
Olivier Isely

Algebraic K-Theory

Semester project

Chaire of the Prof.

Kathryn Hess

Directed by

Sverre Lunøe-Nielsen

winter semester 2005-2006



Contents

Introduction 2

1 Preliminaries 3

2 The group K0 6

2.1 Milnor’s definition of K0 . . . . . . . . . . . . . . . . . . . . . 6
2.2 Grothendieck’s construction of K0 . . . . . . . . . . . . . . . 8

3 The group K1 13

3.1 Whitehead’s lemma and definition of K1 . . . . . . . . . . . . 13
3.2 Properties of K1 . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 The group K2 20

4.1 Definition of K2 . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Universal central extensions . . . . . . . . . . . . . . . . . . . 23

5 Higher K-theory groups 30

5.1 The B-construction . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Singular homology . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 The plus-construction . . . . . . . . . . . . . . . . . . . . . . 36

Conclusion 43

Bibliography 44

1



Introduction

Algebraic K-theory is a branch of algebra dealing with linear algebra over a
general ring A instead of over a field. It associates to any ring A a sequence
of abelian groups Ki(A). The first three of these, K0(A),K1(A) and K2(A),
can be described in concrete terms ; the others are rather mysterious. For
instance, K0(A) is the group defined by the isomorphic classes of projectives
modules over A and K1(A) is the abelianisation of the colimit of GLn(A). In
the same way, K2(A) can be described in terms of generators and relations.

K-theory as an independent discipline is a fairly new subject, only about
50 years old. However, special cases of K-groups occur in almost all areas of
mathematics, and particular examples of what we now call K0 were among
the earliest studied examples of abelian groups. We can still say that the
letter K has been chosen from the German word Klasse.

Algebraic K-theory plays an important role in many subjects, especially
number theory, algebraic topology and algebraic geometry. For instance,
the class group of a number field K is essentially K0(OK), where OK is the
ring of integers. Some formulas in operator theory, involving determinants,
are best understood in terms of algebraic K-theory.

In this document, I will briefly intruduce the definitions of the K-theory
groups. There is two parts : the first one is based on the book of John
Milnor, Introduction to algebraic K-theory, and will give an algebraic defini-
tion of K0(A),K1(A),K2(A) and some properties of them ; the second one is
based on Allen Hatcher’s Algebraic Topology and will present the topological
construction of the space that will define the higher K-theory groups.
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Chapter 1

Preliminaries

We assume that the notions of ring, module, homomorphism between rings,
etc. are known. In all the document, a ring will be an associative ring with
1 6= 0. An homomorphism φ between two rings will always satisfy φ(1) = 1.
Moreover, N will designe the set {0, 1, 2, ...} and N

∗ will be N \ {0}.

For all this chapter we fix a ring A. For any A-module M and for any
subset B ⊆M, we recall that 〈B〉 is the intersection of all the A-submodules
of M having B as a subset. In fact we have

〈B〉 = {
n∑

i=1

λibi | λi ∈ A, bi ∈ B}

Definition 1.1 Let M be an A-module. A subset B ⊆M is called a system
of generators of M if 〈B〉 = M. In this case we say that B generates M.

Definition 1.2 An A-module M is called finitely generated if there is a
subset B ⊆M which generates M and is finite.

If one system of generators B has only one element, we say that M is
cyclic.

Remark Generally there is more than one system of generators for an A-
module M. In fact we can even have two sytems of generators which have
not the same number of elements.

Example A is always a cyclic A-module. It is generated by 1.

Definition 1.3 A basis B of an A-module M is a subset B ⊆ M that
generates M and is free, meaning that there are no relations between the
elements of B in M.

Definition 1.4 An A-module L is called free if there is a basis B of L.
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Examples

1. The A-module A has {1} as a basis and so is a free module.

2. If A = K is a field, then a K-module is a K-vector space and so have
a basis. In fact this result is true if A is a division ring.

3. The polynom ring A[X], seen as an A-module, has {1, X,X 2, ...} as a
basis.

4. An is a free module over A with basis {ei | 1 ≤ i ≤ n}, where ei is the
element (0, ..., 0, 1, 0, ..., 0) ∈ An with the 1 at the i-th place.

5. The Z-module Z/2Z is a finitely generated module (even cyclic), but
doesn’t have any basis.

Proposition 1.5 If L and L′ are two free A-modules, then L⊕L′ is a free
A-module.

Proof. If B and B ′ are basis for L and L′ respectively, then it is clear
that B ×B′ is a basis for L× L′ ∼= L⊕ L′.

Proposition 1.6 Every free and finitely generated A-module L is isomor-
phic to an A-module An, with n ∈ N.

Proof. Since L is free and finitely generated, there is a finite basis B for
L. So we can write B = {b1, ..., bn}. We consider the map

φ : An −→L

(x1, ..., xn) 7−→
n∑

i=1

xibi

φ is well defined and is clearly an A-homomorphism. Moreover φ is injec-
tive because B is free and φ is onto L because B generates L. So φ is an
A-isomorphism. Thus L ∼= An.

Remark

1. Since the basis of a free A-module haven’t the same cardinality in
general, the n ∈ N in the proposition 1.6 isn’t unique for all ring A.

2. We say that A has the property of the unique rank if the n ∈ N is
uniquely determinated. Such ring satisfies

An ∼= Am ⇐⇒ n = m

Fields, division rings and principal rings have the property of the
unique rank.
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3. For a field or a division ring K, every finitely generated K-module is
isomorphic to Kn, for a n ∈ N. Moreover, the n ∈ N is unique, since
K is a field.

Definition 1.7 An A-module P is called projective if there exists an A-
module Q so that L := P ⊕Q is a free module over A.

Remark In the case of the definition 1.7, we have that Q is also a projective
module over A :

Q⊕ P ∼= P ⊕Q = L

Examples

1. A free module L is always projective because L⊕ 0 ∼= L is free.

2. A projective module is always a submodule of a free module. Effec-
tively, if P is a projective module, there is one Q so that P ⊕Q is free.
So P ∼= P ⊕ 0 ⊆ P ⊕Q is a submodule of a free module.

3. The Z-module Z/2Z is not projective.

In fact a free Z-module is a direct sum of copy of Z (since proposition
1.6) and so is torsionless, i.e. there is no element x so that nx = 0 for
an integer n. But Z/2Z isn’t torsionless and so cannot be submodule
of a free Z-module.

Proposition 1.8 If P and Q are projective A-modules, then P ⊕Q is also
a projective module.

Proof. Since P and Q are projective, there are A-modules M and N so
that P ⊕M and Q⊕N are free. By proposition 1.5, P ⊕M ⊕Q⊕N is free.
But

P ⊕M ⊕Q⊕N ∼= P ⊕Q⊕M ⊕N

and so P ⊕Q is projective.
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Chapter 2

The group K0

2.1 Milnor’s definition of K0

Let A be a ring. To define K0(A) we consider the following equivalence
relation. We say that two finitely projective A-modules P and Q are equiv-
alent if and only if they are isomorphic, i.e. if there is an isomorphism of
A-modules P −→ Q. This is clearly an equivalence relation.

We note P for the equivalence class of the projective A-module P and
Proj(A) for the set of all the equivalence classes.

Definition 2.1 (Milnor) The projective module group K0(A) is the group
defined by generators and relations as follows. For each elements P of
Proj(A) we take a generator [P ] and for each pair [P ], [Q] of generators
we define the relation

[P ] + [Q] := [P ⊕Q]

Remark Since P ⊕ Q ∼= Q ⊕ P we have that P ⊕Q = Q⊕ P and so
[P ]+ [Q] = [P ⊕Q] = [Q⊕P ] = [Q]+ [P ], meaning that K0(A) is an abelian
group.

Proposition 2.2 Every element of K0(A) can be expressed by the formal
difference [P1] − [P2] of two generators.

Proof. Since K0(A) is generated by {[P ] | P ∈ Proj(A)}, then an
element [Q] ∈ K0(A) can be written

[Q] =
n∑

i=1

(−1)ki [Qi]
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where ki ∈ N and Qi ∈ Proj(A). Up to a permutation of the indices we get

[Q] =

m∑

i=1

[Qi] +

n∑

i=m+1

−[Qi]

=
m∑

i=1

[Qi] −
n∑

i=m+1

[Qi]

= [

m⊕

i=1

Qi] − [

n⊕

i=m+1

Qi]

Defining P1 :=

m⊕

i=1

Qi and P2 :=

n⊕

i=m+1

Qi we conclude that [Q] = [P1]−[P2].

Remark The group K0(A) can be defined more formally as a quotient of a
free abelian group. Effectively, we form the free abelian group F generated
by the set Proj(A) and we take the quotient by the normal subgroup R
spanned by all P +Q− P ⊕Q, where P ,Q ∈ Proj(A). So we have

K0(A) = F/R

(To see more about free groups, consult [2].)

Definition 2.3 Two A-modules M and N are called stably isomorphic if
there exists r ∈ N so that

M ⊕Ar ∼= N ⊕Ar

Proposition 2.4 Two generators [P ] and [Q] of K0(A) are equal if and
only if P is stably isomorphic to Q.

Proof. As we have seen in the remark above, we can write K0(A) as
a quotient F/R where F is a free abelian group. First note that a sum
P1 + ...+ Pk in F is equal to Q1 + ...+Qk if and only if

Pi ∼= Pσ(i), ∀i = 1, ..., k

for some permutation σ of {1, ..., k}. If this is the case, then we have clearly

P1 ⊕ ...⊕ Pk ∼= Q1 ⊕ ...⊕Qk

Now suppose that we have [P ] = [Q] and so P ≡ Q mod R. Then this means
that

P −Q =
n∑

i=1

Pi +Qi − Pi ⊕Qi
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which is equivalent to

P +

n∑

i=1

Pi ⊕Qi = Q+

n∑

i=1

Pi +

n∑

i=1

Qi

for some n ∈ N and appropriate projective modules Pi, Qi. Applying the
begining of the proof we get

P ⊕ (

n∑

i=1

Pi ⊕Qi) ∼= Q⊕ (

n∑

i=1

Pi ⊕
n∑

i=1

Qi)

Defining X :=

n∑

i=1

Pi ⊕Qi ∼=

n∑

i=1

Pi ⊕
n∑

i=1

Qi, we get that P ⊕X ∼= Q⊕X.

Since X is projective, we can choose an A-module Y so that X ⊕ Y is free.
By the proposition 1.6, X ⊕ Y ∼= Ar, for some r ∈ N. Then we obtain

P ⊕X ∼= Q⊕X =⇒ P ⊕X ⊕ Y ∼= Q⊕X ⊕ Y

=⇒ P ⊕Ar ∼= Q⊕Ar

Hence P is stably isomorphic to Q.

Conversely if P is stably isomorphic to Q, then there exists r ∈ N so
that P ⊕Ar ∼= Q⊕Ar. So we have [P ⊕Ar] = [Q⊕Ar], since Ar is clearly
projective. But

[P ⊕Ar] = [Q⊕Ar] ⇒ [P ] + [Ar] = [Q] + [Ar] ⇒ [P ] = [Q]

which concludes the proof.

Corollary 2.5 Two elements [P1]− [P2] and [Q1]− [Q2] of K0(A) are equal
if and only if P1 ⊕Q2 is stably isomorphic to P2 ⊕Q1.

Proof. [P1] − [P2] = [Q1] − [Q2] ⇐⇒ [P1] + [Q2] = [P2] + [Q1] ⇐⇒
[P1⊕Q2] = [P2⊕Q1] and then we can conclude by the preceeding proposition.

2.2 Grothendieck’s construction of K0

Definition 2.6 A monoid is a set G with an associative law which has an
identity element, noted 1G.

If the law is commutative, then we say that G is an abelian monoid. In
this case we note + the law and 0G the identity element.
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Examples

1. Any group is a monoid ; any abelian group is an abelian monoid.

2. (N, +) and (N, ·) are abelian monoids.

3. Z with the usual multiplication is also an abelian monoid.

4. Proj(A) with the operation P +Q := P ⊕Q is an abelian monoid.

Definition 2.7 Let (G, ?) and (H, •) be monoids. An homomorphism of
monoids is a map of sets

φ : G −→ H

so that φ(x ? y) = φ(x) • φ(y), ∀x, y ∈ G, and that φ(1G) = 1H .

Theorem 2.8 Let G be an abelian monoid. Then there exists an abelian
group G(G) and an homomorphism of monoids νG : G −→ G(G) so that
for all group H and for all homomorphism of monoids φ : G −→ H, there
exists one and only one homomorphism of groups φ̃ : G(G) −→ H so that
φ = φ̃ ◦ νG.

In an other way, we can say that (G(G), νG) satisfy the following uni-

versal property : G
∀φ //

νG

��

H

G(G)
∃!eφ

<<z
z

z
z

The pair (G(G), νG) is called Grothendieck’s construction of G.

Proof. On G×G, we introduce the equivalence relation

(x, y) ∼ (x′, y′) ⇐⇒ ∃z ∈ G so that x′ + y + z = x+ y′ + z

We note [x, y] the equivalence class of (x, y) and G(G) := G × G/ ∼ . We
define on G(G) the following operation :

[x, y] + [u, v] := [x+ u, y + v]

This operation is associative, commutative and has [x, x] as an identity
element, ∀x ∈ G :

[x, x] + [u, v] = [x+ u, x+ v] = [u, v]

since u + x + v = x + u + v. Moreover, if [x, y] ∈ G(G), then we have the
inverse element −[x, y] := [y, x]. Effectively,

[x, y] + [y, x] = [x+ y, y + x] = 0 = [y + x, x+ y] = [y, x] + [x, y]
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Hence G(G) is an abelian group.

Now consider the map

νG : G −→G(G)

x 7−→[x+ x, x]

Since νG(x + y) = [x + y + x + y, x + y] = [x + x + y + y, x + y] =
[x + x, x] + [y + y, y] = νG(x) + νG(y) and νG(0) = [0, 0] = 0, νG is an
homomorphism of monoids.

Let H be an abelian group and φ : G −→ H an homomorphism of
monoids. We get

[x, y] = [x, y] + [x+ y, x+ y] = [x+ (x+ y), y + (x+ y)]

= [x+ x, x] + [y, y + y] = [x+ x, x] − [y + y, y]

= νG(x) − νG(y)

So we must define φ̃ : G(G) −→ H by

φ̃([x, y]) := φ(x) − φ(y)

which is well and uniquely defined and is an homomorphism of groups.
Furthermore

φ̃(νG(x)) = φ̃([x+ x, x]) = φ(x+ x) − φ(x) = φ(x)

Proposition 2.9 Let G be an abelian monoid. Then the Grothendieck’s
construction (G(G), νG) is unique up to isomorphism.

Proof. Let B be an abelian group and ψ : G −→ B be an homomorphism
of abelian monoids so that for every abelian group H and homomorphism
of monoids φ : G −→ H there exists a group homomorphism φ : B −→ H
uniquely determinated so that φ = φ ◦ ψ.

Putting H = G(G) and φ = νG we get that there exists a group homo-
morphism νG : B −→ G(G) so that νG = νG ◦ ψ. By a similar argument,
using the universal property of (G(G), νG), there exists a group homomor-
phism ψ̃ : G(G) −→ B so that ψ = ψ̃ ◦ νG. We obtain :

νG ◦ ψ̃ ◦ νG = νG

ψ̃ ◦ νG ◦ ψ = ψ

We can immediately deduce that

νG ◦ ψ̃ = IdIm(νG)

ψ̃ ◦ νG = IdIm(ψ)
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To end the proof we have just to show that B = Im ψ and G(G) = Im νG.
We consider the homomorphism q : B −→ B/Im(ψ) given by the canonical
projection. The two homomorphisms

θ1 : B −→B × (B/Im(ψ))

x 7−→(x, q(x))

and

θ2 : B −→B × (B/Im(ψ))

x 7−→(x, 0)

make the following diagram commute : G
ψ×0 //

ψ

��

B × (B/Im(ψ))

B

θi

88pppppppppppp

for i = 1, 2. By uniqueness we must have θ1 = θ2 and so B = Im ψ. A similar
argument gives G(G) = Im νG.

Example If G = N with the addition, then G(N) is the group with all the
elements of the form n−m for n,m ∈ N. So we obtain

G(N) ∼= Z

Definition 2.10 If A is a ring, then Proj(A) is an abelian monoid. So we
can define

K0(A) := G(Proj(A))

This definition is clearly the same as Milnor’s.

Proposition 2.11 If A = K is a field or a division ring, then

K0(K) = Z

Proof. As seen in chapter 1, every finitely generated K−module (and so
every finitely generated projective K−module) is isomorphic to Kn, for one
unique n ∈ N. So we have an isomorphism

Proj(K) ∼= N

Since G(N) ∼= Z we can conclude that K0(K) ∼= Z.

Remark This result is true if A has the property of the unique rank. Thus

K0(Z) ∼= Z
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Theorem 2.12 K0(−) is a covariant functor from the category of rings
and homomorphisms of rings to the category of abelian groups and homo-
morphisms of groups.

Proof. Let A1 and A2 be two rings and let φ : A1 −→ A2 be a ring
homomorphism. Then φ induces a structure of A1-module on A2 as follows

a · b := φ(a)b, ∀a ∈ A1,∀b ∈ A2

Hence for every finitely projective module P over A1 there exists a tensor
product A2 ⊗A1 P. On this tensor product over A1 we can put a structure
of A2-module defining b′ · (b⊗ v) := (b′b) ⊗ v, ∀b, b′ ∈ A2, ∀v ∈ P. Then we
can define

Proj(φ) : Proj(A1) −→Proj(A2)

P 7−→A2 ⊗A1 P

We can verify that if A3 is an other ring and if ψ : A2 −→ A3 is a ring ho-
momorphism, we have Proj(ψ ◦φ) = Proj(ψ) ◦Proj(φ) and Proj(IdA1) =
IdProj(A1). Thus Proj(−) is a covariant functor from the category of rings
and homomorphisms of rings to the category of abelian monoids and homo-
morphisms of monoids.

Now let G1 and G2 be two abelian monoids and let ψ : G1 −→ G2

be an homomorphism of monoids. From the theorem 2.8 we have two
Grothendieck’s constructions (G(G1), νG1) and (G(G2), νG2) for G1 and G2

respectively. The monoid homomorphism νG2 ◦ ψ : G1 −→ G(G2) gives rise
to an homomorphism of abelian groups

G(ψ) : G(G1) −→ G(G2)

With this definition, G(−) is a covariant functor from the category of abelian
monoids and homomorphisms of monoids to the category of abelian groups
and homomorphisms between abelian groups.

Since K0(−) = G ◦ Proj(−), the theorem is proved.
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Chapter 3

The group K1

3.1 Whitehead’s lemma and definition of K1

Let A be a ring and GLn(A) denote the general linear group consisting of
all n× n invertible matrices over A. For all n ∈ N

∗, we define the map

in : GLn(A) −→GLn+1(A)

B 7−→

(
B 0
0 1

)

Proposition 3.1 The map in is an homomorphism of groups and is injec-
tive, ∀n ∈ N

∗.

Proof. Let B,C ∈ GLn(A). From

in(In) =

(
In 0
0 1

)
= In+1

and

in(BC) =

(
BC 0

0 1

)
=

(
B 0
0 1

)(
C 0
0 1

)
= in(B)in(C)

we have that in is an homomorphism of groups, ∀n ∈ N
∗. Clearly in(B) =

In+1 ⇐⇒ B = In and so in is injective, ∀n ∈ N
∗.

Remark Since the proposition 3.1 we can see GLn(A) as a subgroup of
GLn+1(A). Effectively, GLn(A) ∼= Im(in) which is a subgroup of GLn+1(A).

Definition 3.2 We define the general linear group of A by

GL(A) :=
⋃

n∈N∗

GLn(A)
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Theorem 3.3 GL(A) is a group.

Proof. Let B,C,D ∈ GL(A). By definition of GL(A), there exists
n ∈ N

∗ so that B,C,D ∈ GLn(A). Since GLn(A) is a group, we get
(BC)D = B(CD) and the associativity of GL(A).

The identity element of GL(A) is the matrix I with 1 at every place on
the diagonal and 0 everywhere else.

Let B ∈ GL(A). There exists n ∈ N
∗ so that B ∈ GLn(A). Since GLn(A)

is a group, B has an inverse matrix B−1 ∈ GLn(A). We obtain

(
B 0
0 I

)(
B−1 0

0 I

)
=

(
BB−1 0

0 I

)
= I

and so GL(A) is a group.

Definition 3.4 Let n ∈ N
∗. A matrix in GLn(A) is called elementary if

it coincides with the identity matrix except for a single off-diagonal entry.
We note En(A) the subgroup of GLn(A) generated by all the elementary
matrices.

Remark Since in(En(A)) ⊂ En+1(A), we can embed En(A) in En+1(A),
∀n ∈ N

∗.

Definition 3.5 We define E(A) :=
⋃

n∈N∗

En(A)

Remark For every n ∈ N
∗, En(A) is a subgroup of GLn(A). Since GLn(A)

is a subgroup of GL(A), we have that E(A) is also a subgroup of GL(A).

Lemma 3.6 Let n ∈ N
∗ and D ∈ GLn(A). Then

(
D 0
0 D−1

)
∈ E2n.

Proof. We note eλij the elementary matrix with λ ∈ A at the (i, j)-th

place, where i 6= j. If i 6= k and j 6= l, then eλije
µ
kl is a matrix with 1 on the

diagonal, λ at the (i, j)-th place, µ at the (k, l)-th place and 0 everywhere
else. Generalizing this we can write, for a matrix B = (bij) ∈ GLn(A) :

(
In B
0 In

)
=

n∏

i=1

2n∏

j=n+1

e
bi(j−n)

ij ∈ E2n(A)

and as the same

(
In 0
B In

)
=

2n∏

i=n+1

n∏

j=1

e
b(i−n)j

ij ∈ E2n(A)

14



Thus we get

(
0 −D

D−1 0

)
=

(
In −D
0 In

)(
In 0

D−1 In

)(
In −D
0 In

)
∈ E2n(A)

and therefore
(
D 0
0 D−1

)
=

(
0 −D

D−1 0

)(
0 In

−In 0

)
∈ E2n(A)

Lemma 3.7 (Whitehead) E(A) is equal to the commutator subgroup of
GL(A) :

E(A) = [GL(A), GL(A)]

Proof. We can see that eλij = [eλik, e
1
kj ] for i 6= j and k 6= i, j. So

E(A) ⊆ [E(A), E(A)] ⊆ [GL(A), GL(A)]

Let B,C ∈ GL(A). By definition of GL(A), there exists n ∈ N
∗ so that

B,C ∈ GLn(A). We have

(
BCB−1C−1 0

0 In

)
=

(
BC 0

0 (BC)−1

)(
B−1 0

0 B

)(
C−1 0

0 C

)

and so

(
BCB−1C−1 0

0 In

)
∈ E2n(A) by the lemma 3.6. Thus

[GL(A), GL(A)] ⊆ E(A)

which concludes the proof.

Definition 3.8 (Whitehead) We define K1(A) by the quotient

K1(A) := GL(A)/E(A)

It comes from lemma 3.7 that K1(A) is a group since E(A) is a normal
subgroup of GL(A), and that K1(A) is abelian since E(A) is the commutator
subgroup. In other words, K1(A) is the abelianisation of GL(A).

3.2 Properties of K1

Remark If a ring A is commutative, then the determinant operation is
defined. If A∗ is the multiplicative group consisting of all invertible elements
of A, then we have a surjective map

det : GL(A) −→ A∗
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We denote by SL(A) the kernel of this homomorphism. Since A∗ ∼= GL1(A),
we can also see A∗ as a subset of GL(A). Clearly

A∗ ⊂ GL(A)
det
−→ A∗

is the identity map. So we have the short exact sequence

1 −→ SL(A) −→ GL(A)
det
−→ A∗ −→ 1

that is split exact.

Lemma 3.9 Let 1 −→ G1
φ

−→ H
ψ

−→ G2 −→ 1 be a short exact sequence
of groups that is split exact. Then

H ∼= G1 ⊕G2

Proof. By definition of split exact, there is a section s : G2 −→ H so
that ψ ◦ s = IdG2 . Consider the following short exact sequence :

1 −→ G1
ι

−→ G1 ⊕G2
π

−→ G2 −→ 1

where ι is the inclusion x 7→ (x, 1) and π is the projection (x, y) 7→ y. We
define

α : G1 ⊕G2 −→H

(x, y) 7−→φ(x)s(y)

Since Im φ = kerψ, we get that ψ◦α(x, y) = ψ(φ(x)s(y)) = ψ(φ(x))ψ(s(y)) =
y and so the following diagram commutes :

1 // G1
ι // G1 ⊕G2

π //

α

��

G2
// 1

1 // G1
φ // H

ψ // G2
// 1

By the five lemma, α is an isomorphism.

Remark A short exact sequence

1 −→ G
φ

−→ H
ψ

−→ F −→ 1

where F is a free abelian group, always splits. In fact, the section is defined
by choosing a basis for F and elements in H that are sent by ψ on the basis
elements. Then we extend by linearity and since there is no relation in F,
this is well defined.
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Proposition 3.10 Let A be a ring. Then

K1(A) ∼= A∗ ⊕ (SL(A)/E(A))

Proof. Since the lemma 3.9 and the remark which precedes it, we get
that

α : A∗ ⊕ SL(A) −→GL(A)

(a,B) 7−→a ·B

is an isomorphism (where a,B are seen in GL(A) and a · B is given by the
matricial multiplication). We consider now the following homomorphisms :

E(A) −→A∗ ⊕ SL(A) A∗ ⊕ SL(A) −→A∗ ⊕ (SL(A)/E(A))

B 7−→(1, B) (a,B) 7−→(a, q(B))

where q : GL(A) −→ GL(A)/E(A) is the canonical projection. Then we get
a short exact sequence

1 −→ E(A) −→ A∗ ⊕ SL(A) −→ A∗ ⊕ (SL(A)/E(A)) −→ 1

Defining β : A∗ ⊕ (SL(A)/E(A)) −→ K1(A) by β(a, q(B)) = q(a · B), we
get a commutative diagram

1 // E(A) // GL(A) //

α

��

GL(A)/E(A) //

β

��

1

1 // E(A) // A∗ ⊕ SL(A) // A∗ ⊕ SL(A)/E(A) // 1

By the five lemma we can conclude that β is an isomorphism and so that

K1(A) = GL(A)/E(A) ∼= A∗ ⊕ (SL(A)/E(A))

Proposition 3.11 If A = K is a field or a division ring, then

K1(K) ∼= K∗

Proof. Since the preceeding proposition, it is enough to prove that
SL(K) = E(K). For an elementary matrix E ∈ E(K) it is clear that
det(E) = 1 and so E ∈ SL(K). Thus E(K) ⊆ SL(K). To show the converse
we use classical linear algebra. To make things more clear, we will note
eij(λ) for eλij .

Let B = (bij) ∈ GLn(K). Since B is invertible, the first column of B
can’t consist entirely of zeroes, i.e. there exists i ∈ N, 1 ≤ i ≤ n, so that
bi1 6= 0. If i = 1, this is fine. If not,

e1i(1)ei1(−1)e1i(1)B

17



put bi1 in the (1, 1)-position. So we can assume that b11 6= 0. Adding −bi1b
−1
11

times the first row to the i−th row for i 6= 1, i.e premultiplying B by

en1(−bn1b
−1
11 ) · ... · e21(−b21b

−1
11 )

we can now kill all the other entries in the first column. This reduce B to
the form (

b11 ∗
0 B1

)

with B1 an (n − 1) × (n − 1) matrix. Since det(B) = b11 det(B1), we have
that B1 is an invertible matrix. Repeating the same procedure by induction
we get

EB =




b11 ∗ ∗ ... ∗
0 b′22 ∗ ... ∗
... ... ... ... ...
0 0 0 ... b′nn


 =: B′

with E ∈ E(K) and all diagonal elements different from 0.

Now premultipling B ′ by e1n(−b
′
1n(b

′
nn)

−1) · ... · en−1,n(−b
′
n−1,n(b

′
nn)

−1),
we kill all the entries in the last column except b′nn. Continuing by induction,
we can now obtain

E′B′ =




b11 0 0 ... 0
0 b′22 0 ... 0
... ... ... ... ...
0 0 0 ... b′nn


 =: B′′

with E′ ∈ E(K) and det(B ′′) = det(E′)·det(B′) = det(E′)·det(E)·det(B) =
det(B).

Finally, we have to transform the diagonal matrix B ′′ into a diagonal
matrix with at most one diagonal entry different from 1. Using lemma 3.6,
for a ∈ K∗, we have that

(
a 0
0 a−1

)
∈ E(A)

and so that

Eka :=




Ik 0 0
0 a 0
0 0 a−1


 ∈ E(A)

for all k ∈ N. In consequence we get

E0
b′nn...b

′

22
· ... ·En−3

b′nnb
′

n−1,n−1
· En−2

b′nn
· B′′ =




b11b
′
22...b

′
nn 0 ... 0

0 1 ... 0
... ... ... ...
0 0 ... 1


 =: D
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and so D = E ′′B′′ for a E′′ ∈ E(K).

Since det(D) = det(B ′′) = det(B), we have, ifB ∈ SL(K), that det(D) =
1. But det(B) = b11b

′
22...b

′
nn and so b11b

′
22...b

′
nn = 1. This means that

D = In and so that B = (E ′′E′E)−1 ∈ E(K). Thus we have proved that
SL(K) ⊆ E(K), and so we may conclude.

Remark We can show that if A = Z, then SL(Z) = E(Z). Hence

K1(Z) ∼= Z
∗ = {−1, 1}

Theorem 3.12 K1(−) is a covariant functor from the category of rings
and homomorphisms of rings to the category of abelian groups and homo-
morphisms of groups.

Proof. Let φ : A1 −→ A2 be an homomorphism of rings. We define

GL(φ) : GL(A1) −→GL(A2)

(bij) 7−→(φ(bij)ij)

and thus GL(−) is a covariant functor from the category of rings and ring
homomorphisms to the category of groups and group homomorphisms.

Let G be a group. We denote Gab for the abelianisation of G, that is
Gab = G/[G,G]. For a group homomorphism ψ : G1 −→ G2 we define

(ψ)ab : (G1)
ab −→(G2)

ab

[g] 7−→[ψ(g)]

which is well defined, since

ψ(ghg−1h−1) = ψ(g)ψ(h)ψ(g)−1ψ(h)−1 ∈ [G2, G2]

∀g, h ∈ G1. So we have (−)ab a covariant functor from the category of groups
and homomorphisms of groups to the category of abelian groups and homo-
morphisms between abelian groups.

Then we can conclude, since K1(−) = (GL(−))ab.
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Chapter 4

The group K2

4.1 Definition of K2

Let A be a ring. As in the preceeding chapter, let eλij ∈ GLn(A) denote the
elementary matrix with entry λ in the i-th row and j-th column, where i
and j can be any distinct integer between 1 and n and λ can be any ring
element. We note that

eλije
µ
ij = eλ+µ

ij

Moreover we see that the commutator of two elementary matrices can be
expressed as follows :

[eλij , e
µ
kl] = 1 if j 6= k, i 6= l

[eλij , e
µ
kl] = eλµil if j = k, i 6= l

[eλij , e
µ
kl] = e−µλkj if j 6= k, i = l

Definition 4.1 Let n ∈ N, n ≥ 3. The Steinberg group Stn(A) is the group
defined by the quotient Fn/Rn where Fn is the free group generated by the
symbols xλij , 1 ≤ i, j ≤ n, i 6= j, λ ∈ A, and Rn is the smallest normal
subgroup of Fn generated by the following elements :

1. xλijx
µ
ij(x

λ+µ
ij )−1

2. [xλij , x
µ
jl](x

λµ
il )−1 for i 6= l

3. [xλij , x
µ
kl] for j 6= k and i 6= l

Remark Let n ∈ N, n ≥ 3, and λ ∈ A. The element xλij ∈ Fn can be seen as
an element of Fn+1. Since Rn ⊆ Rn+1 we have an homomorphism of groups

jn : Stn(A) −→Stn+1(A)

xλij 7−→xλij
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Moreover,

xλij ∈ ker jn ⇐⇒ jn(x
λ
ij) ∈ Rn+1 =⇒ xλij ∈ Rn+1 =⇒ xλij ∈ Rn

since 0 ≤ i, j ≤ n. So jn is injective and we can embed Stn(A) in Stn+1(A).

Definition 4.2 Because of the remark above we can form the group

St(A) :=
⋃

n≥3

Stn(A)

Remark The formula Φn(x
λ
ij) := eλij gives a well defined homomorphism

Φn : Stn(A) −→ GLn(A)

since each of the defining relations between generators of Stn(A) maps into a
valid identity between elementary matrices. The image Φn(Stn(A)) is equal
to the subgroup En(A) generated by all elementary matrices of size n× n.

Effectively, for every eλij ∈ En(A), Φn(x
λ
ij) = eλij and conversely, for ev-

ery xλij ∈ Stn(A), Φn(x
λ
ij) = eλij ∈ En(A). So the generators of En(A) are in

bijection with generators of Stn(A).

When we pass to the limit as n→ ∞, we obtain an homomorphism

Φ : St(A) −→ GL(A)

with image E(A) = [GL(A), GL(A)].

Definition 4.3 The group K2(A) is defined as the kernel of the canonical
homomorphism Φ : St(A) −→ GL(A).

Proposition 4.4 The sequence

1 −→ K2(A)
ι

−→ St(A)
Φ

−→ GL(A)
q

−→ K1(A) −→ 1

is exact, where ι is the inclusion and q is the canonical projection.

Proof. Results immediately of the definition of K2(A) and of the fact
that Im Φ = E(A).

Lemma 4.5 Let n ≥ 3 and let Pn denote the subgroup of St(A) generated
by elements xµ1n, x

µ
2n, ..., x

µ
n−1,n where µ ranges over A. Then each element

of Pn can be written uniquely as a product

xµ1
1nx

µ2
2n...x

µn−1

n−1,n

Hence the canonical homomorphism Φ maps Pn isomorphically into the
group E(A).
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Proof. Because of 3 in the definition 4.1, Pn is an abelian group. In
consequence this is clear that every element of Pn can be written as a product
xµ1

1nx
µ2
2n...x

µn−1

n−1,n. The uniqueness comes from the fact that the elements 1 and
2 of the definition 4.1 don’t belong to Pn.

Theorem 4.6 The group K2(A) is the center of the Steinberg group St(A).

Proof. Let B = (bij) ∈ GLn(A). Since

B · e1kl =




b11 b12 ... b1,l−1 b1l + b1k ... b1n
b21 b22 ... b2,l−1 b2l + b2k ... b2n
... ... ... ... ... ...
bn1 bn2 ... bn,l−1 bnl + bnk ... bnn




and

e1kl · B =




b11 b12 ... b1n
b21 b22 ... b2n
... ... ... ...

bk−1,1 bk−1,2 ... bk−1,n

bk1 + bl1 bk2 + bl2 ... bkn + bln
... ... ... ...
bn1 bn2 ... bnn




we get that B commutes with e1kl only if bkl = 0 and bkk = bll. In conse-
quence we obtain that B commutes with every elementary matrix if and
only if B is a diagonal matrix, with every diagonal entry equal to b11. In
particular, no element of En−1(A) other that In−1 belongs to the center of
En(A), for n ≥ 2. Passing to the limit n → ∞, it follows that E(A) has a
trivial center.

Now if c is in the center of St(A), then Φ(c) is in the center of E(A),
which implies Φ(c) = I and so that

center of St(A) ⊆ K2(A)

Conversely, suppose that Φ(y) = I. Let n ∈ N so that y ∈ Stn−1(A).
Then we can write y with the generators xλij, i, j < n. Hence we get

xλijPnx
−λ
ij ⊆ Pn

where Pn is defined as in the lemma 4.5. Effectively, xλijx
µ
knx

−λ
ij is equal to

xµkn if j 6= k and to xλµin x
µ
kn if j = k. But xµkn, x

λµ
in x

µ
kn ∈ Pn.
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Since y ∈ Stn−1(A), it follows that

yPny
−1 ⊆ Pn

But Φ(y) = I, thus Φ(ypy−1) = Φ(p), ∀p ∈ Pn. By the lemma 4.5, we get
that ypy−1 = p and so that y commutes with every element of Pn. Therefore
y commutes with every generator xµkn, k < n.

By an analogous argument we can show that y also commutes with every
generator xµnl, l < n. Hence y commutes with the commutator

[xµkn, x
1
nl] = xµkl

for all k, l < n, k 6= l. Since n can be as large as we want, y lies in the center
of St(A).

Corollary 4.7 K2(A) is an abelian group.

Theorem 4.8 K2(−) is a covariant functor from the category of rings and
homomorphisms of rings to the category of abelian groups and homomor-
phisms of groups.

Proof. Let A1 and A2 be two rings and φ : A1 −→ A2 be a ring
homomorphism. We have seen in chapter 3 that φ induces an homomor-
phism GL(φ) : GL(A1) −→ GL(A2). Clearly this homomorphism satisfies
GL(φ)(E(A1)) ⊆ E(A2). We define

φ′ : St(A1) −→St(A2)

xλij 7−→x
φ(λ)
ij

and K2(φ) := φ′|K2(A1). Then the following diagram commutes :

0 // K2(A1) // St(A1)
Φ1 //

φ′

��

E(A) //

GL(φ)
��

0

0 // K2(A2) // St(A2)
Φ2 // E(A2) // 0

For y ∈ K2(A1), we get by definition of K2(A1) that Φ1(y) = 0. Therefore
(GL(φ) ◦Φ1)(y) = 0. Thus (Φ2 ◦φ

′)(y) = 0 and so φ′(y) ∈ kerΦ2 = K2(A2).
Hence K2(φ) : K2(A1) −→ K2(A2) is well defined, and make K2(−) a
covariant functor.

4.2 Universal central extensions

Definition 4.9 An extension of a group G is a pair (X,φ) consisting of a
group X and an homomorphism of groups φ from X onto G.

If ker(φ) is a subset of the center of X we say that (X,φ) is a central
extension.
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Definition 4.10 A central extension (X,φ) of a group G splits if it admits
a section, that is an homomorphism s : G −→ X so that φ ◦ s = IdG.

Proposition 4.11 If a central extension (X,φ) of a group G splits then
X ∼= G× kerφ.

Proof. Since (X,φ) is a split extension of G we have a split short exact
sequence

1 −→ kerφ −→ X
φ

−→ G −→ 1

By the lemma 3.9, X ∼= G× kerφ.

Remark The splitting is given by

G× kerφ −→X

(g, x) 7−→s(g)x

Definition 4.12 A central extension (U, ν) of a group G is called universal
if, for every central extension (X,φ) of G, there exists one and only one
homomorphism from U to X over G. (That is, there exists one and only
one homomorphism h : U −→ X satisfying φ ◦ h = ν.)

We have then this commutative diagram : X
∀φ // G

U

∃!h

OO�
�

� ν

>>~~~~~~~~

Remark A universal central extension is always unique up to isomorphism
over G.

Definition 4.13 A group G is called perfect if it is equal to its commutator
subgroup [G,G].

Examples

1. Since [eλik, e
1
kj ] = eλij if i 6= j, then E(A) = [E(A), E(A)] and so E(A)

is perfect.

2. Since [xλik, x
1
kj] = xλij if i 6= j, then St(A) = [St(A), St(A)] and so

St(A) is perfect.

Proposition 4.14 Let (Y, ψ) be a central extension of a group G. Then Y
is perfect if and only if for all central extension (X,φ) of G there exists at
most one homomorphism Y −→ X over G.
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Proof. First suppose that Y is a perfect group and let (X,φ) be a
central extension of G. Let f1 and f2 be homomorphisms from Y to X over
G, meaning that φ ◦ f1 = ψ = φ ◦ f2. Hence we get, for all y ∈ Y,

φ(f2(y
−1)f1(y)) = φ(f2(y

−1))φ(f1(y)) = φ(f2(y))
−1φ(f1(y))

= ψ(y)−1ψ(y) = 1

Then for any y, z ∈ Y there exists c, d ∈ kerφ so that

f1(y) = f2(y)c, f1(z) = f2(z)d

Since kerφ is included in the center of X, then c, d are in the center of X.
Therefore

f1(yzy
−1z−1) = f1(y)f1(z)f1(y)

−1f1(z)
−1

= f2(y)cf2(z)dc
−1f2(y)

−1d−1f2(z)
−1

= f2(y)f2(z)f2(y)
−1f2(z)

−1

= f2(yzy
−1z−1)

and so f1 = f2, since Y is generated by commutators.
Conversely, suppose that Y isn’t perfect. So there is a non-zero homo-

morphism α : Y −→ H, where H is an abelian group. Let (G×H,φ) be the
central extention of G defined by φ(g, h) = g. Clearly this extension is split,
with section s(g) = (g, 1). Setting

f1(y) := (ψ(y), 1), f2(y) := (ψ(y), α(y))

we obtain two distinct homomorphisms from Y to G×H over G.

Lemma 4.15 If (X,φ) is a central extension of a perfect group G, then the
commutator subgroup X ′ := [X,X] is perfect and maps onto G.

Proof. Let g1, g2 ∈ G. Then there exists x1, x2 ∈ X so that φ(x1) = g1
and φ(x2) = g2. So we get

φ(x1x2x
−1
1 x−1

2 ) = g1g2g
−1
1 g−1

2

and then φ maps X ′ onto G, since G is generated by commutators.
Furthermore, for all x ∈ X there exists x′ ∈ X ′ so that φ(x′) = φ(x). In

consequence there exists c ∈ kerφ (and so c is in the center of X) so that
x = x′c. Then for x1, x2 ∈ X, there exists x′1, x

′
2 ∈ X ′ and c1, c2 in the center

of X so that x1 = x′1c1 and x2 = x′2c2. So we get

[x1, x2] = x1x2x
−1
1 x−1

2 = x′1c1x
′
2c2c

−1
1 x′−1

1 c−1
2 x′−1

2

= x′1x
′
2x

′−1
1 x′−1

2 = [x′1, x
′
2]

and then X ′ = [X ′, X ′].
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Proposition 4.16 A central extension (U, ν) of a group G is universal if
and only if U is perfect and if every central extension of U splits.

Proof. First suppose that U is perfect and every central extension of U
splits. Let (X,φ) be a central extension of G and U ×G X be the subgroup
of U ×X consisting of all (u, x) with ν(u) = φ(x). Then we define

π : U ×G X −→U

(u, x) 7−→u

which is surjective since φ is onto G. Further, ker π = {(0, x) | x ∈ kerφ} =
{0}×kerφ commutes with every elements of U×GX, since (X,φ) is a central
extension. Then (U ×GX,π) is a central extension of U, and by hypothesis
has a section s : U −→ U ×G X. Writing s(u) = (s1(u), s2(u)), we define

h : U −→X

u 7−→s2(u)

Since π ◦ s = IdU , then s1(u) = u. So φ(h(u)) = φ(s2(u)) = ν(s1(u)) = ν(u)
by the definiton of U ×G X, and then h is an homomorphism from U to X
over G. The uniqueness comes from the proposition 4.14, since U is perfect.

Conversely, suppose now that (U, ν) is a universal extension of G. From
the proposition 4.14 it comes that U is perfect. Let (X,φ) be a central
extension of U. We will prove that (X, ν ◦ φ) is a central extension of G.

Let x0 ∈ ker(ν◦φ). Then φ(x0) ∈ ker ν and therefore φ(x0) belongs to the
center of U, since (X,φ) is central. Thus we get φ(x) = φ(x0)φ(x−1

0 )φ(x) =
φ(x0)φ(x)φ(x−1

0 ) and then there is an homomorphism from X to X over U
defined as follows :

f : X −→X

x 7−→x0xx
−1
0

It comes from lemma 4.15 that the commutator subgroup X ′ is perfect and
then from the proposition 4.14 that the homomorphism f |X′ : X ′ −→ X ′

over U is the identity. Thus x0 commutes with every elements of X ′. But U
is perfect and so, by lemma 4.15, there exists x′ ∈ X ′ so that φ(x′) = φ(x0)
and therefore x0 = x′c for a c ∈ kerφ. Since the extension is central, it
follows that x0 commutes with every x ∈ X. Thus (X, ν ◦ φ) is a central
extension of G.

Since (U, ν) is universal, there exists an homomorphism s : U −→ X
over G. So φ ◦ s gives an homomorphism from U to U over G, hence equals
to the identity by proposition 4.14. Thus s is a section of (X,φ).
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Lemma 4.17 Let G be a group and u, v, w ∈ G. then

1. [u, v] = [v, u]−1

2. [u, v][u,w] = [u, vw][v, [w, u]]

3. [u, [v, w]][v, [w, u]][w, [u, v]] ≡ 1 mod G′′

where G′′ := [[G,G], [G,G]] is the second commutator subgroup.

Proof. 1. [u, v] = uvu−1v−1 = (vuv−1u−1)−1 = [v, u]−1.

2. [u, vw][v, [w, u]] = uvwu−1w−1v−1vwuw−1u−1v−1uwu−1w−1

= uvu−1v−1uwu−1w−1

= [u, v][u,w]

3. By the first parts, we get that

[v, [w, u]] = [u, vw]−1[u, v][u,w]

= [vw, u][u, v][u,w]

Hence

[u, [v, w]][v, [w, u]][w, [u, v]] =

= [uv,w][w, u][w, v][vw, u][u, v][u,w][wu, v][v, w][v, u]

≡ [uv,w][vw, u][wu, v][w, u][w, v][u, v][u,w][v, w][v, u] mod G′′

≡ [uv,w][wu, v][vw, u] mod G′′

≡ uvwv−1u−1w−1wuvu−1w−1v−1vwuw−1v−1u−1 mod G′′

≡ uvww−1v−1u−1 mod G′′

≡ 1 mod G′′

Theorem 4.18 The Steinberg group St(A) is actually the universal central
extension of E(A).

Proof. Let n ∈ N so that n ≥ 5. First we consider a central extension

1 −→ C −→ Y
φ

−→ Stn(A) −→ 1

Given x, x′ ∈ Stn(A) we take y ∈ φ−1(x) and y′ ∈ φ−1(x′). We see that the
commutator [y, y′] does not depend on the choice of y and y ′. Effectively, let
z ∈ φ−1(x). Then we get

φ(y−1z) = φ(y)−1φ(z) = x−1x = 1

So we can choose c ∈ ker(φ) so that z = yc and, by a similar argument,
c′ ∈ kerφ so that z′ = y′c′. Since the extension is central we have that c and
c′ are in the center of Y and so

[z, z′] = [yc, y′c′] = ycy′c′(yc)−1(y′c′)−1 = yy′y−1y′−1 = [y, y′]
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Now let x1
hi, x

µ
jk be generators of Stn(A). We suppose that i, j, k, h are

distinct. Since n ≥ 5 we can choose an l ≤ n distinct of i, j, k and h.
Choosing

y ∈ φ−1(x1
hl), y′ ∈ φ−1(x1

li), w ∈ φ−1(xµjk)

we have that [y, y′] ∈ φ−1(x1
hi) by 2 in definition 4.1. By the relation 3 we

get that [x1
hl, x

µ
jk] = 1 and so that [y, w] ∈ C. As the same [y ′, w] ∈ C. This

means that y and y′ commute with w up to a central element and then that
[y, y′] commutes with w. Thus we obtain

[φ−1(x1
hi), φ

−1(xµjk)] = [[y, y′], w] = 1

Now choose u ∈ φ−1(x1
hi) and v ∈ φ−1(xλij). Then [u,w] = 1. Further, if

G is the subgroup of Y generated by u, v and w, then it follows from the
relation 3 in the definition 4.1 that the commutator subgroup G′ = [G,G] is

generated by elements in φ−1(xλhj), φ
−1(xλµik ) and φ−1(xλµhk). Then the second

commutator subgroup G′′ = [G′, G′] is trivial. Therefore, by lemma 4.17,

[u, [v, w]] = [[u, v], w][[w, u], v] = [[u, v], w][1, w] = [[u, v], w]

and so that [φ−1(xλhj), φ
−1(xµjk)] = [φ−1(x1

hi), φ
−1(xλµik )]. Taking λ = 1, we

obtain
[φ−1(x1

hj), φ
−1(xµjk)] = [φ−1(x1

hi), φ
−1(xµik)]

and so the element
sµhk := [φ−1(xλhj), φ

−1(xµjk)]

does not depend on the choice of j. Now it remains us to prove that these
elements sµhk satisfy the three Steinberg relations in definition 4.1. Then we
will have that the correspondence xµhk 7−→ sµhk gives a well defined homo-
morphism from Stn(A) to Y and that it is a section for

1 −→ C −→ Y
φ

−→ Stn(A) −→ 1

Then every central extension of Stn(A) splits and, passing to the limit when
n → ∞, every central extension of St(A) splits. Thus we will be able to
conclude from the fact that St(A) is perfect and with the proposition 4.16.

Since sµhk ∈ φ
−1(xµhk), we have the relation

[sλhj, s
µ
jk] = sλµhk

for h, j, k distinct. Let u ∈ φ−1(x1
hj), v ∈ φ−1(xλjk) and w ∈ φ−1(xµjk). From

the relation 2 in lemma 4.17, we get that

sλhks
µ
hk = [u, v][u,w] = [u, vw][v, [w, u]]
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But [u, vw] = [φ−1(x1
hj), φ

−1(xλ+µ
jk )] = sλ+µ

hk and [v, [w, u]] = [v, [u,w]−1] =

[φ−1(xλjk), φ
−1(x−µhk )] = 1. So we obtain

sλhks
µ
hk = sλ+µ

hk

Finally, we have from the first part of the proof that [φ−1(x1
hi), φ

−1(xµjk)] = 1
and so the three Steinberg relations are proved.
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Chapter 5

Higher K-theory groups

For this chapter, we suppose known the notions of action, fundamental
group, covering space, universal covering space, fibration and cofibration
and the theorem of van Kampen.

5.1 The B-construction

Definition 5.1 Let n ∈ N. The standard n-simplex is the convex subset of
R
n+1 defined by

∆n := {(t0, ..., tn) ∈ R
n+1 |

n∑

i=0

ti = 1, ti ≥ 0}

The points ek = (0, ..., 0, 1, 0, ..., 0), with the 1 at the k-th position, are
called the vertices of the simplex.

The sets fk := {(t0, ..., tn) ∈ R
n+1 |

n∑

i=0

ti = 1, ti ≥ 0, tk = 0} are called

the faces of the simplex.

∆n is oriented by the natural ordering of its vertices and any face spanned
by a subset of the vertices inherits an orientation as a subset of the vertices
of ∆n. Hence each face is canonically isomorphic to ∆n−1, preserving the
ordering.

Examples

• For n = 0 we obtain the point 1 in R.

• The standard 1-simplex is the oriented segment from (1, 0) to (0, 1) in
R

2.
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• The standard 2-simplex is the triangle in R
3 with vertices e0 = (1, 0, 0),

e1 = (0, 1, 0) and e2 = (0, 0, 1). Its edges are the oriented segments
[e0, e1], [e1, e2] and [e0, e2].

• For n = 3, we obtain the tetrahedron seen in R
4 with vertices (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1).

Definition 5.2 A ∆-complex structure on a topological space X is a collec-
tion of continuous maps σα : ∆n

α −→ X, with n depending on the index α,
so that :

1. The restriction σα|int(∆n
α) is injective, and each point of X is the image

of exactly one such restriction.

2. Each restriction of σα to a face of the n-simplex ∆n
α is one of the maps

σβ : ∆n−1
β −→ X. Here we identify the faces of ∆n

α with a (n − 1)-
simplex in the canonical way, preserving the ordering of the vertices.

3. A subset A ⊆ X is open if and only if σ−1
α (A) is open in ∆n

α for every
α.

Remark With the condition 3, we can think of a ∆-complex as a quotient
space of a collection of disjoint n-simplices, one for each α, the quotient space
obtained by identifying each face of a ∆n

α with the ∆n−1
β corresponding to

the restriction σβ of σα to the face, as in condition 2.

Definition 5.3 Let G be a group. For every (n+ 1)-tuple (g0, g1, ..., gn) of
elements of G we write [g0, g1, ..., gn] for the n-simplex obtained by identify-
ing gi with ei, ∀i ∈ N, i ≤ n.

Definition 5.4 Let G be a group. We note EG the ∆-complex whose n-
simplices are all the ordered (n+1)-tuples [g0, g1, ..., gn] composed of elements
of G and whose faces fk are attached to the n-simplices [g0, ..., gk−1, gk+1, ...gn].

Example If G = Z/2 ∼= {0, 1}, then we construct EG as follows :

• First the 0-simplices are [0] and [1]

• The 1-simplices are [0, 0], [0, 1], [1, 0] and [1, 1]. Then we attach the
vertices of [0, 0] to [0], the first vertex of [0, 1] to [0] and the last to [1],
etc. We obtain [0]66

++ [1] hhkk

• There is eight 2-simplices [e0, e1, e2]. We attach the faces of [e0, e1, e2]
to the 1-simplices [e0, e1], [e0, e2] and [e1, e2].

• And so on...
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Proposition 5.5 G acts freely on EG, with action defined by

g : EG −→EG

[g0, g1, ..., gn] 7−→[gg0, gg1, ..., ggn]

∀n ∈ N, ∀g ∈ G.

Proof. First we have to show that for g, h ∈ G we have g ◦ h = gh.

g(h([g0, g1, ..., gn])) = g([hg0, hg1, ..., hgn]) = [ghg0, ghg1, ..., ghgn]

= (gh)([g0, g1, ..., gn])

and so g ◦ h = gh.
Furthermore we get that for every g ∈ G, g is a permutation of EG,

i.e. g is a bijection. Effectively, g has an inverse g−1 in G. Then g ◦ g−1 =
gg−1 = e = g−1g = g−1 ◦ g and e = IdEG.

Now we have to prove that this action is free, meaning that there is
no n-simplex [g0, g1, ..., gn] ∈ EG and no g ∈ G other than e so that
g([g0, g1, ..., gn]) = [gg0, gg1, ..., ggn] = [g0, g1, ..., gn]. But

[gg0, gg1, ..., ggn] = [g0, g1, ..., gn] =⇒ gg0 = g0

⇐⇒ gg0g
−1
0 = g0g

−1
0 ⇐⇒ g = e

Definition 5.6 Let G be a group. The B-construction of G is the orbit
space BG := EG/G of the action of the proposition 5.5.

Lemma 5.7 Let G be a group and g ∈ G. Then each y ∈ EG has a neigh-
borhood U so that U ∩ g(U) = ∅ if g 6= e.

Proof. The proof is based on the fact that G is acting freely and that an
n-simplex is sent to a n-simplex by any element g ∈ G.

Proposition 5.8 Let G be a group. The quotient map q : EG −→ BG
defined by q(x) = Gx is a universal covering space.

Proof. It is clear that q is surjective. Let y ∈ Y and let U be a neigh-
borhood of y as in lemma 5.7. Then we get that the sets g(U), g ∈ G, are
disjoints and that

q−1(q(U)) =
∐

g∈G

g(U)

But for every g ∈ G, the definition of the quotient topology gives that
q is an homeomorphism from g(U) to q(U). Then q : EG −→ BG is a
covering space. Clearly, EG is path-connected. It remains us to prove that
π1(EG) = 0, i.e. EG is contractible.
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Let [g0, ..., gn] ∈ EG and x ∈ [g0, ..., gn]. Identifying [g0, ..., gn] with ∆n

we can write x =
n∑

i=0

tiei. Then we identify ∆n+1 = [e0, ..., en, en+1] with

[g0, ..., gn, e] and we see x in ∆n+1 in the canonical way : x =

n∑

i=0

tiei+0ei+1.

Thus we can define the homotopy

H : [0, 1] × ∆n+1 −→∆n+1

(s, x) 7−→(1 − s)

n∑

i=0

tiei + sen+1

Clearly H(0, x) = x and H(1, x) = [e]. Then H is an homotopy from IdEG
to the projection EG −→ [e]. Then EG is contractible.

Proposition 5.9 Let G be a group. Then π0(BG) = 0 and π1(BG) ∼= G.

Proof. Since proposition 5.8, q is a fibration and π0(EG) = 0 = π1(EG).
We note F for the fiber q−1(G[e]). Since

g−1([g]) = [g−1g] = [e]

we have that [g] ∈ G[e] and so that G[g] = G[e]. Thus [g] ∈ F, ∀g ∈ G. But
it is clear that if n ≥ 1, q([g0, g1, ..., gn]) is a set of n-simplex and each of
them cannot be equal to g[e]. Then we get

F = {[g] | g ∈ G} ∼= G

In this case, the long exact sequence of the fibration q gives

0 = π1(EG) −→ π1(BG) −→ π0(F ) ∼= π0(G) −→ π0(EG) = 0

Since G is a discreet space, π0(G) ∼= G and so

π1(BG) ∼= G

Let x, y ∈ BG. Since q is surjective, there exists x′, y′ ∈ EG so that
q(x′) = x and q(y′) = y. Since EG is path-connected, there is a path γ in
EG from x′ to y′. Then q(γ) gives a path in BG from x to y. Then BG is
path-connected and therefore π0(BG) = 0.

5.2 Singular homology

In this section, we will briefly introduce the notion of singular homology,
since we will need it in the next part to define the K-theory groups. Most
of the properties won’t be proved here.
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Definition 5.10 Let n ∈ N. A singular n-simplex in a space X is a contin-
uous map σ : ∆n −→ X.

Definition 5.11 Let X be a topological space and n ∈ N. We denote by
Cn(X) the free abelian group with basis the set of singular n-simplices in X.
We call an element of Cn(X) a singular n-chain.

Remark A singular n-chain is a finite formal sum
k∑

i=1

niσi where ni ∈ Z

and σi : ∆n −→ K.

Definition 5.12 Let X be a topological space and n ∈ N
∗. We define the

boundary map ∂n : Cn(X) −→ Cn−1(X) by the homomorphism given by
formula

∂n(σ) =

n∑

i=0

(−1)iσ|[e0,...,ei−1,ei+1,...,en]

In this formula, there is an identification of [e0, ..., ei−1, ei+1, ..., en] with
∆n−1, preserving the ordering of vertices, so that σ|[e0,...,ei−1,ei+1,...,en] is re-
garded as a singular (n− 1)-simplex ∆n−1 −→ X.

Remark To define ∂0, we have to define C−1(X) as the free abelian group
with basis the empty set. So C−1 is the trivial group and then ∂0 is the
trivial homomorphism.

Lemma 5.13 The composition ∂n ◦ ∂n+1 : Cn+1(X) −→ Cn−1(X) is zero,
∀n ∈ N.

Proof. For n = 0, the lemma is trivial. We will prove the lemma in the
case n = 1.

∂1(∂2(σ)) = ∂1(σ|[e1,e2] − σ|[e0,e2] + σ|[e0,e1])

= σ|[e2] − σ|[e1] − σ|[e2] + σ|[e0] + σ|[e1] − σ|[e0] = 0

Definition 5.14 Let X be a topological space and n ∈ N. We define the
n-th singular homology group by

Hn(X) := ker(∂n)/Im(∂n+1)

This is well defined since the preceeding lemma.

Remark Let X,Y be topological spaces and f : X −→ Y a continuous map.
Then f induces an homomorphism from Cn(X) to Cn(Y ), ∀n ∈ N, in the
following way. For every singular n-simplex σ in X we define f](σ) := f ◦σ,
which is an n-simplex in Y. Then we can extend f] to an homomorphism
Cn(X) −→ Cn(Y ) by linearity.
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Theorem 5.15 A continuous map f : X −→ Y between topological spaces
induces an homomorphism f∗ : Hn(X) −→ Hn(Y ), ∀n ∈ N. Moreover,
if Z is a topological space and g : Y −→ Z is a continuous map, then
(g ◦ f)∗ = g∗ ◦ f∗.

Proof. For the proof, consult [1], chap. 2, p. 111. This come from the
fact that f] has the property ∂n ◦ f] = f] ◦ ∂n.

Proposition 5.16 Let X be a nonempty and path-connected space. Then

H0(X) ∼= Z

Hence, for any space X, H0(X) is a direct sum of copies of Z, one for each
path-component of X.

Remark The proof of the proposition 5.16 can be seen in [1], chap. 2, p.
109. From this proposition we see that if X is a point, H0(X) ∼= Z. To avoid
this fact, we make the following definition.

Definition 5.17 Let X be a topological space. We consider the projection
X −→ ∗, where ∗ is a topological space made of one point. By the theorem
5.15, this induces an homomorphism

Hn(X) −→ Hn(∗)

for every n ∈ N. We define the reduced singular homology group H̃n as the
kernel of this homomorphism.

Remark In fact, H̃n(X) is the group which makes the sequence

0 −→ H̃n(X) −→ Hn(X) −→ Hn(∗) −→ 0

short exact. Since H0(∗) ∼= Z and Hn(∗) = 0 for n ≥ 1 we get that

H̃n(X) ∼= Hn(X), n ≥ 1

and
H̃0(X) = 0

if X is path connected.

Remark With the same hypothesis as in the theorem 5.15, f induces an
homomorphism f∗ : H̃n(X) −→ H̃n(Y ) with the same properties as in the
theorem.

Proposition 5.18 Let X,Y be topological spaces and f, g be two maps from
X to Y. If f ' g, then the two induced homomorphisms f∗ and g∗ are equal.
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Proof. The proof is not trivial. It can be read in [1], chap. 2, p. 112.

Corollary 5.19 Let X,Y be topological spaces. If X ' Y, then

H̃n(X) ∼= H̃n(Y )

∀n ∈ N. In particular, if X is contractible, then H̃n(X) = 0, ∀n ∈ N.

Proof. By hypothesis, there exists f : X −→ Y and g : Y −→ X such
that g ◦f ' IdX and f ◦g ' IdY . By the preceeding proposition we get that

(g ◦ f)∗ = Id eHn(X) and (f ◦ g)∗ = Id eHn(Y )

But since (g ◦ f)∗ = g∗ ◦ f∗ and (f ◦ g)∗ = f∗ ◦ g∗, we get that g∗ = (f∗)
−1

and so f∗ : H̃n(X) −→ H̃n(Y ) is an isomorphism.

Proposition 5.20 Let X be a topological space and A ⊆ X be a nonempty
closed subspace that is a deformation retract of some neighborhood in X.
Then we have a long exact sequence of reduced homology groups

... −→ H̃n(A)
i∗−→ H̃n(X)

j∗
−→ H̃n(X/A) −→ H̃n−1(A)

i∗−→ ...

... −→ H̃0(X/A) −→ 0

where i∗, j∗ are the homomorphisms induced by the inclusion i : A ↪→ X and
the quotient map j : X −→ X/A.

Remark The proof of the preceeding proposition can be seen in [1], chap.
2, p. 114. We arrive now to the principal result of this section, that will be
usefull to the next section : the Hurewicz theorem. This result is proved in
[1], chap. 4, p. 366.

Theorem 5.21 (Hurewicz) Let X be a (n−1)-connected space, n ≥ 2. Then
H̃i(X) = 0 for i < n and πn(X) ∼= H̃n(X).

5.3 The plus-construction

Definition 5.22 A CW -complex is a topological space X so that X =⋃

n∈N

Xn where :

1. X0 is a discreet space ;

2. ∀n > 0, there exists a set of indices In and a collection of maps

{fα : Sn−1
α −→ Xn−1 | α ∈ In}

so that Xn is the quotient space (Xn−1 q
∐

α∈In

Dn
α)/ ∼, where we define

fα(x) ∼ x, ∀x ∈ ∂Dn
α = Sn−1

α , ∀α ∈ In ;
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3. A subset A ⊆ X is open if and only if A∩Xn is open in Xn for every
n ∈ N.

Example A ∆-complex is in particular a CW -complex.

Definition 5.23 A continuous map f : X −→ Y between two CW -complex
is called cellular if f(Xn) ⊆ Yn, ∀n ∈ N.

Definition 5.24 Let X,A be topological spaces and f : A −→ X be a con-
tinuous map. We define the cone of A by

C(A) := ([0, 1] ×A)/ ∼

where (0, a) ∼ (0, a′), ∀a, a′ ∈ A, and the mapping cone of f by

C(f) := (C(A) qX)/ ∼

where (1, a) ∼ f(a), ∀a ∈ A.

Examples

1. If f : A −→ X is simply the inclusion of a subspace, then C(f) ' X/A.

2. If f : Sn−1 −→ Dn is the inclusion, then C(f) ∼= Sn. Effectively, the
cone C(Sn−1) is clearly homeomorphic to Dn. Furthermore

(Dn
1 qDn

2 )/(∂Dn
1 ∼ ∂Dn

2 ) ∼= Sn

3. IfX is a CW -complex and f : Sn−1 −→ X is a cellular map, then C(f)
is the CW -complex (DnqX)/ ∼, where f(x) ∼ x, ∀x ∈ ∂Dn = Sn−1.

4. Extending the preceeding example, if the space X is a CW -complex
and if fα : Sn−1

α −→ X, α ∈ I, are cellular maps, then

C(f) ∼=

(
X q

∐

α∈I

Dn
α

)
/ ∼

where fα(x) ∼ x, ∀x ∈ ∂Dn
α = Sn−1

α , ∀α ∈ I.

Proposition 5.25 Let X,A be topological spaces and f : A −→ X be a
continuous map. Then the sequence

A
f

−→ X −→ C(f)

is a cofibration sequence. Moreover, the long exact sequence of this cofibra-
tion gives rise to a long exact sequence

... −→ H̃n(A)
f∗
−→ H̃n(X) −→ H̃n(C(f)) −→ H̃n−1(A)

f∗
−→ ...

... −→ H̃0(C(f)) −→ 0
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Proof. For this result, consult [1], chap. 4, p. 460-462.

Lemma 5.26 Let I be a set of indices and Xα, α ∈ I, be topological spaces.
Then

H̃n(
∨

α∈I

Xα) ∼=
⊕

α∈I

H̃n(Xα)

for every n ∈ N.

Proof. The proof can be seen in [1], chap. 2, p. 126. In fact, this is
the wedge axiom of a reduced homology theory and the reduced singular
homology is one such theory.

Lemma 5.27 Let i ∈ N and I be a set of indices. Then

H̃i(
∨

α∈I

Snα)) = 0 if i 6= n

and
H̃n(

∨

α∈I

Snα) ∼=
⊕

α∈I

Z

Proof. As seen in example 2 above, we have a cofibration

Sn−1 ↪→ Dn −→ Sn

By the proposition 5.25, we get a short exact sequence

... −→ H̃i(D
n) −→ H̃i(S

n) −→ H̃i−1(S
n−1) −→ H̃i−1(D

n) −→ ...

... −→ H̃0(S
n) −→ 0

Since Dn is contractible, H̃i(D
n) = 0, ∀i ∈ N. Then we get an isomorphism

H̃i(S
n) ∼= H̃i−1(S

n−1)

∀i ∈ N
∗. Thus we just need to prove the lemma in the case n = 0.

For i ∈ N and writing S0 = {a, b}, we get directly from the definition
that Ci(S

0) is the free abelian group with basis composed of σa : ∆i −→ a
and σb : ∆i −→ b. Hence

Ci(S
0) ∼= Z{a, b}

Then the boundary maps are given by ∂i(σa) =

i∑

k=0

(−1)ka and ∂i(σb) =

i∑

k=0

(−1)kb. In consequence, if i is odd, ∂i is the trivial homomorphism and

if i is even and i ≥ 2, ∂i is the identity. Therefore

H̃i(S
0) ∼= Hi(S

0) = Ci(S
0)/Ci(S

0) = 0 if i is odd
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and
H̃i(S

0) ∼= Hi(S
0) = 0/0 = 0 if i is even and i ≥ 2

For i = 0 we get H0(S
0) = C0(S

0)/0 ∼= C0(S
0) ∼= Z{a, b}. To find the

reduced homology group we write the short exact sequence

0 −→ H̃0(S
0) −→ H0(S

0) ∼= Z{a, b} −→ H0(∗) ∼= Z −→ 0

But the homomorphism Z{a, b} −→ Z is given by a 7−→ 1 and b 7−→ 1 and
so we get that the kernel of this homomorphism is Z{a− b} ∼= Z.

Remark Now we arrive to the main theorem of this chapter, which will
allow us to construct a topological space that will give the K-theory groups.
In this theorem, we suppose that H̃1(X) = 0, which means in fact that
π1(X) is a perfect group. Then in the corollary we will consider a perfect
subgroup of π1(X).

Theorem 5.28 Let X be a connected CW -complex so that H̃1(X) = 0.
Then there exists a simply-connected CW -complex X+ and a continuous
map f+ : X −→ X+ inducing isomorphisms on all reduced homology groups.

Proof. First we take for each generator of π1(X) a map ϕα : S1 −→ X.
Then we form X ′ as the quotient space

X ′ =

(
X q

∐

α∈I

D2
α

)
/ ∼

where ϕα(x) ∼ x, ∀x ∈ ∂D2
α = S1

α, ∀α ∈ I. By the cellular approximation
theorem (see [1], chap. 4, p. 349), we can assume that every ϕα is cellular,
that is X ′ is a CW -complex. Since X is a CW -complex and is a subcomplex
of X ′, the hypothesis of the proposition 5.20 are satisfied (see [1], appendix,
p. 523). Then we get the long exact sequence

... −→ H̃i+1(X
′/X) −→ H̃i(X) −→ H̃i(X

′) −→ H̃i(X
′/X) −→ ...

... −→ H̃3(X
′/X) −→ H̃2(X) −→ H̃2(X

′) −→ H̃2(X
′/X) −→ H̃1(X) −→ ...

By hypothesis, H̃1(X) = 0. Furthermore, since we have attached D2
α to X

to obtain X ′, we get that X ′/X ∼=
∨

α∈I

S2
α and so lemma 5.26 gives

H̃i(X
′/X) ∼= H̃i(

∨

α∈I

S2
α)

∼=
⊕

α∈I

H̃i(S
2
α)

Hence we get H̃i(X
′/X) = 0 if i 6= 2 and H̃2(X

′/X) ∼=
⊕

α∈I

Z by lemma 5.27.

In consequence we have from the long exact sequence that

H̃i(X
′) ∼= H̃i(X) if i 6= 2
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Since
⊕

α∈i

Z is a free abelian group, we have that the short exact sequence

0 −→ H̃2(X) −→ H̃2(X
′) −→ H̃2(X

′/X) −→ 0

splits and thus from lemma 3.9

H̃2(X
′) ∼= H̃2(X) ⊕

⊕

α∈I

Z

From the construction of X ′ we have that π1(X
′) = 0. Then by the Hurewicz

theorem
π2(X

′) ∼= H̃2(X
′) ∼= H̃2(X) ⊕

⊕

α∈I

Z

Then taking generators for H̃2(X
′/X) they correspond by the isomorphism

to elements [ψα] ∈ π2(X
′), α ∈ I. We note X+ the quotient space

X+ =

(
X ′ q

∐

α∈I

D3
α

)
/ ∼

where ψα(x) ∼ x, ∀x ∈ ∂D3
α = S2

α, ∀α ∈ I. By the cellular approximation
theorem, we can again assume that every ψα is cellular, that is X+ is a
CW -complex.

By the definition of X+ and the example 3 above, we get that

∨

α∈I

S2
α

∨ψα
−→ X ′ −→ X+

is a cofibration sequence. Then by proposition 5.25 we get the long exact
sequence

... −→ H̃i(
∨

α∈I

S2
α) −→ H̃i(X

′) −→ H̃i(X
+) −→ H̃i−1(

∨

α∈I

S2
α) −→ ...

... −→ H̃3(
∨

α∈I

S2
α) −→ H̃3(X

′) −→ H̃3(X
+) −→ H̃2(

∨

α∈I

S2
α) −→

−→ H̃2(X
′) −→ H̃2(X

+) −→ ... −→ H̃0(X
+)

Since lemma 5.27 we get H̃i(
∨

α∈I

S2
α) = 0 if i 6= 2 and H̃2(

∨

α∈I

S2
α)

∼=
⊕

α∈I

Z. In

consequence we have from the long exact sequence that

H̃i(X
+) ∼= H̃i(X

′) ∼= H̃i(X) if i 6= 2, 3

and that

0 −→ H̃3(X
′) −→ H̃3(X

+) −→
⊕

α∈I

Z
(∨ψα)

∗−→ H̃2(X
′) −→ H̃2(X

+) −→ 0

40



is split exact. Given an element [f ] ∈ π2(
∨

α∈I

S2
α), we get an element in

π2(X
′) by composing

S2 f
−→

∨

α∈I

S2
α

∨ψα
−→ X ′

Since π2(
∨

α∈I

S2
α)

∼= H̃2(
∨

α∈I

S2
α)

∼=
⊕

α∈I

Z by the Hurewicz theorem, the gen-

erators of π2(
∨

α∈I

S2
α) are the equivalence classes of the maps

S2 Id
S2

−→ S2
α ⊆

∨

α∈I

S2
α

for α ∈ I. Thus the image of those generators in π2(X
′) are in fact the ψα,

α ∈ I. Then the composition

H̃2(
⊕

α Z)
(∨ψα)

∗// H̃2(X
′)

∼= // H̃2(X) ⊕ H̃2(
∨
α S

2
α)

π2(
∨
α S

2
α)

∼=

OO

// π2(X
′)

∼=

OO

send H̃2(
⊕

α∈I

Z) onto the corresponding factor H̃2(
∨

α∈I

S2
α) in H̃2(X

′) via

(∨ψα)∗ . Finally, the long exact sequence of the cofibration

0 −→ H̃3(X
′) −→ H̃3(X

+) −→H̃2(
⊕

α∈I

Z)
∨ψα
−→

∨ψα
−→ H̃2(X

′) ∼=H̃2(X) ⊕ H̃2(
∨

α∈I

S2
α) −→ H̃2(X

+) −→ 0

gives H̃3(X
+) ∼= H3(X

′) ∼= H̃3(X) and H̃2(X
+) ∼= H̃2(X). By construction,

π1(X
+) = π1(X

′) = 0 and so the theorem is proved.

Corollary 5.29 Let X be a connected CW -complex. Then for every per-
fect subgroup H of π1(X) there is a connected CW -complex X+ so that
π1(X

+) ∼= π1(X)/H and Hn(X
+) ∼= Hn(X), ∀n ∈ N.

We call X+ the plus-construction of X with respect to the perfect sub-
group H.

Proof. By the classification theorem of covering spaces, there is a cov-
ering space p : X̃ −→ X so that π1(X̃) ∼= H. By theorem 5.28, there is
a simply-connected CW -complex X̃+ and a map f+ : X̃ −→ X̃+ so that
H̃i(X̃

+) ∼= H̃i(X̃) via f+
∗ . We define

Mp := (X̃ × [0, 1] qX)/ ∼
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where (x̃, 1) ∼ p(x̃), ∀x̃ ∈ X̃, the mapping cylinder of p. Then we define

X+ := (Mp q X̃+)/ ∼

where (x̃, 0) ∼ f+(x̃), ∀x̃ ∈ X̃. By the van Kampen theorem, we get that

π1(Mp)/π1(X̃) ∼= π1(X
+)

But since Mp ' X we get π1(Mp) ∼= π1(X) and so

π1(X
+) ∼= π1(X)/π1(X̃) ∼= π1(X)/H

Clearly, X+/Mp
∼= X̃+/X̃. Then for n ∈ N,

H̃n(X
+/Mp) ∼= H̃n(X̃

+/X̃) ∼= 0

since H̃n(X̃
+) ∼= H̃n(X̃) by the theorem 5.28. By the proposition 5.20, we

get the long exact sequence

0 −→ H̃n(Mp) −→ H̃n(X
+) −→ H̃n(X

+/Mp) = 0

for every n ∈ N. Then

H̃n(X
+) ∼= H̃n(Mp) ∼= H̃n(X)

since Mp ' X.

Definition 5.30 (Quillen) Let A be a ring. We define the K-theory groups
by

Ki(A) := πi(BGL(A)+)

for i ∈ N
∗, where the plus-construction is given with respect to the perfect

subgroup E(A) ⊆ GL(A) (∼= π1(BGL(A)) by proposition 5.9).

Proposition 5.31 Milnor’s K1(A) defined in chapter 3 is isomorphic to
Quillen’s K1(A).

Proof. We denote Milnor’s K1(A) by KM
1 (A) and Quillen’s by KQ

1 (A).
We have from the proposition 5.9 that π1(BGL(A)) ∼= GL(A). Furthermore,
the definition of KQ

1 (A) and the corollary 5.29 give

KQ
1 (A) = π1(BGL(A)+) ∼= π1(BGL(A))/E(A) ∼= GL(A)/E(A) = KM

1 (A)

Remark We have that the definition 5.30 for K2(A) coincides also with the
K2(A) that we have defined in the preceeding chapter.

Moreover, Ki(−) is a covariant functor from the category of rings and
homomorphisms of rings to the category of abelian groups and homomor-
phisms of groups.
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Conclusion

As a conclusion, I will say that algebraic K-theory is a huge and interesting
subjet. Given an ideal I of a ring A, we can also define relatives K-theory
groups Ki(A, I). In the same way, we can define such groups for a category.

In addition, there is also a topological K-theory, that is in fact born
before algebraic K-theory and has inspired it. There is obviously a link
between them.

43



Bibliography

[1] Hatcher, Allen. Algebraic Topology. Cambridge University Press,
2002.

[2] Johnson, D.L.. Presentations of Groups. London Mathematical Society
Student Texts n◦15, Cambridge University Press, 1990.

[3] Milnor, John. Introduction to algebraic K-theory. Princeton University
Press and University of Tokyo Press, Princeton, New Jersey, 1971.

[4] Rosenberg, Jonathan. Algebraic K-Theory and Its Applications.
Graduate texts in mathematics, Springer-Verlag, New York, 1994.

44


