢(c, R(d))

ge(=)eL(f)l VR(G)o(—)of

¢cl,d!
—

Home(L(c'),d") Homg (¢', R(d"))

There are various ways to see the existence and to construct the T, -reflections.
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The following is the quickest way to see the existence, even though it leaves the
actual construction rather implicit.

Proposition 4.24. Let n € {0,1,2}. Let (X,t) be a topological space and consider
the equivalence relation ~ on the underlying set X for which x ~ y precisely if for
every surjective continuous function f:X - Y into any T,-topological space Y we

have f(x) = f().

Then the set of equivalence classes

T, X=X/~

equipped with the quotient topology is a T, -topological space, and the quotient
map t,(X) : X > X/ ~ exhibits the T,-reflection of X, according to prop. 4.22.

Proof. First we observe that every continuous function f:X — Y into a
T,-topological space Y factors uniquely via t,(X) through a continuous function f

f=Fohy
where
filxl = fQ0)
To see this, first factor f through its image f(X)
fiX—>fX)oY

equipped with its subspace topology as a subspace of Y (example 3.10). By prop.
4.9 also f(X) is a T,,-topological space if Y is.

It follows by definition of t,(X) that the factorization exists at the level of sets as
stated, since if x;,x, € X have the same equivalence class [x;] = [x,] in T, X, then
by definition they have the same image under all continuous surjective functions
to a T,-space, hence in particular under X - f(X). This means that f as above is
well defined. Moreover, it is clear that this is the unique factorization.

To see that f is continuous, consider U € Y an open subset. We need to show that
7 '(v) is open in X/ ~ . But by definition of the quotient topology, this is open
precisely if its pre-image under the quotient projection t,(X) is open, hence
precisely if

1/ ~—1 ~ -1
@) H(F W) = (Feta®) W) = FU)
is open in X. But this is the case by the assumption that f is continuous.

What remains to be seen is that T, X as constructed is indeed a T,-topological
space. Hence assume that [x] # [y] € T,,X are two distinct points. We need to
produce open neighbourhoods around one or both of these point not containing
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the other point and possibly disjoint to each other.

Now by definition of T, X the assumption [x] # [y] means that there exists a
T,-topological space Y and a surjective continuous function f:X — Y such that
f(x) # f(y) € Y. Accordingly, since Y is T,, there exist the respective kinds of
neighbourhoods around these image points in Y. Moreover, by the previous
statement there exists the continuous function f:T,X - Y with f([x]) = f(x) and
f([yD) = f(y). By the nature of continuous functions, the pre-images of these open
neighbourhoods in Y are still open in X and still satisfy the required disjunction
properties. Therefore T, X is a T,,-space. Hi

Here are alternative constructions of the reflections:

Proposition 4.25. (Kolmogorov quotient)

Let (X,7) be a topological space. Consider the relation on the underlying set by
which x, ~ x, precisely if neither x; has an open neighbourhood not containing
the other. This is an equivalence relation. The guotient topological space

X - X/ ~ by this equivalence relation (def. 2.17) exhibits the T,-reflection of X
according to prop. 4.22.

Example 4.26. The Hausdorff reflection (T,-reflection, prop. 4.22)

T, : Top — Topy,,e

of the line with two origins from example 4.3 is the real line itself:

T,(RUR)/ ~) = R.

5. Sober spaces

The alternative characterization of the T,-condition in prop. 4.10 immediately
suggests the following strengthening, different from the T,-condition:

Definition 5.1. (sober topological space)

A topological space (X,7) is called a sober topological space precisely if every

irreducible closed subspace (def. 2.29) is the topological closure (def. 2.21) of a
unique point, hence precisely if the function

Cl({—=}) : X — IrrClSub(X)

from the underlying set of X to the set of irreducible closed subsets of X (def.
2.28, well defined according to example 2.29) is bijective.

Proposition 5.2. (sober implies T,)

Every sober topological space (def. 5.1) is T, (def. 4.4).

Proof. By prop. 4.10. &
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Proposition 5.3. (Hausdorff spaces are sober)

Every Hausdorff topological space (def. 4.4) is a sober topological space (def.
5.1).

More specifically, in a Hausdorff topological space the irreducible closed
subspaces (def. 2.28) are precisely the singleton subspaces (def. 8.6).

Hence, by example 4.8, in particular every metric space with its metric topology
(example 2.9) is sober.

Proof. The second statement clearly implies the first. To see the second
statement, suppose that F is an irreducible closed subspace which contained two
distinct points x # y. Then by the Hausdorff property there are disjoint
neighbourhoods U,,U,, and hence it would follow that the rlative complements
F\U, and F\U, were distinct proper closed subsets of F with

F = (F\Uy) U (F\U,)
in contradiction to the assumption that F is irreducible.

This proves by contradiction that every irreducible closed subset is a singleton.
Conversely, generally the topological closure of every singleton is irreducible
closed, by example 2.29. i

By prop. 5.2 and prop. 5.3 we have the implications on the right of the following
diagram:

separation axioms
T, = Hausdorff

T, sober
A\ 74

Ty = Kolmogorov

But there there is no implication betwee T, and sobriety:

Proposition 5.4. The intersection of the classes of sober topological spaces (def.
5.1) and T,-topological spaces (def. 4.4) is not empty, but neither class is
contained within the other.

That the intersection is not empty follows from prop. 5.3. That neither class is
contained in the other is shown by the following counter-examples:

Example.

e The Sierpinski space (def. 2.11) is sober, but not T,.

e The cofinite topology (example 2.14) on a non-finite set is T; but not sober.
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Frames of opens

What makes the concept of sober topological spaces special is that for them the
concept of continuous functions may be expressed entirely in terms of the
relations between their open subsets, disregarding the underlying set of points of
which these open are in fact subsets.

Recall from example 2.34 that for every continuous function f:(X,ty) — (Y, 17y) the
pre-image function f ~':7, - 14 is a frame homomorphism (def. 2.32).

For sober topological spaces the converse holds:

Proposition 5.5. If (X,ty) and (Y,ty) are sober topological spaces (def. 5.1), then
for every frame homomorphism (def. 2.32)

Tx < Ty : ¢

there is a unique continuous function f:X —» Y such that ¢ is the function of
forming pre-images under f:

p=f".
Proof. We first consider the special case of frame homomorphisms of the form
T, <—Tx: @

and show that these are in bijection to the underlying set X, identified with the
continuous functions * — (X,7) via example 3.6.

By prop. 2.35, the frame homomorphisms ¢:7, — 7, are identified with the
irreducible closed subspaces X\Uy(¢) of (X,tx). Therefore by assumption of
sobriety of (X,7) there is a unique point x € X with X\Uy = CI({x}). In particular this
means that for U, an open neighbourhood of x, then U, is not a subset of Uy(¢),
and so it follows that ¢(U,) = {1}. In conclusion we have found a unique x € X such
that

{1} |ifxeU
¢o:Uwm

@ | otherwise .

This is precisely the inverse image function of the continuous function * —» X which
sends 1 & x.

Hence this establishes the bijection between frame homomorphisms of the form
T, < Tx and continuous functions of the form * - (X, 7).

With this it follows that a general frame homomorphism of the form ty & Ty
defines a function of sets X Ly by composition:
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x L Y

et » (et

By the previous analysis, an element U, € 1y is sent to {1} under this composite

precisely if the corresponding point * - X Ly is in Uy, and similarly for an
element Uy € 1. It follows that ¢(Uy) € 1y is precisely that subset of points in X
which are sent by f to elements of U,, hence that ¢ = f ' is the pre-image
function of f. Since ¢ by definition sends open subsets of Y to open subsets of X,
it follows that f is indeed a continuous function. This proves the claim in
generality. B

Remark 5.6. (locales)

Proposition 5.5 is often stated as saying that sober topological spaces are
equivalently the “locales with enough points” (Johnstone 82, IT 1.). Here
“locale” refers to a concept akin to topological spaces where one considers just
a “frame of open subsets” 7, without requiring that its elements be actual
subsets of some ambient set. The natural notion of homomorphism between
such generalized topological spaces are clearly the frame homomorphisms

Ty < Ty as above. From this persepctive, prop. 5.5 says that sober topological
spaces (X,ty) are entirely characterized by their frames of opens 7y and just so
happen to “have enough points” such that these are actual open subsets of
some ambient set, namely of X.

Sober reflection

We saw above in prop. 4.22 that every toopological space has a “best
approximation from the left” by a Hausdorff topological space. We now discuss
the analogous statement for sober topological spaces.

Recall again the point topological space * := ({1},7, = {@,{1}}) (example 2.10).

Definition 5.7. Let (X,7) be a topological space.
Define SX to be the set
SX == HoMgrame (Tx, T.)

of frame homomorphisms from the frame of opens of X to that of the point.
Define a topology t¢y  P(SX) on this set by declaring it to have one element U
for each element U € 7, and given by

U= {peSX|pU)={1}}.
Consider the function

SX

X — SX

x + (const,)
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which sends an element x € X to the function which assigns inverse images of
the constant function const, : {1} - X on that element.

Lemma 5.8. The construction (SX,tsy) in def. 5.7 is a topological space, and the
function sy:X —» SX is a continuous function

Sx: (X, 1x) — (85X, Tsx)

Proof. To see that 75y © P(SX) is closed under arbitrary unions and finite
intersections, observe that the function

&)
Ty —> Tsx

U » U

in fact preserves arbitrary unions and finite intersections. Whith this the
statement follows by the fact that 7y is closed under these operations.

To see that (—) indeed preserves unions, observe that (e.g. Johnstone 82, 11 1.3
Lemma)

pe Y Uie iglp(Ui) = {1}
& U pU;) ={1}

lel
ep( uU) =1

S pe U U;
Pe i

where we used that the frame homomorphism p:ty — 7, preserves unions.
Similarly for intersections, now with I a finite set:

pe N Uis iZ,P(Ui) = {1}
& npWy) = 1)
ep( 0 U) =1

Spe N U;
pe Y

where now we used that the frame homomorphism p preserves finite
intersections.

To see that sy is continuous, observe that sy *(U) = U, by construction. N

Lemma 5.9. For (X,ty) a topological space, the function sy:X — SX from def. 5.7 is

1. an injection precisely if X is T, (def. 4.4);

2. a bijection precisely if X is sober (def. 5.1).
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In this case sy is in fact a homeomorphism.

Proof. By lemma 2.35 there is an identification SX = IrrCISub(X) and via this sy is
identified with the map x » Cl({x}).

Hence the second statement follows by definition, and the first statement by this
prop..

That in the second case sy is in fact a homeomorphism follows from the definition
of the opens U: they are identified with the opens U in this case (...expand...). &

Lemma 5.10. For (X,7) a topological space, then the topological space (SX,tsx)
from def. 5.7, lemma 5.8 is sober.

(e.g. Johnstone 82, lemma Il 1.7)

Proof. Let SX\U be an irreducible closed subspace of (SX,7sx). We need to show
that it is the topological closure of a unique element ¢ € SX.

Observe first that also X\U is irreducible.

To see this use this prop., saying that irreducibility of X\U is equivalent to
U,nU,cU= (U; cV)or(U, clU).Butif U;nU, cUthen also U, nU, cU (as in the
proof of lemma 5.8) and hence by assumption on U it follows that U, c U or

U, c U. By lemma 2.35 this in turn implies U; c U or U, c U. In conclusion, this
shows that also X\U is irreducible .

By lemma 2.35 this irreducible closed subspace corresponds to a point p € SX. By
that same lemma, this frame homomorphism p:7x — 7, takes the value @ on all
those opens which are inside U. This means that the topological closure of this
point is just SX\U.

This shows that there exists at least one point of which X\U is the topological
closure. It remains to see that there is no other such point.

So let p, # p, € SX be two distinct points. This means that there exists U € tx with
p,(U) # p,(U). Equivalently this says that U contains one of the two points, but not

the other. This means that (SX,7y) is TO. By this prop. this is equivalent to there
being no two points with the same topological closure. N

Proposition 5.11. For (X,ty) any topological space, for (Y,7$°®) a sober
topological space, and for f:(X,tx) — (Y,1y) @ continuous function, then it factors
uniquely through the soberification sy:(X,tx) — (8X,t5x) from def. 5.7, lemma
5.8

X,1x) D (¥,
Xl 731
(S5X,tsx)
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Proof. By the construction in def. 5.7, we the outer part of the following square
commutes:

X0 D (e

Xl 7 135X
(SX, Tsx) S_f> (SSX, Tssx)
By lemma 5.10 and lemma 5.9, the right vertical morphism sgy is an isomorphism

(a homeomorphism), hence has an inverse morphism. This defines the diagonal
morphism, which is the desired factorization.

To see that this factorization is unique, consider two factorizations
f.f::(5X,15x) = (¥,75°P) and apply the soberification construction once more to the

triangles
f sob Sf sob
X,1x) — X, 1v°°) ($X,15x) — (¥, p°)
5Xx ) /‘]zj = =1 7‘/;]7
(SX,7sx) (SX,Tsx)

Here on the right we used again lemma 5.9 to find that the vertical morphism is
an isomorphism, and that f and f do not change under soberification, as they
already map between sober spaces. But now that the left vertical morphism is an
isomorphism, the commutativity of this triangle for both f and f implies that

f=f 1
6. Compact spaces

From the discussion of compact metric spaces in def. 1.19 and prop. 1.20 it is
now immediate how to generalize the concept to topological spaces to obtain a
notion of compact topological spaces (def. 6.2 and def. 6.4 below). These compact
spaces play a special role in topology, much like finite dimensional vector spaces
do in linear algebra.

The most naive version of the definition directly generalizes the concept via
converging sequences from def. 1.19:

Definition 6.1. (converging sequence in a topological space)

Let (X,7) be a topological space (def. 2.3) and let (x,), ., be a sequence of

points (x,) in X (def. 1.15). We say that this sequence converges in (X,1) to a
point x., € X, denoted

n-— oo
Xp — Xoo

if for each open neighbourhood U, of x, there exists a k € N such that for all
n >k then x, € U,_ :
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n— oo
(xn — xoo) S UxooVETX (k2N<n¥kx" S Uxoo )) .

xOOEUXoo

Definition 6.2. (sequentially compact topological space)

Let (X,7) be a topological space (def. 2.3). It is called sequentially compact if for
every sequence of points (x,) in X (def. 1.15) there exists a sub-sequence
(%n, ) ey Which converges acording to def. 6.1.

But prop. 1.20 suggests to consider also another definition of compactness for
topological spaces:

Definition 6.3. (open cover)

An open cover of a topological space X (def. 2.3) is a set {U; c X},_, of open
subsets U; of X, indexed by some set I, such that their union is all of X:

'U Ui = X
1€l

Definition 6.4. (compact topological space)

A topological space X (def. 2.3) is called a compact topological space if every
open cover {U; - X}, _, (def. 6.3) has a finite subcover in that there is a finite

subset J c I such that {U; - X}, is still a cover of X in that ,LEJ] U; =X.
L

Remark 6.5. (terminology issue regarding "compact”)
Beware that the following terminology issue persists in the literature:

Some authors use “compact” to mean “Hausdorff and compact”. To
disambiguate this, some authors (mostly in algebraic geometry, but also for
instance Waldhausen) say “quasi-compact” for what we call “compact” in prop.
6.4.

There are several equivalent reformulation of the compactness condition:

Proposition 6.6. (compactness in terms of closed subsets)

Let (X,7) be a topological space. Then the following are equivalent:

1. (X,7) is compact in the sense of def. 6.4.

2. Let {C; c X},_, be a set of closed subsets (def. 2.21) such that their
intersection is empty n C; = @, then there is a finite subset | c I such that
L

the corresponding finite intersection is still empty ,Er]w C; = 0.
L [

L

3. Let {C; c X},_, be a set of closed subsets (def. 2.21) such that it enjoys the

finite intersection property, meaning that for every finite subset | c I then
the corresponding finite intersection is non-empty ,E? ICi + @. Then also
L [
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the total intersection is non-empty, o C; # Q.

Proof. The equivalence between the first and the second statement is immediate
by de Morgan's law (remark 2.22). The equivalence between the first and the
third proceeds similarly, via a proof by contradiction. &

Example 6.7. (finite discrete spaces are compact)

A discrete topological space (def. 2.13) is compact (def. 6.4) precisely if its
underlying set is finite.

Example 6.8. (closed intervals are compact)

For any a < b € R the closed interval (example 1.12)

[a,b] c R

regarded with its subspace topology is a compact topological space (def. 6.4).

Proof. Since all the closed intervals are homeomorphic (by example 3.26) it is
sufficient to show the statement for [0,1]. Hence let {U; c [0,1]},_, be an open

cover. We need to show that it has an open subcover.

Say that an element x € [0, 1] is admissible if the closed sub-interval [0, x] is
covered by finitely many of the U;. In this terminlogy, what we need to show is
that 1 is admissible.

Observe from the definition that
1. 0 is admissible,
2. if y<x€|[0,1] and x is admissible, then also y is admissible.

This means that the set of admissible x forms either an open interval [0,g) or a
closed interval [0, g], for some g € [0,1]. We need to show that the latter is true,
and for g = 1. We do so by observing that the alternatives lead to contradictions:

1. Assume that the set of admissible values were an open interval [0, g). By
assumption there would be a finite subset J c I such that {U; c [0, Whe e
were a finite open cover of [0, g). Accordingly, since there is some i, € I such
that g € Ui, the union {Uilie, U {Ul-g} were a finite cover of the closed interval
[0, g], contradicting the assumption that g itself is not admissible (since it is

not contained in [0, 9)).

2. Assume that the set of admissible values were a closed interval [0, g] for
g < 1. By assumption there would then be a finite set J c I such that
{U; € [0,1]};¢,., Were a finite cover of [0, g]. Hence there would be an index

ig €] suchthatge Ui, - But then by the nature of open subsets in the
Euclidean space R, this Ui, would also contain an open ball
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B,(e) = (g — € g+ ¢€). This would mean that the set of admissible values
includes the open interval [0, g + €), contradicting the assumption.

This gives a proof by contradiction. W

Proposition 6.9. (binary Tychonoff theorem)

Let (X,tyx) and (Y,t,) be two compact topological spaces (def. 6.4). Then also
their product topological space (def. 2.18) (X XY, txyy) IS compact.

Proof. Let {U; c X xY}._, be an open cover of the product space. We need to show
that this has a finite subcover.

By definition of the product space topology, each U; is the union, indexed by some
set K;, of Cartesian products of open subsets of X and Y:

U; = kigKi (Vki X Wki) Vi, Etx and Wy €1y .

Consider then the disjoint union of all these index sets

KlZUKi.

i€l
This is such that

(%) Vi, x Wy, CXXY}k-EK
l

is again an open cover of X x Y.

But by construction, each element V,, x W, of this new cover is contained in at
least one Uj,, of the original cover. Therefore it is now sufficient to show that

there is a finite subcover of ( x), consisting of elements indexed by k; € K¢, € K for
some finite set Ky,. Because then the corresponding Uj, for k; € K, form a finite

subcover of the original cover.

In order to see that () has a finite subcover, first fix a point x € X and write

{x} c X for the corresponding singleton topological subspace. By example 3.25 this
is homeomorphic to the abstract point space . By example 3.27 there is thus a
homeomorphism of the form

{x}xY =Y.
Therefore, since (Y, ty) is assumed to be compact, the open cover

(Vg x Wi ) (3 x 1) € (3 xV],

has a finite subcover, indexed by a finite subset J c K.

Here we may assume without restriction of generality that x € v, for all
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k; € ], c K, because if not then we may simply remove that index and still have a
(finite) subcover.

By finiteness of J, it now follows that the intersection

vV, = n V,.
X kiefx ki

is still an open subset, and by the previous remark we may assume without
restriction that

xeV,.
Now observe that by the nature of the above cover of {x} x Y we have

x} XY cC U V.. XW,.
{} kiE]xCK kl kl

and hence

{x}xY c{x}x kie]LiCKWki .
Since by construction V, c V;, for all k; € J, c K, it follows that we have found a
finite cover not just of {x} xY but of V,, XY

V,xXYc kiech(V,{i X Wy,) .
To conclude, observe that {V, c X} __, is clearly an open cover of X, so that by the

assumption that also X is compact there is a finite set of points § ¢ X so that

{Vy © X}, cscx IS still a cover. In summary then

{Vki X Wki C XX Y} xeScX
ki€JycK

is a finite subcover as required. N

In terms of the topological incarnation of the definitions of compactness, the
familiar statement about metric spaces from prop. 1.20 now equivalently says the
following:

Proposition 6.10. (sequentially compact metric spaces are equivalently
compact metric spaces)

If (X,d) is a metric space, regarded as a topological space via its metric topology
(example 2.9), then the following are equivalent:

1. (X,d) is a compact topological space (def. 6.4).

2. (X,d) is a sequentially compact topological space (def. 6.2).

Proof. of prop. 1.20 and prop. 6.10
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Assume first that (X,d) is a compact topological space. Let (x;),., b€ a sequence
in X. We need to show that it has a sub-sequence which converges.

Consider the topological closures of the sub-sequences that omit the first n
elements of the sequence

F, = Cl({xy | k =n})
and write
U, = X\F,

for their open complements.

Assume now that the intersection of all the F,, were empty

(%) nF, =9

neN
or equivalently that the union of all the U,, were all of X

uu, =X,
neNn

hence that {U, - X} _, were an open cover. By the assumption that X is compact,
this would imply that there is a finite subset {i; < i, < - < i} € N with

X: Uil UUiZ U"'UUik

= Uy,

This in turn would mean that F;, = @, which contradicts the construction of F;, .

Hence we have a proof by contradiction that assumption (*) is wrong, and hence
that there must exist an element

XE€ N F,.
nENn

By definition of topological closure this means that for all n the open ball
B,(1/(n+ 1)) around x of radius 1/(n+ 1) must intersect the nth of the above
subsequence:

By(1/(n+1) N {xx |k=n} + 0.

Picking one point (x',) in the nth such intersection for all n hence defines a
sub-sequence, which converges to x.

This proves that compact implies sequentially compact for metric spaces.

For the converse, assume now that (X, d) is sequentially compact. Let {U; - X}
be an open cover of X. We need to show that there exists a finite sub-cover.

iel

Now by the Lebesgue nhumber lemma, there exists a positive real number § > 0
such that for each x € X there is i, € I such that B;(6) « U;,. Moreover, since
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sequentially compact metric spaces are totally bounded, there exists then a finite
set § ¢ X such that

X = U B&).
Therefore {U; - X}, is a finite sub-cover as required. N

Remark 6.11. (neither compactness nor sequential compactness implies
the other)

Beware that, in contrast to prop. 6.10, for general topological spaces being
sequentially compact neither implies nor is implied by being compact. The
corresponding counter-examples are maybe beyond the scope of this note, but
see for instance Vermeeren 10, prop. 17 and prop. 18.

In analysis, the extreme value theorem asserts that a real-valued continuous
function on the bounded closed interval (def. 1.12) attains its maximum and
minimum. The following is the generalization of this statement to general
topological spaces:

Lemma 6.12. (continuous surjections out of compact spaces have
compact codomain)

Let f:(X,tx) — (Y,1y) be a continuous function between topological spaces such
that

1. (X,tx) is @ compact topological space;

2. f:X > Y is a surjective function.

Then also (Y,ty) is compact.

Proof. Let {U; c Y}, _, be an open cover of Y. We need show that this has a finite
sub-cover.

By the continuity of f the pre-images f *(U;) are open subsets of X, and by the
surjectivity of f they form an open cover {f "*(U;) c X}, ., of X. Hence by
compactness of X, there exists a finite subset J c I such that {f *(U,) c Xicjer is

still an open cover of X. Finall, using again that f is assumed to be surjective, it
follows that

Y = 00
= f( Y rw)

= UV
i€]

which means that also {U; c Y} is still an open cover of Y, and in particular a

iejci
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finite subcover of the original cover. &

Corollary 6.13. (continuous images of compact spaces are compact)

If f:X — Y is a continuous function out of a compact topological space X which
is not necessarily surjective, then we may consider its image factorization

f:X—>fX)oY

as in example 3.10. Now by construction X — f(X) is surjective, and so lemma
6.12 implies that f(X) is compact.

The converse to cor. 6.13 does not hold in general: the pre-image of a compact
subset under a continuous function need not be compact again. If this is the case,
then we speak of proper maps:

Definition 6.14. (proper maps)

A continuous function f:(X,tx) = (Y,ty) is called proper if for C € Y a compact
topological subspace of Y, then also its pre-image f~'(C) is compact in X.

There are various variants of the concept of compact spaces.

Definition 6.15. (locally compact topological space)

A topological space is called locally compact if every point has a neighbourhood
which is compact (def. 6.4).

Remark 6.16. (terminology issue regarding “locally compact”)

On top of the terminology issue inherited from that of “compact” (remark 6.5),
the definition of “locally compact” is subject to further ambiguity in the
literature. There are various definitions of locally compact spaces alternative to
def. 6.15. For Hausdorff topological spaces all thse definitions used happen to
be equivalent, but in general they are not. The version we state in def. 6.15 is
the one that makes prop. 6.18 below work without requiring the Hausdorff
property.

Definition 6.17. (mapping space with compact-open topology)

For X a topological space and Y a locally compact topological space (def. 6.15)
then the mapping space

(X" 7))

is the topological space

e whose underlying set X¥ is the set of continuous functions Y - X,

e whose topology TxY) is generated from the sub-basis for the topology (def.
2.7) which is given by subsets denoted
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UX ¢ Homr,, (Y, X) for
0 K oY a compact subset

o U X an open subset

and defined to be those subsets of all those continuous functions f that fit
into a commuting diagram of the form

K oY
i .
U o X

is called the compact-open topology on the set of

Accordingly this z v,

functions.
The construction extends to a functor

(—)(_) : TopP  x Top — Top .

Icomp

Proposition 6.18. For X a topological space and Y a locally compact topological
space, then then mapping space X with its compact-open topology from def.
6.17 is an exponential object in Top.

Relation to Hausdorff spaces

We discuss some important relations between the concepts of compact spaces
and of Hausdorff topological spaces.

Proposition 6.19. (closed subspaces of compact Hausdorff spaces are
equivalently compact subspaces)

Let (X,t) be a compact Hausdorff topological space (def. 4.4, def. 6.4) and let
Y c X be a topological subspace. Then the following are equivalent:

1. Yc X is a closed subspace (def. 2.21);

2. Y is a compact topological space.

Proof. By lemma 6.20 and lemma 6.22 below. N

Lemma 6.20. (closed subspaces of compact spaces are compact)

Let (X,t) be a compact topological space (def. 6.4), and let Y c X be a closed
topological subspace. Then also Y is compact.

Proof. Let {V; c Y}, _, be an open cover of Y. We need to show that this has a finite
sub-cover.
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By definition of the subspace topology, there exist open subsets U; of X with
Vl' = Ui n Y .

By the assumption that Y is closed, the complement X\Y is an open subset of X,
and therefore

{X\Y c X}u {U; c X}

iel

is an open cover of X. Now by the assumption that X is compact, this latter cover
has a finite subcover, hence there exists a finite subset J ¢ I such that

{X\Y c X}u{U; c X}

iejcl

is still an oopen cover of X, hence in particular intersects to a finite open cover of
Y. But since Y n (XbacksalshY) = @, it follows that indeed

{Vi c Y}iEJcI

is a cover of Y, and in indeed a finite subcover of the original one. &

Lemma 6.21. (separation by neighbourhoods of points from compact
subspaces in Hausdorff spaces)

Let

1. (X,t) be a Hausdorff topological space;

2.Yc X acompact subspace.

Then for every x € X\Y there exists

1. an open neighbourhood U, > {x};

2. an open neighbourhood Uy, o Y
such that

e they are still disjoint: U, n Uy = Q.

Proof. By the assumption that (X, 1) is Hausdorff, we find for every point y e Y
disjoint open neighbourhoods U, , o {x} and U, o {y}. By the nature of the
subspace topology of Y, the restriction of all the U, to Y is an open cover of Y:

{(UynY) c y}yey .

Now by the assumption that Y is compact, there exists a finite subcover, hence a
finite set S c Y such that

{(UynY) c Y}y

eEScy
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is still a cover.

But the finite intersection

U, = n U
x sescy XS

of the corresponding open neighbourhoods of x is still open, and by construction it
is disjoint from all the U, hence in particular from their union

Therefore U, and U, are two open subsets as required. N
Lemma 6.21 immediately implies the following:

Lemma 6.22. (compact subspaces of Hausdorff spaces are closed)

Let (X,t) be a Hausdorff topological space (def. 4.4) and let C c X be a compact
(def. 6.4) topological subspace (example 2.16). Then C c X is also a closed
subspace (def. 2.21).

Proof. Let x € X\C be any point of X not contained in €. We need to show that
there exists an open neighbourhood of x in X which does not intersect C. This is
implied by lemma 6.21.

Proposition 6.23. (Heine-Borel theorem)

For n € N, regard R" as the n-dimensional Euclidean space via example 1.6,
regarded as a topological space via its metric topology (example 2.9).

Then for a topological subspace S c R" the following are equivalent:

1. S is compact (def. 6.4);
2. S is closed (def. 2.21) and bounded (def. 1.3).

Proof. First consider a subset S ¢ R™ which is closed and bounded. We need to
show that regarded as a topological subspace it is compact.

The assumption that S is bounded by (hence contained in) some open ball B;(¢) in
R"™ implies that it is contained in {(xi)i":1 € R"| —e <x; <e¢€}. By example 3.28, this
topological subspace is homeomorphic to the n-cube [—¢,€]™. Since the closed
interval [—¢, €] is compact by example 6.8, the binary Tychonoff theorem (prop.
6.9) implies that this n-cube is compact. Since closed subspaces of compact
spaces are compact (lemma 6.20) this implies that S is compact.

Conversely, assume that S ¢ R" is a compact subspace. We need to show that it is
closed and bounded.

The first statement follows since the Euclidean space R" is Hausdorff (example
4.8) and since compact subspaces of Hausdorff spaces are closed (prop. 6.22).
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Hence what remains is to show that S is bounded.

To that end, choose any positive real number € € R, , and consider the open cover
of all of R™ by the open n-cubes

(k1 —€ki+1+e)X(ky, — €k, +1+€) XX (kp—€k,+1+€)

for n-tuples of integers (kq,k,, -, k,,) € Z". The restrictions of these to S hence form
an open cover of the subspace S. By the assumption that S is compact, there is
then a finite subset of n-tuples of integers such that the corresponding n-cubes
still cover S. But the union of any finite number of bounded closed n-cubes in R" is
clearly a bounded subset, and hence soisS. N

Proposition 6.24. (maps from compact spaces to Hausdorff spaces are
closed and proper)

Let f:(X,tx) — (Y,1y) be a continuous function between topological spaces such
that

1. (X,tx) is @ compact topological space;

2. (Y,ty) is a Hausdorff topological space.

Then f is
1. a closed map (def. 3.14);

2. a proper map (def. 6.14).)

Proof. For the first statement, we need to show that if € c X is a closed subset of
X, then also f(C) c Y is a closed subset of Y.

Now

1. since closed subsets of compact spaces are compact (lemma 6.20) it follows
that ¢ c X is also compact;

2. since continuous images of compact spaces are compact (cor. 6.13) it then
follows that f(C) c Y is compact;

3. since compact subspaces of Hausdorff spaces are closed (prop. 6.22) it
finally follow that f(C) is also closed in Y.

For the second statement we need to show that if C c Y is a compact subset, then
also its pre-image f~*(C) is compact.

Now

1. since compact subspaces of Hausdorff spaces are closed (prop. 6.22) it
follows that CsubseY is closed;

2. since pre-images under continuous of closed subsets are closed (prop. 3.2),
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also f () c X is closed;

3. since closed subsets of compact spaces are compact (lemma 6.20), it follows
that £ ~(C) is compact.

Proposition 6.25. (continuous bijections from compact spaces to
Hausdorff spaces are homeomorphisms)

Let f:(X,tx) — (Y,1y) be a continuous function between topological spaces such
that

1. (X,ty) is @ compact topological space;

2. (Y,ty) is a Hausdorff topological space.

3. f: X — Y is a bijection of sets.

Then f is a homeomorphism, i. e. its inverse function Y — X is also a continuous
function.

In particular then both (X,tyx) and (Y,ty) are compact Hausdorff spaces.

Proof. Write g:Y — X for the inverse function of f.

We need to show that g is continuous, hence that for U c X an open subset, then
also its pre-image g 1(U) c Y is open in Y. By prop. 3.2 this is equivalent to the
statement that for c X a closed subset then the pre-image g 1(C) c Y is also
closed in Y.

But since g is the inverse function to f, its pre-images are the images of f. Hence
the last statement above equivalently says that f sends closed subsets to closed
subsets. This is true by prop. 6.24. &

Proposition 6.26. (compact Hausdorff spaces are normal)

Every compact Hausdorff topological space is a normal topological space (def.
4.13).

Proof. First we claim that (X, 1) is regular. To show this, we need to find for each
point x € X and each disjoint closed subset Y € X dijoint open neighbourhoods

U, D {x} and Uy o Y. But since closed subspaces of compact spaces are compact
(lemma 6.20), the subset Y is in fact compact, and hence this is in fact the
statement of lemma 6.21.

Next to show that (X,7) is indeed normal, we apply the idea of the proof of lemma
6.21 once more:

Let Y,,Y, c X be two disjoint closed subspaces. By the previous statement then for
every point y, € Y we find disjoint open neighbourhoods U, > {y,} and Uy, , 2Y,.

79 of 96 29.04.17,22:25



Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

The union of the Uy, is a cover of Y;, and by compactness of Y, there is a finite
subset S c Y such that

Uy =

1 SESUCY1 Uy,
is an open neighbourhood of Y, and
UYZ = n UYZ,S

SESCY

is an open neighbourhood of Y,, and both are disjoint. N

Relation to quotient spaces

Proposition 6.27. (continuous surjections from compact spaces to
Hausdorff spaces are quotient projections)

Let
T (X, tx) — (Y, 7y)

be a continuous function between topological spaces such that

1. (X,tx) is a compact topological space (def. 6.4),;

2. (Y,ty) Is @ Hausdorff topological space (def. 4.4);

3. m: X —>Yis a surjective function.

Then 1y is the guotient topology inherited from ty via the surjection f (def.
2.17).

Proof. We need to show that an subset U c Y is an open subset (Y,7y) precisely if
its pre-image n~1(U) c X is an open subset in (X,7y). Equivalenty, as in prop. 3.2,
we need to show that U is a closed subset precisely if #71(U) is a closed subset.
The implication

(U closed) = (f ~'(U) closed)
follows via prop. 3.2 from the continuity of =. The implication
(f "(U) closed) = (U closed)

follows since « is a closed map by prop. 6.24. &

The following proposition allows to recognize when a guotient space of a compact
Hausdorff space is itself still Hausdorff.

Proposition 6.28. (quotient projections out of compact Hausdorff spaces
are closed precisely if the codomain is Hausdorff)
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Let
m: (X, tx) — (Y, 1y)

be a continuous function between topological spaces such that

1. (X,7) is @ compact Hausdorff topological space (def. 6.4, def. 4.4);

2. mis a surjection and 1y is the corresponding quotient topology (def. 2.17).

Then the following are equivalent

1. (Y,1y) is itself a Hausdorff topological space (def. 4.4),

2. mis a closed map (def. 3.14).

Proof. The implicaton ((Y, ty) Hausdorff) = (mclosed) is given by prop. 6.24. We
need to show the converse.

Hence assume that 7 is a closed map. We need to show that for every pair of
distinct point y, # y, € Y) there exist open neighbourhoods U, ,U,, € ty which are

disjoint, Uy nUy,, =0.

Therefore consider the pre-images
Cir=n'{y,) Co=n"'{y,}D).

Observe that these are closed subsets, because in the Hausdorff space (Y, ty)
(which is hence in particular T,) the singleton subsets {y.} are closed by prop.

4.11, and since pre-images under continuous functions preserves closed subsets
by prop. 3.2.

Now since compact Hausdorff spaces are normal it follows (by def. 4.13) that we
may find disjoint open subset U,,U, € 14 such that

c,cU; c,cU,.

Moreover, by lemma 3.20 we may find these U; such that they are both saturated
subsets (def. 3.16). Therefore finally lemma 3.20 says that the images n(U;) are
open in (Y,ty). These are now clearly disjoint open neighbourhoods of y, and

y,- |
Example 6.29. Consider the function

[0,2n]) ~ —  S'c R?

t = (cos(t),sin(t))

e from the gquotient topological space (def. 2.17) of the closed interval (def.
1.12) by the equivalence relation which identifies the two endpoints

(x~y) © ((x=y)or((x €{0,2r}and (y € {0,2pi}))))
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e to the unit circle S* = §,(1) c R? (def.
1.2) regarded as a topological
subspace of the 2-dimensional i
Euclidean space (example 1.6) e ———
equipped with its metric topology ¥ e
(example 2.9). ( L

This is clearly a continuous function and a A r
bijection on the underlying sets. e
Moreover, since continuous images of

compact spaces are compact (cor. 6.13) and since the closed interval [0,1] is

compact (example 6.8) we also obtain another proof that the circle is compact.

Hence by prop. 6.25 the above map is in fact a homeomorphism

[0,2n]/ ~ = S'.

Compare this to the counter-example 3.23, which observed that the analogous
function

[0,2m) — St c R?
t = (cos(t),sin(t))

is not a homeomorphism, even though this, too, is a bijection on the the
underlying sets. But the half-open interval [0, 27) is not compact, and hence

prop. 6.25 does not apply.

7. Paracompact spaces

Definition 7.1. (locally finite cover)

Let (X,7) be a topological space.

An open cover {U; c X}, _, of X is called locally finite if for all point x € X, there

exists a neighbourhood U, o {x} such that it intersects only finitely many
elements of the cover, hence such that U, nU; # @ for only a finite nhumber of
iel.

Definition 7.2. (refinement of open covers)

Let (X,7) be a topological space, and let {U; c X},_, be a open cover.

Then a refinement of this open cover is a set of open subsets {V; c X}ie, which

is still an open cover in itself and such that for each j € J there exists an i €]

Definition 7.3. (paracompact topological space)

A topological space (X,7) is called paracompact if every open cover of X has a
refinement (def. 7.2) by a locally finite open cover (def. 7.1).
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The following says that if there exists a locally finite refinement of a cover, then in
fact there exists one with the same index set as the original cover. This will be
useful in some of the proofs that follow.

Lemma 7.4. (every locally finite refinement induces one with the original
index set)

Let (X,7) be a topological space, let {U; c X},_, be an open cover, and let
(¢:] > L{V;c X}, ), be a refinement to a locally finite cover.

Then {W; c X}._ with

i€l

Wi = { V) V]}
jed

is still a refinement of {U; c X},_, to a locally finite cover.

Proof. 1t is clear by construction that W; c U;, hence that we have a refinement.
We need to show local finiteness.

Hence consider x € X. By the assumption that {V; c X}ie, is locally finite, it follows

that there exists an open neighbourhood U, o {x} and a finitee subset K c J such
that

,-EY\K(U’“ nv;=0).

Hence by construction

IEI{V(,l)(K)(Ux nw;=9).

Since the image ¢(K) c I is still a finite set, this shows that {W; c X},_, is locally
finite. N

Partitions of unity

Definition 7.5. (partition of unity)

Let (X,7) be a topological space, and let {U; c X},_, be an open cover. Then a
partition of unity subordinate to the cover is

¢ a set {f },., of continuous functions
fi:U;—[0,1]

(where U; c X and [0,1] c R are equipped with their subspace topology, the
real numbers R is regarded as the 1-dimensional Euclidean space equipped
with its metric topology);

such that with
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Supp(f,) = CI(f,; *((0,1]))

denoting the support of f, (the topological closure of the subset of points on
which it does not vanish) then

1. ¥ (Supp(f) = Uy);

2. {Supp(f) c X}iEI is a locally finite cover (def. 7.1);

3. ¥ (S fi@ = 1),
Remark 7.6. Due to the second clause in def. 7.5, the sum in the third clause
involves only a finite humber of elements not equal to zero, and therefore is
well defined.

Proposition 7.7. Let (X,7) be a topological space. Then the following are
equivalent:

1. (X,7) is a paracompact Hausdorff space.

2. Every open cover of (X,7) admits a subordinate partition of unity (def. 7.5).

Proof. One direction is immediate: Assume that every open cover {U; c X}
admits a subordinate partition of unity {f }._,. Then by definition (def. 7.5)
{Int(Supp(f),) < X},, is a locally finite open cover refining the original one.

i€l

We need to show the converse: If (X,7) is a paracompact topological space, then
for every open cover {U; c X}, _, there is a subordinate partition of unity (def. 7.5).

To that end, first apply lemma 4.17 to the given locally finite open cover {U; c X},
to obtain a smaller locally finite open cover {V; c X}._,, and then apply the lemma

once more to that result to get a yet small open cover {W; c X}._,, so that now

'ZI(Wi c Cl(W,)) cV,cCl(Vy) cU).
l

It follows that for each i € I we have two disjoint closed subsets, namely the
topological closure ClI(W;) and the complement X\V;

CW,) NX\V; =0 .

Now since paracompact Hausdorff spaces are normal, Urysohn's lemma says that
there exist continuous functions

h : X — [0,1]

with the property that
hi(CI(Wy)) = {1}, h;(X\V;) = {0} .
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This means in particular that h; '((0,1]) c V; and hence that
Supp(h;) = CI(h; '((0,1])) € CI(Vy) € U; .

By construction, the set of function {h;},_, already satisfies two of the three
conditions on a partition of unity subordinate to {U; c X},_, from def. 7.5. It just

remains to normalize these functions so that they indeed sum to unity. To that
end, consider the continuous function

h:X—[0,1]

defined on x € X

h(x) = Z hy (%) .

iel

Notice that the sum on the right has only a finite number of non-zero summands,
due to the local finiteness of the cover, so that this is well-defined.

Then set
fi =9,/9.
This is now manifestly such that »._, f, =1, and so
{fi}iel
is a partition of unity as required. N

Manifolds

topological manifold

smooth manifold

tangent space

tangent bundle

frame bundle

e G-structure

8. Universal constructions

One point of the general definition of topological space above is that it admits
constructions which intuitively should exist on “continuous spaces”, but which do
not in general exist on metric spaces.

Examples include the construction of quotient topological spaces of metric spaces,
which are not Hausdorff anymore (e.g. example 4.3), and hence in particular are
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not metric spaces anymore (by example 4.8).

Now from a more abstract point of view, a quotient topological space is a special
case of a “colimit” of topological spaces. This we explain now.

Generally, for every diagram in the category Top of topological spaces (remark
\ref{TopCat}), hence for every collection of topological spaces with a system of
continuous functions betwen them, then there exists a further topological space,
called the colimiting space of the diagram, which may be thought of as the result
of “gluing” all the spaces in the diagram together, while using the maps between
them in order to identify those parts “along which” the spaces are to be glued.

One may formalize this intuition by saying that the colimiting space has the
property that it receives compatible continuous functions from all the spaces in
the diagram, and that it is characterized by the fact that it is universal with this
property: every compatible system of maps to another space uniquely factors
through the colimiting one.

Therefore forming colimits of topological spaces is a convenient means to
construct new spaces which have prescribed properties for continuous functions
out of them. We implicitly used a simple special case of this phenomenon in the
proof of the Hausdorff reflection in prop. 4.22, when we concluded the existence
of certain unique factorizing maps out of the Hausdorff qotient of a topological
space.

Dual to the concept of colimits of topological space is that of “limits” of diagrams
of topological spaces (not to be confused with limits of sequences in a topological
space). Here one considers topological spaces with the universal property of
having compatible continuous functions into a given diagram of spaces.

Most constructions of new topological spaces that one builds from given spaces
are obtained by forming limits and/or colimits of diagrams of the original spaces.

Limits and colimits

Definition 8.1. (diagram in a category)

A diagram X, in a category, such as the category Top of topological spaces or
the category Set of sets from remark 3.3, is

1. a set {X;},, of objects in the category;

2. for every pair (i,j) € I x I of labels of objects a set {X; Ta X} of

OIEIi’j

morphisms between these objects;
3. for each triple i, j, k € I function
comp

ik : Ii,j X Ij,k — Ii,k

such that
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1. for every i € I the identity morphisms idy, : X; — X; is part of the diagram;

2. comp is associtive and unital in the evident sense,
3. for every composable pair of morphisms
f f
X; 5 X; 5 x,

then the composite of these two morphisms equals the morphisms of the
diagram that is labeled by the value of comp, ;, ON their labels:

fpefa = fcompi,j,k(a.ﬁ) '

The last condition we depict as follows:

X; —_— X
comp; ; g (a.f)

Definition 8.2. (cone over a diagram)

Consider a diagram

f
X, = {Xi—a>Xj} , comp
i,]'EI,D(EIi’j

in some category (def. 8.1). Then
1. a cone over this diagram is

1. an object X in the category;

2. for each i € I a morphism X ixi in the category
such that
o forall (i,j) eI xI and all a € I;; then the condition
faoP; =D;

holds, which we depict as follows:

X
Piy NP
a

2. a co-cone over this diagram is

1. an object X in the category;
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2. for each i € I a morphism gq,:X; — X in the category
such that
o forall (i,j) e IxIand all « € I;; then the condition
q;°f, = q

holds, which we depict as follows:

f
X; = X
X

Definition 8.3. (limiting cone over a diagram)

Consider a diagram

f
X, = {Xi—a>Xj} , comp
i,]'EI,DZEIi’j

in some category (def. 8.1). Then

1. its limiting cone (or just limit for short) is, if it exists, the cone

lim Xi
—i
X; f—> X;
a

over this diagram (def. 8.2) which is universal or initial among all possible
cones, in that it has the property that for

X
p,i ‘/ \‘p’]
X; - X
l fa ]

any other cone, then there is a unique morphism
¢p:X— li_rn)i X;

that factors the given cone through the limiting cone, in that for all i € I
then

Pi=p;°¢

which we depict as follows:
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¢l \Pi
lim Xi — Xi
—i pi

2. its colimiting cocone (or just colimit for short) is, if it exists, the cocone

X; f—> X;
a
lim Xi

under this diagram (def. 8.2) which is universal or terminal among all
possible co-cones, in that it has the property that for

any other cocone, then there is a unique morphism

¢ : lim X; — X

that factors the given co-cone through the co-limiting cocone, in that for all

i €I then
qi=deq,
which we depict as follows:
a .
X; — lim X;
l
¢l 7
X

Proposition 8.4. (limits of sets)

Let

be a diagram of sets (def. 8.1). Then

1. its limit cone (def. 8.3) exists and is given by the following subset of the
Cartesian product X X; of all the sets X; appearing in the diagram
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lim Xi — X Xi
i i€l

on those tuples of elements which match the graphs of the functions
appearing in the diagram:

h(_ml.Xi = (e, € X, Xi Jr (f (x) = x;)

aeli’j

2. its colimiting co-cone (def. 8.3) exists and s given by the quotient set of
the disjoint union o X; of all the sets X; appearing in the diagram
l

(N Xi — lim Xi
iel —i€el

with respect to the equivalence relation which is generated from the
graphs of the functions in the diagram:

lim X; = (U X)/| x~x)e| 3 (fo(0)=x)

C(EIi’j

Now we turn to limits of diagrams of topological spaces.

Definition 8.5. Let {X; = (S;,7;) € Top},_, be a class of topological spaces, and let

S € Set be a bare set. Then

iel

fi . o .
e For {§ = Si};¢,; @ set of functions out of §, the initial topology tinitiai({f;};c,) 1S
the topology on S with the minimum collection of open subsets such that
all f.:(S, Tinitia1 ({f;};c,)) — X; are continuous.

e For {S; k! S};¢; @ set of functions into S, the final topology tgna({f;};c,) is the

topology on S with the maximum collection of open subsets such that all
fi:Xi = (S trna({f};,)) @re continuous.

Example 8.6. For X a single topological space, and :S © U(X) a subset of its
underlying set, then the initial topology ti,a1(ts), def. 8.5, is the subspace

topology, making

ts : (S, Tinitial (ts)) © X

a topological subspace inclusion.

Example 8.7. Conversely, for p.:U(X) — S an epimorphism, then the final
topology tsinai(pg) ON S is the guotient topology.

Proposition 8.8. Let | be a small category and let X,:1 — Top be an I-diagram in
Top (a functor from I to Top), with components denoted X; = (S;,t;), where
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S; € Set and t; a topology on S;. Then:

1. The limit of X, exists and is given by the topological space whose
underlying set is the limit in Set of the underlying sets in the diagram, and
whose topology is the initial topology, def. 8.5, for the functions p, which

are the limiting cone components:

lim Si
i€l
py_ ‘/ \‘p]
Sl — S]

Hence
lim X; = (h<_mi615i’ Tinitial({pi}iel))
2. The colimit of X, exists and is the topological space whose underlying set is

the colimit in Set of the underlying diagram of sets, and whose topology is
the final topology, def. 8.5 for the component maps ; of the colimiting

cocone
Sl — S]
Ll \' \/LJ
lim S
—i€l
Hence
h—mn'ezxi = (h—mn'EISi' Tfinal({li}i51)>

(e.g. Bourbaki 71, section 1.4)

Proof. The required universal property of (H(_mielsi, Tinitial({pi}iel)) is immediate:
for
(S, 1)
Tiy \Ji
X; — X;

any cone over the diagram, then by construction there is a unique function of
underlying sets § — U(LH.EISL' making the required diagrams commute, and so all
l

that is required is that this unique function is always continuous. But this is
precisely what the initial topology ensures.

The case of the colimit is formally dual. B
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Examples

Example 8.9. The limit over the empty diagram in Top is the point space =
(example 2.10).

Example 8.10. For {X;},_, a set of topological spaces, their coproduct I X; € Top
l

is their disjoint union (example 2.15).

Example 8.11. For {X;},_, a set of topological spaces, their product [],., X; € Top

is the Cartesian product of the underlying sets equipped with the product
topology, also called the Tychonoff product.

In the case that S is a finite set, such as for binary product spaces X x Y, then a
sub-basis for the product topology is given by the Cartesian products of the
open subsets of (a basis for) each factor space.

Example 8.12. The equalizer of two continuous functions f,g:X = Y in Top is the
equalizer of the underlying functions of sets

f
eq(f,g) & Sx 3 Sy

(hence the largets subset of Sy on which both functions coincide) and equipped
with the subspace topology, example 8.6.

Example 8.13. The coequalizer of two continuous functions f,g:X — Y in Top is
the coequalizer of the underlying functions of sets

f
Sx = Sy = coeq(f, 9)

(hence the guotient set by the equivalence relation generated by f(x) ~ g(x) for
all x € X) and equipped with the guotient topology, example 8.7.

Example 8.14. For

two continuous functions out of the same domain, then the colimit under this
diagram is also called the pushout, denoted

g

A — Y
f»L lg*f'
X — XU,Y.

(Here g, f is also called the pushout of f, or the cobase change of f along g.) If

g is an inclusion, one also write X U, Y and calls this the attaching space.
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By example 8.13 the
X pushout/attaching
space is the quotient
lf e - topological space
YUf X

. . XU, Y=Xuy)/ ~

of the disjoint union of

X and Y subject to the
equivalence relation which identifies a point in X with a point in Y if they have
the same pre-image in A.

(graphics from Aguilar-Gitler-Prieto 02)

Example 8.15. As an important special case of example 8.14, let
ip:S""t— D"

be the canonical inclusion of the standard (n-1)-sphere as the boundary of the
standard n-disk from example 2.20.

Then the colimit in Top under
the diagram, i.e. the pushout
of i,, along itself,

{Dn (iisn—l l_n) Dn}'

is the n-sphere S™:
sn-t I pn
|l (po) | -
p* — Ss"
(graphics from Ueno-Shiga-Morita 95)
Definition 8.16. (single cell attachment)

For X any topological space and for n € N, then an n-cell attachment to X is the
result of gluing an n-disk to X, along a prescribed image of its bounding (n-1)-
sphere (def. 2.20):

Let
p:S" —X

be a continuous function, then the “attaching space”

XUy D™ € Top

is the topological space which is the pushout of the boundary inclusion of the
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n-sphere along ¢, hence the universal space that makes the following diagram
commute:

sn1 2 X

]l (po) l
D" — XU,D"

Example 8.17. A single cell attachment of a 0-cell, according to example 8.16 is
the same as forming the disjoint union space X U = with the point space x:

st=0) > X

l (po) l
(D°=x) — XU=x
In particular if we start with the empty topological space X = ¢ itself, then by

attaching 0-cells we obtain a discrete topological space. To this then we may
attach higher dimensional cells.

Definition 8.18. (attaching many cells at once)

. _q b .
If we have a set of attaching maps {s™~! = X},., (asin def. 8.16), all to the
same space X, we may think of these as one single continuous function out of
the disjoint union space of their domain spheres

) n;—1
(@Jie,+ USTT X,

Then the result of attaching all the corresponding n-cells to X is the pushout of
the corresponding disjoint union of boundary inclusions:

n n
u D - XU(¢i)iEI (iIéID )

Apart from attaching a set of cells all at once to a fixed base space, we may
“attach cells to cells” in that after forming a given cell attachment, then we
further attach cells to the resulting attaching space, and ever so on:

Definition 8.19. (relative cell complexes and CW-complexes)

Let X be a topological space, then A topological relative cell complex of
countable height based on X is a continuous function

f:X—>Y

and a sequential diagram of topological space of the form

X:XO‘—)Xl (—)XZ ‘_)Xg(_)"'
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such that

1. each X, © X, ., is exhibited as a cell attachment according to def. 8.18,
hence presented by a pushout diagram of the form

L i1 @ier X,

i€l
l (po) l

n
g0 7 X
2.V = Yy X, is the union of all these cell attachments, and f:X - Y is the

canonical inclusion; or stated more abstractly: the map f:X - Y is the
inclusion of the first component of the diagram into its colimiting cocone
lim Xk:

—k

X = XO — X1 — Xz —
IR ) v
Y =lim X,
_)
If here X = @ is the empty space then the result is a map ¢ © Y, which is

equivalently just a space Y built form “attaching cells to nothing”. This is then
called just a topological cell complex of countable hight.

Finally, a topological (relative) cell complex of countable hight is called a
CW-complex is the (k + 1)-st cell attachment X, - X, is entirely by
(k + 1)-cells, hence exhibited specifically by a pushout of the following form:
U sk @ier X,
i€l

l (po) \)

u DKt — Xy
el

A finite CW-complex is one which admits a presentation in which there are only
finitely many attaching maps, and similarly a countable CW-complex is one
which admits a presentation with countably many attaching maps.

Given a CW-complex, then X, is also called its n-skeleton.

(..)
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This concludes Section 1 Point-set topology.

For the next section see Secton 2 -- Basic homotopy theory.
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