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The Baum{Connes Conjecture for GroupoidsJ. L. TuAbstractThis survey paper is a self-contained overview on the Baum{Connesconjecture for locally compact groupoids.IntroductionLet G be a locally compact, �-compact, Hausdor� groupoid with Haar system,and C�r (G) its reduced C�-algebra. The Baum{Connes conjecture states that acertain map �r:Ktopj (G)! Kj(C�r (G)) (j = 0; 1)is an isomorphism. The conjecture thus proposes a means of calculating K-theory groups of algebras as diverse as C�-algebras of groups, of a group actionon a locally compact space or of a foliation. Some of its important applicationsare described in [2]. In this survey paper, we shall focus more on aspects of theconjecture which are speci�c to groupoids. The interested reader may wish toconsult [2, 4] for an introduction to the Baum{Connes conjecture for groups.Assuming the reader is not familiar with groupoids, we start by introducingbasic de�nitions about groupoids and equivariant KK-theory in Sections 1 and2, and give the de�nition of the assembly map in Section 3. Sections 4, 5 and 6review important examples for which the conjecture is known to be true. Theend of the paper explores a few links with the coarse analogue of the conjecture.1 Groupoids1.1 General de�nitionsWe introduce here a few basic de�nitions about groupoids. For more details,see [20].A groupoid is a small category in which all morphisms are invertible. Inpractice, a groupoid is given by the following data:� the set of objects G(0), also called the unit space;� the set of morphisms G; 1



� an inclusion i:G(0) ,! G (in the sequel, G(0) is considered as a subset ofG);� \range" and \source" maps r, s:G! G(0) such that r � i = s � i = Id;� an involution G ! G, denoted by g 7! g�1 such that r(g) = s(g�1) forevery g 2 G;� a partially de�ned product G(2) ! G, denoted by (g; h) 7! gh, whereG(2) := f(g; h) 2 G�Gj s(g) = r(h)g is the set of composable pairs.It is assumed that� the product is associative, i.e. if (g; h) 2 G(2) and (h; k) 2 G(2) then theproducts (gh)k and g(hk) are de�ned and equal;� for all g 2 G, i(r(g))g = gi(s(g)) = g;� for all g 2 G, gg�1 = i(r(g)).A groupoid is principal if (r; s):G! G(0) � G(0) is injective.A topological groupoid is a groupoid such that G and G(0) are topologicalspaces and all maps appearing in the de�nition are continuous. The unit spaceG(0) is then identi�ed with a topological subspace of G by the inclusion i. Alocally compact, Hausdor� groupoid is said to be proper if (r; s):G! G(0)�G(0)is proper. G is called �etale, or r-discrete, if the range map r:G! G(0) is a localhomeomorphism, i.e. if every x 2 G admits an open neighborhood such thatr(U ) is an open subset of G(0) and r:U ! r(U ) is a homeomorphism. In thiscase, s is also a local homeomorphism, as well as the composition mapG(2) ! Gand G(0) is an open subset of G.Some notations will be used in the sequel: for all x, y 2 G(0), let Gx =s�1(x), Gx = r�1(x), Gyx = Gx \Gy. If A, B � G(0), one has similar notationsGA, GA, GBA. Note that GAA is a groupoid with space of units A, and Gxx is agroup.A list of examples follows:Groups. A group G is a groupoid, with G(0) = f1g (the unit element).Spaces. A space X is a groupoid, letting G = G(0) = X, r = s = IdX .Equivalence relations. Let R � X �X be an equivalence relation on a setX. Then R is endowed with the structure of a groupoid with unit space X,range and source maps r(x; y) = x, s(x; y) = y, composition (x; y)(z; t) = (x; t)if y = z, and inverse (x; y)�1 = (y; x). In particular, X �X is a groupoid.2



Transformation groups. More generally if a group � acts on the right on aspace X, i.e. there is an anti-homomorphism � from � to the group of permu-tations of X, denoted by �
(x) = x
, then one obtains a groupoid G, denotedby X o �, as follows: as a set, G = X � �, G(0) = X � f1g ' X, r(x; 
) = x,s(x; 
) = x
, (x; 
)�1 = (x
; 
�1), (x; 
)(x
; 
0) = (x; 

0). If X is a topolog-ical space, G a topological group and the action is continuous, then X o � isa topological groupoid, which is Hausdor� if X and G are. In that case, it is�etale if � is discrete, principal if the action is free.Fundamental groupoid. Let X be a topological space, and G be the setof equivalence classes of paths ': [0; 1] ! X where ' and  are identi�ed ifand only if they are homotopic with �xed endpoints. G(0) ' X is the set ofequivalence classes of constant paths on X. If ' is a path on X and g = [']denotes its class in G, then r(g) = '(1), s(g) = '(0), g�1 = ['�1], where'�1(t) = '(1 � t), and ['][ ] = [' �  ], where ' �  (t) = '(2t) for t 2 [0; 1=2]and ' �  (t) =  (2t � 1) for t 2 [1=2; 1]. G is called the fundamental groupoidof X.Foliations. Let (V; F ) be a foliation. The holonomy groupoid G is the set ofequivalence classes of paths whose support is contained in one leaf, where twopaths are identi�ed if (they have the same endpoints and) they de�ne the sameholonomy element. Composition and inverse are de�ned in the same way as forthe fundamental groupoid. The space of units of G is V ; if V is of dimensionn and the foliation of codimension q, then G is a di�erentiable groupoid ofdimension 2n�q. It is not Hausdor� in general. If T is a transversal that meetsall leaves of the foliation, then the restriction of the holonomy groupoid to T isan �etale groupoid equivalent to G.1.2 Actions of a groupoid on a spaceLet G be a groupoid, and Z a set. A right action of G on Z is given by(i) a map p:Z ! G(0), called the source map;(ii) a map Z�G(0)G = f(z; g) 2 Z�Gj p(z) = r(g)g ! Z, denoted by (z; g) 7!zg, such that p(zg) = s(g), zp(z) = z and (zg)h = z(gh) whenever theproducts are de�ned.A space endowed with an action ofG is called aG-space. One obtains a groupoiddenoted by ZoG, with underlying set Z�G, unit space Z ' f(z; p(z))j z 2 Zg,source and range maps s(z; g) = zg, r(z; g) = z, inverse (z; g)�1 = (zg; g�1) andproduct (z; g)(zg; h) = (z; gh). Note that Z oG is �etale if G is.The action is said to be free if ZoG is principal. In the case of a continuousaction, if Z and G are locally compact Hausdor�, the action is said to be properif Z oG is proper. Z is then said to be a proper G-space.3



1.3 Actions of a groupoid on a C�-algebraLet X be a locally compact, Hausdor� space. A C(X)-algebra is a C�-algebraendowed with a �-homomorphism�:C0(X) ! Z(M (A)) (center of the multiplieralgebra of A) such that �(C0(X))A = A. A continuous �eld of C�-algebras overX is a C(X)-algebra, but the converse does not hold in general.If p:Y ! X is a map between two locally compact, Hausdor� spaces and Ais a C(X)-algebra, then p�A := A 
C0(X) C0(Y ) is a C(Y )-algebra. If x 2 X,the �ber Ax of A over x is de�ned by i�xA where ix: fxg ! X is the canonicalinclusion.Let G be a locally compact Hausdor� groupoid, and A a C(G(0))-algebra.An action of G on A [17, 18] is given by an isomorphism of C(G)-algebras�: s�A ! r�A such that the morphisms �g:As(g) ! Ar(g) satisfy the relation�g ��h = �gh. A C�-algebra endowed with an action of G is called a G-algebra.Note that if Z is a G-space, then a Z o G-algebra is at the same time a G-algebra and a C(Z)-algebra, such that the two structures are compatible. AG-algebra A is called proper if there exists a proper G-space Z such that A is aZoG-algebra. Of course, a G-space Z is proper if and only if C0(Z) is a properG-algebra.1.4 Actions of a groupoid on a Hilbert moduleLet Y be a locally compact Hausdor� space, D a C(Y )-algebra and E a D-Hilbert module. For all y 2 Y , let Ey = E 
D Dy be the �ber of E over y. IfE 0 is another D-module, Vy 2 L(Ey; E 0y) denotes V 
D 1Dy . If p:Y 0 ! Y isa continuous map and Y 0 is locally compact Hausdor�, then p�E denotes thep�D-module E 
D p�D.Let B be a G-algebra and E be a B-module. Using the action of G on B,r�E and s�E are endowed with structures of s�B-module. An action [17, 18]of G on E is given by a unitary V 2 L(s�E ; r�E) such that the unitaries Vg 2L(Es(g); Er(g)) (g 2 G) satisfy the relation VgVh = Vgh whenever (g; h) 2 G(2).1.5 Haar systemsDe�nition 1.1 [20] Let G be a locally compact, �-compact, Hausdor� groupoid.A Haar system on G is a family of positive measures � = f�xj x 2 G(0)g suchthat(i) 8x 2 G(0), supp (�x) = Gx;(ii) 8x 2 G(0), 8' 2 Cc(G),�('):x 7! Zg2Gx '(g) d�x(g) 2 Cc(G(0));(iii) 8x; y 2 G(0), 8g 2 Gyx, 8' 2 Cc(G),Zh2Gx '(gh) d�x(h) = Zh2Gy '(h) d�y(h):4



It is clear that �etale groupoids are endowed with a Haar system, �x beingthe counting measure on Gx (x 2 G(0)). If a locally compact group � acts on alocally compact Hausdor� space X then, using a Haar measure on � ' Gx, oneobtains a Haar system on the groupoid X o �. More generally, if a groupoid Gsatisfying the properties of De�nition 1.1 acts on a space Z, then the crossed-product Z oG has a Haar system.1.6 Groupoid C�-algebrasFor a �nite groupoid, the set of formal sums Pg2G agug (ag 2 C ) is endowedwith a product and an adjoint(Xg2G agug)(Xh2G bhuh) = X(g;h)2G(2) agbhugh(Xg2G agug)� = Xg2G �agug�1 :More generally, if G is a locally compact, �-compact Hausdor� groupoid withHaar system, Cc(G) is a �-algebra with' �  (g) = Zh2Gr(g) '(h) (h�1g) d�r(g)(h)'�(g) = '(g�1)It is endowed with the norm k'k1 = sup(k'kL1 ; k'�kL1) wherek'kL1 = supx2G(0) Zg2Gx j'(g)j d�x(g):Let C�(G) be the enveloping C�-algebra [20]. It is represented (using left con-volution) in the C0(G(0))-Hilbert module L2(G) = (L2(Gx))x2G(0) ; the closureof its image in L(L2(G)) is called the reduced C�-algebra of G and is denotedby C�r (G).Similarly, if G acts on a C�-algebraB, one constructs crossed-products BoGand B or G.1.7 Cuto� functionsLet G be a locally compact, �-compact Hausdor� groupoid with Haar system.Then G is proper if and only if there exists a cuto� function for G [23, Propo-sitions 6.10, 6.11], i.e. a continuous function c:G(0) ! R+ such that(i) For every K � G(0) compact, supp(c) \ s(GK ) is compact.(ii) For all x 2 G(0), Rg2Gx c(s(g)) d�x(g) = 1.5



Suppose in addition that G(0)=G is compact (note that properness implies thatG(0)=G is locally compact, �-compact Hausdor�). Then the �rst condition justmeans that supp(c) is compact; the functiong 7!pc(r(g))c(s(g))in continuous with compact support, hence de�nes an element in C�(G) =C�r (G). One checks that it is a projection, which is unique up to homotopy.Hence, it de�nes a canonical element �G 2 K0(C�(G)).2 KKG-theoryIn this section, G is a locally compact, �-compact, Hausdor� groupoid with Haarsystem (cf. De�nition 1.1). Let A and B be two G-algebras. Le Gall [17, 18]constructs a group KKG(A;B) in the following way: An A, B-Kasparov G-equivariant bimodule consists of a triple (E ; '; F ), where E is a G-equivariantZ=2Z-graded B-module, ':A! L(E) is a G-equivariant �-homomorphism, andF 2 L(E) is of degree 1 and satis�es, for all a 2 A and a0 2 r�A,(i) a(F � F �) 2 K(E);(ii) a(F 2 � 1) 2 K(E);(iii) [a; F ] 2 K(E);(iv) a0(V (s�F )V � � (r�F )) 2 r�K(E).(V denotes the unitary that de�nes the action of G on E .)The group KKG(A;B), as in [13], is de�ned as the set of homotopy classesof A, B-Kasparov G-equivariant bimodules. If G is a group, Le Gall's KKG-theory is the same as Kasparov's, and if G = X o � is the crossed-product ofa space with a locally compact group, then KKG(A;B) = RKK�(X;A;B).KKG-theory has essentially the same features as Kasparov's functor, namely:(i) KKG(A;B) is covariant (resp. contravariant) with respect to B (resp.A).(ii) Let KKnG(A;B) = KKG(A;B 
 C0(Rn)). One has Bott periodicityKKnG(A;B) = KKn+2G (A;B).(iii) For every G-algebra D, there is a natural transformation�G(0);D:KKG(A;B)! KKG(A
̂C0(G(0))D;B
̂C0(G(0))D):(iv) There is a natural, associative productKKG(A;D)�KKG(D;B) ! KKG(A;B);compatible with �G(0);� (in the obvious sense). The product of two ele-ments � 2 KKG(A;D) and � 2 KKG(D;B) is denoted by �
D �.6



(v) There are descent morphismsjG:KKG(A;B) ! KK(A o G;B oG)jG;red:KKG(A;B) ! KK(A or G;B or G);compatible with the product.The existence of a Haar system is needed only for the construction of jG andjG;red.It would be desirable, but probably not exceedingly di�cult, to write aconstruction of KKG for locally compact groupoids which are not necessarilyHausdor�, since holonomy groupoids of foliations are not Hausdor� in general.3 The Baum{Connes ConjectureIn this section, G is a locally compact, �-compact, Hausdor� groupoid withHaar system.3.1 The classifying space for proper actionsA space EG is called the universal space for proper actions [2] if(i) EG is a proper (locally compact �-compact Hausdor�) G-space.(ii) For every proper (locally compact �-compact Hausdor�) G-space Z, thereexists a G-map Z ! EG, and such a map is unique up to G-homotopy.Such a space always exists, and is unique up to G-equivariant homotopy. Forinstance [23, Proposition 6.15], one can take EG to be the set of positive mea-sures � on G, such that s�� is a Dirac measure (on G(0)) and j�j 2 (1=2; 1].Note that this space is second countable if G is.If G is a group which does not contain any non trivial compact subgroup(e.g. a torsion-free discrete group), then EG is G-homotopically equivalent tothe ordinary classifying space EG.3.2 Topological K-theoryLet B be a G-algebra. One de�nes the topological K-theory of G with coe�-cients in B as the inductive limit [2, De�nition 9.1]Ktop� (G;B) = limY�EGY G-compactKK�G(C0(Y ); B):When B = C0(G(0)), the topological K-theory group of G isKtop� (G) = limY�EGY G-compactKK�G(C0(Y ); C0(G(0))):7



If G is a discrete group without torsion such that BG is compact and B = C ,then using EG = EG, one has Ktop� (G) = KK�G(C0(EG); C ) = KK�(C0(EG)oG; C ) = KK�(C(BG); C ), i.e.Ktop� (G) = K�(BG)is the K-homology of the topological space BG (hence the name \topologicalK-theory"). It is in principle computable by means of exact sequences, pro-vided a triangulation of BG is known. In contrast, K�(C�(G)) is a highlynon-commutative object.3.3 The assembly mapIf Y is a G-compact proper G-space, there are morphisms [2, De�nition 3.8],[23, De�nition 5.1]KK�G(C0(Y ); B) jG�! KK�(C�(Y o G); B oG) �YoG
��! K�(B o G)(� = 0; 1). Passing to the inductive limit yields the assembly map (with coe�-cient B) �:Ktop� (G;B)! K�(B oG):Similarly, there is a map �r:Ktop� (G;B) ! K�(B or G). The Baum{Connesconjecture with coe�cients states that �r is an isomorphism. For B = C0(G(0)),one has assembly maps without coe�cients �:Ktop� (G) ! K�(C�(G)) and�r :Ktop� (G) ! K�(C�r (G)). As seen above, the topological K-theory groupis in general easier to compute than the K-theory group of C�r (G), hence know-ing that the assembly map is an isomorphism for a given groupoid G providesa means of computing K�(C�r (G)).4 The dual Dirac methodIn this section, G is a locally compact, �-compact Hausdor� groupoid with Haarsystem.Proposition 4.1 Suppose there exist a proper G-algebra A and elements� 2 KKG(C0(G(0)); A); D 2 KKG(A;C0(G(0)));
 2 KKG(C0(G(0)); C0(G(0)))such that � 
A D = 
 and p�
 = 1 2 KKEGoG(C0(EG); C0(EG)), wherep:EG! G(0) is the source map for the action of G on EG. Then the element
 is unique, in the sense that if 
0, �0, D0 and A0 satisfy the same hypotheses,then 
 = 
0. 8



Proof. Since p�
0 = 1 and since, by the universal property of EG, A is aEGoG-algebra, one has 
0 
C0(G(0)) � = �. Multiplying on the right by D, weobtain 
0
C0(G(0)) 
 = 
. By symmetry, we also have 
 
C0(G(0)) 
0 = 
0. Sincethe Kasparov product over C0(G(0)) is commutative, it follows that 
 = 
0.If for a given groupoid G the condition of Proposition 4.1 is satis�ed, weshall say that G has a 
 element. This is the same element as the one Kasparovconstructed for every connected locally compact group [13, Theorem 5.7].Theorem 4.2 [23, 25] G has a 
 element, then the Baum{Connes maps withcoe�cients � and �r are split injective.Proof. (Sketch.) Suppose for simplicity that EG is G-compact. One con-structs a map �:K�(B o G)! Ktop� (G;B) as follows:K�(BoG) �
jG(�B(�))�! K�((A
C0(G(0))B)oG) ' KKEGoG(C0(EG); A
C0(G(0))B)�
AD�! KKG(C0(EG); B) = Ktop� (G;B):The isomorphism above is the generalized Green{Julg isomorphism, i.e. theBaum{Connes isomorphism for the proper groupoid EGoG. One then provesthat � is a left inverse for �. Similarly, �r admits a left inverse. The proof forgeneral EG is similar; see [23, Proposition 5.23] or [25, Theorem 2.2] for details.In fact, a weaker assumption than the existence of 
 su�ces to ensure injec-tivity of �r :Theorem 4.3 [23, Th�eor�eme 5.24] Let G be a locally compact, �-compactgroupoid with Haar system. Suppose that for every G-compact subset Y of EGthere exist a G-compact subset Y 0 of EG, a Y 0 oG-algebra AY and elements�Y 2 KKG(C0(G(0)); AY ); DY 2 KKG(AY ; C0(G(0)))such that the element 
Y = �Y 
AY DY of KKG(C0(G(0)); C0(G(0))) satis�esp�Y (
Y ) = 1 in KKYoG(C0(Y ); C0(Y )) where pY :Y ! G(0) is the source mapof the action of G on Y .Then � and �r are injective.It is known that for a discrete group G, injectivity of � implies the Novikovconjecture on higher signatures. Proofs of the injectivity of � based on Theo-rem 4.2 are constructive, in the sense that they require explicit constructionsof a C�-algebra A and KKG-elements as in Proposition 4.1. In general, oneuses the existence of an action of the groupoid on some space with particulargeometric properties, like negative curvature. Examples will be shown in thenext sections. 9



Theorem 4.4 [23, Proposition 5.23][25, Theorem 2.2] If G has a 
 element,and if 
 = 1 2 KKG(C0(G(0)); C0(G(0))), then the Baum{Connes maps withcoe�cients � and �r are isomorphisms, and G is K-amenable.(For a de�nition and properties of K-amenability for groups, see [3, 11, 19];for groupoids, see [24].) In particular, if 
 = 1 then C�(G) and C�r (G) havethe same K-theory. Consequently, for a group having property (T), if a 
 el-ement exists then it cannot be equal to 1, and thus the Dual Dirac methodas formulated above won't be helpful. Read [4, 9] for a discussion along theselines. V. La�orgue [16] circumvents that di�culty by constructing a bivari-ant K-theory for Banach algebras. He proves in particular that discrete co-compact subgroups of Sp(n; 1) satis�es the Baum{Connes conjecture (withoutcoe�cients).5 Non-positive curvatureIt is known that a (locally compact �-compact) group G has an element 
 ineach of the following cases:(i) G acts properly by isometries on a simply connected complete Riemannianmanifold with non-positive curvature [13, Theorem 5.3];(ii) G is connected [13, Theorem 5.7];(iii) G = GLn(K) where K is a local �eld [14].Kasparov and Skandalis [15] introduced the concept of \bolic" space, whichgeneralizes non-positively curved simply connected complete Riemannian man-ifolds, Euclidean buildings and hyperbolic spaces in the sense of Gromov. Theprecise de�nition isDe�nition 5.1 [15] A metric space (X; d) is said to be �-bolic if(B1) 8r > 0, 9R > 0 such that for every quadruple x, y, z, t of X satisfyingd(x; y)+d(z; t) � r and d(x; z)+d(y; t) � R we have d(x; t)+d(y; z) � d(x; z)+d(y; t) + 2�;(B2) There exists a map m:X �X ! X such that for all x, y, z 2 X we have2d(m(x; y); z) � (2d(x; z)2 + 2d(y; z)2 � d(x; y)2)1=2 + 4�.They showed:Theorem 5.2 [15] If G is a locally compact group acting properly by isometrieson a discrete, bolic metric space with bounded geometry, then G satis�es theconditions of Theorem 4.3. In particular, the Baum{Connes assembly map forG is injective.In the theorem above, a metric space Z is said to be of bounded geometry iffor every r > 0, there exists N (r) > 0 such that every ball in Z of radius r has at10



most N (r) elements. In particular, for a �nitely generated, discrete hyperbolicgroup in the sense of Gromov, � is injective and the Novikov conjecture holds.In [23] is introduced the concept of bolic foliation [23, D�e�nition 1.15]. It isrequired that holonomy coverings of leaves constitute a family of �-bolic spaces,with � independent of the leaf, and that in condition (B1), for each r > 0 acommon R > 0 can be chosen. Using the fact that the holonomy groupoidof a foliation is equivalent to an �etale one, it is proven [23, Th�eor�eme 5.25]that a bolic foliation (V; F ) with V compact and whose holonomy groupoid isHausdor� satis�es the conditions of Theorem 4.3, hence its assembly map �r isinjective.6 Amenable groupoidsA locally compact, �-compact groupoid with Haar system G is said to be (topo-logically) amenable [1] if for every " > 0 and every compact sets K � G, andC � G(0) there exists � 2 Cc(G)+ such that(i) for all x 2 C, RGx �(
) d�x(
) = 1;(ii) for all g 2 K, R
2Gs(g) j�(
) � �(g
)j d�x(
) < ".Let G be a groupoid. Recall [8] that a negative type function on G is afunction f :G! R such that(i) fjG(0) = 0.(ii) 8g 2 G, f(g�1) = f(g).(iii) Given g1; g2; : : : ; gn 2 G all having the same range and �1; �2; : : : ; �n 2 Rsuch that P�k = 0, we haveXj;k f(g�1j gk)�j�k � 0.Moreover, if G is a locally compact �-compact groupoid, the following are equiv-alent (cf. [24]):(i) There exists continuous negative type function f :G! Rsuch that (f; r; s):G!R� G(0) � G(0) is proper.(ii) There is a continuous �eld of real Hilbert spaces (Hx)x2G(0) over G(0) withan a�ne action of G by isometries, such that (f; r; s):G! R�G(0)�G(0)is proper, where the function f is de�ned by f(g) = k0r(g)�g0s(g)k. Here,0x denotes the zero vector of the Hilbert space Hx.If these properties are satis�ed, then G is said to have Haagerup property.Topologically amenable locally compact �-compact groupoids satisfy Haagerupproperty [24]. Using the C�-algebra constructed by Higson and Kasparov [6], itis proven in [24] that: 11



Theorem 6.1 If G has Haagerup property, then it has a 
 element and 
 = 1.Therefore, G satis�es the Baum{Connes conjecture with coe�cients and is K-amenable.This theorem is a strengthening of Higson and Kasparov's: in [6] it is proventhat second countable, locally compact groups having Haagerup property satisfythe Baum{Connes conjecture. Theorem 6.1 applies in particular to� topologically amenable groupoids, and in particular amenable groups;� Coxeter groups;� SO(n; 1), SU (n; 1). The result for these groups was already known [12,10].7 Property A and uniform embeddingRecall that a discrete metric space X is said to be of bounded geometry if forevery r > 0 there exists N (r) > 0 such that every ball in X of radius r hasat most N (r) elements. Property A was introduced by Yu [27]. Let X be ametric space with bounded geometry. It is said to have property A if for every" > 0 and R > 0 there exists a family (�x)x2X of elements of Cc(X) and a realnumber S > 0 such that(i) for every x, �x is supported in B(x; S);(ii) k�x � �ykl1(X) < " whenever d(x; y) � R.Yu [27] observed that if X has property A, then it is uniformly embeddedinto Hilbert space in the following sense:De�nition 7.1 Let X and Y be two metric spaces. A (not necessarily contin-uous) function f :X ! Y is said to be a uniform embedding if there exist twonon-decreasing function �1, �2:R+! R+ such that(i) limr!1 �i(r) = +1 (i = 1; 2);(ii) for every x, x0 2 X,�1(d(f(x); f(x0))) � d(x; x0) � �2(d(f(x); f(x0))):A space X is said to be uniformly embedded into Hilbert space if there exists auniform embedding f :X ! l2(N).Higson and Roe observed that in the case where X is the geometric realiza-tion of a �nitely generated discrete group �,� � has property A if and only if �� o � is amenable, where �� is theStone{�Cech compacti�cation of �; this is also equivalent to the existenceof a compact space X on which � acts amenably [7].12



� If � has property A, then the Baum{Connes map with coe�cients �r for� is injective and C�r (�) is an exact C�-algebra [5].It is conjectured that every discrete, countable metric space with bounded geom-etry has property A. If the conjecture is true, then every discrete group satis�esthe Novikov conjecture and its reduced C�-algebra is exact.The idea of Higson's proof of the second point is �rst to take a compactseparable space Y on which � acts amenably, prove that � acts amenably on �Y ,the space of probability measures on Y and consider the commutative diagramKtop� (�;B) �r //'
��

K�(B or �)
��Ktop� ( �Y o �;B 
C( �Y )) �r // K�((B 
C( �Y )) or �)That the left vertical map is an isomorphism results from the fact that �Y isF -contractible for every �nite subgroup F of �. The bottom horizontal map isan isomorphism, thanks to Theorem 6.1. It follows that the top horizontal mapis injective.That C�(�) is exact follows from the fact that it is a subalgebra ofC(��)or�,which is nuclear if � acts amenably on ��.A proof along the same lines [22] shows that � is uniformly embedded intoHilbert space if and only if �� o � has Haagerup property, and that if it is thecase, then the Baum{Connes map with coe�cients for � is injective. We thushave: � has property Aks +3

��

�� o � amenable
��� is uniformly embeddedinto Hilbert space ks +3 ��o � hasHaagerup property
��� injective8 Relation to the coarse Baum{Connes conjec-tureLet X be a countable metric space with bounded geometry. A subset E ofX � X is called an entourage if d is bounded on E, i.e. if there exists R > 0such that 8(x; y) 2 E; d(x; y) � R:It can be shown that the spectrum of the algebra of bounded functions onX�Xwhose support is an entourage can be endowed with a structure of groupoid,13



extending the one on X �X:G(X) = [E entourage �E � �(X �X);where �(X � X) is the Stone{�Cech compacti�cation of X � X and �E is theclosure of E in �(X � X). The groupoid G(X) is �etale, Hausdor�, locallycompact, �-compact, principal. Its unit space is �X, hence it is not secondcountable.In the case X = � (�nitely generated discrete group with any word metric),the groupoid G(X) is ��o �. Higson and Roe's theorem [7] can be generalizedas follows:Theorem 8.1 [22] Let X be a discrete metric space with bounded geometry.� X has property A if and only if G(X) is amenable;� X is uniformly embedded into Hilbert space if and only if G(X) has Haagerupproperty.A C�-algebra is associated to (X; d) as follows [21]: C�(X) is the closure ofthe set of operators T = (Txy)(x;y)2X2 acting on l2(X)
l2(N) such that supp(T )is an entourage and Txy 2 K for every (x; y) 2 X2. In other words, C�(X) isgenerated by locally compact operators with bounded propagation.The coarse homology group of X is de�ned asKX�(X) = limd!1K�(Pd(X))where Pd(X) is the Rips' complex of X, i.e. a subset F � X spans a simplexin Pd(X) if and only if its diameter is less or equal to d. An assembly mapKX�(X) A�! K�(C�(X))is de�ned, and conjectured to be an isomorphism for every discrete space withbounded geometry [26].It turns out [22] that C�(X) is isomorphic to the reduced crossed-productof l1(X;K) with G(X), and that the coarse assembly map identi�es with theBaum{Connes assembly map for the groupoid G(X) with coe�cient l1(X;K):KX�(X) A //'
��

K�(C�(X))'
��Ktop� (G(X); l1(X;K)) �r // K�(l1(X;K)or G(X));where the right vertical map is an isomorphism at the C�-algebra level. Thecoarse Baum{Connes conjecture is thus put inside the framework of the conjec-ture for groupoids.Using Theorem 6.1, one gets a new proof of an earlier theorem by Yu:14



Theorem 8.2 [27] If X is uniformly embedded into Hilbert space, then thecoarse Baum{Connes map for X is an isomorphism.In summary,X has property Aks +3

��

G(X) is amenable
��X is uniformly embeddedinto Hilbert space ks +3 G(X) has Haagerup property
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