Olivier Isely

Algebraic K-Theory

Semester project

Chaire of the Prof.
Kathryn Hess

Directed by
Sverre Lunøe-Nielsen

Contents

Introduction 2
1 Preliminaries 3
2 The group K_{0} 6
2.1 Milnor's definition of K_{0} 6
2.2 Grothendieck's construction of K_{0} 8
3 The group K_{1} 13
3.1 Whitehead's lemma and definition of K_{1} 13
3.2 Properties of K_{1} 15
4 The group K_{2} 20
4.1 Definition of K_{2} 20
4.2 Universal central extensions 23
5 Higher K-theory groups 30
5.1 The B-construction 30
5.2 Singular homology 33
5.3 The plus-construction 36
Conclusion 43
Bibliography 44

Introduction

Algebraic K-theory is a branch of algebra dealing with linear algebra over a general ring A instead of over a field. It associates to any ring A a sequence of abelian groups $K_{i}(A)$. The first three of these, $K_{0}(A), K_{1}(A)$ and $K_{2}(A)$, can be described in concrete terms ; the others are rather mysterious. For instance, $K_{0}(A)$ is the group defined by the isomorphic classes of projectives modules over A and $K_{1}(A)$ is the abelianisation of the colimit of $G L_{n}(A)$. In the same way, $K_{2}(A)$ can be described in terms of generators and relations.
K-theory as an independent discipline is a fairly new subject, only about 50 years old. However, special cases of K-groups occur in almost all areas of mathematics, and particular examples of what we now call K_{0} were among the earliest studied examples of abelian groups. We can still say that the letter K has been chosen from the German word Klasse.

Algebraic K-theory plays an important role in many subjects, especially number theory, algebraic topology and algebraic geometry. For instance, the class group of a number field K is essentially $K_{0}\left(O_{K}\right)$, where O_{K} is the ring of integers. Some formulas in operator theory, involving determinants, are best understood in terms of algebraic K-theory.

In this document, I will briefly intruduce the definitions of the K-theory groups. There is two parts : the first one is based on the book of John Milnor, Introduction to algebraic K-theory, and will give an algebraic definition of $K_{0}(A), K_{1}(A), K_{2}(A)$ and some properties of them ; the second one is based on Allen Hatcher's Algebraic Topology and will present the topological construction of the space that will define the higher K-theory groups.

Chapter 1

Preliminaries

We assume that the notions of ring, module, homomorphism between rings, etc. are known. In all the document, a ring will be an associative ring with $1 \neq 0$. An homomorphism ϕ between two rings will always satisfy $\phi(1)=1$. Moreover, \mathbb{N} will designe the set $\{0,1,2, \ldots\}$ and \mathbb{N}^{*} will be $\mathbb{N} \backslash\{0\}$.

For all this chapter we fix a ring A. For any A-module M and for any subset $B \subseteq M$, we recall that $\langle B\rangle$ is the intersection of all the A-submodules of M having B as a subset. In fact we have

$$
\langle B\rangle=\left\{\sum_{i=1}^{n} \lambda_{i} b_{i} \mid \lambda_{i} \in A, b_{i} \in B\right\}
$$

Definition 1.1 Let M be an A-module. A subset $B \subseteq M$ is called a system of generators of M if $\langle B\rangle=M$. In this case we say that B generates M.

Definition 1.2 An A-module M is called finitely generated if there is a subset $B \subseteq M$ which generates M and is finite.

If one system of generators B has only one element, we say that M is cyclic.

Remark Generally there is more than one system of generators for an A module M. In fact we can even have two sytems of generators which have not the same number of elements.

Example A is always a cyclic A-module. It is generated by 1 .
Definition 1.3 A basis B of an A-module M is a subset $B \subseteq M$ that generates M and is free, meaning that there are no relations between the elements of B in M.

Definition 1.4 An A-module L is called free if there is a basis B of L.

Examples

1. The A-module A has $\{1\}$ as a basis and so is a free module.
2. If $A=K$ is a field, then a K-module is a K-vector space and so have a basis. In fact this result is true if A is a division ring.
3. The polynom ring $A[X]$, seen as an A-module, has $\left\{1, X, X^{2}, \ldots\right\}$ as a basis.
4. A^{n} is a free module over A with basis $\left\{e_{i} \mid 1 \leq i \leq n\right\}$, where e_{i} is the element $(0, \ldots, 0,1,0, \ldots, 0) \in A^{n}$ with the 1 at the i-th place.

5 . The \mathbb{Z}-module $\mathbb{Z} / 2 \mathbb{Z}$ is a finitely generated module (even cyclic), but doesn't have any basis.

Proposition 1.5 If L and L^{\prime} are two free A-modules, then $L \oplus L^{\prime}$ is a free A-module.

Proof. If B and B^{\prime} are basis for L and L^{\prime} respectively, then it is clear that $B \times B^{\prime}$ is a basis for $L \times L^{\prime} \cong L \oplus L^{\prime}$.

Proposition 1.6 Every free and finitely generated A-module L is isomorphic to an A-module A^{n}, with $n \in \mathbb{N}$.

Proof. Since L is free and finitely generated, there is a finite basis B for L. So we can write $B=\left\{b_{1}, \ldots, b_{n}\right\}$. We consider the map

$$
\begin{aligned}
\phi: A^{n} & \longrightarrow L \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto \sum_{i=1}^{n} x_{i} b_{i}
\end{aligned}
$$

ϕ is well defined and is clearly an A-homomorphism. Moreover ϕ is injective because B is free and ϕ is onto L because B generates L. So ϕ is an A-isomorphism. Thus $L \cong A^{n}$.

Remark

1. Since the basis of a free A-module haven't the same cardinality in general, the $n \in \mathbb{N}$ in the proposition 1.6 isn't unique for all ring A.
2. We say that A has the property of the unique rank if the $n \in \mathbb{N}$ is uniquely determinated. Such ring satisfies

$$
A^{n} \cong A^{m} \Longleftrightarrow n=m
$$

Fields, division rings and principal rings have the property of the unique rank.
3. For a field or a division ring K, every finitely generated K-module is isomorphic to K^{n}, for a $n \in \mathbb{N}$. Moreover, the $n \in \mathbb{N}$ is unique, since K is a field.

Definition 1.7 An A-module P is called projective if there exists an A module Q so that $L:=P \oplus Q$ is a free module over A.

Remark In the case of the definition 1.7, we have that Q is also a projective module over A :

$$
Q \oplus P \cong P \oplus Q=L
$$

Examples

1. A free module L is always projective because $L \oplus 0 \cong L$ is free.
2. A projective module is always a submodule of a free module. Effectively, if P is a projective module, there is one Q so that $P \oplus Q$ is free. So $P \cong P \oplus 0 \subseteq P \oplus Q$ is a submodule of a free module.
3. The \mathbb{Z}-module $\mathbb{Z} / 2 \mathbb{Z}$ is not projective.

In fact a free \mathbb{Z}-module is a direct sum of copy of \mathbb{Z} (since proposition 1.6) and so is torsionless, i.e. there is no element x so that $n x=0$ for an integer n. But $\mathbb{Z} / 2 \mathbb{Z}$ isn't torsionless and so cannot be submodule of a free \mathbb{Z}-module.

Proposition 1.8 If P and Q are projective A-modules, then $P \oplus Q$ is also a projective module.

Proof. Since P and Q are projective, there are A-modules M and N so that $P \oplus M$ and $Q \oplus N$ are free. By proposition 1.5, $P \oplus M \oplus Q \oplus N$ is free. But

$$
P \oplus M \oplus Q \oplus N \cong P \oplus Q \oplus M \oplus N
$$

and so $P \oplus Q$ is projective.

Chapter 2

The group K_{0}

2.1 Milnor's definition of K_{0}

Let A be a ring. To define $K_{0}(A)$ we consider the following equivalence relation. We say that two finitely projective A-modules P and Q are equivalent if and only if they are isomorphic, i.e. if there is an isomorphism of A-modules $P \longrightarrow Q$. This is clearly an equivalence relation.

We note \bar{P} for the equivalence class of the projective A-module P and $\operatorname{Proj}(A)$ for the set of all the equivalence classes.

Definition 2.1 (Milnor) The projective module group $K_{0}(A)$ is the group defined by generators and relations as follows. For each elements \bar{P} of $\operatorname{Proj}(A)$ we take a generator $[P]$ and for each pair $[P],[Q]$ of generators we define the relation

$$
[P]+[Q]:=[P \oplus Q]
$$

Remark Since $P \oplus Q \cong Q \oplus P$ we have that $\overline{P \oplus Q}=\overline{Q \oplus P}$ and so $[P]+[Q]=[P \oplus Q]=[Q \oplus P]=[Q]+[P]$, meaning that $K_{0}(A)$ is an abelian group.

Proposition 2.2 Every element of $K_{0}(A)$ can be expressed by the formal difference $\left[P_{1}\right]-\left[P_{2}\right]$ of two generators.

Proof. Since $K_{0}(A)$ is generated by $\{[P] \mid \bar{P} \in \operatorname{Proj}(A)\}$, then an element $[Q] \in K_{0}(A)$ can be written

$$
[Q]=\sum_{i=1}^{n}(-1)^{k_{i}}\left[Q_{i}\right]
$$

where $k_{i} \in \mathbb{N}$ and $\overline{Q_{i}} \in \operatorname{Proj}(A)$. Up to a permutation of the indices we get

$$
\begin{aligned}
{[Q] } & =\sum_{i=1}^{m}\left[Q_{i}\right]+\sum_{i=m+1}^{n}-\left[Q_{i}\right] \\
& =\sum_{i=1}^{m}\left[Q_{i}\right]-\sum_{i=m+1}^{n}\left[Q_{i}\right] \\
& =\left[\bigoplus_{i=1}^{m} Q_{i}\right]-\left[\bigoplus_{i=m+1}^{n} Q_{i}\right]
\end{aligned}
$$

Defining $P_{1}:=\bigoplus_{i=1}^{m} Q_{i}$ and $P_{2}:=\bigoplus_{i=m+1}^{n} Q_{i}$ we conclude that $[Q]=\left[P_{1}\right]-\left[P_{2}\right]$.
Remark The group $K_{0}(A)$ can be defined more formally as a quotient of a free abelian group. Effectively, we form the free abelian group F generated by the set $\operatorname{Proj}(A)$ and we take the quotient by the normal subgroup R spanned by all $\bar{P}+\bar{Q}-\overline{P \oplus Q}$, where $\bar{P}, \bar{Q} \in \operatorname{Proj}(A)$. So we have

$$
K_{0}(A)=F / R
$$

(To see more about free groups, consult [2].)
Definition 2.3 Two A-modules M and N are called stably isomorphic if there exists $r \in \mathbb{N}$ so that

$$
M \oplus A^{r} \cong N \oplus A^{r}
$$

Proposition 2.4 Two generators $[P]$ and $[Q]$ of $K_{0}(A)$ are equal if and only if P is stably isomorphic to Q.

Proof. As we have seen in the remark above, we can write $K_{0}(A)$ as a quotient F / R where F is a free abelian group. First note that a sum $\overline{P_{1}}+\ldots+\overline{P_{k}}$ in F is equal to $\overline{Q_{1}}+\ldots+\overline{Q_{k}}$ if and only if

$$
P_{i} \cong P_{\sigma(i)}, \quad \forall i=1, \ldots, k
$$

for some permutation σ of $\{1, \ldots, k\}$. If this is the case, then we have clearly

$$
P_{1} \oplus \ldots \oplus P_{k} \cong Q_{1} \oplus \ldots \oplus Q_{k}
$$

Now suppose that we have $[P]=[Q]$ and so $\bar{P} \equiv \bar{Q} \bmod R$. Then this means that

$$
\bar{P}-\bar{Q}=\sum_{i=1}^{n} \overline{P_{i}}+\overline{Q_{i}}-\overline{P_{i} \oplus Q_{i}}
$$

which is equivalent to

$$
\bar{P}+\sum_{i=1}^{n} \overline{P_{i} \oplus Q_{i}}=\bar{Q}+\sum_{i=1}^{n} \overline{P_{i}}+\sum_{i=1}^{n} \overline{Q_{i}}
$$

for some $n \in \mathbb{N}$ and appropriate projective modules P_{i}, Q_{i}. Applying the begining of the proof we get

$$
P \oplus\left(\sum_{i=1}^{n} P_{i} \oplus Q_{i}\right) \cong Q \oplus\left(\sum_{i=1}^{n} P_{i} \oplus \sum_{i=1}^{n} Q_{i}\right)
$$

Defining $X:=\sum_{i=1}^{n} P_{i} \oplus Q_{i} \cong \sum_{i=1}^{n} P_{i} \oplus \sum_{i=1}^{n} Q_{i}$, we get that $P \oplus X \cong Q \oplus X$. Since X is projective, we can choose an A-module Y so that $X \oplus Y$ is free. By the proposition $1.6, X \oplus Y \cong A^{r}$, for some $r \in \mathbb{N}$. Then we obtain

$$
\begin{aligned}
P \oplus X \cong Q \oplus X & \Longrightarrow P \oplus X \oplus Y \cong Q \oplus X \oplus Y \\
& \Longrightarrow P \oplus A^{r} \cong Q \oplus A^{r}
\end{aligned}
$$

Hence P is stably isomorphic to Q.

Conversely if P is stably isomorphic to Q, then there exists $r \in \mathbb{N}$ so that $P \oplus A^{r} \cong Q \oplus A^{r}$. So we have $\left[P \oplus A^{r}\right]=\left[Q \oplus A^{r}\right]$, since A^{r} is clearly projective. But

$$
\left[P \oplus A^{r}\right]=\left[Q \oplus A^{r}\right] \Rightarrow[P]+\left[A^{r}\right]=[Q]+\left[A^{r}\right] \Rightarrow[P]=[Q]
$$

which concludes the proof.
Corollary 2.5 Two elements $\left[P_{1}\right]-\left[P_{2}\right]$ and $\left[Q_{1}\right]-\left[Q_{2}\right]$ of $K_{0}(A)$ are equal if and only if $P_{1} \oplus Q_{2}$ is stably isomorphic to $P_{2} \oplus Q_{1}$.

Proof. $\left[P_{1}\right]-\left[P_{2}\right]=\left[Q_{1}\right]-\left[Q_{2}\right] \Longleftrightarrow\left[P_{1}\right]+\left[Q_{2}\right]=\left[P_{2}\right]+\left[Q_{1}\right] \Longleftrightarrow$ $\left[P_{1} \oplus Q_{2}\right]=\left[P_{2} \oplus Q_{1}\right]$ and then we can conclude by the preceeding proposition.

2.2 Grothendieck's construction of K_{0}

Definition 2.6 A monoid is a set G with an associative law which has an identity element, noted 1_{G}.

If the law is commutative, then we say that G is an abelian monoid. In this case we note + the law and 0_{G} the identity element.

Examples

1. Any group is a monoid ; any abelian group is an abelian monoid.
2. $(\mathbb{N},+)$ and (\mathbb{N}, \cdot) are abelian monoids.
3. \mathbb{Z} with the usual multiplication is also an abelian monoid.
4. $\operatorname{Proj}(A)$ with the operation $\bar{P}+\bar{Q}:=\overline{P \oplus Q}$ is an abelian monoid.

Definition 2.7 Let (G, \star) and (H, \bullet) be monoids. An homomorphism of monoids is a map of sets

$$
\phi: G \longrightarrow H
$$

so that $\phi(x \star y)=\phi(x) \bullet \phi(y), \forall x, y \in G$, and that $\phi\left(1_{G}\right)=1_{H}$.
Theorem 2.8 Let G be an abelian monoid. Then there exists an abelian group $\mathcal{G}(G)$ and an homomorphism of monoids $\nu_{G}: G \longrightarrow \mathcal{G}(G)$ so that for all group H and for all homomorphism of monoids $\phi: G \longrightarrow H$, there exists one and only one homomorphism of groups $\widetilde{\phi}: \mathcal{G}(G) \longrightarrow H$ so that $\phi=\widetilde{\phi} \circ \nu_{G}$.

In an other way, we can say that $\left(\mathcal{G}(G), \nu_{G}\right)$ satisfy the following universal property :

The pair $\left(\mathcal{G}(G), \nu_{G}\right)$ is called Grothendieck's construction of G.
Proof. On $G \times G$, we introduce the equivalence relation

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists z \in G \text { so that } x^{\prime}+y+z=x+y^{\prime}+z
$$

We note $[x, y]$ the equivalence class of (x, y) and $\mathcal{G}(G):=G \times G / \sim$. We define on $\mathcal{G}(G)$ the following operation :

$$
[x, y]+[u, v]:=[x+u, y+v]
$$

This operation is associative, commutative and has $[x, x]$ as an identity element, $\forall x \in G$:

$$
[x, x]+[u, v]=[x+u, x+v]=[u, v]
$$

since $u+x+v=x+u+v$. Moreover, if $[x, y] \in \mathcal{G}(G)$, then we have the inverse element $-[x, y]:=[y, x]$. Effectively,

$$
[x, y]+[y, x]=[x+y, y+x]=0=[y+x, x+y]=[y, x]+[x, y]
$$

Hence $\mathcal{G}(G)$ is an abelian group.
Now consider the map

$$
\begin{aligned}
\nu_{G}: G & \longrightarrow \mathcal{G}(G) \\
x & \longmapsto[x+x, x]
\end{aligned}
$$

Since $\nu_{G}(x+y)=[x+y+x+y, x+y]=[x+x+y+y, x+y]=$ $[x+x, x]+[y+y, y]=\nu_{G}(x)+\nu_{G}(y)$ and $\nu_{G}(0)=[0,0]=0, \nu_{G}$ is an homomorphism of monoids.

Let H be an abelian group and $\phi: G \longrightarrow H$ an homomorphism of monoids. We get

$$
\begin{aligned}
{[x, y] } & =[x, y]+[x+y, x+y]=[x+(x+y), y+(x+y)] \\
& =[x+x, x]+[y, y+y]=[x+x, x]-[y+y, y] \\
& =\nu_{G}(x)-\nu_{G}(y)
\end{aligned}
$$

So we must define $\widetilde{\phi}: \mathcal{G}(G) \longrightarrow H$ by

$$
\widetilde{\phi}([x, y]):=\phi(x)-\phi(y)
$$

which is well and uniquely defined and is an homomorphism of groups. Furthermore

$$
\widetilde{\phi}\left(\nu_{G}(x)\right)=\widetilde{\phi}([x+x, x])=\phi(x+x)-\phi(x)=\phi(x)
$$

Proposition 2.9 Let G be an abelian monoid. Then the Grothendieck's construction $\left(\mathcal{G}(G), \nu_{G}\right)$ is unique up to isomorphism.

Proof. Let B be an abelian group and $\psi: G \longrightarrow B$ be an homomorphism of abelian monoids so that for every abelian group H and homomorphism of monoids $\phi: G \longrightarrow H$ there exists a group homomorphism $\bar{\phi}: B \longrightarrow H$ uniquely determinated so that $\phi=\bar{\phi} \circ \psi$.

Putting $H=\mathcal{G}(G)$ and $\phi=\nu_{G}$ we get that there exists a group homomorphism $\overline{\nu_{G}}: B \longrightarrow \mathcal{G}(G)$ so that $\nu_{G}=\overline{\nu_{G}} \circ \psi$. By a similar argument, using the universal property of $\left(\mathcal{G}(G), \nu_{G}\right)$, there exists a group homomorphism $\widetilde{\psi}: \mathcal{G}(G) \longrightarrow B$ so that $\psi=\widetilde{\psi} \circ \nu_{G}$. We obtain :

$$
\begin{aligned}
& \overline{\nu_{G}} \circ \tilde{\psi} \circ \nu_{G}=\nu_{G} \\
& \widetilde{\psi} \circ \overline{\nu_{G}} \circ \psi=\psi
\end{aligned}
$$

We can immediately deduce that

$$
\begin{aligned}
& \overline{\nu_{G}} \circ \tilde{\psi}=I d_{\operatorname{Im}\left(\nu_{G}\right)} \\
& \tilde{\psi} \circ \overline{\nu_{G}}=\operatorname{Id} d_{\operatorname{Im}(\psi)}
\end{aligned}
$$

To end the proof we have just to show that $B=\operatorname{Im} \psi$ and $\mathcal{G}(G)=\operatorname{Im} \nu_{G}$. We consider the homomorphism $q: B \longrightarrow B / \operatorname{Im}(\psi)$ given by the canonical projection. The two homomorphisms

$$
\begin{aligned}
\theta_{1}: B & \longrightarrow B \times(B / \operatorname{Im}(\psi)) \\
x & \longmapsto(x, q(x))
\end{aligned}
$$

and

$$
\begin{aligned}
\theta_{2}: B & \longrightarrow B \times(B / \operatorname{Im}(\psi)) \\
x & \longmapsto(x, 0)
\end{aligned}
$$

make the following diagram commute :

for $i=1,2$. By uniqueness we must have $\theta_{1}=\theta_{2}$ and so $B=\operatorname{Im} \psi$. A similar argument gives $\mathcal{G}(G)=\operatorname{Im} \nu_{G}$.

Example If $G=\mathbb{N}$ with the addition, then $\mathcal{G}(\mathbb{N})$ is the group with all the elements of the form $n-m$ for $n, m \in \mathbb{N}$. So we obtain

$$
\mathcal{G}(\mathbb{N}) \cong \mathbb{Z}
$$

Definition 2.10 If A is a ring, then $\operatorname{Proj}(A)$ is an abelian monoid. So we can define

$$
K_{0}(A):=\mathcal{G}(\operatorname{Proj}(A))
$$

This definition is clearly the same as Milnor's.
Proposition 2.11 If $A=K$ is a field or a division ring, then

$$
K_{0}(K)=\mathbb{Z}
$$

Proof. As seen in chapter 1 , every finitely generated K-module (and so every finitely generated projective K-module) is isomorphic to K^{n}, for one unique $n \in \mathbb{N}$. So we have an isomorphism

$$
\operatorname{Proj}(K) \cong \mathbb{N}
$$

Since $\mathcal{G}(\mathbb{N}) \cong \mathbb{Z}$ we can conclude that $K_{0}(K) \cong \mathbb{Z}$.
Remark This result is true if A has the property of the unique rank. Thus

$$
K_{0}(\mathbb{Z}) \cong \mathbb{Z}
$$

Theorem $2.12 K_{0}(-)$ is a covariant functor from the category of rings and homomorphisms of rings to the category of abelian groups and homomorphisms of groups.

Proof. Let A_{1} and A_{2} be two rings and let $\phi: A_{1} \longrightarrow A_{2}$ be a ring homomorphism. Then ϕ induces a structure of A_{1}-module on A_{2} as follows

$$
a \cdot b:=\phi(a) b, \quad \forall a \in A_{1}, \forall b \in A_{2}
$$

Hence for every finitely projective module P over A_{1} there exists a tensor product $A_{2} \otimes_{A_{1}} P$. On this tensor product over A_{1} we can put a structure of A_{2}-module defining $b^{\prime} \cdot(b \otimes v):=\left(b^{\prime} b\right) \otimes v, \forall b, b^{\prime} \in A_{2}, \forall v \in P$. Then we can define

$$
\begin{aligned}
\operatorname{Proj}(\phi): \operatorname{Proj}\left(A_{1}\right) & \longrightarrow \operatorname{Proj}\left(A_{2}\right) \\
\bar{P} & \longmapsto \overline{A_{2} \otimes_{A_{1}} P}
\end{aligned}
$$

We can verify that if A_{3} is an other ring and if $\psi: A_{2} \longrightarrow A_{3}$ is a ring homomorphism, we have $\operatorname{Proj}(\psi \circ \phi)=\operatorname{Proj}(\psi) \circ \operatorname{Proj}(\phi)$ and $\operatorname{Proj}\left(I d_{A_{1}}\right)=$ $I d_{\operatorname{Proj}\left(A_{1}\right)}$. Thus $\operatorname{Proj}(-)$ is a covariant functor from the category of rings and homomorphisms of rings to the category of abelian monoids and homomorphisms of monoids.

Now let G_{1} and G_{2} be two abelian monoids and let $\psi: G_{1} \longrightarrow G_{2}$ be an homomorphism of monoids. From the theorem 2.8 we have two Grothendieck's constructions $\left(\mathcal{G}\left(G_{1}\right), \nu_{G_{1}}\right)$ and $\left(\mathcal{G}\left(G_{2}\right), \nu_{G_{2}}\right)$ for G_{1} and G_{2} respectively. The monoid homomorphism $\nu_{G_{2}} \circ \psi: G_{1} \longrightarrow \mathcal{G}\left(G_{2}\right)$ gives rise to an homomorphism of abelian groups

$$
\mathcal{G}(\psi): \mathcal{G}\left(G_{1}\right) \longrightarrow \mathcal{G}\left(G_{2}\right)
$$

With this definition, $\mathcal{G}(-)$ is a covariant functor from the category of abelian monoids and homomorphisms of monoids to the category of abelian groups and homomorphisms between abelian groups.

Since $K_{0}(-)=\mathcal{G} \circ \operatorname{Proj}(-)$, the theorem is proved.

Chapter 3

The group K_{1}

3.1 Whitehead's lemma and definition of K_{1}

Let A be a ring and $G L_{n}(A)$ denote the general linear group consisting of all $n \times n$ invertible matrices over A. For all $n \in \mathbb{N}^{*}$, we define the map

$$
\begin{aligned}
i_{n}: G L_{n}(A) & \longrightarrow G L_{n+1}(A) \\
B & \longmapsto\left(\begin{array}{rr}
B & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Proposition 3.1 The map i_{n} is an homomorphism of groups and is injective, $\forall n \in \mathbb{N}^{*}$.

Proof. Let $B, C \in G L_{n}(A)$. From

$$
i_{n}\left(I_{n}\right)=\left(\begin{array}{rr}
I_{n} & 0 \\
0 & 1
\end{array}\right)=I_{n+1}
$$

and

$$
i_{n}(B C)=\left(\begin{array}{rr}
B C & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
B & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
C & 0 \\
0 & 1
\end{array}\right)=i_{n}(B) i_{n}(C)
$$

we have that i_{n} is an homomorphism of groups, $\forall n \in \mathbb{N}^{*}$. Clearly $i_{n}(B)=$ $I_{n+1} \Longleftrightarrow B=I_{n}$ and so i_{n} is injective, $\forall n \in \mathbb{N}^{*}$.

Remark Since the proposition 3.1 we can see $G L_{n}(A)$ as a subgroup of $G L_{n+1}(A)$. Effectively, $G L_{n}(A) \cong \operatorname{Im}\left(i_{n}\right)$ which is a subgroup of $G L_{n+1}(A)$.

Definition 3.2 We define the general linear group of A by

$$
G L(A):=\bigcup_{n \in \mathbb{N}^{*}} G L_{n}(A)
$$

Theorem 3.3 $G L(A)$ is a group.
Proof. Let $B, C, D \in G L(A)$. By definition of $G L(A)$, there exists $n \in \mathbb{N}^{*}$ so that $B, C, D \in G L_{n}(A)$. Since $G L_{n}(A)$ is a group, we get $(B C) D=B(C D)$ and the associativity of $G L(A)$.

The identity element of $G L(A)$ is the matrix I with 1 at every place on the diagonal and 0 everywhere else.

Let $B \in G L(A)$. There exists $n \in \mathbb{N}^{*}$ so that $B \in G L_{n}(A)$. Since $G L_{n}(A)$ is a group, B has an inverse matrix $B^{-1} \in G L_{n}(A)$. We obtain

$$
\left(\begin{array}{rr}
B & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{rr}
B^{-1} & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{r}
B B^{-1} \\
0 \\
0
\end{array}\right)=I
$$

and so $G L(A)$ is a group.
Definition 3.4 Let $n \in \mathbb{N}^{*}$. A matrix in $G L_{n}(A)$ is called elementary if it coincides with the identity matrix except for a single off-diagonal entry. We note $E_{n}(A)$ the subgroup of $G L_{n}(A)$ generated by all the elementary matrices.

Remark Since $i_{n}\left(E_{n}(A)\right) \subset E_{n+1}(A)$, we can embed $E_{n}(A)$ in $E_{n+1}(A)$, $\forall n \in \mathbb{N}^{*}$.

Definition 3.5 We define $E(A):=\bigcup_{n \in \mathbb{N}^{*}} E_{n}(A)$
Remark For every $n \in \mathbb{N}^{*}, E_{n}(A)$ is a subgroup of $G L_{n}(A)$. Since $G L_{n}(A)$ is a subgroup of $G L(A)$, we have that $E(A)$ is also a subgroup of $G L(A)$.

Lemma 3.6 Let $n \in \mathbb{N}^{*}$ and $D \in G L_{n}(A)$. Then $\left(\begin{array}{rr}D & 0 \\ 0 & D^{-1}\end{array}\right) \in E_{2 n}$.
Proof. We note $e_{i j}^{\lambda}$ the elementary matrix with $\lambda \in A$ at the (i, j)-th place, where $i \neq j$. If $i \neq k$ and $j \neq l$, then $e_{i j}^{\lambda} e_{k l}^{\mu}$ is a matrix with 1 on the diagonal, λ at the (i, j)-th place, μ at the (k, l)-th place and 0 everywhere else. Generalizing this we can write, for a matrix $B=\left(b_{i j}\right) \in G L_{n}(A)$:

$$
\left(\begin{array}{rr}
I_{n} & B \\
0 & I_{n}
\end{array}\right)=\prod_{i=1}^{n} \prod_{j=n+1}^{2 n} e_{i j}^{b_{i(j-n)}} \in E_{2 n}(A)
$$

and as the same

$$
\left(\begin{array}{rr}
I_{n} & 0 \\
B & I_{n}
\end{array}\right)=\prod_{i=n+1}^{2 n} \prod_{j=1}^{n} e_{i j}^{b_{(i-n) j}} \in E_{2 n}(A)
$$

Thus we get

$$
\left(\begin{array}{rr}
0 & -D \\
D^{-1} & 0
\end{array}\right)=\left(\begin{array}{rr}
I_{n} & -D \\
0 & I_{n}
\end{array}\right)\left(\begin{array}{rr}
I_{n} & 0 \\
D^{-1} & I_{n}
\end{array}\right)\left(\begin{array}{rr}
I_{n} & -D \\
0 & I_{n}
\end{array}\right) \in E_{2 n}(A)
$$

and therefore

$$
\left(\begin{array}{rr}
D & 0 \\
0 & D^{-1}
\end{array}\right)=\left(\begin{array}{rr}
0 & -D \\
D^{-1} & 0
\end{array}\right)\left(\begin{array}{rr}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) \in E_{2 n}(A)
$$

Lemma 3.7 (Whitehead) $E(A)$ is equal to the commutator subgroup of $G L(A)$:

$$
E(A)=[G L(A), G L(A)]
$$

Proof. We can see that $e_{i j}^{\lambda}=\left[e_{i k}^{\lambda}, e_{k j}^{1}\right]$ for $i \neq j$ and $k \neq i, j$. So

$$
E(A) \subseteq[E(A), E(A)] \subseteq[G L(A), G L(A)]
$$

Let $B, C \in G L(A)$. By definition of $G L(A)$, there exists $n \in \mathbb{N}^{*}$ so that $B, C \in G L_{n}(A)$. We have

$$
\left(\begin{array}{rr}
B C B^{-1} C^{-1} & 0 \\
0 & I_{n}
\end{array}\right)=\left(\begin{array}{rr}
B C & 0 \\
0 & (B C)^{-1}
\end{array}\right)\left(\begin{array}{rr}
B^{-1} & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{rr}
C^{-1} & 0 \\
0 & C
\end{array}\right)
$$

and so $\binom{B C B^{-1} C^{-1}}{0} \in I_{n}(A)$ by the lemma 3.6. Thus

$$
[G L(A), G L(A)] \subseteq E(A)
$$

which concludes the proof.
Definition 3.8 (Whitehead) We define $K_{1}(A)$ by the quotient

$$
K_{1}(A):=G L(A) / E(A)
$$

It comes from lemma 3.7 that $K_{1}(A)$ is a group since $E(A)$ is a normal subgroup of $G L(A)$, and that $K_{1}(A)$ is abelian since $E(A)$ is the commutator subgroup. In other words, $K_{1}(A)$ is the abelianisation of $G L(A)$.

3.2 Properties of K_{1}

Remark If a ring A is commutative, then the determinant operation is defined. If A^{*} is the multiplicative group consisting of all invertible elements of A, then we have a surjective map

$$
\operatorname{det}: G L(A) \longrightarrow A^{*}
$$

We denote by $S L(A)$ the kernel of this homomorphism. Since $A^{*} \cong G L_{1}(A)$, we can also see A^{*} as a subset of $G L(A)$. Clearly

$$
A^{*} \subset G L(A) \xrightarrow{\text { det }} A^{*}
$$

is the identity map. So we have the short exact sequence

$$
1 \longrightarrow S L(A) \longrightarrow G L(A) \xrightarrow{\text { det }} A^{*} \longrightarrow 1
$$

that is split exact.
Lemma 3.9 Let $1 \longrightarrow G_{1} \xrightarrow{\phi} H \xrightarrow{\psi} G_{2} \longrightarrow 1$ be a short exact sequence of groups that is split exact. Then

$$
H \cong G_{1} \oplus G_{2}
$$

Proof. By definition of split exact, there is a section $s: G_{2} \longrightarrow H$ so that $\psi \circ s=I d_{G_{2}}$. Consider the following short exact sequence :

$$
1 \longrightarrow G_{1} \xrightarrow{\iota} G_{1} \oplus G_{2} \xrightarrow{\pi} G_{2} \longrightarrow 1
$$

where ι is the inclusion $x \mapsto(x, 1)$ and π is the projection $(x, y) \mapsto y$. We define

$$
\begin{aligned}
\alpha: G_{1} \oplus G_{2} & \longrightarrow H \\
(x, y) & \longmapsto \phi(x) s(y)
\end{aligned}
$$

Since $\operatorname{Im} \phi=\operatorname{ker} \psi$, we get that $\psi \circ \alpha(x, y)=\psi(\phi(x) s(y))=\psi(\phi(x)) \psi(s(y))=$ y and so the following diagram commutes :

By the five lemma, α is an isomorphism.
Remark A short exact sequence

$$
1 \longrightarrow G \xrightarrow{\phi} H \xrightarrow{\psi} F \longrightarrow 1
$$

where F is a free abelian group, always splits. In fact, the section is defined by choosing a basis for F and elements in H that are sent by ψ on the basis elements. Then we extend by linearity and since there is no relation in F, this is well defined.

Proposition 3.10 Let A be a ring. Then

$$
K_{1}(A) \cong A^{*} \oplus(S L(A) / E(A))
$$

Proof. Since the lemma 3.9 and the remark which precedes it, we get that

$$
\begin{aligned}
\alpha: A^{*} \oplus S L(A) & \longrightarrow G L(A) \\
(a, B) & \longmapsto a \cdot B
\end{aligned}
$$

is an isomorphism (where a, B are seen in $G L(A)$ and $a \cdot B$ is given by the matricial multiplication). We consider now the following homomorphisms:

$$
\begin{aligned}
E(A) & \longrightarrow A^{*} \oplus S L(A) & A^{*} \oplus S L(A) & \longrightarrow A^{*} \oplus(S L(A) / E(A)) \\
B & \longmapsto(1, B) & (a, B) & \longmapsto(a, q(B))
\end{aligned}
$$

where $q: G L(A) \longrightarrow G L(A) / E(A)$ is the canonical projection. Then we get a short exact sequence

$$
1 \longrightarrow E(A) \longrightarrow A^{*} \oplus S L(A) \longrightarrow A^{*} \oplus(S L(A) / E(A)) \longrightarrow 1
$$

Defining $\beta: A^{*} \oplus(S L(A) / E(A)) \longrightarrow K_{1}(A)$ by $\beta(a, q(B))=q(a \cdot B)$, we get a commutative diagram

By the five lemma we can conclude that β is an isomorphism and so that

$$
K_{1}(A)=G L(A) / E(A) \cong A^{*} \oplus(S L(A) / E(A))
$$

Proposition 3.11 If $A=K$ is a field or a division ring, then

$$
K_{1}(K) \cong K^{*}
$$

Proof. Since the preceeding proposition, it is enough to prove that $S L(K)=E(K)$. For an elementary matrix $E \in E(K)$ it is clear that $\operatorname{det}(E)=1$ and so $E \in S L(K)$. Thus $E(K) \subseteq S L(K)$. To show the converse we use classical linear algebra. To make things more clear, we will note $e_{i j}(\lambda)$ for $e_{i j}^{\lambda}$.

Let $B=\left(b_{i j}\right) \in G L_{n}(K)$. Since B is invertible, the first column of B can't consist entirely of zeroes, i.e. there exists $i \in \mathbb{N}, 1 \leq i \leq n$, so that $b_{i 1} \neq 0$. If $i=1$, this is fine. If not,

$$
e_{1 i}(1) e_{i 1}(-1) e_{1 i}(1) B
$$

put $b_{i 1}$ in the (1,1)-position. So we can assume that $b_{11} \neq 0$. Adding $-b_{i 1} b_{11}^{-1}$ times the first row to the $i-$ th row for $i \neq 1$, i.e premultiplying B by

$$
e_{n 1}\left(-b_{n 1} b_{11}^{-1}\right) \cdot \ldots \cdot e_{21}\left(-b_{21} b_{11}^{-1}\right)
$$

we can now kill all the other entries in the first column. This reduce B to the form

$$
\left(\begin{array}{rr}
b_{11} & * \\
0 & B_{1}
\end{array}\right)
$$

with B_{1} an $(n-1) \times(n-1)$ matrix. Since $\operatorname{det}(B)=b_{11} \operatorname{det}\left(B_{1}\right)$, we have that B_{1} is an invertible matrix. Repeating the same procedure by induction we get

$$
E B=\left(\begin{array}{ccccc}
b_{11} & * & * & \ldots & * \\
0 & b_{22}^{\prime} & * & \ldots & * \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & b_{n n}^{\prime}
\end{array}\right)=: B^{\prime}
$$

with $E \in E(K)$ and all diagonal elements different from 0 .
Now premultipling B^{\prime} by $e_{1 n}\left(-b_{1 n}^{\prime}\left(b_{n n}^{\prime}\right)^{-1}\right) \cdot \ldots \cdot e_{n-1, n}\left(-b_{n-1, n}^{\prime}\left(b_{n n}^{\prime}\right)^{-1}\right)$, we kill all the entries in the last column except $b_{n n}^{\prime}$. Continuing by induction, we can now obtain

$$
E^{\prime} B^{\prime}=\left(\begin{array}{ccccc}
b_{11} & 0 & 0 & \ldots & 0 \\
0 & b_{22}^{\prime} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & b_{n n}^{\prime}
\end{array}\right)=: B^{\prime \prime}
$$

with $E^{\prime} \in E(K)$ and $\operatorname{det}\left(B^{\prime \prime}\right)=\operatorname{det}\left(E^{\prime}\right) \cdot \operatorname{det}\left(B^{\prime}\right)=\operatorname{det}\left(E^{\prime}\right) \cdot \operatorname{det}(E) \cdot \operatorname{det}(B)=$ $\operatorname{det}(B)$.

Finally, we have to transform the diagonal matrix $B^{\prime \prime}$ into a diagonal matrix with at most one diagonal entry different from 1 . Using lemma 3.6, for $a \in K^{*}$, we have that

$$
\left(\begin{array}{rr}
a & 0 \\
0 & a^{-1}
\end{array}\right) \in E(A)
$$

and so that

$$
E_{a}^{k}:=\left(\begin{array}{rrr}
I_{k} & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a^{-1}
\end{array}\right) \in E(A)
$$

for all $k \in \mathbb{N}$. In consequence we get
$E_{b_{n n}^{\prime} \ldots b_{22}^{\prime}}^{0} \cdot \ldots \cdot E_{b_{n n}^{\prime} b_{n-1, n-1}^{\prime}}^{n-3} \cdot E_{b_{n n}^{\prime}}^{n-2} \cdot B^{\prime \prime}=\left(\begin{array}{cccc}b_{11} b_{22}^{\prime} \ldots b_{n n}^{\prime} & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & 1\end{array}\right)=: D$
and so $D=E^{\prime \prime} B^{\prime \prime}$ for a $E^{\prime \prime} \in E(K)$.
Since $\operatorname{det}(D)=\operatorname{det}\left(B^{\prime \prime}\right)=\operatorname{det}(B)$, we have, if $B \in S L(K)$, that $\operatorname{det}(D)=$ 1. But $\operatorname{det}(B)=b_{11} b_{22}^{\prime} \ldots b_{n n}^{\prime}$ and so $b_{11} b_{22}^{\prime} \ldots b_{n n}^{\prime}=1$. This means that $D=I_{n}$ and so that $B=\left(E^{\prime \prime} E^{\prime} E\right)^{-1} \in E(K)$. Thus we have proved that $S L(K) \subseteq E(K)$, and so we may conclude.

Remark We can show that if $A=\mathbb{Z}$, then $S L(\mathbb{Z})=E(\mathbb{Z})$. Hence

$$
K_{1}(\mathbb{Z}) \cong \mathbb{Z}^{*}=\{-1,1\}
$$

Theorem 3.12 $K_{1}(-)$ is a covariant functor from the category of rings and homomorphisms of rings to the category of abelian groups and homomorphisms of groups.

Proof. Let $\phi: A_{1} \longrightarrow A_{2}$ be an homomorphism of rings. We define

$$
\begin{aligned}
G L(\phi): G L\left(A_{1}\right) & \longrightarrow G L\left(A_{2}\right) \\
\left(b_{i j}\right) & \longmapsto\left(\phi\left(b_{i j}\right)_{i j}\right)
\end{aligned}
$$

and thus $G L(-)$ is a covariant functor from the category of rings and ring homomorphisms to the category of groups and group homomorphisms.

Let G be a group. We denote $G^{a b}$ for the abelianisation of G, that is $G^{a b}=G /[G, G]$. For a group homomorphism $\psi: G_{1} \longrightarrow G_{2}$ we define

$$
\begin{aligned}
(\psi)^{a b}:\left(G_{1}\right)^{a b} & \longrightarrow\left(G_{2}\right)^{a b} \\
{[g] } & \longmapsto[\psi(g)]
\end{aligned}
$$

which is well defined, since

$$
\psi\left(g h g^{-1} h^{-1}\right)=\psi(g) \psi(h) \psi(g)^{-1} \psi(h)^{-1} \in\left[G_{2}, G_{2}\right]
$$

$\forall g, h \in G_{1}$. So we have (-) ${ }^{a b}$ a covariant functor from the category of groups and homomorphisms of groups to the category of abelian groups and homomorphisms between abelian groups.

Then we can conclude, since $K_{1}(-)=(G L(-))^{a b}$.

Chapter 4

The group K_{2}

4.1 Definition of K_{2}

Let A be a ring. As in the preceeding chapter, let $e_{i j}^{\lambda} \in G L_{n}(A)$ denote the elementary matrix with entry λ in the i-th row and j-th column, where i and j can be any distinct integer between 1 and n and λ can be any ring element. We note that

$$
e_{i j}^{\lambda} e_{i j}^{\mu}=e_{i j}^{\lambda+\mu}
$$

Moreover we see that the commutator of two elementary matrices can be expressed as follows :

$$
\begin{array}{ll}
{\left[e_{i j}^{\lambda}, e_{k l}^{\mu}\right]=1} & \text { if } j \neq k, i \neq l \\
{\left[e_{i j}^{\lambda}, e_{k l}^{\mu}\right]=e_{i l}^{\lambda \mu}} & \text { if } j=k, i \neq l \\
{\left[e_{i j}^{\lambda}, e_{k l}^{\mu}\right]=e_{k j}^{-\mu \lambda}} & \text { if } j \neq k, i=l
\end{array}
$$

Definition 4.1 Let $n \in \mathbb{N}, n \geq 3$. The Steinberg group $\operatorname{St}_{n}(A)$ is the group defined by the quotient F_{n} / R_{n} where F_{n} is the free group generated by the symbols $x_{i j}^{\lambda}, 1 \leq i, j \leq n, i \neq j, \lambda \in A$, and R_{n} is the smallest normal subgroup of F_{n} generated by the following elements :

1. $x_{i j}^{\lambda} x_{i j}^{\mu}\left(x_{i j}^{\lambda+\mu}\right)^{-1}$
2. $\left[x_{i j}^{\lambda}, x_{j l}^{\mu}\right]\left(x_{i l}^{\lambda \mu}\right)^{-1}$ for $i \neq l$
3. $\left[x_{i j}^{\lambda}, x_{k l}^{\mu}\right]$ for $j \neq k$ and $i \neq l$

Remark Let $n \in \mathbb{N}, n \geq 3$, and $\lambda \in A$. The element $x_{i j}^{\lambda} \in F_{n}$ can be seen as an element of F_{n+1}. Since $R_{n} \subseteq R_{n+1}$ we have an homomorphism of groups

$$
\begin{aligned}
j_{n}: S t_{n}(A) & \longrightarrow S t_{n+1}(A) \\
x_{i j}^{\lambda} & \longmapsto x_{i j}^{\lambda}
\end{aligned}
$$

Moreover,

$$
x_{i j}^{\lambda} \in \operatorname{ker} j_{n} \Longleftrightarrow j_{n}\left(x_{i j}^{\lambda}\right) \in R_{n+1} \Longrightarrow x_{i j}^{\lambda} \in R_{n+1} \Longrightarrow x_{i j}^{\lambda} \in R_{n}
$$

since $0 \leq i, j \leq n$. So j_{n} is injective and we can embed $S t_{n}(A)$ in $S t_{n+1}(A)$.
Definition 4.2 Because of the remark above we can form the group

$$
S t(A):=\bigcup_{n \geq 3} S t_{n}(A)
$$

Remark The formula $\Phi_{n}\left(x_{i j}^{\lambda}\right):=e_{i j}^{\lambda}$ gives a well defined homomorphism

$$
\Phi_{n}: S t_{n}(A) \longrightarrow G L_{n}(A)
$$

since each of the defining relations between generators of $S t_{n}(A)$ maps into a valid identity between elementary matrices. The image $\Phi_{n}\left(S t_{n}(A)\right)$ is equal to the subgroup $E_{n}(A)$ generated by all elementary matrices of size $n \times n$.

Effectively, for every $e_{i j}^{\lambda} \in E_{n}(A), \Phi_{n}\left(x_{i j}^{\lambda}\right)=e_{i j}^{\lambda}$ and conversely, for every $x_{i j}^{\lambda} \in S t_{n}(A), \Phi_{n}\left(x_{i j}^{\lambda}\right)=e_{i j}^{\lambda} \in E_{n}(A)$. So the generators of $E_{n}(A)$ are in bijection with generators of $S t_{n}(A)$.

When we pass to the limit as $n \rightarrow \infty$, we obtain an homomorphism

$$
\Phi: S t(A) \longrightarrow G L(A)
$$

with image $E(A)=[G L(A), G L(A)]$.
Definition 4.3 The group $K_{2}(A)$ is defined as the kernel of the canonical homomorphism $\Phi: S t(A) \longrightarrow G L(A)$.

Proposition 4.4 The sequence

$$
1 \longrightarrow K_{2}(A) \xrightarrow{\iota} S t(A) \xrightarrow{\Phi} G L(A) \xrightarrow{q} K_{1}(A) \longrightarrow 1
$$

is exact, where ι is the inclusion and q is the canonical projection.
Proof. Results immediately of the definition of $K_{2}(A)$ and of the fact that $\operatorname{Im} \Phi=E(A)$.

Lemma 4.5 Let $n \geq 3$ and let P_{n} denote the subgroup of $\operatorname{St}(A)$ generated by elements $x_{1 n}^{\mu}, x_{2 n}^{\mu}, \ldots, x_{n-1, n}^{\mu}$ where μ ranges over A. Then each element of P_{n} can be written uniquely as a product

$$
x_{1 n}^{\mu_{1}} x_{2 n}^{\mu_{2}} \ldots x_{n-1, n}^{\mu_{n-1}}
$$

Hence the canonical homomorphism Φ maps P_{n} isomorphically into the group $E(A)$.

Proof. Because of 3 in the definition 4.1, P_{n} is an abelian group. In consequence this is clear that every element of P_{n} can be written as a product $x_{1 n}^{\mu_{1}} x_{2 n}^{\mu_{2}} \ldots x_{n-1, n}^{\mu_{n-1}}$. The uniqueness comes from the fact that the elements 1 and 2 of the definition 4.1 don't belong to P_{n}.

Theorem 4.6 The group $K_{2}(A)$ is the center of the Steinberg group $S t(A)$.
Proof. Let $B=\left(b_{i j}\right) \in G L_{n}(A)$. Since

$$
B \cdot e_{k l}^{1}=\left(\begin{array}{ccccccc}
b_{11} & b_{12} & \ldots & b_{1, l-1} & b_{1 l}+b_{1 k} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2, l-1} & b_{2 l}+b_{2 k} & \ldots & b_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \\
b_{n 1} & b_{n 2} & \ldots & b_{n, l-1} & b_{n l}+b_{n k} & \ldots & b_{n n}
\end{array}\right)
$$

and

$$
e_{k l}^{1} \cdot B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
b_{k-1,1} & b_{k-1,2} & \ldots & b_{k-1, n} \\
b_{k 1}+b_{l 1} & b_{k 2}+b_{l 2} & \ldots & b_{k n}+b_{l n} \\
\ldots & \ldots & \ldots & \ldots \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right)
$$

we get that B commutes with $e_{k l}^{1}$ only if $b_{k l}=0$ and $b_{k k}=b_{l l}$. In consequence we obtain that B commutes with every elementary matrix if and only if B is a diagonal matrix, with every diagonal entry equal to b_{11}. In particular, no element of $E_{n-1}(A)$ other that I_{n-1} belongs to the center of $E_{n}(A)$, for $n \geq 2$. Passing to the limit $n \rightarrow \infty$, it follows that $E(A)$ has a trivial center.

Now if c is in the center of $S t(A)$, then $\Phi(c)$ is in the center of $E(A)$, which implies $\Phi(c)=I$ and so that

$$
\text { center of } S t(A) \subseteq K_{2}(A)
$$

Conversely, suppose that $\Phi(y)=I$. Let $n \in \mathbb{N}$ so that $y \in S t_{n-1}(A)$. Then we can write y with the generators $x_{i j}^{\lambda}, i, j<n$. Hence we get

$$
x_{i j}^{\lambda} P_{n} x_{i j}^{-\lambda} \subseteq P_{n}
$$

where P_{n} is defined as in the lemma 4.5. Effectively, $x_{i j}^{\lambda} x_{k n}^{\mu} x_{i j}^{-\lambda}$ is equal to $x_{k n}^{\mu}$ if $j \neq k$ and to $x_{i n}^{\lambda \mu} x_{k n}^{\mu}$ if $j=k$. But $x_{k n}^{\mu}, x_{i n}^{\lambda \mu} x_{k n}^{\mu} \in P_{n}$.

Since $y \in S t_{n-1}(A)$, it follows that

$$
y P_{n} y^{-1} \subseteq P_{n}
$$

But $\Phi(y)=I$, thus $\Phi\left(y p y^{-1}\right)=\Phi(p), \forall p \in P_{n}$. By the lemma 4.5 , we get that $y p y^{-1}=p$ and so that y commutes with every element of P_{n}. Therefore y commutes with every generator $x_{k n}^{\mu}, k<n$.

By an analogous argument we can show that y also commutes with every generator $x_{n l}^{\mu}, l<n$. Hence y commutes with the commutator

$$
\left[x_{k n}^{\mu}, x_{n l}^{1}\right]=x_{k l}^{\mu}
$$

for all $k, l<n, k \neq l$. Since n can be as large as we want, y lies in the center of $S t(A)$.

Corollary $4.7 K_{2}(A)$ is an abelian group.
Theorem $4.8 K_{2}(-)$ is a covariant functor from the category of rings and homomorphisms of rings to the category of abelian groups and homomorphisms of groups.

Proof. Let A_{1} and A_{2} be two rings and $\phi: A_{1} \longrightarrow A_{2}$ be a ring homomorphism. We have seen in chapter 3 that ϕ induces an homomorphism $G L(\phi): G L\left(A_{1}\right) \longrightarrow G L\left(A_{2}\right)$. Clearly this homomorphism satisfies $G L(\phi)\left(E\left(A_{1}\right)\right) \subseteq E\left(A_{2}\right)$. We define

$$
\begin{aligned}
\phi^{\prime}: S t\left(A_{1}\right) & \longrightarrow S t\left(A_{2}\right) \\
x_{i j}^{\lambda} & \longmapsto x_{i j}^{\phi(\lambda)}
\end{aligned}
$$

and $K_{2}(\phi):=\left.\phi^{\prime}\right|_{K_{2}\left(A_{1}\right)}$. Then the following diagram commutes :

For $y \in K_{2}\left(A_{1}\right)$, we get by definition of $K_{2}\left(A_{1}\right)$ that $\Phi_{1}(y)=0$. Therefore $\left(G L(\phi) \circ \Phi_{1}\right)(y)=0$. Thus $\left(\Phi_{2} \circ \phi^{\prime}\right)(y)=0$ and so $\phi^{\prime}(y) \in \operatorname{ker} \Phi_{2}=K_{2}\left(A_{2}\right)$. Hence $K_{2}(\phi): K_{2}\left(A_{1}\right) \longrightarrow K_{2}\left(A_{2}\right)$ is well defined, and make $K_{2}(-)$ a covariant functor.

4.2 Universal central extensions

Definition 4.9 An extension of a group G is a pair (X, ϕ) consisting of a group X and an homomorphism of groups ϕ from X onto G.

If $\operatorname{ker}(\phi)$ is a subset of the center of X we say that (X, ϕ) is a central extension.

Definition 4.10 A central extension (X, ϕ) of a group G splits if it admits a section, that is an homomorphism $s: G \longrightarrow X$ so that $\phi \circ s=I d_{G}$.

Proposition 4.11 If a central extension (X, ϕ) of a group G splits then $X \cong G \times \operatorname{ker} \phi$.

Proof. Since (X, ϕ) is a split extension of G we have a split short exact sequence

$$
1 \longrightarrow \operatorname{ker} \phi \longrightarrow X \xrightarrow{\phi} G \longrightarrow 1
$$

By the lemma 3.9, $X \cong G \times \operatorname{ker} \phi$.
Remark The splitting is given by

$$
\begin{aligned}
G \times \operatorname{ker} \phi & \longrightarrow X \\
(g, x) & \longmapsto s(g) x
\end{aligned}
$$

Definition 4.12 A central extension (U, ν) of a group G is called universal if, for every central extension (X, ϕ) of G, there exists one and only one homomorphism from U to X over G. (That is, there exists one and only one homomorphism $h: U \longrightarrow X$ satisfying $\phi \circ h=\nu$.)

We have then this commutative diagram :

Remark A universal central extension is always unique up to isomorphism over G.

Definition 4.13 A group G is called perfect if it is equal to its commutator subgroup $[G, G]$.

Examples

1. Since $\left[e_{i k}^{\lambda}, e_{k j}^{1}\right]=e_{i j}^{\lambda}$ if $i \neq j$, then $E(A)=[E(A), E(A)]$ and so $E(A)$ is perfect.
2. Since $\left[x_{i k}^{\lambda}, x_{k j}^{1}\right]=x_{i j}^{\lambda}$ if $i \neq j$, then $\operatorname{St}(A)=[S t(A), S t(A)]$ and so $S t(A)$ is perfect.

Proposition 4.14 Let (Y, ψ) be a central extension of a group G. Then Y is perfect if and only if for all central extension (X, ϕ) of G there exists at most one homomorphism $Y \longrightarrow X$ over G.

Proof. First suppose that Y is a perfect group and let (X, ϕ) be a central extension of G. Let f_{1} and f_{2} be homomorphisms from Y to X over G, meaning that $\phi \circ f_{1}=\psi=\phi \circ f_{2}$. Hence we get, for all $y \in Y$,

$$
\begin{aligned}
\phi\left(f_{2}\left(y^{-1}\right) f_{1}(y)\right) & =\phi\left(f_{2}\left(y^{-1}\right)\right) \phi\left(f_{1}(y)\right)=\phi\left(f_{2}(y)\right)^{-1} \phi\left(f_{1}(y)\right) \\
& =\psi(y)^{-1} \psi(y)=1
\end{aligned}
$$

Then for any $y, z \in Y$ there exists $c, d \in \operatorname{ker} \phi$ so that

$$
f_{1}(y)=f_{2}(y) c, \quad f_{1}(z)=f_{2}(z) d
$$

Since $\operatorname{ker} \phi$ is included in the center of X, then c, d are in the center of X. Therefore

$$
\begin{aligned}
f_{1}\left(y z y^{-1} z^{-1}\right) & =f_{1}(y) f_{1}(z) f_{1}(y)^{-1} f_{1}(z)^{-1} \\
& =f_{2}(y) c f_{2}(z) d c^{-1} f_{2}(y)^{-1} d^{-1} f_{2}(z)^{-1} \\
& =f_{2}(y) f_{2}(z) f_{2}(y)^{-1} f_{2}(z)^{-1} \\
& =f_{2}\left(y z y^{-1} z^{-1}\right)
\end{aligned}
$$

and so $f_{1}=f_{2}$, since Y is generated by commutators.
Conversely, suppose that Y isn't perfect. So there is a non-zero homomorphism $\alpha: Y \longrightarrow H$, where H is an abelian group. Let $(G \times H, \phi)$ be the central extention of G defined by $\phi(g, h)=g$. Clearly this extension is split, with section $s(g)=(g, 1)$. Setting

$$
f_{1}(y):=(\psi(y), 1), \quad f_{2}(y):=(\psi(y), \alpha(y))
$$

we obtain two distinct homomorphisms from Y to $G \times H$ over G.
Lemma 4.15 If (X, ϕ) is a central extension of a perfect group G, then the commutator subgroup $X^{\prime}:=[X, X]$ is perfect and maps onto G.

Proof. Let $g_{1}, g_{2} \in G$. Then there exists $x_{1}, x_{2} \in X$ so that $\phi\left(x_{1}\right)=g_{1}$ and $\phi\left(x_{2}\right)=g_{2}$. So we get

$$
\phi\left(x_{1} x_{2} x_{1}^{-1} x_{2}^{-1}\right)=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}
$$

and then ϕ maps X^{\prime} onto G, since G is generated by commutators.
Furthermore, for all $x \in X$ there exists $x^{\prime} \in X^{\prime}$ so that $\phi\left(x^{\prime}\right)=\phi(x)$. In consequence there exists $c \in \operatorname{ker} \phi$ (and so c is in the center of X) so that $x=x^{\prime} c$. Then for $x_{1}, x_{2} \in X$, there exists $x_{1}^{\prime}, x_{2}^{\prime} \in X^{\prime}$ and c_{1}, c_{2} in the center of X so that $x_{1}=x_{1}^{\prime} c_{1}$ and $x_{2}=x_{2}^{\prime} c_{2}$. So we get

$$
\begin{aligned}
{\left[x_{1}, x_{2}\right] } & =x_{1} x_{2} x_{1}^{-1} x_{2}^{-1}=x_{1}^{\prime} c_{1} x_{2}^{\prime} c_{2} c_{1}^{-1} x_{1}^{\prime-1} c_{2}^{-1} x_{2}^{\prime-1} \\
& =x_{1}^{\prime} x_{2}^{\prime} x_{1}^{\prime-1} x_{2}^{\prime-1}=\left[x_{1}^{\prime}, x_{2}^{\prime}\right]
\end{aligned}
$$

and then $X^{\prime}=\left[X^{\prime}, X^{\prime}\right]$.

Proposition 4.16 A central extension (U, ν) of a group G is universal if and only if U is perfect and if every central extension of U splits.

Proof. First suppose that U is perfect and every central extension of U splits. Let (X, ϕ) be a central extension of G and $U \times_{G} X$ be the subgroup of $U \times X$ consisting of all (u, x) with $\nu(u)=\phi(x)$. Then we define

$$
\begin{aligned}
\pi: U \times_{G} X & \longrightarrow U \\
(u, x) & \longmapsto u
\end{aligned}
$$

which is surjective since ϕ is onto G. Further, $\operatorname{ker} \pi=\{(0, x) \mid x \in \operatorname{ker} \phi\}=$ $\{0\} \times \operatorname{ker} \phi$ commutes with every elements of $U \times_{G} X$, since (X, ϕ) is a central extension. Then $\left(U \times{ }_{G} X, \pi\right)$ is a central extension of U, and by hypothesis has a section $s: U \longrightarrow U \times_{G} X$. Writing $s(u)=\left(s_{1}(u), s_{2}(u)\right)$, we define

$$
\begin{aligned}
h: U & \longrightarrow X \\
u & \longmapsto s_{2}(u)
\end{aligned}
$$

Since $\pi \circ s=I d_{U}$, then $s_{1}(u)=u$. So $\phi(h(u))=\phi\left(s_{2}(u)\right)=\nu\left(s_{1}(u)\right)=\nu(u)$ by the definiton of $U \times_{G} X$, and then h is an homomorphism from U to X over G. The uniqueness comes from the proposition 4.14, since U is perfect.

Conversely, suppose now that (U, ν) is a universal extension of G. From the proposition 4.14 it comes that U is perfect. Let (X, ϕ) be a central extension of U. We will prove that $(X, \nu \circ \phi)$ is a central extension of G.

Let $x_{0} \in \operatorname{ker}(\nu \circ \phi)$. Then $\phi\left(x_{0}\right) \in \operatorname{ker} \nu$ and therefore $\phi\left(x_{0}\right)$ belongs to the center of U, since (X, ϕ) is central. Thus we get $\phi(x)=\phi\left(x_{0}\right) \phi\left(x_{0}^{-1}\right) \phi(x)=$ $\phi\left(x_{0}\right) \phi(x) \phi\left(x_{0}^{-1}\right)$ and then there is an homomorphism from X to X over U defined as follows :

$$
\begin{aligned}
f: X & \longrightarrow X \\
x & \longmapsto x_{0} x x_{0}^{-1}
\end{aligned}
$$

It comes from lemma 4.15 that the commutator subgroup X^{\prime} is perfect and then from the proposition 4.14 that the homomorphism $\left.f\right|_{X^{\prime}}: X^{\prime} \longrightarrow X^{\prime}$ over U is the identity. Thus x_{0} commutes with every elements of X^{\prime}. But U is perfect and so, by lemma 4.15 , there exists $x^{\prime} \in X^{\prime}$ so that $\phi\left(x^{\prime}\right)=\phi\left(x_{0}\right)$ and therefore $x_{0}=x^{\prime} c$ for a $c \in \operatorname{ker} \phi$. Since the extension is central, it follows that x_{0} commutes with every $x \in X$. Thus $(X, \nu \circ \phi)$ is a central extension of G.

Since (U, ν) is universal, there exists an homomorphism $s: U \longrightarrow X$ over G. So $\phi \circ s$ gives an homomorphism from U to U over G, hence equals to the identity by proposition 4.14. Thus s is a section of (X, ϕ).

Lemma 4.17 Let G be a group and $u, v, w \in G$. then

1. $[u, v]=[v, u]^{-1}$
2. $[u, v][u, w]=[u, v w][v,[w, u]]$
3. $[u,[v, w]][v,[w, u]][w,[u, v]] \equiv 1 \bmod G^{\prime \prime}$
where $G^{\prime \prime}:=[[G, G],[G, G]]$ is the second commutator subgroup.
Proof. 1. $[u, v]=u v u^{-1} v^{-1}=\left(v u v^{-1} u^{-1}\right)^{-1}=[v, u]^{-1}$.
4. $[u, v w][v,[w, u]]=u v w u^{-1} w^{-1} v^{-1} v w u w^{-1} u^{-1} v^{-1} u w u^{-1} w^{-1}$

$$
=u v u^{-1} v^{-1} u w u^{-1} w^{-1}
$$

$$
=[u, v][u, w]
$$

3. By the first parts, we get that

$$
\begin{aligned}
{[v,[w, u]] } & =[u, v w]^{-1}[u, v][u, w] \\
& =[v w, u][u, v][u, w]
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[u,[v, w]] } & {[v,[w, u]][w,[u, v]]=} \\
& =[u v, w][w, u][w, v][v w, u][u, v][u, w][w u, v][v, w][v, u] \\
& \equiv[u v, w][v w, u][w u, v][w, u][w, v][u, v][u, w][v, w][v, u] \bmod G^{\prime \prime} \\
& \equiv[u v, w][w u, v][v w, u] \bmod G^{\prime \prime} \\
& \equiv u v w v^{-1} u^{-1} w^{-1} w u v u^{-1} w^{-1} v^{-1} v w u w^{-1} v^{-1} u^{-1} \bmod G^{\prime \prime} \\
& \equiv u v w w^{-1} v^{-1} u^{-1} \bmod G^{\prime \prime} \\
& \equiv 1 \bmod G^{\prime \prime}
\end{aligned}
$$

Theorem 4.18 The Steinberg group $S t(A)$ is actually the universal central extension of $E(A)$.

Proof. Let $n \in \mathbb{N}$ so that $n \geq 5$. First we consider a central extension

$$
1 \longrightarrow C \longrightarrow Y \xrightarrow{\phi} S t_{n}(A) \longrightarrow 1
$$

Given $x, x^{\prime} \in S t_{n}(A)$ we take $y \in \phi^{-1}(x)$ and $y^{\prime} \in \phi^{-1}\left(x^{\prime}\right)$. We see that the commutator $\left[y, y^{\prime}\right]$ does not depend on the choice of y and y^{\prime}. Effectively, let $z \in \phi^{-1}(x)$. Then we get

$$
\phi\left(y^{-1} z\right)=\phi(y)^{-1} \phi(z)=x^{-1} x=1
$$

So we can choose $c \in \operatorname{ker}(\phi)$ so that $z=y c$ and, by a similar argument, $c^{\prime} \in \operatorname{ker} \phi$ so that $z^{\prime}=y^{\prime} c^{\prime}$. Since the extension is central we have that c and c^{\prime} are in the center of Y and so

$$
\left[z, z^{\prime}\right]=\left[y c, y^{\prime} c^{\prime}\right]=y c y^{\prime} c^{\prime}(y c)^{-1}\left(y^{\prime} c^{\prime}\right)^{-1}=y y^{\prime} y^{-1} y^{\prime-1}=\left[y, y^{\prime}\right]
$$

Now let $x_{h i}^{1}, x_{j k}^{\mu}$ be generators of $S t_{n}(A)$. We suppose that i, j, k, h are distinct. Since $n \geq 5$ we can choose an $l \leq n$ distinct of i, j, k and h. Choosing

$$
y \in \phi^{-1}\left(x_{h l}^{1}\right), \quad y^{\prime} \in \phi^{-1}\left(x_{l i}^{1}\right), \quad w \in \phi^{-1}\left(x_{j k}^{\mu}\right)
$$

we have that $\left[y, y^{\prime}\right] \in \phi^{-1}\left(x_{h i}^{1}\right)$ by 2 in definition 4.1. By the relation 3 we get that $\left[x_{h l}^{1}, x_{j k}^{\mu}\right]=1$ and so that $[y, w] \in C$. As the same $\left[y^{\prime}, w\right] \in C$. This means that y and y^{\prime} commute with w up to a central element and then that [$\left.y, y^{\prime}\right]$ commutes with w. Thus we obtain

$$
\left[\phi^{-1}\left(x_{h i}^{1}\right), \phi^{-1}\left(x_{j k}^{\mu}\right)\right]=\left[\left[y, y^{\prime}\right], w\right]=1
$$

Now choose $u \in \phi^{-1}\left(x_{h i}^{1}\right)$ and $v \in \phi^{-1}\left(x_{i j}^{\lambda}\right)$. Then $[u, w]=1$. Further, if G is the subgroup of Y generated by u, v and w, then it follows from the relation 3 in the definition 4.1 that the commutator subgroup $G^{\prime}=[G, G]$ is generated by elements in $\phi^{-1}\left(x_{h j}^{\lambda}\right), \phi^{-1}\left(x_{i k}^{\lambda \mu}\right)$ and $\phi^{-1}\left(x_{h k}^{\lambda \mu}\right)$. Then the second commutator subgroup $G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right]$ is trivial. Therefore, by lemma 4.17,

$$
[u,[v, w]]=[[u, v], w][[w, u], v]=[[u, v], w][1, w]=[[u, v], w]
$$

and so that $\left[\phi^{-1}\left(x_{h j}^{\lambda}\right), \phi^{-1}\left(x_{j k}^{\mu}\right)\right]=\left[\phi^{-1}\left(x_{h i}^{1}\right), \phi^{-1}\left(x_{i k}^{\lambda \mu}\right)\right]$. Taking $\lambda=1$, we obtain

$$
\left[\phi^{-1}\left(x_{h j}^{1}\right), \phi^{-1}\left(x_{j k}^{\mu}\right)\right]=\left[\phi^{-1}\left(x_{h i}^{1}\right), \phi^{-1}\left(x_{i k}^{\mu}\right)\right]
$$

and so the element

$$
s_{h k}^{\mu}:=\left[\phi^{-1}\left(x_{h j}^{\lambda}\right), \phi^{-1}\left(x_{j k}^{\mu}\right)\right]
$$

does not depend on the choice of j. Now it remains us to prove that these elements $s_{h k}^{\mu}$ satisfy the three Steinberg relations in definition 4.1. Then we will have that the correspondence $x_{h k}^{\mu} \longmapsto s_{h k}^{\mu}$ gives a well defined homomorphism from $S t_{n}(A)$ to Y and that it is a section for

$$
1 \longrightarrow C \longrightarrow Y \xrightarrow{\phi} S t_{n}(A) \longrightarrow 1
$$

Then every central extension of $S t_{n}(A)$ splits and, passing to the limit when $n \rightarrow \infty$, every central extension of $S t(A)$ splits. Thus we will be able to conclude from the fact that $S t(A)$ is perfect and with the proposition 4.16.

Since $s_{h k}^{\mu} \in \phi^{-1}\left(x_{h k}^{\mu}\right)$, we have the relation

$$
\left[s_{h j}^{\lambda}, s_{j k}^{\mu}\right]=s_{h k}^{\lambda \mu}
$$

for h, j, k distinct. Let $u \in \phi^{-1}\left(x_{h j}^{1}\right), v \in \phi^{-1}\left(x_{j k}^{\lambda}\right)$ and $w \in \phi^{-1}\left(x_{j k}^{\mu}\right)$. From the relation 2 in lemma 4.17, we get that

$$
s_{h k}^{\lambda} s_{h k}^{\mu}=[u, v][u, w]=[u, v w][v,[w, u]]
$$

$\operatorname{But}[u, v w]=\left[\phi^{-1}\left(x_{h j}^{1}\right), \phi^{-1}\left(x_{j k}^{\lambda+\mu}\right)\right]=s_{h k}^{\lambda+\mu}$ and $[v,[w, u]]=\left[v,[u, w]^{-1}\right]=$ $\left[\phi^{-1}\left(x_{j k}^{\lambda}\right), \phi^{-1}\left(x_{h k}^{-\mu}\right)\right]=1$. So we obtain

$$
s_{h k}^{\lambda} s_{h k}^{\mu}=s_{h k}^{\lambda+\mu}
$$

Finally, we have from the first part of the proof that $\left[\phi^{-1}\left(x_{h i}^{1}\right), \phi^{-1}\left(x_{j k}^{\mu}\right)\right]=1$ and so the three Steinberg relations are proved.

Chapter 5

Higher K-theory groups

For this chapter, we suppose known the notions of action, fundamental group, covering space, universal covering space, fibration and cofibration and the theorem of van Kampen.

5.1 The B-construction

Definition 5.1 Let $n \in \mathbb{N}$. The standard n-simplex is the convex subset of \mathbb{R}^{n+1} defined by

$$
\Delta^{n}:=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} t_{i}=1, t_{i} \geq 0\right\}
$$

The points $e_{k}=(0, \ldots, 0,1,0, \ldots, 0)$, with the 1 at the k-th position, are called the vertices of the simplex.

The sets $f_{k}:=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} t_{i}=1, t_{i} \geq 0, t_{k}=0\right\}$ are called the faces of the simplex.
Δ^{n} is oriented by the natural ordering of its vertices and any face spanned by a subset of the vertices inherits an orientation as a subset of the vertices of Δ^{n}. Hence each face is canonically isomorphic to Δ^{n-1}, preserving the ordering.

Examples

- For $n=0$ we obtain the point 1 in \mathbb{R}.
- The standard 1 -simplex is the oriented segment from $(1,0)$ to $(0,1)$ in \mathbb{R}^{2}.
- The standard 2-simplex is the triangle in \mathbb{R}^{3} with vertices $e_{0}=(1,0,0)$, $e_{1}=(0,1,0)$ and $e_{2}=(0,0,1)$. Its edges are the oriented segments $\left[e_{0}, e_{1}\right],\left[e_{1}, e_{2}\right]$ and $\left[e_{0}, e_{2}\right]$.
- For $n=3$, we obtain the tetrahedron seen in \mathbb{R}^{4} with vertices $(1,0,0,0)$, $(0,1,0,0),(0,0,1,0)$ and $(0,0,0,1)$.

Definition 5.2 $A \Delta$-complex structure on a topological space X is a collection of continuous maps $\sigma_{\alpha}: \Delta_{\alpha}^{n} \longrightarrow X$, with n depending on the index α, so that:

1. The restriction $\left.\sigma_{\alpha}\right|_{\operatorname{int}\left(\Delta_{\alpha}^{n}\right)}$ is injective, and each point of X is the image of exactly one such restriction.
2. Each restriction of σ_{α} to a face of the n-simplex Δ_{α}^{n} is one of the maps $\sigma_{\beta}: \Delta_{\beta}^{n-1} \longrightarrow X$. Here we identify the faces of Δ_{α}^{n} with $a(n-1)$ simplex in the canonical way, preserving the ordering of the vertices.
3. A subset $A \subseteq X$ is open if and only if $\sigma_{\alpha}^{-1}(A)$ is open in Δ_{α}^{n} for every α.

Remark With the condition 3, we can think of a Δ-complex as a quotient space of a collection of disjoint n-simplices, one for each α, the quotient space obtained by identifying each face of a Δ_{α}^{n} with the Δ_{β}^{n-1} corresponding to the restriction σ_{β} of σ_{α} to the face, as in condition 2.

Definition 5.3 Let G be a group. For every $(n+1)$-tuple $\left(g_{0}, g_{1}, \ldots, g_{n}\right)$ of elements of G we write $\left[g_{0}, g_{1}, \ldots, g_{n}\right]$ for the n-simplex obtained by identifying g_{i} with $e_{i}, \forall i \in \mathbb{N}, i \leq n$.

Definition 5.4 Let G be a group. We note $E G$ the Δ-complex whose nsimplices are all the ordered $(n+1)$-tuples $\left[g_{0}, g_{1}, \ldots, g_{n}\right]$ composed of elements of G and whose faces f_{k} are attached to the n-simplices $\left[g_{0}, \ldots, g_{k-1}, g_{k+1}, \ldots g_{n}\right]$.

Example If $G=\mathbb{Z} / 2 \cong\{0,1\}$, then we construct $E G$ as follows :

- First the 0 -simplices are [0] and [1]
- The 1 -simplices are $[0,0],[0,1],[1,0]$ and $[1,1]$. Then we attach the vertices of $[0,0]$ to $[0]$, the first vertex of $[0,1]$ to $[0]$ and the last to $[1]$, etc. We obtain $C[0] \longrightarrow[1] \longrightarrow$
- There is eight 2 -simplices $\left[e_{0}, e_{1}, e_{2}\right]$. We attach the faces of $\left[e_{0}, e_{1}, e_{2}\right]$ to the 1 -simplices $\left[e_{0}, e_{1}\right],\left[e_{0}, e_{2}\right]$ and $\left[e_{1}, e_{2}\right]$.
- And so on...

Proposition 5.5 G acts freely on $E G$, with action defined by

$$
\begin{aligned}
g: E G & \longrightarrow E G \\
{\left[g_{0}, g_{1}, \ldots, g_{n}\right] } & \longmapsto\left[g g_{0}, g g_{1}, \ldots, g g_{n}\right]
\end{aligned}
$$

$\forall n \in \mathbb{N}, \forall g \in G$.
Proof. First we have to show that for $g, h \in G$ we have $g \circ h=g h$.

$$
\begin{aligned}
g\left(h\left(\left[g_{0}, g_{1}, \ldots, g_{n}\right]\right)\right) & =g\left(\left[h g_{0}, h g_{1}, \ldots, h g_{n}\right]\right)=\left[g h g_{0}, g h g_{1}, \ldots, g h g_{n}\right] \\
& =(g h)\left(\left[g_{0}, g_{1}, \ldots, g_{n}\right]\right)
\end{aligned}
$$

and so $g \circ h=g h$.
Furthermore we get that for every $g \in G, g$ is a permutation of $E G$, i.e. g is a bijection. Effectively, g has an inverse g^{-1} in G. Then $g \circ g^{-1}=$ $g g^{-1}=e=g^{-1} g=g^{-1} \circ g$ and $e=I d_{E G}$.

Now we have to prove that this action is free, meaning that there is no n-simplex $\left[g_{0}, g_{1}, \ldots, g_{n}\right] \in E G$ and no $g \in G$ other than e so that $g\left(\left[g_{0}, g_{1}, \ldots, g_{n}\right]\right)=\left[g g_{0}, g g_{1}, \ldots, g g_{n}\right]=\left[g_{0}, g_{1}, \ldots, g_{n}\right]$. But

$$
\begin{aligned}
{\left[g g_{0}, g g_{1}, \ldots, g g_{n}\right] } & =\left[g_{0}, g_{1}, \ldots, g_{n}\right] \Longrightarrow g g_{0}=g_{0} \\
& \Longleftrightarrow g g_{0} g_{0}^{-1}=g_{0} g_{0}^{-1} \Longleftrightarrow g=e
\end{aligned}
$$

Definition 5.6 Let G be a group. The B-construction of G is the orbit space $B G:=E G / G$ of the action of the proposition 5.5.

Lemma 5.7 Let G be a group and $g \in G$. Then each $y \in E G$ has a neighborhood U so that $U \cap g(U)=\emptyset$ if $g \neq e$.

Proof. The proof is based on the fact that G is acting freely and that an n-simplex is sent to a n-simplex by any element $g \in G$.

Proposition 5.8 Let G be a group. The quotient map $q: E G \longrightarrow B G$ defined by $q(x)=G x$ is a universal covering space.

Proof. It is clear that q is surjective. Let $y \in Y$ and let U be a neighborhood of y as in lemma 5.7. Then we get that the sets $g(U), g \in G$, are disjoints and that

$$
q^{-1}(q(U))=\coprod_{g \in G} g(U)
$$

But for every $g \in G$, the definition of the quotient topology gives that q is an homeomorphism from $g(U)$ to $q(U)$. Then $q: E G \longrightarrow B G$ is a covering space. Clearly, $E G$ is path-connected. It remains us to prove that $\pi_{1}(E G)=0$, i.e. $E G$ is contractible.

Let $\left[g_{0}, \ldots, g_{n}\right] \in E G$ and $x \in\left[g_{0}, \ldots, g_{n}\right]$. Identifying $\left[g_{0}, \ldots, g_{n}\right]$ with Δ^{n} we can write $x=\sum_{i=0}^{n} t_{i} e_{i}$. Then we identify $\Delta^{n+1}=\left[e_{0}, \ldots, e_{n}, e_{n+1}\right]$ with $\left[g_{0}, \ldots, g_{n}, e\right]$ and we see x in Δ^{n+1} in the canonical way : $x=\sum_{i=0}^{n} t_{i} e_{i}+0 e_{i+1}$. Thus we can define the homotopy

$$
\begin{aligned}
H:[0,1] \times \Delta^{n+1} & \longrightarrow \Delta^{n+1} \\
(s, x) & \longmapsto(1-s) \sum_{i=0}^{n} t_{i} e_{i}+s e_{n+1}
\end{aligned}
$$

Clearly $H(0, x)=x$ and $H(1, x)=[e]$. Then H is an homotopy from $I d_{E G}$ to the projection $E G \longrightarrow[e]$. Then $E G$ is contractible.

Proposition 5.9 Let G be a group. Then $\pi_{0}(B G)=0$ and $\pi_{1}(B G) \cong G$.
Proof. Since proposition $5.8, q$ is a fibration and $\pi_{0}(E G)=0=\pi_{1}(E G)$. We note F for the fiber $q^{-1}(G[e])$. Since

$$
g^{-1}([g])=\left[g^{-1} g\right]=[e]
$$

we have that $[g] \in G[e]$ and so that $G[g]=G[e]$. Thus $[g] \in F, \forall g \in G$. But it is clear that if $n \geq 1, q\left(\left[g_{0}, g_{1}, \ldots, g_{n}\right]\right)$ is a set of n-simplex and each of them cannot be equal to $g[e]$. Then we get

$$
F=\{[g] \mid g \in G\} \cong G
$$

In this case, the long exact sequence of the fibration q gives

$$
0=\pi_{1}(E G) \longrightarrow \pi_{1}(B G) \longrightarrow \pi_{0}(F) \cong \pi_{0}(G) \longrightarrow \pi_{0}(E G)=0
$$

Since G is a discreet space, $\pi_{0}(G) \cong G$ and so

$$
\pi_{1}(B G) \cong G
$$

Let $x, y \in B G$. Since q is surjective, there exists $x^{\prime}, y^{\prime} \in E G$ so that $q\left(x^{\prime}\right)=x$ and $q\left(y^{\prime}\right)=y$. Since $E G$ is path-connected, there is a path γ in $E G$ from x^{\prime} to y^{\prime}. Then $q(\gamma)$ gives a path in $B G$ from x to y. Then $B G$ is path-connected and therefore $\pi_{0}(B G)=0$.

5.2 Singular homology

In this section, we will briefly introduce the notion of singular homology, since we will need it in the next part to define the K-theory groups. Most of the properties won't be proved here.

Definition 5.10 Let $n \in \mathbb{N}$. A singular n-simplex in a space X is a continuous map $\sigma: \Delta^{n} \longrightarrow X$.

Definition 5.11 Let X be a topological space and $n \in \mathbb{N}$. We denote by $C_{n}(X)$ the free abelian group with basis the set of singular n-simplices in X. We call an element of $C_{n}(X)$ a singular n-chain.

Remark A singular n-chain is a finite formal sum $\sum_{i=1}^{k} n_{i} \sigma_{i}$ where $n_{i} \in \mathbb{Z}$ and $\sigma_{i}: \Delta^{n} \longrightarrow K$.

Definition 5.12 Let X be a topological space and $n \in \mathbb{N}^{*}$. We define the boundary map $\partial_{n}: C_{n}(X) \longrightarrow C_{n-1}(X)$ by the homomorphism given by formula

$$
\partial_{n}(\sigma)=\left.\sum_{i=0}^{n}(-1)^{i} \sigma\right|_{\left[e_{0}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right]}
$$

In this formula, there is an identification of $\left[e_{0}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right]$ with Δ^{n-1}, preserving the ordering of vertices, so that $\left.\sigma\right|_{\left[e_{0}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right]}$ is regarded as a singular $(n-1)$-simplex $\Delta^{n-1} \longrightarrow X$.

Remark To define ∂_{0}, we have to define $C_{-1}(X)$ as the free abelian group with basis the empty set. So C_{-1} is the trivial group and then ∂_{0} is the trivial homomorphism.

Lemma 5.13 The composition $\partial_{n} \circ \partial_{n+1}: C_{n+1}(X) \longrightarrow C_{n-1}(X)$ is zero, $\forall n \in \mathbb{N}$.

Proof. For $n=0$, the lemma is trivial. We will prove the lemma in the case $n=1$.

$$
\begin{aligned}
\partial_{1}\left(\partial_{2}(\sigma)\right) & =\partial_{1}\left(\left.\sigma\right|_{\left[e_{1}, e_{2}\right]}-\left.\sigma\right|_{\left[e_{0}, e_{2}\right]}+\left.\sigma\right|_{\left[e_{0}, e_{1}\right]}\right) \\
& =\left.\sigma\right|_{\left[e_{2}\right]}-\left.\sigma\right|_{\left[e_{1}\right]}-\left.\sigma\right|_{\left[e_{2}\right]}+\left.\sigma\right|_{\left[e_{0}\right]}+\left.\sigma\right|_{\left[e_{1}\right]}-\left.\sigma\right|_{\left[e_{0}\right]}=0
\end{aligned}
$$

Definition 5.14 Let X be a topological space and $n \in \mathbb{N}$. We define the n-th singular homology group by

$$
H_{n}(X):=\operatorname{ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)
$$

This is well defined since the preceeding lemma.
Remark Let X, Y be topological spaces and $f: X \longrightarrow Y$ a continuous map. Then f induces an homomorphism from $C_{n}(X)$ to $C_{n}(Y), \forall n \in \mathbb{N}$, in the following way. For every singular n-simplex σ in X we define $f_{\sharp}(\sigma):=f \circ \sigma$, which is an n-simplex in Y. Then we can extend f_{\sharp} to an homomorphism $C_{n}(X) \longrightarrow C_{n}(Y)$ by linearity.

Theorem 5.15 A continuous map $f: X \longrightarrow Y$ between topological spaces induces an homomorphism $f_{*}: H_{n}(X) \longrightarrow H_{n}(Y), \forall n \in \mathbb{N}$. Moreover, if Z is a topological space and $g: Y \longrightarrow Z$ is a continuous map, then $(g \circ f)_{*}=g_{*} \circ f_{*}$.

Proof. For the proof, consult [1], chap. 2, p. 111. This come from the fact that f_{\sharp} has the property $\partial_{n} \circ f_{\sharp}=f_{\sharp} \circ \partial_{n}$.

Proposition 5.16 Let X be a nonempty and path-connected space. Then

$$
H_{0}(X) \cong \mathbb{Z}
$$

Hence, for any space $X, H_{0}(X)$ is a direct sum of copies of \mathbb{Z}, one for each path-component of X.

Remark The proof of the proposition 5.16 can be seen in [1], chap. 2, p. 109. From this proposition we see that if X is a point, $H_{0}(X) \cong \mathbb{Z}$. To avoid this fact, we make the following definition.

Definition 5.17 Let X be a topological space. We consider the projection $X \longrightarrow *$, where $*$ is a topological space made of one point. By the theorem 5.15, this induces an homomorphism

$$
H_{n}(X) \longrightarrow H_{n}(*)
$$

for every $n \in \mathbb{N}$. We define the reduced singular homology group \widetilde{H}_{n} as the kernel of this homomorphism.

Remark In fact, $\widetilde{H}_{n}(X)$ is the group which makes the sequence

$$
0 \longrightarrow \widetilde{H}_{n}(X) \longrightarrow H_{n}(X) \longrightarrow H_{n}(*) \longrightarrow 0
$$

short exact. Since $H_{0}(*) \cong \mathbb{Z}$ and $H_{n}(*)=0$ for $n \geq 1$ we get that

$$
\widetilde{H}_{n}(X) \cong H_{n}(X), \quad n \geq 1
$$

and

$$
\widetilde{H}_{0}(X)=0
$$

if X is path connected.
Remark With the same hypothesis as in the theorem 5.15, f induces an homomorphism $f_{*}: \widetilde{H}_{n}(X) \longrightarrow \widetilde{H}_{n}(Y)$ with the same properties as in the theorem.

Proposition 5.18 Let X, Y be topological spaces and f, g be two maps from X to Y. If $f \simeq g$, then the two induced homomorphisms f_{*} and g_{*} are equal.

Proof. The proof is not trivial. It can be read in [1], chap. 2, p. 112.
Corollary 5.19 Let X, Y be topological spaces. If $X \simeq Y$, then

$$
\widetilde{H}_{n}(X) \cong \widetilde{H}_{n}(Y)
$$

$\forall n \in \mathbb{N}$. In particular, if X is contractible, then $\widetilde{H}_{n}(X)=0, \forall n \in \mathbb{N}$.
Proof. By hypothesis, there exists $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ such that $g \circ f \simeq I d_{X}$ and $f \circ g \simeq I d_{Y}$. By the preceeding proposition we get that

$$
(g \circ f)_{*}=I d_{\tilde{H}_{n}(X)} \quad \text { and } \quad(f \circ g)_{*}=I d_{\widetilde{H}_{n}(Y)}
$$

But since $(g \circ f)_{*}=g_{*} \circ \tilde{H}_{*}$ and $(f \circ g)_{*}=f_{*} \circ g_{*}$, we get that $g_{*}=\left(f_{*}\right)^{-1}$ and so $f_{*}: \widetilde{H}_{n}(X) \longrightarrow \widetilde{H}_{n}(Y)$ is an isomorphism.

Proposition 5.20 Let X be a topological space and $A \subseteq X$ be a nonempty closed subspace that is a deformation retract of some neighborhood in X. Then we have a long exact sequence of reduced homology groups

$$
\begin{aligned}
\ldots \longrightarrow \widetilde{H}_{n}(A) \xrightarrow{i_{*}} \widetilde{H}_{n}(X) \xrightarrow{j_{*}} \widetilde{H}_{n}(X / A) & \longrightarrow \widetilde{H}_{n-1}(A) \xrightarrow{i_{*}} \ldots \\
\ldots & \longrightarrow \widetilde{H}_{0}(X / A) \longrightarrow 0
\end{aligned}
$$

where i_{*}, j_{*} are the homomorphisms induced by the inclusion $i: A \hookrightarrow X$ and the quotient map $j: X \longrightarrow X / A$.

Remark The proof of the preceeding proposition can be seen in [1], chap. 2 , p. 114. We arrive now to the principal result of this section, that will be usefull to the next section : the Hurewicz theorem. This result is proved in [1], chap. 4, p. 366.

Theorem 5.21 (Hurewicz) Let X be a $(n-1)$-connected space, $n \geq 2$. Then $\widetilde{H}_{i}(X)=0$ for $i<n$ and $\pi_{n}(X) \cong \widetilde{H}_{n}(X)$.

5.3 The plus-construction

Definition 5.22 $A C W$-complex is a topological space X so that $X=$ $\bigcup_{n \in \mathbb{N}} X_{n}$ where :

1. X_{0} is a discreet space ;
2. $\forall n>0$, there exists a set of indices I_{n} and a collection of maps

$$
\left\{f_{\alpha}: S_{\alpha}^{n-1} \longrightarrow X_{n-1} \mid \alpha \in I_{n}\right\}
$$

so that X_{n} is the quotient space $\left(X_{n-1} \amalg \coprod_{\alpha \in I_{n}} D_{\alpha}^{n}\right) / \sim$, where we define $f_{\alpha}(x) \sim x, \forall x \in \partial D_{\alpha}^{n}=S_{\alpha}^{n-1}, \forall \alpha \in I_{n} ;$
3. A subset $A \subseteq X$ is open if and only if $A \cap X_{n}$ is open in X_{n} for every $n \in \mathbb{N}$.

Example A Δ-complex is in particular a $C W$-complex.
Definition 5.23 A continuous map $f: X \longrightarrow Y$ between two $C W$-complex is called cellular if $f\left(X_{n}\right) \subseteq Y_{n}, \forall n \in \mathbb{N}$.

Definition 5.24 Let X, A be topological spaces and $f: A \longrightarrow X$ be a continuous map. We define the cone of A by

$$
C(A):=([0,1] \times A) / \sim
$$

where $(0, a) \sim\left(0, a^{\prime}\right), \forall a, a^{\prime} \in A$, and the mapping cone of f by

$$
C(f):=(C(A) \amalg X) / \sim
$$

where $(1, a) \sim f(a), \forall a \in A$.

Examples

1. If $f: A \longrightarrow X$ is simply the inclusion of a subspace, then $C(f) \simeq X / A$.
2. If $f: S^{n-1} \longrightarrow D^{n}$ is the inclusion, then $C(f) \cong S^{n}$. Effectively, the cone $C\left(S^{n-1}\right)$ is clearly homeomorphic to D^{n}. Furthermore

$$
\left(D_{1}^{n} \amalg D_{2}^{n}\right) /\left(\partial D_{1}^{n} \sim \partial D_{2}^{n}\right) \cong S^{n}
$$

3. If X is a $C W$-complex and $f: S^{n-1} \longrightarrow X$ is a cellular map, then $C(f)$ is the $C W$-complex $\left(D^{n} \amalg X\right) / \sim$, where $f(x) \sim x, \forall x \in \partial D^{n}=S^{n-1}$.
4. Extending the preceeding example, if the space X is a $C W$-complex and if $f_{\alpha}: S_{\alpha}^{n-1} \longrightarrow X, \alpha \in I$, are cellular maps, then

$$
C(f) \cong\left(X \amalg \coprod_{\alpha \in I} D_{\alpha}^{n}\right) / \sim
$$

where $f_{\alpha}(x) \sim x, \forall x \in \partial D_{\alpha}^{n}=S_{\alpha}^{n-1}, \forall \alpha \in I$.
Proposition 5.25 Let X, A be topological spaces and $f: A \longrightarrow X$ be a continuous map. Then the sequence

$$
A \xrightarrow{f} X \longrightarrow C(f)
$$

is a cofibration sequence. Moreover, the long exact sequence of this cofibration gives rise to a long exact sequence

$$
\begin{aligned}
\ldots \longrightarrow \widetilde{H}_{n}(A) \xrightarrow{f_{*}} \widetilde{H}_{n}(X) \longrightarrow \widetilde{H}_{n}(C(f)) & \longrightarrow \widetilde{H}_{n-1}(A) \xrightarrow{f_{*}} \ldots \\
\ldots & \longrightarrow \widetilde{H}_{0}(C(f)) \longrightarrow 0
\end{aligned}
$$

Proof. For this result, consult [1], chap. 4, p. 460-462.
Lemma 5.26 Let I be a set of indices and $X_{\alpha}, \alpha \in I$, be topological spaces. Then

$$
\widetilde{H}_{n}\left(\bigvee_{\alpha \in I} X_{\alpha}\right) \cong \bigoplus_{\alpha \in I} \widetilde{H}_{n}\left(X_{\alpha}\right)
$$

for every $n \in \mathbb{N}$.
Proof. The proof can be seen in [1], chap. 2, p. 126. In fact, this is the wedge axiom of a reduced homology theory and the reduced singular homology is one such theory.

Lemma 5.27 Let $i \in \mathbb{N}$ and I be a set of indices. Then

$$
\left.\widetilde{H}_{i}\left(\bigvee_{\alpha \in I} S_{\alpha}^{n}\right)\right)=0 \text { if } i \neq n
$$

and

$$
\widetilde{H}_{n}\left(\bigvee_{\alpha \in I} S_{\alpha}^{n}\right) \cong \bigoplus_{\alpha \in I} \mathbb{Z}
$$

Proof. As seen in example 2 above, we have a cofibration

$$
S^{n-1} \hookrightarrow D^{n} \longrightarrow S^{n}
$$

By the proposition 5.25 , we get a short exact sequence

$$
\begin{array}{r}
\ldots \longrightarrow \widetilde{H}_{i}\left(D^{n}\right) \longrightarrow \widetilde{H}_{i}\left(S^{n}\right) \longrightarrow \widetilde{H}_{i-1}\left(S^{n-1}\right) \longrightarrow \widetilde{H}_{i-1}\left(D^{n}\right) \longrightarrow \ldots \\
\ldots \longrightarrow \widetilde{H}_{0}\left(S^{n}\right) \longrightarrow 0
\end{array}
$$

Since D^{n} is contractible, $\widetilde{H}_{i}\left(D^{n}\right)=0, \forall i \in \mathbb{N}$. Then we get an isomorphism

$$
\widetilde{H}_{i}\left(S^{n}\right) \cong \widetilde{H}_{i-1}\left(S^{n-1}\right)
$$

$\forall i \in \mathbb{N}^{*}$. Thus we just need to prove the lemma in the case $n=0$.
For $i \in \mathbb{N}$ and writing $S^{0}=\{a, b\}$, we get directly from the definition that $C_{i}\left(S^{0}\right)$ is the free abelian group with basis composed of $\sigma_{a}: \Delta^{i} \longrightarrow a$ and $\sigma_{b}: \Delta^{i} \longrightarrow b$. Hence

$$
C_{i}\left(S^{0}\right) \cong \mathbb{Z}\{a, b\}
$$

Then the boundary maps are given by $\partial_{i}\left(\sigma_{a}\right)=\sum_{k=0}^{i}(-1)^{k} a$ and $\partial_{i}\left(\sigma_{b}\right)=$ $\sum_{k=0}^{i}(-1)^{k} b$. In consequence, if i is odd, ∂_{i} is the trivial homomorphism and if i is even and $i \geq 2, \partial_{i}$ is the identity. Therefore

$$
\widetilde{H}_{i}\left(S^{0}\right) \cong H_{i}\left(S^{0}\right)=C_{i}\left(S^{0}\right) / C_{i}\left(S^{0}\right)=0 \text { if } i \text { is odd }
$$

and

$$
\widetilde{H}_{i}\left(S^{0}\right) \cong H_{i}\left(S^{0}\right)=0 / 0=0 \text { if } i \text { is even and } i \geq 2
$$

For $i=0$ we get $H_{0}\left(S^{0}\right)=C_{0}\left(S^{0}\right) / 0 \cong C_{0}\left(S^{0}\right) \cong \mathbb{Z}\{a, b\}$. To find the reduced homology group we write the short exact sequence

$$
0 \longrightarrow \widetilde{H}_{0}\left(S^{0}\right) \longrightarrow H_{0}\left(S^{0}\right) \cong \mathbb{Z}\{a, b\} \longrightarrow H_{0}(*) \cong \mathbb{Z} \longrightarrow 0
$$

But the homomorphism $\mathbb{Z}\{a, b\} \longrightarrow \mathbb{Z}$ is given by $a \longmapsto 1$ and $b \longmapsto 1$ and so we get that the kernel of this homomorphism is $\mathbb{Z}\{a-b\} \cong \mathbb{Z}$.

Remark Now we arrive to the main theorem of this chapter, which will allow us to construct a topological space that will give the K-theory groups. In this theorem, we suppose that $\widetilde{H}_{1}(X)=0$, which means in fact that $\pi_{1}(X)$ is a perfect group. Then in the corollary we will consider a perfect subgroup of $\pi_{1}(X)$.

Theorem 5.28 Let X be a connected $C W$-complex so that $\widetilde{H}_{1}(X)=0$. Then there exists a simply-connected $C W$-complex X^{+}and a continuous map $f^{+}: X \longrightarrow X^{+}$inducing isomorphisms on all reduced homology groups.

Proof. First we take for each generator of $\pi_{1}(X)$ a map $\varphi_{\alpha}: S^{1} \longrightarrow X$. Then we form X^{\prime} as the quotient space

$$
X^{\prime}=\left(X \amalg \coprod_{\alpha \in I} D_{\alpha}^{2}\right) / \sim
$$

where $\varphi_{\alpha}(x) \sim x, \forall x \in \partial D_{\alpha}^{2}=S_{\alpha}^{1}, \forall \alpha \in I$. By the cellular approximation theorem (see [1], chap. 4, p. 349), we can assume that every φ_{α} is cellular, that is X^{\prime} is a $C W$-complex. Since X is a $C W$-complex and is a subcomplex of X^{\prime}, the hypothesis of the proposition 5.20 are satisfied (see [1], appendix, p. 523). Then we get the long exact sequence

$$
\begin{array}{r}
\ldots \longrightarrow \widetilde{H}_{i+1}\left(X^{\prime} / X\right) \longrightarrow \widetilde{H}_{i}(X) \longrightarrow \widetilde{H}_{i}\left(X^{\prime}\right) \longrightarrow \widetilde{H}_{i}\left(X^{\prime} / X\right) \longrightarrow \ldots \\
\ldots \longrightarrow \widetilde{H}_{3}\left(X^{\prime} / X\right) \longrightarrow \widetilde{H}_{2}(X) \longrightarrow \widetilde{H}_{2}\left(X^{\prime}\right) \longrightarrow \widetilde{H}_{2}\left(X^{\prime} / X\right) \longrightarrow \widetilde{H}_{1}(X) \longrightarrow \ldots
\end{array}
$$

By hypothesis, $\widetilde{H}_{1}(X)=0$. Furthermore, since we have attached D_{α}^{2} to X to obtain X^{\prime}, we get that $X^{\prime} / X \cong \bigvee_{\alpha \in I} S_{\alpha}^{2}$ and so lemma 5.26 gives

$$
\widetilde{H}_{i}\left(X^{\prime} / X\right) \cong \widetilde{H}_{i}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \cong \bigoplus_{\alpha \in I} \widetilde{H}_{i}\left(S_{\alpha}^{2}\right)
$$

Hence we get $\widetilde{H}_{i}\left(X^{\prime} / X\right)=0$ if $i \neq 2$ and $\widetilde{H}_{2}\left(X^{\prime} / X\right) \cong \bigoplus_{\alpha \in I} \mathbb{Z}$ by lemma 5.27.
In consequence we have from the long exact sequence that

$$
\widetilde{H}_{i}\left(X^{\prime}\right) \cong \widetilde{H}_{i}(X) \text { if } i \neq 2
$$

Since $\bigoplus_{\alpha \in i} \mathbb{Z}$ is a free abelian group, we have that the short exact sequence

$$
0 \longrightarrow \widetilde{H}_{2}(X) \longrightarrow \widetilde{H}_{2}\left(X^{\prime}\right) \longrightarrow \widetilde{H}_{2}\left(X^{\prime} / X\right) \longrightarrow 0
$$

splits and thus from lemma 3.9

$$
\widetilde{H}_{2}\left(X^{\prime}\right) \cong \widetilde{H}_{2}(X) \oplus \bigoplus_{\alpha \in I} \mathbb{Z}
$$

From the construction of X^{\prime} we have that $\pi_{1}\left(X^{\prime}\right)=0$. Then by the Hurewicz theorem

$$
\pi_{2}\left(X^{\prime}\right) \cong \widetilde{H}_{2}\left(X^{\prime}\right) \cong \widetilde{H}_{2}(X) \oplus \bigoplus_{\alpha \in I} \mathbb{Z}
$$

Then taking generators for $\widetilde{H}_{2}\left(X^{\prime} / X\right)$ they correspond by the isomorphism to elements $\left[\psi_{\alpha}\right] \in \pi_{2}\left(X^{\prime}\right), \alpha \in I$. We note X^{+}the quotient space

$$
X^{+}=\left(X^{\prime} \amalg \coprod_{\alpha \in I} D_{\alpha}^{3}\right) / \sim
$$

where $\psi_{\alpha}(x) \sim x, \forall x \in \partial D_{\alpha}^{3}=S_{\alpha}^{2}, \forall \alpha \in I$. By the cellular approximation theorem, we can again assume that every ψ_{α} is cellular, that is X^{+}is a $C W$-complex.

By the definition of X^{+}and the example 3 above, we get that

$$
\bigvee_{\alpha \in I} S_{\alpha}^{2} \xrightarrow{\vee \psi_{\alpha}} X^{\prime} \longrightarrow X^{+}
$$

is a cofibration sequence. Then by proposition 5.25 we get the long exact sequence

$$
\begin{array}{r}
\ldots \longrightarrow \widetilde{H}_{i}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \longrightarrow \widetilde{H}_{i}\left(X^{\prime}\right) \longrightarrow \widetilde{H}_{i}\left(X^{+}\right) \longrightarrow \widetilde{H}_{i-1}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \longrightarrow \ldots \\
\ldots \longrightarrow \widetilde{H}_{3}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \longrightarrow \widetilde{H}_{3}\left(X^{\prime}\right) \longrightarrow \widetilde{H}_{3}\left(X^{+}\right) \longrightarrow \widetilde{H}_{2}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \longrightarrow \\
\\
\longrightarrow \widetilde{H}_{2}\left(X^{\prime}\right) \longrightarrow \widetilde{H}_{2}\left(X^{+}\right) \longrightarrow \ldots \longrightarrow \widetilde{H}_{0}\left(X^{+}\right)
\end{array}
$$

Since lemma 5.27 we get $\widetilde{H}_{i}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right)=0$ if $i \neq 2$ and $\widetilde{H}_{2}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \cong \bigoplus_{\alpha \in I} \mathbb{Z}$. In consequence we have from the long exact sequence that

$$
\widetilde{H}_{i}\left(X^{+}\right) \cong \widetilde{H}_{i}\left(X^{\prime}\right) \cong \widetilde{H}_{i}(X) \text { if } i \neq 2,3
$$

and that

$$
0 \longrightarrow \widetilde{H}_{3}\left(X^{\prime}\right) \longrightarrow \widetilde{H}_{3}\left(X^{+}\right) \longrightarrow \bigoplus_{\alpha \in I} \mathbb{Z} \stackrel{\left(\vee \psi_{\alpha}\right)_{*}}{ } \widetilde{H}_{2}\left(X^{\prime}\right) \longrightarrow \widetilde{H}_{2}\left(X^{+}\right) \longrightarrow 0
$$

is split exact. Given an element $[f] \in \pi_{2}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right)$, we get an element in $\pi_{2}\left(X^{\prime}\right)$ by composing

$$
S^{2} \xrightarrow{f} \bigvee_{\alpha \in I} S_{\alpha}^{2} \xrightarrow{\vee \psi_{\alpha}} X^{\prime}
$$

Since $\pi_{2}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \cong \widetilde{H}_{2}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \cong \bigoplus_{\alpha \in I} \mathbb{Z}$ by the Hurewicz theorem, the generators of $\pi_{2}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right)$ are the equivalence classes of the maps

$$
S^{2} \xrightarrow{I d_{S^{2}}} S_{\alpha}^{2} \subseteq \bigvee_{\alpha \in I} S_{\alpha}^{2}
$$

for $\alpha \in I$. Thus the image of those generators in $\pi_{2}\left(X^{\prime}\right)$ are in fact the ψ_{α}, $\alpha \in I$. Then the composition

$$
\begin{aligned}
& \widetilde{H}_{2}\left(\oplus_{\alpha} \mathbb{Z}\right) \xrightarrow{\left(\vee \psi_{\alpha}\right)_{*}} \widetilde{H}_{2}\left(X^{\prime}\right) \xrightarrow{\cong} \widetilde{H}_{2}(X) \oplus \widetilde{H}_{2}\left(\bigvee_{\alpha} S_{\alpha}^{2}\right) \\
& \cong \xlongequal{\cong} \mid \\
& \pi_{2}\left(\bigvee_{\alpha} S_{\alpha}^{2}\right) \longrightarrow \pi_{2}\left(X^{\prime}\right)
\end{aligned}
$$

send $\widetilde{H}_{2}\left(\bigoplus_{\alpha \in I} \mathbb{Z}\right)$ onto the corresponding factor $\widetilde{H}_{2}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right)$ in $\widetilde{H}_{2}\left(X^{\prime}\right)$ via $\left(\vee \psi_{\alpha}\right)_{*}$. Finally, the long exact sequence of the cofibration

$$
\begin{aligned}
0 \longrightarrow \widetilde{H}_{3}\left(X^{\prime}\right) \longrightarrow & \widetilde{H}_{3}\left(X^{+}\right) \longrightarrow \widetilde{H}_{2}\left(\bigoplus \bigoplus_{\alpha \in I} \mathbb{Z}\right) \xrightarrow{\vee \psi_{\alpha}} \\
& \xrightarrow{\vee \psi_{\alpha}} \widetilde{H}_{2}\left(X^{\prime}\right) \cong \widetilde{H}_{2}(X) \oplus \widetilde{H}_{2}\left(\bigvee_{\alpha \in I} S_{\alpha}^{2}\right) \longrightarrow \widetilde{H}_{2}\left(X^{+}\right) \longrightarrow 0
\end{aligned}
$$

gives $\widetilde{H}_{3}\left(X^{+}\right) \cong H_{3}\left(X^{\prime}\right) \cong \widetilde{H}_{3}(X)$ and $\widetilde{H}_{2}\left(X^{+}\right) \cong \widetilde{H}_{2}(X)$. By construction, $\pi_{1}\left(X^{+}\right)=\pi_{1}\left(X^{\prime}\right)=0$ and so the theorem is proved.

Corollary 5.29 Let X be a connected $C W$-complex. Then for every perfect subgroup H of $\pi_{1}(X)$ there is a connected $C W$-complex X^{+}so that $\pi_{1}\left(X^{+}\right) \cong \pi_{1}(X) / H$ and $H_{n}\left(X^{+}\right) \cong H_{n}(X), \forall n \in \mathbb{N}$.

We call X^{+}the plus-construction of X with respect to the perfect subgroup H.

Proof. By the classification theorem of covering spaces, there is a covering space $p: \widetilde{X} \longrightarrow X$ so that $\pi_{1}(\tilde{X}) \cong H$. By theorem 5.28 , there is a simply-connected $C W$-complex \widetilde{X}^{+}and a map $f^{+}: \widetilde{X} \longrightarrow \widetilde{X}^{+}$so that $\widetilde{H}_{i}\left(\widetilde{X}^{+}\right) \cong \widetilde{H}_{i}(\widetilde{X})$ via f_{*}^{+}. We define

$$
M_{p}:=(\widetilde{X} \times[0,1] \amalg X) / \sim
$$

where $(\widetilde{x}, 1) \sim p(\widetilde{x}), \forall \widetilde{x} \in \widetilde{X}$, the mapping cylinder of p. Then we define

$$
X^{+}:=\left(M_{p} \amalg \widetilde{X}^{+}\right) / \sim
$$

where $(\widetilde{x}, 0) \sim f^{+}(\widetilde{x}), \forall \widetilde{x} \in \widetilde{X}$. By the van Kampen theorem, we get that

$$
\pi_{1}\left(M_{p}\right) / \pi_{1}(\widetilde{X}) \cong \pi_{1}\left(X^{+}\right)
$$

But since $M_{p} \simeq X$ we get $\pi_{1}\left(M_{p}\right) \cong \pi_{1}(X)$ and so

$$
\pi_{1}\left(X^{+}\right) \cong \pi_{1}(X) / \pi_{1}(\widetilde{X}) \cong \pi_{1}(X) / H
$$

Clearly, $X^{+} / M_{p} \cong \widetilde{X}^{+} / \widetilde{X}$. Then for $n \in \mathbb{N}$,

$$
\widetilde{H}_{n}\left(X^{+} / M_{p}\right) \cong \widetilde{H}_{n}\left(\widetilde{X}^{+} / \widetilde{X}\right) \cong 0
$$

since $\widetilde{H}_{n}\left(\widetilde{X}^{+}\right) \cong \widetilde{H}_{n}(\widetilde{X})$ by the theorem 5.28. By the proposition 5.20 , we get the long exact sequence

$$
0 \longrightarrow \widetilde{H}_{n}\left(M_{p}\right) \longrightarrow \widetilde{H}_{n}\left(X^{+}\right) \longrightarrow \widetilde{H}_{n}\left(X^{+} / M_{p}\right)=0
$$

for every $n \in \mathbb{N}$. Then

$$
\widetilde{H}_{n}\left(X^{+}\right) \cong \widetilde{H}_{n}\left(M_{p}\right) \cong \widetilde{H}_{n}(X)
$$

since $M_{p} \simeq X$.
Definition 5.30 (Quillen) Let A be a ring. We define the K-theory groups by

$$
K_{i}(A):=\pi_{i}\left(B G L(A)^{+}\right)
$$

for $i \in \mathbb{N}^{*}$, where the plus-construction is given with respect to the perfect subgroup $E(A) \subseteq G L(A)\left(\cong \pi_{1}(B G L(A))\right.$ by proposition 5.9).

Proposition 5.31 Milnor's $K_{1}(A)$ defined in chapter 3 is isomorphic to Quillen's $K_{1}(A)$.

Proof. We denote Milnor's $K_{1}(A)$ by $K_{1}^{M}(A)$ and Quillen's by $K_{1}^{Q}(A)$. We have from the proposition 5.9 that $\pi_{1}(B G L(A)) \cong G L(A)$. Furthermore, the definition of $K_{1}^{Q}(A)$ and the corollary 5.29 give

$$
K_{1}^{Q}(A)=\pi_{1}\left(B G L(A)^{+}\right) \cong \pi_{1}(B G L(A)) / E(A) \cong G L(A) / E(A)=K_{1}^{M}(A)
$$

Remark We have that the definition 5.30 for $K_{2}(A)$ coincides also with the $K_{2}(A)$ that we have defined in the preceeding chapter.

Moreover, $K_{i}(-)$ is a covariant functor from the category of rings and homomorphisms of rings to the category of abelian groups and homomorphisms of groups.

Conclusion

As a conclusion, I will say that algebraic K-theory is a huge and interesting subjet. Given an ideal I of a ring A, we can also define relatives K-theory groups $K_{i}(A, I)$. In the same way, we can define such groups for a category.

In addition, there is also a topological K-theory, that is in fact born before algebraic K-theory and has inspired it. There is obviously a link between them.

Bibliography

[1] Hatcher, Allen. Algebraic Topology. Cambridge University Press, 2002.
[2] Johnson, D.L.. Presentations of Groups. London Mathematical Society Student Texts n ${ }^{\circ} 15$, Cambridge University Press, 1990.
[3] Milnor, John. Introduction to algebraic K-theory. Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1971.
[4] Rosenberg, Jonathan. Algebraic K-Theory and Its Applications. Graduate texts in mathematics, Springer-Verlag, New York, 1994.

