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Introduction to Topology -- 1

This page contains a detailed introduction to basic topology. Starting from scratch
(required background is just a basic concept of sets), and amplifying motivation
from analysis, it first develops standard point-set topology (topological spaces). In
passing, some basics of category theory make an informal appearance, used to
transparently summarize some conceptually important aspects of the theory, such
as initial and final topologies and the reflection into Hausdorff and sober topological
spaces. We close with discussion of the basics of topological manifolds and
differentiable manifolds, laying the foundations for differential geometry. The
second part introduces some basics of homotopy theory, mostly the fundamental
group, and ends with their first application to the classification of covering spaces.

main page: Introduction to Topology

this chapter: Introduction to Topology 1 – Point-set topology

next chapter: Introduction to Topology 2 -- Basic Homotopy Theory

For introduction to more general and abstract homotopy theory see instead at
Introduction to Homotopy Theory.
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The idea of topology is to study “spaces” with “continuous functions” between
them. Specifically one considers functions between sets (whence “point-set
topology”, see below) such that there is a concept for what it means that these
functions depend continuously on their arguments, in that their values do not
“jump”. Such a concept of continuity is familiar from analysis on metric spaces,
(recalled below) but the definition in topology generalizes this analytic concept and
renders it more foundational, generalizing the concept of metric spaces to that of
topological spaces. (def. 2.3 below).

Hence, topology is the study of the category whose objects are topological spaces,
and whose morphisms are continuous functions (see also remark 3.3 below). This
category is much more flexible than that of metric spaces, for example it admits
the construction of arbitrary quotients and intersections of spaces. Accordingly,
topology underlies or informs many and diverse areas of mathematics, such as
functional analysis, operator algebra, manifold/scheme theory, hence algebraic
geometry and differential geometry, and the study of topological groups,
topological vector spaces, local rings, etc. Not the least, it gives rise to the field of
homotopy theory, where one considers also continuous deformations of continuous
functions themselves (“homotopies”). Topology itself has many branches, such as
low-dimensional topology or topological domain theory.

A popular imagery for the concept of a continuous function is provided by
deformations of elastic physical bodies, which may be deformed by stretching them
without tearing. The canonical illustration is a continuous bijective function from
the torus to the surface of a coffee mug, which maps half of the torus to the handle
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of the coffee mug, and continuously deforms parts of the other half in order to
form the actual cup. Since the inverse function to this function is itself continuous,
the torus and the coffee mug, both regarded as topological spaces, are “the same”
for the purposes of topology; one says they are homeomorphic.

On the other hand, there is no
homeomorphism from the torus
to, for instance, the sphere,
signifying that these represent
two topologically distinct spaces.
Part of topology is concerned
with studying homeomorphism-
invariants of topological spaces
(“topological properties”) which allow to detect by means of algebraic
manipulations whether two topological spaces are homeomorphic (or more
generally homotopy equivalent) or not. This is called algebraic topology. A basic
algebraic invariant is the fundamental group of a topological space (discussed
below), which measures how many ways there are to wind loops inside a
topological space.

Beware the popular imagery of “rubber-sheet geometry”, which only captures part
of the full scope of topology, in that it invokes spaces that locally still look like
metric spaces (called topological manifolds, see below). But the concept of
topological spaces is a good bit more general. Notably, finite topological spaces are
either discrete or very much unlike metric spaces (example 4.7 below); the former
play a role in categorical logic. Also, in geometry, exotic topological spaces
frequently arise when forming non-free quotients. In order to gauge just how many
of such “exotic” examples of topological spaces beyond locally metric spaces one
wishes to admit in the theory, extra “separation axioms” are imposed on topological
spaces (see below), and the flavour of topology as a field depends on this choice.

Among the separation axioms, the Hausdorff space axiom is the most popular (see
below). But the weaker axiom of sobriety (see below) stands out, because on the
one hand it is the weakest axiom that is still naturally satisfied in applications to
algebraic geometry (schemes are sober) and computer science (Vickers 89), and
on the other, it fully realizes the strong roots that topology has in formal logic:
sober topological spaces are entirely characterized by the union-, intersection- and
inclusion-relations (logical conjunction, disjunction and implication) among their
open subsets (propositions). This leads to a natural and fruitful generalization of
topology to more general “purely logic-determined spaces”, called locales, and in
yet more generality, toposes and higher toposes. While the latter are beyond the
scope of this introduction, their rich theory and relation to the foundations of
mathematics and geometry provide an outlook on the relevance of the basic ideas
of topology.

In this first part we discuss the foundations of the concept of “sets equipped with
topology” (topological spaces) and of continuous functions between them.
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(classical logic)

The proofs in the following freely use the principle of excluded middle,
hence proof by contradiction, and in a few places they also use the axiom
of choice/Zorn's lemma.

Hence we discuss topology in its traditional form with classical logic.

We do however highlight the role of frame homomorphisms (def. 2.35
below) and that of sober topological spaces (def. 5.1 below). These
concepts pave the way to a constructive formulation of topology in terms
not of topological spaces but in terms of locales, see remark 5.8 below. The
reader interested in questions of intuitionistic mathematics in topology may
benefit from looking at (Waaldijk 96).

1. Metric spaces

The concept of continuity was first made precise in analysis, in terms of epsilontic
analysis on metric spaces, recalled as def. 1.8 below. Then it was realized that this
has a more elegant formulation in terms of the more general concept of open sets,
this is prop. 1.14 below. Adopting the latter as the definition leads to a more
abstract concept of “continuous space”, this is the concept of topological spaces,
def. 2.3 below.

Here we briefly recall the relevant basic concepts from analysis, as a motivation for
various definitions in topology. The reader who either already recalls these
concepts in analysis or is content with ignoring the motivation coming from
analysis should skip right away to the section Topological spaces.

Definition 1.1. (metric space)

A metric space is

a set ܺ (the “underlying set”);1. 

a function ݀ : ܺ × ܺ → [0, ∞) (the “distance function”) from the Cartesian
product of the set with itself to the non-negative real numbers

2. 

such that for all ݔ, ,ݕ ݖ ∈ ܺ:

(symmetry) ݀(ݔ, (ݕ = ,ݕ)݀  .1(ݔ

(triangle inequality) ݀(ݔ, (ݖ ≤ ,ݔ)݀ (ݕ + ,ݕ)݀  .2.(ݖ

(non-degeneracy) ݀(ݔ, (ݕ = 0 ⇔ ݔ =  .3ݕ

Definition 1.2. (open balls)

Let (ܺ, ݀), be a metric space. Then for every element ݔ ∈ ܺ and every ߳ ∈ ℝ+ a
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positive real number, we write

௫ܤ
∘ (߳) ≔ ݕ} ∈ ܺ | ,ݔ)݀ (ݕ < ߳}

for the open ball of radius ߳ around ݔ. Similarly we write

(߳)௫ܤ ≔ ݕ} ∈ ܺ | ,ݔ)݀ (ݕ ≤ ߳}

for the closed ball of radius ߳ around ݔ. Finally we write

ܵ௫(߳) ≔ ݕ} ∈ ܺ | ,ݔ)݀ (ݕ = ߳}

for the sphere of radius ߳ around ݔ.

For ߳ = 1 we also speak of the unit open/closed ball and the unit sphere.

Definition 1.3. For (ܺ, ݀) a metric space (def. 1.1) then a subset ܵ ⊂ ܺ is called a
bounded subset if ܵ is contained in some open ball (def. 1.2)

ܵ ⊂ ௫ܤ
∘ (ݎ)

around some ݔ ∈ ܺ of some radius ݎ ∈ ℝ.

A key source of metric spaces are normed vector spaces:

Dedfinition 1.4. (normed vector space)

A normed vector space is

a real vector space ܸ;1. 

a function (the norm)

‖ −‖ : ܸ ⟶ ℝ ≥ 

from the underlying set of ܸ to the non-negative real numbers,

2. 

such that for all ܿ ∈ ℝ with absolute value |ܿ| and all ݒ, ݓ ∈ ܸ it holds true that

(linearity) ‖ܿݒ‖ =  .1;‖ݒ‖|ܿ|

(triangle inequality) ‖ݒ + ‖ݓ ≤ ‖ݒ‖ +  .2;‖ݓ‖

(non-degeneracy) if ‖ݒ‖ = 0 then ݒ = 0.3. 

Proposition 1.5. Every normed vector space (ܸ, ‖ −‖) becomes a metric space
according to def. 1.1 by setting

,ݔ)݀ (ݕ ≔ ݔ‖ − ‖ݕ .

Examples of normed vector spaces (def. 1.4) and hence, via prop. 1.5, of metric
spaces include the following:

Example 1.6. For ݊ ∈ ℕ, the Cartesian space
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ℝ = ⇀ݔ} = (ݔ) = ଵ
 | ݔ ∈ ℝ}

carries a norm (the Euclidean norm ) given by the square root of the sum of the
squares of the components:

‖⇀ݔ‖ ≔ 
 = ଵ



(ݔ)
ଶ

ඩ .

Via prop. 1.5 this gives ℝ the structure of a metric space, and as such it is called
the Euclidean space of dimension ݊.

Example 1.7. More generally, for ݊ ∈ ℕ, and  ∈ ℝ,  ≥ 1,
then the Cartesian space ℝ carries the p-norm

‖⇀ݔ‖ ≔ 


|ݔ|
ඨ

One also sets

ஶ‖⇀ݔ‖ ≔ max
 ∈ ூ

|ݔ|

and calls this the supremum norm.

The graphics on the right (grabbed from Wikipedia) shows unit circles (def. 1.2)
in ℝଶ with respect to various p-norms.

By the Minkowski inequality, the p-norm generalizes to non-finite dimensional
vector spaces such as sequence spaces and Lebesgue spaces.

Continuity

The following is now the fairly obvious definition of continuity for functions between
metric spaces.

Definition 1.8. (epsilontic definition of continuity)

For (ܺ, ݀) and (ܻ, ݀) two metric spaces (def.
1.1), then a function

݂ : ܺ ⟶ ܻ

is said to be continuous at a point ݔ ∈ ܺ if for
every positive real number ߳ there exists a
positive real number ′ݔ such that for all ߜ ∈ ܺ that
are a distance smaller than ߜ from ݔ then their
image ݂(ݔ′ ) is a distance smaller than ߳ from
:(ݔ)݂
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(݂ continuous at (ݔ ≔ ∀
ച ∈ ℝ

ച ಭ బ

ቌ ∃
ഃ ∈ ℝ

ഃ ಭ బ

((݀(ݔ, (′ݔ < (ߜ ⇒ (݀( ,(ݔ)݂ (′ݔ)݂ ) < ߳))ቍ .

The function ݂ is said to be continuous if it is continuous at every point ݔ ∈ ܺ.

Example 1.9. (distance function from a subset is continuous)

Let (ܺ, ݀) be a metric space (def. 1.1) and let ܵ ⊂ ܺ be a subset of the underlying
set. Define then the function

݀(ܵ, −) : ܺ → ℝ

from the underlying set ܺ to the real numbers by assigning to a point ݔ ∈ ܺ the
infimum of the distances from ݔ to ݏ, as ݏ ranges over the elements of ܵ:

݀(ܵ, (ݔ ≔ inf{݀(ݏ, (ݔ | ݏ ∈ ܵ} .

This is a continuous function, with ℝ regarded as a metric space via its Euclidean
norm (example 1.6).

In particular the original distance function ݀(ݔ, −) = ,{ݔ})݀ −) is continuous in both
its arguments.

Proof. Let ݔ ∈ ܺ and let ߳ be a positive real number. We need to find a positive real
number ߜ such that for ݕ ∈ ܺ with ݀(ݔ, (ݕ < ,ܵ)݀| then ߜ (ݔ − ݀(ܵ, |(ݕ < ߳.

For ݏ ∈ ܵ and ݕ ∈ ܺ, consider the triangle inequalities

,ݏ)݀ (ݔ ≤ ,ݏ)݀ (ݕ + ,ݕ)݀ (ݔ

,ݏ)݀ (ݕ ≤ ,ݏ)݀ (ݔ + ,ݔ)݀ (ݕ
.

Forming the infimum over ݏ ∈ ܵ of all terms appearing here yields

݀(ܵ, (ݔ ≤ ݀(ܵ, (ݕ + ,ݕ)݀ (ݔ

݀(ܵ, (ݕ ≤ ݀(ܵ, (ݔ + ,ݔ)݀ (ݕ

which implies

|݀(ܵ, (ݔ − ݀(ܵ, |(ݕ ≤ ,ݔ)݀ (ݕ .

This means that we may take for instance ߜ ≔ ߳.  ▮

Example 1.10. (rational functions are continuous)

Consider the real line ℝ regarded as the 1-dimensional Euclidean space ℝ from
example 1.6.

For ܲ ∈ ℝ[ܺ] a polynomial, then the function

݂ : ℝ ⟶ ℝ

ݔ ↦ (ݔ)ܲ
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is a continuous function in the sense of def. 1.8. Hence polynomials are
continuous functions.

Similarly rational functions are continuous on their domain of definition: for
ܲ, ܳ ∈ ℝ[ܺ] two polynomials, then ು

ೂ
: ℝ\{ݔ | ݂ொ(ݔ) = 0} → ℝ is a continuous function.

Also for instance forming the square root is a continuous function
(ඥ −) :ℝ ≥  → ℝ≥ .

On the other hand, a step function is continuous everywhere except at the finite
number of points at which it changes its value, see example 1.15 below.

We now reformulate the analytic concept of continuity from def. 1.8 in terms of the
simple but important concept of open sets:

Definition 1.11. (neighbourhood and open set)

Let (ܺ, ݀) be a metric space (def. 1.1). Say that:

A neighbourhood of a point ݔ ∈ ܺ is a subset ܷ௫ ⊂ ܺ which contains some
open ball ௫ܤ

∘ (߳) ⊂ ܷ௫ around ݔ (def. 1.2).
1. 

An open subset of ܺ is a subset ܷ ⊂ ܺ such that for every ݔ ∈ ܷ it also
contains an open ball ௫ܤ

∘ (߳) around ݔ (def. 1.2).
2. 

An open neighbourhood of a point ݔ ∈ ܺ is a neighbourhood ܷ௫ of ݔ which is
also an open subset, hence equivalently this is any open subset of ܺ that
contains ݔ.

3. 

The following picture shows a point ݔ, some open balls  containing it, and two ofܤ
its neighbourhoods ܷ:

graphics grabbed from Munkres 75

Example 1.12. (the empty subset is open)

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

8 of 153 18.05.17, 10:08



Notice that for (ܺ, ݀) a metric space, then the empty subset ∅ ⊂ ܺ is always an
open subset of (ܺ, ݀) according to def. 1.11. This is because the clause for open
subsets ܷ ⊂ ܺ says that “for every point ݔ ∈ ܷ there exists…”, but since there is no
ܷ in ݔ = ∅, this clause is always satisfied in this case.

Conversely, the entire set ܺ is always an open subset of (ܺ, ݀).

Example 1.13. (open/closed intervals)

Regard the real numbers ℝ as the 1-dimensional Euclidean space (example 1.6).

For ܽ < ܾ ∈ ℝ consider the following subsets:

(ܽ, ܾ) ≔ ݔ} ∈ ℝ | ܽ < ݔ < ܾ}  (open interval)1. 

(ܽ, ܾ] ≔ ݔ} ∈ ℝ| ܽ < ݔ ≤ ܾ}  (half-open interval)2. 

[ܽ, ܾ) ≔ ݔ} ∈ ℝ| ܽ ≤ ݔ < ܾ}  (half-open interval)3. 

[ܽ, ܾ] ≔ ݔ} ∈ ℝ | ܽ ≤ ݔ ≤ ܾ}  (closed interval)4. 

The first of these is an open subset according to def. 1.11, the other three are
not. The first one is called an open interval, the last one a closed interval and the
middle two are called half-open intervals.

Similarly for ܽ, ܾ ∈ ℝ one considers

( −∞, ܾ) ≔ ݔ} ∈ ℝ| ݔ < ܾ}  (unbounded open interval)1. 

(ܽ, ∞) ≔ ݔ} ∈ ℝ| ܽ < {ݔ  (unbounded open interval)2. 

( −∞, ܾ] ≔ ݔ} ∈ ℝ | ݔ ≤ ܾ}  (unbounded half-open interval)3. 

[ܽ, ∞) ≔ ݔ} ∈ ℝ | ܽ ≤ {ݔ  (unbounded half-open interval)4. 

The first two of these are open subsets, the last two are not.

For completeness we may also consider

( −∞, ∞) = ℝ

(ܽ, ܽ) = ∅

which are both open, according to def. 2.3.

We may now rephrase the analytic definition of continuity entirely in terms of open
subsets (def. 1.11):

Proposition 1.14. (rephrasing continuity in terms of open sets)

Let (ܺ, ݀) and (ܻ, ݀) be two metric spaces (def. 1.1). Then a function ݂ : ܺ → ܻ is
continuous in the epsilontic sense of def. 1.8 precisely if it has the property that
its pre-images of open subsets of ܻ (in the sense of def. 1.11) are open subsets
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of ܺ:

(݂ continuous) ⇔ ൫(ܱ ⊂ ܻ open) ⇒ ൫݂ −ଵ(ܱ) ⊂ ܺ open൯൯ .

principle of continuity

Continuous pre-Images of open subsets are open.

Proof. Observe, by direct unwinding the definitions, that the epsilontic definition of
continuity (def. 1.8) says equivalently in terms of open balls (def. 1.2) that ݂ is
continous at ݔ precisely if for every open ball ܤ(௫)

∘ (߳) around an image point, there

exists an open ball ܤ௫
∘ around the corresponding pre-image point which maps (ߜ)

into it:

(݂ continuous at (ݔ ⇔ ∀
ఢ வ 

ቀ ∃
ఋ வ 

൫݂( ௫ܤ
∘ (ߜ) ) ⊂ (௫)ܤ

∘ (߳)൯ቁ

⇔ ∀
ఢ வ 

ቀ ∃
ఋ வ 

൫ܤ௫
∘ (ߜ) ⊂ ݂ −ଵ൫ܤ(௫)

∘ (߳)൯൯ቁ
.

With this observation the proof immediate. For the record, we spell it out:

First assume that ݂ is continuous in the epsilontic sense. Then for ܱ ⊂ ܻ any open
subset and ݔ ∈ ݂ −ଵ(ܱ) any point in the pre-image, we need to show that there
exists an open neighbourhood of ݔ in ݂ −ଵ(ܱ).

That ܱ is open in ܻ means by definition that there exists an open ball (௫)ܤ
∘ (߳) in ܱ

around ݂(ݔ) for some radius ߳. By the assumption that ݂ is continuous and using
the above observation, this implies that there exists an open ball ܤ௫

∘ in ܺ such (ߜ)
that ݂(ܤ௫

∘ ((ߜ) ⊂ (௫)ܤ
∘ (߳) ⊂ ܻ, hence such that ܤ௫

∘ (ߜ) ⊂ ݂ −ଵ൫ܤ(௫)
∘ (߳)൯ ⊂ ݂ −ଵ(ܱ). Hence

this is an open ball of the required kind.

Conversely, assume that the pre-image function ݂ −ଵ takes open subsets to open
subsets. Then for every ݔ ∈ ܺ and ܤ(௫)

∘ (߳) ⊂ ܻ an open ball around its image, we

need to produce an open ball ܤ௫
∘ (ߜ) ⊂ ܺ around ݔ such that ݂(ܤ௫

∘ ((ߜ) ⊂ (௫)ܤ
∘ (߳).

But by definition of open subsets, ܤ(௫)
∘ (߳) ⊂ ܻ is open, and therefore by assumption

on ݂ its pre-image ݂ −ଵ(ܤ(௫)
∘ (߳)) ⊂ ܺ is also an open subset of ܺ. Again by definition

of open subsets, this implies that it contains an open ball as required.  ▮

Example 1.15. (step function)

Consider ℝ as the 1-dimensional Euclidean space (example 1.6) and consider the
step function
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ℝ ⟶
ு

ℝ

ݔ ↦ ൝
0 | ݔ ≤ 0

1 | ݔ > 0

.

graphics grabbed from Vickers 89

Consider then for ܽ < ܾ ∈ ℝ the open
interval (ܽ, ܾ) ⊂ ℝ, an open subset
according to example 1.13. The preimage ܪ −ଵ(ܽ, ܾ) of this open subset is

ܪ −ଵ : (ܽ, ܾ) ↦

⎧

⎨

⎩

⎪
⎪

⎪
⎪

∅ | ܽ ≥ 1 or ܾ ≤ 0

ℝ | ܽ < 0 and ܾ > 1

∅ | ܽ ≥ 0 and ܾ ≤ 1

(0, ∞) | 0 ≤ ܽ < 1 and ܾ > 1

( −∞, 0] | ܽ < 0 and ܾ ≤ 1

.

By example 1.13, all except the last of these pre-images listed are open subsets.

The failure of the last of the pre-images to be open witnesses that the step
function is not continuous at ݔ = 0.

Compactness

A key application of metric spaces in analysis is that they allow a formalization of
what it means for an infinite sequence of elements in the metric space (def. 1.16
below) to converge to a limit of a sequence (def. 1.17 below). Of particular interest
are therefore those metric spaces for which each sequence has a converging
subsequence: the sequentially compact metric spaces (def. 1.20).

We now briefly recall these concepts from analysis. Then, in the above spirit, we
reformulate their epsilontic definition in terms of open subsets. This gives a useful
definition that generalizes to topological spaces, the compact topological spaces
discussed further below.

Definition 1.16. (sequence)

Given a set ܺ, then a sequence of elements in ܺ is a function

(−)ݔ : ℕ ⟶ ܺ

from the natural numbers to ܺ.

A sub-sequence of such a sequence is a sequence of the form

)ఐݔ −) : ℕ ↪
ఐ

ℕ →⎯⎯⎯
௫( −)

ܺ
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for some injection .ߡ

Definition 1.17. (convergence to limit of a sequence)

Let (ܺ, ݀) be a metric space (def. 1.1). Then a sequence

(−)ݔ : ℕ ⟶ ܺ

in the underlying set ܺ (def. 1.16) is said to converge to a point ݔஶ ∈ ܺ, denoted

ݔ →⎯⎯⎯
 → ஶ

ஶݔ

if for every positive real number ߳, there exists a natural number ݊, such that all
elements in the sequence after the ݊th one have distance less than ߳ from ݔஶ.

൬ݔ →⎯⎯⎯
 → ஶ

ஶ൰ݔ ⇔ ቌ ∀
ച ∈ ℝ

ച ಭ బ

ቌ ∃
 ∈ ℕ

ቌ ∀
 ∈ ℕ

 ಭ 

,ݔ)݀ (ஶݔ ≤ ߳ቍቍቍ .

Here the point ݔஶ is called the limit of the sequence. Often one writes lim
 → ஶ

 forݔ

this point.

Definition 1.18. (Cauchy sequence)

Given a metric space (ܺ, ݀) (def. 1.1), then a sequence of points in ܺ (def. 1.16)

(−)ݔ : ℕ ⟶ ܺ

is called a Cauchy sequence if for every positive real number ߳ there exists a
natural number ݊ ∈ ℕ such that the distance between any two elements of the
sequence beyond the ݊th one is less than ߳

൫ݔ( −) Cauchy൯ ⇔ ቌ ∀
ച ∈ ℝ

ച ಭ బ

ቌ ∃
ே ∈ ℕ

ቌ ∀
,ೕ ∈ ℕ

,ೕ ಭ ಿ

,ݔ)݀ (ݔ ≤ ߳ቍቍቍ .

Definition 1.19. (complete metric space)

A metric space (ܺ, ݀) (def. 1.1), for which every Cauchy sequence (def. 1.18)
converges (def. 1.17) is called a complete metric space.

A normed vector space, regarded as a metric space via prop. 1.5 that is complete
in this sense is called a Banach space.

Finally recall the concept of compactness of metric spaces via epsilontic analysis:

Definition 1.20. (sequentially compact metric space)

A metric space (ܺ, ݀) (def. 1.1) is called sequentially compact if every sequence in
ܺ has a subsequence (def. 1.16) which converges (def. 1.17).

The key fact to translate this epsilontic definition of compactness to a concept that
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makes sense for general topological spaces (below) is the following:

Proposition 1.21. (sequentially compact metric spaces are equivalently
compact metric spaces)

For a metric space (ܺ, ݀) (def. 1.1) the following are equivalent:

ܺ is sequentially compact;1. 

for every set {ܷ ⊂ ܺ} ∈ ூ of open subsets ܷ of ܺ (def. 1.11) which cover ܺ in

that ܺ = ∪
 ∈ ூ

ܷ, then there exists a finite subset ܬ ⊂ of these open subsets ܫ

which still covers ܺ in that also ܺ = ∪
 ∈  ⊂ ூ

ܷ.

2. 

The proof of prop. 1.21 is most conveniently formulated with some of the
terminology of topology in hand, which we introduce now. Therefore we postpone
the proof to below.

In summary prop. 1.14 and prop. 1.21 show that the purely combinatorial and in
particular non-epsilontic concept of open subsets captures a substantial part of the
nature of metric spaces in analysis. This motivates to reverse the logic and
consider more general “spaces” which are only characterized by what counts as
their open subsets. These are the topological spaces which we turn to now in def.
2.3 (or, more generally, these are the “locales”, which we briefly consider below in
remark 5.8).

2. Topological spaces

Due to prop. 1.14 we should pay attention to open subsets in metric spaces. It
turns out that the following closure property, which follow directly from the
definitions, is at the heart of the concept:

Proposition 2.1. (closure properties of open sets in a metric space)

The collection of open subsets of a metric space (ܺ, ݀) as in def. 1.11 has the
following properties:

The union of any set of open subsets is again an open subset.1. 

The intersection of any finite number of open subsets is again an open
subset.

2. 

Remark 2.2. (empty union and empty intersection)

Notice the degenerate case of unions ∪
 ∈ ூ

ܷ and intersections ∩
 ∈ ூ

ܷ of subsets

ܷ ⊂ ܺ for the case that they are indexed by the empty set ܫ = ∅:

the empty union is the empty set itself;1. 
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the empty intersection is all of ܺ.2. 

(The second of these may seem less obvious than the first. We discuss the
general logic behind these kinds of phenomena below.)

This way prop. 2.1 is indeed compatible with the degenerate cases of examples
of open subsets in example 1.12.

Proposition 2.1 motivates the following generalized definition, which abstracts away
from the concept of metric space just its system of open subsets:

Definition 2.3. (topological spaces)

Given a set ܺ, then a topology on ܺ is a collection ߬ of subsets of ܺ called the
open subsets, hence a subset of the power set ܲ(ܺ)

߬ ⊂ ܲ(ܺ)

such that this is closed under forming

finite intersections;1. 

arbitrary unions.2. 

In particular (by remark 2.2):

the empty set ∅ ⊂ ܺ is in ߬ (being the union of no subsets)

and

the whole set ܺ ⊂ ܺ itself is in ߬ (being the intersection of no subsets).

A set ܺ equipped with such a topology is called a topological space.

Remark 2.4. In the field of topology it is common to eventually simply say “space”
as shorthand for “topological space”. This is especially so as further qualifiers are
added, such as “Hausdorff space” (def. 4.4 below). But beware that there are
other kinds of spaces in mathematics.

Remark 2.5. The simple definition of open subsets in def. 2.3 and the simple
implementation of the principle of continuity below in def. 3.1 gives the field of
topology its fundamental and universal flavor. The combinatorial nature of these
definitions makes topology be closely related to formal logic. This becomes more
manifest still for the “sober topological space” discussed below. For more on this
perspective see the remark on locales below, remark 5.8. An introductory
textbook amplifying this perspective is (Vickers 89).

Before we look at first examples below, here is some common further
terminology regarding topological spaces:

There is an evident partial ordering on the set of topologies that a given set may
carry:
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Definition 2.6. (finer/coarser topologies)

Let ܺ be a set, and let ߬ଵ, ߬ଶ ∈ ܲ(ܺ) be two topologies on ܺ, hence two choices of
open subsets for ܺ, making it a topological space. If

߬ଵ ⊂ ߬ଶ

hence if every open subset of ܺ with respect to ߬ଵ is also regarded as open by ߬ଶ,
then one says that

the topology ߬ଶ is finer than the topology ߬ଶ

the topology ߬ଵ is coarser than the topology ߬ଵ.

With any kind of structure on sets, it is of interest how to “generate” such
structures from a small amount of data:

Definition 2.7. (basis for the topology)

Let (ܺ, ߬) be a topological space, def. 2.3, and let

ߚ ⊂ ߬

be a subset of its set of open subsets. We say that

is a basis for the topology ߚ ߬ if every open subset ܱ ∈ ߬ is a union of
elements of ߚ;

1. 

ܱ is a sub-basis for the topology if every open subset ߚ ∈ ߬ is a union of
finite intersections of elements of ߚ.

2. 

Often it is convenient to define topologies by defining some (sub-)basis as in def.
2.7. Examples are the the metric topology below, example 2.9, the binary product
topology in def. 2.18 below, and the compact-open topology on mapping spaces
below in def. 7.30. To make use of this, we need to recognize sets of open subsets
that serve as the basis for some topology:

Lemma 2.8. (recognition of topological bases)

Let ܺ be a set.

A collection ߚ ⊂ ܲ(ܺ) of subsets of ܺ is a basis for some topology ߬ ⊂ ܲ(ܺ)
(def. 2.7) precisely if

every point of ܺ is contained in at least one element of 1;ߚ. 

for every two subsets ܤଵ, ଶܤ ∈ ݔ and for every point ߚ ∈ ଵܤ ∩ ଶ in theirܤ
intersection, then there exists a ܤ ∈ and is contained ݔ that contains ߚ
in the intersection: ݔ ∈ ܤ ⊂ ଵܤ ∩ .ଶܤ

2. 

1. 

A subset ܤ ⊂ ߬ of open subsets is a sub-basis for a topology ߬ on ܺ precisely
if ߬ is the coarsest topology (def. 2.6) which contains ܤ.

2. 
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Examples

We discuss here some basic examples of topological spaces (def. 2.3), to get a
feeling for the scope of the concept. But topological spaces are ubiquituous in
mathematics, so that there are many more examples and many more classes of
examples than could be listed. As we further develop the theory below, we
encounter more examples, and more classes of examples. Below in Universal
constructions we discuss a very general construction principle of new topological
space from given ones.

First of all, our motivating example from above now reads as follows:

Example 2.9. (metric topology)

Let (ܺ, ݀) be a metric space (def. 1.1). Then the collection of its open subsets in
def. 1.11 constitutes a topology on the set ܺ, making it a topological space in the
sense of def. 2.3. This is called the metric topology.

The open balls in a metric space constitute a basis of a topology (def. 2.7) for the
metric topology.

While the example of metric space topologies (example 2.9) is the motivating
example for the concept of topological spaces, it is important to notice that the
concept of topological spaces is considerably more general, as some of the
following examples show.

The following simplistic example of a (metric) topological space is important for the
theory (for instance in prop. 2.38):

Example 2.10. (empty space and point space)

On the empty set there exists a unique topology ߬ making it a topological space
according to def. 2.3. We write also

∅ ≔ ൫∅, ߬∅ = {∅}൯

for the resulting topological space, which we call the empty topological space.

On a singleton set {1} there exists a unique topology ߬ making it a topological
space according to def. 2.3, namely

߬ ≔ {∅, {1}} .

We write

* ≔ ({1}, ߬ ≔ {∅, {1}})

for this topological space and call it the point topological space.

This is equivalently the metric topology (example 2.9) on ℝ, regarded as the
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0-dimensional Euclidean space (example 1.6).

Example 2.11. On the 2-element set {0, 1} there are (up to permutation of
elements) three distinct topologies:

the codiscrete topology (def. 2.13) ߬ = {∅, {0, 1}};1. 

the discrete topology (def. 2.13), ߬ = {∅, {0}, {1}, {0, 1}};2. 

the Sierpinski space topology ߬ = {∅, {1}, {0, 1}}.3. 

Example 2.12. The following shows all the topologies on the 3-element set (up to
permutation of elements)
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Example 2.13. (discrete and co-discrete topology)

Let ܵ be any set. Then there are always the following two extreme possibilities of
equipping ܺ with a topology ߬ ⊂ ܲ(ܺ) in the sense of def. 2.3, and hence making it
a topological space:

߬ ≔ ܲ(ܵ) the set of all open subsets;

this is called the discrete topology on ܵ, it is the finest topology (def. 2.6) on
ܺ,

we write Disc(ܵ) for the resulting topological space;

1. 

߬ ≔ {∅, ܵ} the set contaning only the empty subset of ܵ and all of ܵ itself;

this is called the codiscrete topology on ܵ, it is the coarsest topology (def.
2.6) on ܺ,

we write CoDisc(ܵ) for the resulting topological space.

2. 

The reason for this terminology is best seen when considering continuous
functions into or out of these (co-)discrete topological spaces, we come to this in
example 3.8 below.
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Example 2.14. (cofinite topology)

Given a set ܺ, then the cofinite topology or finite complement topology on ܺ is
the topology (def. 2.3) whose open subsets are precisely

all cofinite subsets ܵ ⊂ ܺ (i.e. those such that the complement ܺ\ܵ is a finite
set);

1. 

the empty set.2. 

If ܺ is itself a finite set (but not otherwise) then the cofinite topology on ܺ
coincides with the discrete topology on ܺ (example 2.13).

We now consider basic construction principles of new topological spaces from given
ones:

disjoint union spaces (example 2.15)1. 

subspaces (example 2.16),2. 

quotient spaces (example 2.17)3. 

product spaces (example 2.18).4. 

Below in Universal constructions we will recognize these as simple special cases of
a general construction principle.

Example 2.15. (disjoint union space)

For {(ܺ, ߬)} ∈ ூ a set of topological spaces, then their disjoint union

⊔
 ∈ ூ

(ܺ, ߬)

is the topological space whose underlying set is the disjoint union of the
underlying sets of the summand spaces, and whose open subsets are precisely
the disjoint unions of the open subsets of the summand spaces.

In particular, for ܫ any index set, then the disjoint union of ܫ copies of the point
space (example 2.10) is equivalently the discrete topological space (example
2.13) on that index set:

⊔
 ∈ ூ * = Disc(ܫ) .

Example 2.16. (subspace topology)

Let (ܺ, ߬) be a topological space, and let ܵ ⊂ ܺ be a subset of the underlying set.
Then the corresponding topological subspace has ܵ as its underlying set, and its
open subsets are those subsets of ܵ which arise as restrictions of open subsets of
ܺ.
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(ܷௌ ⊂ ܵ open) ⇔ ൬ ∃
 ∈ ఛ

(ܷௌ = ܷ ∩ ܵ)൰ .

(This is also called the initial topology of the inclusion
map. We come back to this below in def. 6.17.)

The picture on the right shows two open subsets inside
the square, regarded as a topological subspace of the
plane ℝଶ:
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Example 2.17. (quotient topological space)

Let (ܺ, ߬) be a topological space (def. 2.3) and let

ܴ∼ ⊂ ܺ × ܺ

be an equivalence relation on its underlying set. Then the quotient topological
space has

as underlying set the quotient set ܺ/ ∼ , hence the set of equivalence
classes,

and

a subset ܱ ⊂ ܺ/ ∼  is declared to be an open subset precisely if its preimage
ߨ −ଵ(ܱ) under the canonical projection map

ߨ : ܺ → ܺ/ ∼

is open in ܺ.

(This is also called the final topology of the projection ߨ. We come back to this
below in def. 6.17. )

Often one considers this with input datum not the equivalence relation, but any
surjection

ߨ : ܺ ⟶ ܻ

of sets. Of course this identifies ܻ = ܺ/ ∼  with (ݔଵ ∼ (ଶݔ ⇔ (ଵݔ)ߨ) = Hence .((ଶݔ)ߨ
the quotient topology on the codomain set of a function out of any topological
space has as open subsets those whose pre-images are open.

To see that this indeed does define a topology on ܺ/ ∼  it is sufficient to observe
that taking pre-images commutes with taking unions and with taking
intersections.

Example 2.18. (binary product topological space)

For (ܺଵ, ߬భ ) and (ܺଶ, ߬మ ) two topological spaces, then their binary product

topological space has as underlying set the Cartesian product ܺଵ × ܺଶ of the
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corresponding two underlying sets, and its
topology is generated from the basis (def.
2.7) given by the Cartesian products
ܷଵ × ܷଶ of the opens ܷ ∈ ߬.
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Beware for non-finite products, the
descriptions of the product topology is not
as simple. This we turn to below in example 6.25, after introducing the general
concept of limits in the category of topological spaces.

The following examples illustrate how all these ingredients and construction
principles may be combined.

The following example we will examine in more detail below in example 3.30, after
we have introduced the concept of homeomorphisms below.

Example 2.19. Consider the real numbers ℝ as the 1-dimensional Euclidean space
(example 1.6) and hence as a topological space via the corresponding metric
topology (example 2.9). Moreover, consider the closed interval [0, 1] ⊂ ℝ from
example 1.13, regarded as a subspace (def. 2.16) of ℝ.

The product space (example 2.18) of this interval with itself

[0, 1] × [0, 1]

is a topological space modelling the closed square. The quotient space (example
2.17) of that by the relation which identifies a pair of opposite sides is a model
for the cylinder. The further quotient by the relation that identifies the remaining
pair of sides yields a model for the torus.

graphics grabbed from Munkres 75

Example 2.20. (spheres and disks)

For ݊ ∈ ℕ write

 for the n-disk, the closed unit ball (def. 1.2) in the ݊-dimensionalܦ
Euclidean space ℝ (example 1.6) and equipped with the induced subspace
topology (example 2.16) of the corresponding metric topology (example
2.9);

ܵ − ଵ for the (n-1)-sphere (def. 1.2) also equipped with the corresponding
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subspace topology;

݅ : ܵ − ଵ ↪  for the continuous function that exhibits this boundaryܦ
inclusion.

Notice that

ܵ −ଵ = ∅ is the empty topological space (example 2.10);

ܵ = * ⊔ *  is the disjoint union space (example 2.15) of the point topological
space (example 2.10) with itself, equivalently the discrete topological space
on two elements (example 2.11).

The following important class of topological spaces form the foundation of algebraic
geometry:

Example 2.21. (Zariski topology on affine space)

Let ݇ be a field, let ݊ ∈ ℕ, and write ݇[ܺଵ, ⋯, ܺ] for the set of polynomials in ݊
variables over ݇.

For ℱ ⊂ ݇[ܺଵ, ⋯, ܺ] a subset of polynomials, let the subset ܸ(ℱ) ⊂ ݇ of the ݊-fold
Cartesian product of the underlying set of ݇ (the vanishing set of ℱ) be the
subset of points on which all these polynomials jointly vanish:

ܸ(ℱ) ≔ ൜(ܽଵ, ⋯, ܽ) ∈ ݇ | ∀
 ∈ ℱ

݂(ܽଵ, ⋯, ܽ) = 0ൠ .

These subsets are called the Zariski closed subsets.

Write

߬८ೖ
 ≔ ൛݇\ܸ(ℱ) ⊂ ݇ | ℱ ⊂ ݇[ܺଵ, ⋯, ܺ]ൟ

for the set of complements of the Zariski closed subsets. These are called the
Zariski open subsets of ݇.

The Zariski open subsets of ݇ form a topology (def. 2.3), called the Zariski
topology. The resulting topological space

८
 ≔ ቀ݇, ߬८ೖ

ቁ

is also called the ݊-dimensional affine space over ݇.

More generally

Example 2.22. (Zariski topology on the prime spectrum of a commutative
ring)

Let ܴ be a commutative ring. Write PrimeIdl(ܴ) for its set of prime ideals. For
ℱ ⊂ ܴ any subset of elements of the ring, consider the subsets of those prime
ideals that contain ℱ:
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ܸ(ℱ) ≔ } ∈ PrimeIdl(ܴ) | ℱ ⊂ { .

These are called the Zariski closed subsets of PrimeIdl(ܴ). Their complements are
called the Zariski open subsets.

Then the collection of Zariski open subsets in its set of prime ideals

߬ୗ୮ୣୡ(ோ) ⊂ ܲ(PrimeIdl(ܴ))

satisfies the axioms of a topology (def. 2.3), the Zariski topology.

This topological space

Spec(ܴ) ≔ (PrimeIdl(ܴ), ߬ୗ୮ୣୡ(ோ))

is called (the space underlying) the prime spectrum of the commutative ring.

Closed subsets

The complements of open subsets in a topological space are called closed subsets
(def. 2.23 below). This simple definition indeed captures the concept of closure in
the analytic sense of convergence of sequences (prop. 2.29 below). Of particular
interest for the theory of topological spaces in the discussion of separation axioms
below are those closed subsets which are “irreducible” (def. 2.31 below). These
happen to be equivalently the “frame homomorphisms” (def. 2.35) to the frame of
opens of the point (prop. 2.38 below).

Definition 2.23. (closed subsets)

Let (ܺ, ߬) be a topological space (def. 2.3).

A subset ܵ ⊂ ܺ is called a closed
subset if its complement ܺ\ܵ is an
open subset:

(ܵ ⊂ ܺ is closed) ⇔ (ܺ\ܵ ⊂ ܺ is open) .

graphics grabbed from Vickers 89

1. 

If a singleton subset {ݔ} ⊂ ܺ is closed, one says that ݔ is a closed point of ܺ.2. 

Given any subset ܵ ⊂ ܺ, then its topological closure Cl(ܵ) is the smallest
closed subset containing ܵ:

Cl(ܵ) ≔ ∩
 ⊂  closed

ೄ ⊂ 

(ܥ) .

3. 

A subset ܵ ⊂ ܺ such that Cl(ܵ) = ܺ is called a dense subset of (ܺ, ߬).4. 

Remark 2.24. (de Morgan's law)
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In reasoning about closed subsets in topology (def. 2.23) we are concerned with
complements of unions and intersections as well as with unions/intersections of
complements. Recall therefore that taking complements of subsets exchanges
unions with intersections (de Morgan's law):

Given a set ܺ and a set of subsets

{ܵ ⊂ ܺ} ∈ ூ

then

ܺ\ቀ ∪
 ∈ ூ

ܵቁ = ∩
 ∈ ூ

(ܺ\ܵ)

and

ܺ\ቀ ∩
 ∈ ூ

ܵቁ = ∪
 ∈ ூ

(ܺ\ܵ) .

Also notice that taking complements reverses inclusion relations:

(ܵଵ ⊂ ܵଶ) ⇔ (ܺ\ܵଶ ⊂ ܺ\ܵଵ) .

Often it is useful to reformulate def. 2.23 of closed subsets as follows:

Lemma 2.25. (alternative characterization of closed subsets)

Let (ܺ, ߬) be a topological space and let ܵ ⊂ ܺ be a subset of its underlying set.
Then a point ݔ ∈ ܺ is contained in the topological closure Cl(ܵ) (def. 2.23)
precisely if every open neighbourhood ܷ௫ ⊂ ܺ of ݔ intersects ܵ:

ݔ) ∈ Cl(ܵ)) ⇔ ¬ቌ ∃
ೆ ⊂ \ೄ

ೆ ⊂  open

ݔ) ∈ ܷ)ቍ .

Proof. In view of remark 2.24 we may rephrase the definition of the topological
closure as follows:

Cl(ܵ) ≔ ∩
ೄ ⊂ 

 ⊂  closed

(ܥ)

= ∩
ೆ ⊂ \ೄ

ೆ ⊂  open

(ܺ\ܷ)

= ܺ\ቌ ∪
ೆ ⊂ \ೄ

ೆ ⊂  open

ܷቍ

.

  ▮

Definition 2.26. (topological interior and boundary)

Let (ܺ, ߬) be a topological space (def. 2.3) and let ܵ ⊂ ܺ be a subset. Then the
topological interior of ܵ is the largest open subset Int(ܵ) ∈ ߬ still contained in ܵ,
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Int(ܵ) ⊂ ܵ ⊂ ܺ:

Int(ܵ) ≔ ∪
ೀ ⊂ ೄ

ೀ ⊂  open

(ܷ) .

The boundary ∂ܵ of ܵ is the complement of its interior inside its topological
closure (def. 2.23):

∂ܵ ≔ Cl(ܵ)\Int(ܵ) .

Lemma 2.27. (duality between closure and interior)

Let (ܺ, ߬) be a topological space and let ܵ ⊂ ܺ be a subset. Then the topological
interior of ܵ (def. 2.26) is the same as the complement of the topological closure
Cl(ܺ\ܵ) of the complement of ܵ:

ܺ\Int(ܵ) = Cl( ܺ\ܵ )

and conversely

ܺ\Cl(ܵ) = Int( ܺ\ܵ ) .

Proof. Using remark 2.24, we compute as follows:

ܺ\Int(ܵ) = ܺ\ቌ ∪
ೆ ⊂ ೄ

ೆ ⊂  ౦

ܷቍ

= ∩
ೆ ⊂ ೄ

ೆ ⊂  open

(ܺ\ܷ)

= ∩
 ⊃ \ೄ

 ౙౢ౩ౚ

(ܥ)

= Cl(ܺ\ܵ)

Similarly for the other case.  ▮

Example 2.28. (topological closure and interior of closed and open
intervals)

Regard the real numbers as the 1-dimensional Euclidean space (example 1.6)
and equipped with the corresponding metric topology (example 2.9) . Let
ܽ < ܾ ∈ ℝ. Then the topological interior (def. 2.26) of the closed interval [ܽ, ܾ] ⊂ ℝ
(example 1.13) is the open interval (ܽ, ܾ) ⊂ ℝ, moreover the closed interval is its
own topological closure (def. 2.23) and the converse holds (by lemma 2.27):

Cl( (ܽ, ܾ) ) = [ܽ, ܾ] Int( (ܽ, ܾ) ) = (ܽ, ܾ)

Cl( [ܽ, ܾ] ) = [ܽ, ܾ] Int( [ܽ, ܾ] ) = (ܽ, ܾ)
.

Hence the boundary of the closed interval is its endpoints, while the boundary of
the open interval is empty
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∂[ܽ, ܾ] = {ܽ} ∪ {ܾ} ∂(ܽ, ܾ) = ∅ .

The terminology “closed” subspace for complements of opens is justified by the
following statement, which is a further example of how the combinatorial concept
of open subsets captures key phenomena in analysis:

Proposition 2.29. (convergence in closed subspaces)

Let (ܺ, ݀) be a metric space (def. 1.1), regarded as a topological space via
example 2.9, and let ܸ ⊂ ܺ be a subset. Then the following are equivalent:

ܸ ⊂ ܺ is a closed subspace according to def. 2.23.1. 

For every sequence ݔ ∈ ܸ ⊂ ܺ (def. 1.16) with elements in ܸ, which
converges as a sequence in ܺ (def. 1.17) to some ݔஶ ∈ ܺ, we have
ஶݔ ∈ ܸ ⊂ ܺ.

2. 

Proof. First assume that ܸ ⊂ ܺ is closed and that ݔ →⎯⎯⎯
 → ஶ

ஶݔ ஶ for someݔ ∈ ܺ. We
need to show that then ݔஶ ∈ ܸ. Suppose it were not, hence that ݔஶ ∈ ܺ\ܸ. Since, by
assumption on ܸ, this complement ܺ\ܸ ⊂ ܺ is an open subset, it would follow that
there exists a real number ߳ > 0 such that the open ball around ݔ of radius ߳ were
still contained in the complement: ܤ௫

∘ (߳) ⊂ ܺ\ܸ. But since the sequence is assumed
to converge in ܺ, this would mean that there exists ܰఢ such that all ݔ வ ேച  are in

௫ܤ
∘ (߳), hence in ܺ\ܸ. This contradicts the assumption that all ݔ are in ܸ, and hence

we have proved by contradiction that ݔஶ ∈ ܸ.

Conversely, assume that for all sequences in ܸ that converge to some ݔஶ ∈ ܺ then
ஶݔ ∈ ܸ ⊂ ܺ. We need to show that then ܸ is closed, hence that ܺ\ܸ ⊂ ܺ is an open
subset, hence that for every ݔ ∈ ܺ\ܸ we may find a real number ߳ > 0 such that the
open ball ௫ܤ

∘ (߳) around ݔ of radius ߳ is still contained in ܺ\ܸ. Suppose on the
contrary that such ߳ did not exist. This would mean that for each ݇ ∈ ℕ with ݇ ≥ 1
then the intersection ௫ܤ

∘ (1/݇) ∩ ܸ were non-empty. Hence then we could choose
points ݔ ∈ ௫ܤ

∘ (1/݇) ∩ ܸ in these intersections. These would form a sequence which
clearly converges to the original ݔ, and so by assumption we would conclude that
ݔ ∈ ܸ, which violates the assumption that ݔ ∈ ܺ\ܸ. Hence we proved by contradiction
ܺ\ܸ is in fact open.  ▮

Often one considers closed subsets inside a closed subspace. The following is
immediate, but useful.

Lemma 2.30. (subsets are closed in a closed subspace precisely if they are
closed in the ambient space)

Let (ܺ, ߬) be a topological space (def. 2.3), and let ܥ ⊂ ܺ be a closed subset (def.
2.23), regarded as a topological subspace ,ܥ) ߬ୱ୳ୠ) (example 2.16). Then a subset
ܵ ⊂ ,ܥ) is a closed subset of ܥ ߬ୱ୳ୠ) precisely if it is closed as a subset of (ܺ, ߬).

Proof. If ܵ ⊂ ,ܥ) is closed in ܥ ߬ୱ୳ୠ) this means equivalently that there is an open
open subset ܸ ⊂ ,ܥ) in ܥ ߬ୱ୳ୠ) such that
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ܵ = ܸ\ܥ .

But by the definition of the subspace topology, this means equivalently that there is
a subset ܷ ⊂ ܺ which is open in (ܺ, ߬) such that ܸ = ܷ ∩ Hence the above is .ܥ
equivalent to the existence of an open subset ܷ ⊂ ܺ such that

ܵ = ܸ\ܥ

= ܷ)\ܥ ∩ (ܥ

= ܷ\ܥ

.

But now the condition that ܥ itself is a closed subset of (ܺ, ߬) means equivalently
that there is an open subset ܹ ⊂ ܺ with ܥ = ܺ\ܹ. Hence the above is equivalent to
the existence of two open subsets ܹ, ܷ ⊂ ܺ such that

ܵ = (ܺ\ܹ)\ܷ = ܺ\(ܹ ∪ ܷ) .

Since the union ܹ ∪ ܷ is again open, this implies that ܵ is closed in (ܺ, ߬).

Conversely, that ܵ ⊂ ܺ is closed in (ܺ, ߬) means that there exists an open ܶ ⊂ ܺ with
ܵ = ܺ\ܶ ⊂ ܺ. This means that ܵ = ܵ ∩ ܥ = (ܺ\ܶ) ∩ ܥ = ܶ\ܥ = ܶ)\ܥ ∩ ܶ and since ,(ܥ ∩ is ܥ
open in (ܥ, ߬ୱ୳ୠ) by definition of the subspace topology, this means that ܵ ⊂ is ܥ
closed in (ܥ, ߬ୱ୳ୠ).  ▮

A special role in the theory is played by the “irreducible” closed subspaces:

Definition 2.31. (irreducible closed subspace)

A closed subset ܵ ⊂ ܺ (def. 2.23) of a topological space ܺ is called irreducible if it
is non-empty and not the union of two closed proper (i.e. smaller) subsets. In
other words, a non-empty closed subset ܵ ⊂ ܺ is irreducible if whenever ܵଵ, ܵଶ ⊂ ܺ
are two closed subspace such that

ܵ = ܵଵ ∪ ܵଶ

then ܵଵ = ܵ or ܵଶ = ܵ.

Example 2.32. (closures of points are irreducible)

For ݔ ∈ ܺ a point inside a topological space, then the closure Cl({ݔ}) of the
singleton subset {ݔ} ⊂ ܺ is irreducible (def. 2.31).

Example 2.33. (no nontrivial closed irreducibles in metric spaces)

Let (ܺ, ݀) be a metric space, regarded as a topological space via its metric
topology (example 2.9). Then every point ݔ ∈ ܺ is closed (def 2.23), hence every
singleton subset {ݔ} ⊂ ܺ is irreducible according to def. 2.32.

Let ℝ be the 1-dimensional Euclidean space (example 1.6) with its metric
topology (example 2.9). Then for ܽ < ܿ ⊂ ℝ the closed interval [ܽ, ܿ] ⊂ ℝ (example
1.13 ) is not irreducible, since for any ܾ ∈ ℝ with ܽ < ܾ < ܿ it is the union of two
smaller closed subintervals:
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[ܽ, ܿ] = [ܽ, ܾ] ∪ [ܾ, ܿ] .

In fact we will see below (prop. 5.3) that in a metric space the singleton subsets
are precisely the only irreducible closed subsets.

Often it is useful to re-express the condition of irreducibility of closed subspaces in
terms of complementary open subsets:

Proposition 2.34. (irreducible closed subsets in terms of prime open
subsets)

Let (ܺ, ߬) be a topological space, and let ܲ ∈ ߬ be a proper open subset of ܺ, hence
so that the complement ܨ ≔ ܺ\ܲ is a non-empty closed subspace. Then ܨ is
irreducible in the sense of def. 2.31 precisely if whenever ܷଵ, ܷଶ ∈ ߬ are open
subsets with ܷଵ ∩ ܷଶ ⊂ ܲ then ܷଵ ⊂ ܲ or ܷଶ ⊂ ܲ:

(ܺ\ܲ irreducible) ⇔ ൬ ∀
భ,మ ∈ ఛ

((ܷଵ ∩ ܷଶ ⊂ ܲ) ⇒ (ܷଵ ⊂ ܲ or ܷଶ ⊂ ܲ))൰ .

The open subsets ܲ ⊂ ܺ with this property are also called the prime open subsets
in ߬.

Proof. Observe that every closed subset ܨ ⊂ may be exhibited as the ܨ
complement

ܨ = ܷ\ܨ

of some open subset ܷ ∈ ߬ with respect to ܨ. Observe that under this identification
the condition that ܷଵ ∩ ܷଶ ⊂ ܲ is equivalent to the condition that ܨଵ ∪ ଶܨ = because ,ܨ
it is equivalent to the equation labeled ( ⋆ ) in the following sequence of equations:

ଵܨ ∪ ଶܨ = (ଵܷ\ܨ) ∪ (ଶܷ\ܨ)

= (ܺ\(ܲ ∪ ܷଵ)) ∪ (ܺ\ܲ ∪ ܷଶ)

= ܺ\((ܲ ∪ ܷଵ) ∩ (ܲ ∪ ܷଶ))

= ܺ\(ܲ ∪ (ܷଵ ∩ ܷଶ))

=
( ⋆ )

ܺ\ܲ

= ܨ .

.

Similarly, the condition that ܷ ⊂ ܲ is equivalent to the condition that ܨ = ,ܨ
because it is equivalent to the equality ( ⋆ ) in the following sequence of equalities:

ܨ = ܷ\ܨ

= ܺ\(ܲ ∪ ܷ)

=
(⋆ )

ܺ\ܲ

= ܨ

.

Under these identifications, the two conditions are manifestly the same.  ▮

We consider yet another equivalent characterization of irreducible closed subsets,
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prop. 2.38 below, which will be needed in the discussion of the separation axioms
further below. Stating this requires the following concept of “frame”
homomorphism, the natural kind of homomorphisms between topological spaces if
we were to forget the underlying set of points of a topological space, and only
remember the set ߬ with its operations induced by taking finite intersections and
arbitrary unions:

Definition 2.35. (frame homomorphisms)

Let (ܺ, ߬) and (ܻ, ߬) be topological spaces (def. 2.3). Then a function

߬ ⟵ ߬ : ߶

between their sets of open subsets is called a frame homomorphism if it
preserves

arbitrary unions;1. 

finite intersections.2. 

In other words, ߶ is a frame homomorphism precisely if

for every set indexed set {ܷ-ܫ and every ܫ ∈ ߬} ∈ ூ of elements of ߬, then

߶ቀ ∪
 ∈ ூ

ܷቁ = ∪
 ∈ ூ

߶(ܷ) ∈ ߬ ,

1. 

for every finite set indexed set {ܷ-ܬ and every ܬ ∈ ߬} ∈  of elements in ߬,

then

߶൬ ∩
 ∈ 

ܷ൰ = ∩
 ∈ 

߶(ܷ) ∈ ߬ .

2. 

Remark 2.36. (frame homomorphisms preserve inclusions)

A frame homomorphism ߶ as in def. 2.35 necessarily also preserves inclusions in
that

for every inclusion ܷଵ ⊂ ܷଶ with ܷଵ, ܷଶ ∈ ߬ ⊂ ܲ(ܻ) then

߶(ܷଵ) ⊂ ߶(ܷଶ) ∈ ߬ .

This is because inclusions are witnessed by unions

(ܷଵ ⊂ ܷଶ) ⇔ (ܷଵ ∪ ܷଶ = ܷଶ)

or alternatively because inclusions are witnessed by finite intersections:

(ܷଵ ⊂ ܷଶ) ⇔ (ܷଵ ∩ ܷଶ = ܷଵ) .

Example 2.37. (pre-images of continuous functions are frame
homomorphisms)

Let (ܺ, ߬) and (ܻ, ߬) be two topological spaces. One way to obtain a function

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

28 of 153 18.05.17, 10:08



between their sets of open subsets

߬ ⟵ ߬ : ߶

is to specifiy a function

݂: ܺ ⟶ ܻ

of their underlying sets, and take ߶ ≔ ݂ −ଵ to be the pre-image operation. A priori
this is a function of the form

ܲ(ܻ) ⟵ ܲ(ܺ) : ݂ −ଵ

and hence in order for this to co-restrict to ߬ ⊂ ܲ(ܺ) when restricted to ߬ ⊂ ܲ(ܻ)
we need to demand that, under ݂, pre-images of open subsets of ܻ are open
subsets of ܼ. Below in def. 3.1 we highlight these as the continuous functions
between toopological spaces.

݂ : (ܺ, ߬) ⟶ (ܻ, ߬)

In this case then

߬ ⟵ ߬ : ݂ −ଵ

is a frame homomorphism in the sense of def. 2.35.

For the following recall from example 2.10 the point topological space

* = ({1}, ߬* = {∅, {1}}).

Proposition 2.38. (irreducible closed subsets are equivalently frame
homomorphisms to opens of the point)

For (ܺ, ߬) a topological space, then there is a natural bijection between the
irreducible closed subspaces of (ܺ, ߬) (def. 2.31) and the frame homomorphisms
from ߬ to ߬*, and this bijection is given by

FrameHom(߬, ߬*) ⟶≃ IrrClSub(ܺ)

߶ ↦ ܺ\൫ܷ∅(߶)൯

where ܷ∅(߶) is the union of all elements ܷ ∈ ߬௫ such that ߶(ܷ) = ∅:

ܷ∅(߶) ≔ ∪
ೆ ∈ ഓ

ഝ(ೆ) = ∅

(ܷ) .

See also (Johnstone 82, II 1.3).

Proof. First we need to show that the function is well defined in that given a frame
homomorphism ߶ : ߬ → ߬* then ܺ\ܷ∅(߶) is indeed an irreducible closed subspace.

To that end observe that:

( * ) If there are two elements ܷଵ, ܷଶ ∈ ߬ with ܷଵ ∩ ܷଶ ⊂ ܷ∅(߶) then ܷଵ ⊂ ܷ∅(߶) or
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ܷଶ ⊂ ܷ∅(߶).

This is because

߶(ܷଵ) ∩ ߶(ܷଶ) = ߶(ܷଵ ∩ ܷଶ)

⊂ ߶(ܷ∅(߶))

= ∅

,

where the first equality holds because ߶ preserves finite intersections by def. 2.35,
the inclusion holds because ߶ respects inclusions by remark 2.36, and the second
equality holds because ߶ preserves arbitrary unions by def. 2.35. But in ߬* = {∅, {1}}
the intersection of two open subsets is empty precisely if at least one of them is
empty, hence ߶(ܷଵ) = ∅ or ߶(ܷଶ) = ∅. But this means that ܷଵ ⊂ ܷ∅(߶) or ܷଶ ⊂ ܷ∅(߶),
as claimed.

Now according to prop. 2.34 the condition ( * ) identifies the complement ܺ\ܷ∅(߶) as
an irreducible closed subspace of (ܺ, ߬).

Conversely, given an irreducible closed subset ܺ\ܷ, define ߶ by

߶ : ܷ ↦ ൝
∅ | if ܷ ⊂ ܷ

{1} | otherwise
.

This does preserve

arbitrary unions

because ߶( ∪


ܷ) = {∅} precisely if ∪


ܷ ⊂ ܷ which is the case precisely if all

ܷ ⊂ ܷ, which means that all ߶(ܷ) = ∅ and because ∪


∅ = ∅;

while ߶( ∪


ܷଵ) = {1} as soon as one of the ܷ is not contained in ܷ, which

means that one of the ߶(ܷ) = {1} which means that ∪


߶(ܷ) = {1};

1. 

finite intersections

because if ܷଵ ∩ ܷଶ ⊂ ܷ, then by ( * ) ܷଵ ∈ ܷ or ܷଶ ∈ ܷ, whence ߶(ܷଵ) = ∅ or
߶(ܷଶ) = ∅, whence with ߶(ܷଵ ∩ ܷଶ) = ∅ also ߶(ܷଵ) ∩ ߶(ܷଶ) = ∅;

while if ܷଵ ∩ ܷଶ is not contained in ܷ then neither ܷଵ nor ܷଶ is contained in ܷ

and hence with ߶(ܷଵ ∩ ܷଶ) = {1} also ߶(ܷଵ) ∩ ߶(ܷଶ) = {1} ∩ {1} = {1}.

2. 

Hence this is indeed a frame homomorphism ߬ → ߬*.

Finally, it is clear that these two operations are inverse to each other.  ▮

3. Continuous functions
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With the concept of topological spaces in hand (def. 2.3) it is now immediate to
formally implement in abstract generality the statement of prop. 1.14:

principle of continuity

Continuous pre-Images of open subsets are open.

Definition 3.1. (continuous function)

A continuous function between topological spaces (def. 2.3)

݂: (ܺ, ߬) → (ܻ, ߬)

is a function between the underlying sets,

݂: ܺ ⟶ ܻ

such that pre-images under ݂ of open subsets of ܻ are open subsets of ܺ.

We may equivalently state this in terms of closed subsets:

Proposition 3.2. Let (ܺଵ, ߬) and (ܻ, ߬) be two topological spaces (def. 2.3). Then
a function

݂ : ܺ ⟶ ܻ

between the underlying sets is continuous in the sense of def. 3.1 precisely if
pre-images under ݂ of closed subsets of ܻ (def. 2.23) are closed subsets of ܺ.

Proof. This follows since taking pre-images commutes with taking
complements.  ▮

Before looking at first examples of continuous functions below we consider now an
informal remark on the resulting global structure, the “category of topological
spaces”, remark 3.3 below. This is a language that serves to make transparent key
phenomena in topology which we encounter further below, such as the
Tn-reflection (remark 4.24 below), and the universal constructions.

Remark 3.3. (concrete category of topological spaces)

For ܺଵ, ܺଶ, ܺଷ three topological spaces and for

ܺଵ ⟶


ܺଶ and ܺଶ ⟶


ܺଷ

two continuous functions (def. 3.1) then their composition

݂ଶ ∘ ݂ଵ : ܺଵ ⟶


ܺଶ ⟶
మ ܺଷ

is clearly itself again a continuous function from ܺଵ to ܺଷ. Moreover, this
composition operation is clearly associative, in that for
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ܺଵ ⟶


ܺଶ and ܺଶ ⟶


ܺଷ and ܺଷ ⟶


ܺସ

three continuous functions, then

݂ଷ ∘ (݂ଶ ∘ ݂ଵ) = (݂ଷ ∘ ݂ଶ) ∘ ݂ଵ : ܺଵ ⟶ ܺଷ .

Finally, the composition operation is also clearly unital, in that for each
topological space ܺ there exists the identity function id : ܺ → ܺ and for ݂ : ܺଵ → ܺଶ

any continuous function then

idమ ∘ ݂ = ݂ = ݂ ∘ idభ .

One summarizes this situation by saying that:

topological spaces constitute the objects,1. 

continuous functions constitute the morphisms (homomorphisms)2. 

of a category, called the
category of topological spaces
(“Top” for short).

It is useful to depict collections
of objects with morphisms
between them by diagrams,
like this one:

graphics grabbed from Lawvere-Schanuel 09.

There are other categories. For instance there is the category of sets (“Set” for
short) whose

objects are sets,1. 

morphisms are plain functions between these.2. 

The two categories Top and Set are different, but related. After all,

an object of Top (hence a topological space) is an object of Set (hence a set)
equipped with extra structure (namely with a topology);

1. 

a morphism in Top (hence a continuous function) is a morphism in Set
(hence a plain function) with the extra property that it preserves this extra
structure.

2. 

Hence we have the underlying set assigning function
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Top ⟶


Set

(ܺ, ߬) ሌ ሮ⎯⎯ ܺ

from the class of topological spaces to the class of sets. But more is true: every
continuous function between topological spaces is, by definition, in particular a
function on underlying sets:

Top ⟶


Set

(ܺ, ߬) ሌ ሮ⎯⎯⎯ ܺ

 ↓ ↦ ↓

(ܻ, ߬) ሌ ሮ⎯⎯⎯ ܻ

and this assignment (trivially) respects the composition of morphisms and the
identity morphisms.

Such a function between classes of objects of categories, which is extended to a
function on the sets of homomorphisms between these objects in a way that
respects composition and identity morphisms is called a functor. If we write an
arrow between categories

ܷ : Top ⟶ Set

then it is understood that we mean not just a function between their classes of
objects, but a functor.

The functor ܷ at hand has the special property that it does not do much except
forgetting extra structure, namely the extra structure on a set ܺ given by a
choice of topology ߬. One also speaks of a forgetful functor.

This is intuitively clear, and we may easily formalize it: The functor ܷ has the
special property that as a function between sets of homomorphisms (“hom sets”,
for short) it is injective. More in detail, given topological spaces (ܺ, ߬) and (ܻ, ߬)
then the component function of ܷ from the set of continuous function between
these spaces to the set of plain functions between their underlying sets

൜(ܺ, ߬) →⎯⎯⎯⎯⎯⎯⎯
function

continuous
(ܻ, ߬)ൠ ሌ ሮ⎯⎯⎯⎯⎯


ቄܺ →⎯⎯⎯⎯⎯

function
ܻቅ

is an injective function, including the continuous functions among all functions of
underlying sets.

A functor with this property, that its component functions between all hom-sets
are injective, is called a faithful functor.

A category equipped with a faithful functor to Set is called a concrete category.

Hence Top is canonically a concrete category.

Example 3.4. (product topological space construction is functorial)
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For ࣝ and ࣞ two categories as in remark 3.3 (for instance Top or Set) then we
obtain a new category denoted ࣝ × ࣞ and called their product category whose

objects are pairs (ܿ, ݀) with ܿ an object of ࣝ and ݀ an object of ࣞ;1. 

morphisms are pairs (݂, ݃): (ܿ, ݀) → (ܿ′ , ݀′) with ݂ :ܿ → ݀ a morphism of ࣝ and
݃ : ݀ → ݀′  a morphisms of ࣞ,

composition of morphisms is defined pairwise (݂′ , ݃′) ∘ (݂, ݃) ≔ (݂′ ∘ ݂, ݃′ ∘ ݃).

This concept secretly underlies the construction of product topological spaces:

Let (ܺଵ, ߬భ ), (ܺଶ, ߬మ ), (ܻଵ, ߬భ ) and (ܻଶ, ߬మ ) be topological spaces. Then for all pairs

of continuous functions

݂ଵ : (ܺଵ, ߬భ ) ⟶ (ܻଵ, ߬భ )

and

݂ଶ : (ܺଶ, ߬మ
) ⟶ (ܻଶ, ߬మ

)

the canonically induced function on Cartesian products of sets

ܺଵ × ܺଶ →⎯⎯⎯⎯⎯
భ × మ ܻଵ × ܻଶ

,ଵݔ) (ଶݔ ↦ (݂ଵ(ݔଵ), ݂ଶ(ݔଶ))

is a continuous function with respect to the binary product space topologies (def.
2.18)

݂ଵ × ݂ଶ : (ܺଵ × ܺଶ, ߬భ × మ ) ⟶ (ܻଵ, × ܻଶ, ߬భ × మ ) .

Moreover, this construction respects identity functions and composition of
functions in both arguments.

In the language of category theory (remark 3.3), this is summarized by saying
that the product topological space construction (−) × ( −) extends to a functor
from the product category of the category Top with itself to itself:

(−) × (−) : Top × Top ⟶ Top .

Examples

We discuss here some basic examples of continuous functions (def. 3.1) between
topological spaces (def. 2.3) to get a feeling for the nature of the concept. But as
with topological spaces themselves, continuous functions between them are
ubiquituous in mathematics, and no list will exhaust all classes of examples. Below
in the section Universal constructions we discuss a general principle that serves to
produce examples of continuous functions with prescribed “universal properties”.
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Example 3.5. (point space is terminal)

For (ܺ, ߬) any topological space, then there is a unique continuous function

from the empty topological space (def. 2.10) ܺ

∅ →⎯⎯⎯⎯⎯⎯
∃ !

ܺ

1. 

from ܺ to the point topological space (def. 2.10).

ܺ →⎯⎯⎯⎯⎯⎯
∃ !

*

2. 

In the language of category theory (remark 3.3), this says that

the empty topological space is the initial object1. 

the point space * is the terminal object2. 

in the category Top of topological spaces. We come back to this below in example
6.12.

Example 3.6. (constant continuous functions)

For (ܺ, ߬) a topological space then for ݔ ∈ ܺ any element of the underlying set,
there is a unique continuous function (which we denote by the same symbol)

ݔ : * ⟶ ܺ

from the point topological space (def. 2.10), whose image in ܺ is that element.
Hence there is a natural bijection

൜ * →


ܺ | ݂ continuousൠ ≃ ܺ

between the continuous functions from the point to any topological space, and
the underlying set of that topological space.

More generally, for (ܺ, ߬) and (ܻ, ߬) two topological spaces, then a continuous
function ܺ → ܻ between them is called a constant function with value some point
ݕ ∈ ܻ if it factors through the point spaces as

const௬ : ܺ ⟶
∃ !

* ⟶
௬

ܻ .

Definition 3.7. (locally constant function)

For (ܺ . ߬), (ܻ, ߬) two topological spaces, then a a continuous function
݂ :(ܺ, ߬) → (ܻ, ߬) (def. 3.1) is called locally constant if every point ݔ ∈ ܺ has a
neighbourhood on which the function is constant.

Example 3.8. (continuous functions into and out of discrete and codiscrete
spaces)

Let ܵ be a set and let (ܺ, ߬) be a topological space. Recall from example 2.13
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the discrete topological space Disc(ܵ);1. 

the co-discrete topological space CoDisc(ܵ)2. 

on the underlying set ܵ. Then continuous functions (def. 3.1) into/out of these
satisfy:

every function (of sets) Disc(ܵ) ⟶ ܺ out of a discrete space is continuous;1. 

every function (of sets) ܺ ⟶ CoDisc(ܵ) into a codiscrete space is continuous.2. 

Also:

every continuous function (ܺ, ߬) ⟶ Disc(ܵ) into a discrete space is locally
constant (def. 3.7).

Example 3.9. (diagonal)

For ܺ a set, its diagonal ܺ  is the function from ܺ to the Cartesian product of߂
with itsef, given by

ܺ ⟶
௱ ܺ × ܺ

ݔ ↦ ,ݔ) (ݔ

For (ܺ, ߬) a topological space, then the diagonal is a continuous function to the
product topological space (def. 2.18) of ܺ with itself.

߂ : (ܺ, ߬) ⟶ (ܺ × ܺ, ߬ × ) .

To see this, it is sufficient to see that the preimages of basic opens ܷଵ × ܷଶ in ߬ × 

are in ߬. But these pre-images are the intersections ܷଵ ∩ ܷଶ ⊂ ܺ, which are open
by the axioms on the topology ߬.

Example 3.10. (image factorization)

Let ݂ : (ܺ, ߬) ⟶ (ܻ, ߬) be a continuous function.

Write ݂(ܺ) ⊂ ܻ for the image of ݂ on underlying sets, and consider the resulting
factorization of ݂ through ݂(ܺ) on underlying sets:

݂ : ܺ →⎯⎯⎯⎯⎯⎯
surjective

݂(ܺ) →⎯⎯⎯⎯⎯
injective

ܻ .

There are the following two ways to topologize the image ݂(ܺ) such as to make
this a sequence of two continuous functions:

By example 2.16 ݂(ܺ) inherits a subspace topology from (ܻ, ߬) which
evidently makes the inclusion ݂(ܺ) ⟶ ܻ a continuous function.

Observe that this also makes ܺ → ݂(ܺ) a continuous function: An open
subset of ݂(ܺ) in this case is of the form ܷ ∩ ݂(ܺ) for ܷ ∈ ߬, and
݂ −ଵ(ܷ ∩ ݂(ܺ)) = ݂ −ଵ(ܷ), which is open in ܺ since ݂ is continuous.

1. 
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By example 2.17 ݂(ܺ) inherits a quotient topology from (ܺ, ߬) which
evidently makes the surjection ܺ ⟶ ݂(ܺ) a continuous function.

Observe that this also makes ݂(ܺ) ⟶ ܻ a continuous function: The preimage
under this map of an open subset ܷ ∈ ߬ is the restriction ܷ ∩ ݂(ܺ), and the
pre-image of that under ܺ → ݂(ܺ) is ݂ −ଵ(ܷ), as before, which is open since ݂
is continuous, and therefore ܷ ∩ ݂(ܺ) is open in the quotient topology.

2. 

Beware, in general a continuous function itself (as opposed to its pre-image
function) neither preserves open subsets, nor closed subsets, as the following
examples show:

Example 3.11. Regard the real numbers ℝ as the 1-dimensional Euclidean space
(example 1.6) equipped with the metric topology (example 2.9). For ܽ ∈ ℝ the
constant function (example 3.6)

ℝ →⎯⎯⎯⎯
ୡ୭୬ୱ୲ೌ ℝ

ݔ ↦ ܽ

maps every open subset ܷ ⊂ ℝ to the singleton set {ܽ} ⊂ ℝ, which is not open.

Example 3.12. Write Disc(ℝ) for the set of real numbers equipped with its discrete
topology (def. 2.13) and ℝ for the set of real numbers equipped with its
Euclidean metric topology (example 1.6, example 2.9). Then the identity function
on the underlying sets

idℝ : Disc(ℝ) ⟶ ℝ

is a continuous function (a special case of example 3.8). A singleton subset
{ܽ} ∈ Disc(ℝ) is open, but regarded as a subset {ܽ} ∈ ℝ it is not open.

Example 3.13. Consider the set of real numbers ℝ equipped with its Euclidean
metric topology (example 1.6, example 2.9). The exponential function

exp(−) : ℝ ⟶ ℝ

maps all of ℝ (which is a closed subset, since ℝ = ℝ\∅) to the open interval
(0, ∞) ⊂ ℝ, which is not closed.

Those continuous functions that do happen to preserve open or closed subsets get
a special name:

Definition 3.14. (open maps and closed maps)

A continuous function ݂ :(ܺ, ߬) → (ܻ, ߬) (def. 3.1) is called

an open map if the image under ݂ of an open subset of ܺ is an open subset
of ܻ;
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a closed map if the image under ݂ of a closed subset of ܺ (def. 2.23) is a
closed subset of ܻ.

Example 3.15. (image projections of open/closed maps are themselves
open/closed)

If a continuous function ݂ :(ܺ, ߬) → (ܻ, ߬) is an open map or closed map (def.
3.14) then so its its image projection ܺ → ݂(ܺ) ⊂ ܻ, respectively, for ݂(ܺ) ⊂ ܻ
regarded with its subspace topology (example 3.10).

Proof. If ݂ is an open map, and ܱ ⊂ ܺ is an open subset, so that ݂(ܱ) ⊂ ܻ is also
open in ܻ, then, since ݂(ܱ) = ݂(ܱ) ∩ ݂(ܺ), it is also still open in the subspace
topology, hence ܺ → ݂(ܺ) is an open map.

If ݂ is a closed map, and ܥ ⊂ ܺ is a closed subset so that also ݂(ܥ) ⊂ ܻ is a closed
subset, then the complement is open in ܻ and hence (ܥ)݂\ܻ
((ܥ)݂\ܻ) ∩ ݂(ܺ) = (ܥ)݂ is open in the subspace topology, which means that (ܥ)݂\(ܺ)݂
is closed in the subspace topology.  ▮

Example 3.16. (projections are open continuous functions )

For (ܺଵ, ߬భ ) and (ܺଶ, ߬మ ) two topological spaces, then the projection maps

pr : (ܺଵ × ܺଶ, ߬భ × మ ) ⟶ (ܺ, ߬
)

out of their product topological space (def. 2.18)

ܺଵ × ܺଶ ⟶
୮୰భ ܺଵ

,ଵݔ) (ଶݔ ሌ ሮ⎯⎯⎯ ଵݔ

ܺଵ × ܺଶ ⟶
୮୰మ ܺଶ

,ଵݔ) (ଶݔ ሌ ሮ⎯⎯⎯ ଶݔ

are open continuous functions (def. 3.14).

This is because, by definition, every open subset ܱ ⊂ ܺଵ × ܺଶ in the product space
topology is a union of products of open subsets ܷ ∈ ܺଵ and ܸ ∈ ܺଶ in the factor
spaces

ܱ = ∪
 ∈ ூ

(ܷ × ܸ)

and because taking the image of a function preserves unions of subsets

prଵቀ ∪
 ∈ ூ

(ܷ × ܸ)ቁ = ∪
 ∈ ூ

prଵ(ܷ × ܸ)

= ∪
 ∈ ூ

ܷ

.

Below in prop. 7.43 we find a large supply of closed maps.
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Sometimes it is useful to recognize quotient topological space projections via
saturated subsets (essentially another term for pre-images of underlying sets):

Definition 3.17. (saturated subset)

Let ݂ : ܺ ⟶ ܻ be a function of sets. Then a subset ܵ ⊂ ܺ is called an ݂-saturated
subset (or just saturated subset, if ݂ is understood) if ܵ is the pre-image of its
image:

(ܵ ⊂ ܺ ݂-saturated) ⇔ ൫ܵ = ݂ −ଵ(݂(ܵ))൯ .

Here ݂ −ଵ(݂(ܵ)) is also called the ݂-saturation of ܵ.

Example 3.18. (pre-images are saturated subsets)

For ݂ : ܺ → ܻ any function of sets, and ܵ ⊂ ܻ any subset of ܻ, then the pre-image
݂ −ଵ(ܵ) ⊂ ܺ is an ݂-saturated subset of ܺ (def. 3.17).

Observe that:

Lemma 3.19. Let ݂ : ܺ ⟶ ܻ be a function. Then a subset ܵ ⊂ ܺ is ݂-saturated (def.
3.17) precisely if its complement ܺ\ܵ is saturated.

Proposition 3.20. (recognition of quotient topologies)

A continuous function (def. 3.1)

݂ : (ܺ, ߬) ⟶ (ܻ, ߬)

whose underlying function ݂ : ܺ ⟶ ܻ is surjective exhibits ߬ as the corresponding
quotient topology (def. 2.17) precisely if ݂ sends open and ݂-saturated subsets in
ܺ (def. 3.17) to open subsets of ܻ. By lemma 3.19 this is the case precisely if it
sends closed and ݂-saturated subsets to closed subsets.

We record the following technical lemma about saturated subspaces, which we will
need below to prove prop. 7.48.

Lemma 3.21. (saturated open neighbourhoods of saturated closed subsets
under closed maps)

Let

݂ : (ܺ, ߬) ⟶ (ܻ, ߬) be a closed map (def. 3.14);1. 

ܥ ⊂ ܺ be a closed subset of ܺ (def. 2.23) which is ݂-saturated (def. 3.17);2. 

ܷ ⊃  .3;ܥ be an open subset containing ܥ

then there exists a smaller open subset ܸ still containing ܥ

ܷ ⊃ ܸ ⊃ ܥ

and such that ܸ is still ݂-saturated.
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Proof. We claim that the complement of ܺ by the ݂-saturation (def. 3.17) of the
complement of ܺ by ܷ

ܸ ≔ ܺ\൫݂ −ଵ(݂(ܺ\ܷ))൯

has the desired properties. To see this, observe first that

the complement ܺ\ܷ is closed, since ܷ is assumed to be open;1. 

hence the image ݂(ܺ\ܷ) is closed, since ݂ is assumed to be a closed map;2. 

hence the pre-image ݂ −ଵ(݂(ܺ\ܷ)) is closed, since ݂ is continuous (using prop.
3.2), therefore its complement ܸ is indeed open;

3. 

this pre-image ݂ −ଵ(݂(ܺ\ܷ)) is saturated (by example 3.18) and hence also its
complement ܸ is saturated (by lemma 3.19).

4. 

Therefore it now only remains to see that ܷ ⊃ ܸ ⊃ .ܥ

By de Morgan's law (remark 2.24) the inclusion ܷ ⊃ ܸ is equivalent to the inclusion
݂ −ଵ(݂(ܺ\ܷ)) ⊃ ܺ\ܷ, which is clearly the case.

The inclusion ܸ ⊃ ݂ is equivalent to ܥ −ଵ(݂(ܺ\ܷ)) ∩ ܥ = ∅. Since ܥ is saturated by
assumption, this is equivalent to ݂ −ଵ(݂(ܺ\ܷ)) ∩ ݂ −ଵ(݂(ܥ)) = ∅. This in turn holds
precisely if ݂(ܺ\ܷ) ∩ (ܥ)݂ = ∅. Since ܥ is saturated, this holds precisely if
ܺ\ܷ ∩ ܥ = ∅, and this is true by the assumption that ܷ ⊃ ▮  .ܥ

Homeomorphisms

With the objects (topological spaces) and the morphisms (continuous functions) of
the category Top thus defined (remark 3.3), we obtain the concept of “sameness”
in topology. To make this precise, one says that a morphism

ܺ →


ܻ

in a category is an isomorphism if there exists a morphism going the other way
around

ܺ ⟵


ܻ

which is an inverse in the sense that both its compositions with ݂ yield an identity
morphism:

݂ ∘ ݃ = id and ݃ ∘ ݂ = id .

Since such ݃ is unique if it exsist, one often writes “݂ −ଵ” for this inverse morphism.
However, in the context of topology then ݂ −ଵ usually refers to the pre-image
function of a given function ݂, and in these notes we will stick to this usage and
never use “( −) −ଵ” to denote inverses.
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Definition 3.22. (homeomorphisms)

An isomorphism in the category Top (remark 3.3) of topological spaces (def. 2.3)
with continuous functions between them (def. 3.1) is called a homeomorphism.

Hence a homeomorphism is a continuous function

݂ : (ܺ, ߬) ⟶ (ܻ, ߬)

between two topological spaces (ܺ, ߬), (ܻ, ߬) such that there exists another
continuous function the other way around

(ܺ, ߬) ⟵ (ܻ, ߬) : ݃

such that their composites are the identity functions on ܺ and ܻ, respectively:

݂ ∘ ݃ = id and ݃ ∘ ݂ = id .

graphics grabbed from Munkres 75

We notationally indicate that a continuous function is a homeomorphism by the
symbol “≃”.

݂ : (ܺ, ߬) ⟶≃ (ܻ, ߬) .

If there is some, possibly unspecified, homeomorphism between topological
spaces (ܺ, ߬) and (ܻ, ߬), then we also write

(ܺ, ߬) ≃ (ܻ, ߬)

and say that the two topological spaces are homeomorphic.

A property/predicate ܲ of topological spaces which is invariant under
homeomorphism in that

((ܺ, ߬) ≃ (ܻ, ߬)) ⇒ (ܲ(ܺ, ߬) ⇔ ܲ(ܻ, ߬))

is called a topological property or topological invariant.

Remark 3.23. If ݂: (ܺ, ߬) → (ܻ, ߬) is a homeomorphism (def. 3.22) with inverse
coninuous function ݃, then

also ݃ is a homeomophism, with inverse continuous function ݂;1. 
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the underlying function of sets ݂ : ܺ → ܻ of a homeomorphism ݂ is necessarily
a bijection, with inverse bijection ݃.

2. 

But beware that not every continuous function which is bijective on underlying sets
is a homeomorphism. While an inverse function ݃ will exists on the level of
functions of sets, this inverse may fail to be continuous:

Counter Example 3.24. Consider the continuous function

[0, (ߨ2 ⟶ ܵଵ ⊂ ℝଶ

ݐ ↦ (cos(ݐ), sin(ݐ))

from the half-open interval (def. 1.13) to the unit circle ܵଵ ≔ ܵ(1) ⊂ ℝଶ (def. 1.2),
regarded as a topological subspace (example 2.16) of the Euclidean plane
(example 1.6).

The underlying function of sets of ݂ is a bijection. The inverse function of sets
however fails to be continuous at (1, 0) ∈ ܵଵ ⊂ ℝଶ. Hence this ݂ is not a
homeomorphism.

Indeed, below we see that the two topological spaces [0, and ܵଵ are (ߨ2
distinguished by topological invariants, meaning that they cannot be
homeomorphic via any (other) choice of homeomorphism. For example ܵଵ is a
compact topological space (def. 7.2) while [0, is not, and ܵଵ has a non-trivial (ߨ2
fundamental group, while that of [0, .is trivial (this prop.) (ߨ2

Below in example 7.49 we discuss a practical criterion under which continuous
bijections are homeomorphisms after all. But immediate from the definitions is the
following characterization:

Proposition 3.25. (homeomorphisms are the continuous and open
bijections)

Let ݂ : (ܺ, ߬) ⟶ (ܻ, ߬) be a continuous function between topological spaces (def.
3.1). Then the following are equivalence:

݂ is a homeomorphism;1. 

݂ is a bijection and an open map (def. 3.14);2. 

݂ is a bijection and a closed map (def. 3.14).3. 

Proof. It is clear from the definition that a homeomorphism in particular has to be
a bijection. The condition that the inverse function ܻ ← ܺ :݃ be continuous means
that the pre-image function of ݃ sends open subsets to open subsets. But by ݃
being the inverse to ݂, that pre-image function is equal to ݂, regarded as a function
on subsets:

݃ −ଵ = ݂ : ܲ(ܺ) → ܲ(ܻ) .

Hence ݃ −ଵ sends opens to opens precisely if ݂ does, which is the case precisely if ݂
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is an open map, by definition. This shows the equivalence of the first two items.
The equivalence between the first and the third follows similarly via prop. 3.2.  ▮

Now we consider some actual examples of homeomorphisms:

Example 3.26. (concrete point homeomorphic to abstract point space)

Let (ܺ, ߬) be a non-empty topological space, and let ݔ ∈ ܺ be any point. Regard
the corresponding singleton subset {ݔ} ⊂ ܺ as equipped with its subspace
topology ߬{௫} (example 2.16). Then this is homeomorphic (def. 3.22) to the

abstract point space from example 2.10:

,{ݔ}) ߬{௫}) ≃ * .

Example 3.27. (open interval homeomorphic to the real line)

Regard the real line as the 1-dimensional Euclidean space (example 1.6) with its
metric topology (example 2.9).

Then the open interval (−1, 1) ⊂ ℝ (def. 1.13) regarded with its subspace topology
(example 2.16) is homeomorphic (def.3.22) to all of the real line

(−1, 1) ≃ ℝଵ .

An inverse pair of continuous functions is for instance given (via example 1.10)
by

݂ : ℝଵ ⟶ (−1, +1)

ݔ ↦ ௫

ଵ +௫మඥ

and

݃ : (−1, +1) ⟶ ℝଵ

ݔ ↦
௫

ଵ − ௫మඥ

.

But there are many other choices for ݂ and ݃ that yield a homeomorphism.

Similarly, for all ܽ < ܾ ∈ ℝ

the open intervals (ܽ, ܾ) ⊂ ℝ (example 1.13) equipped with their subspace
topology are all homeomorphic to each other,

1. 

the closed intervals [ܽ, ܾ] are all homeomorphic to each other,2. 

the half-open intervals of the form [ܽ, ܾ) are all homeomophic to each other;3. 

the half-open intervals of the form (ܽ, ܾ] are all homeomophic to each other.4. 

Generally, every open ball in ℝ (def. 1.2) is homeomorphic to all of ℝ:
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ܤ)
∘ (߳) ⊂ ℝ) ≃ ℝ .

While mostly the interest in a given homeomorphism is in it being non-obvious
from the definitions, many homeomorphisms that appear in practice exhibit
“obvious re-identifications” for which it is of interest to leave them consistently
implicit:

Example 3.28. (homeomorphisms between iterated product spaces)

Let (ܺ, ߬), (ܻ, ߬) and (ܼ, ߬) be topological spaces.

Then:

There is an evident homeomorphism between the two ways of bracketing
the three factors when forming their product topological space (def. 2.18),
called the associator:

,,ߙ : ((ܺ, ߬) × (ܻ, ߬)) × (ܼ, ߬) →⎯⎯⎯⎯⎯⎯
≃

(ܺ, ߬) × ((ܻ, ߬) × (ܼ, ߬)) .

1. 

There are evident homeomorphism between (ܺ, ߬) and its product topological
space (def. 2.18) with the point space * (example 2.10), called the left and
right unitors:

ߣ : * × (ܺ, ߬) →⎯⎯⎯⎯⎯⎯
≃

(ܺ, ߬)

and

ߩ : (ܺ, ߬) × * →⎯⎯⎯⎯⎯⎯
≃

(ܺ, ߬) .

2. 

There is an evident homeomorphism between the results of the two orders
in which to form their product topological spaces (def. 2.18), called the
braiding:

,ߚ : (ܺ, ߬) × (ܻ, ߬) →⎯⎯⎯⎯⎯⎯
≃

(ܻ, ߬) × (ܺ, ߬) .

3. 

Moreover, all these homeomorphisms are compatible with each other, in that they
make the following diagrams commute (recall remark 3.3):

(triangle identity)

(ܺ × * ) × ܻ →⎯⎯⎯⎯
ఈ, *,ೊ

ܺ × ( * × ܻ)

ఘೣ × ୧ୢೊ ↘ ↙୧ୢ × ఒೊ

ܺ × ܻ

1. 

(pentagon identity)2. 
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(ܹ × ܺ) × (ܻ × ܼ)
ఈೈ × ,ೊ,ೋ ↗ ↘ఈೈ,,ೊ × ೋ

((ܹ × ܺ) × ܻ) × ܼ (ܹ × (ܺ × (ܻ × ܼ)))

ఈೈ,,ೊ × ୧ୢೋ ↓ ↑୧ୢೈ × ఈ,ೊ,ೋ

(ܹ × (ܺ × ܻ)) × ܼ →⎯⎯⎯⎯⎯⎯⎯⎯
ఈೈ, × ೊ,ೋ

ܹ × ((ܺ × ܻ) × ܼ)

(hexagon identities)

(ܺ × ܻ) × ܼ →⎯⎯⎯⎯
ఈ,ೊ,ೋ

ܺ × (ܻ × ܼ) →⎯⎯⎯⎯⎯⎯
ఉ,ೊ× ೋ

(ܻ × ܼ) × ܺ

↓ఉ,ೊ × ୧ୢೋ ↓ఈೊ,ೋ,

(ܻ × ܺ) × ܼ →⎯⎯⎯⎯
ఈೊ,,ೋ

ܻ × (ܺ × ܼ) →⎯⎯⎯⎯⎯⎯⎯
୧ୢೊ × ఉ,ೊ

ܻ × (ܼ × ܺ)

and

ܺ × (ܻ × ܼ) →⎯⎯⎯⎯
ఈ,ೊ,ೋ

౬

(ܺ × ܻ) × ܼ →⎯⎯⎯⎯⎯⎯
ఉ × ೊ,ೋ

ܼ × (ܺ × ܻ)

↓୧ୢ × ఉೊ,ೋ ↓ఈೋ,,ೊ
౬

ܺ × (ܼ × ܻ) →⎯⎯⎯⎯
ఈ,ೋ,ೊ

౬

(ܺ × ܼ) × ܻ →⎯⎯⎯⎯⎯⎯
ఉ,ೋ × ୧ୢ

(ܼ × ܺ) × ܻ

,

3. 

(symmetry)

,ߚ ∘ ,ߚ = id : (ܺଵ × ܺଶ߬భ × మ ) → (ܺଵ × ܺଶ߬భ × మ ) .

4. 

In the language of category theory (remark 3.3), all this is summarized by saying
that the the functorial construction (−) × ( −) of product topological spaces
(example 3.4) gives the category Top of topological spaces the structure of a
monoidal category which moreover is symmetrically braided.

From this, a basic result of category theory, the MacLane coherence theorem,
guarantees that there is no essential ambiguity re-backeting arbitrary iterations
of the binary product topological space construction, as long as the above
homeomorphsims are understood.

Accordingly, we may write

(ܺଵ, ߬ଵ) × (ܺଶ, ߬ଶ) × ⋯ × (ܺ, ߬)

for iterated product topological spaces without putting parenthesis.

The following are a sequence of examples all of the form that an abstractly
constructed topological space is homeomorphic to a certain subspace of a Euclidean
space. These examples are going to be useful in further developments below, for
example in the proof below of the Heine-Borel theorem (prop. 7.41).

Products of intervals are homeomorphic to hypercubes (example 3.29).
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The closed interval glued at its endpoints is homeomorphic to the circle
(example 3.30).

The cylinder, the Möbius strip and the torus are all homeomorphic to quotients
of the square (example 3.31).

Example 3.29. (product of closed intervals homeomorphic to hypercubes)

Let ݊ ∈ ℕ, and let [ܽ, ܾ] ⊂ ℝ for ݅ ∈ {1, ⋯, ݊} be ݊ closed intervals in the real line
(example 1.13), regarded as topological subspaces of the 1-dimensional
Euclidean space (example 1.6) with its metric topology (example 2.9). Then the
product topological space (def. 2.18, example 3.28) of all these intervals is
homeomorphic (def. 3.22) to the corresponding topological subspace of the
݊-dimensional Euclidean space (example 1.6):

[ܽଵ, ܾଵ] × [ܽଶ, ܾଶ] × ⋯ × [ܽ, ܾ] ≃ ቄݔ⇀ ∈ ℝ | ∀


(ܽ ≤ ݔ ≤ ܾ)ቅ ⊂ ℝ .

Proof. There is a canonical bijection between the underlying sets. It remains to see
that this, as well and its inverse, are continuous functions. For this it is sufficient to
see that under this bijection the defining basis (def. 2.7) for the product topology is
also a basis for the subspace topology. But this is immediate from lemma 2.8.  ▮

Example 3.30. (closed interval glued at endpoints homeomorphic circle)

As topological spaces, the closed interval [0, 1] (def. 1.13) with its two endpoints
identified is homeomorphic (def. 3.22) to the standard circle:

[0, 1]/( ∼ ଵ) ≃ ܵଵ .

More in detail: let

ܵଵ ↪ ℝଶ

be the unit circle in the plane

ܵଵ = ,ݔ)} (ݕ ∈ ℝଶ, ଶݔ + ଶݕ = 1}

equipped with the subspace topology (example 2.16) of the plane ℝଶ, which is
itself equipped with its standard metric topology (example 2.9).

Moreover, let

[0, 1]/( ∼ ଵ)

be the quotient topological space (example 2.17) obtained from the interval
[0, 1] ⊂ ℝଵ with its subspace topology by applying the equivalence relation which
identifies the two endpoints (and nothing else).

Consider then the function

݂ : [0, 1] ⟶ ܵଵ
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given by

ݐ ↦ (cos(ݐ), sin(ݐ)) .

This has the property that ݂(0) = ݂(1), so that it descends to the quotient
topological space

[0, 1] ⟶ [0, 1]/( ∼ ଵ)

 ↘ ↓̃

ܵଵ

.

We claim that ݂̃ is a homeomorphism (definition 3.22).

First of all it is immediate that ݂̃ is a continuous function. This follows
immediately from the fact that ݂ is a continuous function and by definition of the
quotient topology (example 2.17).

So we need to check that ݂̃ has a continuous inverse function. Clearly the
restriction of ݂ itself to the open interval (0, 1) has a continuous inverse. It fails to
have a continuous inverse on [0, 1) and on (0, 1] and fails to have an inverse at all
on [0,1], due to the fact that ݂(0) = ݂(1). But the relation quotiented out in
[0, 1]/( ∼ ଵ) is exactly such as to fix this failure.

Example 3.31. (cylinder, Möbius strip and torus homeomorphic to
quotients of the square)

The square [0, 1]ଶ with two of its sides identified is the cylinder, and with also the
other two sides identified is the torus:

If the sides are identified with opposite orientation, the result is the Möbius strip:
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graphics grabbed from Lawson 03

Example 3.32. (stereographic projection)

For ݊ ∈ ℕ then there is a homeomorphism (def. 3.22) between between the
n-sphere ܵ (example 2.20) with one point  ∈ ܵ removed and the ݊-dimensional
Euclidean space ℝ (example 1.6) with its metric topology (example 2.9):

ܵ\{} →⎯⎯⎯⎯⎯⎯
≃

ℝ .

This homeomorphism is given by
“stereographic projection”: One thinks of
both the ݊-sphere as well as the Euclidean
space ℝ as topological subspaces
(example 2.16) of ℝ+ ଵ in the standard
way (example 2.20), such that they
intersect in the equator of the ݊-sphere.
For  ∈ ܵ one of the corresponding poles,
then the homeomorphism is the function which sends a point ݔ ∈ ܵ\{} along the
line connecting it with  to the point ݕ where this line intersects the equatorial
plane.

In the canonical ambient coordinates this stereographic projection is given as
follows:

ℝ + ଵ ⊃ ܵ\(1, 0, ⋯, 0) →⎯⎯⎯⎯⎯⎯
≃

ℝ ⊂ ℝ +ଵ

,ଵݔ) ,ଶݔ ⋯, ݔ +ଵ) ሌ ሮ⎯⎯⎯ ଵ

ଵ − ௫భ
(0, ,ଶݔ ⋯, ݔ + ଵ)

.

Important examples of pairs of spaces that are not homeomorphic include the
following:

Theorem 3.33. (topological invariance of dimension)

For ݊ଵ, ݊ଶ ∈ ℕ but ݊ଵ ≠ ݊ଶ, then the Euclidean spaces ℝభ and ℝమ (example 1.6,
example 2.9) are not homeomorphic.

More generally, an open subset in ℝభ is never homeomorphic to an open subset
in ℝమ if ݊ଵ ≠ ݊ଶ.

The proofs of theorem 3.33 are not elementary, in contrast to how obvious the
statement seems to be intuitively. One approach is to use tools from algebraic
topology: One assigns topological invariants to topological spaces, notably classes
in ordinary cohomology or in topological K-theory), quantities that are invariant
under homeomorphism, and then shows that these classes coincide for ℝభ − {0}

and for ℝమ − {0} precisely only if ݊ଵ = ݊ଶ.

One indication that topological invariance of dimension is not an elementary
consequence of the axioms of topological spaces is that a related “intuitively
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obvious” statement is in fact false: One might think that there is no surjective
continuous function ℝభ → ℝమ if ݊ଵ < ݊ଶ. But there are: these are called the Peano
curves.

Often it is important to know whether a given space is homeomorphism to its
image, under some continuous function, in some other space:

Definition 3.34. (embedding of topological spaces)

Let (ܺ, ߬) and (ܻ, ߬) be topological spaces. A continuous function ݂ : ܺ ⟶ ܻ is
called an embedding of topological spaces if in its image factorization (example
3.10)

݂ : ܺ →⎯⎯⎯
≃

݂(ܺ) ሊ ሮ⎯⎯⎯ ܻ

with the image ݂(ܺ) ↪ ܻ equipped with the subspace topology, we have that
ܺ → ݂(ܺ) is a homeomorphism.

Proposition 3.35. (open/closed continuous injections are embeddings)

A continuous function ݂ :(ܺ, ߬) → (ܻ, ߬) which is

an injective function1. 

an open map or a closed map (def. 3.14)2. 

is an embedding of topological spaces (def. 3.34).

This is called a closed embedding if the image ݂(ܺ) ⊂ ܻ is a closed subset.

Proof. If ݂ is injective, then the map onto its image ܺ → ݂(ܺ) ⊂ ܻ is a bijection.
Moreover, it is still continuous with respect to the subspace topology on ݂(ܺ)
(example 3.10). Now a bijective continuous function is a homeomorphism precisely
if it is an open map or a closed map prop. 3.25 . But the image projection of ݂ has
this property, respectively, if ݂ does, by prop 3.15.  ▮

4. Separation axioms

The plain definition of topological space (above) happens to admit examples where
distinct points or distinct subsets of the underlying set appear as more-or-less
unseparable as seen by the topology on that set.

The extreme class of examples of topological spaces in which the open subsets do
not distinguish distinct underlying points, or in fact any distinct subsets, are the
codiscrete spaces (example 2.13). This does occur in practice:

Example 4.1. (real numbers quotiented by rational numbers)

Consider the real line ℝ regarded as the 1-dimensional Euclidean space (example
1.6) with its metric topology (example 2.9) and consider the equivalence relation
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∼ on ℝ which identifies two real numbers if they differ by a rational number:

ݔ) ∼ (ݕ ⇔ ൬ ∃
/ ∈ ℚ ⊂ ℝ

ݔ) = ݕ + ൰(ݍ/ .

Then the quotient topological space (def. 2.17)

ℝ/ℚ ≔ ℝ/ ∼

is a codiscrete topological space (def. 2.13), hence its topology does not
distinguish any distinct proper subsets.

Here are some less extreme examples:

Example 4.2. (open neighbourhoods in the Sierpinski space)

Consider the Sierpinski space from example 2.11, whose underlying set consists
of two points {0, 1}, and whose open subsets form the set ߬ = {∅, {1}, {0, 1}}. This
means that the only (open) neighbourhood of the point {0} is the entire space.
Incidentally, also the topological closure of {0} (def. 2.23) is the entire space.

Example 4.3. (line with two origins)

Consider the disjoint union space ℝ ⊔ ℝ (example 2.15) of two copies of the real
line ℝ regarded as the 1-dimensional Euclidean space (example 1.6) with its
metric topology (example 2.9), which is equivalently the product topological
space (example 2.18) of ℝ with the discrete topological space on the 2-element
set (example 2.13):

ℝ ⊔ ℝ ≃ ℝ × Disc({0, 1})

Moreover, consider the equivalence relation on the underlying set which identifies
every point ݔ in the ݅th copy of ℝ with the corresponding point in the other, the
(1 − ݅)th copy, except when ݔ = 0:

ቀݔ ∼ ቁݕ ⇔ ݔ)) = (ݕ and ݔ)) ≠ 0) or (݅ = ݆))) .

The quotient topological space by this
equivalence relation (def. 2.17)

(ℝ ⊔ ℝ)/ ∼

is called the line with two origins. These “two origins” are the points 0 and 0ଵ.

We claim that in this space every neighbourhood of 0 intersects every
neighbouhood of 0ଵ.

Because, by definition of the quotient space topology, the open neighbourhoods
of 0 ∈ (ℝ ⊔ ℝ)/ ∼  are precisely those that contain subsets of the form

( −߳, ߳) ≔ ( −߳, 0) ∪ {0} ∪ (0, ߳) .
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But this means that the “two origins” 0 and 0ଵ may not be separated by
neighbourhoods, since the intersection of (−߳, ߳) with (−߳, ߳) is always

non-empty:

( −߳, ߳) ∩ (−߳, ߳)ଵ = ( −߳, 0) ∪ (0, ߳) .

In many applications one wants to exclude at least some such exotic examples of
topologial spaces from the discussion and instead concentrate on those examples
for which the topology recognizes the separation of distinct points, or of more
general disjoint subsets. The relevant conditions to be imposed on top of the plain
axioms of a topological space are hence known as separation axioms which we
discuss in the following.

These axioms are all of the form of saying that two subsets (of certain kinds) in the
topological space are ‘separated’ from each other in one sense if they are
‘separated’ in a (generally) weaker sense. For example the weakest axiom (called
ܶ) demands that if two points are distinct as elements of the underlying set of
points, then there exists at least one open subset that contains one but not the
other.

In this fashion one may impose a hierarchy of stronger axioms. For example
demanding that given two distinct points, then each of them is contained in some
open subset not containing the other (ܶଵ) or that such a pair of open subsets
around two distinct points may in addition be chosen to be disjoint (ܶଶ). Below in
Tn-spaces we discuss the following hierarchy:

the main separation axioms

numbername statement reformulation

ܶ Kolmogorov

given two distinct points, at
least one of them has an open
neighbourhood not containing
the other point

every irreducible closed
subset is the closure of at
most one point

ܶଵ

given two distinct points, both
have an open neighbourhood
not containing the other point

all points are closed

ܶଶ Hausdorff
given two distinct points, they
have disjoint open
neighbourhoods

the diagonal is a closed map

ܶவ ଶ ܶଵ and… all points are closed and…

ܶଷ
regular
Hausdorff

…given a point and a closed
subset not containing it, they
have disjoint open
neighbourhoods

…every neighbourhood of a
point contains the closure of
an open neighbourhood

ܶସ
normal
Hausdorff

…given two disjoint closed
subsets, they have disjoint
open neighbourhoods

…every neighbourhood of a
closed set also contains the
closure of an open
neighbourhood
… every pair of disjoint
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number name statement reformulation
closed subsets is separated
by an Urysohn function

The condition, ܶଶ, also called the Hausdorff condition is the most common among
all separation axioms. Historically this axiom was originally taken as part of the
definition of topological spaces, and it is still often (but by no means always)
considered by default.

However, there are respectable areas of mathematics that involve topological
spaces where the Hausdorff axiom fails, but a weaker axiom is still satisfied, called
sobriety. This is the case notably in algebraic geometry (schemes are sober) and in
computer science (Vickers 89). These sober topological spaces are singled out by
the fact that they are entirely characterized by their sets of open subsets with their
union and intersection structure (as in def. 2.35) and may hence be understood
independently from their underlying sets of points. This we discuss further below.

hierarchy of separation axioms
metric space

⇓

⋮

⇓

ܶସ = normal Hausdorff

⇓

ܶଷ = regular Hausdorff

⇓

ܶଶ = Hausdorff

⇙ ⇘

ܶଵ sober

⇘ ⇙

ܶ = Kolmogorov

All separation axioms are satisfied by metric spaces (example 4.8, example 4.14
below), from whom the concept of topological space was originally abstracted
above. Hence imposing some of them may also be understood as gauging just how
far one allows topological spaces to generalize away from metric spaces

ܶ spaces

There are many variants of separation axims. The classical ones are labeled ܶ (for
German “Trennungsaxiom”) with ݊ ∈ {0, 1, 2, 3, 4, 5} or higher. These we now introduce
in def. 4.4 and def. 4.13.

Definition 4.4. (the first three separation axioms)
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Let (ܺ, ߬) be a topological space (def. 2.3).

For ݔ ≠ ݕ ∈ ܺ any two points in the underlying set of ܺ which are not equal as
elements of this set, consider the following propositions:

(T0) There exists a neighbourhood of one of the two
points which does not contain the other point.

(T1) There exist neighbourhoods of both points which
do not contain the other point.

(T2) There exists neighbourhoods_ of both points which
do not intersect each other.

graphics grabbed from Vickers 89

The topological space ܺ is called a ܶ-topological space or just ܶ-space, for
short, if it satisfies condition ܶ above for all pairs of distinct points.

A ܶ-topological space is also called a Kolmogorov space.

A ܶଶ-topological space is also called a Hausdorff topological space.

For definiteness, we re-state these conditions formally. Write ݔ, ݕ ∈ ܺ for points in
ܺ, write ܷ௫, ܷ௬ ∈ ߬ for open neighbourhoods of these points. Then:

(T0) ∀
௫ ஷ ௬

ቆቆ ∃


൫{ݔ} ∩ ܷ௬ = ∅൯ቇ or ൬ ∃
ೣ

(ܷ௫ ∩ {ݕ} = ∅)൰ቇ

((T1) ∀
௫ ஷ ௬

ቆ ∃
ೣ,

൫൫{ݔ} ∩ ܷ௬ = ∅൯ and (ܷ௫ ∩ {ݕ} = ∅)൯ቇ

(T2) ∀
௫ ஷ ௬

ቆ ∃
ೣ,

൫ܷ௫ ∩ ܷ௬ = ∅൯ቇ

The following is evident but important:

Proposition 4.5. (ܶ are topological properties of increasing strength)

The separation properties ܶ from def. 4.4 are topological properties in that if two
topological spaces are homeomorphic (def. 3.22) then one of them satisfies ܶ

precisely if the other does.

Moreover, these properties imply each other as

ܶ2 ⇒ ܶ1 ⇒ ܶ0 .

Example 4.6. Examples of topological spaces that are not Hausdorff (def. 4.4)
include

the Sierpinski space (example 4.2),1. 
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the line with two origins (example 4.3),2. 

the quotient topological space ℝ/ℚ (example 4.1).3. 

Example 4.7. (finite ܶଵ-spaces are discrete)

For a finite topological space (ܺ, ߬), hence one for which the underlying set ܺ is a
finite set, the following are equivalent:

(ܺ, ߬) is ܶଵ (def. 4.4);1. 

(ܺ, ߬) is a discrete topological space (def. 2.13).2. 

Example 4.8. (metric spaces are Hausdorff)

Every metric space (def 1.1), regarded as a topological space via its metric
topology (example 2.9) is a Hausdorff topological space (def. 4.4).

Because for ݔ ≠ ݕ ∈ ܺ two distinct points, then the distance ,ݔ)݀ between them (ݕ
is positive number, by the non-degeneracy axiom in def. 1.1. Accordingly the
open balls (def. 1.2)

௫ܤ
∘ ,ݔ)݀) ((ݕ ⊃ {ݔ} and ௬ܤ

∘ ,ݔ)݀) ((ݕ ⊃ {ݕ}

are disjoint open neighbourhoods.

Example 4.9. (subspace of ܶ-space is ܶ)

Let (ܺ, ߬) be a topological space satisfying the ܶ separation axiom for some
݊ ∈ {0, 1, 2} according to def. 4.4. Then also every topological subspace ܵ ⊂ ܺ
(example 2.16) satisfies ܶ.

Separation in terms of topological closures

The conditions ܶ, ܶଵ and ܶଶ have the following equivalent formulation in terms of
topological closures (def. 2.23).

Proposition 4.10. (ܶ in terms of topological closures)

A topological space (ܺ, ߬) is ܶ (def. 4.4) precisely if the function Cl({ −}) that
forms topological closures (def. 2.23) of singleton subsets from the underlying
set of ܺ to the set of irreducible closed subsets of ܺ (def. 2.31, which is well
defined according to example 2.32), is injective:

Cl({−}) : ܺ ሊ ሮ⎯⎯ IrrClSub(ܺ)

Proof. Assume first that ܺ is ܶ. Then we need to show that if ݔ, ݕ ∈ ܺ are such that
Cl({ݔ}) = Cl({ݕ}) then ݔ = ({ݔ})Hence assume that Cl .ݕ = Cl({ݕ}). Since the closure of a
point is the complement of the union of the open subsets not containing the point
(lemma 2.25), this means that the union of open subsets that do not contain ݔ is
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the same as the union of open subsets that do not contain ݕ:

∪
ೆ ⊂  open

ೆ ⊂ \{ೣ}

(ܷ) = ∪
ೆ ⊂  open

ೆ ⊂ \{}

(ܷ)

But if the two points were distinct, ݔ ≠ then by ܶ one of the above unions would ,ݕ
contain ݔ or ݕ, while the other would not, in contradiction to the above equality.
Hence we have a proof by contradiction.

Conversely, assume that (Cl{ݔ} = Cl{ݕ}) ⇒ ݔ) = ݔ and assume that ,(ݕ ≠ Hence by .ݕ
contraposition Cl({ݔ}) ≠ Cl({ݕ}). We need to show that there exists an open set which
contains one of the two points, but not the other.

Assume there were no such open subset, hence that every open subset containing
one of the two points would also contain then other. Then by lemma 2.25 this
would mean that ݔ ∈ Cl({ݕ}) and that ݕ ∈ Cl({ݔ}). But this would imply that
Cl({ݔ}) ⊂ Cl({ݕ}) and that Cl({ݕ}) ⊂ Cl({ݔ}), hence that Cl({ݔ}) = Cl({ݕ}). This is a proof
by contradiction.  ▮

Proposition 4.11. (ܶଵ in terms of topological closures)

A topological space (ܺ, ߬) is ܶଵ (def. 4.4) precisely if all its points are closed points
(def. 2.23).

Proof. We have

all points in (ܺ, ߬) are closed ≔ ∀
௫ ∈ 

(Cl({ݔ}) = ({ݔ}

⇔ ܺ\ቌ ∪
ೆ ⊂  open

ೣ ∉ ೆ

(ܷ)ቍ = {ݔ}

⇔ ቌ ∪
ೆ ⊂  open

ೣ ∉ ೆ

(ܷ)ቍ = {ݔ}\ܺ

⇔ ∀
௬ ∈ 

ቌቌ ∃
ೆ ⊂  open

ೣ ∉ ೆ

ݕ) ∈ ܷ)ቍ ⇔ ݕ) ≠ ቍ(ݔ

⇔ (ܺ, ߬) is ܶଵ

.

Here the first step is the reformulation of closure from lemma 2.25, the second is
another application of the de Morgan law (remark 2.24), the third is the definition
of union and complement, and the last one is manifestly by definition of ܶଵ.  ▮

Proposition 4.12. (ܶଶ in terms of topological closures)

A topological space (ܺ, ߬) is ܶଶ=Hausdorff precisely if the image of the diagonal

ܺ ⟶
௱ ܺ × ܺ

ݔ ሌ ሮ⎯⎯⎯ ,ݔ) (ݔ
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is a closed subset in the product topological space (ܺ × ܺ, ߬ × ).

Proof. Observe that the Hausdorff condition is equivalently rephrased in terms of
the product topology as: Every point (ݔ, (ݕ ∈ ܺ which is not on the diagonal has an
open neighbourhood ܷ(௫,௬) × ܷ(௫,௬) which still does not intersect the diagonal, hence:

(ܺ, ߬) Hausdorff

⇔ ∀
(௫,௬) ∈ ( × )\௱()

൮ ∃
ೆ(ೣ,) × ೇ(ೣ,) ∈ ഓ ×ೊ
(ೣ,) ∈ ೆ(ೣ,) × ೇ(ೣ,)

൫ܷ(௫,௬) × ܸ(௫,௬) ∩ (ܺ)߂ = ∅൯൲

Therefore if ܺ is Hausdorff, then the diagonal ߂(ܺ) ⊂ ܺ × ܺ is the complement of a
union of such open sets, and hence is closed:

(ܺ, ߬) Hausdorff ⇒ (ܺ)߂ = ܺ\൬ ∪
(௫,௬) ∈ ( × )\௱()

ܷ(௫,௬) × ܸ(௫,௬)൰ .

Conversely, if the diagonal is closed, then (by lemma 2.25) every point (ݔ, (ݕ ∈ ܺ × ܺ
not on the diagonal, hence with ݔ ≠ has an open neighbourhood ܷ(௫,௬) ,ݕ × ܸ(௫,௬) still

not intersecting the diagonal, hence so that ܷ(௫,௬) ∩ ܸ(௫,௬) = ∅. Thus (ܺ, ߬) is

Hausdorff.  ▮

Further separation axioms

Clearly one may and does consider further variants of the separation axioms ܶ, ܶଵ

and ܶଶ from def. 4.4. Here we discuss two more:

Definition 4.13. Let (ܺ, ߬) be topological space (def. 4.4).

Consider the following conditions

(T3) The space (ܺ, ߬) is ܶଵ (def. 4.4) and for ݔ ∈ ܺ a point and ܥ ⊂ ܺ a closed
subset (def. 2.23) not containing ݔ, then there exist disjoint open
neighbourhoods ܷ௫ ⊃ and ܷ {ݔ} ⊃ .ܥ

(T4) The space (ܺ, ߬) is ܶଵ (def. 4.4) and for ܥଵ, ଶܥ ⊂ ܺ two disjoint closed
subsets (def. 2.23) then there exist disjoint open neighbourhoods ܷ

⊃ .ܥ

If (ܺ, ߬) satisfies ܶଷ it is said to be a ܶଷ-space also called a regular Hausdorff
topological space.

If (ܺ, ߬) satisfies ܶସ it is to be a ܶସ-space also called a normal Hausdorff
topological space.

Example 4.14. (metric spaces are normal Hausdorff)

Let (ܺ, ݀) be a metric space (def. 1.1) regarded as a topological space via its
metric topology (example 2.9). Then this is a normal Hausdorff space (def. 4.13).
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Proof. By example 4.8 metric spaces are ܶଶ, hence in particular ܶଵ. What we need
to show is that given two disjoint closed subsets ,ଵܥ ଶܥ ⊂ ܺ then their exists disjoint
open neighbourhoods ܷభ ⊂ ଵ and ܷమܥ ⊃ .ଶܥ

Recall the function

݀(ܵ, −) : ܺ → ℝ

computing distances from a subset ܵ ⊂ ܺ (example 1.9). Then the unions of open
balls (def. 1.2)

ܷభ ≔ ∪
௫భ ∈ భ

௫భܤ
∘ ,ଶܥ)݀) (ଵ)/2ݔ

and

ܷమ ≔ ∪
௫మ ∈ మ

௫మܤ
∘ ,ଵܥ)݀) (ଶ)/2ݔ .

have the required properties.  ▮

Observe that:

Proposition 4.15. (ܶ are topological properties of increasing strength)

The separation axioms from def. 4.4, def. 4.13 are topological properties (def.
3.22) which imply each other as

ܶସ ⇒ ܶଷ ⇒ ܶଶ ⇒ ܶଵ ⇒ ܶ .

Proof. The implications

ܶଶ ⇒ ܶଵ ⇒ ܶ

and

ܶସ ⇒ ܶଷ

are immediate from the definitions. The remaining implication ܶଷ ⇒ ܶଶ follows with
prop. 4.11: This says that by assumption of ܶଵ then all points in (ܺ, ߬) are closed,
and with this the condition ܶଶ is manifestly a special case of the condition for ܶଷ.  ▮

Hence instead of saying “ܺ is ܶଵ and …” one could just as well phrase the conditions
ܶଷ and ܶସ as “ܺ is ܶଶ and …”, which would render the proof of prop. 4.15 even more
trivial.

The following shows that not every ܶଶ-space/Hausdorff space is ܶଷ/regular

Example 4.16. (K-topology)

Write

ܭ ≔ {1/݊ | ݊ ∈ ℕ ≥ ଵ} ⊂ ℝ

for the subset of natural fractions inside the real numbers.
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Define a topological basis ߚ ⊂ ܲ(ℝ) on ℝ consisting of all the open intervals as
well as the complements of ܭ inside them:

ߚ ≔ {(ܽ, ܾ), | ܽ < ܾ ∈ ℝ} ∪ {(ܽ, ,ܭ\(ܾ | ܽ < ܾ ∈ ℝ} .

The topology ߬ఉ ⊂ ܲ(ℝ) which is generated from this topological basis is called the
K-topology.

We may denote the resulting topological space by

ℝ ≔ (ℝ, ߬ఉ} .

This is a Hausdorff topological space (def. 4.4) which is not a regular Hausdorff
space, hence (by prop. 4.15) in particular not a normal Hausdorff space (def.
4.13).

Further separation axioms in terms of topological closures

As before we have equivalent reformulations of the further separation axioms.

Proposition 4.17. (ܶଷ in terms of topological closures)

A topological space (ܺ, ߬) is a regular Hausdorff space (def. 4.13), precisely if all
points are closed and for all points ݔ ∈ ܺ with open neighbourhood ܷ ⊃ there {ݔ}
exists a smaller open neighbourhood ܸ ⊃ whose topological closure {ݔ} Cl(ܸ) is still
contained in ܷ:

{ݔ} ⊂ ܸ ⊂ Cl(ܸ) ⊂ ܷ .

The proof of prop. 4.17 is the direct specialization of the following proof for prop.
4.18 to the case that ܥ = ,using that by ܶଵ, which is part of the definition of ܶଷ) {ݔ}
the singleton subset is indeed closed, by prop. 4.11).

Proposition 4.18. (ܶସ in terms of topological closures)

A topological space (ܺ, ߬) is normal Hausdorff space (def. 4.13), precisely if all
points are closed and for all closed subsets ܥ ⊂ ܺ with open neighbourhood ܷ ⊃ ܥ
there exists a smaller open neighbourhood ܸ ⊃ whose topological closure ܥ Cl(ܸ)
is still contained in ܷ:

ܥ ⊂ ܸ ⊂ Cl(ܸ) ⊂ ܷ .

Proof. In one direction, assume that (ܺ, ߬) is normal, and consider

ܥ ⊂ ܷ .

It follows that the complement of the open subset ܷ is closed and disjoint from ܥ:

ܥ ∩ ܺ\ܷ = ∅ .

Therefore by assumption of normality of (ܺ, ߬), there exist open neighbourhoods

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

58 of 153 18.05.17, 10:08



with

ܸ ⊃ ܥ , ܹ ⊃ ܺ\ܷ with ܸ ∩ ܹ = ∅ .

But this means that

ܸ ⊂ ܺ\ܹ

and since the complement ܺ\ܹ of the open set ܹ is closed, it still contains the
closure of ܸ, so that we have

ܥ ⊂ ܸ ⊂ Cl(ܸ) ⊂ ܺ\ܹ ⊂ ܷ

as required.

In the other direction, assume that for every open neighbourhood ܷ ⊃ of a closed ܥ
subset ܥ there exists a smaller open neighbourhood ܸ with

ܥ ⊂ ܸ ⊂ Cl(ܸ) ⊂ ܷ .

Consider disjoint closed subsets

,ଵܥ ଶܥ ⊂ ܺ , ଵܥ ∩ ଶܥ = ∅ .

We need to produce disjoint open neighbourhoods for them.

From their disjointness it follows that

ଶܥ\ܺ ⊃ ଵܥ

is an open neighbourhood. Hence by assumption there is an open neighbourhood ܸ
with

ଵܥ ⊂ ܸ ⊂ Cl(ܸ) ⊂ ଶܥ\ܺ .

Thus

ܸ ⊃ ଵܥ , ܺ\Cl(ܸ) ⊃ ଶܥ

are two disjoint open neighbourhoods, as required.  ▮

But the ܶସ/normality axiom has yet another equivalent reformulation, which is of a
different nature, and will be important when we discuss paracompact topological
spaces below:

The following concept of Urysohn functions is another approach of thinking about
separation of subsets in a topological space, not in terms of their neighbourhoods,
but in terms of continuous real-valued “indicator functions” that take different
values on the subsets. This perspective will be useful when we consider
paracompact topological spaces below.

But the Urysohn lemma (prop. 4.20 below) implies that this concept of separation
is in fact equivalent to that of normality of Hausdorff spaces.

Definition 4.19. (Urysohn function)
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Let (ܺ, ߬) be a topological space, and let ܣ, ܤ ⊂ ܺ be disjoint closed subsets. Then
an Urysohn function separating ܣ from ܤ is

a continuous function ݂ : ܺ → [0, 1]

to the closed interval equipped with its Euclidean metric topology (example 1.6,
example 2.9), such that

it takes the value 0 on ܣ and the value 1 on ܤ:

(ܣ)݂ = {0} and (ܤ)݂ = {1} .

Proposition 4.20. (Urysohn's lemma)

Let ܺ be a normal Hausdorff topological space (def. 4.13), and let ܣ, ܤ ⊂ ܺ be two
disjoint closed subsets of ܺ. Then there exists an Urysohn function separating ܣ
from ܤ (def. 4.19).

Remark 4.21. Beware, the Urysohn function in prop. 4.20 may take the values 0
or 1 even outside of the two subsets. The condition that the function takes value
0 or 1, respectively, precisely on the two subsets corresponds to “perfectly
normal spaces”.

Proof. of Urysohn's lemma, prop. 4.20

Set

ܥ ≔ ܣ ܷଵ ≔ ܤ\ܺ .

Since by assumption

ܣ ∩ ܤ = ∅ .

we have

ܥ ⊂ ܷଵ .

That (ܺ, ߬) is normal implies, by lemma 4.18, that every open neighbourhood ܷ ⊃ ܥ
of a closed subset ܥ contains a smaller neighbourhood ܸ together with its
topological closure Cl(ܸ)

ܷ ⊂ ܸ ⊂ Cl(ܸ) ⊂ ܥ .

Apply this fact successively to the above situation to obtain the following infinite
sequence of nested open subsets ܷ and closed subsets ܥ

ܥ ⊂ ܷଵ

ܥ ⊂ ܷଵ/ଶ ⊂ ଵ/ଶܥ ⊂ ܷଵ

ܥ ⊂ ܷଵ/ସ ⊂ ଵ/ସܥ ⊂ ܷଵ/ଶ ⊂ ଵ/ଶܥ ⊂ ܷଷ/ସ ⊂ ଷ/ସܥ ⊂ ܷଵ

and so on, labeled by the dyadic rational numbers ℚୢ୷ ⊂ ℚ within (0, 1]
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{ܷ ⊂ ܺ} ∈ (,ଵ] ∩ ℚౚ౯

with the property

∀
భ ழ మ ∈ (,ଵ] ∩ ℚౚ౯

൫ܷభ
⊂ Cl(ܷభ

) ⊂ ܷమ
൯ .

Define then the function

݂ : ܺ ⟶ [0, 1]

to assign to a point ݔ ∈ ܺ the
infimum of the labels of those
open subsets in this sequence
that contain ݔ:

(ݔ)݂ ≔ lim
ೝ ⊃ {௫}

ݎ

Here the limit is over the directed set of those ܷ that contain ݔ, ordered by reverse
inclusion.

This function clearly has the property that ݂(ܣ) = {0} and ݂(ܤ) = {1}. It only remains
to see that it is continuous.

To this end, first observe that

( ⋆ ) ݔ) ∈ Cl(ܷ)) ⇒ (ݔ)݂) ≤ (ݎ

( ⋆ ⋆ ) ݔ) ∈ ܷ) ⇐ (ݔ)݂) < (ݎ
.

Here it is immediate from the definition that (ݔ ∈ ܷ) ⇒ (ݔ)݂) ≤ and that (ݎ
(ݔ)݂) < (ݎ ⇒ ݔ) ∈ ܷ ⊂ Cl(ܷ)). For the remaining implication, it is sufficient to observe
that

ݔ) ∈ ∂ܷ) ⇒ (ݔ)݂) = (ݎ ,

where ∂ܷ ≔ Cl(ܷ)\ܷ is the boundary of ܷ.

This holds because the dyadic numbers are dense in ℝ. (And this would fail if we
stopped the above decomposition into ܷ/ଶ-s at some finite ݊.) Namely, in one

direction, if ݔ ∈ ∂ܷ then for every small positive real number ߳ there exists a
dyadic rational number ݎ′  with ݎ < ′ݎ < ݎ + ߳, and by construction ܷᇱ ⊃ Cl(ܷ) hence
ݔ ∈ ܷᇱ . This implies that lim

ೝ ⊃ {௫}
= .ݎ

Now we claim that for all ߙ ∈ [0, 1] then

݂ −ଵ( ,ߙ) 1] ) = ∪
 வ ఈ

(ܺ\Cl(ܷ))1. 

݂ −ଵ( [0, (ߙ ) = ∪
 ழ ఈ

ܷ2. 

Thereby ݂ −ଵ( ,ߙ) 1] ) and ݂ −ଵ( [0, (ߙ ) are exhibited as unions of open subsets, and
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hence they are open.

Regarding the first point:

ݔ ∈ ݂ −ଵ( ,ߙ) 1] )

⇔ (ݔ)݂ > ߙ

⇔ ∃
 வ ఈ

(ݔ)݂) > (ݎ

⟹
( ⋆ )

∃
 வ ఈ

ݔ) ∉ Cl(ܷ))

⇔ ݔ ∈ ∪
 வ ఈ

(ܺ\Cl(ܷ))

and

ݔ ∈ ∪
 வ ఈ

(ܺ\Cl(ܷ))

⇔ ∃
 வ ఈ

ݔ) ∉ Cl(ܷ))

⇒ ∃
 வ ఈ

ݔ) ∉ ܷ)

ሳ ሰልል
( ⋆ ⋆ )

∃
 வ ఈ

(ݔ)݂) ≥ (ݎ

⇔ (ݔ)݂ > ߙ

⇔ ݔ ∈ ݂ −ଵ( ,ߙ) 1] )

.

Regarding the second point:

ݔ ∈ ݂ −ଵ( [0, (ߙ )

⇔ (ݔ)݂ < ߙ

⇔ ∃
 ழ ఈ

(ݔ)݂) < (ݎ

ሳ ሰልል
( ⋆ ⋆)

∃
 ழ ఈ

ݔ) ∈ ܷ)

⇔ ݔ ∈ ∪
 ழ ఈ

ܷ

and

ݔ ∈ ∪
 ழ ఈ

ܷ

⇔ ∃
 ழ ఈ

ݔ) ∈ ܷ)

⇒ ∃
 ழ ఈ

ݔ) ∈ Cl(ܷ))

⟹
( ⋆)

∃
 ழ ఈ

(ݔ)݂) ≤ (ݎ

⇔ (ݔ)݂ < ߙ

⇔ ݔ ∈ ݂ −ଵ( [0, (ߙ )

.

(In these derivations we repeatedly use that (0, 1] ∩ ℚୢ୷ is dense in [0, 1] (def. 2.23),

and we use the contrapositions of ( ⋆ ) and ( ⋆ ⋆ ).)
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Now since the subsets {[0, ,(ߙ ,ߙ) 1]}ఈ ∈ [,ଵ] form a sub-base (def. 2.7) for the

Euclidean metric topology on [0, 1], it follows that all pre-images of ݂ are open,
hence that ݂ is continuous.  ▮

As a corollary of Urysohn's lemma we obtain yet another equivalent reformulation
of the normality of topological spaces, this one now of a rather different character
than the re-formulations in terms of explicit topological closures considered above:

Proposition 4.22. (normality equivalent to existence of Urysohn functions)

A ܶଵ-space (def. 4.4) is normal (def. 4.13) precisely if it admits Urysohn
functions (def 4.19) separating every pair of disjoint closed subsets.

Proof. In one direction this is the statement of the Urysohn lemma, prop. 4.20.

In the other direction, assume the existence of Urysohn functions (def. 4.19)
separating all disjoint closed subsets. Let ܣ, ܤ ⊂ ܺ be disjoint closed subsets, then
we need to show that these have disjoint open neighbourhoods.

But let ݂ : ܺ → [0, 1] be an Urysohn function with ݂(ܣ) = {0} and ݂(ܤ) = {1} then the
pre-images

ܷ ≔ ݂ −ଵ([0, 1/3) ܷ ≔ ݂ −ଵ((2/3, 1])

are disjoint open neighbourhoods as required.  ▮

ܶ reflection

While the topological subspace construction preserves the ܶ-property for n \in
\{0,1,2\ (example 4.9) the construction of quotient topological spaces in general
does not, as shown by examples 4.1 and 4.3.

Further below we will see that, generally, among all universal constructions in the
category Top of all topological spaces those that are limits preserve the ܶ

property, while those that are colimits in general do not.

But at least for ܶ, ܶଵ and ܶଶ there is a universal way, called reflection (prop. 4.23
below), to approximate any topological space “from the left” by a ܶ topological
spaces

Hence if one wishes to work within the full subcategory of the ܶ-spaces among all
topological space, then the correct way to construct quotients and other colimits
(see below) is to first construct them as usual quotient topological spaces (example
2.17), and then apply the ܶ-reflection to the result.

Proposition 4.23. (ܶ-reflection)

Let ݊ ∈ {0, 1, 2}. Then for every topological space ܺ there exists
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a ܶ-topological space ܶܺ1. 

a continuous function

(ܺ)ݐ : ܺ ⟶ ܶܺ

called the ܶ-reflection of ܺ,

2. 

which is the “closest approximation from the left” to ܺ by a ܶ-topological space,
in that for ܻ any ܶ-space, then continuous functions of the form

݂ : ܺ ⟶ ܻ

are in bijection with continuous function of the form

݂̃ : ܶܺ ⟶ ܻ

and such that the bijection is constituted by

݂ = ݂̃ ∘ (ܺ)ݐ : ܺ →⎯⎯⎯⎯
௧()

ܶܺ ⟶
̃

ܻ ݅ . ݁ . :

ܺ ⟶


ܻ

௧() ↘ ↗
̃

ܶܺ

.

For ݊ = 0 this is known as the Kolmogorov quotient construction (see prop.
4.26 below).

For ݊ = 2 this is known as Hausdorff reflection or Hausdorffication or similar.

Moreover, the operation ܶ( −) extends to continuous functions ݂: ܺ → ܻ

(ܺ →


ܻ) ↦ (ܶܺ ሱሮ⎯
்

ܻܶ)

such as to preserve composition of functions as well as identity functions:

ܶ݃ ∘ ݂ܶ = ܶ(݃ ∘ ݂) , ܶ id = id்

Finally, the comparison map is compatible with this in that

(ܻ)ݐ ∘ ݂ = ܶ(݂) ∘ (ܺ)ݐ ݅ . ݁ . :

ܺ ⟶


ܻ

௧() ↓ ↓௧()

ܶܺ →⎯⎯⎯⎯
்()

ܻܶ

.

We prove this via a concrete construction of ܶ-reflection in prop. 4.25 below. But
first we pause to comment on the bigger picture of the ܶ-reflection:

Remark 4.24. (reflective subcategories)

In the language of category theory (remark 3.3) the ܶ-reflection of prop. 4.23
says that
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ܶ(−) is a functor ܶ : Top ⟶ Top்
 from the category Top of topological

spaces to the full subcategory Top்
↪

ఐ
Top of Hausdorff topological spaces;

1. 

:(ܺ)ݐ ܺ → ܶܺ is a natural transformation from the identity functor on Top to
the functor ߡ ∘ ܶ

2. 

ܶ-topological spaces form a reflective subcategory of all topological spaces
in that ܶ is left adjoint to the inclusion functor ߡ; this situation is denoted as
follows:

Top்
⊥

ሊ ሮ⎯⎯
ఐ

←⎯⎯⎯
ு

Top .

3. 

Generally, an adjunction between two functors

ܮ : ࣝ ↔ ࣞ : ܴ

is for all pairs of objects ܿ ∈ ࣝ, ݀ ∈ ࣞ a bijection between sets of morphisms of the
form

(ܿ)ܮ} ⟶ ݀} ↔ {ܿ ⟶ ܴ(݀)} .

i.e.

Homࣞ(ܮ(ܿ), ݀) →⎯⎯⎯⎯⎯⎯
≃

థ,
Homࣝ(ܿ, ܴ(݀))

and such that these bijections are “natural” in that they for all pairs of
morphisms ݂ :ܿ′ → ܿ and ݃ :݀ → ݀′  then the folowing diagram commutes:

Homࣞ(ܮ(ܿ), ݀) →⎯⎯⎯⎯⎯⎯
≃

థ,
Homࣝ(ܿ, ܴ(݀))

݃ ∘ ( −) ∘ (݂)ܮ ↓ ↓ ܴ(݃) ∘ (−) ∘ ݂

Homࣝ(ܮ(ܿ′), ݀′ ) →⎯⎯⎯⎯⎯⎯
≃

థᇲ,ᇲ
Homࣞ(ܿ′ , ܴ(݀′))

.

One calls the image under ߶,() of the identity morphism id(௫) the unit of the

adjunction, written

௫ߟ : ܿ ⟶ ((ܿ)ܮ)ܴ .

One may show that it follows that the image ݂̃ under ߶,ௗ of a general morphism

݂ :ܿ → ݀ (called the adjunct of ݂) is given by this composite:

݂̃ : ܿ ⟶
ఎ ((ܿ)ܮ)ܴ →⎯⎯⎯

ோ()
ܴ(݀) .

In the case of the reflective subcategory inclusion (ܶ ⊣ of the category of (ߡ
ܶ-spaces into the category Top of all topological spaces this adjunction unit is
precisely the ܶ-reflection ݐ(ܺ) : ܺ → only that we originally left the) ((ܺ)ܶ)ߡ
re-embedding ߡ notationally implicit).
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There are various ways to see the existence and to construct the ܶ-reflections.
The following is the quickest way to see the existence, even though it leaves the
actual construction rather implicit.

Proposition 4.25. (ܶ-reflection via explicit quotients)

Let ݊ ∈ {0, 1, 2}. Let (ܺ, ߬) be a topological space and consider the equivalence
relation ∼ on the underlying set ܺ for which ݔଵ ∼ ଶ precisely if for everyݔ
surjective continuous function ݂ : ܺ → ܻ into any ܶ-topological space ܻ (def. 4.4)
we have ݂(ݔଵ) = :(ଶݔ)݂

ଵݔ) ∼ (ଶݔ ≔ ∀
ೊ ∈ ౦

 ሱ ሮ⎯⎯⎯⎯⎯⎯⎯⎯
surjective


ೊ

(ݔ)݂) = ((ݕ)݂ .

Then

the set of equivalence classes

ܶܺ ≔ ܺ/ ∼

equipped with the quotient topology (example 2.17) is a ܶ-topological
space,

1. 

the quotient projection

ܺ →⎯⎯⎯⎯
௧()

ܺ/ ∼

ݔ ሌ ሮ⎯⎯⎯ [ݔ]

exhibits the ܶ-reflection of ܺ, according to prop. 4.23.

2. 

Proof. First we observe that every continuous function ݂ : ܺ ⟶ ܻ into a
ܶ-topological space ܻ factors uniquely, via ݐ(ܺ) through a continuous function ݂̃
(this makes use of the “universal property” of the quotient topology, which we
dwell on a bit more below in example 6.3):

݂ = ݂̃ ∘ (ܺ)ݐ

Clearly this continuous function ݂̃ is unique if it exists, because its underlying
function of sets must be given by

݂̃ : [ݔ] ↦ (ݔ)݂ .

First observe that this is indeed well defined as a function of underlying sets. To
that end, factor ݂ through its image ݂(ܺ)

݂ : ܺ ⟶ ݂(ܺ) ↪ ܻ

equipped with its subspace topology as a subspace of ܻ (example 3.10). By prop.
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4.9 also the image ݂(ܺ) is a ܶ-topological space, since ܻ is. This means that if two
elements ݔଵ, ଶݔ ∈ ܺ have the same equivalence class, then, by definition of the
equivalence relation, they have the same image under all comntinuous surjective
functions into a ܶ-space, hence in particular they have the same image under

݂ : ܺ →⎯⎯⎯⎯⎯⎯
surjective

݂(ܺ) ↪ ܻ:

[ଵݔ]) = ([ଶݔ] ⇔ ଵݔ) ∼ (ଶݔ

⇒ (ଵݔ)݂) = ((ଶݔ)݂ .

This shows that ݂̃ is well defined as a function between sets.

To see that ݂̃ is also continuous, consider ܷ ∈ ܻ an open subset. We need to show

that the pre-image ݂̃
−ଵ

(ܷ) is open in ܺ/ ∼ . But by definition of the quotient
topology (example 2.17), this is open precisely if its pre-image under the quotient
projection ݐ(ܺ) is open, hence precisely if

((ܺ)ݐ) −ଵቀ݂̃
−ଵ

(ܷ)ቁ = ൫݂̃ ∘ (ܺ)൯ݐ
−ଵ

(ܷ)

= ݂ −ଵ(ܷ)

is open in ܺ. But this is the case by the assumption that ݂ is continuous. Hence ݂̃ is
indeed the unique continuous function as required.

What remains to be seen is that ܶܺ as constructed is indeed a ܶ-topological
space. Hence assume that [ݔ] ≠ [ݕ] ∈ ܶܺ are two distinct points. Depending on the
value of ݊, need to produce open neighbourhoods around one or both of these
points not containing the other point and possibly disjoint to each other.

Now by definition of ܶܺ the assumption [ݔ] ≠ means that there exists a [ݕ]

ܶ-topological space ܻ and a surjective continuous function ݂: ܺ →⎯⎯⎯⎯⎯⎯⎯
ୱ୳୰୨ୣୡ୲୧୴ୣ

ܻ such that
(ݔ)݂ ≠ (ݕ)݂ ∈ ܻ:

[ଵݔ]) ≠ ([ଶݔ] ⇔ ∃
ೊ ∈ ౦

 →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
surjective


ೊ

(ଵݔ)݂) ≠ ((ଶݔ)݂ .

Accordingly, since ܻ is ܶ, there exist the respective kinds of neighbourhoods
around ݂(ݔଵ) and ݂(ݔଶ) in ܻ. Moreover, by the previous statement there exists the

continuous function ݂̃ :ܶܺ → ܻ with ݂̃([ݔଵ]) = ([ଶݔ])݂̃ and (ଵݔ)݂ = By the nature .(ଶݔ)݂
of continuous functions, the pre-images of these open neighbourhoods in ܻ are still
open in ܺ and still satisfy the required disjunction properties. Therefore ܶܺ is a
ܶ-space.  ▮

Here are alternative constructions of the reflections:

Proposition 4.26. (Kolmogorov quotient)

Let (ܺ, ߬) be a topological space. Consider the relation on the underlying set by
which ݔଵ ∼  has an open neighbourhood not containing theݔ ଶ precisely if neitherݔ
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other. This is an equivalence relation. The quotient topological space ܺ → ܺ/ ∼  by
this equivalence relation (def. 2.17) exhibits the ܶ-reflection of ܺ according to
prop. 4.23.

A more explicit construction of the Hausdorff quotient than given by prop. 4.25 is
rather more involved. The issue is that the relation “ݔ and ݕ are not separated by
disjoint open neighbourhoods” is not transitive;

Proposition 4.27. (more explicit Hausdorff reflection)

For (ܻ, ߬) a topological space, write ݎ ⊂ ܻ × ܻ for the transitive closure of the
relation given by the topological closure Cl(߂) of the image of the diagonal
߂ : ܻ ↪ ܻ × ܻ.

ݎ ≔ Trans(Cl(Delta)) .

Now for (ܺ, ߬) a topological space, define by induction for each ordinal number ߙ
an equivalence relation ఈݍ ఈ on ܺ as follows, where we writeݎ : ܺ → ఈ(ܺ) for theܪ
corresponding quotient topological space projection:

We start the induction with the trivial equivalence relation:

ݎ
 ≔ ;߂

For a successor ordinal we set

ݎ
ఈ + ଵ ≔ ൛(ܽ, ܾ) ∈ ܺ × ܺ | ,(ܽ)ఈݍ) ((ܾ)ఈݍ ∈ ுഀ()ൟݎ

and for a limit ordinal we set ߙ

ݎ
ఈ ≔ ∪

ఉ ழ ఈ
ݎ

ఉ.

Then:

there exists an ordinal ߙ such that ݎ
ఈ = ݎ

ఈ + ଵ1. 

for this ߙ then ܪఈ(ܺ) =  .is the Hausdorff reflection from prop. 4.25.2 (ܺ)ܪ

A detailed proof is spelled out in (vanMunster 14, section 4).

Example 4.28. (Hausdorff reflection of the line with two origins)

The Hausdorff reflection (ܶଶ-reflection, prop. 4.23)

ܶଶ : Top ⟶ Topୌୟ୳ୱ

of the line with two origins from example 4.3 is the real line itself:

ܶଶ((ℝ ⊔ ℝ)/ ∼ ) ≃ ℝ .
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5. Sober spaces

While the original formulation of the separation axioms ܶ from def. 4.4 and def.
4.13 clearly does follow some kind of pattern, its equivalent reformulation in terms
of closure conditions in prop. 4.10, prop. 4.11, prop 4.12, prop. 4.17 and prop.
4.18 suggests rather different patterns. Therefore it is worthwhile to also consider
separation-like axioms that are not among the original list.

In particular, the alternative characterization of the ܶ-condition in prop. 4.10
immediately suggests the following strengthening, different from the ܶଵ-condition
(see example 5.5 below):

Definition 5.1. (sober topological space)

A topological space (ܺ, ߬) is called a sober topological space precisely if every
irreducible closed subspace (def. 2.32) is the topological closure (def. 2.23) of a
unique point, hence precisely if the function

Cl({ −}) : ܺ ⟶ IrrClSub(ܺ)

from the underlying set of ܺ to the set of irreducible closed subsets of ܺ (def.
2.31, well defined according to example 2.32) is bijective.

Proposition 5.2. (sober implies ܶ)

Every sober topological space (def. 5.1) is ܶ (def. 4.4).

Proof. By prop. 4.10.  ▮

Proposition 5.3. (Hausdorff spaces are sober)

Every Hausdorff topological space (def. 4.4) is a sober topological space (def.
5.1).

More specifically, in a Hausdorff topological space the irreducible closed
subspaces (def. 2.31) are precisely the singleton subspaces (def. 2.16).

Hence, by example 4.8, in particular every metric space with its metric topology
(example 2.9) is sober.

Proof. The second statement clearly implies the first. To see the second statement,
suppose that ܨ is an irreducible closed subspace which contained two distinct points
ݔ ≠ Then by the Hausdorff property there would be disjoint neighbourhoods .ݕ
ܷ௫, ܷ௬, and hence it would follow that the relative complements ௬ wereܷ\ܨ ௫ andܷ\ܨ
distinct closed proper subsets of ܨ with

ܨ = (௫ܷ\ܨ) ∪ (௬ܷ\ܨ)

in contradiction to the assumption that ܨ is irreducible.

This proves by contradiction that every irreducible closed subset is a singleton.
Conversely, generally the topological closure of every singleton is irreducible
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closed, by example 2.32.  ▮

By prop. 5.2 and prop. 5.3 we have the implications on the right of the following
diagram:

separation axioms

ܶଶ = Hausdorff

⇙ ⇘

ܶଵ sober

⇘ ⇙

ܶ = Kolmogorov

But there there is no implication betwee ܶଵ and sobriety:

Proposition 5.4. The intersection of the classes of sober topological spaces (def.
5.1) and ܶଵ-topological spaces (def. 4.4) is not empty, but neither class is
contained within the other.

That the intersection is not empty follows from prop. 5.3. That neither class is
contained in the other is shown by the following counter-examples:

Example 5.5. (ܶଵ neither implies nor is implied by sobriety)

The Sierpinski space (def. 2.11) is sober, but not ܶଵ.

The cofinite topology (example 2.14) on a non-finite set is ܶଵ but not sober.

Finally, sobriety is indeed strictly weaker that Hausdorffness:

Example 5.6. (schemes are sober but in general not Hausdorff)

The Zariski topology on an affine space (example 2.21) or more generally on the
prime spectrum of a commutative ring (example 2.22) is

sober (def 5.1);1. 

in general not Hausdorff (def. 4.4).2. 

For details see at Zariski topology this prop and this example.

Frames of opens

What makes the concept of sober topological spaces special is that for them the
concept of continuous functions may be expressed entirely in terms of the relations
between their open subsets, disregarding the underlying set of points of which
these opens are in fact subsets.

Recall from example 2.37 that for every continuous function ݂: (ܺ, ߬) → (ܻ, ߬) the
pre-image function ݂ −ଵ : ߬ → ߬ is a frame homomorphism (def. 2.35).
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For sober topological spaces the converse holds:

Proposition 5.7. If (ܺ, ߬) and (ܻ, ߬) are sober topological spaces (def. 5.1), then
for every frame homomorphism (def. 2.35)

߬ ⟵ ߬ : ߶

there is a unique continuous function ݂ : ܺ → ܻ such that ߶ is the function of
forming pre-images under ݂:

߶ = ݂ −ଵ .

Proof. We first consider the special case of frame homomorphisms of the form

߬* ⟵ ߬ : ߶

and show that these are in bijection to the underlying set ܺ, identified with the
continuous functions * → (ܺ, ߬) via example 3.6.

By prop. 2.38, the frame homomorphisms ߶ : ߬ → ߬* are identified with the
irreducible closed subspaces ܺ\ܷ∅(߶) of (ܺ, ߬). Therefore by assumption of sobriety
of (ܺ, ߬) there is a unique point ݔ ∈ ܺ with ܺ\ܷ∅ = Cl({ݔ}). In particular this means
that for ܷ௫ an open neighbourhood of ݔ, then ܷ௫ is not a subset of ܷ∅(߶), and so it
follows that ߶(ܷ௫) = {1}. In conclusion we have found a unique ݔ ∈ ܺ such that

߶ : ܷ ↦ ൝
{1} | if ݔ ∈ ܷ

∅ | otherwise
.

This is precisely the inverse image function of the continuous function * → ܺ which
sends 1 ↦ .ݔ

Hence this establishes the bijection between frame homomorphisms of the form
߬* ⟵ ߬ and continuous functions of the form * → (ܺ, ߬).

With this it follows that a general frame homomorphism of the form ߬ ⟵
థ

߬ defines

a function of sets ܺ ⟶


ܻ by composition:

ܺ ⟶


ܻ

(߬* ← ߬) ↦ (߬* ← ߬ ⟵
థ

߬)
.

By the previous analysis, an element ܷ ∈ ߬ is sent to {1} under this composite

precisely if the corresponding point * → ܺ ⟶


ܻ is in ܷ, and similarly for an element
ܷ ∈ ߬. It follows that ߶(ܷ) ∈ ߬ is precisely that subset of points in ܺ which are
sent by ݂ to elements of ܷ, hence that ߶ = ݂ −ଵ is the pre-image function of ݂.
Since ߶ by definition sends open subsets of ܻ to open subsets of ܺ, it follows that ݂
is indeed a continuous function. This proves the claim in generality.  ▮

Remark 5.8. (locales)
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Proposition 5.7 is often stated as saying that sober topological spaces are
equivalently the “locales with enough points” (Johnstone 82, II 1.). Here “locale”
refers to a concept akin to topological spaces where one considers just a “frame
of open subsets” ߬, without requiring that its elements be actual subsets of
some ambient set. The natural notion of homomorphism between such
generalized topological spaces are clearly the frame homomorphisms ߬ ← ߬ from
def. 2.35.

From this perspective, prop. 5.7 says that sober topological spaces (ܺ, ߬) are
entirely characterized by their frames of opens ߬ and just so happen to “have
enough points” such that these are actual open subsets of some ambient set,
namely of ܺ.

Sober reflection

We saw above in prop. 4.23 that every ܶ-toopological space for ݊ ∈ {0, 1, 2} has a
“best approximation from the left” by a ܶ-topological space (for ݊ = 2: “Hausdorff
reflection”). We now discuss the analogous statement for sober topological spaces.

Recall again the point topological space * ≔ ({1}, ߬* = {∅, {1}}) (example 2.10).

Definition 5.9. (sober reflection)

Let (ܺ, ߬) be a topological space.

Define ܵܺ to be the set

ܵܺ ≔ FrameHom(߬, ߬*)

of frame homomorphisms (def. 2.35) from the frame of opens of ܺ to that of the
point. Define a topology ߬ௌ ⊂ ܲ(ܵܺ) on this set by declaring it to have one
element ܷ̃ for each element ܷ ∈ ߬ and given by

ܷ̃ ≔ {߶ ∈ ܵܺ | ߶(ܷ) = {1}} .

Consider the function

ܺ ⟶
௦ ܵܺ

ݔ ↦ (const௫) −ଵ

which sends an element ݔ ∈ ܺ to the function which assigns inverse images of the
constant function const௫ : {1} → ܺ on that element.

We are going to call this function the sober reflection of ܺ.

Lemma 5.10. (sober reflection is well defined)

The construction (ܵܺ, ߬ௌ) in def. 5.9 is a topological space, and the function
ݏ : ܺ → ܵܺ is a continuous function
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ݏ : (ܺ, ߬) ⟶ (ܵܺ, ߬ௌ)

Proof. To see that ߬ௌ ⊂ ܲ(ܵܺ) is closed under arbitrary unions and finite
intersections, observe that the function

߬ ⟶
( −)

߬ௌ

ܷ ↦ ܷ̃

in fact preserves arbitrary unions and finite intersections. Whith this the statement
follows by the fact that ߬ is closed under these operations.

To see that (−) indeed preserves unions, observe that (e.g. Johnstone 82, II 1.3
Lemma)

 ∈ ∪
 ∈ ூ

ܷ ⇔ ∃
 ∈ ூ

(ܷ) = {1}

⇔ ∪
 ∈ ூ

(ܷ) = {1}

⇔ ቀ ∪
 ∈ ூ

ܷቁ = {1}

⇔  ∈ ∪
 ∈ ூ

ܷ

,

where we used that the frame homomorphism : ߬ → ߬* preserves unions. Similarly
for intersections, now with ܫ a finite set:

 ∈ ∩
 ∈ ூ

ܷ ⇔ ∀
 ∈ ூ

(ܷ) = {1}

⇔ ∩
 ∈ ூ

(ܷ) = {1}

⇔ ቀ ∩
 ∈ ூ

ܷቁ = {1}

⇔  ∈ ∩
 ∈ ூ

ܷ

,

where we used that the frame homomorphism  preserves finite intersections.

To see that ݏ is continuous, observe that ݏ
−ଵ(ܷ̃) = ܷ, by construction.  ▮

Lemma 5.11. (sober reflection detects ܶ and sobriety)

For (ܺ, ߬) a topological space, the function ݏ : ܺ → ܵܺ from def. 5.9 is

an injection precisely if (ܺ, ߬) is ܶ (def. 4.4);1. 

a bijection precisely if (ܺ, ߬) is sober (def. 5.1), in which case ݏ is in fact a
homeomorphism (def. 3.22).

2. 

Proof. By lemma 2.38 there is an identification ܵܺ ≃ IrrClSub(ܺ) and via this ݏ is
identified with the map ݔ ↦ Cl({ݔ}).

Hence the second statement follows by definition, and the first statement by prop.
4.10.
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That in the second case ݏ is in fact a homeomorphism follows from the definition
of the opens ܷ̃: they are identified with the opens ܷ in this case (…expand…).  ▮

Lemma 5.12. (soberification lands in sober spaces, e.g. Johnstone 82,
lemma II 1.7)

For (ܺ, ߬) a topological space, then the topological space (ܵܺ, ߬ௌ) from def. 5.9,
lemma 5.10 is sober.

Proof. Let ܵܺ\ܷ̃ be an irreducible closed subspace of (ܵܺ, ߬ௌ). We need to show
that it is the topological closure of a unique element ߶ ∈ ܵܺ.

Observe first that also ܺ\ܷ is irreducible.

To see this use prop. 2.34, saying that irreducibility of ܺ\ܷ is equivalent to
ܷଵ ∩ ܷଶ ⊂ ܷ ⇒ (ܷଵ ⊂ ܷ)or(ܷଶ ⊂ ܷ). But if ܷଵ ∩ ܷଶ ⊂ ܷ then also ܷ̃ଵ ∩ ܷ̃ଶ ⊂ ܷ̃ (as in the
proof of lemma 5.10) and hence by assumption on ܷ̃ it follows that ܷ̃ଵ ⊂ ܷ̃ or
ܷ̃ଶ ⊂ ܷ̃. By lemma 2.38 this in turn implies ܷଵ ⊂ ܷ or ܷଶ ⊂ ܷ. In conclusion, this
shows that also ܺ\ܷ is irreducible .

By lemma 2.38 this irreducible closed subspace corresponds to a point  ∈ ܵܺ. By
that same lemma, this frame homomorphism  :߬ → ߬* takes the value ∅ on all
those opens which are inside ܷ. This means that the topological closure of this
point is just ܵܺ\ܷ̃.

This shows that there exists at least one point of which ܺ\ܷ̃ is the topological
closure. It remains to see that there is no other such point.

So let ଵ ≠ ଶ ∈ ܵܺ be two distinct points. This means that there exists ܷ ∈ ߬ with

(ܷ)ଵ ≠ ଶ(ܷ). Equivalently this says that ܷ̃ contains one of the two points, but not

the other. This means that (ܵܺ, ߬ௌ) is T0. By prop. 4.10 this is equivalent to there
being no two points with the same topological closure.  ▮

Proposition 5.13. (unique factorization through soberification)

For (ܺ, ߬) any topological space, for (ܻ, ߬
ୱ୭ୠ) a sober topological space, and for

݂ :(ܺ, ߬) ⟶ (ܻ, ߬) a continuous function, then it factors uniquely through the
soberification ݏ :(ܺ, ߬) ⟶ (ܵܺ, ߬ௌ) from def. 5.9, lemma 5.10

(ܺ, ߬) ⟶


(ܻ, ߬
ୱ୭ୠ)

௦ ↓ ↗∃ !

(ܵܺ, ߬ௌ)

.

Proof. By the construction in def. 5.9, we find that the outer part of the following
square commutes:
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(ܺ, ߬) ⟶


(ܻ, ߬
ୱ୭ୠ)

௦ ↓ ↗ ↓௦ೄ

(ܵܺ, ߬ௌ) ⟶
ௌ

(ܵܵܺ, ߬ௌௌ)

.

By lemma 5.12 and lemma 5.11, the right vertical morphism ݏௌ is an isomorphism
(a homeomorphism), hence has an inverse morphism. This defines the diagonal
morphism, which is the desired factorization.

To see that this factorization is unique, consider two factorizations
݂̃, ݂̅̅ : : (ܵܺ, ߬ௌ) → (ܻ, ߬

ୱ୭ୠ) and apply the soberification construction once more to the
triangles

(ܺ, ߬) ⟶


(ܻ, ߬
ୱ୭ୠ)

௦ ↓ ↗̃, ̅̅̅ ̅

(ܵܺ, ߬ௌ)

↦

(ܵܺ, ߬ௌ) ⟶
ௌ

(ܻ, ߬
ୱ୭ୠ)

≃ ↓ ↗̃, ̅̅̅ ̅

(ܵܺ, ߬ௌ)

.

Here on the right we used again lemma 5.11 to find that the vertical morphism is
an isomorphism, and that ݂̃ and ݂̅̅ do not change under soberification, as they
already map between sober spaces. But now that the left vertical morphism is an
isomorphism, the commutativity of this triangle for both ݂̃ and ݂̅̅ implies that
݂̃ = ݂̅̅.  ▮

In summary we have found

Proposition 5.14. (sober reflection)

For every topological space ܺ there exists

a sober topological spaces ܵܺ;1. 

a continuous function ݏ : ܺ ⟶ ܵܺ2. 

such that …

As before for the ܶ-reflection in remark 4.24, the statement of prop. 5.14 may
neatly be re-packaged:

Remark 5.15. (sober topological spaces are a reflective subcategory)

In the language of category theory (remark 3.3) and in terms of the concept of
adjoint functors (remark 4.24), proposition 5.14 simply says that sober
topological spaces form a reflective subcategory Topୱ୭ୠ of the category Top of all

topological spaces

Topୱ୭ୠ ⊥
ሊሮ⎯
⟶

௦

Top .
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6. Universal constructions

We have seen above various construction principles for topological spaces above,
such as topological subspaces and topological quotient spaces. It turns out that
these constructions enjoy certain “universal properties” which allow us to find
continuous functions into or out of these spaces, respectively (examples 6.1,
example 6.2 and 6.3 below).

Since this is useful for handling topological spaces (we secretly used the universal
property of the quotient space construction already in the proof of prop. 4.25), we
next consider, in def. 6.11 below, more general “universal constructions” of
topological spaces, called limits and colimits of topological spaces (and to be
distinguished from limits in topological spaces, in the sense of convergence of
sequences as in def. 1.17).

Moreover, we have seen above that the quotient space construction in general does
not preserve the ܶ-separation property or sobriety property of topological spaces,
while the topological subspace construction does. The same turns out to be true for
the more general “colimiting” and “limiting” universal constructions. But we have
also seen that we may universally “reflect” any topological space to becomes a
ܶ-space or sober space. The remaining question then is whether this reflection
breaks the desired universal property. We discuss that this is not the case, that
instead the universal construction in all topological spaces followed by these
reflections gives the correct universal constructions in ܶ-separated and sober
topological spaces, respectively (remark 6.22 below).

After these general considerations, we finally discuss a list of examples of universal
constructions in topological spaces.

To motivate the following generalizations, first observe the universal properties
enjoyed by the basic construction principles of topological spaces from above

Example 6.1. (universal property of binary product topological space)

Let ܺଵ, ܺଶ be topological spaces. Consider their product topological space ܺଵ × ܺଶ

from example 2.18. By example 3.16 the two projections out of the product
space are continuous functions

ܺଵ ⟵
୮୰భ ܺଵ × ܺଶ ⟶

୮୰మ ܺଶ
.

Now let ܻ be any other topological space. Then, by composition, every continuous
function ܻ → ܺଵ × ܺଶ into the product space yields two continuous component
functions ݂ଵ and ݂ଶ:

ܻ
భ ↙ ↓ ↘మ

ܺଵ ⟵
୮୰భ

ܺଵ × ܺଶ ⟶
୮୰మ

ܺଶ

.
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But in fact these two components completely characterize the function into the
product: There is a (natural) bijection between continuous functions into the
product space and pairs of continuous functions into the two factor spaces:

{ܻ ⟶ ܺଵ × ܺଶ} ≃ ൝൭
ܻ ⟶ ܺଵ,

ܻ ⟶ ܺଶ

൱ൡ

i.e.:

Hom(ܻ, ܺଵ × ܺଶ) ≃ Hom(ܻ, ܺଵ) × Hom(ܻ, ܺଶ)

.

Example 6.2. (universal property of disjoint union spaces)

Let ܺଵ, ܺଶ be topological spaces. Consider their disjoint union space ܺଵ ⊔ ܺଶ from
example 2.15. By definition, the two inclusions into the disjoint union space are
clearly continuous functions

ܺଵ ⟶
భ ܺଵ ⊔ ܺଶ ⟵

మ ܺଶ .

Now let ܻ be any other topological space. Then by composition a continuous
function ܺଵ ⊔ ܺଶ ⟶ ܻ out of the disjoint union space yields two continuous
component functions ݂ଵ and ݂ଶ:

ܺଵ ⟵
భ ܺଵ ⊔ ܺଶ ⟶

మ ܺଶ

భ
↘ ↓ ↙మ

ܻ

.

But in fact these two components completely characterize the function out of the
disjoint union: There is a (natural) bijection between continuous functions out of
disjoint union spaces and pairs of continuous functions out of the two summand
spaces:

{ܺଵ ⊔ ܺଶ ⟶ ܻ} ≃ ൝൭
ܺଵ ⟶ ܻ,

ܺଶ ⟶ ܻ
൱ൡ

i.e.:

Hom(ܺଵ × ܺଶ, ܻ) ≃ Hom(ܺଵ, ܻ) × Hom(ܺଶ, ܻ)

.

Example 6.3. (universal property of quotient topological spaces)

Let ܺ be a topological space, and let ∼ be an equivalence relation on its
underlying set. Then the corresponding quotient topological space ܺ/ ∼  together
with the corresponding qutient continuous function : ܺ → ܺ/ ∼  has the following
universal property:

Given ݂ : ܺ ⟶ ܻ any continuous function out of ܺ with the property that it respects
the given equivalence relation, in that

ଵݔ) ∼ (ଶݔ ⇒ (ଵݔ)݂) = ((ଶݔ)݂

then there is a unique continuous function ݂̃ : ܺ/ ∼ ⟶ ܻ such that
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݂ = ݂̃ ∘  ݅ . ݁ .

ܺ ⟶


ܻ
 ↓ ↗∃ !̃

ܺ/ ∼

.

(We already made use of this universal property in the construction of the
ܶ-reflection in the proof of prop. 4.25.)

Proof. First observe that there is a unique function ݂̃ as claimed on the level of
functions of the underlying sets: In order for ݂ = ݂̃ ∘ to hold, ݂̃ must send an 
equivalence class in ܺ/ ∼  to one of its members

݂̃ : [ݔ] ↦ ݔ

and that this is well defined and independent of the choice of representative ݔ is
guaranteed by the condition on ݂ above.

Hence it only remains to see that ݂̃ defined this way is continuous, hence that for

ܷ ⊂ ܻ an open subset, then its pre-image ݂̃
−ଵ

(ܷ) ⊂ ܺ/ ∼  is open in the quotient
topology. By definition of the quotient topology (example 2.17), this is the case
precisely if its further pre-image under  is open in ܺ. But by the fact that ݂ = ݂̃ ∘ ,
this is the case by the continuity of ݂:

 −ଵቀ݂̃
−ଵ

(ܷ)ቁ = ൫݂̃ ∘ ൯
−ଵ

(ܷ)

= ݂ −ଵ(ܷ)
.

  ▮

This kind of example we now generalize.

Limits and colimits

We consider now the general definition of free diagrams of topological spaces (def.
6.4 below), their cones and co-cones (def. 6.9) as well as limiting cones and
colimiting cocones (def. 6.11 below).

Then we use these concepts to see generally (remark 6.22 below) why limits (such
as product spaces and subspaces) of ܶ ≤ ଶ-spaces and of sober spaces are again ܶ

or sober, respectively, and to see that the correct colimits (such as disjoint union
spaces and quotient spaces) of ܶ- or sober spaces are instead the ܶ-reflection
(prop. 4.23) or sober reflection (prop. 5.14), respectively, of these colimit
constructions performed in the context of unconstrained topological spaces.

Definition 6.4. (free diagram of sets/topological spaces)

A free diagram ܺ• of sets or of topological spaces is
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a set {ܺ} ∈ ூ of sets or of topological spaces, respectively;1. 

for every pair (݅, ݆) ∈ ܫ × of labels, a set ܫ {ܺ ⟶
ഀ ܺ}ఈ ∈ ூ,ೕ

 of functions of of

continuous functions, respectively, between these.

2. 

Here is a list of basic and important examples of free diagrams

discrete diagrams and the empty diagram (example 6.5);

pairs of parallel morphisms (example 6.6);

span and cospan diagram (example 6.7);

tower and cotower diagram (example 6.8).

Example 6.5. (discrete diagram and empty diagram)

Let ܫ be any set, and for each (݅, ݆) ∈ ܫ × ,ܫ let ܫ = ∅ be the empty set.

The corresponding free diagrams (def. 6.4) are simply a set of sets/topological
spaces with no specified (continuous) functions between them. This is called a
discrete diagram.

For example for ܫ = {1, 2, 3} the set with 3-elements, then such a diagram looks
like this:

ܺଵ ܺଶ ܺଷ .

Notice that here the index set may be empty set, ܫ = ∅, in which case the
corresponding diagram consists of no data. This is also called the empty diagram.

Definition 6.6. (parallel morphisms diagram)

Let ܫ = {ܽ, ܾ} be the set with two elements, and consider the sets

,ܫ ≔ ൝
{1, 2} | (݅ = ܽ) and (݆ = ܾ)

∅ | otherwise
ൡ .

The corresponding free diagrams (def. 6.4) are called pairs of parallel
morphisms. They may be depicted like so:

ܺ →⎯⎯⎯⎯⎯⎯
మ

→⎯⎯⎯⎯⎯⎯
భ

ܺ .

Example 6.7. (span and cospan diagram)

Let ܫ = {ܽ, ܾ, ܿ} the set with three elements, and set
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,ܫ =

⎧

⎨
⎩

⎪

⎪

{݂ଵ} | (݅ = ܿ) and (݆ = ܽ)

{݂ଶ} | (݅ = ܿ) and (݆ = ܾ)

∅ | otherwise

The corresponding free diagrams (def. 6.4) look like so:

ܺ

భ ↙ ↘మ

ܺ ܺ

.

These are called span diagrams.

Similary, there is the cospan diagram of the form

ܺ

భ ↗ ↖మ

ܺ ܺ

.

Example 6.8. (tower diagram)

Let ܫ = ℕ be the set of natural numbers and consider

,ܫ ≔ ൝
{݂,} | ݆ = ݅ + 1

∅ | otherwise

The corresponding free diagrams (def. 6.4) are called tower diagrams. They look
as follows:

ܺ →⎯⎯⎯⎯⎯
బ,భ

ܺଵ →⎯⎯⎯⎯⎯
భ,మ

ܺଶ →⎯⎯⎯⎯⎯
మ,య

ܺଷ ⟶ ⋯ .

Similarly there are co-tower diagram

ܺ ←⎯⎯⎯⎯⎯
బ,భ

ܺଵ ←⎯⎯⎯⎯⎯
భ,మ

ܺଶ ←⎯⎯⎯⎯⎯
మ,య

ܺଷ ⟵ ⋯ .

Definition 6.9. (cone over a free diagram)

Consider a free diagram of sets or of topological spaces (def. 6.4)

ܺ• = ൜ܺ ⟶
ഀ ܺൠ

, ∈ ூ,ఈ ∈ ூ,ೕ

.

Then

a cone over this diagram is

a set or topological space ܺ̃ (called the tip of the cone);1. 

for each ݅ ∈ a function or continuous function ܫ ܺ̃ ⟶
 ܺ2. 

1. 
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such that

for all (݅, ݆) ∈ ܫ × ߙ and all ܫ ∈ , then the conditionܫ

݂ఈ ∘  = 

holds, which we depict as follows:

ܺ̃
 ↙ ↘ೕ

ܺ ⟶
ഀ

ܺ

a co-cone over this diagram is

a set or topological space ܺ̃ (called the tip of the co-cone);1. 

for each ݅ ∈ ݍ a function or continuous function ܫ : ܺ ⟶ ܺ̃;2. 

such that

for all (݅, ݆) ∈ ܫ × ߙ and all ܫ ∈ , then the conditionܫ

ݍ ∘ ݂ఈ = ݍ

holds, which we depict as follows:

ܺ ⟶
ഀ ܺ


↘ ↙ೕ

ܺ̃

.

2. 

Example 6.10. (solutions to equations are cones)

Let ݂, ݃: ℝ → ℝ be two functions from the real numbers to themselves, and
consider the corresponding parallel morphism diagram of sets (example 6.6):

ℝ →⎯⎯⎯⎯⎯⎯
మ

→⎯⎯⎯⎯⎯⎯
భ

ℝ .

Then a cone (def. 6.9) over this free diagram with tip the singleton set * is a
solution to the equation (ݔ)݂ = (ݔ)݃

*
ୡ୭୬ୱ୲ೣ ↙ ↘ୡ୭୬ୱ୲

ℝ →⎯⎯⎯⎯⎯⎯
మ

→⎯⎯⎯⎯⎯⎯
భ

ℝ

.

Namely the components of the cone are two functions of the form
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cont௫, const௬ : * → ℝ

hence equivalently two real numbers, and the conditions on these are

݂ଵ ∘ const௫ = const௬ ݂ଶ ∘ const௫ = const௬ .

Definition 6.11. (limiting cone over a diagram)

Consider a free diagram of sets or of topological spaces (def. 6.4):

൜ܺ ⟶
ഀ ܺൠ

, ∈ ூ,ఈ ∈ ூ,ೕ

.

Then

its limiting cone (or just limit for short, also “inverse limit”, for historical
reasons) is the cone

⎧

⎨

⎩

⎪

⎪

lim←⎯⎯
ܺ

 ↙ ↘ೕ

ܺ ⟶
ഀ

ܺ

⎫

⎬

⎭

⎪

⎪

over this diagram (def. 6.9) which is universal among all possible cones, in
that for

⎧

⎨

⎩

⎪

⎪

ܺ̃
ᇱ ↙ ↘ᇱೕ

ܺ ⟶
ഀ

ܺ

⎫

⎬

⎭

⎪

⎪

any other cone, then there is a unique function or continuous function,
respectively

߶ : ܺ̃ ⟶ lim→⎯⎯ 
ܺ

that factors the given cone through the limiting cone, in that for all ݅ ∈ then ܫ

′ =  ∘ ߶

which we depict as follows:

ܺ̃

∃ ! థ ↓ ↘ᇱ

lim→⎯⎯ 
ܺ ⟶


ܺ

1. 

its colimiting cocone (or just colimit for short, also “direct limit”, for
historical reasons) is the cocone

2. 
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⎧

⎨

⎩

⎪

⎪

ܺ ⟶
ഀ ܺ

 ↘ ↙ೕ

lim→⎯⎯ 
ܺ

⎫

⎬

⎭

⎪

⎪

under this diagram (def. 6.9) which is universal among all possible co-cones,
in that it has the property that for

⎧

⎨

⎩

⎪

⎪

ܺ ⟶
ഀ ܺ

ᇱ ↘ ↙ᇱೕ

ܺ̃

⎫

⎬

⎭

⎪

⎪

any other cocone, then there is a unique function or continuous function,
respectively

߶ : lim→⎯⎯ 
ܺ ⟶ ܺ̃

that factors the given co-cone through the co-limiting cocone, in that for all
݅ ∈ then ܫ

′ݍ = ߶ ∘ ݍ

which we depict as follows:

ܺ ⟶
 lim→⎯⎯ 

ܺ

ᇱ
↘ ↓ ∃ !థ

ܺ̃

We now briefly mention the names and comment on the general nature of the
limits and colimits over the free diagrams from the list of examples above. Further
below we discuss examples in more detail.

shapes of free diagrams and the names of their limits/colimits

free diagram limit/colimit
empty diagram terminal object/initial object
discrete diagram product/coproduct
parallel morphisms equalizer/coequalizer
span/cospan pullback,fiber product/pushout
tower/cotower sequential limit/sequential colimit

Example 6.12. (initial object and terminal object)

Consider the empty diagram (def. 6.5).
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A cone over the empty diagram is just an object ܺ, with no further structure
or condition. The universal property of the limit “⊤” over the empty diagram
is hence that for every object ܺ, there is a unique map of the form ܺ → ⊤ ,
with no further condition. Such an object ⊤ is called a terminal object.

1. 

A co-cone over the empty diagram is just an object ܺ, with no further
structure or condition. The universal property of the colimit “⊥” over the
empty diagram is hence that for every object ܺ, there is a unique map of
the form ⊥ → ܺ. Such an object ⊥ is called an initial object.

2. 

Example 6.13. (Cartesian product and coproduct)

Let {ܺ} ∈ ூ be a discrete diagram (example 6.5), i.e. just a set of objects.

The limit over this diagram is called the Cartesian product, denoted ∏ ∈ ூ ܺ;1. 

The colimit over this diagram is called the coproduct, denoted ∐ ∈ ூ ܺ.2. 

Example 6.14. (equalizer)

Let

ܺଵ ⟶
మ

⟶
భ

ܺଶ

be a free diagram of the shape “pair of parallel morphisms” (example 6.6).

A limit over this diagram according to def. 6.11 is also called the equalizer of the
maps ݂ଵ and ݂ଶ. This is a set or topological space eq(݂ଵ, ݂ଶ) equipped with a map

eq(݂ଵ, ݂ଶ) ⟶
భ ܺଵ, so that ݂ଵ ∘ ଵ = ݂ଶ ∘ ܻ ଵ and such that if → ܺଵ is any other map

with this property

ܻ

↓ ↘

eq(݂ଵ, ݂ଶ) ⟶
భ ܺଵ ⟶

మ

⟶
భ

ܺଶ

then there is a unique factorization through the equalizer:

ܻ
∃ ! ↙ ↓ ↘

eq(݂ଵ, ݂ଶ) ⟶
భ ܺଵ ⟶

మ

⟶
భ

ܺଶ

.

In example 6.10 we have seen that a cone over such a pair of parallel morphisms
is a solution to the equation ݂ଵ(ݔ) = ݂ଶ(ݔ).

The equalizer above is the space of all solutions of this equation.
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Example 6.15. (pullback/fiber product and coproduct)

Consider a cospan diagram (example 6.7)

ܻ

↓

ܺ ⟶


ܼ

.

The limit over this diagram is also called the fiber product of ܺ with ܻ over ܼ, and
denoted ܺ ×


ܻ. Thought of as equipped with the projection map to ܺ, this is also

called the pullback of ݂ along ݃

ܺ ×


ܼ ⟶ ܻ

↓ (pb) ↓

ܺ ⟶


ܼ

.

Dually, consider a span diagram (example 6.7)

ܼ ⟶


ܻ
 ↓

ܺ

The colimit over this diagram is also called the pushout of ݂ along ݃, denoted
ܺ ⊔


ܻ:

ܼ ⟶


ܻ
 ↓ (po) ↓

ܺ ⟶ ܺ ⊔


ܻ

Often the defining universal property of a limit/colimit construction is all that one
wants to know. But sometimes it is useful to have an explicit description of the
limits/colimits, not the least because this proves that these actually exist. Here is
the explicit description of the (co-)limiting cone over a diagram of sets:

Proposition 6.16. (limits and colimits of sets)

Let

൜ܺ ⟶
ഀ ܺൠ

, ∈ ூ,ఈ ∈ ூ,ೕ

be a free diagram of sets (def. 6.4). Then

its limit cone (def. 6.11) is given by the following subset of the Cartesian
product ∏ ∈ ூ ܺ of all the sets ܺ appearing in the diagram

1. 
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lim←⎯⎯
ܺ ሊ ሮ⎯⎯⎯ ෑ

 ∈ ூ

ܺ

on those tuples of elements which match the graphs of the functions
appearing in the diagram:

lim←⎯⎯
ܺ ≃ ൞(ݔ) ∈ ூ | ∀

,ೕ ∈ 

ഀ ∈ ,ೕ

൫݂ఈ(ݔ) = ൯ൢݔ

and the projection functions are  : (ݔ) ∈ ூ ↦ .ݔ

its colimiting co-cone (def. 6.11) is given by the quotient set of the disjoint
union ⊔

 ∈ ூ
ܺ of all the sets ܺ appearing in the diagram

⊔
 ∈ ூ

ܺ →⎯⎯⎯ lim→⎯⎯  ∈ ூ
ܺ

with respect to the equivalence relation which is generated from the graphs
of the functions in the diagram:

lim→⎯⎯ 
ܺ ≃ ( ⊔

 ∈ ூ
ܺ)/൮(ݔ ∼ (′ݔ ⇔ ൮ ∃

,ೕ ∈ 

ഀ ∈ ,ೕ

൫݂ఈ(ݔ) = ′ݔ ൯൲൲

and the injection functions are the evident maps to equivalence classes:

ݍ : ݔ ↦ [ݔ] .

2. 

Proof. We dicuss the proof of the first case. The second is directly analogous.

First observe that indeed, by construction, the projection maps  as given do make

a cone over the free diagram, by the very nature of the relation that is imposed on
the tuples:

൞(ݔ) ∈ ூ | ∀
,ೕ ∈ 

ഀ ∈ ,ೕ

൫݂ఈ(ݔ) = ൯ൢݔ

 ↙ ↘ೕ

ܺ ⟶
ഀ

ܺ

.

We need to show that this is universal, in that every other cone over the free
diagram factors universally through this one. First consider the case that the tip of
a given cone is a singleton:

*
ᇱ ↙ ↘ᇱೕ

ܺ ⟶
ഀ

ܺ

=

*
ୡ୭୬ୱ୲ೣᇲ ↙ ↘

ୡ୭୬ୱ୲ೣᇲೕ

ܺ ⟶
ഀ

ܺ

.
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As shown on the right, the data in such a cone is equivantly: for each ݅ ∈ an ܫ
element ݔ′ ∈ ܺ, such that for all ݅, ݆ ∈ ߙ and ܫ ∈ ′ݔ), then ݂ఈܫ ) = ′ݔ . But this is

precisely the relation used in the construction of the limit above and hence there is
a unique map

* →⎯⎯⎯⎯⎯⎯
(௫ᇱ ) ∈  ൞(ݔ) ∈ ூ | ∀

,ೕ ∈ 

ഀ ∈ ,ೕ

൫݂ఈ(ݔ) = ൯ൢݔ

such that for all ݅ ∈ we have ܫ

*

↓ ↘ᇱ

൞(ݔ) ∈ ூ | ∀
,ೕ ∈ 

ഀ ∈ ,ೕ

൫݂ఈ(ݔ) = ൯ൢݔ ⟶


ܺ

namely that map is the one that picks the element (ݔ′ ) ∈ ூ.

This shows that every cone with tip a singleton factors uniquely through the
claimed limiting cone. But then for a cone with tip an arbitrary set ܻ, this same
argument applies to all the single elements of ܻ.  ▮

It will turn out below in prop. 6.20 that limits and colimits of diagrams of
topological spaces are computed by first applying prop. 6.16 to the underlying
diagram of underlying sets, and then equipping the result with a topology as
follows:

Definition 6.17. (initial topology and final topology)

Let {(ܺ, ߬)} ∈ ூ be a set of topological spaces, and let ܵ be a bare set. Then

For

{ܵ →⎯⎯⎯⎯⎯⎯
 ܺ} ∈ ூ

a set of functions out of ܵ, the initial topology ߬୧୬୧୲୧ୟ୪({} ∈ ூ) is the coarsest

topology on ܵ (def. 6.17) such that all ݂ : (ܵ, ߬୧୬୧୲୧ୟ୪({} ∈ ூ)) ⟶ ܺ are

continuous.

By lemma 2.8 this is equivalently the topology whose open subsets are the
unions of finite intersections of the preimages of the open subsets of the
component spaces under the projection maps, hence the topology generated
from the sub-base

({})୧୬୧ߚ = ൛
−ଵ(ܷ) | ݅ ∈ ,ܫ ܷ ⊂ ܺ openൟ .

For
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{ܺ →⎯⎯⎯⎯⎯⎯
 ܵ} ∈ ூ

a set of functions into ܵ, the final topology ߬୧୬ୟ୪({݂} ∈ ூ) is the finest topology

on ܵ (def. 6.17) such that all ݍ : ܺ ⟶ (ܵ, ߬୧୬ୟ୪({݂} ∈ ூ)) are continuous.

Hence a subset ܷ ⊂ ܵ is open in the final topology precisely if for all ݅ ∈ then ܫ
the pre-image ݍ

−ଵ(ܷ) ⊂ ܺ is open.

Beware a variation of synonyms that is in use:

limit topology colimit topology

initial topology final topology

 weak topology  strong topology 

 coarse topology  fine topology 

We have already seen above simple examples of initial and final topologies:

Example 6.18. (subspace topology as an initial topology)

For (ܺ, ߬) a single topological space, and ݍ: ܵ ↪ ܺ a subset of its underlying set,
then the initial topology ߬୧୬୲୧ୟ୪(), def. 6.17, is the subspace topology from
example 2.16, making

 : (ܵ, ߬୧୬୧୲୧ୟ୪()) ሊሮ⎯ ܺ

a topological subspace inclusion.

Example 6.19. (quotient topology as a final topology)

Conversely, for (ܺ, ߬) a topological space and for ݍ: ܺ ⟶ ܵ a surjective function out
of its underlying set, then the final topology ߬୧୬ୟ୪(ݍ) on ܵ, from def. 6.17, is the
quotient topology from example 2.17, making ݍ a continuous function:

ݍ : (ܺ, ߬) ⟶ (ܵ, ߬୧୬ୟ୪(ݍ)) .

Now we have all the ingredients to explicitly construct limits and colimits of
diagrams of topological spaces:

Proposition 6.20. (limits and colimits of topological spaces)

Let

൜(ܺ, ߬) →⎯⎯⎯⎯⎯⎯⎯
ഀ (ܺ, ߬)ൠ

, ∈ ூ,ఈ ∈ ூ,ೕ

be a free diagram of topological spaces (def. 6.4).

The limit over this free diagram (def. 6.11) is given by the topological space

whose underlying set is the limit of the underlying sets according to
prop. 6.16;

1. 

1. 
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whose topology is the initial topology, def. 6.17, for the functions 

which are the limiting cone components:

2. 

lim←⎯⎯ ∈ ூ
ܺ

 ↙ ↘ೕ

ܺ ⟶ ܺ

.

Hence

lim←⎯⎯ ∈ ூ
(ܺ, ߬) ≃ ൬lim←⎯⎯ ∈ ூ

ܺ, ߬୧୬୧୲୧ୟ୪൫{} ∈ ூ൯൰

The colimit over the free diagram (def. 6.11) is the topological space

whose underlying set is the colimit of sets of the underlying diagram of
sets according to prop. 6.16,

1. 

whose topology is the final topology, def. 6.17 for the component maps
 of the colimiting coconeߡ

2. 

ܺ ⟶ ܺ


↘ ↙ೕ

lim→⎯⎯  ∈ ூ
ܺ

.

Hence

lim→⎯⎯  ∈ ூ
(ܺ, ߬) ≃ ൬lim→⎯⎯  ∈ ூ

ܺ, ߬୧୬ୟ୪({ݍ} ∈ ூ)൰

2. 

(e.g. Bourbaki 71, section I.4)

Proof. We discuss the first case, the second is directly analogous:

Consider any cone over the given free diagram:

(ܺ̃, ߬̃)
ᇱ ↙ ↘ᇱೕ

(ܺ, ߬) ⟶ (ܺ, ߬)

By the nature of the limiting cone of the underlying diagram of underlying sets,
which always exists by prop. 6.16, there is a unique function of underlying sets of
the form

߶ : ܺ̃ ⟶ lim←⎯⎯ ∈ ூ
ܵ

satisfying the required conditions  ∘ ߶ = ′ . Since this is already unique on the

underlying sets, it is sufficient to show that this function is always continuous with
respect to the initial topology.
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Hence let ܷ ⊂ lim←⎯⎯
ܺ be in ߬୧୬୧୲୧ୟ୪({}). By def. 6.17, this means that ܷ is a union of

finite intersections of subsets of the form 
−ଵ(ܷ) with ܷ ⊂ ܺ open. But since taking

pre-images preserves unions and intersections, and since unions and intersections
of opens in (ܺ̃, ߬̃) are again open, it is sufficient to consider ܷ of the form
ܷ = 

−ଵ(ܷ). But then by the condition that  ∘ ߶ = ′  we find

߶ −ଵ൫
−ଵ(ܷ)൯ = ൫ ∘ ߶൯

−ଵ
(ܷ)

= ′) ) −ଵ(ܷ) ,

and this is open by the assumption that ′  is continuous.  ▮

We discuss a list of examples of (co-)limits of topological spaces in a moment
below, but first we conclude with the main theoretical impact of the concept of
topological (co-)limits for our our purposes.

Here is a key property of (co-)limits:

Proposition 6.21. (functions into a limit cone are the limit of the functions
into the diagram)

Let {ܺ ⟶
ഀ ܺ}, ∈ ூ,ఈ ∈ ூ,ೕ

 be a free diagram (def. 6.4) of sets or of topological

spaces.

If the limit lim←⎯⎯
ܺ ∈ ࣝ exists (def. 6.11), then the set of (continuous) function

into this limiting object is the limit over the sets Hom( −, −) of (continuous)
functions (“homomorphisms”) into the components ܺ:

Hom൬ ܻ , lim←⎯⎯
ܺ ൰ ≃ lim←⎯⎯

(Hom( ܻ , ܺ )) .

Here on the right we have the limit over the free diagram of sets given by
the operations ݂ఈ ∘ ( −) of post-composition with the maps in the original

diagram:

൜Hom(ܻ, ܺ) →⎯⎯⎯⎯⎯⎯⎯
ഀ ∘( −)

Hom(ܻ, ܺ)ൠ
, ∈ ூ,ఈ ∈ ூ,ೕ

.

1. 

If the colimit lim→⎯⎯ 
ܺ ∈ ࣝ exists, then the set of (continuous) functions out of

this colimiting object is the limit over the sets of morphisms out of the
components of ܺ:

Hom൬ lim→⎯⎯ 
ܺ , ܻ ൰ ≃ lim←⎯⎯

(Hom( ܺ , ܻ )) .

Here on the right we have the colimit over the free diagram of sets given by
the operations ( −) ∘ ݂ఈ of pre-composition with the original maps:

2. 
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൜Hom(ܺ, ܻ) →⎯⎯⎯⎯⎯⎯⎯
(−) ∘ഀ Hom(ܺ, ܻ)ൠ

, ∈ ூ,ఈ ∈ ூ,ೕ

.

Proof. We give the proof of the first statement. The proof of the second statement
is directly analogous (just reverse the direction of all maps).

First observe that, by the very definition of limiting cones, maps out of some ܻ into

them are in natural bijection with the set Cones൬ܻ, {ܺ →⎯
ഀ ܺ}൰ of cones over the

corresponding diagram with tip ܻ:

Hom൬ܻ, lim←⎯⎯
ܺ൰ ≃ Cones൬ܻ, {ܺ →⎯

ഀ ܺ}൰ .

Hence it remains to show that there is also a natural bijection like so:

Cones൬ܻ, {ܺ →⎯
ഀ ܺ}൰ ≃ lim←⎯⎯

(Hom(ܻ, ܺ)) .

Now, again by the very definition of limiting cones, a single element in the limit on
the right is equivalently a cone of the form

⎧

⎨

⎩

⎪

⎪

*
ୡ୭୬ୱ୲ ↙ ↘

ୡ୭୬ୱ୲ೕ

Hom(ܻ, ܺ) →⎯⎯⎯⎯⎯
ഀ ∘( −)

Hom(ܻ, ܺ)

⎫

⎬

⎭

⎪

⎪

.

This is equivalently for each ݅ ∈  a choice of map ܫ :ܻ → ܺ , such that for each

݅, ݆ ∈ ߙ and ܫ ∈ , we have ݂ఈܫ ∘  = . And indeed, this is precisely the

characterization of an element in the set Cones൬ܻ, {ܺ →⎯
ഀ ܺ}൰.  ▮

Using this, we find the following:

Remark 6.22. (limits and colimits in categories of nice topological spaces)

Recall from remark 4.24 the concept of adjoint functors

ࣝ ⊥→⎯⎯
ோ

←⎯⎯⎯


ࣞ

witnessed by natural isomorphisms

Homࣞ(ܮ(ܿ), ݀) ≃ Homࣝ(ܿ, ܴ(݀)) .

Then:

the left adjoint functor preserve colimits (def. 6.11) ܮ

in that for every diagram {ܺ →⎯
ഀ ܺ} in ࣞ there is a natural isomorphism of the

form

1. 
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⎯⎯→൬limܮ 
ܺ൰ ≃ lim→⎯⎯ 

(ܺ)ܮ

the right adjoint functor ܴ preserve limits (def. 6.11)

in that for every diagram {ܺ →⎯
ഀ ܺ} in ࣝ there is a natural isomorphism of the

form

ܴ൬lim←⎯⎯
ܺ൰ ≃ lim←⎯⎯

ܴ(ܺ) .

2. 

This implies that if we have a reflective subcategory of topological spaces

Top୬୧ୡୣ ⊥
ሊ ሮ⎯⎯⎯⎯⎯

ఐ

←⎯⎯⎯⎯⎯


Top

(such as with ܶ ≤ ଶ-spaces according to remark 4.24 or with sober spaces
according to remark 5.15)

then

limits in Top୬୧ୡୣ are computed as limits in Top;1. 

colimits in Top୬୧ୡୣ are computed as the reflection ܮ of the colimit in Top.2. 

For example let {(ܺ, ߬) →⎯
ഀ (ܺ, ߬)} be a diagram of Hausdorff spaces, regarded as

a diagram of general topological spaces. Then

not only is the limit of topological spaces lim←⎯⎯
(ܺ, ߬) according to prop. 6.20

again a Hausdorff space, but it also satisfies its universal property with
respect to the category of Hausdorff spaces;

1. 

not only is the reflection ܶଶ൬lim→⎯⎯ 
ܺ൰ of the colimit as topological spaces a

Hausdorff space (while the colimit as topological spaces in general is not),
but this reflection does satisfy the universal property of a colimit with
respect to the category of Hausdorff spaces.

2. 

Proof. First to see that right/left adjoint functors preserve limits/colimits: We
discuss the case of the right adjoint functor preserving limits. The other case is
directly anlogous (just reverse the direction of all arrows).

So let lim←⎯⎯
ܺ be the limit over some diagram ൜ܺ →⎯

ഀ ܺൠ
, ∈ ூ,ఈ ∈ ூ,ೕ

. To test what a right

adjoint functor does to this, we may map any object ܻ into it. Using prop. 6.21 this
yields
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Hom(ܻ, ܴ(lim←⎯⎯
ܺ)) ≃ Hom(ܮ(ܻ), lim←⎯⎯

ܺ)

≃ lim←⎯⎯
Hom(ܮ(ܻ), ܺ)

≃ lim←⎯⎯
Hom(ܻ, ܴ(ܺ))

≃ Hom(ܻ, lim←⎯⎯
ܴ(ܻ)) .

Since this is true for all ܻ, it follows that

ܴ(limርሲ⎯ 
ܺ) ≃ limርሲ⎯ 

ܴ(ܺ) .

Now to see that limits/colimits in the reflective subcategory are computed as
claimed;

(…)  ▮

Examples

We now discuss a list of examples of universal constructions of topological spaces
as introduced in generality above.

examples of universal constructions of topological spaces:

limits colimits

point space empty space

product topological space disjoint union topological space

topological subspace quotient topological space

 fiber space space attachment

mapping cocylinder, mapping
cocone

mapping cylinder, mapping cone, mapping
telescope

cell complex, CW-complex

Example 6.23. (empty space and point space as empty colimit and limit)

Consider the empty diagram (example 6.5) as a diagram of topological spaces.
By example 6.12 the limit and colimit (def. 6.11) over this type of diagram are
the terminal object and initial object, respectively. Applied to topological spaces
we find:

The limit of topological spaces over the empty diagram is the point space *
(example 2.10).

1. 

The colimit of topological spaces over the empty diagram is the empty
topological space ∅ (example 2.10).

2. 

This is because for an empty diagram, the a (co-)cone is just a topological space,
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without any further data or properties, and it is universal precisely if there is a
unique continuous function to (respectively from) this space to any other space
ܺ. This is the case for the point space (respectively empty space) by example
3.5:

∅ →⎯⎯⎯⎯⎯⎯
∃ !

(ܺ, ߬) →⎯⎯⎯⎯⎯⎯
∃ !

* .

Example 6.24. (binary product topological space and disjoint union space
as limit and colimit)

Consider a discrete diagram consisting of two topological spaces (ܺ, ߬), (ܻ, ߬)

(example 6.5). Generally, it limit and colimit is the product ܺ × ܻ and coproduct
ܺ ⊔ ܻ, respectively (example 6.13).

In topological space this product is the binary product topological space
from example 2.18, by the universal property observed in example 6.1:

(ܺ, ߬) × (ܻ, ߬) ≃ (ܺ × ܻ, ߬ × ) .

1. 

In topological spaces, this coproduct is the disjoint union space from
example 2.15, by the universal property observed in example 6.2:

(ܺ, ߬) ⊔ (ܻ, ߬) ≃ (ܺ ⊔ ܻ, ߬ ⊔ ) .

2. 

So far these examples just reproduces simple constructions which we already
considered. Now the first important application of the general concept of limits of
diagrams of topological spaces is the following example 6.25 of product spaces with
an non-finite set of factors. It turns out that the correct topology on the underlying
infinite Cartesian product of sets is not the naive generalization of the binary
product topology, but instead is the corresponding weak topology, which in this
case is called the Tychonoff topology:

Example 6.25. (general product topological spaces with Tychonoff
topology)

Consider an arbitrary discrete diagram of topological spaces (def. 6.5), hence a
set {(ܺ, ߬)} ∈ ூ of topological spaces, indexed by any set not necessarily a finite ,ܫ

set.

The limit over this diagram (a Cartesian product, example 6.13) is called the
product topological space of the spaces in the diagram, and denoted

ෑ
 ∈ ூ

(ܺ, ߬) .

By prop. 6.16 and prop. 6.18, the underlying set of this product space is just the
Cartesian product of the underlying sets, hence the set of tuples ݔ) ∈ ܺ) ∈ ூ. This

comes for each ݅ ∈ with the projection map ܫ
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∏ ∈ ூ ܺ ⟶
୮୰ ܺ

(ݔ) ∈ ூ ሌ ሮ⎯⎯⎯ ݔ

.

By prop. 6.18 and def. 6.17, the topology on this set is the coarsest topology
such that the pre-images pr(ܷ) of open subsets ܷ ⊂ ܺ under these projection

maps are open. Now one such pre-image is a Cartesian product of open subsets
of the form


−ଵ(ܷ) = ܷ × ൬ ෑ

 ∈ ூ\{}

ܺ൰ ⊂ ෑ
 ∈ ூ

ܺ .

The coarsest topology that contains these open subsets ist that generated by
these subsets regarded as a sub-basis for the topology (def. 2.7), hence the
arbitrary unions of finite intersections of subsets of the above form.

Observe that a binary intersection of these generating open is (for ݅ ≠ ݆):


−ଵ(ܷ) ∩ 

−ଵ(ܷ) ≃ ܷ × ܷ × ൬ ෑ
 ∈ ூ\{.}

ܺ൰

and generally for a finite subset ܬ ⊂ then ܫ

∩
 ∈  ⊂ ூ


−ଵ(ܷ) = ൬ ෑ

 ∈  ⊂ ூ

ܷ൰ × ൬ ෑ
 ∈ ூ\

ܺ൰ .

Therefore the open subsets of the product topology are unions of those of this
form. Hence the product topology is equivalently that generated by these subsets
when regarded as a basis for the topology (def. 2.7).

This is also known as the Tychonoff topology.

Notice the subtlety: Naively we could have considered as open subsets the
unions of products ∏ ∈ ூ ܷ of open subsets of the factors, without the constraint

that only finitely many of them differ from the corresponding total space. This
also defines a topology, called the box topology. For a finite index set the box ܫ
topology coincides with the product space (Tychinoff) topology, but for non-finite
.it is strictly finer (def. 2.6) ܫ

Example 6.26. (equalizer of continuous functions)

The equalizer (example 6.14) of two continuous functions ݂, ݃ : (ܺ, ߬) ⟶⟶ (ܻ, ߬) is
the equalizer of the underlying functions of sets

eq(݂, ݃) ሊሮ⎯ ܺ ⟶


⟶


ܻ

(hence the largest subset of ܻ on which both functions coincide) and equipped
with the subspace topology from example 2.16.

Example 6.27. (coequalizer of continuous functions)
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The coequalizer of two continuous functions ݂, ݃ :(ܺ, ߬) ⟶⟶ (ܻ, ߬) is the coequalizer
of the underlying functions of sets

ܺ ⟶


⟶


ܻ ⟶ coeq(݂, ݃)

(hence the quotient set by the equivalence relation generated by the relation
(ݔ)݂ ∼ ݔ for all (ݔ)݃ ∈ ܺ) and equipped with the quotient topology, example 2.17.

Example 6.28. (space attachments)

Consisder a cospan diagram (example 6.7) of continuous functions

,ܣ) ߬) ⟶


(ܻ, ߬)

 ↓

(ܺ, ߬)

The colimit under this diagram called the pushout (example 6.15)

,ܣ) ߬) ⟶


(ܻ, ߬)

 ↓ (po) ↓
*



(ܺ, ߬) ⟶ (ܺ, ߬) ⊔
(,ఛಲ)

(ܻ, ߬) .

.

Consider on the disjoint union set ܺ ⊔ ܻ the equivalence relation generated by the
relation

ݔ) ∼ (ݕ ⇔ ቀ ∃
 ∈ 

ݔ) = ݂(ܽ) and ݕ = ݃(ܽ))ቁ .

Then prop. 6.20 implies that the pushout is equivalently the quotient topological
space (example 2.17) by this equivalence relation of the disjoint union space
(example 2.15) of ܺ and ܻ:

(ܺ, ߬) ⊔
(,ఛಲ)

(ܻ, ߬) ≃ ((ܺ ⊔ ܻ, ߬ ⊔ ))/ ∼ .

If ݃ is an topological
subspace inclusion
ܣ ⊂ ܺ, then in topology
its pushout along ݂ is
traditionally written as

ܺ ∪ ܻ ≔ (ܺ, ߬) ⊔
(,ఛಲ)

(ܻ, ߬)

and called the space attachment (sometimes: attaching space or adjunction
space) of ܣ ⊂ ܺ along ݂.

(graphics from Aguilar-Gitler-Prieto 02)

Example 6.29. (n-sphere as pushout of the equator inclusions into its
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hemispheres)

As an important special case of example 6.28, let

݅ : ܵ− ଵ ⟶ ܦ

be the canonical inclusion of the standard (n-1)-sphere as the boundary of the
standard n-disk (example 2.20).

Then the colimit of topological
spaces under the span
diagram,

ܦ ←⎯⎯⎯
 ܵ − ଵ →⎯⎯⎯

 ܦ ,

is the topological n-sphere ܵ

(example 2.20):

ܵ − ଵ ⟶
 ܦ

 ↓ (po) ↓

ܦ ⟶ ܵ

.

(graphics from Ueno-Shiga-Morita 95)

In generalization of this example, we have the following important concept:

Definition 6.30. (single cell attachment)

For ܺ any topological space and for ݊ ∈ ℕ, then an ݊-cell attachment to ܺ is the
result of gluing an n-disk to ܺ, along a prescribed image of its bounding (n-1)-
sphere (def. 2.20):

Let

߶ : ܵ − ଵ ⟶ ܺ

be a continuous function, then the space attachment (example 6.28)

ܺ ∪థ ܦ ∈ Top

is the topological space which is the pushout of the boundary inclusion of the
݊-sphere along ߶, hence the universal space that makes the following diagram
commute:

ܵ− ଵ ⟶
థ

ܺ
ఐ ↓ (po) ↓

ܦ ⟶ ܺ ∪థ ܦ

.

Example 6.31. (discrete topological spaces from 0-cell attachment to the
empty space)
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A single cell attachment of a 0-cell, according to example 6.30 is the same as
forming the disjoint union space ܺ ⊔ *  with the point space *:

(ܵ −ଵ = ∅) ⟶
∃ !

ܺ

↓ (po) ↓

ܦ) = * ) ⟶ ܺ ⊔ *

.

In particular if we start with the empty topological space ܺ = ∅ itself (example
2.10), then by attaching 0-cells we obtain a discrete topological space. To this
then we may attach higher dimensional cells.

Definition 6.32. (attaching many cells at once)

If we have a set of attaching maps {ܵ − ଵ ⟶
థ ܺ} ∈ ூ (as in def. 6.30), all to the

same space ܺ, we may think of these as one single continuous function out of the
disjoint union space of their domain spheres

(߶) ∈ ூ : ⊔
 ∈ ூ

ܵ − ଵ ⟶ ܺ .

Then the result of attaching all the corresponding ݊-cells to ܺ is the pushout of
the corresponding disjoint union of boundary inclusions:

⊔
 ∈ ூ

ܵ −ଵ →⎯⎯⎯⎯⎯
(థ) ∈  ܺ

↓ (po) ↓

⊔
 ∈ ூ

ܦ ⟶ ܺ ∪(థ) ∈ 
( ⊔

 ∈ ூ
(ܦ

.

Apart from attaching a set of cells all at once to a fixed base space, we may “attach
cells to cells” in that after forming a given cell attachment, then we further attach
cells to the resulting attaching space, and ever so on:

Definition 6.33. (relative cell complexes and CW-complexes)

Let ܺ be a topological space, then A topological relative cell complex of countable
height based on ܺ is a continuous function

݂: ܺ ⟶ ܻ

and a sequential diagram of topological space of the form

ܺ = ܺ ↪ ܺଵ ↪ ܺଶ ↪ ܺଷ ↪ ⋯

such that

each ܺ ↪ ܺ +ଵ is exhibited as a cell attachment according to def. 6.32,
hence presented by a pushout diagram of the form

1. 
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⊔
 ∈ ூ

ܵ −ଵ →⎯⎯⎯⎯⎯
(థ) ∈  ܺ

↓ (po) ↓

⊔
 ∈ ூ

ܦ ⟶ ܺ + ଵ

.

ܻ = ∪
 ∈ ℕ

ܺ is the union of all these cell attachments, and ݂: ܺ → ܻ is the

canonical inclusion; or stated more abstractly: the map ݂ : ܺ → ܻ is the
inclusion of the first component of the diagram into its colimiting cocone
lim→⎯⎯ 

ܺ:

ܺ = ܺ ⟶ ܺଵ ⟶ ܺଶ ⟶ ⋯

 ↘ ↓ ↙ ⋯

ܻ = lim→⎯⎯ ܺ•

2. 

If here ܺ = ∅ is the empty space then the result is a map ∅ ↪ ܻ, which is
equivalently just a space ܻ built form “attaching cells to nothing”. This is then
called just a topological cell complex of countable hight.

Finally, a topological (relative) cell complex of countable hight is called a
CW-complex is the (݇ + 1)-st cell attachment ܺ → ܺ +ଵ is entirely by
(݇ + 1)-cells, hence exhibited specifically by a pushout of the following form:

⊔
 ∈ ூ

ܵ →⎯⎯⎯⎯⎯
(థ) ∈  ܺ

↓ (po) ↓

⊔
 ∈ ூ

ܦ +ଵ ⟶ ܺ + ଵ

.

A finite CW-complex is one which admits a presentation in which there are only
finitely many attaching maps, and similarly a countable CW-complex is one which
admits a presentation with countably many attaching maps.

Given a CW-complex, then ܺ is also called its ݊-skeleton.

7. Compact spaces

We discuss compact topological spaces (def 7.2 below), the generalization of
compact metric spaces above. Compact spaces are in some sense the “small”
objects among topological spaces, analogous in topology to what finite sets are in
set theory, or what finite-dimensional vector spaces are in linear algebra, and
equally important in the theory.

Prop. 1.21 suggests the following simple definition 7.2:

Definition 7.1. (open cover)

An open cover of a topological space (ܺ, ߬) (def. 2.3) is a set {ܷ ⊂ ܺ} ∈ ூ of open
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subsets ܷ of ܺ, indexed by some set :ܺ such that their union is all of ,ܫ
∪

 ∈ ூ
ܷ = ܺ.

A subcover of a cover is a subset ܬ ⊂ such that {ܷ ܫ ⊂ ܺ} ∈  ⊂ ூ is still a cover.

Definition 7.2. (compact topological space)

A topological space ܺ (def. 2.3) is called a compact topological space if every
open cover {ܷ ⊂ ܺ} ∈ ூ (def. 7.1) has a finite subcover in that there is a finite

subset ܬ ⊂ such that {ܷ ܫ ⊂ ܺ} ∈  is still a cover of ܺ in that also ∪
 ∈ 

ܷ = ܺ.

Remark 7.3. (terminology issue regarding “compact”)

Beware the following terminology issue which persists in the literature:

Some authors use “compact” to mean “Hausdorff and compact”. To disambiguate
this, some authors (mostly in algebraic geometry, but also for instance
Waldhausen) say “quasi-compact” for what we call “compact” in def. 7.2.

There are several equivalent reformulations of the compactness condition. An
immediate reformulation is prop. 7.4, a more subtle one is prop. 7.15 further
below.

Proposition 7.4. (compactness in terms of closed subsets)

Let (ܺ, ߬) be a topological space. Then the following are equivalent:

(ܺ, ߬) is compact in the sense of def. 7.2.1. 

Let {ܥ ⊂ ܺ} ∈ ூ be a set of closed subsets (def. 2.23) such that their

intersection is empty ∩
 ∈ ூ

ܥ = ∅, then there is a finite subset ܬ ⊂ such that ܫ

the corresponding finite intersection is still empty ∩
 ∈  ⊂ 

ܥ = ∅.

2. 

Let {ܥ ⊂ ܺ} ∈ ூ be a set of closed subsets (def. 2.23) such that it enjoys the

finite intersection property, meaning that for every finite subset ܬ ⊂ then ܫ
the corresponding finite intersection is non-empty ∩

 ∈  ⊂ ூ
ܥ ≠ ∅. Then also the

total intersection is non-empty, ∩
 ∈ ூ

ܥ ≠ ∅.

3. 

Proof. The equivalence between the first and the second statement is immediate
from the definitions after expressing open subsets as complements of closed
subsets ܷ = . and applying de Morgan's law (remark 2.24)ܥ\ܺ

We discuss the equivalence between the first and the third statement:

In one direction, assume that (ܺ, ߬) is compact in the sense of def. 7.2, and that
ܥ} ⊂ ܺ} ∈ ூ satisfies the finite intersection property. We need to show that then

∩
 ∈ ூ

ܥ ≠ ∅.

Assume that this were not the case, hence assume that ∩
 ∈ ூ

ܥ = ∅. This would imply
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that the open complements were an open cover of ܺ (def. 7.1)

{ܷ ≔ }ܥ\ܺ ∈ ூ ,

because (using de Morgan's law, remark 2.24)

∪
 ∈ ூ

ܷ ≔ ∪
 ∈ ூ

ܥ\ܺ

= ܺ\ቀ ∩
 ∈ ூ

ቁܥ

= ܺ\∅

= ܺ

.

But then by compactness of (ܺ, ߬) there were a finite subset ܬ ⊂ such that ܫ
{ܷ ⊂ ܺ} ∈  ⊂ ூ were still an open cover, hence that ∪

 ∈  ⊂ ூ
ܷ = ܺ. Translating this back

through the de Morgan's law again this would mean that

∅ = ܺ\൬ ∪
 ∈  ⊂ ூ

ܷ൰

≔ ܺ\൬ ∪
 ∈  ⊂ ூ

൰ܥ\ܺ

= ∩
 ∈  ⊂ ூ

(ܥ\ܺ)\ܺ

= ∩
 ∈  ⊂ ூ

ܥ .

This would be in contradiction with the finite intersection property of {ܥ ⊂ ܺ} ∈ ூ, and

hence we have proof by contradiction.

Conversely, assume that every set of closed subsets in ܺ with the finite intersection
property has non-empty total intersection. We need to show that the every open
cover {ܷ ⊂ ܺ} ∈ ூ of ܺ has a finite subcover.

Write ܥ ≔ ܺ\ܷ for the closed complements of these open subsets.

Assume on the contrary that there were no finite subset ܬ ⊂ ∪ such that ܫ
 ∈  ⊂ ூ

ܷ = ܺ,

hence no finite subset such that ∩
 ∈  ⊂ ூ

ܥ = ∅. This would mean that {ܥ ⊂ ܺ} ∈ ூ

satisfied the finite intersection property.

But by assumption this would imply that ∩
 ∈ ூ

ܥ ≠ ∅, which, again by de Morgan,

would mean that ∪
 ∈ ூ

ܷ ≠ ܺ. But this contradicts the assumption that the {ܷ ⊂ ܺ} ∈ ூ

are a cover. Hence we have a proof by contradiction.  ▮

Example 7.5. (finite discrete spaces are compact)

A discrete topological space (def. 2.13) is compact (def. 7.2) precisely if its
underlying set is a finite set.

Example 7.6. (closed intervals are compact)

For any ܽ < ܾ ∈ ℝ the closed interval (example 1.13)
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[ܽ, ܾ] ⊂ ℝ

regarded with its subspace topology of Euclidean space (example 1.6) with its
metric topology (example 2.9) is a compact topological space (def. 7.2).

Proof. Since all the closed intervals are homeomorphic (by example 3.27) it is
sufficient to show the statement for [0, 1]. Hence let {ܷ ⊂ [0, 1]} ∈ ூ be an open cover

(def. 7.1). We need to show that it has an open subcover.

Say that an element ݔ ∈ [0, 1] is admissible if the closed sub-interval [0, is covered [ݔ
by finitely many of the ܷ. In this terminology, what we need to show is that 1 is
admissible.

Observe from the definition that

0 is admissible,1. 

if ݕ < ݔ ∈ [0, 1] and ݔ is admissible, then also ݕ is admissible.2. 

This means that the set of admissible ݔ forms either

an open interval [0, ݃)1. 

or a closed interval [0, ݃],2. 

for some ݃ ∈ [0, 1]. We need to show that the latter is true, and for ݃ = 1. We do so
by observing that the alternatives lead to contradictions:

Assume that the set of admissible values were an open interval [0, ݃). Pick an
݅ ∈ ݃ such that ܫ ∈ ܷబ  (this exists because of the covering property). Since

such ܷబ  is an open neighbourhood of ݃, there is a positive real number ߳ such

that the open ball ܤ
∘ (߳) ⊂ ܷబ  is still contained in the patch. It follows that

there is an element ݔ ∈ ܤ
∘ (߳) ∩ [0, ݃) ⊂ ܷబ ∩ [0, ݃) and such that there is a finite

subset ܬ ⊂ with {ܷ ܫ ⊂ [0, 1]} ∈  ⊂ ூ a finite open cover of [0, It follows that .(ݔ

{ܷ ⊂ [0, 1]} ∈  ⊂ ூ ⊔ {ܷబ } were a finite open cover of [0, ݃], hence that ݃ itself

were still admissible, in contradiction to the assumption.

1. 

Assume that the set of admissible values were a closed interval [0, ݃] for ݃ < 1.
By assumption there would then be a finite set ܬ ⊂ such that {ܷ ܫ ⊂ [0, 1]} ∈  ⊂ ூ

were a finite cover of [0, ݃]. Hence there would be an index ݅ ∈ such that ܬ
݃ ∈ ܷ . But then by the nature of open subsets in the Euclidean space ℝ, this

ܷ
 would also contain an open ball ܤ

∘ (߳) = (݃ − ߳, ݃ + ߳). This would mean that

the set of admissible values includes the open interval [0, ݃ + ߳), contradicting
the assumption.

2. 

This gives a proof by contradiction.  ▮

In contrast:

Nonexample 7.7. (Euclidean space is non-compact)
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For all ݊ ∈ ℕ, ݊ > 0, the Euclidean space ℝ (example 1.6), regarded with its
metric topology (example 2.9), is not a compact topological space (def. 7.2).

Proof. Pick any ߳ ∈ (0, 1/2). Consider the open cover of ℝ given by

൛ܷ ≔ (݊ − ߳, ݊ + 1 + ߳) × ℝ − ଵ ⊂ ℝ +ଵൟ
 ∈ ℤ

.

This is not a finite cover, and removing any one of its patches ܷ, it ceases to be a
cover, since the points of the form (݊ + ߳, ,ଶݔ ,ଷݔ ⋯, ) are contained only in ܷ and inݔ
no other patch.  ▮

Below we prove the Heine-Borel theorem (prop. 7.41) which generalizes example
7.6 and example 7.7.

Example 7.8. (unions and intersection of compact spaces)

Let (ܺ, ߬) be a topological space and let

ܭ} ⊂ ܺ} ∈ ூ

be a set of compact subspaces.

If ܫ is a finite set, then the union ∪
 ∈ ூ

ܭ ⊂ ܺ is itself a compact subspace;1. 

If all ܭ ⊂ ܺ are also closed subsets then their intersection ∩
 ∈ ூ

ܭ ⊂ ܺ is itself

a compact subspace.

2. 

Example 7.9. (complement of compact by open subspaces is compact)

Let ܺ be a topological space. Let

ܭ ⊂ ܺ be a compact subspace;1. 

ܷ ⊂ ܺ be an open subset.2. 

Then the complement

ܭ ∖ ܷ ⊂ ܺ

is itself a compact subspace.

In analysis, the extreme value theorem (example 7.13 below) asserts that a
real-valued continuous function on the bounded closed interval (def. 1.13) attains
its maximum and minimum. The following is the generalization of this statement to
general topological spaces, cast in terms of the more abstract concept of
compactness from def. 7.2:

Lemma 7.10. (continuous surjections out of compact spaces have compact
codomain)

Let ݂ : (ܺ, ߬) ⟶ (ܻ, ߬) be a continuous function between topological spaces such
that

Introduction to Topology -- 1 in nLab https://ncatlab.org/nlab/print/Introduction+to+Topology+--+1

103 of 153 18.05.17, 10:08



(ܺ, ߬) is a compact topological space (def. 7.2);1. 

݂ : ܺ → ܻ is a surjective function.2. 

Then also (ܻ, ߬) is compact.

Proof. Let {ܷ ⊂ ܻ} ∈ ூ be an open cover of ܻ (def. 7.1). We need show that this has

a finite sub-cover.

By continuity of ݂, the pre-images ݂ −ଵ(ܷ) are open subsets of ܺ, and by the
surjectivity of ݂ they form an open cover {݂ −ଵ(ܷ) ⊂ ܺ} ∈ ூ of ܺ. Hence by

compactness of ܺ, there exists a finite subset ܬ ⊂ such that ܫ

{݂ −ଵ(ܷ) ⊂ ܺ} ∈  ⊂ ூ

is still an open cover of ܺ. Finally, using again that ݂ is assumed to be surjective, it
follows that

ܻ = ݂(ܺ)

= ݂൬ ∪
 ∈ 

݂ −ଵ(ܷ)൰

= ∪
 ∈ 

ܷ .

This means that also {ܷ ⊂ ܻ} ∈  ⊂ ூ is still an open cover of ܻ, and in particular a

finite subcover of the original cover.  ▮

As a direct corollary of lemma 7.10 we obtain:

Proposition 7.11. (continuous images of compact spaces are compact)

If ݂ : ܺ ⟶ ܻ is a continuous function out of a compact topological space ܺ (def.
7.2) which is not necessarily surjective, then we may consider its image
factorization

݂ : ܺ →⎯⎯⎯ ݂(ܺ) ሊ ሮ⎯⎯ ܻ

as in example 3.10. Now by construction ܺ → ݂(ܺ) is surjective, and so lemma
7.10 implies that ݂(ܺ) is compact.

The converse to cor. 7.11 does not hold in general: the pre-image of a compact
subset under a continuous function need not be compact again. If this is the case,
then we speak of proper maps:

Definition 7.12. (proper maps)

A continuous function ݂ :(ܺ, ߬) → (ܻ, ߬) is called proper if for ܥ ∈ ܻ a compact
topological subspace of ܻ, then also its pre-image ݂ −ଵ(ܥ) is compact in ܺ.

As a first useful application of the topological concept of compactness we obtain a
quick proof of the following classical result from analysis:
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Proposition 7.13. (extreme value theorem)

Let ܥ be a compact topological space (def. 7.2), and let

݂ : ܥ ⟶ ℝ

be a continuous function to the real numbers equipped with their Euclidean
metric topology.

Then ݂ attains is maximum and its minimum in that there exist ݔ୫୧୬, ୫ୟ୶ݔ ∈ such ܥ
that

(୫୧୬ݔ)݂ ≤ (ݔ)݂ ≤ (୫ୟ୶ݔ)݂ .

Proof. Since continuous images of compact spaces are compact (prop. 7.11) the
image ݂([ܽ, ܾ]) ⊂ ℝ is a compact subspace.

Suppose this image did not contain its maximum. Then {(−∞, ௫{(ݔ ∈ ([,]) were an

open cover of the image, and hence, by its compactness, there would be a finite
subcover, hence a finite set (ݔଵ < ଶݔ < ⋯ < ݔ ) of pointsݔ ∈ ݂([ܽ, ܾ]), such that the
union of the (−∞, ,∞−) ) and hence the single setݔ ) alone would cover theݔ
image. This were in contradiction to the assumption that ݔ ∈ ݂([ܽ, ܾ]) and hence we
have a proof by contradiction.

Similarly for the minimum.  ▮

And as a special case:

Example 7.14. (traditional extreme value theorem)

Let

݂ : [ܽ, ܾ] ⟶ ℝ

be a continuous function from a bounded closed interval (ܽ < ܾ ∈ ℝ) (def. 1.13)
regarded as a topological subspace (example 2.16) of real numbers to the real
numbers, with the latter regarded with their Euclidean metric topology (example
1.6, example 2.9).

Then ݂ attains its maximum and minimum: there exists ݔ୫ୟ୶, ୫୧୬ݔ ∈ [ܽ, ܾ] such that
for all ݔ ∈ [ܽ, ܾ] we have

݂([ܽ, ܾ]) = ,(୫୧୬ݔ)݂] [(୫ୟ୶ݔ)݂ .

Proof. Since continuous images of compact spaces are compact (prop. 7.11) the
image ݂([ܽ, ܾ]) ⊂ ℝ is a compact subspace (def. 7.2, example 2.16). By the
Heine-Borel theorem (prop. 7.41) this is a bounded closed subset (def. 1.3, def.
2.23). By the nature of the Euclidean metric topology, the image is hence a union
of closed intervals. Finally by continuity of ݂ it needs to be a single closed interval,
hence (being bounded) of the form

݂([ܽ, ܾ]) = ,(୫୧୬ݔ)݂] [(୫ୟ୶ݔ)݂ ⊂ ℝ .
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  ▮

There is also the following more powerful equivalent reformulation of compactness:

Proposition 7.15. (closed-projection characterization of compactness)

Let (ܺ, ߬) be a topological space. The following are equivalent:

(ܺ, ߬) is a compact topological space according to def. 7.2;1. 

For every topological space (ܻ, ߬) then the projection map out of the product
topological space (example 2.18, example 6.25)

ߨ : (ܻ, ߬) × (ܺ, ߬) ⟶ (ܻ, ߬)

is a closed map.

2. 

Proof. (due to Todd Trimble)

In one direction, assume that (ܺ, ߬) is compact and let ܥ ⊂ ܻ × ܺ be a closed
subset. We need to show that ߨ(ܥ) ⊂ ܻ is closed.

By lemma 2.25 this is equivalent to showing that every point ݕ ∈ in the (ܥ)ߨ\ܻ
complement of ߨ(ܥ) has an open neighbourhood ܸ௬ ⊃ which does not intersect {ݕ}
:(ܥ)ߨ

ܸ௬ ∩ (ܥ)ߨ = ∅ .

This is clearly equivalent to

(ܸ௬ × ܺ) ∩ ܥ = ∅

and this is what we will show.

To this end, consider the set

ቐܷ ⊂ ܺ open | ∃
ೇ ⊂ ೊ open

ೇ ⊃ {}

((ܸ × ܷ) ∩ ܥ = ∅)ቑ

Observe that this is an open cover of ܺ: For every ݔ ∈ ܺ then (ݕ, (ݔ ∉ by ܥ
assumption of ܻ, and by closure of ܥ this means that there exists an open
neighbourhood of (ݕ, ܻ in (ݔ × ܺ not intersecting ܥ, and by nature of the product
topology this contains an open neighbourhood of the form ܸ × ܷ.

Hence by compactness of ܺ, there exists a finite subcover {ܷ ⊂ ܺ} ∈  of ܺ and a

corresponding set {ܸ ⊂ ܻ} ∈  with ܸ × ܷ ∩ ܥ = ∅.

The resulting open neighbourhood

ܸ ≔ ∩
 ∈ 

ܸ
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of ݕ has the required property:

ܸ × ܺ = ܸ × ൬ ∪
 ∈ 

ܷ൰

= ∪
 ∈ 

൫ܸ × ܷ൯

⊂ ∪
 ∈ 

൫ܸ × ܷ൯

⊂ (ܻ × ܥ\(ܺ .

Now for the converse:

Assume that ߨ : ܻ × ܺ → ܺ is a closed map for all ܻ. We need to show that ܺ is
compact. By prop. 7.4 this means equivalently that for every set {ܥ ⊂ ܺ} ∈ ூ of

closed subsets and satisfying the finite intersection property, we need to show that
∩

 ∈ ூ
ܥ ≠ ∅.

So consider such a set {ܥ ⊂ ܺ} ∈ ூ of closed subsets satisfying the finite intersection

property. Construct a new topological space (ܻ, ߬) by setting

ܻ ≔ ܺ ⊔ {∞};1. 

ߚ ≔ ܲ(ܺ) ⊔ ܥ)} ∪ {∞}) ⊂ ܻ} ∈ ூ a sub-base for ߬ (def. 2.7).2. 

Then consider the topological closure Cl(߂) of the “diagonal” ߂ in ܻ × ܺ

߂ ≔ ,ݔ)} (ݔ ∈ ܻ × ܺ | ݔ ∈ ܺ} .

We claim that there exists ݔ ∈ ܺ such that

(∞, (ݔ ∈ Cl(߂) .

This is because

((߂)Cl)ߨ ⊂ ܻ is closed

by the assumption that ߨ is a closed map, and

ܺ ⊂ ((߂)Cl)ߨ

by construction. So if ∞ were not in ߨ(Cl(߂)), then, by lemma 2.25, it would have
an open neighbourhood not intersecting ܺ. But by definition of ߬, the open
neighbourhoods of ∞ are the unions of finite intersections of ܥ ∪ {∞}, and by the
assumed finite intersection property all their finite intersections do still intersect ܺ.

Since thus (∞, (ݔ ∈ Cl(߂), lemma 2.25 gives again that all of its open
neighbourhoods intersect the diagonal. By the nature of the product topology
(example 2.18) this means that for all ݅ ∈ and all open neighbourhoods ܷ௫ ܫ ⊃ we {ݔ}
have that

ܥ)) ∪ {∞}) × ܷ௫) ∩ ߂ ≠ ∅ .
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By definition of ߂ this means equivalently that

ܥ ∩ ܷ௫ ≠ ∅

for all open neighbourhoods ܷ௫ ⊃ .{ݔ}

But by closure of ܥ and using lemma 2.25, this means that

ݔ ∈ ܥ

for all ݅, hence that

∩
 ∈ ூ

ܥ ≠ ∅

as required.  ▮

This closed-projection characterization of compactness from prop. 7.15 is most
useful, for instance it yields direct proof of the following important facts in
topology:

The tube lemma, prop. 7.16 below,

The Tychonoff theorem, prop. 7.17 below.

Lemma 7.16. (tube lemma)

Let

(ܺ, ߬) be a topological space,1. 

(ܻ, ߬) a compact topological space (def. 7.2),2. 

ݔ ∈ ܺ a point,3. 

ܹ ⊂
open

ܺ × ܻ an open subset in the product topology (example 2.18, example

7.17),

4. 

such that the ܻ-fiber over ݔ is contained in ܹ:

{ݔ} × ܻ ⊆ ܹ .

Then there exists an open neighborhood ܷ௫ of ݔ such that the “tube” ܷ௫ × ܻ
around the fiber {ݔ} × ܻ is still contained:

ܷ௫ × ܻ ⊆ ܹ .

Proof. Let

ܥ ≔ (ܺ × ܻ)\ܹ

be the complement of ܹ. Since this is closed, by prop. 7.15 also its projection
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(ܥ) ⊂ ܺ is closed.

Now

{ݔ} × ܻ ⊂ ܹ ⇔ {ݔ} × ܻ ∩ ܥ = ∅

⇒ {ݔ} ∩ (ܥ) = ∅

and hence by the closure of (ܥ) there is (by lemma 2.25) an open neighbourhood

ܷ௫ ⊃ with {ݔ}

ܷ௫ ∩ (ܥ) = ∅ .

This means equivalently that ܷ௫ × ܻ ∩ ܥ = ∅, hence that ܷ௫ × ܻ ⊂ ܹ.  ▮

Proposition 7.17. (Tychonoff theorem – the product space of compact
spaces is compact)

Let {(ܺ, ߬)} ∈ ூ be a set of compact topological spaces (def. 7.2). Then also their

product space ∏ ∈ ூ (ܺ, ߬) (example 6.25) is compact.

We give a proof of the finitary case of the Tychonoff theorem using the closed-
projection characterization of compactness from prop. 7.15. This elementary proof
generalizes fairly directly to an elementary proof of the general case: see here.

Proof of the finitary case. By prop. 7.15 it is sufficient to show that for every
topological space (ܻ, ߬) then the projection

ߨ : (ܻ, ߬) × ൬ ෑ
 ∈ {ଵ,⋯,}

(ܺ, ߬)൰ ⟶ (ܻ, ߬)

is a closed map. We proceed by induction. For ݊ = 0 the statement is obvious.
Suppose it has been proven for some ݊ ∈ ℕ. Then the projection for ݊ + 1 factors is
the composite of two consecutive projections

ߨ : ܻ × ൬ ෑ
 ∈ {ଵ,⋯, +ଵ}

ܺ൰ = ܻ × ൬ ෑ
 ∈ {ଵ,⋯,}

ܺ൰ × ܺ + ଵ ⟶ ܻ × ൬ ෑ
 ∈ {ଵ,⋯,,}

ܺ൰ ⟶ ܻ .

By prop. 7.15, the first map here is closed since (ܺ + ଵ, ߬ + ଵ) is compact by the
assumption of the proposition, and similarly the second is closed by induction
assumtion. Hence the composite is a closed map.  ▮

Of course we also want to claim that sequentially compact metric spaces (def.
1.20) are compact as topological spaces when regarded with their metric topology
(example 2.9):

Definition 7.18. (converging sequence in a topological space)

Let (ܺ, ߬) be a topological space (def. 2.3) and let (ݔ) ∈ ℕ be a sequence of points

,ܺ) in ܺ (def. 1.16). We say that this sequence converges in (ݔ) ߬) to a point
ஶݔ ∈ ܺ, denoted
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ݔ →⎯⎯⎯⎯
 → ஶ

ஶݔ

if for each open neighbourhood ܷ௫ಮ  of ݔஶ there exists a ݇ ∈ ℕ such that for all

݊ ≥ ݇ then ݔ ∈ ܷ௫ಮ
:

ቀݔ →⎯⎯⎯⎯
 → ஶ

ஶቁݔ ⇔ ൮ ∀
ೆೣಮ ∈ ഓ

ೣಮ ∈ ೆಮ

൬ ∃
 ∈ ℕ

൬ ∀
 ≥ 

ݔ ∈ ܷ௫ಮ ൰൰൲ .

Accordingly it makes sense to consider the following:

Definition 7.19. (sequentially compact topological space)

Let (ܺ, ߬) be a topological space (def. 2.3). It is called sequentially compact if for
every sequence of points (ݔ) in ܺ (def. 1.16) there exists a sub-sequence
ೖݔ)

) ∈ ℕ which converges acording to def. 7.18.

Proposition 7.20. (sequentially compact metric spaces are equivalently
compact metric spaces)

If (ܺ, ݀) is a metric space (def. 1.1), regarded as a topological space via its metric
topology (example 2.9), then the following are equivalent:

(ܺ, ݀) is a compact topological space (def. 7.2).1. 

(ܺ, ݀) is a sequentially compact metric space (def. 1.20) hence a sequentially
compact topological space (def. 7.19).

2. 

Proof. of prop. 1.21 and prop. 7.20

Assume first that (ܺ, ݀) is a compact topological space. Let (ݔ) ∈ ℕ be a sequence in

ܺ. We need to show that it has a sub-sequence which converges.

Consider the topological closures of the sub-sequences that omit the first ݊
elements of the sequence

ܨ ≔ Cl({ݔ | ݇ ≥ ݊})

and write

ܷ ≔ ܨ\ܺ

for their open complements.

Assume now that the intersection of all the ܨ were empty

( ⋆ ) ∩
 ∈ ℕ

ܨ = ∅

or equivalently that the union of all the ܷ were all of ܺ

∪
 ∈ ℕ

ܷ = ܺ ,
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hence that {ܷ ⊂ ܺ} ∈ ℕ were an open cover. By the assumption that ܺ is compact,

this would imply that there were a finite subset {݅ଵ < ݅ଶ < ⋯ < ݅} ⊂ ℕ with

ܺ = ܷభ ∪ ܷమ ∪ ⋯ ∪ ܷೖ

= ܷೖ

.

This in turn would mean that ܨೖ
= ∅, which contradicts the construction of ܨೖ

.

Hence we have a proof by contradiction that assumption ( * ) is wrong, and hence
that there must exist an element

ݔ ∈ ∩
 ∈ ℕ

ܨ .

By definition of topological closure this means that for all ݊ the open ball
௫ܤ

∘ (1/(݊ + 1)) around ݔ of radius 1/(݊ + 1) must intersect the ݊th of the above
subsequences:

௫ܤ
∘ (1/(݊ + 1)) ∩ ݔ} | ݇ ≥ ݊} ≠ ∅ .

If we choose one point (ݔ′ ) in the ݊th such intersection for all ݊ this defines a
sub-sequence, which converges to ݔ.

In summary this proves that compact implies sequentially compact for metric
spaces.

For the converse, assume now that (ܺ, ݀) is sequentially compact. Let {ܷ ⊂ ܺ} ∈ ூ be

an open cover of ܺ. We need to show that there exists a finite sub-cover.

Now by the Lebesgue number lemma, there exists a positive real number ߜ > 0
such that for each ݔ ∈ ܺ there is ݅௫ ∈ ௫ܤ such that ܫ

∘ (ߜ) ⊂ ܷೣ . Moreover, since

sequentially compact metric spaces are totally bounded, there exists then a finite
set ܵ ⊂ ܺ such that

ܺ = ∪
௦ ∈ ௌ

௦ܤ
(ߜ)∘ .

Therefore {ܷೞ → ܺ}௦ ∈ ௌ is a finite sub-cover as required.  ▮

Remark 7.21. (neither compactness nor sequential compactness implies
the other)

Beware, in contrast to prop. 7.20, general topological spaces being sequentially
compact neither implies nor is implied by being compact.

The product topological space (example 6.25) ∏ ∈ [,ଵ) Disc({0, 1}) of copies of

the discrete topological space (example 2.13) indexed by the elements of
the half-open interval is compact by the Tychonoff theorem (prop. 7.17), but
the sequence ݔ with

(ݔ)ߨ = ݊th digit of the binary expansion of ݎ

has no convergent subsequence.

1. 
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conversely, there are spaces that are sequentially compact, but not
compact, see for instance Vermeeren 10, prop. 18.

2. 

Remark 7.22. (nets fix the shortcomings of sequences)

That compactness of topological spaces is not detected by convergence of
sequences (remark 7.21) may be regarded as a shortcoming of the concept of
sequence. While a sequence is indexed over the natural numbers, the concept of
convergence of sequnces only invokes that the natural numbers form a directed
set. Hence the concept of convergence immediately generalizes to sets of points
in a space which are indexed over an arbitrary directed set. This is called a net.

And with these the expected statement does become true (for a proof see here):

A topological space (ܺ, ߬) is compact precisely if every net in ܺ has a converging
subnet.

In fact convergence of nets also detects closed subsets in topological spaces
(hence their topology as such), and it detects the continuity of functions between
topological spaces. It also detects for instance the Hausdorff property. (For
detailed statements and proofs see here.) Hence when analysis is cast in terms
of nets instead of just sequences, then it raises to the same level of generality as
topology.

Locally compact spaces

Definition 7.23. (locally compact topological space)

A topological space ܺ is called locally compact if for every point ݔ ∈ ܺ and every
open neighbourhood ܷ௫ ⊃ there exists a smaller open neighbourhood ܸ௫ {ݔ} ⊂ ܷ௫

whose topological closure is compact (def. 7.2) and still contained in ܷ:

{ݔ} ⊂ ܸ௫ ⊂ Cl(ܸ௫)
compact

⊂ ܷ௫ .

Remark 7.24. (terminology issue regarding “locally compact”)

On top of the terminology issue inherited from that of “compact”, remark 7.3
(regarding whether or not to require “Hausdorff” with “compact”; we do not), the
definition of “locally compact” is subject to further ambiguity in the literature.
There are various definitions of locally compact spaces alternative to def. 7.23.
For Hausdorff topological spaces all these definitions happen to be equivalent, but
in general they are not. The version we state in def. 7.23 is the one that gives
various results (such as the universal property of the mapping space, prop. 7.31
below) without requiring the Hausdorff property.

Example 7.25. (discrete spaces are locally compact)

Every discrete topological space (example 2.13) is locally compact (def. 7.23).

Example 7.26. (metric spaces are locally compact)
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Every metric space (def. 1.1), regarded as a topological space via its metric
topology (def. 2.9), is locally compact (def. 7.23).

Example 7.27. (open subspaces of compact Hausdorff spaces are locally
compact)

Every open topological subspace ܺ ⊂
open

of a compact (def. 7.2) Hausdorff space ܭ

(def. 4.4) is a locally compact topological space (def. 7.23).

In particular compact Hausdorff spaces themselves are locally compact.

We prove this below as prop. 7.46, after having established a list of convenient
general facts about compact Hausdorff spaces.

Example 7.28. (finite product space of locally compact spaces is locally
compact)

The product topological space (example 6.25) ∏ ∈  (ܺ, ߬) of a a finite set

{(ܺ, ߬)} ∈ ூ of locally compact topological spaces (ܺ, ߬) (def. 7.23) it itself locally

compact.

Nonexample 7.29. (countably infinite products of non-compact spaces are
not locally compact)

Let ܺ be a topological space which is not compact (def. 7.2). Then the product
topological space (example 6.25) of a countably infinite set of copies of ܺ

ෑ
 ∈ ℕ

ܺ

is not a locally compact space (def. 7.23).

Proof. Since the continuous image of a compact space is compact (prop. 7.11),
and since the projection maps  : ∏ℕ ܺ ⟶ ܺ are continuous (by nature of the initial

topology/Tychonoff topology), it follows that every compact subspace of the
product space is contained in one of the form

ෑ
 ∈ ℕ

ܭ

for ܭ ⊂ ܺ compact.

But by the nature of the Tychonoff topology, a base for the topology on ∏ℕ ܺ is

given by subsets of the form

൬ ෑ
 ∈ {ଵ,⋯,}

ܷ൰ × ൬ ෑ
 ∈ ℕ ಭ 

ܺ൰

with ܷ ⊂ ܺ open. Hence every compact neighbourhood in ∏ℕ ܺ contains a subset of

this kind, but if ܺ itself is non-compact, then none of these is contained in a
product of compact subsets.  ▮
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A key application of locally compact spaces is that the space of maps out of them
into any given topological space (example 7.30 below) satisfies the expected
universal property of a mapping space (prop. 7.31 below).

Example 7.30. (topological mapping space with compact-open topology)

For

(ܺ, ߬) a locally compact topological space (def. 7.23)1. 

(ܻ, ߬) any topological space2. 

then the mapping space

Maps((ܺ, ߬), (ܻ, ߬)) ≔ ൫Hom୭୮(ܺ, ܻ), ߬cpt-op൯

is the topological space

whose underlying set Hom୭୮(ܺ, ܻ) is the set of continuous functions ܺ → ܻ;

whose topology ߬cpt-op is generated from the sub-basis for the topology (def.
2.7) which is given by subsets to denoted

ܷ ⊂ Hom୭୮(ܺ, ܻ) for labels

ܭ ⊂ ܻ a compact subset,

ܷ ⊂ ܺ an open subset

and defined to be those subsets of all those continuous functions ݂ that take
:ܷ to ܭ

ܷ ≔ ൜݂ : ܺ →⎯⎯⎯⎯⎯⎯⎯
continuous

ܻ | (ܭ)݂ ⊂ ܷൠ .

Accordingly this topology ߬cpt-op is called the compact-open topology on the set of
functions.

Proposition 7.31. (universal property of the mapping space)

Let (ܺ, ߬), (ܻ, ߬), (ܼ, ߬) be topological spaces, with ܺ locally compact (def. 7.23).
Then

The evaluation function

(ܺ, ߬) × Maps((ܺ, ߬), (ܻ, ߬)) →⎯⎯⎯⎯⎯⎯
ୣ୴

(ܻ, ߬)

,ݔ) ݂) ሌ ሮ⎯⎯⎯ (ݔ)݂

is a continuous function.

1. 

The natural bijection of function sets2. 
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{ܺ × ܻ ⟶ ܻ}ᇣ ᇤ ᇥᇧᇧᇧ ᇧᇧᇧ
ୌ୭୫౪(× ,)

→⎯⎯⎯⎯⎯⎯
≃

{ܼ ⟶ Homୗୣ୲(ܺ, ܻ)}ᇣ ᇤ ᇥᇧᇧᇧᇧᇧ ᇧᇧᇧᇧᇧ
ୌ୭୫౪൫,ୌ୭୫౪(,)൯

(݂ : ,ݔ) (ݖ ↦ ,ݔ)݂ ((ݖ ሌ ሮ⎯⎯⎯ ݂̃ : ݖ ↦ ݔ) ↦ ,ݔ)݂ ((ݖ

restricts to a natural bijection between sets of continuous functions

ቄ(ܺ, ߬) × (ܼ, ߬) ⟶
ୡ୲ୱ

(ܻ, ߬)ቅᇣ ᇤ ᇥᇧᇧᇧᇧᇧᇧᇧᇧ ᇧᇧᇧᇧᇧᇧᇧᇧ
ୌ୭୫౦((,ఛ)× (,ఛೋ),(,ఛೊ))

→⎯⎯⎯⎯⎯⎯
≃

ቄ(ܼ, ߬) ⟶
ୡ୲ୱ

Maps((ܺ, ߬), (ܻ, ߬))ቅᇣ ᇤ ᇥᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧ ᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧ
ୌ୭୫౦൫(,ఛೋ),ୟ୮ୱ((,ఛ),(,ఛೊ))൯

.

Here Maps((ܺ, ߬), (ܻ, ߬)) is the mapping space with compact-open topology from
example 7.30 and (−) × (−) denotes forming the product topological space
(example 2.18, example 6.25).

Proof. To see the continuity of the evaluation map:

Let ܸ ⊂ ܻ be an open subset. We need to show that ev −ଵ(ܸ) = ,ݔ)} ݂) | (ݔ)݂ ∈ ܸ} is a
union of products of the form ܷ × ܸ with ܷ ⊂ ܺ open and ܷ ⊂ Homୗୣ୲(ܭ, ܷ) a basic
open according to def. 7.30.

For (ݔ, ݂) ∈ ev −ଵ(ܸ), the preimage ݂ −ଵ(ܸ) ⊂ ܺ is an open neighbourhood of ݔ in ܺ, by
continuity of ݂. By local compactness of ܺ, there is a compact subset ܭ ⊂ ݂ −ଵ(ܸ)

which is still a neighbourhood of ݔ. Since ݂ also still takes that into ܸ, we have
found an open neighbourhood

,ݔ) ݂) ∈ ܭ × ܸ ⊂
open

ev −ଵ(ܸ)

with respect to the product topology. Since this is still contained in ev −ଵ(ܸ), for all
,ݔ) ݂) as above, ev −ଵ(ܸ) is exhibited as a union of opens, and is hence itself open.

Regarding the second point:

In one direction, let ݂: (ܺ, ߬) × (ܻ, ߬) → (ܼ ߬) be a continuous function, and let
ܷ ⊂ Maps(ܺ, ܻ) be a sub-basic open. We need to show that the set

݂̃
−ଵ

(ܷ) = ݖ} ∈ ܼ | ,ܭ)݂ (ݖ ⊂ ܷ} ⊂ ܼ

is open. To that end, observe that ݂(ܭ, (ݖ ⊂ ܷ means that ܭ × {ݖ} ⊂ ݂ −ଵ(ܷ), where
݂ −ଵ(ܷ) ⊂ ܺ × ܻ is open by the continuity of ݂. Hence in the topological subspace
ܭ × ܼ ⊂ ܺ × ܻ the inclusion

ܭ × {ݖ} ⊂ ൫݂ −ଵ(ܷ) ∩ ܭ) × ܼ)൯

is an open neighbourhood. Since ܭ is compact, the tube lemma (prop. 7.16) gives
an open neighbourhood ܸ௭ ⊃ ܭ in ܻ, hence an open neighbourhood {ݖ} × ܸ௭ ⊂ ܭ × ܻ,
which is still contained in the original pre-image:

ܭ × ܸ௭ ⊂ ݂ −ଵ(ܷ) ∩ ܭ) × ܼ) ⊂ ݂ −ଵ(ܷ) .

This shows that with every point ݖ ∈ ݂̃
−ଵ

൫ܷ൯ also an open neighbourhood of ݖ is
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contained in ݂̃
−ଵ

൫ܷ൯, hence that the latter is a union of open subsets, and hence

itself open.

In the other direction, assume that ݂̃ : ܼ → Maps((ܺ, ߬), (ܻ, ߬)) is continuous: We need
to show that ݂ is continuous. But observe that ݂ is the composite

݂ = (ܺ, ߬) × (ܼ, ߬) →⎯⎯⎯⎯⎯⎯⎯⎯
୧ୢ(,ఛ) ×̃

(ܺ, ߬) × Maps((ܺ, ߬), (ܻ, ߬)) ⟶
ୣ୴

(ܺ, ߬) .

Here the first function id × ݂̃ is continuous since ݂̃ is by assumption since the
product of two continuous functions is again continuous (example 3.4). The second
function ev is continuous by the first point above. hence ݂ is continuous.  ▮

Remark 7.32. (topological mapping space is exponential object)

In the language of category theory (remark 3.3), prop. 7.31 says that the
mapping space construction with its compact-open topology from def. 7.30 is an
exponential object or internal hom. This just means that it beahves in all abstract
ways just as a function set does for plain functions, but it does so for continuous
functions and being itself equipped with a topology.

Moreover, the construction of topological mapping spaces in example 7.30
extends to a functor (remark 3.3)

(−)(−) : Top୪ୡ୮୲
୭୮ × Top ⟶ Top

from the product category of the category Top of all topological spaces (remark
3.3) with the opposite category of the subcategory of locally compact topological
spaces.

Example 7.33. (topological mapping space construction out of the point
space is the identity)

The point space * (example 2.10) is clearly a locally compact topological space.
Hence for every topological space (ܺ, ߬) the mapping space Maps( * , (ܺ, ߬))

(exmaple 7.30) exists. This is homeomorphic (def. 3.22) to the space (ݔ, ߬) itself:

Maps( * , (ܺ, ߬)) ≃ (ܺ, ߬) .

Example 7.34. (loop space and path space)

Let (ܺ, ߬) be any topological space.

The circle ܵଵ (example 2.20) is a compact Hausdorff space (example 7.42)
hence, by prop. 7.27, a locally compact topological space (def. 7.23).
Accordingly the mapping space

ℒܺ ≔ Maps(ܵଵ, (ܺ, ߬))

exists (def. 7.30). This is called the free loop space of (ܺ, ߬).

If both ܵଵ and ܺ are equipped with a choice of point (“basepoint”) ݏ ∈ ܵଵ,

1. 
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ݔ ∈ ܺ, then the topological subspace

ܺߗ ⊂ ℒܺ

on those functions which take the basepoint of ܵଵ to that of ܺ, is called the
loop space of ܺ, or sometimes based loop space, for emphasis.

Similarly the closed interval is a compact Hausdorff space (example 7.42)
hence, by prop. 7.27, a locally compact topological space (def. 7.23).
Accordingly the mapping space

Maps([0, 1], (ܺ, ߬))

exists (def. 7.30). Again if ܺ is equipped with a choice of basepoint ݔ ∈ ܺ,
then the topological subspace of those functions that take 0 ∈ [0, 1] to that
chosen basepoint is called the path space of (ܺ߬):

ܲܺ ⊂ Maps([0, 1], (ܺ, ߬)) .

2. 

Notice that we may encode these subspaces more abstractly in terms of universal
properties:

The path space and the loop space are characterized, up to homeomorphisms, as
being the limiting cones in the following pullback diagrams of topological spaces
(example 6.15):

loop space:

ܺߗ ⟶ Maps(ܵଵ, (ܺ, ߬))

↓ (pb) ↓
ୟ୮ୱ(ୡ୭୬ୱ୲ೞబ ,୧ୢ(,ഓ))

* →⎯⎯⎯⎯⎯
ୡ୭୬ୱ୲ೣబ

ܺ ≃ Maps( * , (ܺ, ߬))

.

1. 

path space:

ܲܺ ⟶ Maps([0, 1], (ܺ, ߬))

↓ (pb) ↓
ୟ୮ୱ(ୡ୭୬ୱ୲ೣ,୧ୢ(,ഓ))

* →⎯⎯⎯⎯⎯
ୡ୭୬ୱ୲ೣబ

ܺ ≃ Maps( * , (ܺ, ߬))

2. 

Here on the right we are using that the mapping space construction is a functor
as shown in remark 7.32, and we are using example 7.33 in the identification on
the bottom right mapping space out of the point space.

We close with two observations on proper maps into locally compact spaces, which
will be useful in the discussion of embeddings of smooth manifolds below.

Proposition 7.35. (proper maps to locally compact spaces are closed)

Let
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(ܺ, ߬) be a topological space,1. 

(ܻ, ߬) a locally compact Hausdorff space (def. 4.4, def. 7.23),2. 

݂ : ܺ → ܻ a proper map (def. 7.12).3. 

Then ݂ is a closed map (def. 3.14).

Proof. Let ܥ ⊂ ܺ be a closed subset. We need to show that ݂(ܥ) ⊂ ܻ is closed. By
lemma 2.25 this means we need to show that every ݕ ∈ has an open (ܥ)݂\ܻ
neighbourhood ܷ௬ ⊃ ..(ܥ)݂ not intersecting {ݕ}

By local compactness of (ܻ, ߬) (def. 7.23), ݕ has an open neighbourhood ܸ௬ whose
topological closure Cl(ܸ௬) is compact. Hence since ݂ is proper, also ݂ −ଵ(Cl(ܸ௬)) ⊂ ܺ is
compact. Then also the intersection ܥ ∩ ݂ −ଵ(Cl(ܸ௬)) is compact, and since
continuous images of compact spaces are compact (prop. 7.11) so is

݂൫ܥ ∩ ݂ −ଵ(Cl(ܸ௬))൯ = (ܥ)݂ ∩ (Cl(ܸ)) ⊂ ܻ .

This is also a closed subset, since compact subspaces of Hausdorff spaces are
closed (lemma 7.40). Therefore

ܷ௬ ≔ ܸ௬\(݂(ܥ) ∩ (Cl(ܸ௬))) = ܸ௬\݂(ܥ)

is an open neighbourhod of ݕ not intersecting ݂(ܥ).  ▮

Proposition 7.36. (injective proper maps to locally compact spaces are
equivalently the closed embeddings)

Let

(ܺ, ߬) be a topological space1. 

(ܻ, ߬) a locally compact Hausdorff space (def. 4.4, def. 7.23),2. 

݂ : ܺ → ܻ be a continuous function.3. 

Then the following are equivalent

݂ is an injective proper map,1. 

݂ is a closed embedding of topological spaces (def. 3.34).2. 

Proof. In one direction, if ݂ is an injective proper map, then since proper maps to
locally compact spaces are closed, it follows that ݂ is also closed map. The claim
then follows since closed injections are embeddings (prop. 3.35), and since the
image of a closed map is closed.

Conversely, if ݂ is a closed embedding, we only need to show that the embedding
map is proper. So for ܥ ⊂ ܻ a compact subspace, we need to show that the
pre-image ݂ −ଵ(ܥ) ⊂ ܺ is also compact. But since ݂ is an injection (being an
embedding), that pre-image is just the intersection ݂ −ଵ(ܥ) ≃ ܥ ∩ ݂(ܺ). By the nature
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of the subspace topology, this is compact if ܥ is.  ▮

Compact Hausdorff spaces

We discuss some important relations between the concepts of compact topological
spaces (def. 7.2) and of Hausdorff topological spaces (def. 4.4).

Proposition 7.37. (closed subspaces of compact Hausdorff spaces are
equivalently compact subspaces)

Let

(ܺ, ߬) be a compact Hausdorff topological space (def. 4.4, def. 7.2)1. 

ܻ ⊂ ܺ be a topological subspace (example 2.16).2. 

Then the following are equivalent:

ܻ ⊂ ܺ is a closed subspace (def. 2.23);1. 

ܻ is a compact topological space (def. 7.2).2. 

Proof. By lemma 7.38 and lemma 7.40 below.  ▮

Lemma 7.38. (closed subspaces of compact spaces are compact)

Let

(ܺ, ߬) be a compact topological space (def. 7.2),1. 

ܻ ⊂ ܺ be a closed topological subspace (def. 2.23, example 2.16).2. 

Then also ܻ is compact.

Proof. Let {ܸ ⊂ ܻ} ∈ ூ be an open cover of ܻ (def. 7.1). We need to show that this

has a finite sub-cover.

By definition of the subspace topology, there exist open subsets ܷ ⊂ ܺ with

ܸ = ܷ ∩ ܻ .

By the assumption that ܻ is closed, the complement ܺ\ܻ ⊂ ܺ is an open subset of ܺ,
and therefore

{ܺ\ܻ ⊂ ܺ} ∪ {ܷ ⊂ ܺ} ∈ ூ

is an open cover of ܺ (def. 7.1). Now by the assumption that ܺ is compact, this
latter cover has a finite subcover, hence there exists a finite subset ܬ ⊂ such that ܫ
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{ܺ\ܻ ⊂ ܺ} ∪ {ܷ ⊂ ܺ} ∈  ⊂ ூ

is still an open cover of ܺ, hence in particular restricts to a finite open cover of ܻ.
But since ܻ ∩ (ܺ\ܻ) = ∅, it follows that

{ܸ ⊂ ܻ} ∈  ⊂ ூ

is a cover of ܻ, and in indeed a finite subcover of the original one.  ▮

Lemma 7.39. (separation by neighbourhoods of points from compact
subspaces in Hausdorff spaces)

Let

(ܺ, ߬) be a Hausdorff topological space (def. 4.4);1. 

ܻ ⊂ ܺ a compact subspace (def. 7.2, example 2.16).2. 

Then for every ݔ ∈ ܺ\ܻ there exists

an open neighbourhood ܷ௫ ⊃  .1;{ݔ}

an open neighbourhood ܷ ⊃ ܻ2. 

such that

they are still disjoint: ܷ௫ ∩ ܷ = ∅.

Proof. By the assumption that (ܺ, ߬) is Hausdorff, we find for every point ݕ ∈ ܻ
disjoint open neighbourhoods ܷ௫,௬ ⊃ and ܷ௬ {ݔ} ⊃ By the nature of the subspace .{ݕ}
topology of ܻ, the restriction of all the ܷ௬ to ܻ is an open cover of ܻ:

൛(ܷ௬ ∩ ܻ) ⊂ ܻൟ
௬ ∈ 

.

Now by the assumption that ܻ is compact, there exists a finite subcover, hence a
finite set ܵ ⊂ ܻ such that

൛(ܷ௬ ∩ ܻ) ⊂ ܻൟ
௬ ∈ ௌ ⊂ 

is still a cover.

But the finite intersection

ܷ௫ ≔ ∩
௦ ∈ ௌ ⊂ 

ܷ௫,௦

of the corresponding open neighbourhoods of ݔ is still open, and by construction it
is disjoint from all the ܷ௦, hence also from their union

ܷ ≔ ∪
௦ ∈ ௌ ⊂ 

ܷ௦ .

Therefore ܷ௫ and ܷ are two open subsets as required.  ▮
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Lemma 7.39 immediately implies the following:

Lemma 7.40. (compact subspaces of Hausdorff spaces are closed)

Let

(ܺ, ߬) be a Hausdorff topological space (def. 4.4)1. 

ܥ ⊂ ܺ be a compact (def. 7.2) topological subspace (example 2.16).2. 

Then ܥ ⊂ ܺ is also a closed subspace (def. 2.23).

Proof. Let ݔ ∈ By lemma 2.25 we need to .ܥ be any point of ܺ not contained in ܥ\ܺ
show that there exists an open neighbourhood of ݔ in ܺ which does not intersect .ܥ
This is implied by lemma 7.39.  ▮

Proposition 7.41. (Heine-Borel theorem)

For ݊ ∈ ℕ, consider ℝ as the ݊-dimensional Euclidean space via example 1.6,
regarded as a topological space via its metric topology (example 2.9).

Then for a topological subspace ܵ ⊂ ℝ the following are equivalent:

ܵ is compact (def. 7.2);1. 

ܵ is closed (def. 2.23) and bounded (def. 1.3).2. 

Proof. First consider a subset ܵ ⊂ ℝ which is closed and bounded. We need to
show that regarded as a topological subspace it is compact.

The assumption that ܵ is bounded by (hence contained in) some open ball ௫ܤ
∘ (߳) in

ℝ implies that it is contained in {(ݔ) = ଵ
 ∈ ℝ | − ߳ ≤ ݔ ≤ ߳}. By example 3.29, this

topological subspace is homeomorphic to the ݊-cube

[ −߳, ߳] = ෑ
 ∈ {ଵ,⋯,}

[−߳, ߳] ,

hence to the product topological space (example 6.25) of ݊ copies of the closed
interval with itself.

Since the closed interval [−߳, ߳] is compact by example 7.6, the Tychonoff theorem
(prop. 7.17) implies that this ݊-cube is compact.

Since subsets are closed in a closed subspace precisely if they are closed in the
ambient space (lemma 2.30) the closed subset ܵ ⊂ ℝ is also closed as a subset
ܵ ⊂ [ −߳, ߳]. Since closed subspaces of compact spaces are compact (lemma 7.38)
this implies that ܵ is compact.

Conversely, assume that ܵ ⊂ ℝ is a compact subspace. We need to show that it is
closed and bounded.

The first statement follows since the Euclidean space ℝ is Hausdorff (example 4.8)
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and since compact subspaces of Hausdorff spaces are closed (prop. 7.40).

Hence what remains is to show that ܵ is bounded.

To that end, choose any positive real number ߳ ∈ ℝவ  and consider the open cover
of all of ℝ by the open n-cubes

(݇ଵ − ߳, ݇ଵ + 1 + ߳) × (݇ଶ − ߳, ݇ଶ + 1 + ߳) × ⋯ × (݇ − ߳, ݇ + 1 + ߳)

for n-tuples of integers (݇ଵ, ݇ଶ, ⋯, ݇) ∈ ℤ. The restrictions of these to ܵ hence form
an open cover of the subspace ܵ. By the assumption that ܵ is compact, there is
then a finite subset of ݊-tuples of integers such that the corresponding ݊-cubes still
cover ܵ. But the union of any finite number of bounded closed ݊-cubes in ℝ is
clearly a bounded subset, and hence so is ܵ.  ▮

For the record, we list some examples of compact Hausdorff spaces that are
immediately identified by the Heine-Borel theorem (prop. 7.41):

Example 7.42. (examples of compact Hausdorff spaces)

We list some basic examples of compact Hausdorff spaces (def. 4.4, def. 7.2)

For ݊ ∈ ℕ, the n-sphere ܵ may canonically be regarded as a topological
subspace of Euclidean space ℝ + ଵ (example 2.20).

1. 

These are clearly closed and bounded subspaces of Euclidean space, hence they
are compact topological space, by the Heine-Borel theorem, prop. 7.41.

Proposition 7.43. (maps from compact spaces to Hausdorff spaces are
closed and proper)

Let ݂ : (ܺ, ߬) ⟶ (ܻ, ߬) be a continuous function between topological spaces such
that

(ܺ, ߬) is a compact topological space (def. 7.2);1. 

(ܻ, ߬) is a Hausdorff topological space (def. 4.4).2. 

Then ݂ is

a closed map (def. 3.14);1. 

a proper map (def. 7.12).2. 

Proof. For the first statement, we need to show that if ܥ ⊂ ܺ is a closed subset of
ܺ, then also ݂(ܥ) ⊂ ܻ is a closed subset of ܻ.

Now
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since closed subsets of compact spaces are compact (lemma 7.38) it follows
that ܥ ⊂ ܺ is also compact;

1. 

since continuous images of compact spaces are compact (cor. 7.11) it then
follows that ݂(ܥ) ⊂ ܻ is compact;

2. 

since compact subspaces of Hausdorff spaces are closed (prop. 7.40) it finally
follow that ݂(ܥ) is also closed in ܻ.

3. 

For the second statement we need to show that if ܥ ⊂ ܻ is a compact subset, then
also its pre-image ݂ −ଵ(ܥ) is compact.

Now

since compact subspaces of Hausdorff spaces are closed (prop. 7.40) it follows
that ܥ ⊂ ܻ is closed;

1. 

since pre-images under continuous functions of closed subsets are closed
(prop. 3.2), also ݂ −ଵ(ܥ) ⊂ ܺ is closed;

2. 

since closed subsets of compact spaces are compact (lemma 7.38), it follows
that ݂ −ଵ(ܥ) is compact.

3. 

  ▮

As an immdiate corollary we record this useful statement:

Proposition 7.44. (continuous bijections from compact spaces to Hausdorff
spaces are homeomorphisms)

Let ݂ : (ܺ, ߬) ⟶ (ܻ, ߬) be a continuous function between topological spaces such
that

(ܺ, ߬) is a compact topological space (def. 7.2);1. 

(ܻ, ߬) is a Hausdorff topological space (def. 4.4).2. 

݂ : ܺ ⟶ ܻ is a bijection of sets.3. 

Then ݂ is a homeomorphism (def. 3.22)

In particular then both (ܺ, ߬) and (ܻ, ߬) are compact Hausdorff spaces.

Proof. By prop. 3.25 it is sufficient to show that ݂ is a closed map. This is the case
by prop. 7.43.  ▮

Proposition 7.45. (compact Hausdorff spaces are normal)

Every compact Hausdorff topological space (def. 7.2, def. 4.4) is a normal
topological space (def. 4.13).

Proof. First we claim that (ܺ, ߬) is regular. To show this, we need to find for each
point ݔ ∈ ܺ and each closed subset ܻ ∈ ܺ not containing ݔ disjoint open
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neighbourhoods ܷ௫ ⊃ and ܷ {ݔ} ⊃ ܻ. But since closed subspaces of compact spaces
are compact (lemma 7.38), the subset ܻ is in fact compact, and hence this is the
statement of lemma 7.39.

Next to show that (ܺ, ߬) is indeed normal, we apply the idea of the proof of lemma
7.39 once more:

Let ܻଵ, ܻଶ ⊂ ܺ be two disjoint closed subspaces. By the previous statement then for
every point ݕଵ ∈ ܻ we find disjoint open neighbourhoods ܷ௬భ

⊃ and ܷమ,௬భ {ଵݕ}
⊃ ܻଶ.

The union of the ܷ௬భ
 is a cover of ܻଵ, and by compactness of ܻଵ there is a finite

subset ܵ ⊂ ܻ such that

ܷభ ≔ ∪
௦ ∈ ௌ ⊂ భ

ܷ௬భ

is an open neighbourhood of ܻଵ and

ܷమ ≔ ∩
௦ ∈ ௌ ⊂ 

ܷమ,௦

is an open neighbourhood of ܻଶ, and both are disjoint.  ▮

With these statements in hand, the remaining proof of example 7.27 is immediate:

Proposition 7.46. (open subspaces of compact Hausdorff spaces are locally
compact)

Every open topological subspace ܺ ⊂
open

of a compact (def. 7.2) (def. 2.16) ܭ

Hausdorff space .is a locally compact topological space (def. 7.23) (def. 4.4) ܭ

Proof. Let ܺ be a topological space such that it arises as a topological subspace
ܺ ⊂ of a compact Hausdorff space. We need to show that ܺ is a locally compact ܭ
topological space (def. 7.23).

Let ݔ ∈ ܺ be a point and let ܷ௫ ⊂ ܺ an open neighbourhood. We need to produce a
smaller open neighbourhood whose closure is compact and still contained in ܷ௫.

By the nature of the subspace topology there exists an open subset ܸ௫ ⊂ such ܭ
that ܷ௫ = ܺ ∩ ܸ௫. Since ܺ ⊂ is assumed to be open, it follows that ܷ௫ is also open ܭ
as a subset of ܭ. Since compact Hausdorff spaces are normal (prop. 7.45) it follows
by prop. 4.18 that there exists a smaller open neighbourhood ܹ௫ ⊂ whose ܭ
topological closure is still contained in ܷ௫, and since closed subspaces of compact
spaces are compact (prop. 7.38), this topological closure is compact:

{ݔ} ⊂ ܹ௫ ⊂ Cl(ܹ௫)
cpt

⊂ ܸ௫ ⊂ ܭ .

The intersection of this situation with ܺ is the required smaller compact
neighbourhood Cl(ܹ௫) ∩ ܺ:

{ݔ} ⊂ ܹ௫ ∩ ܺ ⊂ Cl(ܹ௫)
cpt

∩ ܺ ⊂ ܷ௫ ⊂ ܺ .
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  ▮

We discuss some important relations between the concept of compact topological
spaces and that of quotient topological spaces.

Proposition 7.47. (continuous surjections from compact spaces to
Hausdorff spaces are quotient projections)

Let

ߨ : (ܺ, ߬) ⟶ (ܻ, ߬)

be a continuous function between topological spaces such that

(ܺ, ߬) is a compact topological space (def. 7.2);1. 

(ܻ, ߬) is a Hausdorff topological space (def. 4.4);2. 

ߨ : ܺ ⟶ ܻ is a surjective function.3. 

Then ߬ is the quotient topology inherited from ߬ via the surjection ݂ (def. 2.17).

Proof. We need to show that a subset ܷ ⊂ ܻ is an open subset of (ܻ, ߬) precisely if
its pre-image ߨ −ଵ(ܷ) ⊂ ܺ is an open subset in (ܺ, ߬). Equivalenty, as in prop. 3.2,
we need to show that ܷ is a closed subset precisely if ߨ −ଵ(ܷ) is a closed subset. The
implication

(ܷ closed) ⇒ ൫݂ −ଵ(ܷ) closed൯

follows via prop. 3.2 from the continuity of ߨ. The implication

൫݂ −ଵ(ܷ) closed൯ ⇒ (ܷ closed)

follows since ߨ is a closed map by prop. 7.43.  ▮

The following proposition allows to recognize when a quotient space of a compact
Hausdorff space is itself still Hausdorff.

Proposition 7.48. (quotient projections out of compact Hausdorff spaces
are closed precisely if the codomain is Hausdorff)

Let

ߨ : (ܺ, ߬) ⟶ (ܻ, ߬)

be a continuous function between topological spaces such that

(ܺ, ߬) is a compact Hausdorff topological space (def. 7.2, def. 4.4);1. 
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 .is a surjection and ߬ is the corresponding quotient topology (def. 2.17).2 ߨ

Then the following are equivalent

(ܻ, ߬) is itself a Hausdorff topological space (def. 4.4);1. 

 .is a closed map (def. 3.14).2 ߨ

Proof. The implicaton ((ܻ, ߬) Hausdorff) ⇒ ߨ) closed) is given by prop. 7.43. We need
to show the converse.

Hence assume that ߨ is a closed map. We need to show that for every pair of
distinct points ݕଵ ≠ ଶݕ ∈ ܻ there exist open neighbourhoods ܷ௬భ

, ܷ௬మ
∈ ߬ which are

disjoint, ܷ௬భ
∩ ܷ௬మ

= ∅.

First notice that the singleton subsets {ݔ}, {ݕ} ∈ ܻ are closed. This is because they
are images of singleton subsets in ܺ, by surjectivity of ݂, and because singletons in
a Hausdorff space are closed by prop, 4.5 and prop. 4.11, and because images
under ݂ of closed subsets are closed, by the assumption that ݂ is a closed map.

It follows that the pre-images

ଵܥ ≔ ߨ −ଵ({ݕଵ}) ଶܥ ≔ ߨ −ଵ({ݕଶ}) .

are closed subsets of ܺ.

Now since compact Hausdorff spaces are normal (prop. 7.45) it follows (by def.
4.13) that we may find disjoint open subset ܷଵ, ܷଶ ∈ ߬ such that

ଵܥ ⊂ ܷଵ ଶܥ ⊂ ܷଶ .

Moreover, by lemma 3.21 we may find these ܷ such that they are both saturated
subsets (def. 3.17). Therefore finally lemma 3.20 says that the images ߨ(ܷ) are
open in (ܻ, ߬). These are now clearly disjoint open neighbourhoods of ݕଵ and ݕଶ.  ▮

Example 7.49. Consider the function

[0, /[ߨ2 ∼ ⟶ ܵଵ ⊂ ℝଶ

ݐ ↦ (cos(ݐ), sin(ݐ))

from the quotient topological space
(def. 2.17) of the closed interval (def.
1.13) by the equivalence relation
which identifies the two endpoints

ݔ) ∼ (ݕ ⇔ ݔ)) = (ݕ or ݔ)) ∈ {0, ({ߨ2 and ݕ) ∈ {0, ((({ߨ2

to the unit circle ܵଵ = ܵ(1) ⊂ ℝଶ (def. 1.2) regarded as a topological
subspace of the 2-dimensional Euclidean space (example 1.6) equipped with
its metric topology (example 2.9).
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This is clearly a continuous function and a bijection on the underlying sets.
Moreover, since continuous images of compact spaces are compact (cor. 7.11)
and since the closed interval [0, 1] is compact (example 7.6) we also obtain
another proof that the circle is compact.

Hence by prop. 7.44 the above map is in fact a homeomorphism

[0, /[ߨ2 ∼ ≃ ܵଵ .

Compare this to the counter-example 3.24, which observed that the analogous
function

[0, (ߨ2 ⟶ ܵଵ ⊂ ℝଶ

ݐ ↦ (cos(ݐ), sin(ݐ))

is not a homeomorphism, even though this, too, is a bijection on the the
underlying sets. But the half-open interval [0, is not compact (for instance by (ߨ2
the Heine-Borel theorem, prop. 7.41), and hence prop. 7.44 does not apply.

8. Paracompact spaces

The concept of compactness in topology (above) has several evident weakenings of
interest. One is that of paracompactness (def. 8.3 below).

A key property is that paracompact Hausdorff spaces are equivalently those (prop.
8.18) all whose open covers admit a subordinate partition of unity (def. 8.16
below), namely a set of real-valued continuous functions each of which is
supported in only one patch of the cover, but whose sum is the unit function.
Existence of such partitions implies that structures on topological spaces which are
glued together via linear maps (such as vector bundles) are well behaved.

(In algebraic topology paracompact spaces are important as for them abelian sheaf
cohomology may be computed in terms of Cech cohomology.)

Definition 8.1. (locally finite cover)

Let (ܺ, ߬) be a topological space.

An open cover {ܷ ⊂ ܺ} ∈ ூ of ܺ is called locally finite if for all point ݔ ∈ ܺ, there

exists a neighbourhood ܷ௫ ⊃ such that it intersects only finitely many {ݔ}
elements of the cover, hence such that ܷ௫ ∩ ܷ ≠ ∅ for only a finite number of ݅ ∈ .ܫ

Definition 8.2. (refinement of open covers)

Let (ܺ, ߬) be a topological space, and let {ܷ ⊂ ܺ} ∈ ூ be a open cover.

Then a refinement of this open cover is a set of open subsets {ܸ ⊂ ܺ} ∈  which is
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still an open cover in itself and such that for each ݆ ∈ ݅ there exists an ܬ ∈ with ܫ
ܸ ⊂ ܷ.

Definition 8.3. (paracompact topological space)

A topological space (ܺ, ߬) is called paracompact if every open cover of ܺ has a
refinement (def. 8.2) by a locally finite open cover (def. 8.1).

The definition is closely related to the following two:

Definition 8.4. (second-countable topological space)

A topological space is called second countable of it admits a base for its topology
. which is a countable set of open subsetsߚ

Example 8.5. (sigma-compact topological space)

A topological space is called sigma-compact if it is the union of a countable set of
compact subsets.

Properties

Proposition 8.6. (paracompact Hausdorff spaces are normal)

Every paracompact Hausdorff space is normal.

In particular compact Hausdorff spaces are normal.

Proof. Let (ܺ, ߬) be a paracompact Hausdorff space

We first show that it is regular: To that end, let ݔ ∈ ܺ be a point, and let ܥ ⊂ ܺ be a
closed subset not containing ݔ. We need to find disjoint open neighbourhoods
ܷ௫ ⊃ and ܷ {ݔ} ⊃ .ܥ

First of all, by the Hausdorff property there exists for each ܿ ∈ disjoint open ܥ
neighbourhods ܷ௫, ⊃ and ܷ {ݔ} ⊃ As ܿ ranges, the latter clearly form an open .ܥ
cover {ܷ ⊂ ܺ} ∈  of ܥ, and so the union

{ܷ ⊂ ܺ} ∈  ∪ ܥ\ܺ

is an open cover of ܺ. By paracompactness of (ܺ, ߬), there exists a locally finite
refinement, and by this lemma we may assume its elements to share the original
index set and be contained in the original elements of the same index. Hence

{ܸ ⊂ ܷ ⊂ ܺ} ∈ 

is a locally finite collection of subsets, such that

ܷ ≔ ∪
 ∈ 

ܷ
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is an open neighbourhood of ܥ.

Now by definition of local finiteness there exists an open neighbourhood ܹ௫ ⊃ {ݔ}

and a finite subset ܭ ⊂ such that ܥ

∀
 ∈ \

(ܹ௫ ∩ ܸ = ∅) .

Consider then

ܷ௫ ≔ ܹ௫ ∩ ቀ ∩
 ∈ 

൫ܷ௫,൯ቁ .

which is an open neighbourhood of ݔ, by the finiteness of ܭ.

It thus only remains to see that

ܷ௫ ∩ ܷ = ∅ .

But this holds because the only ܸ that intersect ܹ௫ are the ܸ ⊂ ܷ and each of
these is by construction disjoint from ܷ௫, and hence from ܷ௫.

This establishes that (ܺ, ߬) is regular. Now we prove that it is normal. For this we
use the same approach as before:

Let ܥ, ܦ ⊂ ܺ be two disjoint closed subsets. By need to produce disjoint open
neighbourhoods for these.

By the previous statement of regularity, we may find for each ܿ ∈ disjoint open ܥ
neighbourhoods ܷ ⊂ {ܿ} and ܷ, ⊃ Hence the union .ܦ

{ܷ ⊂ ܺ} ∈  ∪ ܥ\ܺ

is an open cover of ܺ, and thus by paracompactness has a locally finite refinement,
whose elementes we may, again by this lemma, assume to have the same index
set as before and be contained in the previous elements with the same index.
Hence we obtain a locally finite collection of subsets

{ܸ ⊂ ܷ ⊂ ܺ} ∈ 

such that

ܷ ≔ ∪
 ∈ 

ܸ

is an open neighbourhood of ܥ.

It is now sufficient to see that every point ݀ ∈ has an open neighbourhood ܷௗ not ܦ
intersecting ܷ, for then

ܷ ≔ ∪
ௗ ∈ 

ܷௗ

is the required open neighbourhood of ܦ not intersecting ܷ.
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Now by local finiteness of {ܸ ⊂ ܺ} ∈ , every ݀ ∈ has an open neighbourhood ܹௗ ܦ

such that there is a finite set ܭௗ ⊂ so that ܥ

∀
 ∈ \

(ܸ ∩ ܹௗ = ∅) .

Accordingly the intersection

ܷௗ ≔ ܹௗ ∩ æ
èçç

∩
 ∈  ⊂ 

ܷ,
ö
ø÷÷

is still open and disjoint from the remaining ܸ, hence disjoint from all of ܷ.  ▮

The following prop. 8.8 will be useful for identifying manifolds below in prop. 9.4:

Lemma 8.7. Let ܺ be a topological space which is

locally compact;1. 

sigma-compact.2. 

Then there exists a countable open cover {ܷ ⊂ ܺ} ∈ ℕ of ܺ such that for each ݅ ∈ ܫ

the topological closure Cl(ܷ) is a compact subspace1. 

Cl(ܷ) ⊂ ܷ +ଵ.2. 

Proof. By sigma-compactness of ܺ there exists a countable cover ܭ} ⊂ ܺ} ∈ ℕ of

compact subspaces. We use these to construct the required cover by induction.

For ݅ = 0 set

ܷ ≔ ∅ .

Then assume that for ݊ ∈ ℕ we have constructed a set {ܷ ⊂ ܺ} ∈ {ଵ,⋯,} with the

required properties.

In particular this implies that

ܳ ≔ Cl(ܷ) ∪ ܭ −ଵ ⊂ ܺ

is a compact subspace. We now construct an open neighbourhood ܷ + ଵ of this
union as follows:

Let {ܷ௫ ⊂ ܺ}௫ ∈ ொ
 be a set of open neighbourhood around each of the points in ܳ.

By local compactness of ܺ, for each ݔ there is a smaller open neighbourhood ܸ௫

with

{ݔ} ⊂ ܸ௫ ⊂ Cl (ܸ௫)
compact

⊂ ܷ௫ .

So {ܸ௫ ⊂ ܺ}௫ ∈ ொ
 is still an open cover of ܳ. By compactness of ܳ, there exists a

finite set ܬ ⊂ ܳ such that {ܸ௫ ⊂ ܺ}௫ ∈  is a finite open cover. The union
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ܷ + ଵ ≔ ∪
௫ ∈ 

ܸ௫

is an open neighbourhood of ܳ, hence in particular of Cl(ܷ). Moreover, since finite

unions of compact spaces are compact (this prop.), the closure of ܷ + ଵ is compact:

Cl(ܷ +ଵ) = Cl൬ ∪
௫ ∈ 

ܸ௫൰

= ∪
௫ ∈ 

Cl(ܸ௫)
compact

.

This produces by induction a set {ܷ ⊂ ܺ} ∈ ℕ with Cl(ܷ) compact and Cl(ܷ) ⊂ ܷ + ଵ for

all ݅ ∈ ℕ. It remains to see that this is a cover. This follows since by construction
each ܷ + ଵ is an open neighbourhood not just of Cl(ܷ) but in fact of ܳ, hence in

particular of ܭ, and since the ܭ form a cover:

∪
 ∈ ℕ

ܷ ⊃ ∪
 ∈ ℕ

ܭ = ܺ .

  ▮

Proposition 8.8. (locally compact and sigma-compact spaces are
paracompact)

Let ܺ be a topological space which is

locally compact;1. 

sigma-compact.2. 

Then ܺ is also paracompact.

Proof. Let {ܷ ⊂ ܺ} ∈ ூ be an open cover of ܺ. We need to show that this has a

refinement by a locally finite cover.

By lemma 8.7 there exists a countable open cover {ܸ ⊂ ܺ} ∈ ℕ of ܺ such that for all

݊ ∈ ℕ

Cl(ܸ) is compact;1. 

ܸ ⊂ ܸ + ଵ.2. 

Notice that the complement Cl(ܸ + ଵ) ∖ ܸ is compact, since Cl(ܸ + ଵ) is compact and
ܸ is open, by example \ref{compact+space#IntersectionCompactWithOpen}.

By this compactness, the cover {ܷ ⊂ ܺ} ∈ ூ regarded as a cover of the subspace

Cl(ܸ + ଵ) ∖ ܸ has a finite subcover {ܷ ⊂ ܺ} ∈ 
 indexed by a finite set ܬ ⊂ for each ,ܫ

݊ ∈ ℕ.

We consider the sets of intersections

࣯ ≔ {ܷ ∩ (ܸ +ଶ ∖ Cl(ܸ− ଵ))} .
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Since ܸ + ଶ ∖ Cl(ܸ − ଵ) is open, and since Cl(ܸ +ଵ) ⊂ ܸ+ ଶ by construction, this is still
an open cover of Cl(ܸ+ ଵ) ∖ ܸ. We claim now that

࣯ ≔ ∪
 ∈ ℕ

࣯

is a locally finite refinement of the original cover, as required:

࣯ is a refinement, since by construction each element in ࣯ is contained in
one of the ܷ;

1. 

࣯ is still a covering because by construction it covers Cl(ܸ + ଵ) ∖ ܸ for all ݊ ∈ ℕ,
and since by the nested nature of the cover {ܸ ⊂ ܺ} ∈ ℕ also {Cl(ܸ+ ଵ) ∖ ܸ} ∈ ℕ

is a cover of ܺ.

2. 

࣯ is locally finite because each point ݔ ∈ ܺ has an open neighbourhood of the
form ܸ +ଶ ∖ Cl(ܸ − ଵ) (since these also form an open cover, by the nestedness)
and since by construction this has trivial intersection with ࣯ ≥  + ଷ and since all
࣯ are finite, so that also ∪

 ழ  + ଷ
࣯ is finite.

3. 

  ▮

Proposition 8.9. (second-countable regular spaces are paracompact)

Let ܺ be a topological space which is

second-countable;1. 

regular.2. 

Then ܺ is paracompact topological space.

This is a consequence of Michael's theorem.

We consider now a couple of technical lemmas related to locally finite covers which
will be needed in the proof of prop. 8.18 below:

every locally finite refinement induces one with the original index set,1. 

every locally finite cover of a normal space contains the closure of one with
smaller patches (“shrinking lemma”).

2. 

Lemma 8.10. (every locally finite refinement induces one with the original
index set)

Let (ܺ, ߬) be a topological space, let {ܷ ⊂ ܺ} ∈ ூ be an open cover, and let

(߶: ܬ → ,ܫ {ܸ ⊂ ܺ} ∈ ), be a refinement to a locally finite cover.

Then {ܹ ⊂ ܺ} ∈ ூ with
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ܹ ≔ ቊ ∪
 ∈ థ −భ({})

ܸቋ

is still a refinement of {ܷ ⊂ ܺ} ∈ ூ to a locally finite cover.

Proof. It is clear by construction that ܹ ⊂ ܷ, hence that we have a refinement.
We need to show local finiteness.

Hence consider ݔ ∈ ܺ. By the assumption that {ܸ ⊂ ܺ} ∈  is locally finite, it follows

that there exists an open neighbourhood ܷ௫ ⊃ and a finitee {ݔ} subset ܭ ⊂ such ܬ
that

∀
 ∈ \

൫ܷ௫ ∩ ܸ = ∅൯ .

Hence by construction

∀
ூ ∈ ூ\థ()

(ܷ௫ ∩ ܹ = ∅) .

Since the image (ܭ)߶ ⊂ is still a finite set, this shows that {ܹ ܫ ⊂ ܺ} ∈ ூ is locally

finite.  ▮

Lemma 8.11. (shrinking lemma for locally finite covers)

Let ܺ be a topological space which is normal and let {ܷ ⊂ ܺ} ∈ ூ be a locally finite

open cover.

Then there exists another open cover {ܸ ⊂ ܺ} ∈ ூ such that the topological closure

Cl(ܸ) of its elements is cotained in the original patches:

∀
 ∈ ூ

(ܸ ⊂ Cl(ܸ) ⊂ ܷ) .

We now prove this in increasing generality; first for binary open covers (lemma
8.12 below), then for finite covers (lemma 8.13), then for locally finite countable
covers (lemma 8.15), and finally for general locally finite covers (lemma 8.11,
proof below). The last statement needs the axiom of choice.

Lemma 8.12. (shrinking lemma for binary covers)

Let (ܺ, ߬) be a normal topological space and let {ܷ ⊂ ܺ} ∈ {ଵ,ଶ} an open cover by two

open subsets.

Then there exists an open set ܸଵ ⊂ ܺ whose topological closure is contained in ܷଵ

ܸଵ ⊂ Cl(ܸଵ) ⊂ ܷଵ

and such that {ܸଵ, ܷଶ} is still an open cover of ܺ.

Proof. Since ܷଵ ∪ ܷଶ = ܺ it follows (by de Morgan's law) that their complements
ܺ\ܷ are disjoint closed subsets. Hence by normality of (ܺ, ߬) there exist disjoint
open subsets
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ܸଵ ⊃ ܺ\ܷଶ ܸଶ ⊃ ܺ\ܷଵ .

By their disjointness, we have the following inclusions:

ܸଵ ⊂ ܺ\ܸଶ ⊂ ܷଵ .

In particular, since ܺ\ܸଶ is closed, this means that Cl(ܸଵ) ⊂ ܺ\(ܸଶ).

Hence it only remains to observe that ܸଵ ∪ ܷଶ = ܺ, by definition of ܸଵ.  ▮

Lemma 8.13. (shrinking lemma for finite covers)

Let (ܺ, ߬) be a normal topological space, and let {ܷ ⊂ ܺ} ∈ {ଵ,⋯,} be an open cover

with a finite number ݊ ∈ ℕ of patches. Then there exists another open cover
{ܸ ⊂ ܺ} ∈ ூ such that Cl(ܸ) ⊂ ܷ for all ݅ ∈ .ܫ

Proof. By induction using lemma 8.12.

To begin with, consider {ܷଵ, ∪
 = ଶ


ܷ}. This is a binary open cover, and hence lemma

8.12 gives an open subset ܸଵ ⊂ ܺ with ܸଵ ⊂ Cl(ܸଵ) ⊂ ܷଵ such that {ܸଵ, ∪
 = ଶ


ܷ} is still

an open cover, and accordingly so is

{ܸଵ} ∪ {ܷ} ∈ {ଶ,⋯,} .

Similarly we next find an open subset ܸଶ ⊂ ܺ with ܸଶ ⊂ Cl(ܸଶ) ⊂ ܷଶ and such that

{ܸଵ, , ܸଶ} ∪ {ܷ} ∈ {ଷ,⋯,}

is an open cover. After ݊ such steps we are left with an open cover {ܸ ⊂ ܺ} ∈ {ଵ,⋯,}

as required.  ▮

Remark 8.14. Beware the induction in lemma 8.13 does not give the statement
for infinite countable covers. The issue is that it is not guaranteed that ∪

 ∈ ℕ
ܸ is a

cover.

And in fact, assuming the axiom of choice, then there exists a counter-example
of a countable cover on a normal spaces for which the shrinking lemma fails (a
Dowker space due to Beslagic 85).

This issue is evaded if we consider locally finite covers:

Lemma 8.15. (shrinking lemma for locally finite countable covers)

Let (ܺ, ߬) be a normal topological space and {ܷ ⊂ ܺ} ∈ ℕ a locally finite countable

cover. Then there exists open subsets ܸ ⊂ ܺ for ݅ ∈ ℕ such that ܸ ⊂ Cl(ܸ) ⊂ ܷ

and such that {ܸ ⊂ ܺ} ∈ ℕ is still a cover.

Proof. As in the proof of lemma 8.13, there exist ܸ for ݅ ∈ ℕ such that
ܸ ⊂ Cl(ܸ) ⊂ ܷ and such that for every finite number, hence every ݊ ∈ ℕ, then
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∪
 = 


ܸ = ∪

 = 


ܷ .

Now the extra assumption that {ܷ ⊂ ܺ} ∈ ூ is locally finite implies that every ݔ ∈ ܺ is

contained in only finitely many of the ܷ, hence that for every ݔ ∈ ܺ there exists
݊௫ ∈ ℕ such that

ݔ ∈ ∪
 = 

ೣ
ܷ .

This implies that for every ݔ then

ݔ ∈ ∪
 = 

ೣ
ܸ ⊂ ∪

 ∈ ℕ
ܸ

hence that {ܸ ⊂ ܺ} ∈ ℕ is indeed a cover of ܺ.  ▮

We now invoke Zorn's lemma to generalize the shrinking lemma for finitely many
patches (lemma 8.13) to arbitrary sets of patches:

Proof. of the general shrinking lemma 8.11

Let {ܷ ⊂ ܺ} ∈ ூ be the given locally finite cover of the normal space (ܺ, ߬). Consider

the set ܵ of pairs ,ܬ) ࣰ) consisting of

a subset ܬ ⊂  .1;ܫ

an ܫ-indexed set of open subsets ࣰ = {ܸ ⊂ ܺ} ∈ ூ2. 

with the property that

(݅ ∈ ܬ ⊂ (ܫ ⇒ (Cl(ܸ) ⊂ ܷ);1. 

(݅ ∈ (ܬ\ܫ ⇒ (ܸ = ܷ).2. 

{ܸ ⊂ ܺ} ∈ ூ is an open cover of ܺ.3. 

Equip the set ܵ with a partial order by setting

൫(ܬଵ, ࣰ) ≤ ,ଶܬ) ࣰ)൯ ⇔ æ
èçç
൫ܬଵ ⊂ ଶ൯ܬ and æ

èçç
∀

 ∈ భ
(ܸ = ܹ)ö

ø÷÷
ö
ø÷÷

.

By definition, an element of ܵ with ܬ = .is an open cover of the required form ܫ

We claim now that a maximal element ,ܬ) ࣰ) of (ܵ, ≤ ) has ܬ = .ܫ

For assume on the contrary that there were ݅ ∈ Then we could apply the .ܬ\ܫ
construction in lemma 8.12 to replace that single ܸ with a smaller open subset ܸ′

to obtain ࣰ′  such that Cl(ܸ′ ) ⊂ ܸ and such ࣰ′  is still an open cover. But that would
mean that (ܬ, ࣰ) < ܬ) ∪ {݅}, ࣰ′), contradicting the assumption that (ܬ, ࣰ) is maximal.
This proves by contradiction that a maximal element of (ܵ, ≤ ) has ܬ = and hence ܫ
is an open cover as required.
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We are reduced now to showing that a maximal element of (ܵ, ≤ ) exists. To
achieve this we invoke Zorn's lemma. Hence we have to check that every chain in
(ܵ, ≤ ), hence every totally ordered subset has an upper bound.

So let ܶ ⊂ ܵ be a totally ordered subset. Consider the union of all the index sets
appearing in pairs in this subset:

ܭ ≔ ∪
(,ࣰ) ∈ ்

ܬ .

Now define open subsets ࣱ for ݅ ∈ ,ܬ) picking any ܭ ࣰ) in ܶ with ݅ ∈ and setting ܬ

ܹ ≔ ܸ ݅ ∈ ܭ .

This is independent of the choice of (ܬ, ࣰ), hence well defined, by the assumption
that (ܶ, ≤ ) is totally ordered.

Moreover, for ݅ ∈ define ܭ\ܫ

ܹ ≔ ܷ ݅ ∈ ܭ\ܫ .

We claim now that {ܹ ⊂ ܺ} ∈ ூ thus defined is a cover of ܺ. Because by assumption

that {ܷ ⊂ ܺ} ∈ ூ is locally finite, also all the {ܸ ⊂ ܺ} ∈ ூ are locally finite, hence for

every point ݔ ∈ ܺ there exists a finite set ܬ௫ ⊂ ݅) such that ܫ ∈ (௫ܬ\ܫ ⇒ (݅ ∉ ܷ). Since

(ܶ, ≤ ) is a total order, it must contain an element (ܬ, ࣰ) such that ܬ௫ ∩ ܭ ⊂ Since .ܬ

that ࣰ is a cover, it follows that ݔ ∈ ∪
 ∈ ூ

ܸ, hence in ∪
 ∈ ூ

ܹ.

This shows that (ܭ, ࣱ) is indeed an element of ܵ. It is clear by construction that it is
an upper bound for (ܶ, ≤ ). Hence we have shown that every chain in (ܵ, ≤ ) has an
upper bound, and so Zorn’s lemma implies the claim.  ▮

Partitions of unity

Definition 8.16. (partition of unity)

Let (ܺ, ߬) be a topological space, and let {ܷ ⊂ ܺ} ∈ ூ be an open cover. Then a

partition of unity subordinate to the cover is

a set {݂} ∈ ூ of continuous functions

݂ : ܷ ⟶ [0, 1]

(where ܷ ⊂ ܺ and [0, 1] ⊂ ℝ are equipped with their subspace topology, the
real numbers ℝ is regarded as the 1-dimensional Euclidean space equipped
with its metric topology);

such that with

Supp(݂) ≔ Cl൫݂
−ଵ((0, 1])൯
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denoting the support of ݂ (the topological closure of the subset of points on

which it does not vanish) then

∀
 ∈ ூ

൫Supp(݂) ⊂ ܷ൯;1. 

൛Supp(݂) ⊂ ܺൟ
 ∈ ூ

 is a locally finite cover (def. 8.1);2. 

∀
௫ ∈ 

൫ ∑ ∈ ூ ݂(ݔ) = 1൯.3. 

Remark 8.17. Due to the second clause in def. 8.16, the sum in the third clause
involves only a finite number of elements not equal to zero, and therefore is well
defined.

Proposition 8.18. (paracompact Hausdorff spaces equivalently admit
subordinate partitions of unity)

Let (ܺ, ߬) be a topological space. Then the following are equivalent:

(ܺ, ߬) is a paracompact Hausdorff space (def. 4.4, def. 8.3).1. 

Every open cover of (ܺ, ߬) admits a subordinate partition of unity (def. 8.16).2. 

Proof. One direction is immediate: Assume that every open cover {ܷ ⊂ ܺ} ∈ ூ

admits a subordinate partition of unity {݂} ∈ ூ. Then by definition (def. 8.16)

{Int(Supp(݂)) ⊂ ܺ} ∈ ூ is a locally finite open cover refining the original one.

We need to show the converse: If (ܺ, ߬) is a paracompact topological space, then for
every open cover {ܷ ⊂ ܺ} ∈ ூ there is a subordinate partition of unity (def. 8.16).

To that end, first apply the shrinking lemma 8.11 to the given locally finite open
cover {ܷ ⊂ ܺ}, to obtain a smaller locally finite open cover {ܸ ⊂ ܺ} ∈ ூ, and then

apply the lemma once more to that result to get a yet smaller open cover
{ܹ ⊂ ܺ} ∈ ூ, so that now

∀
 ∈ ூ

(ܹ ⊂ Cl(ܹ) ⊂ ܸ ⊂ Cl(ܸ) ⊂ ܷ) .

It follows that for each ݅ ∈ we have two disjoint closed subsets, namely the ܫ
topological closure Cl(ܹ) and the complement ܺ\ܸ

Cl(ܹ) ∩ ܺ\ܸ = ∅ .

Now since paracompact Hausdorff spaces are normal (prop. 8.6), Urysohn's lemma
(prop. 4.20) says that there exist continuous functions of the form

ℎ : ܺ ⟶ [0, 1]

with the property that

ℎ(Cl(ܹ)) = {1} , ℎ(ܺ\ܸ) = {0} .
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This means in particular that ℎ
−ଵ((0, 1]) ⊂ ܸ and hence that

Supp(ℎ) = Cl(ℎ
−ଵ((0, 1])) ⊂ Cl(ܸ) ⊂ ܷ .

By construction, the set of function {ℎ} ∈ ூ already satisfies two of the three

conditions on a partition of unity subordinate to {ܷ ⊂ ܺ} ∈ ூ from def. 8.16. It just

remains to normalize these functions so that they indeed sum to unity. To that end,
consider the continuous function

ℎ : ܺ ⟶ [0, 1]

defined on ݔ ∈ ܺ

ℎ(ݔ) ≔ 
 ∈ ூ

ℎ(ݔ) .

Notice that the sum on the right has only a finite number of non-zero summands,
due to the local finiteness of the cover, so that this is well-defined.

Then set

݂ ≔ ݃ /݃ .

This is now manifestly such that ∑ ∈ ூ ݂ = 1, and so

൛݂ൟ ∈ ூ

is a partition of unity as required.  ▮

9. Manifolds

A topological manifold is a topological space which is locally homeomorphic to a
Euclidean space (def. 9.5 below), but which may globally look very different. These
are the kinds of topological spaces that are really meant when people advertise
topology as “rubber-sheet geometry”.

If the gluing functions which relate the Euclidean local charts of topological
manifolds to each other are differentiable functions, for a fixed degree of
differentiability, then one speaks of differentiable manifolds (def 9.9 below) or of
smooth manifolds if the gluing functions are arbitrarily differentiable.

Accordingly, a differentiable manifold is a space to which the tools of (infinitesimal
analysis may be applied locally. Notably we may ask whether a continuous function
between differentiable manifolds is differentiable by computing its derivatives
pointwise in any of the Euclidean coordinate charts. This way differential and
smooth manifolds are the basis for much of differential geometry. They are the
analogs in differential geometry of what schemes are in algebraic geometry.
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Definition 9.1. (locally Euclidean topological space)

A topological space ܺ is locally Euclidean if every point ݔ ∈ ܺ has an open
neighbourhood ܷ௫ ⊃ which is homeomorphic to the Euclidean space {ݔ} ℝ with its
metric topology:

ℝ →⎯⎯⎯⎯⎯⎯
≃

ܷ௫ ⊂ ܺ .

The “local” topological properties of Euclidean space are inherited by locally
Euclidean spaces:

Proposition 9.2. (locally Euclidean spaces are ܶଵ)

Every locally Euclidean space (def. 9.1) satisfies the ܶଵ separation axiom;

Proof. Let ݔ ≠ be two distinct points in the locally Euclidean space. We need to ݕ
show that there is an open neighbourhood ܷ௫ around ݔ that does not contain ݕ.

By definition there is a Euclidean open neighbourhood ܧ௫ around ݕ. If this does not
contain ݕ, then we may choose ܷ௫ ≔ ݔ ௫. If it does, thenܧ ≠ are equivalently two ݕ
distinct point in this Euclidean space ܧ௫ ≃ ℝ. But Euclidean space, as every metric
space, is ܶଵ, and hence we may find an open neighbourhood ܷ௫ ⊂ ௫ notܧ
intersecting ݕ.  ▮

But the “global” topological properties of Euclidean space are not generally
inherited by locally Euclidean spaces. This sounds obvious, but notice that also
Hausdorff-ness is a “global property”:

Remark 9.3. (locally Euclidean spaces are not necessarily ܶଶ)

It might superficially seem that every locally Euclidean space (def. 9.1) is
necessarily a Hausdorff topological space, since Euclidean space, like any metric
space, is Hausdorff, and since by definition the neighbourhood of every point in a
locally Euclidean spaces looks like Euclidean space.

But this is not so, see the counter-example 9.7 below, Hausdorffness is a
“non-local condition”, as opposed to the ܶ and ܶଵ separation axioms.

Proposition 9.4. Let ܺ be a topological space which is

Hausdorff,1. 

locally Euclidean space (def. 9.1)2. 

connected.3. 

Then the following are equivalent:

ܺ is paracompact topological space;1. 

ܺ is second countable.2. 

In particular if ܺ is as above but not necessarily connected, then the following are
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equivalent

ܺ is paracompact topological space and has a countable set of connected
components,

1. 

ܺ is second countable2. 

ܺ is sigma-compact.3. 

In one direction, use that locally compact and sigma-compact spaces are
paracompact (prop. 8.8)

Proof is for instance here pdf

Definition 9.5. (topological manifold)

A topological manifold is a topological space which is

locally Euclidean (def. 9.1),1. 

paracompact Hausdorff (def. 4.4, def. 8.3).2. 

If the local Euclidean spaces ℝ →≃ ܷ ⊂ ܺ are all of dimension ݊ for a fixed ݊ ∈ ℕ,
then the topological manifold is said to be of dimension ݊, too. Sometimes one
also says “݊-fold” in this case.

Remark 9.6. (varying terminology)

There is some variance in the choice of regularity condition in def. 9.5. Often it is
required that a manifold be sigma-compact. But by prop. 9.4 this definition
differs from def. 9.5 only if there are non-countably many connected
components.

Sometimes, but very rarely, authors speak of non-Hausdorff topological spaces as
manifolds, see example 9.7.

Nonexample 9.7. (non-Hausdorff manifolds)

An example of a topological space which is locally Euclidean as in def. 9.5 but a
non-Hausdorff topological space, and hence not a topological manifold in the
sense of def. 9.5, is the line with two origins (example 4.3).

Definition 9.8. (local chart, atlas and gluing function)

Given an ݊-dimensional topological manifold ܺ (def. 9.5), then

an open subset ܷ ⊂ ܺ and a homeomorphism ߶: ℝ ሱ ሮ⎯⎯
≃

ܷ is also called a local
coordinate chart of ܺ.

1. 

an open cover of ܺ by local charts ൜ℝ →
థ ܷ ⊂ ܺൠ

 ∈ ூ
 is called an atlas of the

topological manifold.

2. 

denoting for each ݅, ݆ ∈  .the intersection of the ݅th chart with the ݆th chart in3 ܫ
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such an atlas by

ܷ ≔ ܷ ∩ ܷ

then the induced
homeomorphism

ℝ ⊃ ߶
−ଵ(ܷ) →⎯⎯⎯

థ ܷ →⎯⎯⎯⎯⎯
థೕ

−భ

߶
−ଵ(ܷ) ⊂ ℝ

is called the gluing
function from chart ݅ to
chart ݆.

graphics grabbed from
Frankel

Definition 9.9. (differentiable manifold)

For  ∈ ℕ ∪ {∞} then a -fold differentiable manifold or ܥ-manifold for short is

a topological manifold ܺ (def. 9.5);1. 

an atlas {ℝ →
థ ܺ} (def. 9.8) all whose gluing functions are  times

continuously differentiable.
2. 

A -fold differentiable function between -fold differentiable manifolds

൬ܺ, {ℝ →
థ ܷ ⊂ ܺ} ∈ ூ൰ →⎯⎯⎯⎯⎯


ቆܻ, {ℝᇱ →⎯

టೕ
ܸ ⊂ ܻ} ∈ ቇ

is

a continuous function ݂ : ܺ → ܻ

such that

for all ݅ ∈ ݆ and ܫ ∈ then ܬ

ℝ ⊃ (݂ ∘ ߶) −ଵ(ܸ) ⟶
థ ݂ −ଵ(ܸ) ⟶


ܸ →⎯⎯⎯

టೕ
−భ

ℝᇱ

is a -fold differentiable function between open subsets of Euclidean space.

Notice that this in in general a non-trivial condition even if ܺ = ܻ and ݂ is the
identity function. In this case the above exhibits a passage to a different, but
equivalent, differentiable atlas.

Remark 9.10. (category Diff of differentiable manifolds)

In analogy to remark 3.3 there is a category called Diff (or similar) whose
objects are ܥ-differentiable manifolds and whose morphisms are
.-differentiable functionsܥ
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Example 9.11. (Cartesian space as a smooth manifold)

For ݊ ∈ ℕ then the Cartesian space ℝ equipped with the atlas consisting of the

single chart ℝ →
୧ୢ

ℝ is a smooth manifold, in particularly a -fold differentiable
manifold for every  ∈ ℕ according to def. 9.9.

Similarly the open disk  becomes a smooth manifold when equipped with theܦ
atlas whose single chart is the homeomorphism ℝ → .ܦ

Example 9.12. (n-sphere as a smooth manifold)

For all ݊ ∈ ℕ, the n-sphere ܵ becomes a smooth manfold, with atlas consisting of
the two local charts that are given by the inverse functions of the stereographic
projection from the two poles of the sphere onto the equatorial hyperplane

ቊℝ →⎯⎯⎯
≃

ఙ
−భ

ܵቋ
 ∈ {+, −}

.

By the formulas given in this prop. the induced gluing function ℝ\{0} → ℝ\{0} is
smooth.

Tangent bundles

Since differentiable manifolds are locally Euclidean
spaces whose gluing functions respect the
infinitesimal analysis on Euclidean space, they
constitute a globalization of infinitesimal analysis
from Euclidean space to more general topological
spaces. In particular a differentiable manifold has
associated to each point a tangent space of vectors
that linearly approximate the manifold in the
infinitesimal neighbourhood of that point. The
union of all these tangent spaces is called the
tangent bundle of the differentiable manifold.

The tangent bundle, via the frame bundle that is associated to it is the basis for all
actual geometry: By equipping tangent bundles with (torsion-free) “G-structures”
one encodes all sorts of flavors of geometry, such as Riemannian geometry,
conformal geometry, complex geometry, symplectic geometry, and generally Cartan
geometry.

Definition 9.13. (tangency relation on smooth curves)

Let ܺ be a differentiable manifold of dimension ݊ and let ݔ ∈ ܺ be a point. On the
set of smooth functions of the form

ߛ : ℝଵ ⟶ ܺ

such that

(0)ߛ = ݔ
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define the relations

ଵߛ) ∼ (ଶߛ ≔ ∃
ℝ ሱ ሮ⎯⎯⎯⎯⎯⎯

ഝ chart
ೆ ⊂ 

ೆ ⊃ {ೣ}

ቆ
݀
ݐ݀

(߶ −ଵ ∘ ଵ)(0)ߛ =
݀
ݐ݀

(߶ −ଵ ∘ ଶ)(0)ቇߛ

and

ଵߛ) ∼ (ଶߛ′ ≔ ∀
ℝ ሱ ሮ⎯⎯⎯⎯⎯⎯

ഝ chart
ೆ ⊂ 

ೆ ⊃ {ೣ}

ቆ
݀
ݐ݀

(߶ −ଵ ∘ ଵ)(0)ߛ =
݀
ݐ݀

(߶ −ଵ ∘ ଶ)(0)ቇߛ

saying that two such functions are related precisely if either there exists a chart
around ݔ such that (or else for all charts around ݔ it is true that) the first
derivative of the two functions regarded via the given chart as functions ℝଵ → ℝ,
coincide at ݐ = 0 (with ݐ denoting the canonical coordinate function on ℝ).

Lemma 9.14. (tangency is equivalence relation)

The two relations in def. 9.13 are equivalence relations and they coincide.

Proof. First to see that they conincide, we need to show that if the derivatives in

question coincide in one chart ℝ →
≃

థ
ܷ ⊂ ܺ, that then they coincide also in any other

chart ℝ →
≃

ట
ܷ ⊂ ܺ.

Write

ܷ ≔ ܷ ∩ ܷ

for the intersection of the two charts.

First of all, since the derivative may be computed in any open neighbourhood
around ݐ = 0, and since the differentiable functions ߛ are in particular continuous

functions, we may restrict to the open neighbourhood

ܸ ≔ ଵߛ
−ଵ(ܷ) ∩ ଶߛ

−ଵ(ܷ) ⊂ ℝ

of 0 ∈ ℝ and consider the derivatives of the functions

ߛ
థ ≔ (߶ |ೕ

∘ ߛ | ) : ܸ ⟶ ߶ −ଵ(ܷ) ⊂ ℝ

and

ߛ
ట ≔ (߰|ೕ

∘ ߛ | ) : ܸ ⟶ ߰ −ଵ(ܷ) ⊂ ℝ .

But then by definition of the differentiable atlas, there is the differentiable function

ߙ ≔ ߶ −ଵ(ܷ) ⟶
≃

థ
ܷ →⎯⎯⎯

≃

ట −భ

߰ −ଵ(ܷ ݆)

such that
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ߛ
ట = ߙ ∘ ߛ

థ

for ݅ ∈ {1, 2}. The chain rule now relates the derivatives of these functions as

݀
ݐ݀

ߛ
ట = (ߙܦ) ∘ ቆ

݀
ݐ݀

ߛ
థቇ .

Since ߙ is a diffeomorphism and since derivatives of diffeomorphisms are linear
isomorphisms, this says that the derivative of ߛ

థ is related to that of ߛ
ట by a linear

isomorphism, and hence

ቆ
݀
ݐ݀

థ(ଵߛ) =
݀
ݐ݀

ଶߛ)
థ)ቇ ⇔ ቆ

݀
ݐ݀

ట(ଵߛ) =
݀
ݐ݀

ଶߛ)
ట)ቇ .

Finally, that either relation is an equivalence relation is immediate.  ▮

Definition 9.15. (tangent vector)

Let ܺ be a differentiable manifold and ݔ ∈ ܺ a point. Then a tangent vector on ܺ at
,is an equivalence class of the the tangency equivalence relation (def. 9.13 ݔ
lemma 9.14).

The set of all tangent vectors at ݔ ∈ ܺ is denoted ܶ௫ܺ.

Lemma 9.16. (real vector space structure on tangent vectors)

For ܺ a differentiable manifold of dimension ݊ and ݔ ∈ ܺ any point, let ℝ →
≃

థ
ܷ ⊂ ܺ

be a chart with ݔ ∈ ܷ.

Then there is induced a bijection of sets

ℝ ⟶≃ ܶ௫ܺ

from the ݊-dimensional Cartesian space to the set of tangent vectors at ݔ (def.
9.15) given by sending ݒ⇀ ∈ ℝ to the equivalence class of the following smooth
curve:

ℝଵ →⎯⎯⎯
ఊ(−)

ഝ

ℝ ⟶
≃

థ
ܷ ⊂ ܺ

ݐ ሌ ሮ⎯⎯⎯ ⇀ݒݐ + (ݔ)߶ ሌ ሮ⎯⎯⎯ ߶ −ଵ(ݒݐ⇀ + ((ݔ)߶

.

Moreover, the structure of a real vector space inherited by ܶ௫ܺ from ℝ via ߶ this
way is independent of the choice of ߶.

Proof. The bijectivity of the map is immediate from the fact that the first derivative
of ߛ௩⇀

థ is ݒ⇀. The independency from the choice of chart follows as in the proof of

lemma 9.14.  ▮

Remark 9.17. (notation for tangent vectors in a chart)

Under the bijection of lemma 9.16 one often denotes the tangent vector
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corresponding to the the ݅-th canonical basis vector of ℝ by

∂
ݔ∂ or just ∂

because under the identification of tangent vectors with derivations on the
algebra of differentiable functions on ܺ as above then it acts as the operation of
taking the ݅th partial derivative. The general tangent vector corresponding to
ݒ ∈ ℝ is then denoted by


 = ଵ



ݒ ∂
ݔ∂ or just 

 = ଵ



ݒ ∂ .

Notice that this identification depends on the choice of chart, which is left implicit
in this notation.

Sometimes, notably in texts on thermodynamics, one augments this notation to
indicate the chart being used by listing the remaining coordinate functions as
subscripts. For instance if two functions ݂, ݃ on a 2-dimensional manifold are used
as coordinate functions for a local chart (i.e. so that ݔଵ = ݂ and ݔଶ = ݃ ), then one
write

(∂ / ∂݂) (∂ / ∂݃)

for the tangent vectors ப

ப௫భ and ப

ப௫మ, respectively.

Definition 9.18. (tangent space)

For ܺ a differentiable manifold and ݔ ∈ ܺ a point, then the tangent space of ܺ at ݔ
is the set ܶ௫ܺ of tangent vectors at ݔ (def. 9.15) regarded as a real vector space
via lemma 9.16.

Definition 9.19. (tangent bundle)

Let ܺ be a differentiable manifold with atlas ൜ℝ →
≃

థ ܷ ⊂ ܺൠ
 ∈ ூ

.

Equip the set of all tangent vectors (def. 9.15)

ܶܺ ≔ ⊔
௫ ∈ 

ܶ௫ܺ

with a topology ்߬ by declaring a subset ܷ ⊂ ܶܺ to be an open subset precisely if

for all charts ℝ →
≃

థ ܷ ⊂ ܺ then its preimage under

ℝଶ ≃ ℝ × ℝ ⟶
ௗథ

ܶܺ

,ݔ) (⇀ݒ ሌ ሮ⎯⎯⎯
ௗ

ௗ௩
(ݔ)߶

is open in the Euclidean space ℝଶ with its metric topology.

Define an atlas on this topological space by
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൜ℝଶ ሱሮ⎯
≃

ௗథ ܶ(ܷ) ⊂ ܶܺൠ
 ∈ ூ

.

The resulting differentiable manifold ܶܺ is called the total space of the tangent
bundle of ܺ.

Equipped with the function

ܶܺ →⎯⎯⎯⎯⎯⎯
ೣ ܺ

,ݔ) (ݒ ሌ ሮ⎯⎯⎯ ݔ

this is called the tangent bundle of ܺ.

Lemma 9.20. (tangent bundle is differentiable vector bundle)

The total space of the tangent bundle def. 9.19 is a differentiable manifold in that

(ܶܺ, ்߬) is a paracompact Hausdorff space;1. 

The gluing functions of the atlas ൜ℝଶ ሱሮ⎯
≃

ௗథ ܷܶ ⊂ ܶܺൠ
 ∈ ூ

 are differentiable.2. 

Moreover, the function  : ܶܺ → ܺ is continuous and of the same degree of

differentiability as the differentiable structure on ܺ.

Finally, this makes the tangent bundle into a real vector bundle over ܺ.

Proof. (…) pretty straightforward (…)  ▮

Proposition 9.21. (differentials of differentiable functions between
differentiable manifolds)

Let ܺ and ܻ be differentiable manifolds and let ݂ : ܺ ⟶ ܻ be a differentiable
function. Then the operation of postcomposition which takes differentiable curves
in ܺ to differentiable curves in ܻ

Homୈ୧(ℝଵ, ܺ) →⎯⎯⎯⎯
 ∘( −)

Homୈ୧(ℝଵ, ܻ)

ቀℝଵ →
ఊ

ܺቁ ሌ ሮ⎯⎯⎯ ൬ℝଵ ሱሮ⎯
 ∘ఊ

ܻ൰

descends at each point ݔ ∈ ܺ to the tangency equivalence relation (def. 9.13,
lemma 9.14) to yield a function on sets of tangent vectors (def. 9.15), called the
differential ݂݀|௫ of ݂ at ݔ

݂݀|௫ : ܶ௫ܺ ⟶ ܶ(௫)ܻ .

Moreover:

(linear dependence on the tangent vector) these differentials are linear
functions with respect to the vector space structure on the tangent spaces
from lemma 9.16, def. 9.18;

1. 
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(differentiable dependence on the base point) globally they yield a
homomorphism of differentiable real vector bundles between the tangent
bundles (def. 9.19, lemma 9.20), called the global differential ݂݀ of ݂

݂݀ : ܶܺ ⟶ ܻܶ .

2. 

(chain rule) The assignment ݂ ↦ ݂݀ respects composition in that for ܺ, ܻ, ܼ
three differentiable manifolds and for

ܺ →⎯⎯


ܻ →⎯⎯⎯


ܼ

two composable differentiable functions then their differentials satisfy

݀(݃ ∘ ݂) = (݀݃) ∘ (݂݀) .

3. 

Remark 9.22. In the language of category theory the statement of prop. 9.21
says that forming tangent bundles ܶܺ of differentiable manifolds ܺ and
differentials ݂݀ of differentiable functions ݂: ܺ → ܻ constitutes a functor

ܶ : Diff ⟶ Vect(Diff)

from the category Diff of differentiable manifolds to the category of differentiable
real vector bundles.

Embeddings

Definition 9.23. (immersion and submersion of differentiable manifolds)

Let ݂ : ܺ ⟶ ܻ be a differentiable function between differentiable manifolds.

If for each ݔ ∈ ܺ the differential (prop. 9.21)

݂݀ |௫ : ܶ௫ܺ ⟶ ܶ(௫)ܻ

is…

…an injective function then ݂ is called an immersion of differentiable
manifolds

1. 

…a surjective function then ݂ is called a submersion of differentiable
manifolds.

2. 

Definition 9.24. (embedding of smooth manifolds)

An embedding of smooth manifolds is a smooth function ݂: ܺ ↪ ܻ between smooth
manifolds ܺ and ܻ such that

݂ is an immersion;1. 

the underlying continuous function is an embedding of topological spaces.2. 
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A closed embedding is an embedding such that the image ݂(ܺ) ⊂ ܻ is a closed
subset.

Nonexample 9.25. (immersions that are not embeddings)

Consider an immersion ݂ : (ܽ, ܾ) → ℝଶ of an open interval into
the Euclidean plane (or the 2-sphere) as shown on the right.
This is not a embedding of smooth manifolds: around the
points where the image crosses itself, the function is not even
injective, but even a#t the points where it just touches itself,
the pre-images under ݂ of open subsets of ℝଶ do not exhaust
the open subsets of (ܽ, ܾ), hence do not yield the subspace
topology.

As a
concrete
examples,
consider the function
(sin(2 − ), sin( −)) : ,ߨ−) (ߨ ⟶ ℝଶ.
While this is an immersion and
injective, it fails to be an
embedding due to the points
at ݐ = ± touching” the point“ ߨ

at ݐ = 0.

graphics grabbed from Lee

Proposition 9.26. (proper injective immersions are equivalently the closed
embeddings)

Let ܺ and ܻ be smooth manifolds, and let ݂ : ܺ → ܻ be a smooth function. Then the
following are equivalent

݂ is a proper injective immersion;1. 

݂ is a closed embedding (def. 9.24).2. 

Proof. Since topological manifolds are locally compact topological spaces (remark
\ref{TopologicalManifoldsAreLocallyCompact}), this follows directly since [injective
proper maps into locally compact spaces are equivalently closed embeddings by
prop. .]  ▮

Proposition 9.27. For every compact smooth manifold ܺ (of finite dimension),
there exists some ݇ ∈ ℕ such that ܺ has an embedding (def. 9.24) into the
Euclidean space of dimension ݇:

ܺ ሊ ሮ⎯⎯⎯
embd

ℝ

Proof. Let
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{ℝ ⟶
≃

థ ܷ ⊂ ܺ} ∈ ூ

be an atlas exhibiting the smooth structure of ܺ. In particular this is an open cover,
and hence by compactness there exists a finite subset ܬ ⊂ such that ܫ

{ℝ →
≃

థ ܷ ⊂ ܺ} ∈  ⊂ ூ

is still an open cover.

Since ܺ is a smooth manifold, there exists a partition of unity {݂ ∈ ,ܺ)ஶܥ ℝ)} ∈ 

subordinate to this cover with smooth functions ݂ (by this prop.).

This we may use to extend the inverse chart identifications

ܺ ⊃ ܷ ⟶
≃

ట ℝ

to smooth functions

߰̂ : ܺ → ℝ

by setting

߶̂ : ݔ ↦ ൝
݂(ݔ) ⋅ ߰(ݔ) | ݔ ∈ ܷ ⊂ ܺ

0 | otherwise
.

The idea now is to combine all these functions to obtain an injective function

(߰̂) ∈  : ܺ ⟶ (ℝ)|| ≃ ℝ ⋅|| .

But while this is injective, it need not be an immersion, since the derivatives of the
product functions ݂ ⋅ ߰ may vanish, even though the derivatives of the two factors

do not vanish separately. However this is readily fixed by adding yet more ambient
coordinates and considering the function

(߰̂, ݂) ∈ ூ : ܺ ⟶ ൫ℝ + ଵ)൯
||

≃ ℝ( +ଵ)⋅ || .

This is an immersion. Hence it remains to see that it is also an embedding of
topological spaces.

By this prop it is sufficient to see that the injective continuous function is a closed
map. But this follows generally since ܺ is a compact topological space by
assumption, and since ܻ is a Hausdorff topological space by definition of manifolds,
and since maps from compact spaces to Hausdorff spaces are closed and
proper.  ▮
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This concludes Section 1 Point-set topology.

For the next section see Section 2 -- Basic homotopy theory.

10. References

General

A canonical compendium is

Nicolas Bourbaki, chapter 1 Topological Structures in Elements of Mathematics
III: General topology, Springer (1971, 1990)

Introductory textbooks include

John Kelley General Topology, Graduate Texts in Mathematics, Springer
(1955)

James Munkres, Topology, Prentice Hall (1975, 2000)

Lecture notes include

Friedhelm Waldhausen, Topologie (pdf)

See also the references at algebraic topology.

Special topics

The standard literature typically omits the following important topics:

Discussion of sober topological spaces is briefly in

Peter Johnstone, section II 1. of Stone Spaces, Cambridge Studies in
Advanced Mathematics 3, Cambridge University Press 1982. xxi+370 pp.
MR85f:54002, reprinted 1986.

An introductory textbook that takes sober spaces, and their relation to logic, as the
starting point for toplogy is

Steven Vickers, Topology via Logic, Cambridge University Press (1989)

Detailed discussion of the Hausdorff reflection is in

Bart van Munster, The Hausdorff quotient, 2014 (pdf)

11. Index

Basic concepts

open subset, closed subset
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topological space (see also locale)

basis for the topology, finer/coarser topology

closure, interior, boundary

separation axiom

continuous function, homeomorphism

embedding

open map, closed map

sequence, net, sub-net, filter

convergence

category Top

convenient category of topological spaces

Universal constructions

initial topology, final topology

subspace, quotient space,

fiber space, attaching space

product space, disjoint union space

mapping cylinder, mapping cocylinder

mapping cone, mapping cocone

mapping telescope

Extra stuff, structure, properties

nice topological space

metric space

Kolmogorov space, Hausdorff space, regular space, normal space

sober space

compact space (sequentially compact, countably compact, paracompact,
countably paracompact, locally compact, strongly compact)

compactly generated space

second-countable space, first-countable space

contractible space, locally contractible space
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connected space, locally connected space

simply-connected space, locally simply-connected space

topological vector space, Banach space, Hilbert space

topological manifold

CW-complex

Examples

empty space, point space

discrete space, codiscrete space

order topology, specialization topology, Scott topology

Euclidean space

real line, plane

sphere, ball,

circle, torus, annulus

polytope, polyhedron

projective space (real, complex)

classifying space

mapping space, loop space, path space

Zariski topology

Cantor space, Sierpinski space

long line, line with two origins

K-topology, Dowker space

Warsaw circle

Peano curve

Basic statements

Hausdorff spaces are sober

CW-complexes are Hausdorff

(para-)compact Hausdorff spaces are normal

continuous image of a compact space is compact
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closed subspaces of compact Hausdorff spaces are equivalently compact
subspaces

open subspaces of compact Hausdorff spaces are locally compact

quotient projections out of compact Hausdorff spaces are closed precisely if
the codomain is Hausdorff

compact spaces equivalently have converging subnet of every net

Lebesgue number lemma

sequentially compact metric spaces are equivalently compact metric
spaces

compact spaces equivalently have converging subnet of every net

sequentially compact metric spaces are totally bounded

paracompact Hausdorff spaces equivalently admit subordinate partitions of
unity

Theorems

Urysohn's lemma

Tietze extension theorem

tube lemma

Tychonoff theorem

Heine-Borel theorem

Brouwer's fixed point theorem

topological invariance of dimension

Jordan curve theorem
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