Instanton wave and M-wave in multiple M5-brane system

Hiroshi Isono

24 November, 2013

HIroshi Isono
instanton wave and IVI-wave in mult

In collaboration with Chong-Sun Chu (NTHU)

This talk is based on

- Chu-Isono arXiv:1305.6808
references :
- Chu-Ko arXiv:1203.4224
- Chu-Ko-Vanichchapongjaroen arXiv:1207.1095
- Chu-Vanichchapongjaroen arXiv:1304.4322

M5-brane

- M5-brane is mysterious but important since its classical dynamics will have information of nonperturbative effects of 4D gauge theories.

M5-brane

- M5-brane is mysterious but important since its classical dynamics will have information of nonperturbative effects of 4D gauge theories.
- For single M5, there have been various proposals for M5-brane action.

M5-brane

- M5-brane is mysterious but important since its classical dynamics will have information of nonperturbative effects of 4D gauge theories.
- For single M5, there have been various proposals for M5-brane action.
- For multiple M5, WE DON'T KNOW !

Why M5-brane is mysterious

- M5-brane : $(2,0)$ supersymmetry (\#=16) with tensor multiplet scalars : for transverse directions in 11D : 5

2-form tensor field \boldsymbol{B}_{2} with self-duality $\boldsymbol{H}_{3}={ }_{6} \boldsymbol{H}_{3}: 3$
fermions: 8

Why M5-brane is mysterious

- M5-brane : $(2,0)$ supersymmetry (\#=16) with tensor multiplet scalars : for transverse directions in 11D : 5

2-form tensor field \boldsymbol{B}_{2} with self-duality $\boldsymbol{H}_{3}={ }_{6} \boldsymbol{H}_{3}: 3$
fermions: 8

- Naive kinetic term like $\boldsymbol{H}_{L M N} \boldsymbol{H}^{L M N}$ identically vanishes.

Why M5-brane is mysterious

- M5-brane : $(2,0)$ supersymmetry (\#=16) with tensor multiplet scalars : for transverse directions in 11D : 5 2-form tensor field \boldsymbol{B}_{2} with self-duality $\boldsymbol{H}_{3}={ }_{6} \boldsymbol{H}_{3}: 3$ fermions: 8
- Naive kinetic term like $\boldsymbol{H}_{L M N} \boldsymbol{H}^{L M N}$ identically vanishes.
- No free parameters, no length scale, scale invariant \Longrightarrow perturbative expansions make NO sense

Why M5-brane is mysterious

- M5-brane : $(2,0)$ supersymmetry (\#=16) with tensor multiplet scalars : for transverse directions in 11D : 5 2-form tensor field \boldsymbol{B}_{2} with self-duality $H_{3}={ }_{6} H_{3}: 3$ fermions: 8
- Naive kinetic term like $\boldsymbol{H}_{L M N} \boldsymbol{H}^{L M N}$ identically vanishes.
- No free parameters, no length scale, scale invariant \Longrightarrow perturbative expansions make NO sense
- I am not sure how much the action will be of practical use.

equation of motion rather than action

- But, equations of motion may still be useful since classical solutions will describe non-perturbative excitations on M5-branes.
- Such solutions would correspond to known configurations of BPS objects in M-theory. This would be a nontrivial check of M5-brane EoM.

What we have done

- We consider low energy equations of motion of non-abelian self-dual gauge field on multiple M5-branes proposed by Chu-Ko [1203.4224]
- We found a new exact solution, which is a wave with instanton configuration as the amplitude.
- We argue that this solution corresponds to M-wave/M5 system.

self-dual non-abelian tensor gauge fields and EoM

- problem : interactions needed $\quad H_{3}=d B_{2}+?$? \quad cf. $F_{2}=d A+A^{2}$
- proposal [Chu-Ko 1203.4224]:
- generalisation of Perry-Schwarz

2-form gauge field $\boldsymbol{B}_{\mu \nu}+$ 1-form Yang-Mills field \boldsymbol{A}_{μ}

- coordinate dependence :

$$
B_{\mu \nu}\left(x^{\mu}, x^{5}\right), A_{\mu}\left(x^{\mu}\right) \quad(\mu, \nu=0,1, \cdots, 4)
$$

- 1-form Yang-Mills field \boldsymbol{A}_{μ} has to be auxiliary

self-dual non-abelian tensor gauge fields and EoM

- covariant derivative

$$
D(A)_{\mu} B_{\nu \lambda}:=\partial_{\mu} B_{\nu \lambda}+\left[A_{\mu}, B_{\nu \lambda}\right]
$$

- field strength

$$
H_{\lambda \mu \nu}:=D_{\lambda} B_{\mu \nu}+D_{\mu} B_{\nu \lambda}+D_{\nu} B_{\lambda \mu}
$$

- proposal for equations of motion [Chu-Ko 1203.4224] self-duality $+\boldsymbol{F}$ as an auxiliary field

$$
\begin{gathered}
\widetilde{H}_{\mu \nu}=\partial_{5} B_{\mu \nu} \quad F_{\mu \nu}=\int d x^{5} \widetilde{H}_{\mu \nu} \\
\left(\widetilde{\boldsymbol{H}}_{\mu \nu}=\frac{1}{6} \epsilon_{\mu \nu \rho \sigma \tau} \boldsymbol{H}^{\rho \sigma \tau}, \boldsymbol{F}=d \boldsymbol{A}+A^{2}\right)
\end{gathered}
$$

self-dual non-abelian tensor gauge fields and EoM

- All fields are in the adjoint rep. of YM gauge group G
- The group G turns out to be the gauge group of YM theory on D4-branes, which is the dim. reduction of the M5-branes.
- The system has tensor gauge symmetry too.
- When $G=\mathrm{U}(1)$, the equation of motion is $\widetilde{\boldsymbol{H}}_{\mu \nu}=\partial_{5} B_{\mu \nu}$, which is Perry-Schwarz's EoM for single M5.

check of the EoMs 2 : classical solutions

- If the EoMs are correct, they will have classical solutions which represent BPS configurations with M5.

check of the EoMs 2 : classical solutions

- If the EoMs are correct, they will have classical solutions which represent BPS configurations with M5.
- 1/2-BPS objects in M-theory : M-wave, M2, M5, KK-monopole

check of the EoMs 2 : classical solutions

- If the EoMs are correct, they will have classical solutions which represent BPS configurations with M5.
- 1/2-BPS objects in M-theory : M-wave, M2, M5, KK-monopole
- It was shown that our EoMs have solutions corresponding to

M2-M5 [Chu-Ko-Vanichchapongjaroen, Chu-Vanichchapongjaroen]
MW-M5 [Chu-Isono]

check of the EoMs 2 : classical solutions

- If the EoMs are correct, they will have classical solutions which represent BPS configurations with M5.
- 1/2-BPS objects in M-theory : M-wave, M2, M5, KK-monopole
- It was shown that our EoMs have solutions corresponding to

M2-M5 [Chu-Ko-Vanichchapongjaroen, Chu-Vanichchapongjaroen]
MW-M5 [Chu-Isono]

- In this talk, I would like to present solutions for MW-M5

Classical Solutions and F

- M2-M5 solutions : $\boldsymbol{F}=$ Wu-Yang monopole
- Let's try to find a solution based on $\boldsymbol{F}=4 \mathrm{D}$ YM instanton solution

Instanton wave solution : [Chu-HI 1305.6808]

$$
\widetilde{\boldsymbol{H}}_{\mu \nu}=\partial_{5} B_{\mu \nu} \quad \boldsymbol{F}_{\mu \nu}=\int d x^{5} \widetilde{\boldsymbol{H}}_{\mu \nu}
$$

- ansatz : $A_{0}=B_{0 a}=0, \quad \partial_{0} A_{a}=0 \quad(a, b, \cdots=1,2,3,4)$

Instanton wave solution : [Chu-HI 1305.6808]

$$
\widetilde{\boldsymbol{H}}_{\mu \nu}=\partial_{5} B_{\mu \nu} \quad \boldsymbol{F}_{\mu \nu}=\int d x^{5} \widetilde{\boldsymbol{H}}_{\mu \nu}
$$

\triangleright ansatz : $A_{0}=B_{0 a}=0, \quad \partial_{0} A_{a}=0 \quad(a, b, \cdots=1,2,3,4)$

- The 1st eqn. reads $\epsilon_{a b c d} D_{b} B_{c d}=0, \quad \partial_{5} B_{a b}=\frac{\mathbf{1}}{\mathbf{2}} \epsilon_{a b c d} \partial_{0} B_{c d}$

Instanton wave solution : [Chu-HI 1305.6808]

$$
\widetilde{\boldsymbol{H}}_{\mu \nu}=\partial_{5} B_{\mu \nu} \quad \boldsymbol{F}_{\mu \nu}=\int d x^{5} \widetilde{\boldsymbol{H}}_{\mu \nu}
$$

\triangleright ansatz : $A_{0}=B_{0 a}=0, \quad \partial_{0} A_{a}=0 \quad(a, b, \cdots=1,2,3,4)$

- The 1st eqn. reads $\quad \epsilon_{a b c d} D_{b} B_{c d}=0, \quad \partial_{5} B_{a b}=\frac{1}{2} \epsilon_{a b c d} \partial_{0} B_{c d}$
- Instanton wave solutions

$$
B_{a b}=F_{a b}\left(x^{c}\right) f\left(x^{0} \pm x^{5}\right)
$$

4D self-dual field strength $F_{a b} \longleftrightarrow f\left(x^{0}+x^{5}\right)$
4D anti-self-dual field strength $F_{a b} \longleftrightarrow f\left(x^{0}-x^{5}\right)$ and $f(\infty)-f(-\infty)=1$.

MW-M5 ? : dimensional reduction to IIA string

- dim. reduced EoM \longrightarrow identity $D^{\mu} \boldsymbol{F}_{\mu \nu}=-\pi R \epsilon_{\nu \alpha \beta \gamma \delta}\left[F^{\alpha \beta}, B^{\gamma \delta}\right]$

MW-M5 ? : dimensional reduction to IIA string

- dim. reduced EoM \longrightarrow identity $D^{\mu} \boldsymbol{F}_{\mu \nu}=-\pi R \epsilon_{\nu \alpha \beta \gamma \delta}\left[F^{\alpha \beta}, B^{\gamma \delta}\right]$
- Our solution : $\boldsymbol{B}_{a b} \propto \boldsymbol{F}_{a b} \rightarrow D^{\mu} \boldsymbol{F}_{\mu \nu}=0 \quad\left(\because \boldsymbol{\epsilon}_{a b c d}\left[\boldsymbol{F}_{a b}, \boldsymbol{F}_{c d}\right]=\mathbf{0}\right)$

MW-M5 ? : dimensional reduction to IIA string

- dim. reduced EoM \longrightarrow identity $D^{\mu} \boldsymbol{F}_{\mu \nu}=-\pi R \epsilon_{\nu \alpha \beta \gamma \delta}\left[F^{\alpha \beta}, B^{\gamma \delta}\right]$
- Our solution : $\boldsymbol{B}_{a b} \propto \boldsymbol{F}_{a b} \rightarrow D^{\mu} \boldsymbol{F}_{\mu \nu}=\mathbf{0} \quad\left(\because \epsilon_{a b c d}\left[\boldsymbol{F}_{a b}, \boldsymbol{F}_{c d}\right]=\mathbf{0}\right)$
- Thus, \boldsymbol{F} is certainly the instanton

MW-M5 ? : dimensional reduction to IIA string

- dim. reduced EoM \longrightarrow identity $D^{\mu} \boldsymbol{F}_{\mu \nu}=-\pi R \epsilon_{\nu \alpha \beta \gamma \delta}\left[F^{\alpha \beta}, B^{\gamma \delta}\right]$
- Our solution : $\boldsymbol{B}_{a b} \propto \boldsymbol{F}_{a b} \rightarrow D^{\mu} \boldsymbol{F}_{\mu \nu}=\mathbf{0} \quad\left(\because \boldsymbol{\epsilon}_{a b c d}\left[\boldsymbol{F}_{a b}, \boldsymbol{F}_{c d}\right]=\mathbf{0}\right)$
- Thus, \boldsymbol{F} is certainly the instanton
- According to string theory, the instanton is realized by D0 on D4

MW-M5 ? : dimensional reduction to IIA string

- dim. reduced EoM \longrightarrow identity $D^{\mu} \boldsymbol{F}_{\mu \nu}=-\pi R \epsilon_{\nu \alpha \beta \gamma \delta}\left[F^{\alpha \beta}, B^{\gamma \delta}\right]$
- Our solution : $\boldsymbol{B}_{a b} \propto \boldsymbol{F}_{a b} \rightarrow D^{\mu} \boldsymbol{F}_{\mu \nu}=\mathbf{0} \quad\left(\because \boldsymbol{\epsilon}_{a b c d}\left[\boldsymbol{F}_{a b}, \boldsymbol{F}_{c d}\right]=\mathbf{0}\right)$
- Thus, \boldsymbol{F} is certainly the instanton
- According to string theory, the instanton is realized by D0 on D4
- The D0-D4 is exactly the dimensional reduction of MW-M5

MW-M5 ?: D0-branes and KK momentum

- instanton number of $\boldsymbol{F}=$ the number of $\boldsymbol{D 0}$
due to WZ term of D4 action : $\int C_{1} \wedge \operatorname{tr}(F \wedge F)$
(C_{1} : background RR 1-form, electrically coupling to D0)

MW-M5 ?: D0-branes and KK momentum

- instanton number of $\boldsymbol{F}=$ the number of $\boldsymbol{D 0}$ due to WZ term of D4 action : $\int C_{1} \wedge \operatorname{tr}(F \wedge F)$
(C_{1} : background RR 1-form, electrically coupling to D0)
- Origin of the WZ term ?

Translating the WZ term in our M5-brane language, we get

$$
\int C_{1} \wedge \operatorname{tr}(F \wedge F) \propto \int g_{\mu 5} \operatorname{tr}\left(H^{\mu \alpha \beta} H_{\alpha \beta}^{5}\right) \equiv \int g_{\mu 5} T^{\mu 5} \in S_{\mathrm{M} 5}
$$

MW-M5 ?: D0-branes and KK momentum

- instanton number of $\boldsymbol{F}=$ the number of $\boldsymbol{D 0}$ due to WZ term of D4 action : $\int C_{1} \wedge \operatorname{tr}(F \wedge F)$
(C_{1} : background RR 1-form, electrically coupling to D0)
- Origin of the WZ term ?

Translating the WZ term in our M5-brane language, we get

$$
\int C_{1} \wedge \operatorname{tr}(F \wedge F) \propto \int g_{\mu 5} \operatorname{tr}\left(H^{\mu \alpha \beta} H_{\alpha \beta}^{5}\right) \equiv \int g_{\mu 5} T^{\mu 5} \in S_{\mathrm{M} 5}
$$

- We can show $\boldsymbol{T}_{M 5} \equiv \operatorname{tr}\left(H_{M \mu \nu} H_{5}{ }^{\mu \nu}\right)$ is conserved : $\partial_{M} T^{M 5}=0$ conjecture : this is (lowest order of) the energy-momentum tensor. This is true in the abelian case.

MW-M5 ?: D0-branes and KK momentum

- instanton number of $\boldsymbol{F}=$ the number of $\boldsymbol{D 0}$ due to WZ term of D4 action : $\int C_{1} \wedge \operatorname{tr}(F \wedge F)$
(C_{1} : background RR 1-form, electrically coupling to D0)
- Origin of the WZ term ?

Translating the WZ term in our M5-brane language, we get

$$
\int C_{1} \wedge \operatorname{tr}(F \wedge F) \propto \int g_{\mu 5} \operatorname{tr}\left(H^{\mu \alpha \beta} H_{\alpha \beta}^{5}\right) \equiv \int g_{\mu 5} T^{\mu 5} \in S_{\mathrm{M} 5}
$$

- We can show $\boldsymbol{T}_{M 5} \equiv \operatorname{tr}\left(H_{M \mu \nu} H_{5}{ }^{\mu \nu}\right)$ is conserved : $\partial_{M} T^{M 5}=0$ conjecture : this is (lowest order of) the energy-momentum tensor. This is true in the abelian case.
- the number of D0 $\sim \int T_{05} \sim$ KK momentum of MW on M5

This is the relation which is one of the motivations of M-theory

discussions and open problems

- inclusion of other matter fields \& supersymmetrisation
- coupling to background C-field \longrightarrow noncommutative geometry ?? Fact : If all [,] in 6D EoMs are replaced by [,] with the Moyal product with $\theta_{\mu \nu}=C_{\mu \nu 5}$, dim. reduction yields 5D YM eqn with the Moyal product.
- other solutions for BPS M-theory objects such as MW-M2-M5
- relation to 4D SYM theories, e.g. relation to AGT
- 4D YM eqn has integrability: ADHM, Nahm We have shown our SD relation also has solutions based on ADHM, Nahm \longrightarrow our SD relation also has integrability ?

evidence of the EoMs 4 : degrees of freedom

$$
\widetilde{\boldsymbol{H}}_{\mu \nu}=\partial_{5} B_{\mu \nu} \quad \boldsymbol{F}_{\mu \nu}=\int d x^{5} \widetilde{\boldsymbol{H}}_{\mu \nu}
$$

- d.o.f counting in the "free level" $\Longrightarrow \quad$ the EoMs become a collection of abelian SD : $*_{5} d B=\partial_{5} B$
- d.o.f is $3 \times \operatorname{dim}(\boldsymbol{G})$ [" 3 " from abelian SD \boldsymbol{B} (Perry-Schwarz)]
- Problem : separation of free part from interacting parts would be subtle.

properties indicating MW-M5 : 2. supersymmetry

1. If we assume covariant SUSY transformation

$$
\delta \Psi=\boldsymbol{H}^{L M N} \Gamma_{L M N} \epsilon+(\text { other matters })
$$

then the solution yields $\mathbf{1} / \mathbf{2}$-BPS condition $\left(1-\Gamma^{0} \Gamma^{5}\right) \epsilon=0$.

