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Abstract

We consider pairs (C,E), where C is a pointed category and E a class of regular/normal

epimorphisms in C, satisfying various exactness properties. The purpose of this thesis is:

1. To introduce and study suitable notions of a relative homological and a relative semi-

abelian category. In the “absolute case”, where E is the class of all regular epimorphisms in

C, the pair (C,E) is relative homological/semi-abelian if and only if C is homological/semi-

abelian; that is, we obtain known concepts. Accordingly we extend known analysis of the

axiom systems, and in particular show that suitable lists of “old style” and “new style” ax-

ioms are equivalent; this requires developing a relative version of what is usually called the

calculus of relations. We then present various non-absolute examples, where these results

can be applied.

2. To formulate and prove relative versions of classical homological lemmas; this includes

Five Lemma, Nine Lemma, and Snake Lemma.
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Introduction

The title of the thesis (“Foundation of relative non-abelian homological algebra”) is sug-

gested by classical work of S. Eilenberg and J. C. Moore [14]. Relative homological algebra

in abelian categories also appears in the first two books in homological algebra, namely in

[12] and [30], and in a number of papers of many students and followers of Samuel Eilen-

berg and Saunders Mac Lane. The term non-abelian has several meanings; here it means

“suitable for non-abelian groups, or rings, or algebras”. Accordingly, the non-abelian cate-

gories of our interest include semi-abelian categories in the sense of G. Janelidze, L. Márki,

and W. Tholen [23], and, more generally, homological categories in the sense of F. Borceux

and D. Bourn [3] and protomodular categories in the sense of D. Bourn [6]. On the other

hand, the term relative refers, just as in the abelian case, to a distinguished class E of

regular/normal epimorphisms in the ground category C - in contrast to the absolute case,

where the role of E is played by the class of all regular epimorphisms in C. And in fact

various axioms we impose on (C,E) make the ground category C semi-abelian or homolog-

ical only in the absolute case. In particular, we do not exclude the trivial case of C being

an arbitrary pointed category and E the class of isomorphisms in C. In the abelian case

this approach goes back to N. Yoneda [34], whose quasi-abelian categories can in fact be

defined as pairs (C,E) where C is an additive category in which the short exact sequences

K → A → B with A → B in E have the same properties as all short exact sequences in an

abelian category.

The purpose of the thesis is two-fold:

1. Detailed study of axiom systems for relative semi-abelian and relative homological cat-

egories; the aim was to obtain the relative versions of the results of [23] for semi-abelian

categories and of homological categories. For, we develop the calculus of E-relations which
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easily follows its well-known “absolute version”, in which E is the class of all regular epi-

morphisms in C (see e.g. [10]). Those results of [23], symbolically expressed as OLD=NEW,

actually have a long history behind them, which begins with Mac Lane’s famous “Duality for

Groups” [29]: After observing that several basic concepts in group theory can be described

in abstract categorical terms, making some of them dual to each other, Mac Lane proposes a

number of fundamental categorical constructions to be used in developing categorical group

theory. He then says: “A further development can be made by introducing additional care-

fully chosen dual axioms. This will be done below only in the more symmetrical abelian

case” The “careful choice” took more than fifteen years of many researchers, who arrived

to a “very non-dual” list of non-abelian axioms, which produced categorical versions of

many known results, especially in homological algebra and Kurosh-Amitsur radical theory;

at the same time it seemed to be too technical, and eventually was nearly ignored and/or

forgotten. The development of topos theory in the sixties/seventies strongly supports a

new approach in categorical algebra that arrives to Barr exact categories [1]. A Barr exact

category is abelian whenever it is additive; yet, every variety of universal algebras is Barr

exact, making the old and new approaches seemingly incomparable. The new concept of a

protomodular category, due to Bourn (see [6]), which turned out to be the “missing link”,

is introduced only in 1990, i.e. after twenty years. And the main conclusion of [23] is that

a pointed category satisfies the old forgotten axioms if and only if is Barr exact and Bourn

protomodular, and has finite coproducts. Such categories were called semi-abelian for two

reasons: (a) a category C is abelian if and only if both C and its dual category Cop are

semi-abelian; (b) a Barr exact category is semi-abelian if and only if it admits semidirect

products in the sense of D. Bourn and G. Janelidze [8], and then it is abelian if and only

if its semidirect products are (direct) products. Accordingly, the present work in fact deals

with a number of categorical axioms and exactness properties studied by various authors

for many years, and it involves relativisation of both old and new axioms systems.

2. The study of relative versions of the so-called classical homological lemmas, especially

the Five Lemma, Nine Lemma, and Snake Lemma. The absolute versions are well-known

in the abelian case, and in the non-abelian case given in [3]. The proof of the Snake Lemma

that we give involves partial composition of internal relations in C and goes back at least

to S. Mac Lane [28] (see also e.g. [10] for the so-called calculus of relations in regular cate-

gories).
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The thesis consists of the following chapters:

Chapter 1: We begin with recalling the relevant properties of regular and normal epi-

morphisms, and then give a brief overview of regular, Barr exact [1], Bourn protomodular

[6], homological [3], and semi-abelian [23] categories (see also [2]).

Chapter 2: We develop what we call a relative calculus of relations. That is: for a pair

(C,E), in which C is a pointed category and E is a class of regular epimorphisms in C

satisfying certain conditions, we study the relations (R, r1, r2) : A → B in C having the

morphisms r1 and r2 in E. Our calculus of E-relations extends its well-known “absolute

version”, in which E is the class of all regular epimorphisms in C (see e.g. [10]).

Chapter 3: In the first section we introduce a notion of incomplete relative homological

category in such a way that we have:

(a) “Trivial Case”: (C, Isomorphisms in C) is an incomplete relative homological category

for every pointed category C;

(b) “Absolute Case”: (C, Regular epimorphisms in C) is an incomplete relative homo-

logical category if and only if C is a homological category in the sense of [3].

In the second section we consider the special case of C being finitely complete and co-

complete, and define a relative homologcial category accordingly. In the third section we

consider various examples.

Chapter 4: We extend Five Lemma, Nine Lemma, and Snake Lemma to the context of

incomplete relative homological categories. The proofs follow the proofs given in [3], al-

though the proof of Snake Lemma (as already mentioned) substantially uses the calculus of

E-relations described in Chapter 2.

Chapter 5: In the first section we introduce a notion of incomplete relative semi-abelian

category in such a way that we have:

(a) “Trivial Case”: (C, Isomorphisms in C) is an incomplete relative semi-abelian cate-

gory for every pointed category C;

3
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(b) “Absolute Case”: (C, Regular epimorphisms in C) is an incomplete relative semi-

abelian category if and only if C is a semi-abelian category in the sense of [23];

(c) A relative semi-abelian category (C,E) is an incomplete relative homological category

in which: (i) every equivalence E-relation is E-effective (i.e. every equivalence E-

relation is the kernel pair of some morphism in E); (ii) if a morphism f : A → B is in

E then the coproduct Ker(f) + B exists in C.

And, we prove the (incomplete) relative version of the main result of [23], which asserts

that the “old-style” axioms and the “new-style” axioms for the semi-abelian categories are

equivalent. For, we again use the calculus of E-relations described in Chapter 2. In the

second section we consider the special case of C being finitely complete and cocomplete,

and define a relative semi-abelian category accordingly. In the third section we consider

various examples.

The results obtained appear as the three papers [24], [25], [26], and the fourth paper [27] is

submitted for the publication.

4
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Chapter 1

Preliminaries

1.1 Regular and normal epimorphisms

Definition 1.1.1. A morphism f : A → B in a category C is said to be a regular epimor-

phism, if it is the coequalizer of some pair of parallel morphisms in C.

Proposition 1.1.2. In a category C with kernel pairs, every regular epimorphism is the

coequalizer of its kernel pair.

Proposition 1.1.3. Let C be a category with pullbacks. The composite gf of regular epi-

morphisms f : A → B and g : B → C in C is a regular epimorphism whenever f is

a pullback stable epimorphism. In particular, the class of pullback stable regular epimor-

phisms in C is closed under composition.

Proof. Let f : A → B and g : B → C be regular epimorphisms in C, and let (f1, f2),

(g1, g2), and (h1, h2) be the kernel pairs of f , g, and gf respectively. To prove that gf is

a regular epimorphism it suffices to prove that gf is the coequalizer of h1 and h2. For,

consider the commutative diagram

A×CA

h1

²²

h2

²²

f̄ // B×CB

g1

²²

g2

²²
A×BA

f1 //
f2

//

h̄

::

A
f //

h′

²²

B
g //

b

zz

C

c

uu
C ′

5
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in which:

- f̄ = 〈fh1, fh2〉 is the canonical morphism, i.e. since (g1, g2) is the kernel pair of g and

gfh1 = gfh2, there exists a unique morphism f̄ : A×CA → B×CB with g1f̄ = fh1

and g2f̄ = fh2;

- h′ : A → C ′ is any morphism with h′h1 = h′h2;

- h̄ = 〈f1, f2〉 is the canonical morphism, i.e. since (h1, h2) is the kernel pair of gf and

gff1 = gff2, there exists a unique morphism h̄ : A ×B A → A ×C A with h1h̄ = f1

and h2h̄ = f2, yielding h′f1 = h′h1h̄ = h′h2h̄ = h′f2;

- Since f is the coequalizer of f1 and f2, and h′f1 = h′f2, there exists a unique morphism

b : B → C ′ with bf = h′.

We have to show that there exists a unique morphism c : C → C ′ with cgf = h′ (since gf is

an epimorphism we do not need to prove the uniqueness of c), but since g is the coequalizer

of g1 and g2, it is sufficient to show that bg1 = bg2.

It is easy to see that the morphism f̄ : A×CA → B×CB is the composite of the

canonical morphisms 〈fh1, h2〉 : A×CA → B×CA and 〈π1, fπ2〉 : B×CA → B×CB, where

(B×CA, π1, π2) is the pullback of g and gf . Then, since f is a pullback stable epimorphism,

we obtain that the morphisms 〈fh1, h2〉 and 〈π1, fπ2〉 are epimorphisms, and therefore their

composite f̄ also is an epimorphism. We have:

bg1f̄ = bfh1 = h′h1 = h′h2 = bfh2 = bg2f̄ ,

and since f̄ is an epimorphism we conclude that bg1 = bg2, as desired.

Proposition 1.1.4. Let C be a category with pullbacks. If the composite gf of f : A → B

and g : B → C in C is a regular epimorphism, then so is the morphism g if any one of the

following conditions hold:

(i) f is an epimorphism;

(ii) gf is a pullback stable epimorphism.

6
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Proof. Under the condition (i), consider the following diagram

A×CA

h1

²²

h2

²²

f̄ // B×CB

g1

²²

g2

²²
A

f
// B

g //

g′

""FFFFFFFFFFFFFF C

c

²²
C ′

where (g1, g2) is the kernel pair of g, (h1, h2) is the kernel pair of gf , f̄ is the canonical

morphism, and g′ : B → C ′ is any morphism with g′g1 = g′g. To prove that g is a regular

epimorphism it suffices to prove that g is the coequalizer of g1 and g2; hence, we need

prove the existance of a unique morphism c : C → C ′ such that cg = g′. Since gf is the

coequalizer of h1 and h2, the equalities

(g′f)h1 = g′g1f̄ = g′g2f̄ = (g′f)h2

imply the existance of a unique morphism c : C → C ′ with c(gf) = g′f . Since f is an

epimorphism, the last equality implies cg = g′; and, since gf is an epimorphism, such c is

unique.

Next, suppose condition (ii) holds instead of condition (i). Consider the pullback dia-

gram

B×CA
π2 //

π1

²²

A

gf

²²
B g

// C

we have:

- Since π2 can be obtained as a pullback of the pullback of g along g, it is a split

epimorphism, and hence a pullback stable regular epimorphism;

- Since gf is a regular epimorphism and π2 is a pullback stable regular epimorphism,

by Proposition 1.1.3, gπ1 = gfπ2 is a regular epimorphism;

- Since gf is a pullback stable epimorphism, π1 also is an epimorphism.

7
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Since π1 is an epimorphism and gπ1 is a regular epimorphism, the first part of the proof

implies that g is an epimorphism, as desired.

Definition 1.1.5. A morphism f : A → B in a category C is said to be a strong epimor-

phism, if for every commutative diagram of the form

A

g

²²

f // B

h

²²
C m

// D

(1.1)

where m is a monomorphism, there exists a unique morphism β : B → C with βf = g and

mβ = h.

As easily follows from Definition 1.1.5, if a category C has equalizers then every regular

epimorphism is strong. Indeed, if f : A → B is a regular epimorphism in C, then it is the

coequalizer of some pair of parallel morphisms (f1, f2). For any commutative diagram (1.1)

with a monomorphism m, we have gf1 = gf2, therefore there exists a unique morphism

β : B → C with βf = g; and mβ = h since mβf = hf and f is an epimorphism.

Definition 1.1.6. A morphism f : A → B in a category C is said to be a normal epimor-

phism, if it the cokernel of some morphism in C.

Proposition 1.1.7. In a category C with kernels, every normal epimorphism is the cokernel

of its kernel.

Using the same arguments as in the proofs of Proposition 1.1.3 and Proposition 1.1.4

we can prove the following:

Proposition 1.1.8. Let C be a category with pullbacks. The composite gf of normal

epimorphisms f : A → B and g : B → C in C is a normal epimorphism whenever f is a

pullback stable epimorphism. In particular, the class of pullback stable normal epimorphisms

in C is closed under composition.

Proposition 1.1.9. Let C be a category with pullbacks. If the composite gf of f : A → B

and g : B → C in C is a normal epimorphism, then so is the morphism g if any one of the

following conditions hold:

(i) f is an epimorphism;

(ii) gf is a pullback stable epimorphism.

8
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1.2 Regular and Barr exact categories

Definition 1.2.1. A category C is said to be regular (see e.g. [2]), if:

(a) C has finite limits;

(b) C has a pullback stable (regular epi, mono)-factorization system.

If a morphism f in any category C factors as f = me in which e is a regular epimorphism

and m is a monomorphism, then e is the coequalizer of the kernelpair of f , provided that

the latter exists. And, conversely, if e is the coequalizer of the kernelpair of f and m is the

morphism with f = me, then m is a monomorphism if the regular epimorphisms in C are

pullback stable. Therefore, we have:

Proposition 1.2.2. Let C be a category with finite limits. The following conditions are

equivalent:

(i) C has a pullback stable (regular epi, mono)-factorization system.

(ii) (a) C has coequlizers of kernel pairs;

(b) Regular epimorphisms in C are pullback stable.

Regular categories admit a good calculus of relations (see e.g. [10]): Recall, that a

relation R from an object A to an object B in C, written as R : A → B, is a subobject

〈r1, r2〉 : R → A×B, where 〈r1, r2〉 is the canonical morphism from R to the product A×B

induced by r1 : R → A and r2 : R → B; as subobjects, the relations from A to B form

an ordered set with finite meets. Equivalently, we can define a relation R : A → B as a

triple (R, r1, r2) in which R is an object in C and r1 and r2 are jointly monic morphisms.

For the given relations (R, r1, r2) : A → B and (S, s1, s2) : B → C the composite SR is the

relation from A to C defined as the mono part of the (regular epi, mono)-factorization of

the morphism 〈r1p1, s2p2〉 : R ×B S → A × C, where (R ×B S, p1, p2) is the pullback of r2

9
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and s1:

R×B S

e

²²

p1

{{wwwwwwwwww
p2

##GGGGGGGGGG

R
r1

ÄÄ~~
~~

~~
~~

r2

##HH
HH

HH
HH

HH
H SR

m

$$

t1vv t2 ((

S

s1{{ww
ww

ww
ww

ww
w

s2

ÂÂ?
??

??
??

?

A B C

A× C

π1

hhQQQQQQQQQQQQQQQQQ π2

66mmmmmmmmmmmmmmmm

That is, the composite of the relations R : A → B and S : B → C is the subobject

SR → A × C, i.e. it is the triple (SR, t1, t2) where t1 = π1m and t2 = π2m and π1 and

π2 are the first and the second product projections of A × C respectively; regularity of C

implies that such a composition is associative.

Recall, that a relation R : A → A in a regular category C is said to be an equivalence

relation if it is reflexive, symmetric, and transitive, i.e. 1A ≤ R, R◦ ≤ R, and RR ≤ R. It

is easy to see that for a given morphism f : A → B, the kernelpair of f is an equivalence

relation from A to A (for more details about the relations in a regular category see also

[11]).

Theorem 1.2.3. For a regular category the following conditions are equivalent, and define

a Mal’tsev category:

(a) For equivalence relations R and S on an object A, the relation SR is an equivalence

relation.

(b) For such equivalence relations we have SR = RS.

(c) Every relation R : A → B is difunctional; that is, RR◦R = R.

(d) Every reflexive relation is an equivalence relation.

(e) Every reflexive relation is transitive.

(e) Every reflexive relation is symmetric.

For the proof, see Theorem 3.6 of [10] (see also Theorem 1 of [15]).

Definition 1.2.4. A category C is said to be Barr-exact [1], if:

10
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(a) C is a regular category;

(b) Every equivalence relation in C is effective, i.e. it is the kernel pair of some morphism

in C.

Theorem 1.2.5 (Theorem 5.7 of [10]). A regular category C is an exact Mal’tsev category

if and only if, given regular epimorphisms r : A → B and s : A → C with a common

domain, their pushout

A

r

²²

s // C

v

²²
B u

// D

exists in C, and moreover, the canonical morphism 〈r, s〉 : A → B ×D C is a regular

epimorphism.

1.3 Protomodular categories

Let C be a category and B an object in C. Recall that PtC(B) = Pt(C ↓ B) is a category,

whose objects are triples (A, f, g), in which A is an object in C, and f : A → B and

g : B → A are morphisms in C satisfying fg = 1B. A morphism α : (A, f, g) → (A′, f ′, g′)

in PtC(B) is defined as a morphism α : A → A′ in C such that f ′α = f and αg = g′. Note

that if C has pullbacks, then every morphism v : B → B′ in C induces the pullback functor

v∗ : PtC(B′) → PtC(B) which pulls back f ′ of (A′, f ′, g′) along v.

Definition 1.3.1. A category C is said to be protomodular (in the sense of D. Bourn [6]),

if the following conditions hold:

(a) C has pullbacks;

(b) For every morphism v : B → B′ in C, the pullback functor v∗ : PtC(B′) → PtC(B)

reflects isomorphisms.

It is easy to see that if C has a zero object 0, then in Definition 1.3.1(b) it suffices to

consider the morphism 0B′ : 0 → B′ instead of an arbitrary morphism v : B → B′. Indeed:

in the presence of a zero object C, the category PtC(0) is isomorphic to the category C,

and since 0B′ = v0B, the reflection of isomorphisms 0∗B′ = 0∗Bv∗ implies the same for v∗.

Since pulling back f ′ : A′ → B′ along 0B′ is taking the kernel of f , we obtain the

following

11
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Corollary 1.3.2. If C is a category with pullbacks and a zero object, then C is protomodular

if and only if for every object B in C, the kernel functor kerB : PtC(B) → C reflects

isomorphisms.

This proves the following

Proposition 1.3.3. Let C be a category with pullbacks and a zero object. The following

conditions are equivalent:

(i) C is protomodular.

(ii) The Split Short Five Lemma holds true in C, that is: for every commutative diagram

K

u

²²

k // A
f //

w

²²

B

v

²²
K ′

k′
// A′

f ′
// B′

(3.1)

with k = ker(f), k′ = ker(f ′), and f and f ′ split epimorphisms, w is an isomorphisms

if u and v are isomorphisms.

Remark 1.3.4. If a protomodular category is also regular, then the Split Short Five Lemma

is equivalent to the Regular Short Five Lemma, which states: given the commutative diagram

(3.1) with k = ker(f) and k′ = ker(f ′), if f and f ′ are regular epimorphisms and u and v

are isomorphisms, then w is an isomorphism [6].

Proposition 1.3.5. If C is a pointed protomodular category with pullbacks, then:

(i) Every regular epimorphism in C is a normal epimorphism.

(ii) Every split epimorphism in C is a normal epimorphism.

Proof.

(i): Let f : A → B be a regular epimorphism in C, q = coker(ker(f)), and let (f1, f2)

and (q1, q2) be the kernel pairs of f and q respectively. It is a well known fact, that in

this situation the morphisms f1 and q1 (and also f2 and q2) are split epimorphisms, and

Ker(q1) ≈ Ker(f1). This gives us a commutative diagram

Ker(q1)
k′ //

≈
²²

A×QA

h

²²

q1 // A

Ker(f1)
k

// A×BA
f1

// A

12
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in which: Q = Coker(Ker(f)), k = ker(f1), k′ = ker(q1), h is the canonical morphism

between the pullbacks, and f1 and q1 are split epimorphisms. Hence, by protomodularity

we obtain that h is an isomorphism. Since f and q are regular epimorphisms and they have

isomorphic kernel pairs, we conclude that f is a normal epimorphism, as desired.

Since every split epimorphism is a regular epimorphism, (ii) follows directly from (i).

Theorem 1.3.6 (Proposition 3.1.19 of [3]). Any finitely complete protomodular category C

is a Mal’tsev category.

This statement was in fact first proved in [7].

1.4 Homological categories

Homological categories, according to [3], provide the most convenient setting for proving

non-abelian versions of various standard homological lemmas, such as the Five Lemma, the

3× 3-Lemma, and the Snake Lemma. We recall:

Definition 1.4.1 (Definition 4.1.1 of [3]). A category C is homological when

(a) C is pointed;

(b) C is regular;

(c) C is protomodular.

Or, equivalently, a category C is homological if and only if the following conditions hold:

(a) C has finite limits;

(b) C has a zero object;

(c) C has coequalizers of kernel pairs;

(d) Regular epimorphisms in C are pullback stable;

(e) The (Split) Short Five Lemma holds in C.

As usually, a sequence of morphisms

. . . // Ai−1
fi−1 // Ai

fi // Ai+1
// . . . (4.1)
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in a homological category C is said to be exact at Ai, if the mono part of the (regular epi,

mono)-factorization of fi−1 is the kernel of fi. And, (4.1) is said to be an exact sequence,

if it is exact at Ai for each i (unless the sequence either begins or ends with Ai).

Proposition 1.4.2 (Lemma 4.1.6 of [3]). In a pointed protomodular category C, in partic-

ular in a homological category, the sequence

0 // A
f // B

g // C // 0

is exact if and only if f = ker(g) and g is a regular epimorphism.

Proposition 1.4.3 (Proposition 4.1.9 of [3]). Let C be a homological category.

(i) The sequence

0 // A
f // B

is exact if and only if f is a monomorphism.

(ii) The sequence

0 // A
f // B

g // C

is exact if and only if f = ker(g).

(iii) The sequence

A
f // B // 0

is exact if and only if f is a regular epimorphism.

(iv) The sequence

A
f // B

g // C // 0

is exact if and only if g = coker(f).

We now recall the above mentioned homological lemmas involving exact sequences (see

again [3]):

Theorem 1.4.4 (The Five Lemma). Let C be a homological category. If in a commutative

diagram

A
f //

α

²²

B
g //

β

²²

C
h //

γ

²²

D

δ

²²

k // E

ε

²²
A′

f ′
// B′

g′
// C ′

h′
// D′

k′
// E′

14
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the two rows are exact sequences, and the morphisms α, β, δ, and ε are isomorphisms, then

γ is also an isomorphism.

Theorem 1.4.5 (The Nine Lemma). Let C be a homological category. If in a commutative

diagram

0

²²

0

²²

0

²²
0 // X //

²²

Y //

²²

Z

²²

// 0

0 // X ′ //

²²

Y ′ //

²²

Z ′

²²

// 0

0 // X ′′ //

²²

Y ′′ //

²²

Z ′′ //

²²

0

0 0 0

the three columns and the middle row are exact sequences, then the first row is an exact

sequence if and only if the last row is an exact sequence.

Theorem 1.4.6 (The Snake Lemma). Let C be a homological category. If in a commutative

diagram

X
f //

u

²²

Y

v

²²

g // Z

w

²²

// 0

0 // X ′
f ′

// Y ′
g′

// Z

the two rows are exact sequences, then there exists a morphism d : Ker(w) → Coker(u),

such that the sequence

Ker(u) // Ker(v) // Ker(w) d // Coker(u) // Coker(v) // Coker(w)

where the unlabeled arrows are the canonical morphisms, is exact.

1.5 Semi-abelian categories

The notion of an abelian category was introduced by S. Mac Lane in 1950 in his paper

“Duality for groups” [29]; it was however more restrictive than the one used today, which
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was given by D. A. Buchsbaum in “Exact Categories and Duality” [9] in 1955 (under the

name “exact category”). Let us recall that a category C is said to be abelian ([9], and, see

also [16], [18]) if the following conditions hold:

(a) C has a zero object;

(b) C has binary products and binary coproducts;

(c) Every morphism has a kernel and a cokernel;

(d) Every monomorphism is a kernel, every epimorphism is a cokernel.

Categories of abelian groups and of modules are abelian categories, which is certainly not

the case for the categories of groups, rings or algebras over rings; the easiest way to see this

is just to note that not all of their monomorphisms are normal. The semi-abelian categories,

introduced by G. Janelidze, L. Marki, and W. Tholen in 1999 (published in 2002; see [23]),

play, however, the same role for groups, rings, and algebras, as the abelian categories do for

the abelian groups and modules. We recall:

Definition 1.5.1. A category C is said to be semi-abelian, if:

(a) C has a zero object and coproducts;

(b) C is Barr-exact;

(c) C is protomodular.

That is, a category C is semi-abelian, if it satisfies the following

Condition 1.5.2 (“New-style axioms”).

(a) C has a zero object, finite limits, and coproducts;

(b) C has coequalizers of kernel pairs;

(c) The regular epimorphisms in C are pullback stable;

(d) The Split Short Five Lemma holds in C;

(e) All equivalence relations r1, r2 : R → A in C are effective equivalence relations.

16
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Conditions 1.5.2(a)-1.5.2(e) are regarded as the “new-style axioms” for a semi-abelian

category. As proved in [23], these conditions are equivalent to the “old-style axioms” in-

volving normal monomorphisms and normal epimorphisms:

Condition 1.5.3 (”Old-style axioms”).

(a) C has a zero object, finite limits, and coproducts;

(b) C has cokernels of kernels, and every morphism with a zero kernel is a monomorphism;

(c) The normal epimorphisms in C are pullback stable;

(d) (Hofmann’s axiom) If in a commutative diagram

A

w

²²

f // B

v

²²
A′

f ′
// B′

f and f ′ are normal epimorphisms, w is a monomorphism, v is a normal monomor-

phism, and ker(f ′) ≤ w, then w is a normal monomorphism;

(e) For every commutative diagram

A
f //

m

²²

B

m′

²²
A′

f ′
// B′

with f and f ′ normal epimorphisms and m and m′ monomorphisms, if m is a normal

monomorphism then m′ also is a normal monomorphism.

Protomodularity in terms of the old-style axioms is the “Hofmann’s axiom” [19], while the

Barr’s exactness condition is Condition 1.5.3(e).

Remark 1.5.4. Using the notion of a homological category, a semi-abelian category can

be defined as a homological category with coproducts in which every equivalence relation is

effective (see Proposition 5.1.2 of [3]). Therefore, one can obtain the “old-style axioms”

also for the homological categories, i.e. define the homological categories using normal

epimorphisms and the Hofmann’s axiom. This will be done in a more general setting in

Chapter 4.
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Chapter 2

Calculus of E-relations

2.1 Category of E-relations

Throughout this chapter we assume that (C,E) is a pair in which C is a category and E is a

class of regular epimorphisms in C containing all isomorphisms and satisfying the following

Condition 2.1.1.

(a) The class E is closed under composition;

(b) If f ∈ E and gf ∈ E then g ∈ E;

(c) A diagram of the form

A′

f ′

²² g′

³³

A
f

//

g ..

B

B

has a limit in C provided f , g, f ′, and g′ are in E, and either (i) f = g and f ′ = g′, or (ii)

(f, g) and (f ′, g′) are reflexive pairs (that is, fh = 1B = gh and f ′h′ = 1B = g′h′ for some

h and h′), and f and g are jointly monic.

(d) If

A×B A′

π1

²²

π2 // A′

f ′

²²
A

f
// B

18
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is a pullback and f and f ′ are in E, then π1 and π2 are also in E;

(e) If h1 : H → A and h2 : H → B are jointly monic morphisms in C and if α : A → C and

β : B → D are morphisms in E, then there exists a morphism h : H → X in E and jointly

monic morphisms x1 : X → C and x2 : X → D in C making the diagram

H

h

²²

h1

~~~~
~~

~~
~~

~
h2

ÃÃ@
@@

@@
@@

@@

A

α

ÄÄ~~
~~

~~
~~

~
X

x1

ww
x2

''

B
β

ÃÃ@
@@

@@
@@

@@

C D

commutative.

Remark 2.1.2. If the morphisms f : A → B and f ′ : A′ → B are in E, then the pullback

(A×B A′, π1, π2) of f and f ′ exists in C by Condition 2.1.1(c), and π1 and π2 are in E by

Condition 2.1.1(d). Therefore, the kernel pair of f (and f ′) also exists in C.

The two basic examples of a pair (C,E) satisfying Condition 2.1.1 are:

1. “Trivial case”: C is a category and E is the class of all isomorphisms in C.

2. “Absolute case”: C is a regular category and E is the class of all regular epimorphisms

in C.

Proposition 2.1.3. The factorization in Condition 2.1.1(e) is functorial. That is, if

H

q

½½

h
²²

h1

||xx
xx

xx
xx

x
h2

##FF
FF

FF
FF

F

A

k

²²

α

||xx
xx

xx
xx

x X

x

¥¥

1

+

%

Â

¼

¶

°

x1uu x2 ))

B

l

²²

β

""FF
FF

FF
FF

F

C

m

²²

D

n

²²

H ′

h′
²²

h′1

||yyyyyyyy
h′2

""FFFFFFFF

A′
α′

||yy
yy

yy
yy

X ′

x′1uu x′2 ))

B′
β′

""EE
EE

EE
EE

C ′ D′

(1.1)
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is a commutative diagram in C, in which:

- (h1, h2), (x1, x2), (h′1, h
′
2), and (x′1, x

′
2) are jointly monic pairs;

- α, β, h, α′, β′, and h′ are morphisms in E;

- m, k, q, l, and n are any morphisms making the diagram (1.1) commutative;

then there exists a morphism x : X → X ′ for which the diagram (1.1) is still commutative.

Proof. Since h is in E, the kernel pair (u1, u2) of h exists by Remark 2.1.2. Since x′1 and x′2
are jointly monic and the equalities

x′1h
′qu1 = mαh1u1 = mx1hu1 = mx1hu2 = mαh1u2 = x′1h

′qu2,

x′2h
′qu1 = nβh2u1 = nx2hu1 = nx2hu2 = nβh2u2 = x′2h

′qu2

hold, we conclude that h′qu1 = h′qu2. Since h is the coequalizer of u1 and u2, the last

equality implies the existence of a unique morphism x : X → X ′ with h′q = xh. It remains

to prove that x′1x = mx1 and x′2x = nx2; however, since h is an epimorphism, the latter

follows from following equalities:

x′1xh = x′1h
′q = mx1h,

x′2xh = x′2h
′q = nx2h.

Proposition 2.1.4. Let

A
f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
f ′

ÃÃ@
@@

@@
@@

@@

B
g

ÄÄ~~
~~

~~
~~

~

h **UUUUUUUUUUUUUUUUUUUUUUUUUU B′

g′ttiiiiiiiiiiiiiiiiiiiiiiiii

h′

ÃÃA
AA

AA
AA

AA

C D

(1.2)

be a commutative diagram in C. If f and f ′ are in E and (g, h) and (g′, h′) are jointly

monic pairs, then there exists a unique isomorphism β : B → B′ with g′β = g, βf = f ′,

and h′β = h.
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Proof. Since f and f ′ are in E, the kernel pairs of f and f ′ exist by Remark 2.1.2; more-

over, they coincide since (g, h) and (g′, h′) are jointly monic pairs and the diagram (1.2)

is commutative. Since every regular epimorphism is the coequalizer of its kernel pair, we

conclude that there exists a unique isomorphism β : B → B′ with βf = f ′, and since f and

f ′ are epimorphisms we obtain g′β = g and h′β = h.

Remark 2.1.5. As follows from Proposition 2.1.4, the factorization in Condition 2.1.1(e)

is unique up to an isomorphism.

Proposition 2.1.6. If a morphism f in C factors as f = em in which e is in E and m is

a monomorphism, then it also factors (essentially uniquely) as f = m′e′ in which m′ is a

monomorphism and e′ is in E.

Proof. Under the assumptions of Condition 2.1.1(e), take h1 = h2 = m and α = β = e,

then we obtain the desired factorization of f .

Definition 2.1.7. An E-relation R from an object A to an object B in C, written as

R : A → B, is a triple R = (R, r1, r2) in which r1 : R → A and r2 : R → B are jointly

monic morphisms in E.

Let (R, r1, r2) = R : A → B and (S, s1, s2) = S : B → C be the E-relations in C and

let (P, p1, p2) be the pullback of s1 and r2; by Remark 2.1.2 this pullback does exist and p1

and p2 are in E. Since p1 and p2 are jointly monic and r1 and s2 are in E, using Condition

2.1.1(e) we obtain the commutative diagram

P

e

²²

p1

ÄÄ~~
~~

~~
~~

~
p2

ÂÂ?
??

??
??

??

R

r1

ÄÄ~~
~~

~~
~~

~

r2 ÂÂ@
@@

@@
@@

@@
T

t1ww t2 ''

S

s1ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä
s2

ÂÂ?
??

??
??

??

A B C

(1.3)

in which e is in E, t1 and t2 are jointly monic, and such factorization (t1e = r1p1 and

t2e = s2p2) is unique up to an isomorphism by Remark 2.1.5. Moreover, since r1, p1, s2,

and p2 are in E, the morphisms t1 and t2 are also in E by Conditions 2.1.1(a) and 2.1.1(b).

Accordingly, we introduce:
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Definition 2.1.8. If R : A → B and S : B → C are the E-relations in C, then their

composite SR : A → C is the E-relation (T, t1, t2) in which T , t1, and t2 are defined as in

the diagram (1.3).

Proposition 2.1.9. The composition of E-relations in C is associative (if we identify

isomorphic relations).

Proof. Let R : A → B, S : B → C, and T : C → D be the E-relations in C. Consider the

commutative diagram

X

e

²²

x

¹¹

x1

}}{{
{{

{{
{{ x2

##HH
HH

HH
HH

HH

P

e1

²²

p1

ªª¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶

p2

¸+̧
++

++
++

++
++

++
++

++
++

++
+ Q

q1
©©³³
³³
³³
³³
³³
³³
³³
³³
³³
³³
³³
³

q2

¹¹-
--

--
--

--
--

--
--

--
--

--
-

X ′

x′1

³³

x′2

²²

Z

z1

±±

z2
##GGGGGGGGG

e2

²²

R

r1

¨¨²²
²²
²²
²²
²²
²²
²²
²

r2

»»0
00

00
00

00
00

00
00

S

s1

§§°°
°°
°°
°°
°°
°°
°°
°

s2

½½4
44

44
44

44
44

44
44

4 T

t1

¦¦®®
®®

®®
®®

®®
®®

®®
®®

t2

ºº/
//

//
//

//
//

//
//

SR
p′1

wwoooooooooooooo

p′2 ))RRRRRRRRRRRRRRRRR T (SR)

z′1ssfffffffffffffffffffffffffffffff

z′2 ((QQQQQQQQQQQQQQ

A B C D

(1.4)

in which:

- (P, p1, p2) is the pullback of s1 and r2, (Q, q1, q2) is the pullback of t1 and s2, and

(X,x1, x2) is the pullback of q1 and p2; these pullbacks do exist and the morphisms

p1, p2, q1, q2, x1, and x2 are in E by Remark 2.1.2.

- (SR, p′1, p
′
2) is the composite of the E-relations R : A → B and S : B → C, and

e1 : P → SR is the canonical morphism, i.e. e1 is the morphism in E with p′1e1 = r1p1

and p′2e1 = s2p2.

- (Z, z1, z2) is the pullback of t1 and p′2, this pullback does exist and the morphisms

z1 and z2 are in E by Remark 2.1.2; since p′2e1x1 = t1q2x2, there exists a unique

morphism x : X → Z with z2x = q2x2 and z1x = e1x1.
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- (T (SR), z′1, z
′
2) is the composite of the E-relations SR : A → C and T : C → D,

and e2 : Z → T (SR) is the canonical morphism, i.e. e2 is the morphism in E with

z′1e2 = p′1z1 and z′2e2 = t2z2.

- Since x1 and x2 are jointly monic and r1p1 and t2q2 are in E, by Condition 2.1.1(e)

there exists a morphism e : X → X ′ in E and jointly monic morphisms x′1 : X ′ → A

and x′2 : X ′ → D for which r1p1x1 = x′1e and t2q2x2 = x′2e.

We first prove that the square e1x1 = z1x in the diagram (1.4) is the pullback of e1 and z1.

For, consider the commutative diagram

Y

y

¨¨

y1

°°

ȳ

ww

y2

{{

X

x

ºº/
//

//
//

//
//

//
//

x1}}||
||

||
|| x2

ÂÂ@
@@

@@
@@

P

e1

µµ

p2

»»1
11

11
11

11
11

11
11

Q

q1

¨¨±±
±±
±±
±±
±±
±±
±±

q2

ºº/
//

//
//

//
//

//
/

Z

z1

¯ ¯

z2 ÃÃ@
@@

@@
@@

S

s2

ºº0
00

00
00

00
00

00
0 T

t1

¨¨±±
±±
±±
±±
±±
±±
±±

SR

p′2 ((PPPPPPPPPPPPPPP

C

which is a part of the diagram (1.4) with the new arrows y1, y2, y, and ȳ defined as follows:

- y1 : Y → P and y2 : Y → Z are any two morphisms with e1y1 = z1y2.

- Since (Q, q1, q2) is the pullback of s2 and t1, and t1z2y2 = p′2z1y2 = p′2e1y1 = s2p2y1,

there exists a unique morphism y : Y → Q with z2y2 = q2y and q1y = p2y1.

- Since (X, x1, x2) is the pullback of q1 and p2 and q1y = p2y1, there exists a unique

morphism ȳ : Y → X with x2ȳ = y and x1ȳ = y1.

Since z1 and z2 are jointly monic and the equalities

z1xȳ = e1x1ȳ = e1y1 = z1y2,
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z2xȳ = q2x2ȳ = q2y = z2y2

hold, we conclude that xȳ = y2. That is, there exists a morphism ȳ : Y → X with x1ȳ = y1

and xȳ = y2, and since x1 and x2 are jointly monic, such ȳ is unique, proving that (X, x, x1)

is the pullback of e1 and z1.

After this, since e1 is in E, the morphism x : X → Z is in E by Remark 2.1.2, there-

fore, the composite e2x is also in E by Condition 2.1.1(a). We obtain: r1p1x1 = x′1e

and t2q2x2 = x′2e in which e ∈ E and x′1 and x′2 are jointly monic morphisms; and,

z′1e2x = r1p1x1 and z′2e2x = t2q2x2 in which e2x ∈ E and z′1 and z′2 are jointly monic

morphisms. Therefore, by Proposition 2.1.4 we have X ′ ≈ (TS)R. Similarly we can prove

that X ′ ≈ T (SR). Hence, T (RS) ≈ (TR)S, as desired.

Remark 2.1.10. As follows from the proof of Proposition 2.1.9, to construct the composite

of the E-relations (R, r1, r2) : A → B, (S, s1, s2) : B → C, and (T, t1, t2) : C → D, we

simply take the pullbacks (P, p1, p2), (Q, q1, q2), and then the composite (X ′, x′1, x
′
2) : A → D

will be the E-relation obtained from the following factorization:

X

e

²²

x1

~~}}
}}

}}
}} x2

ÃÃA
AA

AA
AA

A

P

p1

¨¨²²
²²
²²
²²
²²
²²
²²
²

p2

ºº0
00

00
00

00
00

00
00

Q

q1

¨¨±±
±±
±±
±±
±±
±±
±±
±

q2

ºº/
//

//
//

//
//

//
/

X ′
x′1

±±

x′2

³³

R

r1ÄÄ~~
~~

~~
~

r2

ÂÂ@
@@

@@
@@

S
s1

~~||
||

||
|| s2

ÃÃB
BB

BB
BB

B T
t1

ÄÄ~~
~~

~~
~

t2 ÂÂ@
@@

@@
@@

A B C D

(1.5)

Using the induction principle, we can compose any finite number of the E-relations accord-

ingly.

For each E-relation R : A → B in C there is an opposite E-relation R◦ : B → A given

by the triple (R, r2, r1), and we have:

Proposition 2.1.11. If (R, r1, r2) : A → B and (S, s1, s2) : B → C are the E-relations in

C, then:

(i) (R◦)◦ = R.
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(ii) (SR)◦ = R◦S◦.

The objects of C and the E-relations between them form a category Rel(C,E), in which

the identity E-relation on an object A is the E-relation (A, 1A, 1A) : A → A. It is in fact an

order-enriched category with (R, r1, r2) ≤ (R′, r′1, r
′
2) if and only if there exists a morphism

r : R → R′ with r′1r = r1 and r′2r = r2 (the relevant properties will be given in the next

section).

2.2 Properties of the E-relations

Proposition 2.2.1. Let (R, r1, r2) : A → B, (R′, r′1, r
′
2) : A → B, (S, s1, s2) : B → C, and

(S′, s′1, s
′
2) : B → C be the E-relations in C. We have:

(i) If R ≤ R′ then R◦ ≤ R′◦.

(ii) If R ≤ R′ then SR ≤ SR′.

(iii) If R ≤ R′ and S ≤ S′ then SR ≤ S′R′.

Proof.

(i) is obvious.

(ii): If R ≤ R′ then there exists a morphism r : R → R′ with r′1r = r1 and r′2r = r2. Let

(P, p1, p2) be the pullback of r2 and s1 and let (P ′, p′1, p
′
2) be the pullback of r′2 and s1.

Consider the commutative diagram:

P

²²

p

¤¤

p1

{{wwwwwwwwwww
p2

""FF
FF

FF
FF

FF
F

R

r

²²

r1

||zz
zz

zz
zz

zz

r2 ##GGGGGGGGGGG SR

uullllllllllllllllllll

((RRRRRRRRRRRRRRRRRRR S

s1||xx
xx

xx
xx

xx
x

s2

!!CC
CC

CC
CC

CC

A B C

R′
r′1

aaDDDDDDDDDD
r′2

;;xxxxxxxxxxx
SR′

iiRRRRRRRRRRRRRRRRRRRR

66lllllllllllllllllll
S

s1

bbEEEEEEEEEEE s′2

=={{{{{{{{{{

P ′

OO

p′1

ccFFFFFFFFFFF p′2

<<yyyyyyyyyyy
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As follows from Proposition 2.1.3, since the pairs of morphisms (p1, p2) and (p′1, p
′
2) are

jointly monic, and the morphisms r1, s2, r′1, and s′2 are in E, in order to prove that SR ≤ SR′

it suffices to prove that there exists a morphism p : P → P ′ for which p′1p = rp1 and

p′2p = p2. However, since r′2rp1 = r2p1 = s1p2, the latter follows from the fact that the

square s1p
′
2 = r′2p

′
1 is the pullback of r′2 and s1.

(iii): If R ≤ R′ and S ≤ S′ then by (ii) we have SR ≤ SR′ and SR′ ≤ S′R′; therefore,

SR ≤ S′R′.

Remark 2.2.2. Any morphism f : A → B in E can be considered as an E-relation

(A, 1A, f) from A to B. The opposite E-relation f◦ from B to A will then be the triple

(A, f, 1A).

Proposition 2.2.3. Let (R, r1, r2) : A → B be an E-relation in C. If RR◦ ≤ 1B then

r1 : R → A is an isomorphism.

Proof. Let (R, r1, r2) : A → B be an E-relation in C and let RR◦ ≤ 1B. Consider the

commutative diagram

X

〈u,v〉
²²Â
Â
Â

u

µµ

v

¯¯

P
p1

{{www
ww

ww
ww

w
p2

##GG
GG

GG
GG

GG

e

²²
R

r2

°° r1 ½½5
55

55
55

55
55

55
55

RR◦

f

²²
p′1

||xxxxxxxxxxxxxxxxxxxxx

p′2

""FFFFFFFFFFFFFFFFFFFFF R

r1¥¥ªª
ªª

ªª
ªª

ªª
ªª

ªª
ª

r2

´´

B

1Buullllllllllllllllll

1B ))RRRRRRRRRRRRRRRRRR

B A B

in which:

- (P, p1, p2) is the kernel pair of r1 : R → A.

- (RR◦, p′1, p
′
2) is the composite of the E-relations R◦ and R, and e : P → R◦R is the

canonical morphism; since RR◦ ≤ 1B, there exists a morphism f : RR◦ → B with

1Bf = p′1 and 1Bf = p′2.
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- u, v : X → R are any two morphisms with r1u = r1v, and 〈u, v〉 : X → P is the

unique morphism with p1〈u, v〉 = u and p2〈u, v〉 = v.

We have:

fe〈u, v〉 = p′1e〈u, v〉 = r2p1〈u, v〉 = r2u,

fe〈u, v〉 = p′2e〈u, v〉 = r2p2〈u, v〉 = r2v,

yielding r2u = r2v. Since u and v are any two morphisms with r1u = r1v and since r1 and

r2 are jointly monic, we obtain u = v. Therefore, r1 is a monomorphism, and since r1 is in

E, we conclude that r1 is an isomorphism, as desired.

Similarly we can prove that if R◦R ≤ 1A then r2 is an isomorphism.

Proposition 2.2.4. If (R, r1, r2) : A → B is an E-relation in C then R = r2r1
◦.

Proof. Let (R, r1, r2) be an E-relation from A to B. As follows from Remark 2.2.2, r1
◦

is the E-relation from A to R and r2 is the E-relation from R to B. Since the pullback

of an identity morphism is again an identity, and since E contains all isomorphisms, the

composite r2r1
◦ : A → B is the E-relation obtained from the following factorization:

R
1R

ÄÄ~~
~~

~~
~~

~
1R

ÂÂ@
@@

@@
@@

@@

1R

²²
R

r1

ÄÄ~~
~~

~~
~~

~

1R ÂÂ@
@@

@@
@@

@@
R

r1ww r2 ''

R

1RÄÄ~~
~~

~~
~~

~
r2

ÂÂ@
@@

@@
@@

@@

A R B

That is, r2r1
◦ is the E-relation (R, r1, r2) from A to B, proving the desired.

Proposition 2.2.5. If f : A → B and g : C → B are the morphisms in E, then the

E-relation g◦f from A to C in C is given by the pullback (A×B C, p1, p2) of f along g.

Proof. Let f : A → B and g : C → B be the morphisms in E, and let (P, p1, p2) be the

pullback of f along g; by Remark 2.1.2, the morphisms p1 and p2 are in E. As follows from

Remark 2.2.2, f is the E-relation from A to B and g◦ is the E-relation from B to C. Since

E contains all isomorphisms, the composite g◦f : A → C is the E-relation obtained from
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the following factorization:

P
p1

ÄÄ~~
~~

~~
~~

~
p2

ÂÂ@
@@

@@
@@

@@

1P

²²
A

1A

ÄÄ~~
~~

~~
~~

~

f ÂÂ@
@@

@@
@@

@@
P

p1ww p2 ''

C

gÄÄ~~
~~

~~
~~

~
1C

ÂÂ@
@@

@@
@@

@@

A B C

That is, (P, p1, p2) is the E-relation g◦f from A to C, proving the desired.

Remark 2.2.6. As follows from Proposition 2.2.5, if f : A → B is a morphism in E, then

the E-relation f◦f : A → A is given by the pullback (A×B A, f1, f2) of f with itself. That

is, f◦f = (A×B A, f1, f2) is the kernel pair of f , and therefore 1A ≤ f◦f .

Proposition 2.2.7. If a morphism f : A → B is in E, then ff◦ = 1B.

Proof. Let f : A → B be a morphism in E. As follows from Remark 2.2.2, f is the E-relation

from A to B and f◦ is the E-relation from B to A. Since E contains all isomorphisms and

f is in E, the composite ff◦ is the E-relation obtained from the following factorization:

A
1A

ÄÄ~~
~~

~~
~~

~
1A

ÂÂ@
@@

@@
@@

@@

f

²²
A

f

ÄÄ~~
~~

~~
~~

~

1A ÂÂ@
@@

@@
@@

@@
B

1Bww 1B ''

A

1AÄÄ~~
~~

~~
~~

~
f

ÂÂ@
@@

@@
@@

@@

B A B

That is, f◦f is the identity E-relation (B, 1B, 1B) from B to B, as desired.

Remark 2.2.8. It follows from Proposition 2.2.7 that for every morphism f : A → B in E

the following equalities

ff◦f = f,

f◦ff◦ = f◦

hold.
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Theorem 2.2.9. Let
D

h

²²

k // C

g

²²
A

f
// B

(2.1)

be a diagram in C. If the morphisms f , g, h, and k are in E, then:

(i) kh◦ ≤ g◦f if and only if the diagram (2.1) commutes.

(ii) kh◦ = g◦f if and only if the diagram (2.1) commutes and the canonical morphism

〈h, k〉 : D → A×B C is in E.

Proof. Consider the diagram (2.1) in which the morphisms f , g, h, and k are in E. By

Proposition 2.2.5, we have g◦f = (A×B C, p1, p2); and, the composite kh◦ is the E-relation

(X, x1, x2) from A to C obtained from the following factorization:

D
1D

~~}}
}}

}}
}}

}
1D

ÃÃA
AA

AA
AA

AA

e

²²
D

h

ÄÄ~~
~~

~~
~~

~

1D ÃÃA
AA

AA
AA

AA
X

x1ww x2 ''

D

1D~~}}
}}

}}
}}

}
k

ÃÃ@
@@

@@
@@

@@

A D C

(i): Let kh◦ ≤ g◦f ; that is, there exists a morphism x : X → A ×B C with p1x = x1

and p2x = x2. To prove that the diagram (2.1) is commutative, it suffices to prove that

there exists a morphism d : D → A ×B C with p1d = h and p2d = k. For, consider the

commutative diagram
D

e

²²

h

´´

k

°°

X

x

²²Â
Â
Â

x1

ªª

x2

¸¸

A×B C

p1

{{wwwwwwwwww

p2
##HHHHH

HHH
HH

A

f
##HH

HH
HH

HH
HH

H C

g
{{vvv

vv
vv

vv
vv

B

(2.2)
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and take d = xe; then p1d = p1xe = x1e = h and p2d = p2xe = x2e = k, as desired.

Conversely, suppose the diagram (2.1) is commutative, i.e. fh = gk. To prove kh◦ ≤ g◦f ,

we need to show that there exists a morphism x : X → A×B C with p1x = x1 and p2x = x2.

For, consider the diagram (2.2); since e is in E and fx1e = fh = gk = gx2e we conclude

that fx1 = gx2. Therefore, since (A×B C, p1, p2) is the pullback of f and g, there exists a

unique morphism x : X → A×B C with p1x = x1 and p2x = x2, as desired.

(ii): Let kh◦ = g◦f . As follows from (i), the diagram (2.1) is commutative; therefore the

diagram (2.2) is also commutative and since g◦f = (A×B C, p1, p2) and kh◦ = (X, x1, x2),

we conclude that x : X → A ×B C is an isomorphism. Since 〈h, k〉 = xe and e is in E, by

Condition 2.1.1(a), the morphism 〈h, k〉 is also in E.

Conversely, suppose the diagram (2.1) is commutative and the canonical morphism

〈h, k〉 : D → A ×B C is in E. As follows from (i), kh◦ ≤ g◦f and therefore, there exists

a morphism x : X → A ×B C with p1x = x1 and p2x = x2. To prove that kh◦ = g◦f it

suffices to prove that x is an isomorphism. For, consider the commutative diagram (2.2).

Since p1xe = x1e and p2xe = x2e we conclude that 〈h, k〉 = xe, and since 〈h, k〉 and e are in

E, the morphism x is also in E by Condition 2.1.1(b). Moreover, since p1 and p2 are jointly

monic and p1x = x1 and p2x = x2, x is a monomorphism. Therefore, since every morphism

in E is a normal epimorphism, we conclude that x is an isomorphism, as desired.

2.3 Equivalence E-relations

Definition 2.3.1. An E-relation R : A → A in C is said to be

(a) a reflexive E-relation if 1A ≤ R;

(b) a symmetric E-relation if R◦ ≤ R (so that R◦ = R);

(c) a transitive E-relation if RR ≤ R;

(d) an equivalence E-relation if it is reflexive, symmetric, and transitive.

As follows from Definition 2.3.1, if R is a reflexive and a transitive E-relation then

RR = R; indeed, since R is reflexive we have R ≤ RR, which together with transitivity

gives RR = R.

Proposition 2.3.2. The composite of reflexive E-relations in C is a reflexive E-relation.
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Proof. If R : A → A and S : A → A are reflexive E-relations in C, then 1 ≤ R and

1 ≤ S. Therefore, 1 ≤ SR by Proposition 2.2.1(iii), proving that SR : A → A is a reflexive

E-relation.

Proposition 2.3.3. Let R : A → A and S : A → A be equivalence E-relations in C. If

the composite SR is an equivalence E-relation, then SR = S ∨ R (i.e. SR is the smallest

equivalence E-relation containing both S and R).

Proof. Let T : A → A be an equivalence E-relation with R ≤ T and S ≤ T . Since T is

an equivalence E-relation, we have TT ≤ T . Therefore, SR ≤ T by Proposition 2.2.1(iii),

proving the desired.

Proposition 2.3.4. If a morphism f : A → B is in E, then the kernel pair (A×B A, f1, f2)

of f is an equivalence E-relation in C.

Proof. If f : A → B is a morphism in E, then by Remark 2.2.6 the kernel pair of f is the

E-relation f◦f : A → A and we have 1A ≤ f◦f , therefore, f◦f is a reflexive E-relation.

Moreover, it is symmetric since (f◦f)◦ = f◦f by Proposition 2.1.11, and it is transitive

since f◦ff◦f = f◦f by Remark 2.2.8.

Definition 2.3.5. An E-relation R : A → B in C is said to be difunctional if RR◦R = R.

Theorem 2.3.6. If (R, r1, r2) : A → A and (S, s1, s2) : A → A are equivalence E-relations

in C then the following conditions are equivalent:

(a) SR : A → A is an equivalence E-relation.

(b) SR = RS.

(c) Every E-relation is difunctional.

(d) Every reflexive E-relation is an equivalence E-relation.

(e) Every reflexive E-relation is symmetric.

(f) Every reflexive E-relation is transitive.

Proof.
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(a)⇒(b): Let SR : A → A be an equivalence E-relation in C. Since R, S, and SR

are symmetric E-relations, we have: R = R◦, S = S◦, and SR = (SR)◦. Therefore,

SR = R◦S◦ = RS, as desired.

(b)⇒(a): Let SR = RS. We have:

- 1 ≤ R and 1 ≤ S since R and S are reflexive.

- R◦ ≤ R and S◦ ≤ S since R are S are symmetric.

- RR ≤ R and SS ≤ S since R and S are transitive.

Using Proposition 2.2.1(iii), we obtain:

- 1 ≤ SR, therefore SR is reflexive.

- S◦R◦ ≤ SR; since (SR)◦ = (RS)◦ = S◦R◦, we conclude that (SR)◦ ≤ SR, therefore,

SR is symmetric.

- SSRR ≤ SR; since SRSR = SSRR, we conclude that SRSR ≤ SR, therefore, SR

is transitive.

That is, SR is a reflexive, symmetric, and a transitive E-relation, proving that SR is an

equivalence E-relation.

(b)⇒(c): Let (U, u1, u2) : X → Y be an arbitrary E-relation in C. By Proposition 2.2.4,

U = u2u1
◦; therefore, to prove that the E-relation U : X → Y is difunctional, i.e. UU◦U = U ,

it suffices to prove u2u1
◦u1u2

◦u2u1
◦ = u2u1

◦. Since u1 and u2 are in E, by Remark 2.2.6,

the E-relations u1
◦u1 : U → U and u2

◦u2 : U → U are the kernel pairs of u1 and u2

respectively, therefore, they are the equivalence E-relations by Proposition 2.3.4. Hence, by

(b), u1
◦u1u2

◦u2 = u2
◦u2u1

◦u1, and multiplying the last equality on the left by u2 and on

the right by u1
◦, using Proposition 2.2.7 we obtain u2u1

◦u1u2
◦u2u1

◦ = u2u1
◦, as desired.

(c)⇒(d): Let (U, u1, u2) : X → X be a reflexive E-relation in C. U is symmetric since

U◦ = 1XU◦1X ≤ UU◦U = U , and U is transitive since UU = U1XU ≤ UU◦U = U .

Therefore, U is an equivalence E-relation in C.

(d)⇒(e) is obvious.

(e)⇒(c): Let (U, u1, u2) : X → Y be an arbitrary E-relation in C. The proof is essentially

the same as the proof of (b)⇒(c): here u1
◦u1u2

◦u2 = u2
◦u2u1

◦u1 since the composite of
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the equivalence E-relations u1
◦u1 : U → U and u2

◦u2 : U → U is reflexive by Proposition

2.3.2, therefore, by (e) the composite u1
◦u1u2

◦u2 is also symmetric.

(c)⇒(a): If R : A → A and S : A → A are equivalence E relations in C, then their composite

SR : A → A is a reflexive E-relation by Proposition 2.3.2. Since (c) implies (d), we conclude

that SR is an equivalence E-relation.

(c)⇒(f): Since (c) implies (d), and (d) implies (f), we conclude that (c) implies (f).

(f)⇒(c): Let (U, u1, u2) : X → Y be an arbitrary E-relation in C. As stated in the proof

of (b)⇒(c), to prove that the E-relation U : X → Y is difunctional, it suffices to prove

u2u1
◦u1u2

◦u2u1
◦ = u2u1

◦. Since the kernel pairs of u1 and u2 are the equivalence E-relations

u1
◦u1 : U → U and u2

◦u2 : U → U respectively, by Proposition 2.3.2 their composite

u2
◦u2u1

◦u1 : U → U is a reflexive E-relation; therefore, u2
◦u2u1

◦u1 is transitive by (f), and

we have u2
◦u2u1

◦u1u2
◦u2u1

◦u1 = u2
◦u2u1

◦u1. Multiplying the last equality on the left by

u2 and on the right by u1
◦, using Proposition 2.2.7 we obtain u2u1

◦u1u2
◦u2u1

◦ = u2u1
◦, as

desired.

Remark 2.3.7. Theorem 2.3.6 is the relative version of Theorem 1.2.3.

Consider the following

Condition 2.3.8. (a) C is pointed;

(b) If f : A → B is in E then the kernel of f exists in C;

(c) If in a commutative diagram

K
k // A

w

²²

f // B

K
k′

// A′
f ′

// B

k = ker(f), k′ = ker(f ′), and f and f ′ are in E, then w is an isomorphism.

Remark 2.3.9. Condition 2.3.8(c) is the relative version of the Short Five Lemma. Ac-

cordingly, we will say that Condition 2.3.8(c) is the E-Short Five Lemma.

Theorem 2.3.10. If (C,E) satisfies Condition 2.3.8, then every reflexive E-relation in C

is transitive.
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Proof. Let (R, r1, r2) : A → A be a reflexive E-relation in C. We have:

- The pullback (P, p1, p2) of r2 and r1 exists in C and the morphisms p1 and p2 are in

E by Remark 2.1.2.

- Since p2 is in E, the kernel k : K → P of p2 exists by Condition 2.3.8(b).

- Since r1, r2, p1, and p2 are in E, the composites r1p1 and r2p2 are also in E by

Condition 2.1.1(a), and therefore the limit of the diagram

P

r1p1

²² r2p2

³³

R r1

//

r2 ..

A

A

(3.1)

exists by Condition 2.1.1(c).

Since R is a reflexive E-relation there exists a morphism α : A → R with r1α = r2α = 1A.

Consider the commutative diagram:

R

αr1

&&

1R

¼¼

s

ÂÂ@
@

@
@

@

P

p1

²²

p2 // R

r1

²²
R r2

// A

Since the square r2p1 = r1p2 is a pullback and r2αr1 = r1, there exists a unique morphism

s : R → P with p1s = αr1 and p2s = 1R, yielding that p2 is a split epimorphism. Next, let
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(Q, q1, q2) be the limit of the diagram (3.1) and consider the commutative diagram:

R

t

ÂÂ

1R

!!

s

ÀÀ
Q

q1

²²

q2 // P

r1p1

²² r2p2

³³

R r1

//

r2 ..

A

A

Since r1p1s = r1αr1 = r1 and r2p2s = r2, there exists a unique morphism t : R → Q with

q1t = 1R and q2t = s. We have p2q2t = p2s = 1R, therefore the composite p2q2 is a split

epimorphism. Furthermore, since r2p1k = r1p2k = 0 = r2p2k and (Q, q1, q2) is the limit of

the diagram (3.1), there exists a unique morphism f : K → Q making the diagram

K

f

ÂÂ

p1k

!!

k

ÀÀ
Q

q1

²²

q2 // P

r1p1

²² r2p2

³³

R r1

//

r2 ..

A

A

commutative.

Since r1 and r2 are jointly monic and (Q, q1, q2) is the limit of the diagram (3.1), we

conclude that q2 is a monomorphism. Therefore, since p2 is in E by Proposition 2.1.6 we

obtain the factorization p2q2 = m1e1 in which e1 is in E and m1 is a monomorphism. Since

p2q2 is a split epimorphism, it is a strong epimorphism and therefore m1 is an isomorphism.

Hence, since E contains all isomorphism, p2q2 is in E by Condition 2.1.1(a). We have

35

Univ
ers

ity
 of

 C
ap

e T
ow

n



p2q2f = p2k = 0, let us prove that f = ker(p2q2). For, consider the commutative diagram

X

x̄

%%

Â

#
)
0

8
A

I

x

¼¼

x̄

ÃÃ@
@

@
@

@

K
f // Q

q //

q2

²²

R

K
k

// P p2

// R

in which q = p2q2 and x : X → Q is any morphism with qx = 0. Since p2q2x = qx = 0

and k = ker(p2), there exists a unique morphism x̄ : X → K with kx̄ = q2f . Since q2 is a

monomorphism and q2fx̄ = q2x, we conclude fx̄ = x, and since k is a monomorphism such

x̄ is unique, proving f = ker(p2q2). Since p2 and p2q2 are in E, by the E-Short Five Lemma

we conclude that q2 is an isomorphism. Finally, consider the commutative diagram

E

e1
ÂÂ@

@@
@@

@@
@

e2

ÂÂ@
@@

@@
@@

@

P
e //

q1q−1
2

²²

RR

r
}}{

{
{

{
{

t1

²² t2

´´

R r1

//

r2 //

A

A

where e : P → RR is the canonical morphism, i.e. it is the morphism in E for which

t1e = r1p1 and t2e = r2p2, and (E, e1, e2) is the kernel pair of e which does exist by Remark

2.1.2. Since r1 and r2 are jointly monic we conclude that q1q
−1
2 e1 = q1q

−1
2 e2, therefore,

since e is in E (i.e. it is is a regular epimorphism and therefore it is the coequalizer of its

kernel pair), there exists a morphism r : RR → R with re = q1q
−1
2 . Moreover, since e is

an epimorphism, r1re = r1q1q
−1
2 = t1e and r2re = r2q1q

−1
2 = t2e we obtain r1r = t1 and

r2r = t2. That is, there exists a morphism r : RR → R with r1r = t1 and r2r = t2, proving

that R is a transitive E-relation.

Theorem 2.3.10 together with Theorem 2.3.6 gives

Corollary 2.3.11. If (C,E) satisfies Condition 2.3.8, then every reflexive E-relation in C

is an equivalence E-relation.
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Theorem 2.3.12. Let

A

r

²²

t

ÃÃ@
@@

@@
@@

@@
s // C

v

²²
B u

// D

be a commutative diagram in C with r, s, and t in E and let (R, r1, r2), (S, s1, s2), and

(T, t1, t2) be the kernel pairs of r, s, and t respectively (they do exist by Remark 2.1.2). If

(C,E) satisfies Condition 2.3.8, then the following conditions are equivalent:

(i) 〈r, s〉 : A → B ×D C is in E (by Remark 2.1.2 this pullback does exist).

(ii) SR = T .

(iii) RS = T .

Proof. As follows from Proposition 2.3.4, (R, r1, r2), (S, s1, s2), and (T, t1, t2) are the equiv-

alence E-relations in C and by Remark 2.2.6 we have r◦r = R, s◦s = S, and t◦t = T .

Since R and S are the equivalence E-relations, the composite SR is a reflexive E-relation

by Proposition 2.3.2, therefore, SR is an equivalence E-relation by Corollary 2.3.11. Then,

SR = RS by Theorem 2.3.6, proving (ii)⇔(iii).

(i)⇒(ii): Suppose 〈r, s〉 : A → B×D C is a morphism in E. Since ur = t = vs and morphisms

r, s, and t are in E, the morphisms u and v are also in E by Conditions 2.1.1(a) and 2.1.1(b).

Then, by Theorem 2.2.9 we obtain sr◦ = v◦u. Multiplying the last equality on the left by

s◦ and on the right by r we obtain s◦sr◦r = s◦v◦ur. Since s◦v◦ = (vs)◦ = t◦ and ur = t,

the last equality implies SR = T , as desired.

(ii)⇒(i): Let SR = T , that is s◦sr◦r = s◦v◦ur. Multiplying the last equality on the left by s

and on the right by r◦, we obtain ss◦sr◦rr◦ = ss◦v◦urr◦. Since r and s are in E, rr◦ = 1B

and ss◦ = 1C by Proposition 2.2.7, therefore sr◦ = v◦u. After that, Theorem 2.2.9 implies

that 〈r, s〉 is in E, proving the desired.
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Chapter 3

Relative homological categories

3.1 Axioms for incomplete relative homological categories

Throughout this section we assume that (C,E) is a pair in which C is a pointed category

and E is a class of epimorphisms in C containing all isomorphisms. Consider the following

Condition 3.1.1. (a) The class E is closed under composition;

(b) If f ∈ E and gf ∈ E then g ∈ E;

(c) If f : A → B is in E then ker(f) and coker(ker(f)) exist in C;

(d) A diagram of the form

A′

f ′

²² g′

³³

A
f

//

g ..

B

B

has a limit in C provided f and g are in E, and either (i) f = g and f ′ = g′, or (ii) f ′

and g′ are in E, (f, g) and (f ′, g′) are reflexive pairs, and f and g are jointly monic.

(e) If

A×B A′

π1

²²

π2 // A′

f ′

²²
A

f
// B
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is a pullback and f is in E, then π2 is also in E;

(f) If h1 : H → A and h2 : H → B are jointly monic morphisms in C and if α : A → C

and β : B → D are morphisms in E, then there exists a morphism h : H → X in E

and jointly monic morphisms x1 : X → C and x2 : X → D in C making the diagram

H

h

²²

h1

~~~~
~~

~~
~~

~
h2

ÃÃ@
@@

@@
@@

@@

A

α

ÄÄ~~
~~

~~
~~

~
X

x1

ww
x2

''

B
β

ÃÃ@
@@

@@
@@

@@

C D

commutative.

Remark 3.1.2. Comparing Condition 2.1.1 and Condition 3.1.1, we have:

- Conditions 3.1.1(a), 3.1.1(b), and 3.1.1(f) are the same as Conditions 2.1.1(a), 2.1.1(b),

and 2.1.1(e) respectively.

- In Condition 3.1.1(d) we do not require all of the four morphisms f , g, f ′, and g′ to be in

E as we did in Condition 2.1.1(c); accordingly, in Condition 3.1.1(e) we do not require for

both of the morphisms f and f ′ to be in E as we did in Condition 2.1.1(d).

Lemma 3.1.3. Let (C,E) be a pair satisfying Conditions 3.1.1(a)-3.1.1(c) and 3.1.1(f)

and suppose every morphism in E is a normal epimorphism. Consider the commutative

diagram:

A
f //

α

²²

B

β

²²
A′

f ′
// B′

(1.1)

(i) If α : A → A′ and β : B → B′ are in E and if f : A → B factors as f = me in which

e is in E and m is a monomorphism, then f ′ : A′ → B′ also factors as f ′ = m′e′ in

which e′ is in E and m′ is monomorphism.

(ii) If α : A → A′ and β : B → B′ are monomorphisms and if f ′ : A′ → B′ factors as

f ′ = m′e′ in which e′ is in E and m′ is a monomorphism, then f : A → B also factors

as f = me in which e is in E and m is a monomorphism.
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Proof.

(i): Consider the commutative diagram (1.1) and suppose α and β are in E and f = me

in which e : A → C is in E and m : C → B is a monomorphism. Since β is in E and m

is a monomorphism, by Proposition 2.1.6 there exists a morphism γ : C → C ′ in E and a

monomorphism m′ : C ′ → B′ such that βm = m′γ. Consider the commutative diagram:

A
α //

γe

²²

A′

e′

~~
f ′

²²
C ′

m′
// B′

Since α is in E and m′ is a monomorphism, Condition 3.1.1(c) and the fact that every mor-

phism in E is a normal epimorphism, imply the existence of a unique morphism e′ : A′ → C ′

with e′α = γe and m′e′ = f ′. Since α, e, and γ are in E, the morphism e′ is also in E

by Conditions 3.1.1(a) and 3.1.1(b). Hence, f ′ = m′e′ in which e′ is in E and m′ is a

monomorphism, as desired.

(ii): Consider the commutative diagram (1.1) and suppose α and β are monomorphisms and

f ′ = m′e′ in which e′ : A′ → C ′ is in E and m′ : C ′ → B′ is a monomorphism. Since α is a

monomorphism and e′ is in E, by Proposition 2.1.6 there exists a morphism e : A → C in E

and a monomorphism γ : C → C ′ such that e′α = γe. Consider the commutative diagram:

A
e //

f

²²

C

m

~~
m′γ

²²
B

β
// B′

Since e is in E and β is a monomorphism, Condition 3.1.1(c) and the fact that every mor-

phism in E is a normal epimorphism, imply the existence of a unique morphism m : C → B

with me = f and βm = m′γ, m is a monomorphism since so is m′γ. Hence, f = me in

which e is in E and m is a monomorphism, as desired.

Definition 3.1.4. The pair (C,E) is said to be an incomplete relative homological category

if:

(a) Condition 3.1.1 holds in C;

(b) Every morphism in E is a normal epimorphism;
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(c) The E-Short Five Lemma holds in C, i.e. in every commutative diagram of the form

K
k // A

w

²²

f // B

K
k′

// A′
f ′

// B

with f and f ′ in E and with k = ker(f) and k′ = ker(f ′), the morphism w is an

isomorphism;

(d) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

We will also say that the pair (C,E) is an incomplete relative weakly homological category

whenever it satisfies Conditions 3.1.1(a)-3.1.1(e) and conditions (a)-(c) of Definition 3.1.4.

The two basic examples of a pair (C,E) satisfying conditions (a)-(d) of Definition 3.1.4

are:

1. “Trivial case”: C is a pointed category and E is the class of all isomorphisms in C.

2. “Absolute case”: C is a homological category and E is the class of all regular epi-

morphisms in C (recall that every regular epimorphism in a homological category is

a normal epimorphism).

Lemma 3.1.5. If a pair (C,E) satisfies Conditions 3.1.1(a)-3.1.1(c) and every morphism

in E is a regular epimorphism, then (C,E) satisfies conditions (c) and (d) of Definition

3.1.4 if and only if in every commutative diagram of the form

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

(1.2)

with k = ker(f), k′ = ker(f ′), and with f , f ′, and u in E, the morphism w is also in E.
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Proof. Suppose (C,E) satisfies Conditions 3.1.1(a)-3.1.1(c), and conditions (c) and (d) of

Definition 3.1.4. Consider the commutative diagram (1.2) with k = ker(f), k′ = ker(f ′),

and with f , f ′, and u in E. By condition (d) of Definition 3.1.4 we have w = me in which

e : A → M is in E and m : M → A′ is a monomorphism. Consider the commutative

diagram:

K

ek

²²

u // K ′

m̄

~~
k′

²²
M m

// A′

Since u is a normal epimorphism and m is a monomorphism, there exists a unique morphism

m̄ : K ′ → M with m̄u = ek and mm̄ = k′; m̄ is a monomorphism since so k′. Since

f ′mm̄ = 0, m̄ is a monomorphism, and k′ = ker(f ′), we conclude that m̄ = ker(f ′m). By

Condition 3.1.1(b), f ′m is in E, therefore we can apply the E-Short Five Lemma to the

diagram

K ′ m̄ // M

m

²²

f ′m // B

K ′
k′

// A′
f ′

// B

and conclude that m is an isomorphism. Hence, by condition 3.1.1(a) w is in E, as desired.

Conversely, suppose for every commutative diagram (1.2) with k = ker(f), k′ = ker(f ′),

and with f and f ′ in E, if u is in E then w is also in E. It is a well know fact that under

the assumptions of condition (c) of Definition 3.1.4, ker(w) = 0; moreover, since E contains

all isomorphisms and f and f ′ are in E, w : A → A′ is also in E. Since every morphism in

E is a normal epimorphism, we conclude that w is an isomorphism, proving condition (c)

of Definition 3.1.4. The proof of condition (d) of Definition 3.1.4 is trivial.

Assuming that condition (b) of Definition 3.1.4 holds, we can say that the condi-

tions/axioms used here are much weaker than those used by G. Janelidze, L. Márki, and

W. Tholen [23]. However, various arguments from [23], used there in the proof of the equiv-

alence of the so-called old and new axioms, can be extended to our context to obtain various

reformulations of the conditions (a)-(d) of Definition 3.1.4. Some of them are given in this

section.

Condition 3.1.6. (a) Every morphism in E is a regular epimorphism;
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(b) If f ∈ E then coker(ker(f)) ∈ E;

(c) (“Relative Hofmann’s axiom”) If in a commutative diagram

A
f //

w

²²

B

v

²²
A′

f ′
// B′

f and f ′ are in E, w is a monomorphism, v is normal monomorphism, and ker(f ′) ≤ w,

then w is a normal monomorphism.

Theorem 3.1.7. If (C,E) is a pair satisfying Condition 3.1.1, then:

(i) Condition (b) of Definition 3.1.4 implies Conditions 3.1.6(a) and 3.1.6(b).

(ii) Condition (c) of Definition 3.1.4 and Conditions 3.1.6(a) and 3.1.6(b) imply condition

(b) of Definition 3.1.4.

Proof.

(i) is obvious.

(ii): Let f : A → B be a regular epimorphism in E, and let k = ker(f) and q = coker(k),

they do exist by Condition 3.1.1(c) and q is in E by Condition 3.1.6(b) . To prove that f is

a normal epimorphism it suffices to prove that the canonical morphism h : Coker(k) → B

is an isomorphism. For, consider the commutative diagram

A×Coker(k)A

h̄

²²

q1 //
q2

// A
q //

f

""FFFFFFFFFFFFFFF Coker(k)

h

²²
A×BA

f1

@@

f2

@@

B

in which:

- (f1, f2) is the kernel pair of f and (q1, q2) is the kernel pair of q, they do exist by

Condition 3.1.1(d) and the morphisms f1, f2, q1, and q2 are in E by Condition 3.1.1(e).

- h̄ : A×Coker(k)A → A×BA is the canonical morphism.
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Since there are canonical isomorphisms

Ker(q1) ≈ Ker(q) ≈ Ker(f) ≈ Ker(f1)

(note that these kernels do exist by Condition 3.1.1(c)), we can apply the E-Short Five

Lemma (condition (c) of Definition 3.1.4) to the diagram

Ker(q1)

≈

²²

// A×Coker(k)A

h̄

²²

q1 // A

Ker(f1) // A×BA
f1

// A

This makes h̄ an isomorphism; since f and q are regular epimorphisms, the latter implies

that h is also an isomorphism.

Theorem 3.1.8. If (C,E) is a pair satisfying Condition 3.1.1, then:

(i) Condition (c) of Definition 3.1.4 implies Condition 3.1.6(c).

(ii) Condition (b) and (d) of Definition 3.1.4 and Condition 3.1.6(c) imply Condition (c)

of Definition 3.1.4.

Proof.

(i): According to the assumptions of Condition 3.1.6(c), consider the commutative diagram

K
k // A

f //

w

²²

B

v

²²
K

k′
// A′

f ′
// B′

in which f and f ′ are in E, k′ = ker(f ′), k is a morphism with wk = k′, w is a monomor-

phism, and v is a normal monomorphism. Since f ′k′ = f ′wk = vfk = 0 and v is a monomor-

phism, we obtain fk = 0. Letting k̄ : K̄ → A to be another morphism with fk̄ = 0, the

equalities f ′wk̄ = vfk̄ = 0 imply the existence of a unique morphism k′′ : K̄ → K with

wk̄ = k′k′′; since w is a monomorphism we conclude that k = ker(f). Since f is in E, the

pullback (A′ ×B′ B, π1, π2) of f ′ along v exists by Condition 3.1.1(d), and π2 is in E by
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Condition 3.1.1(e). After this, applying condition (c) of Definition 3.1.4 to the diagram

K
k // A

f //

〈w,f〉
²²

B

K
h′

// A′×B′B π2

// B,

where 〈w, f〉 : A → A′×B′B is the canonical morphism and h′ = 〈w, f〉k, we conclude that

〈w, f〉 is an isomorphism. Since normal monomorphisms are pullback stable and v is a

normal monomorphism, π1 is also a normal monomorphism and therefore so is w, proving

Condition 3.1.6(c).

(ii): We have to show that if in a commutative diagram

K
k // A

f //

w

²²

B

K
k′

// A′
f ′

// B

(1.3)

f and f ′ are in E, and k and k′ are their kernels respectively, then w is an isomorphism.

It is a well known fact that in the situation above the kernel and the cokernel of w is

zero. Since E contains all isomorphisms, by condition (d) of Definition 3.1.4 there exists a

factorization w = me in which e is a morphism in E and m is a monomorphism. Moreover,

since w has a zero kernel, e is an isomorphism since every morphism in E is a normal epimor-

phism (condition (b) of Definition 3.1.4). Therefore, w is a monomorphism, and applying

Condition 3.1.6(c) to the diagram (1.3) we conclude that w is a normal monomorphism.

Since w has a zero cokernel, the latter implies that w is an isomorphism, as desired.

Theorem 3.1.7 together with Theorem 3.1.8 gives:

Corollary 3.1.9. The following conditions are equivalent:

(i) The pair (C,E) is an incomplete relative homological category.

(ii) The pair (C,E) satisfies Condition 3.1.1 and:

(a) Every morphism in E is a regular epimorphism;

(b) If f ∈ E then coker(ker(f)) ∈ E;
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(c) The E-Short Five Lemma holds in C;

(d) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

(ii) The pair (C,E) satisfies Condition 3.1.1 and:

(a) Every morphism in E is a normal epimorphism;

(b) The relative Hofmann’s Axiom holds in C;

(c) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

Remark 3.1.10. Note that since the incomplete relative homological categories satisfy Con-

ditions 2.1.1 and 2.3.8, all the results of Chapter 1 can be applied to them without any

restrictions.

The axioms of incomplete relative homological category (C,E), (precisely, Condition

3.1.1) are much simplified when the ground category C is finitely complete/cocomplete.

This special case will be considered in the next section.

3.2 Relative homological categories

Throughout this section we assume that (C,E) is a pair in which C is a pointed, finitely

complete category with cokernels, and E is a class epimorphisms in C containing all iso-

morphisms. Consider the following
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Condition 3.2.1. (a) The class E is closed under composition;

(b) If f ∈ E and gf ∈ E then g ∈ E;

(c) The class E is pullback stable;

(d) If a morphism f in C factors as f = em in which e is in E and m is a monomorphism,

then it also factors (essentially uniquely) as f = m′e′ in which m′ is a monomorphism

and e′ is in E.

Lemma 3.2.2. Let (C,E) be the pair satisfying Conditions 3.2.1(a) and 3.2.1(c). If

f : A → C and g : B → D are morphisms in E, then so is the canonical morphism

f × g : A×B → C ×D.

Proof. Let f : A → C and g : B → D be the morphisms in E. Consider the commutative

diagram
A

f

²²

A×Boo //

f×1B

²²

B

C C ×Boo //

1c×g

²²

B

g

²²
C C ×Doo // D

(2.1)

in which the unlabeled arrows are the suitable product projections. It is easy to see that

the top left and the bottom right squares of the diagram (2.1) are pullbacks. Therefore,

since f and g are in E, the morphisms f×1B and 1c×g are also in E by Condition 3.2.1(c),

and therefore the composite (1c × g)(f × 1B) is also in E by Condition 3.2.1(a). Since

f × g = (1c × g)(f × 1B), we conclude that f × g is in E, proving the desired.

Remark 3.2.3. Note that in Lemma 3.2.2 it is not necessary for the ground category C to

be pointed and have all finite limits and cokernels, we only require the existence of products

and pullbacks.

Comparing Conditions 3.1.1 and 3.2.1, we have:

Proposition 3.2.4. The pair (C,E) satisfies Condition 3.1.1 if and only if it satisfies

Condition 3.2.1.
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Proof. Since C has finite limits and cokernels, Conditions 3.1.1(c) and 3.1.1(d) always

hold in C, Conditions 3.1.1(a), 3.1.1(b), and 3.1.1(e) are the same as Conditions 3.2.1(a)

3.2.1(b) and 3.2.1(c) respectively, Condition 3.2.1(d) follows from Condition 3.1.1(f) (see

Proposition 2.1.6); therefore we only need to prove that Condition 3.1.1(f) follows from

Condition 3.2.1(d).

For, let h1 : H → A and h2 : H → B be jointly monic morphisms in C and let

α : A → C and β : B → D be morphisms in E. Since α and β are in E, so is the morphism

α×β : A×B → C×D by Lemma 3.2.2, and since h1 and h2 are jointly monic, the canonical

morphism 〈h1, h2〉 : H → A × B is a monomorphism. Since 〈h1, h2〉 is a monomorphism

and α×β is in E, by Condition 3.2.1(d) there exists a factorization (α×β)〈h1, h2〉 = me in

which e : H → X is in E and m : X → C ×D is a monomorphism. We obtain the diagram

H

e

²²

h1

{{wwwwwwwww
h2

##GGGGGGGGG

A
α

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

X

m

²²x1

vv
x2

((

B
β

ÂÂ@
@@

@@
@@

@

C C ×Dπ1

oo
π2

// D

in which π1 and π2 are the product projections and x1 = π1m and x2 = π2m. We have

x1e = π1me = π1(α × β)〈h1, h2〉 = αh1 and x2e = π2me = π2(α × β)〈h1, h2〉 = βh2;

moreover, since m is a monomorphism and π1 and π2 are jointly monic, the morphisms x1

and x2 are also jointly monic. Hence, there exists a morphism e in E, and jointly monic

morphisms x1 and x2 for which x1e = αh1 and x2e = βh2 proving Condition 3.1.1(f).

Definition 3.2.5. The pair (C,E) is said to be a relative homological category if:

(a) Condition 3.2.1 holds in C;

(b) Every morphism in E is a normal epimorphism;

(c) The E-short five lemma holds in C;

(d) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B
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f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

We will also say that the pair (C,E) is a relative weakly homological category whenever it

satisfies Condition 3.2.1(a)-3.2.1(c) and conditions (a)-(c) of Definition 3.2.5.

Comparing Definition 3.2.5 and Definition 3.1.4, we have:

Theorem 3.2.6. If C is a pointed category with finite limits and cokernels, and E is a class

of epimorphisms in C containing all isomorphisms, then (C,E) is a relative homological

category if and only if (C,E) is an incomplete relative homological category.

Proof. The proof follows directly from Proposition 3.2.4. Indeed: conditions (b), (c), and

(d) of Definition 3.2.5 are the same as the conditions (b), (c), and (d) of Definition 3.1.4,

and Conditions 3.2.1 and 3.1.1 are equivalent by Proposition 3.2.4.

As follows from Theorem 3.2.6, Lemma 3.1.5, Theorem 3.1.7, and Theorem 3.1.8 hold

true in the relative homological categories, therefore, we have:

Corollary 3.2.7. The following conditions are equivalent:

(i) The pair (C,E) is a relative homological category.

(ii) The pair (C,E) satisfies Condition 3.2.1 and:

(b) Every morphism in E is a regular epimorphism;

(c) If f ∈ E then coker(ker(f)) ∈ E;

(d) The E-Short Five Lemma holds in C;

(e) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

(ii) The pair (C,E) satisfies Condition 3.2.1 and:
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(a) Every morphism in E is a normal epimorphism;

(b) The relative Hofmann’s Axiom holds in C;

(c) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

3.3 Examples

Proposition 3.3.1. The following conditions are equivalent:

(i) A pair (C,E) in which E is the class of all split epimorphisms in C, is a relative

weakly homological category.

(ii) C is a protomodular category in the sense of D. Bourn [6].

Proof. The implication (i)⇒(ii) follows directly from the definitions.

(ii)⇒(i): The only condition that requires a verification here is condition (b) of Definition

3.2.5; however, it holds by Proposition 1.3.5.

Proposition 3.3.2. If C has coequalizers of kernel pairs and E is the class of all regular

epimorphisms in C, then the following conditions are equivalent:

(i) (C,E) is a relative weakly homological category.

(ii) (C,E) is a relative homological category.

(iii) C is a homological category in the sense of F. Borceux and D. Bourn [3].

Proof.
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(i)⇒(iii): As follows from (i), the class of all regular epimorphisms in C is pullback stable.

Therefore, since C has kernel pairs and their coequalizers, C admits a (regular epi, mono)-

factorization system by Proposition 1.2.2. Since C has all finite limits, the latter implies

that C is a regular category. Furthermore, since C has pullbacks and a zero object, proto-

modularity is equivalent to the Split Short Five Lemma by Proposition 1.3.3; and since the

E-Short Five Lemma coincides with the Regular Short Five Lemma when E is the class of

all regular epimorphisms in C, it follows from Remark 1.3.4 and Proposition 1.3.3 that C

is a protomodular category. Therefore, C is a homological category.

(iii)⇒(ii): Let C be a homological category and let E be the class of all regular epimorphisms

in C. Conditions 3.2.1(a) and 3.2.1(b), and condition (b) of Definition 3.2.5 hold in C

by Proposition 1.1.3, Proposition 1.1.4, and Proposition 1.3.5 respectively. Since C has

pullback stable (regular epi,mono)-factorization system, Conditions 3.2.1(c) and 3.2.1(d),

and condition (d) of Definition 3.2.5 are satisfied, and Condition (c) of Definition 3.2.5

holds since the Regular Short Five Lemma holds in a homological category by Remark

1.3.4. Therefore, (C,E) is a relative homological category.

Since the implication (ii)⇒(i) is trivial, this completes the proof.

Example 3.3.3. Let (C,E) be a relative weakly homological category and let (C′,E′) be

a pair, in which C′ is a category with finite limits and E′ is a class of morphisms in C′

satisfying Conditions 3.2.1(a), 3.2.1(b), and 3.2.1(c). If the functor F : C → C′ preserves

finite limits, then the pair (C,E∩F−1(E′)), in which F−1(E′) is the class of all morphisms

e in E for which F (e) is in E′, is a relative weakly homological category. In particular we

could take C′ to be an arbitrary category with finite limits and E′ = SplitEpi to be the

class of all split epimorphisms in C′. According to the existing literature (see e.g. [33]),

an important example is provided by the forgetful functor F from the homological category

C of topological groups to the category C′ of topological spaces; the class F−1(SplitEpi)

and the corresponding concept of exactness play a significant role in the cohomology theory

of topological groups. This also applies to the classical case of profinite groups, where,

however, F−1(SplitEpi) coincides with the class of all normal epimorphisms, as shown in

Section I.1.2 of [32]; another such result is used in [31]. The results of [20] also suggest

considering the forgetful functor from the category of topological groups to the category of

groups. On the other hand one can replace topological groups with more general, so-called

protomodular (=semi-abelian), topological algebras, which form a homological category due
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to a result of F. Borceux and M. M. Clementino [4].

Let us also mention the following “trivial” examples:

Example 3.3.4. If C is an abelian category, and E is the proper class of epimorphisms in

C in the sense of relative homological algebra (see e.g. Chapter IX in [30]) then (C,E) is a

relative weakly homological category.

Example 3.3.5. A pair (C,E), in which E is the class of all isomorphisms in C, always

is a relative homological category.

Example 3.3.6. A pair (C,E), in which E is the class of all morphisms in C, is a relative

homological category if and only if C is a trivial category.
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Chapter 4

Homological lemmas in incomplete
relative homological categories

4.1 E-exact sequences

Throughout this section we assume that (C,E) is an incomplete relative homological cate-

gory.

Definition 4.1.1. A sequence of morphisms

. . . // Ai−1
fi−1 // Ai

fi // Ai+1
// . . .

in C is said to be:

(i) E-exact at Ai, if the morphism fi−1 admits a factorization fi−1 = me, in which e ∈ E

and m = ker(fi).

(ii) an E-exact sequence, if it is E-exact at Ai for each i (unless the sequence either begins

with Ai or ends with Ai).

As in the “absolute case” (see Proposition 1.4.2), we have:

Proposition 4.1.2. (i) The sequence

0 // A
f // B

g // C (1.1)

is E-exact if and only if f = ker(g).
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(ii) If the sequence

A
f // B

g // C // 0 (1.2)

is E-exact then g = coker(f) and g is in E.

(iii) The sequence

0 // A
f // B

g // C // 0 (1.3)

is E exact if and only if f = ker(g) and g is in E.

Proof.

(i): If (1.1) is an E-exact sequence then f = me in which e is in E and m = ker(g). Since

m is a monomorphism we have ker(f) = ker(e), but ker(f) = 0 since (1.1) is E-exact at A.

Since every morphism in E is a normal epimorphism we conclude that e is an isomorphism,

and therefore f = ker(g). Conversely, suppose f = ker(g). Then, f is a monomorphism

and therefore ker(f) = 0, and since E contains all isomorphisms we conclude that (1.1) is

E-exact at A. Since f = f1A and f = ker(g), the E-exactness of (1.1) at B follows again

from the fact that E contains all isomoprhisms.

(ii): If (1.2) is an E-exact sequence then f = me in which e is in E and m = ker(g),

and g = m′e′ in which e′ is in E and m′ = ker(0). Since the kernel of a zero morphism

is an isomorphism, we conclude that g is in E. Since every morphism in E is a normal

epimorphism and m = ker(g), we conclude that g = coker(m). Since e is an epimorphism,

the latter implies that g = coker(f).

(iii): The proof follows from the proofs of (i) and (ii).

In the next sections we will often use the following simple fact:

Lemma 4.1.3. In a pointed category C consider the commutative diagram:

K
k //

u

²²

A
f //

w

²²

B

v

²²
K ′

k′
// A′

f ′
// B′

(1.4)

(i) If k′ = ker(f ′) and ker(v) = 0 then k = ker(f) if and only if the left hand square of

the diagram (1.4) is a pullback.
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(ii) If f = coker(k) and coker(u) = 0 then f ′ = coker(k′) if and only if the right hand

square of the diagram (1.4) is a pushout.

Proof. Consider the commutative diagram

K

0K

((QQQQQQQQQQQQQQQQ
k //

u

²²

A
f //

w

²²

B

v

²²

0

0K

»»1
11

11
11

11
11

11
11

0B

=={{{{{{{{

0

0B′ !!CC
CC

CC
CC

K ′
0K′

66mmmmmmmmmmmmmmmm

k′
// A′

f ′
// B′

(1.5)

consisting of the diagram (1.4).

(i): If k′ = ker(f ′) and ker(v) = 0, then in the diagram (1.5), (K ′, k′, 0K′) and (0, 10, 0B) are

the pullbacks. Therefore, (K, k, 0K) is a pullback, i.e. k = ker(f), if and only if (K, u, k) is

a pullback.

(ii): If f = coker(k) and coker(u) = 0, then in the diagram (1.5), (B, f, 0B) and (0, 0K′ , 10)

are the pushouts. Therefore, (B′, f ′, 0B′) is a pushout, i.e. f ′ = coker(k′), if and only if

(B′, f ′, v) is a pushout.

4.2 The Five Lemma

Theorem 4.2.1 (The Five Lemma). Let (C,E) be an incomplete relative homological cat-

egory. If in a commutative diagram

A
f //

α

²²

B
g //

β

²²

C
h //

γ

²²

D

δ

²²

k // E

ε

²²
A′

f ′
// B′

g′
// C ′

h′
// D′

k′
// E′

(2.1)

the two rows are E-exact sequences, coker(α) = 0, ker(ε) = 0, and β and δ are isomor-

phisms, then γ is also an isomorphism.

Proof. Since the first and the second rows of the diagram (2.1) are E-exact at D and D′

respectively, there exists the factorizations h = h2h1 and h′ = h′2h
′
1 in which h1 and h′1 are
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morphisms in E and h2 = ker(k) and h′2 = ker(k′). Since h′2 = ker(k′) and k′δh2 = εkh2 = 0,

there exists a unique morphism γ̄ : C̄ → C̄ ′ with δh2 = h′2γ̄. We obtain the commutative

diagram:

C̄

γ̄

²²

h2 // D
k //

δ

²²

E

ε

²²
C̄ ′

h′2
// D′

k′
// E′

Since h2 = ker(k), h′2 = ker(k′), and ker(ε) = 0, the square δh2 = h′2γ̄ is a pullback by

Lemma 4.1.3(i). Therefore, since δ is an isomorphism, so is γ̄.

Since the first row of the diagram (2.1) is E-exact at C, there exists a factorization

g = g2g1 in which g1 is in E and g2 = ker(h), and since h2 is a monomorphism we conclude

that g2 = ker(h1). Moreover, since the first row of the diagram (2.1) is E-exact at B, and

g2 is a monomorphism and g1 is a normal epimorphism, we conclude that g1 = coker(f).

Similarly, the E-exactness of the second row of the diagram (2.1) at C ′ and B′ implies the

existence of the factorization g′ = g′2g
′
1, in which g′1 = coker(f ′) and g′2 = ker(h′2). We

obtain the commutative diagram:

A

α

²²

f // B
g1 //

β

²²

B̄

β̄

²²
A′

f ′
// B′

g′1
// B̄′

Since g1 = coker(f), g′1 = coker(f ′), and coker(α) = 0, the square g′1β = β̄g1 is a pushout

by Lemma 4.1.3(ii). Therefore, since β is an isomorphism, so is β̄.

Finally, we obtain the commutative diagram

B̄

β̄

²²

g2 // C
h1 //

γ

²²

C̄

γ̄

²²
B̄′

g′2
// C ′

h′1
// C̄ ′

in which g2 = ker(h1), g′2 = ker(h′1), the morphisms h1 and h′1 are in E, and β̄ and γ̄ are

isomorphisms. Then, by the E-Short Five Lemma the morphism γ is also an isomorphism,

proving the desired.
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4.3 The Nine Lemma

Theorem 4.3.1 (The Nine Lemma). Let (C,E) be an incomplete relative homological

category. If in a commutative diagram

0

²²

0

²²

0

²²
0 // X

f //

u

²²

Y
g //

v

²²

Z

w

²²

// 0

0 // X ′
f ′

//

u′

²²

Y ′
g′

//

v′

²²

Z ′

w′

²²

// 0

0 // X ′′
f ′′

//

²²

Y ′′
g′′

//

²²

Z ′′ //

²²

0

0 0 0

(3.1)

the three columns and the middle row are E-exact sequences, then the first row is an E-exact

sequence if and only if the last row is an E-exact sequence.

Proof. Let us first assume that the last row of the diagram (3.1) is an E-exact sequence.

As follows from Proposition 4.1.2(iii), since the three columns and the second and the third

rows of the diagram (3.1) are E-exact sequences, the morphisms u′, v′, w′, g′ and g′′ are

in E, and u = ker(u′), v = ker(v′), w = ker(w′), f ′ = ker(g′), and f ′′ = ker(g′′). And, to

prove that the first row of the diagram (3.1) is an E-exact sequence it suffices to prove that

f = ker(g) and g ∈ E.

Since w is a monomorphism and wgf = g′f ′u = 0, we have gf = 0. We first prove that

f = ker(g). It easily follows from Lemma 4.1.3 that the square f ′u = vf is a pullback.

Indeed, since f ′′ is a monomorphism and u = ker(u′) and v = ker(v′), we can apply Lemma

4.1.3 to the diagram

X
u //

f

²²

X ′ u′ //

f ′

²²

X ′′

f ′′

²²
Y v

// Y ′
v′

// Z ′

and conclude that f ′u = vf is the pullback of v and f ′. Let f̄ : X̄ → Y be any morphism
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with gf̄ = 0 and consider the following diagram:

X̄ f̄

ÂÂ

x̄

ÃÃ

x̄′

!!

X

(∗)

f //

u

²²

Y
g //

v

²²

Z

w

²²
X ′

f ′
// Y ′

g′
// Z ′

Since f ′ = ker(g′) and g′vf̄ = g′f ′u = 0, there exists a unique morphism x̄′ : X̄ → X ′ with

f ′x̄′ = vf̄ . Since (∗) is a pullback, the latter implies the existence of a unique morphism

x̄ : X̄ → X with fx̄ = f̄ and ux̄ = x̄′. Since f is a monomorphism, a morphism x̄ with

fx̄ = f is unique, proving that f = ker(g).

It remains to prove that g is in E. For, let (Y ′′×Z′′Z
′, π1, π2) be the pullback of g′′

and w′, since g′′ is in E this pullback does exist by Condition 3.1.1(d), and π2 is in E by

Condition 3.1.1(e). Consider the commutative diagram

X ′ f ′ //

u′

²²

Y ′ g′ //

〈v′,g′〉
²²

Z ′

X ′′
〈f ′′,0〉

// Y ′′×Z′′Z
′

π2

//

π1

²²

Z ′

w′

²²
X ′′

f ′′
// Y ′′

g′′
// Z ′′

in which 〈v′, g′〉 and 〈f ′′, 0〉 are the canonical morphisms. Since f ′′ = ker(g′′) and

(Y ′′×Z′′Z
′, π1, π2) a pullback of g′′ and w′, we conclude that 〈f ′′, 0〉 = ker(π2). Then, since

f ′ = ker(g′) and u′ ∈ E, the morphism 〈v′, g′〉 is also in E by Lemma 3.1.5.

Next, consider the commutative diagram

Y
v //

g

²²

Y ′ v′ //

〈v′,g′〉
²²

Y ′′

Z 〈0,w〉
// Y ′′×Z′′Z π1

// Y ′′

(3.2)

in which 〈0, w〉 is the canonical morphism. Since (Y ′′×Z′′Z, π1, π2) is the pullback of g′′ and

w′, and w = ker(w′), we conclude that 〈0, w〉 = ker(π1). Sine v = ker(v′), we can apply

Lemma 4.1.3 to the diagram (3.2) and conclude that g is in E, as desired.
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Let us now assume that the first row of the diagram (3.1) is E-exact and prove that

the last row of (3.1) is an E-exact sequence, for, it suffices to prove that f ′′ = ker(g′′) and

g′′ ∈ E.

Since g′′v′ = w′g′ and g′,w′, and v′, are in E, the morphism g′′ is also in E by Conditions

3.1.1(a) and 3.1.1(b); hence, we only need to prove that f ′′ = ker(g′′). Since u′ is an

epimorphism and g′′f ′′u′ = w′g′f ′ = 0, we conclude that g′′f ′′ = 0. Since g′′ is in E,

k = ker(g′′) exists by Condition 3.1.1(c); consider the commutative diagram:

X ′ f ′ //
k2

##
u′

²²

Y ′

v′

²²

g′ // Z ′

w′

²²

K
k

##GG
GGG

GG

X ′′

k1
;;

f ′′
// Y ′′

g′′
// Z ′′

We have:

- Since g′′f ′′ = 0 and k = ker(g′′), there exists a unique morphism k1 : X ′′ → K with

kk1 = f ′′.

- Since g′′v′f ′ = g′′f ′′u′ = 0 and k = ker(g′′), there exists a unique morphism k2 : X ′ → K

with kk2 = v′f ′.

Since g′′ is in E and k = ker(g′′), the sequence

0 // K
k

// Y ′′
g′′

// Z ′′ // 0

is E-exact. Therefore, we obtain the commutative diagram

0

²²

0

²²

0

²²
0 // X

u //

f

²²

X ′ k2 //

f ′

²²

K

k

²²

// 0

0 // Y v
//

g

²²

Y ′
v′

//

g′

²²

Y ′′

g′′

²²

// 0

0 // Z w
//

²²

Z ′
w′

//

²²

Z ′′ //

²²

0

0 0 0
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in which the three columns, the second and the third rows are E-exact sequences. Then,

by the first part of the proof, the sequence

0 // X
u // X ′ k2 // K // 0

also is E-exact. Finally, we obtain the following commutative diagram

0 // X
u // X ′ u′ // X ′′

k1

²²

// 0

0 // X u
// X ′

k2

// K // 0

in which both rows are E-exact sequences; since every morphism in E is a normal epimor-

phism, we conclude that k1 is an isomorphism. Thus, f ′′ = ker(g′′), as desired.

4.4 The Snake Lemma

Let (C,E) be an incomplete relative homological category. In Chapter 2 we defined the

composition of E-relations in C. In this chapter we will also need to compose certain

relations in C:

Let R = (R, r1, r2) : A → B be a relation from A to B, i.e. a pair of jointly monic mor-

phisms r1 : R → A and r2 : R → B with the same domain, and let S = (S, s1, s2) : B → C

be a relation from B to C. If the pullback (R ×B S, π1, π2) of r2 and s1 exists in C, and

if there exists a morphism e : R ×B S → T in E and a jointly monic pair of morphisms

t1 : T → A and t2 : T → C in C making the diagram

R×B S

e

²²

π1

{{vvvvvvvvv
π2

##GGGGGGGGG

R
r1

ÄÄ~~
~~

~~
~

r2 $$HH
HHH

HH
HH

H T

t1vv t2 ((

S

s1{{vv
vv

vv
vv

vv
s2

ÂÂ?
??

??
??

A B C

(4.1)

commutative, then we will say that (T, t1, t2) : A → C is the composite of (R, r1, r2) : A → B

and (S, s1, s2) : B → C. One can similarly define partial composition for three or more

relations satisfying a suitable associativity condition. Omitting details, let us just mention

that, say, a composite RR′R′′ might exist even if neither RR′ nor R′R′′ does (in particular,

this extends the composition of E-relations considered in Chapter 1 (see Definition 2.1.8)).
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Convention 4.4.1. We will say that a relation R = (R, r1, r2) : A → B is a morphism in

C if r1 is an isomorphism.

Theorem 4.4.2 (Snake Lemma). Let (C,E) be an incomplete relative homological category.

Consider the commutative diagram

0

²²

0

²²

0

²²
Ku

fK //

ku

²²

Kv
gK //

kv

²²

Kw

kw

²²

d

¤¤

X
f //

u

²²

Y
g //

v

²²

Z //

w

²²

0

0 // X ′ f ′ //

qu

²²

Y ′ g′ //

qv

²²

Z ′

qw

²²
Qu

f ′Q
//

²²

Qv
g′Q

//

²²

Qw

²²
0 0 0

(4.2)

in which all columns, the second and the third rows are E-exact sequences. If the morphism

g′ factors as g′ = g′2g
′
1 in which g′1 is in E and g′2 is a monomorphism, then:

(a) The composite quf ′◦vg◦kw : Kw → Qu is a morphism in C.

(b) The sequence

Ku
// Kv

// Kw
d // Qu

// Qv
// Qw (4.3)

where d = quf ′◦vg◦kw, is E-exact.

Proof. Under the assumptions of the theorem, consider the commutative diagram (4.2).

Since the three columns of the diagram (4.2) are E-exact sequences, by Proposition 4.1.2

the morphisms ku, kv, kw, and qu, qv, and qw are the kernels and the cokernels of u, v,
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and w respectively. Since the second and the third rows of the diagram (4.2) are E-exact,

again by Proposition 4.1.2, g = coker(f), g is in E, and f ′ = ker(g′). Consider the following

commutative diagram

0

²²

0

²²

0

²²
Ku

fK //

ku

²²

Kv
gK //

kv

²²

h

##

Kw

kw

²²

d

uu

Y ×Z Kw

ϕ

rr

π2

;;w
w

w
w

π1

{{w
w

w
w

w

X
f //

u

²²

f1 ##GG
GG

GG
GG

G Y
g //

v

²²

Z

w

²²

// 0

X ′′
u′

{{

f2

;;wwwwwwwww

θ

00

0 // X ′
f ′

//

qu

²²

Y ′
g′

//

qv

²²

Z ′

qw

²²
Qu

fQ
′

//

²²

Qv
gQ
′

//

²²

Qw

²²
0 0 0

(4.4)

in which:

(i) All the horizontal and the vertical arrows are as in the diagram (4.2).

(ii) f = f2f1 where f1 : X → X ′′ is a morphism in E and f2 : X ′′ → Y is the kernel of g

(such factorization of f does exist in C since the second row of the diagram (4.2) is

E-exact).

(iii) (Y×ZKw, π1, π2) is the pullback of g and kw, by Condition 3.1.1(d) this pullback does

exist in C. Since g is in E, the morphism π2 is also in E by Condition 3.1.1(e), and
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since kw is a normal monomorphism so is π1.

(iv) Since gkv = kwgK , (iii) implies the existence of a unique morphism h : Kv → Y×ZKw

with π1h = kv and π2h = gK . Since kv and π1 are normal monomorphisms, so is h.

(v) Since gf2 = 0 = kw0, (iii) implies the existence of a unique morphism θ : X ′′ → Y×ZKw

with π1θ = f2 and π2θ = 0. Therefore, since f2 = ker(g) and π2 is in E, we conclude

that π2 = coker(θ).

(vi) Since f1 is in E, it is an epimorphism, and therefore the equalities g′vf2f1 = g′vf =

= g′f ′u = 0 imply g′vf2 = 0. Since f ′ = ker(g′) the latter implies the existence of a

unique morphism u′ : X ′′ → X ′ with f ′u′ = vf2. Since vf2f1 = f ′u′f1 and f1 is an

epimorphism, we conclude that u′f1 = u. Moreover, since qu = coker(u) and f1 is an

epimorphism, we obtain qu = coker(u′).

(vii) Since f ′ = ker(g′) and g′vπ1 = wgπ1 = wkwπ2 = 0, there exists a unique morphism

ϕ : Y×ZKw → X ′ with f ′ϕ = vπ1. It follows that (Y×ZKw, ϕ, π1) is the pullback

of f ′ and ϕ. Indeed: Let h1 : H → X ′ and h2 : H → Y be any morphisms with

f ′h1 = vh2. Consider the diagram:

H

h2

""

h1

ÀÀ

h∗

""

h3

##
Y×ZKw

ϕ

©©

(∗)π1

²²

π2 // Kw

kw

²²
X ′′

u′

²²

f2

// Y

v

²²

g
// Z

w

²²
X ′

f ′
// Y ′

g′
// Z ′

Since kw = ker(w) and wgh2 = g′vh2 = g′f ′h1 = 0, there exists a unique morphism

h3 : H → Kw with kwh3 = gh2; since (∗) is a pullback, the last equality implies that

there exists a unique morphism h∗ : H → Y×ZKw with π2h
∗ = h3 and π1h

∗ = h2.

Since f ′ is a monomorphism, the equalities f ′ϕh∗ = vπ1h
∗ = vh2 = f ′h1 imply

ϕh∗ = h1. Hence, there exists a unique morphism h∗ : H → Y×ZKw with π1h
∗ = h2

63

Univ
ers

ity
 of

 C
ap

e T
ow

n



and ϕh∗ = h1 (uniqueness follows from the fact that π1 is a monomorphism), proving

that the square f ′ϕ = vπ1 is the pullback of f ′ and ϕ.

(viii) h = ker(ϕ). Indeed: since f ′ is a monomorphism, the equalities f ′ϕh = vπ1h = vkv = 0

imply ϕh = 0. Let h′ : H ′ → Y×ZKw be another morphism with ϕh′ = 0. Consider

the diagram:

H ′

h′′

{{

h′

²²
Kv

h //

kv

##HHHHHHHHHHHHH Y×ZKw

π1

²²

ϕ // X ′

f ′

²²
Y v

// Y ′

Since kv = ker(v) and vπ1h
′ = f ′ϕh′ = 0, there exists a unique morphism h′′ : H ′ → Kv

with kvh
′′ = π1h

′. Since π1 is a monomorphism and π1hh′′ = kvh
′′ = π1h

′, we conclude

that hh′′ = h′. Since h is a monomorphism, this means that h = ker(ϕ).

(ix) Since f ′ is a monomorphism, the equalities f ′ϕθ = vπ1θ = vf2 = f ′u′ imply ϕθ = u′;

then, since qu = coker(u′), we obtain quϕθ = quu′ = 0. Since π2 = coker(θ), the last

equality implies the existence of a unique morphism d : Kw → Qu with dπ2 = quϕ.

(a): Since (Y ×Z Kw, π1, π2) is the pullback of g and kw, π1 is a monomorphism, and

(Y ×Z Kw, π1, ϕ) is the pullback of f ′ and v (see (vii) above), we obtain the commuta-
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tive diagram

P
1P

ÄÄ¡¡
¡¡

¡¡
¡¡ 1P

ÂÂ?
??

??
??

?

P
1P

ÄÄ¡¡
¡¡

¡¡
¡¡ 1P

ÂÂ>
>>

>>
>>

> P
1P

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ 1P

ÃÃA
AA

AA
AA

A

P
1P

ÄÄ¡¡
¡¡

¡¡
¡¡ π1

ÂÂ>
>>

>>
>>

> P
π1

ÄÄ¡¡
¡¡

¡¡
¡¡ 1P

ÂÂ?
??

??
??

? P
1P

~~}}
}}

}}
}} ϕ

ÃÃA
AA

AA
AA

A

P
π2

~~}}
}}

}}
}} π1

ÂÂ>
>>

>>
>>

> Y
1Y

ÄÄ¡¡
¡¡

¡¡
¡¡ 1Y

ÂÂ>
>>

>>
>>

> P
π1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ ϕ

ÃÃA
AA

AA
AA

A X ′
1X′

~~}}
}}

}}
}} 1X′

ÃÃA
AA

AA
AA

A

Kw
1Kw

}}{{
{{

{{
{{ kw

ÃÃA
AA

AA
AA

A Y
g

ÄÄ¡¡
¡¡

¡¡
¡¡ 1Y

ÂÂ>
>>

>>
>>

> Y
1Y

ÄÄ¡¡
¡¡

¡¡
¡¡ v

ÂÂ?
??

??
??

? X ′
f ′

~~}}
}}

}}
}} 1X′

ÃÃA
AA

AA
AA

A X ′
1X′

~~}}
}}

}}
}} qu

ÃÃB
BB

BB
BB

B

Kw Z Y Y ′ X ′ Qu

where P = Y ×Z Kw, and all the diamond parts are pullbacks. Since π2 and qu are in E,

by Condition 3.1.1(f) we have the factorization (unique up to an isomorphism)

Y ×Z Kw

r

²²

1Y×ZKw

{{wwwwwwww
ϕ

##GGGGGGGG

Y ×Z Kw

π2

{{xxx
xx

xx
xx

R

r1

uu
r2

))

X ′
qu

##FF
FF

FF
FF

F

Kw Qu

(4.5)

where r : Y ×Z Kw → R is a morphism in E and r1 : R → Kw and r2 : R → Qu are

jointly monic morphisms in C. As follows from the definition of composition of relations,

(R, r1, r2) is the composite relation quf ′◦vg◦kw from Kw to Qu (Note, that since the pullback

(Y ×Z Kw, π1, π2) of kw and g, and the pullback (Y ×Z Kw, π1, ϕ) of v and f ′ exists in C,

the composite relations g◦kw : Kw → Y and f ′◦v : Y → X ′ exist. Moreover, since π2 and qu

are in E, the composite qu(f ′◦v)(g◦kw) of the three relations g◦kw, f ′◦v, and qu also exists

and we have qu(f ′◦v)(g◦kw) = quf ′◦vg◦kw).

Since the morphism d : Kw → Qu is such that quϕ = dπ2 (see (ix) above), we obtain
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the following factorization:

Y ×Z Kw

π2

²²

1Y×ZKw

||yy
yy

yy
yy

y
ϕ

""EE
EE

EE
EE

E

Y ×Z Kw

π2

||yy
yy

yy
yy

y
Kw

1Kw
vv

d
((

X ′
qu

""EE
EE

EE
EE

E

Kw Qu

(4.6)

Comparing the diagrams (4.5) and (4.6), we conclude that the relation (Kw, 1Kw , d) can be

identified with the relation (R, r1, r2). Therefore, r1 is an isomorphism, as desired.

(ii): To prove that the sequence (4.3) is E-exact, we need to prove that it is E-exact at Kv,

Kw, Qu, and Qv.

E-exactness at Kv: It follows from the fact that the first column of the diagram (4.4) is

E-exact at X ′, that the kernel of u′ exists in C. Indeed, consider the commutative diagram

X ′′

u′1

ºº

u′

!!DD
DD

DD
DD

X

u1 ÃÃB
BB

BB
BB

B

f1

=={{{{{{{{

u
// X ′

qu
// Qu

Kqu

u2

=={{{{{{{{

(4.7)

in which u = u2u1 is the factorization of u with u2 = ker(qu) and u1 ∈ E (which does

exists since the first column of the diagram (4.4) is E exact at X ′), and u′1 is the induced

morphism (quu′ = 0 by (vi)). Since f1 and u1 are in E, u′1 is also in E by Condition 3.1.1(b),

and therefore the kernel of u′1 exists by Condition 3.1.1(c). Since u2 is a monomorphism we

conclude that Ker(u′) ≈ Ker(u′1).
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Consider the following part of the diagram (4.4)

0

²²

0

²²

0

²²
Ku

fK //

ku

²²

e ""

Kv

kv

²²

gK // Kw

kw

²²

Ku′
m

<<

ku′

²²

X
f //

u

²²

f1 ##FFF
FFF

F Y

v

²²

g // Z

w

²²

// 0

X ′′
f2

;;xxxxxxx

u′||xxxxxx

0 // X ′
f ′

// Y ′
g′

// Z ′

in which:

- ku′ = ker(u′).

- Since kv = ker(v) and vf2ku′ = f ′u′ku′ = 0, there exists a unique morphism

m : Ku′ → Kv with kvm = f2ku′ .

- Since ku′ = ker(u′) and u′f1ku = uku = 0, there exists a unique morphism e : Ku → Ku′

with ku′e = f1ku.

- Since kv is a monomorphism and kvme = f2ku′e = f2f1ku = fku = kvfK , we conclude

that me = fK .

The E-exactness at Kv will be proved if we show that e ∈ E and m = ker(gK). The

latter, however, easily follows from Lemma 4.1.3(i). Indeed: since the kernels of 1X′ and

f ′ are zeros, by Lemma 4.1.3(i) the squares f1ku = ku′e and f2ku′ = kvm are pullbacks.

Therefore, since f1 is in E the morphism e is also is in E by Condition 3.1.1(e); and since

kw is a monomorphism and the kernel of a monomorphism is zero, by the same Lemma

4.1.3 we obtain m = ker(gK).

E-exactness at Kw: Consider the commutative diagram (4.4), we have: dgK = dπ2h =

= quϕh = 0 (by (iv), (ix), and (viii)). To prove that the sequence (4.3) is E-exact at Kw, it

suffices to prove that the kernel of d exists in C and that the induced morphism from Kv

to the kernel of d is in E.
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It easily follows from Lemma 3.1.3 that there exists a factorization d = d2d1 where

d2 is a monomorphism and d1 is in E. Indeed: since the second column of the Diagram

(4.4) is E-exact at Y ′, there exists a factorization v = v2v1, where v2 = ker(qv) (i.e. v2

is a monomorphism) and v1 is in E. Since π1 : Y ×Z Kw → Y and f ′ : X ′ → Y ′ are

monomorphisms, we can apply Lemma 3.1.3(ii) to the diagram

Y ×Z Kw

π1

²²

ϕ // X ′

f ′

²²
Y v

// Y ′

(where ϕ : Y ×Z Kw → X ′ is defined as in (vii)) and conclude that ϕ = ϕ2ϕ1 were ϕ2 is a

monomorphism and ϕ1 is in E. Then, since π2 : Y ×Z Kw → Kw and qu : X ′ → Qu are in

E, applying Lemma 3.1.3(i) to the diagram

Y ×Z Kw

π2

²²

ϕ // X ′

qu

²²
Kw d

// Qu

we obtain the desired factorization of d. Since d1 is in E, the kernel of d1 exists by Condition

3.1.1(c); moreover, since d2 is a monomorphism and d = d2d1, we conclude that the kernel

of d also exists (precisely, it is the kernel of d1). Let kd : Kd → Kw be the kernel of d, since

dgK = 0 there exists a unique morphism ed : Kv → Kd with kded = gK ; it remains to prove

that ed is in E. For, consider the commutative diagram

Kv

h

²²

ed // Kd

h′

¦¦

kd

²²
X ′′ θ //

u′1

²²

Y×ZKw

ϕ

²²

s %%

π2 // Kw

d

²²

X ′×QuKw

π′1yyssssssss

π′2

99ssssssss

Kqu u2

//

θ′
22

X ′
qu

// Qu

in which:
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- The morphisms θ : X ′′ → Y ×Z Kw and h : Kv → Y ×Z Kw are defined as in (v) and

(iv) respectively.

- The morphisms u′1 : X ′′ → Kqu and u2 : Kqu → X ′ are as in the diagram (4.7).

- (X ′×QuKw, π′1, π
′
2) is the pullback of qu and d (note that by Condition 3.1.1(d) the

pullback of qu and d does exist in C since qu is in E), and s = 〈ϕ, π2〉, θ′ = 〈u2, 0〉,
and h′ = 〈0, kd〉 are the canonical morphisms; since qu is in E, the morphism π′2 is

also in E by Condition 3.1.1(e).

- Since (X ′×QuKw, π′1, π
′
2) is the pullback of qu and d, and u2 = ker(qu) and kd = ker(d),

we conclude that θ′ = ker(π′2) and h′ = ker(π′1).

Since θ = ker(π2), θ′ = ker(π′2), and the morphisms π2, π′2 u′1 are in E, the morphism

s : Y×ZKw → X ′×QuKw is also in E by Lemma 3.1.5. And, since h = ker(ϕ) and

h′ = ker(π′1), the square sh = h′ed is the pullback of s and h′ by Lemma 4.1.3(i). Therefore,

since s is in E, the morphism ed is also in E by Condition 2.1.1(e), as desired.

E-exactness at Qu: Consider the commutative diagram (4.4), we have: f ′Qdπ2 = f ′Qquϕ =

= qvf
′ϕ = qvvπ1 = 0 (by (ix) and (vii)), and since π2 is an epimorphism we conclude that

f ′Qd = 0. To prove that the sequence (4.3) is E-exact at Qu, it suffices to prove that the

kernel of f ′Q exists in C and that the induced morphism from Kw to the kernel of f ′Q is in

E.

It easily follows from Lemma 3.1.3(i) that there exists a factorization f ′Q = f ′Q2
f ′Q1

where f ′Q2
is a monomorphism and f ′Q1

is in E. Indeed: since qu and qv are in E, f ′ is

a monomorphism and E contains all isomorphisms, we can apply Lemma 3.1.3(i) to the

diagram

X ′ f ′ //

qu

²²

Y ′

qv

²²
Qu

f ′Q
// Qv

and obtain the desired factorization of f ′Q. Since f ′Q1
is in E, the kernel of f ′Q1

exists by

Condition 3.1.1(c), and therefore, since f ′Q2
is a monomorphism we conclude that the kernel

of f ′Q also exists (precisely, it is the kernel of f ′Q1
). Let kf ′Q : Kf ′Q → Qu be the kernel of f ′Q,

since f ′Qd = 0 there exists a unique morphism ef ′Q : Kw → Kf ′Q with ef ′Qkf ′Q = d; it remains

to prove that ef ′Q is in E. Since qu is in E, the pullback (Kf ′Q ×Qu X ′, p1, p2) of kf ′Q and

69

Univ
ers

ity
 of

 C
ap

e T
ow

n



qu exists by Condition 3.1.1(d) and p1 is in E by Condition 3.1.1(e); therefore, we have the

commutative diagram

Y ′′

v2

²²
Kf ′Q ×Qu X ′

p
00

p1

²²

p2 // X ′ f ′ //

qu

²²

Y ′

qv

²²
Kf ′Q kf ′

Q

// Qu
f ′Q

// Qv

in which v2 = ker(qv) (recall, that since the second column of the diagram (4.4) is E-

exact at Y ′, there exists a factorization v = v2v1 such that v1 ∈ E and v2 = ker(qv));

and, since qvf
′p2 = f ′Qkf ′Q

p1 = 0 and v2 = ker(qv), there exists a unique morphism

p : Kf ′Q ×Qu X ′ → Y ′′ with v2p = f ′p2. Let us first prove that the square f ′p2 = v2p is

the pullback of f ′ and v2. For, consider the commutative diagram

A

a3

³³

a1

##

a
##

a2

&&
Kf ′Q ×Qu X ′

p1

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{

p2

²²

p // Y ′′

v2

²²
X ′

qu

²²

f ′ // Y ′

qv

²²
Kf ′Q kf ′

Q

// Qu
f ′Q

// Qv

in which a1 : A → X ′ and a2 : A → Y ′′ are any morphisms with f ′a1 = v2a2. Since

kf ′Q = ker(f ′Q) and f ′Qqua1 = qvf
′a1 = qvv2a2 = 0, there exists a unique morphism a3 :

A → Kf ′Q with kf ′Qa3 = qua1. Then, since (Kf ′Q ×Qu X ′, p1, p2) is the pullback of kf ′Q and

qu, there exists a unique morphism a : A → Kf ′Q
×Qu X ′ with p2a = a1 and p1a = a3.

Moreover, pa = a2 since v2pa = f ′p2a = f ′a1 = v2a2 and v2 is a monomorphism. That is,

there exists a morphism a : A → Kf ′Q ×Qu X ′ such that p2a = a1 and pa = a2, and, such a

is unique since p2 is a monomorphism, proving that (Kf ′Q ×Qu X ′, p2, p) is the pullback of

f ′ and v2.
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Next, consider the commutative diagram:

Y

v1

²²
v

!!

Y×ZKw

ψ

²²

ϕ

##

π1oo π2 // Kw

ef ′
Q

²²
d

}}

Y ′′

v2

²²

Kf ′Q ×Qu X ′
p

oo
p1

//

p2

²²

Kf ′Q

kf ′
Q

²²
Y ′ X ′

f ′
oo

qu
// Qu

Since (Kf ′Q ×Qu X ′, p2, p) is the pullback and f ′ϕ = vπ1, there exists a unique morphism

ψ : Y ×Z Kw → Kf ′Q ×Qu X ′ with p2ψ = ϕ and pψ = v1π1. We have:

kf ′Qp1ψ = qup2ψ = quϕ = dπ2 = kf ′Qef ′Qπ2

and since kf ′Q is a monomorphism we conclude that p1ψ = ef ′Qπ2. Since f ′ϕ = vπ1 and

f ′p2 = v2p are the pullback squares (see (vii)), we conclude that (Y×ZKw, π1, ψ) is the

pullback of p and v1. Therefore, since v1 is in E, the morphism ψ is also in E by Condition

3.1.1(e). That is, in the equality p1ψ = ef ′Qπ2 the morphisms π2, ψ, and p1 are in E,

therefore ef ′Q is also in E by Conditions 3.1.1(a) and 3.1.1(b), as desired.

E-exactness at Qv: Consider the commutative diagram (4.4), we have: g′Qf ′Qqu = qwg′f ′ = 0,

and since qu is an epimorphism we conclude that g′Qf ′Q = 0. To prove that the sequence

(4.3) is E-exact at Qv, it suffices to prove that the kernel of g′Q exists in C and that the

induced morphism from Qu to the kernel of g′Q is in E.

It easily follows from Lemma 3.1.3(i) that g′Q = g′Q2
g′Q1

in which g′Q1
is a morphism in

E and g′Q2
is a monomorphism. Indeed: according to the assumptions of the theorem, we

have g′ = g′2g
′
1 were g′1 is a morphism in E and g′2 is a monomorphism, therefore, since qv

and qw are in E we can apply Lemma 3.1.3(i) to the diagram

Y ′

qv

²²

g′ // Z ′

qw

²²
Qv

g′Q
// Qw

and obtain the desired factorization of g′Q. Since g′Q1
is in E, the kernel of g′Q1

exists by

Condition 3.1.1(c), and therefore, since g′Q2
is a monomorphism we conclude that the kernel
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of g′Q also exists (precisely, it is the kernel of g′Q1
). Let kg′Q : Kg′Q → Qv be the kernel of

g′Q, since g′Qf ′Q = 0 there exists a unique morphism eg′Q : Qu → Kg′Q with kg′Qeg′Q = f ′Q; it

remains to prove that eg′Q is in E. For, consider the commutative diagram

X
f //

u

²²

Y

v

²²

g //
v1

ÃÃB
BB

BB
B Z

w

²²

w1

}}||
||

||

Ȳ

v2

¦¦®®
®®

®®
®®

®®
ȳ

// Z̄

w2

¼¼3
33

33
33

33
3

z̄

§§

X ′

qu

²²

e2 !!

f ′ // Y ′

e1 ))

qv

²²

g′ // Z ′

qw

²²

Kg′Q

kg′
Q

ÃÃB
BB

BB
BB

BB
BB

BB f ′′
// Qv×QwZ ′

p′1
zzuuuuuuuuuuuuuuuu

p′2

55lllllllllllll

Qu

eg′
Q

DDªªªªªªªªªªª

f ′Q
// Qv

g′Q
// Qw

in which:

- Since the second and the third columns of the diagram (4.4) are E-exact at Y ′ and

Z ′ respectively, we have the factorizations v = v2v1 and w = w2w1, where v1, w1 ∈ E,

v2 = ker(qv), and w2 = ker(qw).

- (Qv×QwZ ′, p′1, p
′
2) is the pullback of g′Q and qw (note that by Condition 3.1.1(d) the

pullback of g′Q and qw does exist since qw is in E), and e1 = 〈qv, g
′〉, f ′′ = 〈kg′Q , 0〉,

and z̄ = 〈0, w2〉 are the canonical morphisms; since qw is in E, the morphism p′1 is

also in E by Condition 3.1.1(e).

- Since (Qv×QwZ ′, p′1, p
′
2) is the pullback of g′Q and qw, and, kg′Q = ker(g′Q) and w2 =

= ker(qw), we conclude that f ′′ = ker(p′2) and z̄ = ker(p′1).

- Since f ′′ = ker(p′2) and p′2e1f
′ = g′f ′ = 0 there exists a unique morphism e2 : X ′′ → Kg′Q

with f ′′e2 = e1f
′. Since kg′Q is a monomorphism and kg′Qe2 = p′1f

′′e2 = p′1e1f
′ =

= qvf
′ = f ′Qqu = kg′Q

eg′Q
qu, we conclude that eg′Q

qu = e2.

- Since z̄ = ker(p′1) and p′1e1v2 = qvv2 = 0, there exists a unique morphism ȳ : Ȳ → Z̄

with e1v2 = z̄ȳ. Since w2ȳv1 = p′2z̄ȳv1 = p′2e1v2v1 = g′v2v1 and v1 is an epimorphism,
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we conclude that w2ȳ = g′v2. Therefore, since w2ȳv1 = g′v2v1 = g′v = wg = w2w1g

and w2 is a monomorphism we obtain ȳv1 = w1g.

Since v1, g, and w1 are in E, and ȳv1 = w1g, the morphism ȳ is also in E by Conditions

3.1.1(a) and 3.1.1(b). Therefore, since v2 = ker(qv), z̄ = ker(p′1), and ȳ, qv, and p′1 are in

E, by Lemma 3.1.5 the morphism e1 is also in E. Then, since f ′ = ker(g′), f ′′ = ker(p′2),

the square f ′′e2 = e1f
′ is a pullback by Lemma 4.1.3(i); therefore, since e1 is in E, the

morphism e2 is also in E by Condition 3.1.1(e). Finally, since eg′Qqu = e2 and e2 and qu are

in E, the morphism eg′Q is also in E by Condition 3.1.1(b), as desired.
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Chapter 5

Relative semi-abelian categories

5.1 Axioms for incomplete relative semi-abelian categories

Definition 5.1.1. Let (C,E) be an incomplete relative homological category. An equiva-

lence E-relation (R, r1, r2) in C is said to be E-effective, if it is the kernel pair of some

morphism in E.

Definition 5.1.2. Let C be a pointed category and let E be a class of epimorphisms in

C containing all isomorphisms. The pair (C,E) is said to be an incomplete relative semi-

abelian category if:

(a) (C,E) is an incomplete relative homological category;

(b) If f : A → B is in E then the coproduct Ker(f) + B exists in C;

(c) Every equivalence E-relation in C is E-effective.

As follows from Definition 5.1.2, the two basic examples of an incomplete relative semi-

abelian category are:

1. “Trivial case”: C is a pointed category and E is the class of all isomorphisms in C.

2. “Absolute case”: C is a semi-abelian category [23] and E is the class of all regular

epimorphisms in C.

As proved in [23], the so called “old” and the “new” axioms that characterize semi-

abelian categories are equivalent. Below, we consider the relative versions of the “old” and

the “new” axioms, and show that also in the (incomplete) relative case these two sets of

axioms are equivalent.
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Theorem 5.1.3. Let (C,E) be an incomplete relative semi-abelian category. If f : A → B

is a split epimorphism in E with fg = 1B and K = Ker(f) then the canonical morphism

[k, g] : K + B → A is an extremal epimorphism.

Proof. Let (C,E) be an incomplete relative semi-abelian category, and let f : A → B be

a morphism in E with k = ker(f). Note that since f is in E, the kernel K of f and the

coproduct K + B exist in C by Condition 3.1.1(c) and condition (b) of Definition 5.1.2.

It follows from Condition 3.1.1(f) and the E-Short Five Lemma that [k, g] is an extremal

epimorphism. Indeed, let [k, g] = mx were m : X → A a monomorphism. Consider the

commutative diagram

K

k

ÂÂ
ι1

// K + B

[k,g]
##x // X m
// A

f
// B

K ′

k̄

OOÂ
Â
Â
Â k′

55

in which ι1 : K → K + B is the first coproduct injection and k′ : K ′ → X is any morphism

with fmk′ = 0. Since k = ker(f), the latter implies the existence of a unique morphism k̄ :

K ′ → K with kk̄ = mk′; therefore, since kk̄ = [k, g]ι1k̄ = mxι1k̄ and m is a monomorphism

we obtain xι1k̄ = k′. Since (fm)(xι1) = 0, and for any other morphism k′ : K ′ → X with

(fm)k′ = 0 there exists a unique morphism k̄ : K ′ → K with xι1k̄ = k′, we conclude that

xι1 = ker(fm). Consider the commutative diagram:

K
xι1 // X

m

²²

e1 ÃÃ

fm // B

xι2

ÄÄ

X1

m1 ÃÃ
K

k
// A

f
// B

(1.1)

Since m is a monomorphism and f is in E, by Condition 3.1.1(f) there exists a factorization

fm = m1e1 in which e1 : X → X1 is a morphism in E and m1 : X1 → B is a monomorphism;

ι2 : B → K + B is the second coproduct injection. Since m1 is a monomorphism and
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m1e1xι2 = fmxι2 = f [k, g]ι2 = fg = 1B, we conclude that m1 is isomorphism. Therefore,

fm is in E and we can apply the E-Short Five Lemma to the diagram (1.1), yielding that

m is an isomorphism, as desired.

Theorem 5.1.4. Let (C,E) be an incomplete relative semi-abelian category. If f : A → B

is a split epimorphism in E and g : B → A is a morphism with fg = 1B, then ker(f) and

g are jointly extremal epic.

Proof. Let (C,E) be an incomplete relative semi-abelian category, and let f : A → B be a

split epimorphism in E with fg = 1B, and k = ker(f). Let m : M → A be a monomorphism

with mk̄ = k and mḡ = g, and consider the commutative diagram

K
k //

k̄
ÃÃA

AA
AA

AA
AA

AA
A

f //
B

g
oo

ḡ

~~~~
~~

~~
~~

~~
~

M

m

OO

f̄
//____ B̄

m̄

OOÂ
Â
Â
Â

in which m̄ : B̄ → B is a monomorphism, f̄ : M → B̄ is a morphism in E, and fm = m̄f̄ ;

such factorization does exist since m is a monomorphism and f is in E. The equalities

m̄f̄ ḡ = fmḡ = fg = 1B imply that m̄ is a split epimorphism, therefore it is an isomorphism,

yielding that fm is in E. Since fmk̄ = 0, m is a monomorphism, and k = ker(f), we

conclude that k̄ = ker(fm). Therefore, we can apply the E-Short Five Lemma to the

diagram

K
k̄ // M

fm //

m

²²

B

K
k

// A
f

// B

yielding that m is an isomorphism, as desired.

Remark 5.1.5. Note that in the proofs of Theorem 5.1.3 and Theorem 5.1.4 we did not

use all the axioms of incomplete relative semi-abelian category. Precisely, Theorem 5.1.4

holds true in C whenever the pair (C,E) in which C is a pointed category and E is a class

of epimorphisms in C containing all isomorphisms, satisfies Conditions 3.1.1(a), 3.1.1(b),

3.1.1(c), 3.1.1(f), and the E-Short Five Lemma; and Theorem 5.1.3 holds true in C if in

addition it satisfies condition (b) of Definition 5.1.2.
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Theorem 5.1.6. Let (C,E) be an incomplete relative homological category in which every

equivalence E-relations is E-effective (i.e. satisfies condition (c) of Definition 5.1.2). If

r : A → B and s : A → C are in E, then there exists morphisms u : B → D and v : C → D

in E such that the diagram
A

s //

r

²²

C

v

²²
B u

// D

(1.2)

commutes and the canonical morphism 〈r, s〉 : A → B ×D C is in E.

Proof. Let r : A → B and s : A → C be the morphisms in E, and let (R, r1, r2) and

(S, s1, s2) be the kernel pairs of r and s respectively; they do exist by Condition 3.1.1(d),

and R and S are the equivalence E-relations by Proposition 2.3.4. Moreover, since every

morphism in E is a regular epimorphism, r and s are the coequalizers of their kernelpairs.

Let (SR, t1, t2) : A → A be the composite of the E-relation of R and S. Then, SR is

a reflexive E-relation by Proposition 2.3.2, moreover, SR is an equivalence E-relation by

Corollary 2.3.11. Since every equivalence E-relation is E-effective, (SR, t1, t2) is the kernel

pair of some morphism t : A → D in E; and since every morphism in E is a regular

epimorphism, we conclude that t is the coequalizer of t1 and t2.

Consider the commutative diagram

SR

t1

ÃÃB
BB

BB
BB

BB
BB

BB
t2

ÃÃB
BB

BB
BB

BB
BB

BB R

r1

²²

r2

²²

xoo

S
s1

//
s2 //

y

OO

A

t

ÂÂ@
@@

@@
@@

@@
@@

@@
s //

r

²²

C

v

²²
B u

// D

in which the dotted arrows are defined as follows:

- Since 1 ≤ S we have R ≤ SR by Proposition 2.2.1(iii), therefore, there exists a unique

morphism x : R → SR with t1x = r1 and t2x = r2.

- Since 1 ≤ R we have S ≤ SR by Proposition 2.2.1(iii), therefore, there exists a unique

morphism y : S → SR with t1y = s1 and t2y = s2.
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- Since r is the coequalizer of r1 and r2, and tr1 = tt1x = tt2x = tr2, there exists a

unique morphism u : B → D with ur = t; since t and r are in E, the morphism u is

also in E by Condition 3.1.1(b).

- Since s is the coequalizer of s1 and s2, and ts1 = tt1y = tt2y = ts2, there exists a

unique morphism v : C → D with vs = t; since t and s are in E, the morphism v is

also in E by Condition 3.1.1(b).

It is left to prove that the canonical morphism 〈r, s〉 : A → B ×D C is in E. The latter,

however, follows directly from Theorem 2.3.12 since the morphisms r, s, and t are in E,

and the kernel pair of t is (SR, t1, t2).

Remark 5.1.7. In the exact Mal’cev category C, the diagram (1.2) with r and s regular

epimorphisms, is a pushout by Theorem 1.2.5; the same is true if (C,E) is a “relative

semi-abelian category” (see Theorem 5.2.3 below). In the incomplete relative semi-abelian

category (C,E), however, the diagram (1.2) is not necessarily a pushout since C does not

have all kernel pairs.

Theorem 5.1.8. Let (C,E) be an incomplete relative homological category. If (C,E) sat-

isfies condition (b) of Definition 5.1.2 then the following conditions are equivalent:

(i) Every equivalence E-relation in C is E-effective, i.e. (C,E) is an incomplete relative

semi-abelian category.

(ii) For every commutative diagram

A
f //

m

²²

B

m′

²²
A′

f ′
// B′

(1.3)

with f and f ′ in E and m and m′ monomorphisms, if m is a normal monomorphism,

coker(m) exists in C and it is in E, then m′ is also a normal monomorphism and

coker(m′) exists and is it in E.

Proof.

(i) ⇒ (ii): Let (C,E) be an incomplete relative semi-abelian category. Under the assump-

tions of (ii), consider the commutative diagram (1.3). Since f ′ : A′ → B′ and coker(m) :
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A′ → Coker(m) are in E, by Theorem 5.1.6 there exists the morphisms u : Coker(m) → C

and v : B′ → C in E such that ucoker(m) = vf ′ and the canonical morphism 〈coker(m), f ′〉 :

A′ → Coker(m)×CB′ is in E. We obtain the commutative diagram

A
f //

m

²²

B

m′

²²

t

##
K

k
{{wwwwwwwwwww

k′

rr

A′
f ′ //

coker(m)

²²

〈coker(m),f ′〉
((

B′

v

²²

Coker(m)×CB′
π2

<<zzzzzzzzzz

π1
yyttttttttttt

Coker(m) u
// C

in which:

- (Coker(m)×CB′, π1, π2) is the pullback of u and v; since u and v are in E, the mor-

phisms π1 and π2 are also in E by Condition 3.1.1(e).

- k : K → B′ is the kernel of v (since v is in E, the kernel of v exists by Condition

3.1.1(c)) and since every morphism in E is a normal epimorphism we conclude that

v = coker(k). Since vm′f = vf ′m = ucoker(m)m = 0 and f is an epimorphism, we

have vm′ = 0. Therefore, there exists a unique morphism t : B → K with kt = m′;

since m′ is a monomorphism, so is t.

- k′ = 〈0, k〉 : K → Coker(m)×CB′ is the canonical morphism; since k = ker(v), we

conclude that k′ = ker(π1).

To prove that m′ is a normal monomorphism and coker(m′) exists and is in E, it suffices

to prove that t is an isomorphism, but since t is a monomorphism, we only need to prove

that t is in E. Let us first prove that (A, tf, m) is the pullback of k′ and 〈coker(m), f ′〉. We

have:

π1〈coker(m), f ′〉m = coker(m)m = 0 = π1k
′tf,

π2〈coker(m), f ′〉m = f ′m = m′f = ktf = π2k
′tf,
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and since π1 and π2 are jointly monic we conclude that k′tf = 〈coker(m), f ′〉m. Let x1 :

X → K and x2 : X → A′ be any morphisms with k′x1 = 〈coker(m), f ′〉x2. Consider the

commutative diagram:

X

x1

""

x2

ÁÁ

x

ÀÀ
A

m //

tf

²²

A′
coker(m) //

〈coker(m),f ′〉
²²

Coker(m)

K
k′

// Coker(m)×CB′
π1

// Coker(m)

Since m is a normal monomorphism we have m = ker(coker(m)); therefore, since

coker(m)x2 = π1〈coker(m), f ′〉x2 = π1k
′x1 = 0, there exists a unique morphism x :

X → A with mx = x2. Since k′ is a monomorphism and k′tfx = 〈coker(m), f ′〉mx =

= 〈coker(m), f ′〉x2 = k′x1, we conclude that tfx = x1, proving that the square k′tf =

= 〈coker(m), f ′〉m is the pullback of k′ and 〈coker(m), f ′〉. Therefore, since the class E is

pullback stable and 〈coker(m), f ′〉 is in E, the morphism tf is also in E; but then t is also

in E since so is f (by Condition 3.1.1(b)), as desired.

(ii) ⇒ (i): Let (C,E) be an incomplete relative homological category satisfying condition (b)

of Definition 5.1.2 and let (R, r1, r2) : A → A be an equivalence E-relation in C. Since R is

a reflexive E-relation, there exists a morphism d : A → R such that r1d = 1A = r2d. Since

r1 is in E, ker(r1) and coker(ker(r1)) exist by Condition 3.1.1(c), moreover, coker(ker(r1))

is in E by Condition 3.1.6(b). Let k = ker(r1) and m = r2k; since k is a monomorphism so

is m. And since E contains all isomorphisms, we can apply (ii) to the diagram

K

k

²²

K

m

²²
R r2

// A

and conclude that m is a normal monomorphism, and coker(m) exists and is in E; moreover,

since m is a normal monomorphism we have m = ker(coker(m)). Let q = coker(m) and

consider the commutative diagram
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K + A
[k,d] //

h

²²

R
r1 //
r2

//

qr1

ÃÃ

qr2

>>A
q // Q

L

l

99ttttttttttttt

in which:

- [k, d] : K + A → R is the canonical morphism (note that the coproduct K + A of K

and A does exist by condition (b) of Definition 5.1.2).

- l : L → R is the equalizer of qr1 and qr2; since q, r1 and r2 are in E, the composites qr1

and qr2 are also in E, and therefore their equalizer does exist by Condition 3.1.1(d).

- Since qr1[k, d] = qr2[k, d] and l is the equalizer of qr1 and qr2, there exists a unique

morphism h : K + A → L with lh = [k, g].

As follows from Theorem 5.1.3, the morphism [k, d] is an extremal epimorphism. Therefore,

since [k, d] = hl and l is a monomoprhism, we conclude that l is an isomorphism. Since l is

the equalizer of qr1 and qr2, the latter implies that qr1 = qr2. We obtain the commutative

diagram

K
k //

m

""
R

r1 //
r2

//

t
$$

A
q // Coker(m)

A×Coker(m)A

q1

OO

q2

OO

in which:

- (q1, q2) is the kernel pair of q; since q is in E, the kernel pair of q does exist by

Conditions 3.1.1(d).

- Since qr1 = qr2, and (q1, q2) is the kernel pair of q, there exists a unique morphism

t : R → A×Coker(m)A with q1t = r1 and q2t = r2.

Since q is in E, it remains to prove that t is an isomorphism. The latter, however, easily

follows from the E-Short Five Lemma. Indeed, since q is in E the morphism q1 is also
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in E by Condition 3.1.1(e). Therefore, since there are canonical isomorphisms Ker(q1) ≈
≈ Ker(q) ≈ K, we can apply the E-short five lemma to the diagram:

K
k // R

t

²²

r1 // A

K
ker(q1)

// A×BA q1

// A

and conclude that t is an isomorphism, as desired.

From Corollary 3.2.7 and Theorem 5.1.8 we obtain:

Corollary 5.1.9. Let C be a pointed category and let E be a class of epimorphisms in C

containing all isomorphisms. The following conditions are equivalent:

(i) The pair (C,E) is an incomplete relative semi-abelian category.

(ii) The pair (C,E) satisfies Condition 3.1.1 and:

(a) Every morphism in E is a regular epimorphism;

(b) If f ∈ E then coker(ker(f)) ∈ E;

(c) If f : A → B is in E then the coproduct Ker(f) + B exists in C;

(d) The E-Short Five Lemma holds in C;

(e) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

(f) Every equivalence E-relation C is E-effective equivalence E-relation.

(iii) The pair (C,E) satisfies Condition 3.1.1 and:

(a) Every morphism in E is a normal epimorphism;

(b) If f : A → B is in E then the coproduct Ker(f) + B exists in C;
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(c) (“Relative Hofmann’s axiom”) If in a commutative diagram

A

w

²²

f // B

v

²²
A′

f ′
// B′

f and f ′ are in E, w is a monomorphism, v is a normal monomorphism, and

ker(f ′) ≤ w, then w is a normal monomorphism;

(d) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me;

(e) For every commutative diagram

A
f //

m

²²

B

m′

²²
A′

f ′
// B′

with f and f ′ in E and m and m′ monomorphisms, if m is a normal monomor-

phism, coker(m) exists in C and it is in E, then m′ is also a normal monomor-

phism and coker(m′) exists and is it in E.

Conditions 5.1.9(ii) and 5.1.9(iii) are to be considered, respectively, as the (incomplete)

relative versions of what was called “new style” and “old style” axioms for a semi-abelian

category in [23].

5.2 Relative semi-abelian categories

Throughout this section we assume that (C,E) is a pair in which C is a pointed cate-

gory with finite limits and cokernels, and E is a class epimorphisms in C containing all

isomorphisms.
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Definition 5.2.1. The pair (C,E) is said to be a relative semi-abelian category if:

(a) (C,E) is a relative homological category;

(b) C has coproducts;

(c) Every equivalence E-relation in C is E-effective.

Comparing Definition 5.2.1 and Definition 5.1.2, we have:

Theorem 5.2.2. If C is a pointed category with finite limits, cokernels, and coproducts,

and E is a class of epimorphisms in C containing all isomorphisms, then (C,E) is a relative

semi-abelian category if and only if (C,E) is an incomplete relative semi-abelian category.

Proof. The proof follows from Theorem 3.2.6. Indeed, by Theorem 3.2.6, condition (a) of

Definition 5.2.1 is equivalent to the condition (a) of Definition 5.1.2. Moreover, since C has

coproducts, condition (b) of Definition 5.2.1 and of Definition 5.1.2 are the same and always

hold in C, and, condition (c) of Definition 5.2.1 and of Definition 5.1.2 are the same.

Therefore, the theorems proved in the previous section hold true in the relative semi-

abelian categories.

Theorem 5.2.3. Let C be a relative homological category in which every equivalence E-

relation is E-effective. If r : A → B and s : A → C are in E, then the pushout diagram

A
s //

r

²²

C

v

²²
B u

// D

(2.1)

exists in C, and the morphisms u, v, and 〈r, s〉 : A → B ×D C are in E.

Proof. By Theorem 5.1.6 there exists the morphisms u : B → D and v : C → D in E

such that the diagram (2.1) commutes and the canonical morphism 〈r, s〉 : A → B ×D C

is in E. Moreover, if (R, r1, r2) and (S, s1, s2) are the kernel pairs of r and s, and if

(SR, t1, t2) : A → C is the composite of the E-relations R and S, then R, S, and SR are

the equivalence E-relations and (SR, t1, t2) is the kernel pair of t = ur = vs. Therefore, it

remains to prove that the square ur = vs is a pushout. For, let ū : B → D̄ and v̄ : C → D̄

be any morphisms with ūr = v̄s, and let (Z, z1, z2) be the kernel pair of ūr. Since (Z, z1, z2)
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is the kernel pair, it is an equivalence relation (note that it may not be an equivalence E-

relation since the composite ūr is not necessarily in E), yielding ZZ = Z, and since R ≤ Z

and S ≤ Z, we obtain SR ≤ Z. Therefore, there exists a morphism z̄ : SR → Z with

z1z̄ = t1 and z2z̄ = t2. Consider the commutative diagram:

SR

z̄

²²

t1 //

t2
// A

t // D

d

²²
Z

z1 //
z2

// A ūr
// D̄

Since t is the coequalizer of t1 and t2, and since ūrt1 = ūrz1z̄ = ūrz2z̄ = ūrt2, there exists

a unique morphism d : D → D̄ with dt = ūr. Since ūr = v̄s, the latter implies dt = v̄s. We

have dur = ūr and dvs = v̄s, and since r and s are epimorphisms, we conclude du = ū and

dv = v̄. A morphism d : D → D̄ satisfying the last two equalities is unique since t is an

epimorphism, proving that the square ur = vs is a pushout.

Note that the crucial part in the proof that the square (2.1) is a pushout in Theorem

5.2.3, is that since C has all finite limits, we can take the kernel pair of the morphism

ūr which is not in E, which does not always exist in the incomplete relative semi-abelian

categories.

Using Theorem 5.2.2 and Corollary 5.1.9 we obtain the equivalent definitions of a relative

semi-abelian category:

Corollary 5.2.4. The following conditions are equivalent:

(i) The pair (C,E) is a relative semi-abelian category.

(ii) The pair (C,E) satisfies Condition 3.2.1, C has coproducts, and:

(a) Every morphism in E is a regular epimorphism;

(b) If f ∈ E then coker(ker(f)) ∈ E;

(c) The E-Short Five Lemma holds in C;

(d) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B
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f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

(e) Every equivalence E-relation C is E-effective equivalence E-relation.

(iii) The pair (C,E) satisfies Condition 3.2.1, C has coproducts, and:

(a) Every morphism in E is a normal epimorphism;

(b) (“Relative Hofmann’s axiom”) If in a commutative diagram

A

w

²²

f // B

v

²²
A′

f ′
// B′

f and f ′ are in E, w is a monomorphism, v is a normal monomorphism, and

ker(f ′) ≤ w, then w is a normal monomorphism;

(c) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f , f ′, and u are in E, k = ker(f) and k′ = ker(f ′), then there exists a morphism

e : A → M in E and a monomorphism m : M → A′ in C such that w = me.

(d) For every commutative diagram

A
f //

m

²²

B

m′

²²
A′

f ′
// B′

with f and f ′ in E and m and m′ monomorphisms, if m is a normal monomor-

phism with coker(m) ∈ E then m′ also is a normal monomorphism with

coker(m′) ∈ E.

Conditions 5.2.4(ii) and 5.2.4(iii) are to be considered, respectively, as the relative versions

of what was called “new style” and “old style” axioms for a semi-abelian category in [23].

86

Univ
ers

ity
 of

 C
ap

e T
ow

n



5.3 Examples

Let us first prove the following

Theorem 5.3.1. Let C be a semi-abelian category and let E be a class of regular epimor-

phisms in C satisfying the following conditions:

(i) If f and gf are in E then g is also in E;

(ii) The class E is pullback stable;

(iii) If

A

g

²²

f // B

k

²²
C

h
// D

is a pushout diagram and f and g are in E, then h and k are also in E;

(iv) If a morphism f in C factors as f = em in which e is in E and m is a monomorphism,

then it also factors (essentially uniquely) as f = m′e′ in which m′ is a monomorphism

and e′ is in E;

(v) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

f = coker(k), f ′ = coker(k′), there exists factorizations k = me and k′ = m′e′ were e

and e′ are normal epimorphisms and m and m′ are normal monomorphisms, and, u

and f are in E, then w is also in E.

If Ē is the closure of E under composition, then (C, Ē) is a relative semi-abelian category.

Proof. By mathematical induction it suffices to consider the case where Ē is the class of all

those morphisms in C which can be presented as the composite of some composable pair of

morphisms in E.
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Since C is a semi-abelian category, the composite of regular epimorphisms is a regular

epimorphism by Proposition 1.1.3, and every regular epimorphism is a normal epimorphism

by Proposition 1.3.5. Therefore, Ē is a class of normal epimorphisms in C which is closed

under composition. Moreover, since the Regular Short Five Lemma holds in C (see Remark

1.3.4), the Ē-Short Five Lemma also holds, again, since the composite of regular epimor-

phism in C is a regular epimorphism. Let us prove the rest of the axioms defining a relative

semi-abelian category.

(a) If f and gf are in Ē then g is also in Ē: Let f = f2f1 and gf = h2h1 where f1 : A → B,

f2 : B → C, h1 : A → D, and h2 : D → F are the morphisms in E. Consider the

commutative diagram

A
f1 //

h1

ºº0
00

00
00

00
00

00
0 B

h̄1

ÃÃ@
@@

@@
@@

f2 // C
¯̄h1

~~~~
~~

~~
~~

g

²²

G
f̄2 //

k1
''

H
k2

ÃÃ
D

f̄1

>>~~~~~~~

h2

// F

in which:

- h̄1f1 = f̄1h1 is the pushout of h1 and f1 and therefore h̄1 and f̄1 are in E by condition

(iii) of Theorem 5.3.1. Since h2h1 = gf2f1 there exists a unique morphism k1 : G → F

with k1f̄1 = h2 and k1h̄1 = gf2, moreover, by condition (i) of Theorem 5.3.1, k1 is in

E since so are the morphisms f̄1 and h2.

- f̄2h̄1 = ¯̄h1f2 is the pushout of h̄1 and f2, and therefore ¯̄h1 and f̄2 are also in E by

condition (iii) of Theorem 5.3.1. Since f1 is an epimorphism and k1h̄1f1 = k1f̄1h1 =

= h2h1 = gf2f1 we conclude that k1h̄1 = gf2, therefore, there exists a unique mor-

phism k2 : H → F with k2f̄2 = k1 and k2
¯̄h1 = g. Moreover, by condition (i) of

Theorem 5.3.1. k2 is in E since so are the morphisms f̄2 and k1.

Therefore, since g = k2
¯̄h1 and ¯̄h1 and k2 are in E, the morphism g is in Ē, as desired.

(b) The pullback stability of Ē easily follows from the pullback stability of E. Indeed, let

f : A → C be a morphism in Ē, i.e. f = f2f1 where f1 : A → B and f2 : B → C are the

morphisms in E, and let g : D → C be any morphism in C. Consider the commutative
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diagram

P

p

!!

p1

²²

p2 // B ×C D

π1

²²

π2 // D

g

²²
A

f

==f1

// B
f2

// C

in which (B ×C D, π1, π2) is the pullback of f2 and g, (P, p1, p2) is the pullback of f1 and

π1, and p = π2p2. Since the pullback of f along g is (P, p1, p) and the morphisms f1 and

f2 are in E, by pullback stability of E we obtain that the morphisms π2 and p2 are in E,

therefore p is in Ē, as desired.

(c) If a morphism f in C factors as f = em in which e is in Ē and m is a monomorphism,

then it also factors as f = m̄ē in which m̄ is a monomorphism and ē is in Ē: Let m : A → B

be a monomorphism and let e : B → D be a morphism in Ē, i.e. e = e2e1 where the

morphisms e1 : B → C and e2 : C → D are in E. Using condition (iv) of Theorem 5.3.1 we

obtain the commutative diagram

A

ē

!!

e′1
²²

m // B

e

}}

e1

²²
C ′

e′2
²²

m′
// C

e2

²²
D′

m̄
// D

in which m′ and m̄ are monomorphisms, and e′1 and e′2 are in E. Let ē = e′2e
′
1, then ē is in

Ē since e′1 and e′2 are in E. Therefore, we have em = m̄ē in which ē is a morphism in Ē

and m̄ is a monomorphism, as desired.

(d) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

(3.1)
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f , f ′, and u are in Ē, k = ker(f) and k′ = ker(f ′), then w is in Ē: Since u is in Ē we have

u = u2u1 where the morphisms u1 and u2 are in E. Let (Q, q1, q2) be the pushout of u1 and

k, and consider the commutative diagram

K

u

ÀÀ

k //

eu1

##HH
HH

HH
HH

HH

u1

²²

A

w

¢¢

q1

²²

f // B

Ū
m

##GG
GG

GG
GG

GG

U

u2

²²

e

;;wwwwwwwwww q2 // Q

h2

²²

h1

<<

K ′
k′

// A′
f ′

// B

in which h1 : Q → B and h2 : Q → A′ are the canonical morphisms and q2 = me is

the (normal epi, mono)-factorization of q2 (i.e. e : U → Ū is a normal epimorphism and

m : Ū → Q is a monomorphism, and, such a factorization does exist by Proposition 1.2.2).

(d) will be proved if we show that q1 and h2 are in E, the latter, however, follows from

condition (v) of Theorem 5.3.1. Indeed, since f = coker(k) and the square q2u1 = q1k is a

pushout, we conclude that h1 = coker(q2). Moreover, since k is a normal monomorphism

and eu1 and q1 are normal epimorphisms, and m is a monomorphism, we conclude that m

is a normal monomorphism (see Condition 1.5.3(e)). Then, since u1 is in E, the morphism

q1 is also in E by condition (v) of Theorem 5.3.1. Furthermore, since f is in E, the latter

implies that h1 is also in E by condition (i) of Theorem 5.3.1, and therefore, again by

condition (v) of Theorem 5.3.1 we obtain that h2 is in E, as desired.

(e) For every commutative diagram

A
f //

m

²²

B

m′

²²
A′

f ′
// B′

with f and f ′ in Ē and m and m′ monomorphisms, if m is a normal monomorphism with

coker(m) ∈ Ē then m′ also is a normal monomorphism with coker(m′) ∈ Ē: Let q : A′ → Q
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be the cokernel of m and let (Q′, f ′′, q′) be the pushout of f ′ and q. Since q is in Ē we have

q = q2q1 where the morphisms q1 and q2 are in E. Consider the commutative diagram

A
f //

m

²²

B

m′
²²

A′
q1

~~}}
}}

}}
}}

q

²²

f ′ // B′
q′1

~~||
||

||
||

q′

²²

X

q2 ÂÂ@
@@

@@
@@

@
x // X ′

q′2 ÃÃ
Q

f ′′
// Q′

in which (X ′, x, q′1) is the pushout of f ′ and q1, and q′2 : X ′ → Q′ is the canonical morphism.

Since (Q′, f ′′, q′) and (X ′, x, q′1) are the pushouts, the square f ′′q2 = q′2x is also a pushout.

Since q1 is in E and f ′ is in Ē, it easily follows from condition (iii) of Theorem 5.3.1 that

q′1 is in E and x is in Ē, and, f ′′ is in Ē and q′2 is in E; therefore, q′ is in Ē. It remains to

prove that q′ = coker(m′). However, since C is a semi-abelian category, by Theorem 1.2.5,

the canonical morphism 〈q, f ′〉 : A′ → Q×Q′B
′, where (Q×Q′B

′, π1, π2) is the pullback of

f ′′ and q′, is a regular epimorphism; therefore, the proof of q′ = coker(m′) follows from the

first part of the proof of Theorem 5.1.8.

After this, it follows from Corollary 5.2.4 that (C, Ē) is a relative semi-abelian category.

Proposition 5.3.2. If C is a semi-abelian category and E is the class of all central ex-

tensions, in the sense of Huq [21], in C; more precisely, if E is the class of normal epi-

morphisms f : A → B with [Ker(f), A] = 0, where [Ker(f), A] denotes the commutator of

Ker(f) and A in the sense of Huq [21]), then (C, Ē), where Ē is defined as in Theorem

5.3.1, is a relative semi-abelian category.

Proof. Let C be a semi-abelian category, let E be the class of all central extensions in

C, and let Ē be the closure of E under composition. As follows from Theorem 5.3.1, to

prove that (C, Ē) is a relative semi-abelian category it suffices to prove that (C,E) satisfies

conditions (i)-(v) of Theorem 5.3.1.

Central extensions are pullback stable since they are covering maps in the sence of cat-

egorical Galois theory (see e.g. [5], Corollary 6.6.2). Let us prove the rest of the conditions

of Theorem 5.3.1.
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(a) If f and gf are in E, then g is also in E: Let f : A → B and gf : A → C be the central

extensions in C (note that in the proof we will not use the fact that f is a central extension,

it suffices for f to be a (pullback stable) regular epimorphism) and let kf , kg, and kgf be

the kernels of f , g, and gf respectively. We obtain the commutative diagram

Ker(gf)

kgf

²²

f̄ // Ker(g)

kg

²²
Ker(f)

kf //

l

::

A

gf

::
f // B

g // C

in which l : Ker(f) → Ker(gf) and f̄ : Ker(gf) → Ker(g) are the canonical morphisms. It

easily follows that the square fkgf = kgf̄ is a pullback, therefore f̄ is a normal epimorphism

(since f is a normal epimorphism and normal epimorphisms in a semi-abelian category are

pullback stable) and l = ker(f̄).

Since gf is a central extension, there exists a unique morphism ϕgf : Ker(gf)×A → A

such that the diagram

Ker(gf)
〈1,0〉 //

kgf

&&MMMMMMMMMMMMMMMM
Ker(gf)×A

ϕgf

²²

A
〈0,1〉oo

1A

zzuuuuuuuuuuuuuuuu

A

commutes; and, to prove that g is a central extension, we need to prove the existence of a

unique morphism ϕg : Ker(g)×B → B making the diagram

Ker(g)
〈1,0〉 //

kg

%%LLLLLLLLLLLLLLL
Ker(g)×B

ϕg

²²

B
〈0,1〉oo

1B

zzuuuuuuuuuuuuuuu

B
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commutative. For, consider the commutative diagram:

Ker(f)

l

²²

〈1,0〉 // Ker(f)×Ker(f)

l×kf

²²

Ker(f)
〈0,1〉oo

kf

²²
Ker(gf)

kgf

»»2
22

22
22

22
22

22
22

22
2

f̄

²²

〈1,0〉 // Ker(gf)×A

ϕgf

§§

f̄×f

²²

A

1A

mm

〈0,1〉oo

f

²²
Ker(g)

kg

..

〈1,0〉 // Ker(g)×B

ϕg

²²

B

1B

{{xxxxxxxxxxxxxxxxxxxxxxxxxx

〈0,1〉oo

A

f
&&LLLLLLLLLLLLLL

B

Since l = ker(f̄) and kf = ker(f), we conclude that l × kf = ker(f̄ × f); moreover, since

f̄ and f are normal epimorphisms, f̄ × f is a also a normal epimorphism and therefore

f̄ × f = coker(l × kf ). Since 〈1, 0〉 and 〈0, 1〉 are jointly epic and the equalities

fϕgf (l × kf )〈1, 0〉 = fϕgf 〈1, 0〉l = fkgf l = kgf̄ l = 0,

fϕgf (l × kf )〈0, 1〉 = fϕgf 〈0, 1〉kf = f1Akf = 0

hold, we conclude that fϕgf (l × kf ) = 0. Therefore, since f̄ × f = coker(l × kf ), there

exists a unique morphism ϕg : Ker(g)×B → B with ϕg(f̄ × f) = fϕgf . It remains to prove

that ϕg〈1, 0〉 = kg and ϕg〈0, 1〉 = 1B. However, since f and f̄ are epimorphisms, the latter

follows from the following equalities:

ϕg〈1, 0〉f̄ = ϕg(f̄ × f)〈1, 0〉 = fϕgf 〈1, 0〉 = fkgf = kgf̄ ,

ϕg〈0, 1〉f = ϕg(f̄ × f)〈0, 1〉 = fϕgf 〈0, 1〉 = 1Bf.

(b) If

A

g

²²

f // B

k

²²
C

h
// D
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is a pushout diagram and f and g are in E, then h and k are also in E: We shall only prove

that h is a central extension, as the proof for k being the central extension is similar. Let

f and g be central extensions in C and let kf : Ker(f) → A and kh : Ker(h) → C be the

kernels of f and h respectively. We obtain the commutative diagram

Ker(f)

l

²²

kf // A

g

²²

f // B

k

²²
Ker(h)

kh

// C
h

// D

where l : Ker(f) → Ker(h) is the canonical morphism. Since f and g are regular epimor-

phisms, h and k are also regular epimorphisms, and therefore they are normal epimorphisms

since C is a semi-abelian category. Since the canonical morphism 〈g, f〉 : A → C ×D B is a

normal epimorphism (by Theorem 1.2.5) and normal epimorphisms are pullback stable, we

conclude that l is a normal epimorphism and therefore l = coker(kl) where kl : Ker(l) →
Ker(f) is the kernel of l.

Since f is a central extension, there exists a unique morphism ϕf : Ker(f) × A → A

such that the diagram

Ker(f)
〈1,0〉 //

kf

%%LLLLLLLLLLLLLLL
Ker(f)×A

ϕf

²²

A
〈0,1〉oo

1A

zzuuuuuuuuuuuuuuu

A

commutes; and to prove that h is a central extension, we need to prove the existence of a

unique morphism ϕh : Ker(h)× C → C making the diagram

Ker(h)
〈1,0〉 //

kh

%%LLLLLLLLLLLLLLL
Ker(h)× C

ϕh

²²

C
〈0,1〉oo

1C

zzuuuuuuuuuuuuuuu

C
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commutative. For, consider the commutative diagram:

Ker(l)

kl

²²

〈1,0〉 // Ker(l)×Ker(g)

kl×kg

²²

Ker(g)
〈0,1〉oo

kg

²²
Ker(f)

kf

»»1
11

11
11

11
11

11
11

11
1

l

²²

〈1,0〉 // Ker(f)×A

ϕf

¨¨

l×g

²²

A

1A

mm

〈0,1〉oo

g

²²
Ker(h)

kh

--

〈1,0〉 // Ker(h)× C

ϕh

²²

C

1C

||xxxxxxxxxxxxxxxxxxxxxxxxxx

〈0,1〉oo

A

g

%%LLLLLLLLLLLLLL

C

Since kl = ker(l) and kg = ker(g), we conclude that kl × kg = ker(l × g); moreover, since

l and g are normal epimorphisms, l × g is a also a normal epimorphism and therefore

l × g = coker(kl × kg). Since 〈1, 0〉 and 〈0, 1〉 are jointly epic and the equalities

gϕf (kl × kg)〈1, 0〉 = gϕf 〈1, 0〉kl = gkfkl = khlkl = 0,

gϕf (kl × kg)〈0, 1〉 = gϕf 〈0, 1〉kg = g1Akg = 0

hold, we conclude that gϕf (kl × kg) = 0. Therefore, since l × g = coker(kl × kg), there

exists a unique morphism ϕh : Ker(h)× C → C with ϕh(l × g) = gϕf . It remains to prove

that ϕh〈1, 0〉 = kh and ϕh〈0, 1〉 = 1C . However, since l and g are epimorphisms, the latter

follows from the following equalities:

ϕh〈1, 0〉l = ϕh(l × g)〈1, 0〉 = gϕf 〈1, 0〉 = gkf = khl,

ϕh〈0, 1〉g = ϕh(l × g)〈0, 1〉 = gϕf 〈0, 1〉 = g.

(c) If a morphism f in C factors as f = em in which e is in E and m is a monomorphism,

then it also factors as f = m′e′ in which m′ is a monomorphism and e′ is in E: Let f = em

in which m : A → B is a monomorphism and e : B → C is a central extension in C. Since

C is a semi-abelian category, we have the factorization f = m′e′ in which e′ : A → B′ is a

regular epimorphism and m′ : B′ → C is a monomorphism; (c) will be proved if we show

that e′ is a central extension.
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Let ke : Ker(e) → B be the kernel of e and let ke′ : Ker(e′) → A be the kernel of e′. We

obtain the commutative diagram

Ker(e′)

k′e
²²

n // Ker(e)

ke

²²
A

f
%%KKKKKKKKKKKKK

e′

²²

m // B

e

²²
B′

m′
// C

in which n : Ker(e′) → Ker(e) is the canonical morphism.

Since e is a central extension, there exists a unique morphism ϕe : Ker(e)×B → B such

that the diagram

Ker(e)
〈1,0〉 //

ke

%%LLLLLLLLLLLLLLL
Ker(e)×B

ϕe

²²

B
〈0,1〉oo

1B

zzuuuuuuuuuuuuuuu

B

commutes; and, to prove that e′ is a central extension, we need to prove the existence of a

unique morphism ϕe′ : Ker(e′)×A → A making the diagram

Ker(e′)
〈1,0〉 //

ke′
&&LLLLLLLLLLLLLLLL

Ker(e′)×A

ϕe′

²²

A
〈0,1〉oo

1A

zzuuuuuuuuuuuuuuu

A
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commutative. For, consider the following commutative diagram

Ker(h1)

kh1

²²
Ker(e′) + A

h2

¯¯

h1

²²
Ker(e′)

ke′
ÂÂ?

??
??

??
??

??

ι1

77nnnnnnnnnnnnnnnnn

n

²²

〈1,0〉
// Ker(e′)×A

ϕe′

||

n×m

²²

A

ι2

ffMMMMMMMMMMMMMMMMM

1Ann

〈0,1〉
oo

m

²²

A

m

%%

Ker(e)

ke ..

〈1,0〉 // Ker(e)×B

ϕe

²²

B

1B

xxqqqqqqqqqqqqqqqqqq
〈0,1〉oo

B

in which:

- ι1 : Ker(e′) → Ker(e′) + A and ι2 : A → Ker(e′) + A are the coproduct injections.

- h1 = [〈1, 0〉, 〈0, 1〉] : Ker(e′) + A → Ker(e′) × A and h2 = [ke′ , 1A] : Ker(e′) + A → A

are the canonical morphisms; since C is a semi-abelian category, h1 is a normal

epimorphism.

- kh1 : Ker(h1) → Ker(e′) + A is the kernel of h1; since h1 is a normal epimorphism we

conclude that h1 = coker(kh1).

- Since m is a monomorphism and mh2kh1 = ϕe(n × m)h1kh1 = 0 we conclude that

h2kh1 = 0.

- Since h1 = coker(kh1) and h2kh1 = 0, there exists a unique morphism

ϕe′ : Ker(e′)×A → A with ϕe′h1 = h2.

It remains to prove that ϕe′〈1, 0〉 = ke′ and ϕe′〈0, 1〉 = 1A. The latter, however, easily

follows from the equalities:

ϕe′〈1, 0〉 = ϕe′h1ι1 = h2ι1 = ke′ ,
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ϕe′〈0, 1〉 = ϕe′h1ι2 = h2ι2 = 1A.

(d) If in a commutative diagram

K

u

²²

k // A

w

²²

f // B

K ′
k′

// A′
f ′

// B

(3.2)

f = coker(k), f ′ = coker(k′), there exists factorizations k = me and k′ = m′e′ were e

and e′ are normal epimorphisms and m and m′ are normal monomorphisms, and, u and

f are in E, then w is also in E: Let us prove a more general fact, namely, if a normal

epimorphism h is a central extension in C and h = gf where f : A → B and g : B → C

are normal epimorphisms, then f is also a central extension. For, let kh : Ker(h) → A

and kg : Ker(g) → B be the kernels of h and g respectively. We obtain the commutative

diagram

Ker(h)

f̄

²²

kh // A

f

²²

h // C

Ker(g)
kg

// B g
// C

in which f̄ : Ker(h) → Ker(g) is the canonical morphism; the square kgf̄ = fkh is a pullback

by Lemma 4.1.3(i) and therefore f̄ and f have isomorphic kernels. Let kf : Ker(f) → A be

the kernel of f and let kf̄ : Ker(f) → Ker(h) be the kernel of f̄ .

Since h is a central extension, there exists a unique morphism ϕh : Ker(h) × A → A

such that the diagram

Ker(h)
〈1,0〉 //

kh

%%LLLLLLLLLLLLLLL
Ker(h)×A

ϕh

²²

A
〈0,1〉oo

1A

zzuuuuuuuuuuuuuuu

A

commutes; and to prove that f is a central extension, we need to prove the existence of a

unique morphism ϕf : Ker(f)×A → A making the diagram

Ker(f)
〈1,0〉 //

kf

%%LLLLLLLLLLLLLLL
Ker(f)×A

ϕf

²²

A
〈0,1〉oo

1A

zzuuuuuuuuuuuuuuu

A
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commutative. However, since the diagram

Ker(f)

kf

¼¼

kf̄

²²

〈1,0〉 // Ker(f)×A

kf×1A

²²

A
〈0,1〉oo

Ker(h)

kh

%%KKKKKKKKKKKKKKKKKKKK 〈1,0〉
// Ker(h)×A

ϕh

²²

A

1A

zzuuuuuuuuuuuuuuuuuuu〈0,1〉
oo

A

commutes, we can simply take ϕf = ϕh(kf × 1A); then ϕf 〈1, 0〉 = ϕf (kf × 1A)〈1, 0〉 =

= khkf̄ = kf and ϕf 〈1, 0〉 = 1A, proving the desired.

Remark 5.3.3. As shown by M. Gran and T. Van der Linden in [17], the class E in

Proposition 5.3.2 coincides with the class of central extensions in C in the sense of [22]

with respect to its abelianization reflection C → Ab(C).

Example 5.3.4. Let C be a homological category and let S be a class of objects in C

satisfying the following conditions:

(i) S is closed under subobjects, i.e. if m : S → A is a monomorphism and A is in S,

then S also is in S;

(ii) S is closed under cokernels, i.e. if 0 → A → B → C → 0 is a short exact sequence in

C and A and B are in S, then C also is in S;

(iii) S is closed under extensions, i.e. if 0 → A → B → C → 0 is a short exact sequence

in C and A and C are in S, then B also is in S;

(iv) Every equivalence relation (R, r1, r2) : A → A with Ker(r1) ∈ S is an effective equiva-

lence relation.

As easily follows from Corollary 5.2.2, if E is the class of all normal epimorphisms in C

whose kernels are in S, then (C,E) is a relative semi-abelian category. In particular, we

can take:

(a) C to be a semi-abelian category and S to be any class of objects in C satisfying

conditions (i)-(iii) (if C were abelian, this would mean that S is a Serre class).
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(b) C to be a homological additive category and S to be a class of objects in C satisfy-

ing conditions (i)-(iii), such that every monomorphism m : S → A where S is in

S is a normal monomorphism. For instance, we could take C to be a category of

abelian Hausdorf topological groups and S to be the class of all finite abelian Hausdorf

topological groups.

Remark 5.3.5. Recall that (E,M)-normal categories in the sense of M. M. Clementino,

D. Dikranjan, and W. Tholen [13] are also a kind of “relative semi-abelian categories”.

However, that relativization with respect to a factorization system (E,M) is quite different.

Indeed, we observe:

(a) If C is an (E,M)-normal category in which E is contained in the class of normal

epimorphisms of C, then E is the class of all normal epimorphisms, M is the class

of all monomorphisms, and C is a semi-abelian category.

(b) The same is true if (C,E) is a relative semi-abelian category in which (E,M) forms

a proper factorization system for some M.

(c) Therefore, the two relativizations have “trivial intersection”, i.e. if C is an (E,M)-

normal category and (C,E) is a relative semi-abelian category at the same time, then

again, C simply is a semi-abelian category with (E,M) = (Normal Epi, Mono).
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