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PROLOGUE

The Market & Cost of CFD
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$1 bln.
(7% CAGR 2020-2030)

CFD MARKET

Visualization of CFD 

results for Mach 7 

flight (NASA, 1997)

Minimally invasive 

cancer detection with 

microfluidic chip 

(University of 

Kansas, 2019)
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COMPUTATIONAL COST
DNS (Scale-resolved) ~ Re3

LES (Filtered scales) ~ Re1.3~2.5

(Teapeat, 2012)

Estimates for wall-resolved LES as a function of the Reynolds 

number (CFD Vision 2030, NASA, 2014)
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BOLTZMANN’S REACH

Applicability of a range of fluid models based on the 
Knudsen number (Ayub et al., 2011)

Hierarchy 
of length 
and time 
scales in 
typical fluid 
dynamics 
problems 
(Chaves-
Modena, 
2019)
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BEYOND BOLTZMANN

Boltzmann Navier-

Stokes

𝑓 = 𝑓(0) + 𝜖𝑓 1 + 𝜖2𝑓 2 +⋯

Liouville
𝑓(𝑙) ← 𝑓 𝑁

BBGKY

𝑓 1

↑
𝑓(𝑙)

Binary collisions

(Succi, 2018)
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LIOUVILLE & ITS 
MARGINALIZATION



METHODS

The Lattice Boltzmann Method 
(LBM)
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LATTICE BOLTZMANN
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LATTICE BOLTZMANN
Collision (Local, nonlinear, dissipative)

Streaming (Nonlocal, linear, unitary)
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COLLISION DATASET 
GENERATION



METHODS

Carleman Linearization (CL)
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CARLEMAN LINEARIZATION



METHODS

Quantum Computing (QC)
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QUANTUM COMPUTING

● Statevector ● Evolution

○ Unitary

○ Non-Unitary

0 =
1
0

and 1 =
0
1

𝜓 =
𝐶0 0 + 𝐶1|1⟩

𝐶0
2 + 𝐶1

2

𝜓 = 𝐶0 0 + 𝐶1 1
𝐶0

2 + 𝐶1
2 = 1

𝜓 = 𝑒𝑖𝜃|𝜓⟩

𝜓 0 𝑂𝑅 |1⟩

𝑃(|0,1⟩) = |𝐶0,1|
2

𝜓′ = 𝜓 = 1
𝜓′ = 𝑈 𝜓 , 𝑈† 𝑈 = መ𝐼

𝑖ℏ𝜕𝑡 𝜓 = 𝐻 𝜓 , 𝐻 = 𝐻∗ 𝑇

● Advantages

○ Computational Space

○ Parallelism

𝜓#𝑞𝑢𝑏𝑖𝑡𝑠=2 ՜ 002 = 010
𝑂𝑅 01 = 110
𝑂𝑅 10 = 210
𝑂𝑅 11 = 310

𝑈 𝜓 = 𝐶0𝑈 0 + 𝐶1𝑈|1⟩



METHODS

Existing Literature for the LBM 
with QC
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BITSHIFT
STREAMING

A visualization of the index-shuffling streaming pro-
cedure with periodic boundaries for 2^3 = 8 sites with a single 
variable. Contents of the cell refer to the corresponding index 

position. Green cells refer to the case where the condition of 
the control has been met and the digit being acted upon 

would change. Digits in binary representation being acted on 
by a controlled NOT gate (targets) are written in boldface 

whereas those controlling (controls) are underlined. The 
number of steps (3) is logarithmic in the number of sites (8).
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QUANTUM SIMULATION

Quantum Lattice Gas

Depiction of the arrangement of 6-qubit quantum 
computers, each coupled to its neighbors to 
implement the quantum lattice gas algorithm 
(Yepez, 1999)

Dirac Analogy

The analogy between the Dirac and Boltzmann 
equations is employed to implement a lattice 

scheme with a dissipative linear collision 
(Mezzacapo et al., 2015).
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PREVIOUS ATTEMPTS OF LBM 
WITH QC



METHODS

Quantum Linear Embedding 
(QLE)
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QUANTUM LINEAR EMBEDDING
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EVOLUTION UNDER QUANTUM 
LINEAR EMBEDDING



METHODS

Quantum Machine Learning 
(QML)
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QUANTUM MACHINE LEARNING



CONTRIBUTIONS

CL of LBM
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EXACT LINEARIZATION OF THE 
COLLISION OPERATOR
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LOGISTIC EQUATION
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D1Q3 COLLISION
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MATRIX STRUCTURE OF THE 
COLLISION OPERATOR



CONTRIBUTIONS

CL of LBM (Caveat)
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NONLINEARITY OF STREAMING
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CONCURRENT LINEARITY OF 
STREAMING & COLLISION



CONTRIBUTIONS

QLE for LBM & its Analysis
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STREAMING OPERATOR
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HERMITICITY OF COLLISION 
HAMILTONIAN
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GATE DECOMPOSITION OF 
BOSONIC HAMILTONIAN
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QUANTUM LINEAR EMBEDDING 
ERROR
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QUANTUM LINEAR EMBEDDING 
ERROR
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QUANTUM LINEAR EMBEDDING 
COMPLEXITY
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QUANTUM LINEAR EMBEDDING 
COMPLEXITY



CONTRIBUTIONS

QML for LBM Collision
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BINARY VS. AMPLITUDE 
ENCODING

● Binary ● Modified Amplitude
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COMPATIBLITY WITH EXACT 
STREAMING



56

LOSS DEFINITION
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HARD-WIRED SYMMETRIES 
FOR DATA AUGMENTATION
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SYMMETRIES

● Scale Equivariance
● Rotation and reflection 

equivariance
● Mass and momentum invariance
● Positivity of discrete densities
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COLLISION ANSATZ
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COLLISION ANSATZ 
COMPLEXITY SCALING
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EVOLUTION OF THE PURITY OF 
THE BINARY ENCODING
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INCLUSION OF AN ANCILLA
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PHYSICS-INFORMED ANSATZ
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PHYSICS-INFORMED ANSATZ
WITH SYMMETRIES
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GENERAL (STRONG) ANSATZ
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ERROR PROPAGATION
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ERROR RATIO OF THE POST-
COLLISION VELOCITIES
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DEMONSTRATION WITH LID-
DRIVEN CAVITY



EPILOGUE

Summary of Key Contributions
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SUMMARY
● Physically justifying the Carleman

linearization of lattice Boltzmann
● Exactly linearizing the collision term 

and showing the convergence of error 
when streaming is considered

● Mapping the quantum linear 
embedding method to digital 
quantum computers 

● Developing the complexity and error 
analysis of quantum linear 
embedding in a finite Hilbert space

● Determining conditions of 
convergence of truncated linear 
embedding error for an arbitrary 

polynomial
● Developing the first quantum 

algorithm for lattice Boltzmann with 
unitary collision and streaming 

● Performing the first regression task in 
quantum machine learning with a 
binary encoding

● Using quantum machine learning to 
train a collision operator compatible 
with exact streaming

● Demonstrating that the linearization 
error and instabilities arise from the 
smallest velocities considered



EPILOGUE

Acknowledgements
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