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The Baum-Connes Conjecture for Groupoids

J. L. Tu

Abstract

This survey paper is a self-contained overview on the Baum-Connes
conjecture for locally compact groupoids.

Introduction

Let G be a locally compact, o-compact, Hausdorff groupoid with Haar system,
and C* (@) its reduced C*-algebra. The Baum—Connes conjecture states that a
certain map

o KIP(G) = K5 (C2(G) (5= 0,1)

i1s an isomorphism. The conjecture thus proposes a means of calculating K-
theory groups of algebras as diverse as C*-algebras of groups, of a group action
on a locally compact space or of a foliation. Some of its important applications
are described in [2]. In this survey paper, we shall focus more on aspects of the
conjecture which are specific to groupoids. The interested reader may wish to
consult [2, 4] for an introduction to the Baum—Connes conjecture for groups.

Assuming the reader is not familiar with groupoids, we start by introducing
basic definitions about groupoids and equivariant K K-theory in Sections 1 and
2, and give the definition of the assembly map in Section 3. Sections 4, 5 and 6
review important examples for which the conjecture is known to be true. The
end of the paper explores a few links with the coarse analogue of the conjecture.

1 Groupoids

1.1 General definitions

We introduce here a few basic definitions about groupoids. For more details,

see [20].

A groupoid is a small category in which all morphisms are invertible. In
practice, a groupoid 1s given by the following data:

o the set of objects G(%) also called the unit space;

e the set of morphisms G,



e an inclusion i: G(¥) — @ (in the sequel, G is considered as a subset of

G);

e “range” and “source” maps 7, s: G — G such that roi=s0i=1Id;

an involution G — G, denoted by g + ¢g~! such that r(g) = s(g~!) for
every g € G

e a partially defined product G2 — &, denoted by (g,h) — gh, where
G®?) :={(g,h) € G x G| s(g) = r(h)} is the set of composable pairs.

It 1s assumed that

e the product is associative, i.e. if (g,h) € G and (h, k) € G then the
products (gh)k and g(hk) are defined and equal;

o forall g € G, i(r(g))g = gi(s(9)) = 9;
o forall g € G, g7 = i(r(g)).

A groupoid is principal if (r,5): G = G x G(O) is injective.

A topological groupoid is a groupoid such that G and G(°) are topological
spaces and all maps appearing in the definition are continuous. The unit space
G is then identified with a topological subspace of G by the inclusion 7. A
locally compact, Hausdorff groupoid is said to be proper if (r,s): G — GO %G
is proper. G is called étale, or r-discrete, if the range map r: G — G() is a local
homeomorphism, z.e. if every x € G admits an open neighborhood such that
r(U) is an open subset of G(®) and r:U — #(U) is a homeomorphism. In this
case, s is also a local homeomorphism, as well as the composition map G2 — G
and G is an open subset of G.

Some notations will be used in the sequel: for all z, y € G let G, =
s7H(x), G® =r~Nx), GL =G, NGY. If A, B C G\9, one has similar notations
Ga, G2, GB. Note that G4 is a groupoid with space of units A, and G2 is a
group.

A list of examples follows:
Groups. A group G is a groupoid, with G(®) = {1} (the unit element).
Spaces. A space X is a groupoid, letting G = G(©) = X, r = s = Idx.
Equivalence relations. Let R C X x X be an equivalence relation on a set
X. Then R is endowed with the structure of a groupoid with unit space X,

range and source maps r(z,y) = #, s(x,y) = y, composition (z,y)(z,t) = (z,1)
if y = z, and inverse (z,y)~! = (y, z). In particular, X x X is a groupoid.



Transformation groups. More generally if a group I' acts on the right on a
space X, i.e. there 1s an anti-homomorphism « from T' to the group of permu-
tations of X, denoted by a(z) = zv, then one obtains a groupoid &, denoted
by X x T, as follows: as aset, G = X x I, G = X x {1} ~ X, r(z,7) = =,
s(z,y) = zv, (z,y)7t = (2v,77 1), (z,7)(27,v) = (z,7y'). If X is a topolog-
ical space, G a topological group and the action is continuous, then X x I' is
a topological groupoid, which is Hausdorff if X and G are. In that case, it is

étale if I" is discrete, principal if the action is free.

Fundamental groupoid. Let X be a topological space, and G be the set
of equivalence classes of paths ¢:[0,1] — X where ¢ and ¢ are identified if
and only if they are homotopic with fixed endpoints. G(®) ~ X is the set of
equivalence classes of constant paths on X. If ¢ is a path on X and g = [¢]
denotes its class in G, then r(g) = ¢(1), s(g) = ¢(0), g~ = [p~!], where
o~ (t) = (1 — 1), and [g][6] = [ * 0], where p * $(t) = p(21) for ¢ € [0,1/2]
and @ * (1) = ¢(2t — 1) for ¢t € [1/2,1]. G is called the fundamental groupoid
of X.

Foliations. Let (V| F) be a foliation. The holonomy groupoid G is the set of
equivalence classes of paths whose support is contained in one leaf, where two
paths are identified if (they have the same endpoints and) they define the same
holonomy element. Composition and inverse are defined in the same way as for
the fundamental groupoid. The space of units of G is V; if V is of dimension
n and the foliation of codimension ¢, then G 1s a differentiable groupoid of
dimension 2n —q. It is not Hausdorff in general. If 7" is a transversal that meets
all leaves of the foliation, then the restriction of the holonomy groupoid to 7' is
an étale groupoid equivalent to G'.

1.2 Actions of a groupoid on a space

Let G be a groupoid, and 7 a set. A right action of G on 7 is given by
(i) a map p: Z — GO called the source map;

(il) amap Zx g G ={(z,9) € ZxG| p(z) =r(9)} = Z, denoted by (z,9) —
zg, such that p(zg) = s(g), zp(#) = =z and (zg)h = z(gh) whenever the
products are defined.

A space endowed with an action of G is called a G-space. One obtains a groupoid
denoted by Z x GG, with underlying set 7 x GG, unit space 7 ~ {(z,p(z))| = € Z},
source and range maps s(z,g) = zg, r(z,9) = 2, inverse (z,9) " = (29,97 ) and
product (z,g)(zg,h) = (z,gh). Note that 7 x G is étale if G is.

The action is said to be free if Z x ( is principal. In the case of a continuous
action, if Z and (G are locally compact Hausdorff, the action is said to be proper

if Z % (G 1s proper. Z is then said to be a proper G-space.



1.3 Actions of a groupoid on a (*-algebra

Let X be a locally compact, Hausdorff space. A C(X)-algebra is a C*-algebra
endowed with a #-homomorphism 6: Cy(X) — Z(M(A)) (center of the multiplier
algebra of A) such that #(Cy(X))A = A. A continuous field of C*-algebras over
X is a C'(X)-algebra, but the converse does not hold in general.

If p: Y = X is a map between two locally compact, Hausdorff spaces and A
is a C'(X)-algebra, then p*A 1= A ®¢,(x) Co(Y) is a C(Y)-algebra. If r € X,
the fiber A, of A over x is defined by ;A where i;: {#} — X is the canonical
inclusion.

Let GG be a locally compact Hausdorff groupoid, and A a C(G(O))—algebra.
An action of G on A [17, 18] is given by an isomorphism of C(G)-algebras
a:s*A — r*A such that the morphisms ag: Ay () — A, (g) satisfy the relation
agoap = agy. A C*-algebra endowed with an action of G is called a G-algebra.
Note that if Z is a G-space, then a Z x (-algebra is at the same time a G-
algebra and a C'(7)-algebra, such that the two structures are compatible. A
G-algebra A is called proper if there exists a proper G-space Z such that A is a
7 x G-algebra. Of course, a G-space 7 is proper if and only if Cy(7) is a proper
G-algebra.

1.4 Actions of a groupoid on a Hilbert module

Let Y be a locally compact Hausdorff space, D a C(Y)-algebra and £ a D-
Hilbert module. For all y € Y, let & = £ ®@p Dy be the fiber of £ over y. If
&' is another D-module, Vy, € L£(&y, &) denotes V @p 1p,. If p:V" — YV is
a continuous map and Y is locally compact Hausdorff, then p*& denotes the
p* D-module £ @p p*D.

Let B be a G-algebra and £ be a B-module. Using the action of G on B,
r*& and s*& are endowed with structures of s*B-module. An action [17, 18]
of G on & is given by a unitary V € L(s*E,r*E) such that the unitaries V, €
L(Es(g),Er(g)) (9 € G) satisfy the relation V, Vi =V whenever (g, h) € elON

1.5 Haar systems

Definition 1.1 [20] Let G be a locally compact, o-compact, Hausdorff groupoid.
A Haar system on G is a family of positive measures A = {\*| x € G} such
that

(i) Vo € G, supp (\) = G;
(ii) Ve € GO, Yy € C.(G),

Mehoos [ ple)dxe) € 6
geG”
(iii) Yo,y € GV, Vg € GY, Yo € C.(G),

/  plamaxin) = / ORI



It is clear that étale groupoids are endowed with a Haar system, A" being
the counting measure on G* (x € G(O)). If a locally compact group I' acts on a
locally compact Hausdorff space X then, using a Haar measure on I' ~ G, one
obtains a Haar system on the groupoid X x I'. More generally, if a groupoid G
satisfying the properties of Definition 1.1 acts on a space 7, then the crossed-
product Z x GG has a Haar system.

1.6 Groupoid C*-algebras

For a finite groupoid, the set of formal sums >
with a product and an adjoint

O agu)(D baun) = > agbaugy

geG Oglig (ag € C) is endowed

geG heG (g,h)€GE)
. _
(E agug)” = E Agtg—1.
geG geEG

More generally, if GG is a locally compact, o-compact Hausdorff groupoid with
Haar system, C.(G) is a x-algebra with

prvle) = [ g v m)
heGrie)
¢ (9) = wlg7)
It is endowed with the norm ||¢||1 = sup(||¢llrt, [l¢™||z1) where
el = sup [ Jela)l (o).
z€GO) JgeG®

Let C*(G) be the enveloping C*-algebra [20]. Tt is represented (using left con-
volution) in the Cy(G(®))-Hilbert module L*(G) = (L*(Gy))pego; the closure
of its image in £(L*(G)) is called the reduced C*-algebra of G and is denoted
by C*(G).

Similarly, if G acts on a C*-algebra B, one constructs crossed-products BxG

and B x, (.

1.7 Cutoff functions

Let GG be a locally compact, o-compact Hausdorff groupoid with Haar system.
Then G is proper if and only if there exists a cutoff function for G [23, Propo-
sitions 6.10, 6.11], i.e. a continuous function ¢: G(®) — R such that

(i) For every K C G compact, supp(c) N s(GE) is compact.
(ii) For all x € GO, fgeGI c(s(g))dA"(g) = 1.



Suppose in addition that G(O)/G is compact (note that properness implies that
G(O)/G is locally compact, o-compact Hausdorff). Then the first condition just
means that supp(c) is compact; the function

g = /e(r(g))e(s(g))

in continuous with compact support, hence defines an element in C*(G) =
Cr(G). One checks that it is a projection, which is unique up to homotopy.
Hence, it defines a canonical element Ag € Ko(C*(G)).

2 K Kg-theory

In this section, G is a locally compact, o-compact, Hausdorff groupoid with Haar
system (cf. Definition 1.1). Let A and B be two G-algebras. Le Gall [17, 18]
constructs a group KKg(A, B) in the following way: An A, B-Kasparov G-
equivariant bimodule consists of a triple (&, ¢, F'), where £ is a G-equivariant
7 /2Z-graded B-module, ¢: A — L(£) is a G-equivariant *-homomorphism, and
F e L(€) is of degree 1 and satisfies, for all a« € A and &’ € r* A,
(i) a(F = F*) € K(£);
(i) a(F? —1) € K(&);
(i) [0, F] € K(£):
(iv) (V(s* F)V* = (r*F)) € r*K(E).
(V' denotes the unitary that defines the action of G on £.)
The group K K¢ (A, B), as in [13], is defined as the set of homotopy classes
of A, B-Kasparov G-equivariant bimodules. If G is a group, Le Gall’s K K-
theory is the same as Kasparov’s, and if G = X x I' is the crossed-product of
a space with a locally compact group, then KKg(A,B) = RKKrp(X; A, B).
K Kg-theory has essentially the same features as Kasparov’s functor, namely:

(i) KKg(A, B) is covariant (resp. contravariant) with respect to B (resp.
A).

(i) Let KKZ(A,B) = KKg(A, B ® Co(R?)). One has Bott periodicity
KKZ(A, B) = KKIY2(A, B).

(iii) For every G-algebra D, there is a natural transformation
oG p: KKa(A, B) — I(I(G(A®CD(G(D))D, B®CD(G(D))D).
(iv) There is a natural, associative product
KKg(A D) x KKg(D,B) > KKg(A, B),

compatible with o) . (in the obvious sense). The product of two ele-
ments o € KKg(A, D) and 8 € KKg(D, B) is denoted by a ®p S.



(v) There are descent morphisms

jo: KKg(A,B) — KK(AxG,Bx()
jorea: KKG(A,B) — KK(Ax,d, Bx,G),

compatible with the product.

The existence of a Haar system is needed only for the construction of js and
jG,red~

It would be desirable, but probably not exceedingly difficult, to write a
construction of K K¢ for locally compact groupoids which are not necessarily
Hausdorff, since holonomy groupoids of foliations are not Hausdorff in general.

3 The Baum—Connes Conjecture

In this section, G is a locally compact, o-compact, Hausdorff groupoid with
Haar system.

3.1 The classifying space for proper actions

A space EG is called the universal space for proper actions [2] if
(i) EG is a proper (locally compact o-compact Hausdorff) G-space.

(i1) For every proper (locally compact o-compact Hausdorff) G-space 7, there
exists a G-map Z — E(, and such a map is unique up to G-homotopy.

Such a space always exists; and is unique up to G-equivariant homotopy. For
instance [23, Proposition 6.15], one can take EG to be the set of positive mea-
sures g on G, such that s.p is a Dirac measure (on G")) and |u| € (1/2,1].
Note that this space is second countable if G is.

If G is a group which does not contain any non trivial compact subgroup
(e.g. a torsion-free discrete group), then EG is G-homotopically equivalent to
the ordinary classifying space EG.

3.2 Topological K-theory

Let B be a G-algebra. One defines the topological K-theory of G with coeffi-
cients in B as the inductive limit [2, Definition 9.1]
KP(G;B) =  lim KKXL(Co(Y),B).

YCEG
Y G-compact

When B = Cy(G("), the topological K-theory group of G is

KIP(G) = Jlim KEH(Co(Y), Co(G)).



If GG is a discrete group without torsion such that BG is compact and B = C,
then using EG = EG, one has KiOp(G) = KK (Co(EG),C) = KK*(Co(EG)
G,C) = KK*(C(BG),C), ie.

K!°P(G) = K, (BG)

is the K-homology of the topological space BG (hence the name “topological
K-theory”). Tt is in principle computable by means of exact sequences, pro-
vided a triangulation of BG is known. In contrast, K,(C*(G)) is a highly
non-commutative object.

3.3 The assembly map

If Y is a G-compact proper G-space, there are morphisms [2, Definition 3.8],
[23, Definition 5.1]

KEL(Co(Y), B) 25 KE(C*(Y % G), B xG) 2% K. (B« G)
(* = 0, 1). Passing to the inductive limit yields the assembly map (with coeffi-

cient B)
p KI°P(G; B) — Ko (B % G).

Similarly, there is a map uT:KiOp(G;B) — K.(B %, G). The Baum-Connes
conjecture with coefficients states that y, is an isomorphism. For B = CO(G(O)),
one has assembly maps without coefficients u:KiOp(G) — K.(C*(@)) and
ur:KiOp(G) — K.(C¥(G)). As seen above, the topological K-theory group
is in general easier to compute than the K-theory group of C(G), hence know-
ing that the assembly map is an isomorphism for a given groupoid G provides

a means of computing K. (C(G)).

4 The dual Dirac method

In this section, G is a locally compact, o-compact Hausdorff groupoid with Haar
system.

Proposition 4.1 Suppose there exist a proper G-algebra A and elements
ne KKg(Co(GO), 4),  De KKg(A4,Co(GY),

v € KKa(Co(G), Co(G))

such that n @4 D = v and p*y = 1 € KKueug(Co(EG), Co(EG)), where
p:EG — G is the source map for the action of G on EG. Then the element
~ 15 unique, in the sense that if v/, n', D' and A’ satisfy the same hypotheses,
then v = ~'.



Proof. Since p*y' = 1 and since, by the universal property of EG, A is a
EG % G-algebra, one has v/ Qg (aoy =1 Multiplying on the right by D, we
obtain v' @ ¢, () v = 7. By symmetry, we also have ¥ @¢, gy =7'. Since
the Kasparov product over Co(G(") is commutative, it follows that v =~'. O

If for a given groupoid G the condition of Proposition 4.1 is satisfied, we
shall say that GG has a 7 element. This is the same element as the one Kasparov
constructed for every connected locally compact group [13, Theorem 5.7].

Theorem 4.2 [253, 25] G has a v element, then the Baum—Connes maps with
coefficients p and p, are split injective.

Proof. (Sketch.) Suppose for simplicity that EG is G-compact. One con-
structs a map £: K. (B x G) — KiOp(G; B) as follows:

K. (BxG) P9 R (A9ey a0y B)G) ~ K Kuawa(Co(BG), ASc, o) B)

248 KK (Co(EG), B) = K'°P(G; B).

The isomorphism above is the generalized Green—Julg isomorphism, i.e. the
Baum-Connes isomorphism for the proper groupoid EG x . One then proves
that x is a left inverse for p. Similarly, g, admits a left inverse. The proof for
general EG is similar; see [23, Proposition 5.23] or [25, Theorem 2.2] for details.
O

In fact, a weaker assumption than the existence of 7 suffices to ensure injec-
tivity of p,:

Theorem 4.3 [25, Théoréme 5.24] Let G be a locally compact, o-compact
groupoid with Haar system. Suppose that for every G-compact subset Y of EG
there exist a G-compact subset Y’ of EG, a Y’ x G-algebra Ay and elements

ny € KKa(Co(G), Ay), Dy € KKa(Ay, Co(G))

such that the element vv = ny Qa, Dy of KKG(C'O(G(O)),C’O(G(O))) satisfies
py(vw) =1 in KKy g (Co(Y),Co(Y)) where py:Y — GO s the source map
of the action of G on'Y.

Then p and p, are injective.

It is known that for a discrete group G, injectivity of p implies the Novikov
conjecture on higher signatures. Proofs of the injectivity of u based on Theo-
rem 4.2 are constructive, in the sense that they require explicit constructions
of a C*-algebra A and K Kg-elements as in Proposition 4.1. In general, one
uses the existence of an action of the groupoid on some space with particular
geometric properties, like negative curvature. Examples will be shown in the
next sections.



Theorem 4.4 [23, Proposition 5.23][25, Theorem 2.2] If G has a v element,
and if y = 1 € KKg(Co(G), Co(G™)), then the Baum-Connes maps with
coefficients p and p, are isomorphisms, and G is K-amenable.

(For a definition and properties of K-amenability for groups, see [3, 11, 19];
for groupoids, see [24].) In particular, if ¥ = 1 then C*(G) and C}(G) have
the same K-theory. Consequently, for a group having property (T), if a v el-
ement exists then it cannot be equal to 1, and thus the Dual Dirac method
as formulated above won’t be helpful. Read [4, 9] for a discussion along these
lines. V. Lafforgue [16] circumvents that difficulty by constructing a bivari-
ant K-theory for Banach algebras. He proves in particular that discrete co-
compact subgroups of Sp(n, 1) satisfies the Baum—Connes conjecture (without
coefficients).

5 Non-positive curvature

It is known that a (locally compact o-compact) group G has an element 5 in
each of the following cases:

(i) G acts properly by isometries on a simply connected complete Riemannian
manifold with non-positive curvature [13, Theorem 5.3];

(i1) G is connected [13, Theorem 5.7];
(iii) G = GL,(K) where K is a local field [14].

Kasparov and Skandalis [15] introduced the concept of “bolic” space, which
generalizes non-positively curved simply connected complete Riemannian man-
ifolds, Euclidean buildings and hyperbolic spaces in the sense of Gromov. The
precise definition 1s

Definition 5.1 [15] A metric space (X,d) is said to be d-bolic if

(B1) ¥r > 0, AR > 0 such that for every quadruple x, y, z, t of X satisfying
d(z,y)+d(z,t) <rand d(x,z)+d(y,t) > R we have d(z,t)+d(y, z) < d(x, z)+
d(y,t) + 26;

(B2) There exists a map m: X x X — X such that for all x, y, = € X we have
2d(m(x,y), z) < (2d(x, 2)* + 2d(y, 2)* — d(x, y)*)'/? 4 46.

They showed:

Theorem 5.2 [15] If G is a locally compact group acting properly by isometries
on a discrete, bolic metric space with bounded geometry, then G satisfies the
conditions of Theorem 4.3. In particular, the Baum—Connes assembly map for
G s injective.

In the theorem above, a metric space 7 1s said to be of bounded geometry if
for every r > 0, there exists N(r) > 0 such that every ball in 7 of radius r has at

10



most N(r) elements. In particular, for a finitely generated, discrete hyperbolic
group in the sense of Gromov, i is injective and the Novikov conjecture holds.

In [23] is introduced the concept of bolic foliation [23, Définition 1.15]. Tt is
required that holonomy coverings of leaves constitute a family of d-bolic spaces,
with § independent of the leaf, and that in condition (B1), for each » > 0 a
common R > 0 can be chosen. Using the fact that the holonomy groupoid
of a foliation is equivalent to an étale one, it is proven [23, Théoréme 5.25]
that a bolic foliation (V| F') with V' compact and whose holonomy groupoid is
Hausdorff satisfies the conditions of Theorem 4.3, hence its assembly map p, is
injective.

6 Amenable groupoids

A locally compact, o-compact groupoid with Haar system @ is said to be (topo-
logically) amenable [1] if for every ¢ > 0 and every compact sets K C G, and
C C G there exists & € C.(G)4 such that

(i) forall z € C, [,. E(v)dN(v) = 1;
(ii) for all g € K, fveGs(g) [E(y) — E(gy) A () < e.

Let G be a groupoid. Recall [8] that a negative type function on G is a
function f: G — R such that

(i) figo =0.
(i) Yg € G, fg™") = flg)-

(iii) Given g1,9a2,...,9n € G all having the same range and Aj, Ao, ..., Ay €R
such that >~ Az = 0, we have Zf(gj_lgk)/\j/\k < 0.
Jk
Moreover, if (G is a locally compact o-compact groupoid, the following are equiv-

alent (ef [24]):

(i) There exists continuous negative type function f: G — Rsuch that (f,r,s): G —
R x GO x G is proper.

(ii) There is a continuous field of real Hilbert spaces (H),ego) over GI¥ with
an affine action of G by isometries, such that (f,r,s): G — R x G{®) x G(¥)
is proper, where the function f is defined by f(g) = |[0,(g) —g04(4)||. Here,
05 denotes the zero vector of the Hilbert space H,.

If these properties are satisfied, then ( is said to have Haagerup property.
Topologically amenable locally compact o-compact groupoids satisfy Haagerup
property [24]. Using the C*-algebra constructed by Higson and Kasparov [6], it
is proven in [24] that:

11



Theorem 6.1 If G has Haagerup property, then it has a v element and v = 1.
Therefore, G satisfies the Baum—Connes conjecture with coefficients and is K-
amenable.

This theorem is a strengthening of Higson and Kasparov’s: in [6] it is proven
that second countable, locally compact groups having Haagerup property satisfy
the Baum—Connes conjecture. Theorem 6.1 applies in particular to

e topologically amenable groupoids, and in particular amenable groups;
e Coxeter groups;

e SO(n,1), SU(n,1). The result for these groups was already known [12,
10].

7 Property A and uniform embedding

Recall that a discrete metric space X is said to be of bounded geometry if for
every r > 0 there exists N(r) > 0 such that every ball in X of radius r has
at most N(r) elements. Property A was introduced by Yu [27]. Let X be a
metric space with bounded geometry. It is said to have property A if for every
£ >0 and R > 0 there exists a family (§;),ex of elements of C.(X) and a real
number S > 0 such that

(i) for every x, &, is supported in B(z, S);
(ii) léx = &yllin(xy < € whenever d(z,y) < R.

Yu [27] observed that if X has property A, then it is uniformly embedded
into Hilbert space in the following sense:

Definition 7.1 Let X and Y be two metric spaces. A (not necessarily contin-
uous) function f: X =Y is said to be a uniform embedding if there exist two
non-decreasing function p1, p2: Ry — Ry such that

(i) lim, 00 p; (7“) = +00 (Z =1, 2);

(ii) for every x, ' € X,
pr(d(f(x), f(2"))) < d(x, ') < pa(d(f(x), [(2"))).

A space X is said to be uniformly embedded into Hilbert space if there exists a
uniform embedding f: X — 1*(IN).

Higson and Roe observed that in the case where X is the geometric realiza-
tion of a finitely generated discrete group T,

e I' has property A if and only if SI' x I' is amenable, where ST is the
Stone-Cech compactification of T'; this is also equivalent to the existence
of a compact space X on which I' acts amenably [7].

12



e If T has property A, then the Baum—-Connes map with coefficients p, for
T is injective and C*(T") is an exact C*-algebra [5].

It 1s conjectured that every discrete, countable metric space with bounded geom-
etry has property A. If the conjecture is true, then every discrete group satisfies
the Novikov conjecture and its reduced C*-algebra is exact.

The idea of Higson’s proof of the second point is first to take a compact
separable space Y on which I' acts amenably, prove that I' acts amenably on Y,
the space of probability measures on Y and consider the commutative diagram

K%P(T'; B) o

— K.(B %, I)

~
\ \

Hy

KCP(Y 1 [;B@ C(Y)) —— K. (B ® C(Y)) %, I)

That the left vertical map is an isomorphism results from the fact that Y is
F-contractible for every finite subgroup F' of I'. The bottom horizontal map is
an 1somorphism, thanks to Theorem 6.1. It follows that the top horizontal map
1s Injective.

That C*(T) is exact follows from the fact that it is a subalgebra of C'(5T) %, T,
which is nuclear if I' acts amenably on SI.

A proof along the same lines [22] shows that T is uniformly embedded into
Hilbert space if and only if ST x I' has Haagerup property, and that if it is the
case, then the Baum—Connes map with coefficients for I' is injective. We thus
have:

I' has property A< - A" x I' amenable

I'is uniformvl/y embedded _ B F has
into Hilbert space Haagerup property

[ injective

8 Relation to the coarse Baum—Connes conjec-
ture

Let X be a countable metric space with bounded geometry. A subset E of
X x X 1is called an entourage if d is bounded on F, i.e. if there exists R > 0
such that

V(z,y) € E, d(z,y) < R.

It can be shown that the spectrum of the algebra of bounded functions on X x X
whose support is an entourage can be endowed with a structure of groupoid,
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extending the one on X x X:

GX)=  |J EcpxxX),

E entourage

where §(X x X) is the Stone-Cech compactification of X x X and E is the
closure of F in #(X x X). The groupoid G(X) is étale, Hausdorff, locally
compact, o-compact, principal. Its unit space is 8X, hence 1t is not second
countable.

In the case X =T (finitely generated discrete group with any word metric),
the groupoid G(X) is ST x T'. Higson and Roe’s theorem [7] can be generalized
as follows:

Theorem 8.1 [22] Let X be a discrete metric space with bounded geometry.
o X has property A if and only if G(X) is amenable;
o X is uniformly embedded into Hilbert space if and only if G(X) has Haagerup
property.

A C*-algebra is associated to (X, d) as follows [21]: C*(X) is the closure of
the set of operators T' = (T4y ) (2,y)e x2 acting on 12(X)®1?(N) such that supp(T’)
is an entourage and Ty, € K for every (z,y) € X?. In other words, C*(X) is
generated by locally compact operators with bounded propagation.

The coarse homology group of X is defined as

KX.(X)= lim K.(Py(X))
d— 00
where Py(X) is the Rips’ complex of X, i.e. a subset F C X spans a simplex

in P4(X) if and only if its diameter is less or equal to d. An assembly map

KX (X) 2 K.(C*(X))
is defined, and conjectured to be an isomorphism for every discrete space with
bounded geometry [26].

It turns out [22] that C*(X) is isomorphic to the reduced crossed-product
of [*°(X,K) with G(X), and that the coarse assembly map identifies with the
Baum-Connes assembly map for the groupoid G(X) with coefficient [*° (X, K):

KX, (X) A

~ KL (C7(X)

~ ~

\% 1

KPP (G(X);1° (X, K)) —= K. (I (X, K) %, G(X)),

where the right vertical map is an isomorphism at the C*-algebra level. The
coarse Baum—Connes conjecture is thus put inside the framework of the conjec-
ture for groupoids.

Using Theorem 6.1, one gets a new proof of an earlier theorem by Yu:
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Theorem 8.2 [27] If X is uniformly embedded into Hilbert space, then the
coarse Baum—Connes map for X s an isomorphism.

In summary,

X has property A< - G(X) is amenable

X is uniformly embedded _____ G(X) has Haa

into Hilbert space gerup property

X satisfies the coarse
Baum-Connes conjecture.
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