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Introduction

In this chapter we give, mostly without procf, some necessary
topological preliminaries. Proofs of these theorems can be found in most

books on differential topology (e.g, M. Hirsch: Differential Topology).

The basic construction used is cutting and pasting of manifolds.

Given two smooth manifolds Ml and M2 with Niq;,aﬁi as a component

(i =1,2) and h: Nl > NZ a diffeomorphism, we can form M f Mith Mé =

(Ml + Mz)/(x) sh(® ) (see figure) where + denotes disjoint union.

The following theorem shows this construction can be done in the

smooth category.

Theorem 0.1,

a) M can be given a smooth structure such that M, and MZ are

1

smooth submanifolds.

b) Given two such smooth structures on M, say u& and d&, there



exists a diffeomorphism h: (M,d&) + (M,ng) (where M.dg)
is M with smooth structure 4,1 = 1,2) such that
i) h is arbitrarily close to the 1d.
ii} h = id outside an arbitrarily small neighborhood of
2}
1it) h is isotopic to the id through homeomorphisms
satisfying i) and ili)
iv) In i) - iii) one can assume hiM, = id or h|M, = id.
s h o f

¢} If h'=f where f£.: N, ~ N, (i =1,2) is a

2 1

diffeomorphism which extends to a diffeomorphism: M, > My

. u
(i =1,2)., Then M UM, :g_Ml Uyt Mye

Propogition 0.2, Let Ml’ M., Nl’ NZ' h: N, + N, be as in the previous

1 2
. N
theorem. If h': N, - N, 1is isotopic to h then K, U, M, Zg
M, Uh' MZ'

We have the following example of pasting:
Let Ml and M2 be connected (oriented) n-~manifolds and
fi:Dn¢+ Mi {(i=1,2) be embeddings (f1 orientation preserving, f2

orientation reversing). Define

. n . n
Ml # MZ = (M1 - int fl(D b)) (M2 - int fz(D .
£, £ 1"
2 L
Ml # MZ is called the connected sum of Ml and HZ. In the case Ml
and M2 are oriented fl must preserve orientation and f2 nust

reverse orientation to have a consistent orientation on M,



Theorem 0.3. Any two embeddings of D" inte the interior of a com-

nected manifold M~ are isotopic (possibly after reversing orientatiqns
of one if necessary).
This theorem shows # is a well defined operation: i.e. # 1is inde-
pendent of the.choice of fi'
Let N be a smooth manifold and define:

Diff (N} = diffeomorphism group of N

Diffo(N) = identity component of Diff (N)

= diffeomorphisms imotopic to the id
Diff (N)/Diffo(N) = isotopy classgs of diffeomorphisms of N

Diff*(N) = orientation preserving diffeomorphisms of N.

»

ie

Theorem 0.4. Diff (Tz)/Diffosz) CL(2,2)

pige¥(r?)/mizs (%) 3 su(2,2)
A related result is

Theorem (.5. An oriented simple closed curve in T2 is uniquely

determined (up to isotopy) by its homology class, Any class of the

form p(S1 x {1} + q({1} x Sl) with ged(p,q) = 1 occurs. Hence up

2

to avtomorphisms of ¥ there is only one curve.

Dehn Surgery.

2

Definition 0.6. Given I43 a 3-manifold such that T"C 3M3, ¢ a

simple closed curve in Tz, define Ms(c) " H3 LJh(D2 x Sl) where h



2 2 el

is a diffeomorphism of T° onto 3D x8" whic¢h takes ¢ onto a

meridian of p? x 51, {i.e. a curve in 2 - anz xSY which is null
homotopic in D2><81.) M{c) is said to be obtained from M by Dehn

surgery.

Propogition 0.7, M3(c) is well defined (up to diffeomorphism).

1 .1 2

2 such that c=Slx{1}c_:S x8 = T,

Proof: We can parametrize T

Then h(t,1) = [3 2}(t,1) = (217,69 = (3,69, ¢ = 0 since (t,1)

+
gets mapped to (t,l). Thus h = ["é +?] which extends over the solid
torus. By a previous theorem M3(c) qg M3 Uid(]_‘]2 X 51) and hence is
C

well defined,

LY

More typically Dehn surgery is the following:

M3 is the complement of a tubular neighborhood of & ¢losed curve vy
in some 3em§nif01d N3. ¢ = p (longitude)} + q (meri&ian). This is

called (p,q)-Dehn surgery on v in NB.' Note that in general there
are infinitely many possible choices of longitude in the boundary of

a tubular meighborhood of vy. Therefore g is\well defined only

after making such a choice.



I. Definitions and Examples,

In this chapter we define and classify according to their Seifert
invariant, Seifert and Generalized Seifert fibrations. A Seifert fibration
over a orlentable surface ean be viewed also as the orbit space projectien
of an Sl—action on a 3dmanifold; .This 1s dfacussed In section 2,

We extend the definition of the Euler number of an Sl-bundle to include
Generalized Seifert fibrationg. 1In section 4 the examples of lens spaces
are described and used in Seection 5 to describe (with proofs postponed)
the clagsification of Seifert and Generalized Seifert fiberable (as
opposed to fibered) manifolds. The final section 6 describes the basgic

algebraic topology of these manifolds,

1. Seifert and Generalized Seifert Fibrations.

Definition 1.1. A G.S. (Generalized Seifert) fibration is a triple

" (M,F,n}) {also denoted M 3 F) where M is an oriented 3-manifold, F
is a surface, oriented or unoriented, and n: M + F such that (M,F,r1)

ig "almogt" a loecally trivial Sl—bundle. To be precise:

2

For every xec F, there exists a D neighborhood of X such that

.“-I(DZ) X Dz x S1 and

2

i D2 X S1 + D% ig defined by (rtl’tZ) roorePed

172

where t; € S1 = {t & ¢f |t| =1}, r ¢ [0,1], p,q € Z and the ged(p,q) = 1
Here the values of p and q depend on x. If for every = € F, p # 0

then (M,F,n} is called a Seifert fibration,



To understand the local structure of a G.8. fibration we look at

the above "local model”™ T3 p? x Sl + D2. If p# 0 we can parametrize

a typical fiber by ﬂ_l(rs) - (rslfptq,t"p), .t € Sl, r ¢ (0,1], If we
consider D2 %'sl as. D2 % T . with ends identified we get the

following pieture:

The center of the disec 0 lifts to the core circle of the solid
torus and points in D% - {0} 1liftr to fibers that wrap p times around
the core in the longitudinal direction and «q times in the meridianal
direction.,

An alternative description is to consider p? x I fibered by

1

lines {x} x I. Form a solid torus D2 x 8 by identifying the ends

of the solid cylinder with a 2mg/p twist,

Definition 1.2, We call a fiber singular or exceptional if the value

of p associated to this fiber is not equal to +1.



Proposition 1.3, If (M,F,n) is a G.S., fibration with P compact, the

number of exceptional fibers is finite. (Note F 1is compact iff M is.)
Proof: For every x £ F there exists a neighborhood sz such that
ﬁ“l(nzx) eowtalns at most one exceptional fiber, mamely ﬂnl(x). Since

F 1is compact we can cover it by finitely many such neighborhoods.

We now consider the case of a G.S, fibering (M,F,m) where F is
closed oriented and comnected, If we are given such a fibering, we can
remove solid torus neighborhoods of suitable fibérs of M and corre-
sponding dis¢ neighborhoods of F, to leave a genuine Sl-bundle over
a connected orientable éurface with boundary. Any such Sl—bundle is
trivial, thus M is the result of Dehn surgery on some fibers of a
trivial bundle F x S'l -+ F, As already remarked, cach Dehn surgery is
determined by a suitable coprime integer pair,

To see exactly how this construction can be done, assume we are
given data (g3 (al,el),...,(an,sn)) where g > 0, ai,Bi ¢ Z, o; > 0,
and gcd(ai,ﬂi) =1 i=1,...,n, Let F = oriénted surface of genus g
with n punctures; F,=F - (Di U ... U Di) (F = closed surface of

genug g). Define

o
1 1 1 1 1
1

*x 87 U S, x5 ... U Si % 8

Let R = F x {1}
~z Nest oshy o st :
Qi = R | (Si x 8§%) = Si x {1} (oriented as a component of -3R)
~ 11 1
Hi-{l}ng_SixS



We have a trivial S;-bundle (Mb’Fo'“)' To construct a G.8, fibration

from this bundle, paste a solid torus Ti = D2 x S1 into the ith

boundary component Si X Sl in such a way that a meridian M, = Si x {1}
BTi satisfies the homology relation Mi u aiQi + BiHi in the homology
of aT..

i

1
If we let Li = {1} x 8" < BTi and Mi gr aiQi * BiHi then

a Bi
g fe SL(2, Z). Therefore we can

1 T
Li “ aiQi + Biﬂi flor some {a

e,

solve for Hy and Qg in terms of M, and L, to get

In Ti' Hi v G, thus we have

Hy v oogly
in the homology of Ti'

Q; v-BiLy

This gives an alternate deseription of what e and Bi signify, i.e,
oy is the number of times Hi wraps around Ti and _Bi the number
‘of times Qi wrapes around Ti'

We denote the .S, fibration constructed above by

M(g;(al,Bl),...,(an,Bn)) and call {g;(al,Bl),...,(an,Bn}} the Seifert

invariant.



Definition l.4. We say two G.S. fibrationms (M,F,m), (M',F',n'} are

isomorphic iff there exist diffeomorphisms f£: F ~» F' and f: M > M', with
orientation preserving such that

e

M -—f-—a M
AL

F _-£—> P’ commutes

We shall see that different Seifert invariants can result in
isomorphic G.S, fibrations., The second part of the next theorem gives
necessary and sufficient conditioms on the Seifert invariant to yield
isomorphic G.S8. fibrations. The first part shows every G.S. fibration

can be obtained by the above method (provided F is oriented),

Theorem 1,5, Let. M3 F be a .8, fibration with F closed connected
and oriented, Then |
a) (M Ip - M(g;(al,sl),...,(an,ﬁn)) for some g,ai,Bi £ 2
B) M(g3(e;,8,)se00s(0 ,B.)) ¥ Mg 5() ,B]),00e,(al,B0))  ifE;
i) g=4g'
ii) Disregarding any Bi/ai and B;/ai which are integers
(# x}, the remaining Bi/ai (mod 1) are & permutation

of the remaining B;/ai {mod 1)

i) I, 8/ = Tig

1/0 = =1/0 = @, o« 4+ x = o for every x ¢ R U {=},

B;/d; where here we use the convention

Equivalently, the following collection of operations canbe done to a
Seifert invariant without changing the corresponding G.S. fibration up

to isomorphism:
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I) Add or delete any Seifert pair (o,B) = (1,0)
IT) Replace any (0,#1) by (0,%1)
IIY) Replace each (ai,ﬁi) by (ai’ﬁi‘+ Kiai) provided

EKi.:Dl

Example., M(0;(2,1),(3,2),(5,~6)}) ¥ M(03(2,-1),(3,2),(5,-1))

B

M(05(1,0),(2,1},(3,2},(5,-6))

i

H(U;(l,—2),(2,1),(3,2),(5,4)).

Proof of Theorem 1.5. a)} Choose points PyseeesP,E F such that

{ﬂ_l(Pl),...,ﬂ_l(pn)} includes all exceptional fibers. Let Dy,...,D
be disjoint dise neighborhoods of the pyr Then T, = ﬁ_l(Di) are disjoint
solid torue neighborhoods of the ﬁ-l(pi). Define MO =M - int(Tl Uses
and F =F - int(D1 Ueos U Dn); (Mo’Fo’an ) 1is a genuine Slmbundle
and therefore trivial. Hence we can find a sthion 8t FO > Mb. Define
R = s(Fo)tt Ho, Qi =R leTi and let Hi be a non-singular fiber in
BTi. Let o be the multiple of the generator of Hl(Ti) that Hi
represents and -Bi the multiple of the generator of Hl(Ti) thar Qi
represents., Then (M,F,m) S M(g;(al,Bl),...,(an,Bn)) vhere g = genus(F)
thus proving a).

b} By part a), we can assume that given any G.S. fibration

' M(g;(ul,Bl),...,(an,Sn)) that (ai,Bi) were obtained by the methed
used in the proof of part a). If we had choosen extra points P;s i.e.
points whose fibers are mot exceptional, the result would have been to
introduce pairs (1,0) into the Seifert invariant, We also made an

arbitrary choice when defining the section s: F o+ M. With respect to
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a suitable trivialization M - F, X Sl, the section 8 1is given by
s{x) = (x,1), and then any other section &' has the form s': x M (x,0{(x))

' by an isotopy without changing

where ¢! Fo - Sl. We cam change s
the corresponding values of (ai,ﬁi). Thus we are concerned only with

the homotopy class of ¢. We claims

If we denote ¢I’:3F e [9F ,Sl] - z" by {4,,...,9. ) where
0 o 1 n
q; = deg ¢|s{, then (q,...,q,) occurs for some ¢ iff

q1+loo+q_n=ﬂ'a

To prove this recall Hl(X,ZZ) = [X,SI] and note the following exact

sequences:

Hl(F ) — HIGOF ) ——> H2(F_,3F )
[s] o] o [+]

|

H (F_,8F ) ——> HD(aFo) —y 0 (F_)

o is the map d(Zl,...,Zn) = Zl * ren * Zn. Therefore (ql,...,qn)

cceurs iff it pulls back to Hl(Fo) iff 9 * eee Q= 0.

' ingead of g, Q, is

J
replaced by Qj + qu which winds -Bj + qja times around the solid

We see from the claim that in choosing g

torusg Tj. Hence we can replace each Bj by Bj - q.0, provided

173
quﬂO.
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Note the non-uniqueness of the Seifert invariant is due to the
arbitrary chqice of a section s: F > Ho' If we calculatg-the Seifert
invariant with respect to a fixed section, two pairs, consisting each of
a G,S. fibratien plus a section to the fibration outside a finite collection
of Fibers, are isomorphic iff their Seifert invariants are equal (up to

permutation of pairs).

Corollary 1.6. The Seifert invariant of a Seifert fibration has unique

normal form (up to permutation of indices)
H(g;(lgﬁo),(al,ﬁl),...,(an,Bn)), 0 < Bi < ai, i= l,...,n.

If (M,F,71) ig a 6.8, fibration which is not a Seifert fibratiom, we can

uniquely represemt it (up to permutation of indices) as:
M(g;(O,l),...,(U,l),(01,81),..-,(um35m)), 0 < Bi < ai, i= ljn-.’mi

Definition 1,7, e(M > F) = —X&i/B, is called the Euler number of the
i

G.5. fibratien M(g;(ul,Bl),...,(Dﬁn,Bn)). e{M > F) ¢ « iff (M,F,7)

is a Seifert fibration.

Note that the Seifert invariant is an invariant of the oriented
manifold M with its fibered structure, it does not depend on the
orientation of the base P, For if we reversge the orientation of F, we
must reverse the orientation of the fibers also, to keep the orientation
of M fixed. Thus both Q and H, are revergsed, and the homology

relation “iqi + BiHi A 0 in T, which determines (ai,ﬁi), is



13,
unchanged. This can also bge interpreted as gaying that there exists a
fiber presexrving diffeomorphism £: M » M, preserving orientation of M,
such that the induced map F + F reverses orientation,

Exercise: Show f can be chosen even as an involution (f2 = id).

Note also that reversing the orientation of M reverses the sign

of either Qi or Hi’ 80 Bi/ai gets replaced by -Bi/ai. Thus we have

COtOllarY 1.7. If M= M(g;((}:l'Bl)’atoa(an,Bn)) then -~M =

M(g;(al,-sl),...,(an,-Bn)). In particular e(¥ » F) = =e(=M > F) (-M

means M with reversed orientaticn).

We now consider the case where F 18 non=orientable. Then F =

F1 # F2 where F1 is an orientable surface and F2 = ]RP2 or F, =

2
:BPE # BPZ. By homogeneity of manifolds, we can assume the singular

fibers of (M,F,n) lie only over points of F Therefore, over F

1’ 2
we have a genuine Sl—bundle with oriented total space.

We now introduce Seifert invariants as before:
a) Remove tubular neighborhoods of the singular fibere (and possibly
‘gome non-singular fibers). This givep Hb > Fo # Fz, a genuine Sl—
“bundle where Fo = Fl - (D% U osea U Di), Mb = M - (Tl U ses U Tn)'
b) Choose a section R C.HO to the fibration and use this to compute
the Seifert pairs (ai,Si). This gives a Seifert invariant
(g;(aI,Bl),...,(an,Bn)) where g < O 1is the genus of F (we use
2

negative genus for nonorientable surfaces, i.e. F = E&Z# e ff RP,

|g| times). As before we have
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Theorem 1.8. Let M I P be a 8.8, fibration with F closed connected
and unorientable. Then
a) I F) > M(g;(al,Bl),...,(an,Bn)) for some g,ai,Bi e Z
with g <0
b) same as the orientable case, i.e. we can change any Bi/ai by
an inteéer provided we keep -E Bi/ai = e(M » F) fixed. We
can add or delete pairs (ai,Bi) = (1,0).

2

F'#]RP2 where F'=F1 or F'=F1#]RP. Then

Procf: Let F

F = (F' - int(D%)) V.1 (BP? - int(p?%))

(F

int(D%)) U , (Mb)  (Mb = Moebiris band).
S

We need:

Lemma 1.9. Suppose E I Mb is a fibration with fiber S1 and oriented

total space. Then

i} There is only one such E up to isomorphism namely E = Thitp

unit tangent bundle.
ii) There is exactly one gection up to igotopy of EIB(Mb) which

extends over E.

Given this lemma, there is a canonical way of cutting out W"I(Mb) in

M and replacing it by D2 ® SI, te get a G.S. fibration over F'., The

proof thus reduces to the case of F orieantable.
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Proof of Lemma 1.9. 1) Classifying bundles E Im with S1 fiber and

orientable total space i8 equivalent to classifying, up to homotopy,
orientation reversing diffeomorphisms hi S1 > Sl. There is only one
such h, Thus B > Mb is unique, and E Y Tle since Tlmb is such a
bundle., i1ii)} A section of Tlmb is a unit vector field on Mb. Call the
section on oMb that is parallel to &8Mb the trivial section. We claim
any section r: Mb > TlI-Ib_ 18 such that r[aMb is isotopic to the trivial
section. To see this, choose a very narrow Méebius band neighborhood U

- of the core circle. As you traverse the boundary of U, any "rotation"
of the vector field gets canceled as you ‘come around the second time' and
therefore r[8U is isotopic to the trivial section. Since Mb - U =
collar = 3Mb x I, this gives an isotopy of r}dMb to the trivial section

{see below).

y " Mb s 4 Thig is the Moebius band,
S e o o =
> P’ A S
¥ | Mb v This is the trivial sectiom on EML.
ra ra i i
e -~ M T~

‘Given any section r of Mb, choose U,

core circle
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On the core circle the section looks like;

A X1 2200 5
NV oL
Y

By continuity of r, on U the section looks like:

2,«*"—_"_"—H_*“““H\Es as you go around here the rotation is o

< s AL 127

w‘ét_&‘!‘?/"f‘

PO Y
R 2N

as you go around here the rotation is -go |

Thus this section is isotopic to the trivial section

 J
v
Y

collarg\ - < -

Now using the collar extend this isotopy to give an isotopy of r|3Mb to

the trivial section.



17,

2. S8Seifert Fibrations as Sl—Actions.

Observe, if (M,F,7) is a Seifert fibration with M closed and ori-
anted and F oriented, by the way M is constructed, we can put an S1
action on M, The orbits of this action are the fibers of m, If
(M,F,n} 1is a G.S. Fibration with F oriented, then there is an- S1
action on M such that each fiber of 7 1is either

a) an orbit if the fiber is non-singular or singular with o % 0

b} a component of a fixed point set if it is a singular fiber

with o = ¢,

The converse i also true.

Theorem 2,1. The clagsification ofG.3, fibrations with F orientable is
equivalent to the classification of effective S1 actions on closed

oriented 3-manifolds.

Before proving this theorem we need some definitions and results
from the theory group actions gp a manifold. A reference for these

results ig G, Bredon: JIntroduction to Compact Transfermation Groups.

" Definition, Let M be a smooth manifold and € a compact Lie group.

A smooth G-action on M is a o m#p G xM->M (g,x) b gx

satisfying
i) Ix = x for every x ¢ M

ii) gl(gzx) = (glgz)x: for every g;.g, € 6, for every x & M,
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This action is effective if gx = x for every x € M, then g = 1. This

action is fixed poiﬁt free if for every x ¢ M, there exists g e G

'such that gx # x. This action is free if for every x ¢ M and for every

g # 1, gx # x. We define the orbit space M/G = M/{x = gx}, the orbit

Gx = {gx| g € G} and we define the isotmpy subgroup ¢ =1{ge¢ ¢l gx = x}h

Lemna 2.2. Gx is a closed subgroup ¢f G. G/Gx Y Gx where this

diffeomorphism is G-equivariant and given by ngl-b 2x.

Example: 1) Let H be a compact Lie group and p: R + GL(n) be a
repregentation, Then H acts on R by hex = p(hlx, x ¢ R®, h e H.

2) Suppose HC G is a closed subgroup and p is as above., We
define GxyR' = GxR'/H where H acts on G x R' by h(g,x) =
(gh™ ", 0(m)x)).

Theorem 2,3, Let G,H be as in example 2). Then C-"><H]Rn + G/R given
by [g,vl b gH is a vector bundle with fiber R". It has a natural G

action given by gl[g,v] * [glg,v}.

Theorem 2.4. {Slice Theorem) Let G be a compact Lie group and G xM=+M
a smooth action of G. Then
1) Gx< M is a smooth submanifold
2) Gx acts on Vx = vx(G:x) by a representation
Pt Gx > GL(Vx)(ux(Gx) = normal bundle of Gx in M at x),
called the "slice representation"

3) G %o Vx is G-equivariantly diffeomorphic to a neighborhood
X

of Gxe M by a diffeomorphism which takes the zero section
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G/Gx = {[g,0]} to €=z
4) After choosing an invariant Buclidean metric on Vi we can

agsume p_: Gx - O(Vx).

We now return to Theorem 2.1. -To prove this theorem, it suffices to show
any effective Sl action on a closed oriented 3~manifold M vyields a

G.S. fibration, By part 3 of the Slice theorem, if we know all the

possible slice representations of the isotropy subgroups of Sl, we know

what the orbits lock like locally. We must show that locally these
orbits look like a local model as in the definition of a G.S5. fibration,
In our case G = S1 and the possible isotropy subgroups are

GK = {I}, ZZ/B,, Slc

Case 1. G, = {1}

Then G x VanV=Slx]Rz since dim v = 2,

G
X

Case 2. G = ZZ/n
wrprvh————— x

As in case 1, since dim G Xa V=3 and Gx is discrete, we
x

have dim V = 2, For the action of G to be effective op: Gx > 0(v)
must be injective. If n > 2 the only possibility for p is a generator

of Z/n goes to a rotation by 2wq/n where ged{q,n) = 1. If . 2

“we have the additional possibility, a generator goes to (“é ?). In this

. \ X "
case G Xa V 1is non-orientable and thus cannot occur. Thus G XG V=
x

X
(Sl X ]Rz},‘(E/n) which is again a standard model.

Case 3. G = 8!
——————— x

In this case dim V = 3. Again, for the action to be effective
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o S1 + 0(V) must be injective, There is only one such representation,

namely writing ]R3 = R x IRI, S1 rotates '.RZ and fixes lRl. Thus

34 .3

Gx, Va S]L x . BT = R™ as S1 manifolds. The fixed point set is

G 1
X 5
thus a closed one dimensional submanifold of M so a component of the

fixed point set looks like @ (0,1} fiber in a G,S. fibration.
Thus we have shown that given any orientable closed 3 manifold M
with an effective S‘1 action and orbit space M/Sl, then the non-fixed

orbits and the fixed point components induce a G.§., fibration on M.

Proposition 2.5. Let M be a closed orientable effective S]' manifold

with Seifert invariant (g;(al,Bl),...,(an,Bn)) and Z/ac 51, ‘Then
M/(Z/a) iz a (S]‘/(EZ/a}) manifold and its Seifert invariant can be
written (g;(ai,Bi),...,(a&,B;)) where B;/aé = aBj/aj. In particular

e(M/(Z/a) + M/S) = a-e(M + M/ST).

Proof: By checking the local structure, M/(Z/a) is easily seen to
be a 3-manifold. Remove from M tubular neighborhoods of a suitable
collection of orbits., 1In M - {tubular neighborhoods} choose a section
R which gives the stated Seifert invariant for M. The image of R

in M/{(Z/a)} is still a section and this section gives the desired

"Seifert invariant for M/(Z/a).
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3.. Euler Number,

There are several equivalent ways of defining the Euler number
for a genuine.SI—bundle. We list three:
1) An obstruction to finding a cross section.
2) A bundle is classified by an element of [F,BSl} = [F,X(Z,2)]
= HZ(F;EZ). If F is a closed surface HZ(F;ZZ) = X% and
the a e HZ(F,Z) classifying the S1 bundle ie the Euler number
3} "Fill in the circle fibers" to get a D2 bundle E + F with

B =¥ (E=Mx 1 D2 = (M x Dz)fsl). We have the zero

s
section F& E. Then e{(M + F)} = [E]J*[F] (self intersection

number).
One can show that each of these ways has an extension to Seifert fibrations
and they all give the same result. Our definition of e(M > F) = - E ai/Bi
corresponds to the first definition. In this section we will give a
definition of e{(M + F) corresponding to 3), and it will be used in the

proof of a theorem. To 2) we remark without proof that if S% is the

0)
rationalized circle, then to any Seifert bundle M+ F 1is associated a

genuine fibration over F with fiber 51

o)’
[F,BS%O)] = [F,K(@,2)] = HZ(F;Q), and this too is our Euler number.

clagsified by an element of

Before stating and proving the main theorem of this section we need

a proposition and in particular the corollary following.

Proposition 3.1. Let M I F be a 6.5, fibration and p: F'+ F a

*
covering with degree (p) = d. We can form the pullback bundle p M » F'

where this diagram commutes:
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Then
iy p*M + F' is a G.3. fibration
i1y 1f MYF = M(gs(e;,8;)5eees(e ,B )) then NPT
M(g'3d(ay,B,)5000,d(a ,8 )) vhere d(o,,B.) = (ai'Bi)"‘_‘l’(ui’Bi)

(¢ times) and g’ = genus F',

*
Proof. p M = {(x,y) € M x F'| p(y) = w(x)}. Choose a section R to
M ¥ F outside of a collection of tubular neighborhoods of suitable fibers,
*
Then {(x,y) € R x F'| m(x) = p(y)} is a similar section in p M leading

to the desired Seifert invariant.

Corollary 3.2. Let M I F be a 6.5, fibration with Seifert invariant

(g;(al,Bl),...,(an,Bn)) with g < 0, i.e. F 1is unorientable. Let

F B F be the orientation double cover of F, We form the pullback

bundle M 3 F. Then:
i) ® i F is a G,8. fibration,
on 2 T o=
i) BEF 2 mclal - 13 (ap,B)),(00,8)),0 000008 ) (a8 ).

" In particular e(M + F) = 2e(M + F).

We now state the main theorem of this section,

] m _
Theorem 3.3, Let Hl -—]§F1 and M2 —% F2 be two Seifert fibrations.

Apsume there exists a map ¢g: Ml > M2 such that the diagram
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commutes and degree (g) = b, degree (élfiber) = f and thus degree (g) =
Then e(ﬂi > Fl) =(b/f)e(H2 -+ FZJ. (Note: The pair (b,f) is determined

only up to sign, but b/f is well defined.)

We leave as an exercise the

Remark : The theorem is walid also for G.5. fibrations,

In proving this theorem, we shall also show that e(M > F) is
equal to the self intergection number of the zero section of the corre-
sponding “disc bundle," which we now define,

Given a Seifert fibration (M,F,r), let €(w) be the mapping
cylinder, i.e. C(m) = M x [0,1} U, F vhere t: Mx {1} » F is t(x,1) =
m(x) . m induces a mapping T%: C{(s) + F whose fibers are the cones
over the fibers of w. This is a "Seifert disc bundle™ over F, and
M = 3(C(7)) 1is the corresponding cire¢le bundle, We have F< C(n) as
the zero section. €(n) 1isg a 4-manifold except at points p ¢ F over

which the singular orbits of M lie,

Definition 3.4. The pair (X,Y) is an R-homology manifold pair of

dimension n iff (X,Y} is a relative C.,W. complex and

~ : R i=n
Hi(X,X -~ {p}:R) = {
0 i$n

for all p e X - Y.
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Claim. (C{w),M) dis a @ homology manifold pair.

Exercigse, If G 1is a finite group with an orientation preserving action

on & manifold N, then N/G is a @ homology manifold.

Proof of Claim. Using the above exercise, and since being an R-homology

manifold is a local cendition, it suffices to show that if p e F inm
C(n) is a singular point, then p has a neighborhood homeomorphic te
Eﬁ/G for some finite G, Let p be a sinéular point and U a neigh-
borhood of . P TT-I(U) T U "looks like" S!' X g I{z > ]RZI(ZZ)'o.) where
(Z/a) acts diagonally on gt x ]Rz, i.e. by rigoktnt multiplication on Sl
and by some rotation on IRZ. The corresponding neighborhood of n_l(p)

in O s D iy Rz o xwD 7 @/,

Now the standard treatment of Re-orientation, fundamental classes
and Poincaré-Lefschetz duality (as for instance in Spamier: Algebragic
Topology) carries through for R-homology manifeld pairs (¥,¥) with X
compact and Y closed. Therefore (C{n),M) satisfies Poincaré-Lefschetz
duality with @ coefficients. Precisely, the sum of the top dimensional
simplices in a subdivision of C(%) defines a fundamental class

{c(m] e I%(C(TI).N;Q), and the maps

D: HI(C(M;®)  + H,_ (C(x),M;Q)  and

D: HI(C(m) ,M;@) ~ H,_o(C(m) ;@)

defined by D{a) = a N [c(n)] are isomorphisms.

In analogy to the case of a genuine Sl—bundle we now define
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'+ F) = D(0"HIFD U p7H(IFD)) where [F] € B,(C(m);@) is the
homology class represented by ¥ € C(w). Denoting D"I(F) =7 € Hz(c(‘n);ﬁz)
we have e'(M + F) = (n Un) N {c(1))]

=n N (N emD

n N [Fl.

The proof of Theorem 3.3 is divided into two steps. The first step
is to show e‘(M1 > Fl) = (/L) e'(H2 - FZ)' The second step is to show
e'(M~+ F) = e(M > F).

It may appear that we are implicitly assuming F is orientable
above. However, if we take our ccefficients ¢ im HZ(C(ﬂ);Q) and
HZ(C(R),M;Q) to be the local coefficient system on C{mw) which pulls
back from the oriemtation system on F (but take untwisted coefficients
for Hz. and H‘*), then our definition of e'(M + F), and the subsequent
analysis, applies also for F unorientable., In the following proof we
therefore implicitly assume these local coefficients are being used where
necessary. 7The reader who prefers to avoid local coefficients can instead

deduce the theorem in general from the special case of oriented base

surfaces using corollery 3.2.

Proof of Theorem 3.3, (Step 1) We have

this induces ¢&: C(ﬁl) -+ C(nz) with GlMi - g and GIE‘1 = g, Then

degree (G) = degree (g) = bf, Let n; € HZ(C(ﬂi);Q) (i = 1,2) be as
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above. Then e'(Mi *'Fi?‘ ng; N [Fi]- HZ(C(ﬂi);Q) = Hz(Fi;Q) = @, s0

G*hz ~ie some multiple knl of ﬁl. Thus

c*n, N fotx] =k N [6Cn)] = KIF, ]

#

*
6, ((6'h,) N [C(n,)]) = 6,klF,] - bk[F, 1.

O the other hand

6,((€*n,) N [en D = n, A gc(n;)]

bf n, N [c(n,)]

belF, ]
*
and hence k = f, Therefore G ny = friys sO

e'(M1_¢ F)=mn, N [FI]
*
= (1/£)6 (n,) N [F,]
*
= (1/£)6,(6'n, N {F D
= (1/f)(n2 n G*[Fl])
= (b/£)(n, N [F, 1

= (b/f)e'(ﬂ2 > Fz)'

(Step 2) We want to show that for any Seifert manifold e(M +> F) =

e'(M + F), Tirst agssume P isg oriented. Then M

is a fixed point free
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s'-manifold and M = M(g;(0;,B))v+++,(0_,B, )+ Let a be a multiple of
lcm(al....,an) and define M' = M/(Z/a). Then M' =
Mg; (l,aBllal),...,(l,aBn/ah)) = M(g; (1, E aBi/ai)).' Thug M' is a

genuine 'Slwbundle.

Exercise: Por a genuine sl-bundle &' = e.

With this exzercise we have

(1/a)e(M + F) = e(M"' + F) (Proposition 3.1)

e'(M' + F) (exercise)

(1/a}e’'(M - F) (Step 1).

Now if F 1is not oriented, let M+ F be as constructed in Corollary 3.2

Then

e(M + F) = (1/2)e(ti > F) (Corollary 3.,2)

(1/2)e'(M > F) {above)

e'(M~+F) - (Step 1).
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4., Lens Spaces as Seifert Manifolds,

In this section we define lens spaces and show they are examples
of Seifert fibrations. As we shall see in the next gection, this allows

us to give g classification of Seifert structures on a 3-manifold.

Definition 4,1. Let §° = {(zl,zz) £ tl:2| |21]2 + |22|2 = 1}, Z/p acts

3

freely on S~ by e2ﬂ1p(zl’zz) = (eZHlfpzl’&2n1q[pzz) where ged(p,q) = 1

Define the lens space L(p,q) = 83/(Zpr).

L(p,q) has the following properties:
1) 33 + L{p,q) is the universal cover.
2) Since the covering transformation group is Z/p
m,(L(p,q)) = Z/p

3} By elementary algebraic topelogy we get

Hy (i{p,9)) = Z/p
H,(L(p,q}) = O
Hy(L{p,q)) = Z.
4) L(p,q) = L{p,q') if q = q' (mod p)
5) L(p,q) = L(p,q') if qg' = 1 (mod p)
Proof: e21riq'/p is a generator of Zfp and in L(p,q) it

L4 1 hd 3 L | +
takes (Z,,2,) b (2714 /le,ezm"q /Pzz) - (e*7id /le,ez“l',pzz

Thus by exchanging 2, and Z, the {p,g) action becomes

the (p,q') action. Therefore L{p,q) = L(p.q').

6) L(pyq) = ~L(p,~=q)

——

Proof: The map (21,22)l+ (ZI,EZ) induces L(p,q) * -L{p,~q).
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7) L(p;‘j:)}_ L(p,qa') (homotopy equivalent preserving orientation)
if qgq' is a square mod p.

Procf, See exercise 1.

4
Theorem 4.2. L(p,q) » L(p,q") iff q = (g} (mod p)
L(p,q) ~ L(p,q') iff qq' = square (mod p).
Here both the diffeomorphism and the homotopy equivalence are orientation

preserving. -

Proof: See J. H. C. Whitehead, "On incidence matrices, nuclei and

homotopy types,” Ann. of Math, vol. 42, 1941,

1

x 8% acts on S3 by (tl’tz)(zl‘z2) = (tlzl,tzzz). The above

Z/p actionis asubaction of T2 on 53. Thus Tzf(Z/p) acts on

53/(22/13) A L{p,q). TZI(ZIP) X Tz. There are many S1 subgroups of
TZI(Z_Z,’p) giving effective actions on L{p,q), hence there are many

Seifert and G.S. fibrations on L{p,q).

Theorem 4.3. L(p,q) ~ 0% x st , p?x gl if det[“g :] a 1.
()
Remark. If we define L(p,q) = L(-p,~q) 1f p < 0
L(1,0) = §°
1(0,1) = s* x 52,

then the theorem remaine true with these conventions.

Proof of Theorem 4.3, Let g3 - {(zl,zz)] lelz + ]szz = 2}, Then

3
5 =U1UU2

3 2
where U, = {(21,22) e 87 |22| > 1} and
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= {(zl,zz) £ S3| |22|2 < 1}, Ulg(D2 X 51)1 where the diffeomorphism
' 1

Y2
is given by (Z,,2,) » (2, 2,/112,]). similarly U, = (? x s
!

), by

: 2 1
(zl,zz) b (;z,zliilzlu). Thus the pasting map 9(D" x § )1 x s+
1 1 2 1 . . s 01 .
8" x 8" = 3(D” « 8 )2 is (Zl,zz)l+ (zz,z )1.e.glvenby~(l 0). Now if
we factor by the Z/p action we have (D X 8 ) /(Z/p) 502 x gt by

-5 . -
[3n22}i+ (22 zl,zg). Here s is chosen such that g8 = 1 (mod p).
Thus a matrix (“q r) of determinant -1 exists. We also have

P 8

2 1

(D2 X Sl) /(ZZ/p) *D° x 8¢ by [22,21]l+ (z;qzz,zf}. Thus L(p,q) =

S /(Z/p) D X S Uf 2 ><S1 where f: S]' X S1 + S]' x S:L and is given

by f(z; zp) = (z1 2,ZP). To put f in a more convenient form let

- 2. Then 2792 = t7%%, 2P - tPt®. Therefore f: 8 x5!

2 1 2 172 1 172

B 5 %% 5

1

S1 x 8 is given by f(tl,t ) = (t 2,t 2).

2 1
% 8§ )i

Remark, We can chooge M., L. a meridian and longitude in a(D
50 Mi = {(t,1) e 3(D2 X Sl)i}, Li = {(1,t} € B(D2 X Sl)i}. Then under
the pasting map M1l+ {(t“q,tp) £ 8(D2 X 51)2}, 80 Ml " -qMé * PL,. Thus

this homology relation determines which lens space we are in.

We will apply this to find the Seifert invariants of the various G.S.

fibered struectures on L(p,q).

ni

‘Theorem d.4. L(p,q) H(D;(al,Bl),(az.Sz)) if

o %
Ay o
1 72
q = dEt[“81 Bé] = mlﬁi + Blaé.
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a, ué i :
whete det[82 Bi] = 1282 - Bza = 1.

n

((D2 X Sl) W (annulue x Sl)) v (Dz X Sl)
2 1).

Proof: M(O;(al,sl).(az,ﬂz))

(D™ x st ] ? x s

We have homology relations Hl 4" “1Q1 + BIHI Mé W GZQZ + BZHZ

L] T ] L
Ll " mlql + BlHl L2 "\ azqz + 62H2

o, o) o, ot
1 1} - det[ 2 ™2

where det{ .
B1 B1 B2 Bi

]- = 1. Ql + Q2 = 9 (section in annulus xsl) 4 0

in homology, thus Ql 3 —QZ. Also H, v H,. Therefore

- 4

Oy Blﬁ'Qz]
-X
- L]

Bl iH
) ['(“135'*31“53 a By +By0y

1
2
]

1j{"2

\

B, | 8% -8, (4,
=02 %2f P2

pei gt
™
b

¥,

~(0By +8105) B, +Byay) UL,

so by the remark preceding the theorem, Theorem 4.4 is proved.

1 3 a b
Example: Let §~ act on 87 by t(zl,zz) = (t°Z ,t Zz) where

1
ged(a,b) = 1, The isotropy subgroups are Z/z and 2Z/b, By the above

theorem, we get es® > s3/shy = M(0; (a,a’),(b,b")) where ab' + ba' = #1.

Exercise: The correct sign here is ab' + ba' = +1, so 3(83 - s3/sl) =

~(a'/fa) - (b'/b) = —(1/ab).
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5. Classification of Seifert Fiberable Manifolds.

With the previous section as preparation, we can now state the

classification, up to (not necessarily fiber preserving) orientation

preserving homeomorphism of Seifert and G.S5. fiberable 3-manifolds.

Theorem 5.1.

1)

2)

3)

4)

M(-1;(a,B)) = M(0; (2,1),(2,-1),6B,a))
M(O;(Z,l)’(231),(2g-1),(2;‘1))-

ft

M(=23(1,0))
The diffeomorphisms in 1) and Seifert fibered structures on
lens spaces give the only examples of a 3-manifold having two

non isomorphic Seifert fibrations.,
2g 1 2 n
M(g5(0,1),(a 4B )5eeeslosB ) & # (87 x87) # # -Lln,,B;)
i=1 i=1
if g>0

LIS S S
= # (S x8T) # # -Lla.,B.)
] , i
1=]1 i=ml

if g < 0.
The only Seifert fibered manifold which is not connected

sum prime is M(-1;(1,0)) % Rp2 # e

Proof. For 1) and 3) see exercise Z. 2) and 4) will follow from our

analyéis of ﬂi(M). See [0-¥-Z] ,JD-R] In fact much more is true:

Theorem 5.2. (Waldhausen{Wal,2}) Let Hi’M2 be Seifert fibered and not

in the following list:

i)
ii)

iii)

lens spaces

M(O;(“1'B1)’(“2’Bz>’(a3’33))

M(15(1,0)) = 7°



iv) As in part 1 of :Theorem 5.1.

Then any homomorphism L'

2 is isotopic to a fiber preserving

homeomorphism.
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6. The Fundamental Group of a Seifert Manifold.

Theorem 6.1, Let M = H(g;(ul,el),...,(an,Bn)), then:

%y Bj
1 h - =1, qlqz,...,qm[al,bll,...,[an,bnl =1> if g>0

~ -1
171(M) = <ai'lqj$h | ailhai =h » [h)qj] = ll

o, B.

2 2 .
quh I e 1, ql""’qmal""’a!g| = 1> if g <0,

(i=1,...,]gl; j=1,...,m).
Proof. We prove only the cage g > 0. The proof for g < 0 1is analogous

We shall apply Van Kampen's theorem to the representation

1

M=(F"ﬂL‘D2)XS UT UncclJTm Ti=D XSO

1

2
ﬂl(F-InD ) = <31’b1’l-l’ag,bg,ql'c'l’%l

ql"'qm[al’bll"' [ag,bg] = 1>

where the ai’bi’qj are represented in schematically'in the figure below.




Then nl(F - mD2

a,
Claim. Pasting in Tj adds the relation quh

1
» S ) = <a1|b1,-ll'ag’bg'qlli"’qmlhl

n g
T q. I [a
j=1 3 i=1

[h,ai] = [h,bj] = [h,qj] = 1>,

i1

Proof., By Van Kampen's theorem pasting in Tj adds a new generator

and two new relations

a, B.

i) quh J=1
a! B!

ii) quh 3=,

The new generator

transformation.

Corollary 6.2.

If g>0

t and relation ii) can be deleted by a Tietze

H, (4;2) =<ai,3i,qj,ul cuij + BjH =0, Qp + .00 +Q =0>

28
= % & ol .0,
<Qs, | 59

= Zzgﬂ cok

In particular:

IT] = 0yseeepn [e( > F)

If e(M» F) = 0 and

+

B =0, Q + «uo v Q =0

0 - - - - 1 0
l 0 * L 4 [ ] » 0 81
Oy « « oo 0 Bz

If e(M>F) 40 then H,(M;Z) = z%8 ¢ T with

(M,F,r) 1is a Seifert fibration then
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HI(M;EZ) has free rank 2g + l.

Procf: Cok A has oxder equal to Idet A| if det A £ 0., Here det A =

(-1)", ...etme(M + F) by a simple induction. If det A = 0 then

1

rank A =m 1if no oy is 0.

Corollary 6.3, If g >0 and (M,F,n) is a Seifert fibration, the

following is a short exact sequence:
1>C~> ﬁI(M) + T(g,al,...,am) -1

where C 1is the central eyclic subgroup of ¥ generated by h and
o,
T(g;al,...,an) = <a1,b1,...,ag,bg,ql,...,qj| qj I = 1, I qj )i [ai,bi] = 1>
i i
Remark. P(g;al,...,ah) is a spherical, Euclidean, or hyperbolic
crystallographic group according as (2g-2) + E (ai'-l}/ui <4y, =, >0
respectively. We will see what this means and its significance for

Seifert manifolds later,

We are now in a position to determine which Seifert manifolds
are homology spheres, Assume M = M(g;(al,el),...,(an,sn)) is a
homology sphere. We can immediately conclude e{(M -+ F) # 0 and g = 0.
For if e(M+TF) =0 or g > 0, then by Corollary 6.2 Hl(M;ZZ) is
infinite, Also g < 0 cannot occur; for otherwige M would admit a

connected 2-fold cover, implying Hl(M;ZZIZ) ¢ {0}. We have
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1= [HI(M)I = u1!"qn | I ﬁifuil

4
= |Bla2 REL I PRRL TIE PR Blal"'uh—ll'

n ~
By reversing orientation if necessary, we can assume E Bial...ui...an=1

i=l
Therefore the ai's must be pairwise coprime, since if d[ai and dlaj
then 4} )} Bsoy - +.¥;--+@, and Hence d|1.
Moreover Bi ig determined modulo O by

»

Bial-..u_.

g ..an = 1 mod i

This completely determines the Seifert manifold since we know e(M + F)
and Bi mod o for each 1.
Conversely, if we have pairwise coprime ai's we can find 8,

satisfying z Biai...u ennt, = 1. Thls proves:

i
Theorem 6.4. Given pairwise co=-prime Oiypmeesl s there exists a unique
Seifert manifold M = z (al,...,an) with the ai's representing
exceptional fibers and e z (al,...,mn) > SZ) = ‘(1/(“1a"an)

is a homology sphere.

Example. E (2,3,5). Here e z (2,3,5) » Sz) = = 1/30, Thus

31/2 + 82/3 + 83/5 = 1/30 and we have

Y (2,3,5) = M(0;(2,1),(3,1),(5,-4))
= M(O;(l,“l),(z,l),(3,1),(5,1)).



Exercige 1

1)

2)

3)

4)

38.
EXFERCISES TQ CHAPTER I

(Homotopy classification of Lens spaces)

Show that a degree 1 map L{p,q) > L(p,q') is an orientation
preserving howmotopy equivalence.

Show that if ¢: L{p,q) -+ L(p,q') has degree d, then by
suitable connected summing with the covering projection
83 + L(p,q') you can get a2 map ¢': L(p,q) + L(p,q’} of
degree d % p. Thus if ¢: L{p,q) + L(p,q') exists of
degree congruent to 1 mod p, then L{(p,q) ~L{p,q")
{preserving orientation).

If ab = 1 mod p then the map (Z;,Z,) b (zi‘,z‘é‘){l](z‘{',zg)n

of 33 induces a map L{p,q} + L(p,bzq) of degree ab, so by

1) and 2) L{(p,a) v L(p,b’q).

Conversely, show q 1is determined up to squares by the
homotopy type of L(p,q) as follows: Let PB: HI(X;Q/Z?,)+
Hz(}{:E) be the connecting homomorphism for the coefficient
sequence 0+ Z + & + Q/Z +» 0. For 8118, E HZ(L(p,q);ZZ)
define L(s,,8,) = g, U 87 (g,) ¢ H(L(p,q)Z 8 W/Z) = Y/Z.
Show R(-,=) 1is wéll defined, and 2 determines q up to
squares as follows: for any generator g ¢ Hz(L(p,q);ED one

has 2{g,g) = qxzfp for some x prime to p.

Remark. Via Poincaré duality £ becomes the "torsion linking form,"

which is more generally defined for any closed oriented 2n + 1 manifold

as

Tor H

Plonzy x Tor 828 HPru;z)

I I +~ Q/Z .

Tor HZn—ﬁﬁ;&) x Tor HP(M;ZZ)
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The above is essentially the original approach, due to Rueff (Compositio

Math. 6 (1938)), to classify L(p,g)'s up to homotopy.

Exercise 2

Hints

*5)

1)

a)

b)

Use a similar approach to homotopy classify higher dimensional
lens spaces L2n+1(p;ql,...,qn), by replacing % of 4) by an

n—linear map ﬂ;(gl’.-a’gn) = gl U LN U gn_l U B‘-l(gn)'

Prove the following diffeomorphisme of G.S. fibered manifolds
(preserving orientation but, of course, not preserving G.S.
fibration), As stated in Sectfon 5, these axamples plus

lens spaces give the only examples of non-equivalent G,S.
fibrations of the same manifold.

a) M(-1;(a,8)) = M(0;(2,1),(2,-1),(-8,0))

b) M(-23(1,0)) = M(0;(2,1),(2,1),(2,=-1),(2,=1))

©) M(g3(0,1),(a 580, § = L,eeeum) & § shes? L(a;,-B )

iml j=1 7
where k = 2g (g > 0) or lg| (g < o).

e

1

T'Mb (the unit tangent bundle of the MSbius band) has two

natural Seifert fibrations., The one is the projection

Tle + Mb and the other is given'by the Sl—action on Tlmb

induced by an effective Sl—action on Mb. This gives two G.S.

fibrations on any manifold of the form T1Mb W 2 D2 X Sl.
T

T1K£ has two Seifert fibrations for the same reason Tlub does.
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Define an operation of "connected sum along (0Q,1)-orbits"
to show how to build up a G,S.-fibration on a connected sum
of simpler non-Seifert G.S.~fibered manifolds. You know c¢)
for g=0 and n =1 by classification of GS-fibrations

on Seifert manifolds. Hence you know it also for g = -1,

n =0, by a). You only need it then for g = 1, n = 0. Find
a suitable G.S. fibration on ((5% x §%) - 20%) y(s® x 1) &
1 L 52.

st x82#s
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IT. Further Examples

In this chapter we give two less basic examples of Seifert manifolds:
Breiskorn complete intersections and the universal abelian cover of

certain Seifert manifolds.

7. Breiskorn Complete Intersections.

a a a
3

: 1 2 3 ‘
Let V(a ,a,,a,) = {¢z Z) € C | 2,0+ 2, 2, = 0} where

ne

858,584 > 2. V has

an isolated singular point at 0, We define the link of the singularity
5 .
ag V(al,az,aB) N 5 and denote it by E(al,az,a3). Z(al,az,a3) has a

natural Sl action given by:

aja

a/a2 - a/a3
t(Zl,Zz,ZSJ ] (t

1 t Zz,t 23) where a = lcm(al,az,aB).

This is an effective fixed point free action on z(al,az,aB). Therefore
I . , .
E(al,az,aBJ + Z(al,az,a3)/5 is a Seifert fibratiom.

We can generalize this example by letting A={a, )~ Lyoeun=2
ij7j = 1,...40

be an (n-2) x n dimensional complex matrix and defining:

a a
1 1 2
VA(al,...,an) = {(zl,...,zn) e f ailzl + aiZZZ, F

a

z"=0,1i=1,,..,0-2}

+ .
azn n

Proposition 7.1. v, is a 2~dimensional complex variety which is non-

singular except at 0 iff each maximal (m~-2) x (n-2) submatrix of A

iz non~singular.
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a,
: - J = -1 n-2
Proof: Let £.(Z,..032 ) § a;2;7 and £ (£1reeesf o)y 2 8 > €
and V, = 5"1(0). We want to show: Df has rank n~2 at each point of

A

VA « {0} iff gach (n-2} x (n~2) submatrix of A is non~singular.

a.-1
1
a2
— A 1 l -

= = ] -
Df = (afi/azj) = (aija.z. ) = . a~1l|

Asgume there is an (n-2) x (n-2) submatrix of Df that is singular.

Without loss of generality, we can assume the first n~2 columns of A
are linearly dependent. By a change of coordinates in cn-2’ £ is

- %1 %
%n-1%a-1 * *10®n

= 0} is at least l-dimensional

equivalent to (f1'f2""'fn-2) where fl(zl,...,zn) =

Then {f2=f3=n¢-=f = 7

n=-2 n-1 - Z

11~2

(and in particular not zero) and contained in VA' On this set Df has

rank less than n-2, which is a contradictiom,
Conversely, if every {(n-2) x (n-2) submatrix is non-singular then
Df has rank n-2 if at least n-2 zi's are non-zero. On Vy - {0}

*x
if Z. =2, =0 then Z
43 3

= 0 for the remaining n-2 indices k, which

is a contradiction.

We call a matrix that satisfies the conditions of proposition 7.1

"good," and assume from now on A satisfies these conditioms.

2n~1

# .
Definition EA(al""’an) a VA M s . & =¢ -~ {0} acts on

n a/alz a/anz )
n

<

*
by t(zl,...,zn) ={t for all t g € .vwhere

1’-Ul,t

. . *
a= 1cm(ai). This action preserves V Therefore S‘l C ¢ acts on

A.
. 1 . . .
Xﬁ(al""'an) making EA(al,...,an) - EAQI,...,an)/S a Seifert fibration.

Remark. zﬁ(al,...,an) is {as a Seifert manifold) independent of the
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choice of A with A goo&. This follows from the fact that {A|A is good]}
is connected, We denote EA(al,...,an) by Z(al,...,an). 0f course the

complex structure on VA does depend on A.

Theorem 7.2, E(al,...,an) = H(g;sl('_ti,Bl),---,sn(tn,Bn)) where

[
i

i a/%;g (aj)

w
il

(M a,)/ lem (a.)
Lo 37 g 3

n

(1/2)(2 + (n-2(Ta;¥/a - 55)
j=1

as
]

e(E(al,...,an) > ):(al,...,an)/sl) =—((Hai}/a2}.

Note that these four equations determine Bi (mod ti)' The last equation

can be written E sij/tj = H(ai)/az. Dividing by the right side gives

J
Z (afaj)sj = 1, Since ti = g;? (afaj), ti divides a!aj if i # j, so
J J#1
{a/ai)Bi 1 (mod ti).

E . th . & irwise coprime. Th
xample. Assume the a, are pairwise coprime en

t. = a,

i i
g, =1
i
g = (1/2){(2 + (n~2)*1 - n) =0
. e = -lf(al...an).

This is the Seifert homology sphere E(al,...,an). Thus our notation is

consistent with that of the previocus section.:
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Proof of Theorem 7.2, We require two facts from basic number theory which

we state without proof.

i) if Eﬁni E 51, i. = 1,.-c,k then

k
ZZ/mi = Z/gcd{mi)

i=1
iiy gcd(m/mi) =m/lcm(mi)

lcm(mfmi)'=m/gcd(mi).
Note if Z = (Zl,...,zn) €V, and Z, # 0 for all i, then the isotropy

subgroup Sé = {1}, This follows from

5, = Z/@/a) N Z/(a/ay) O ... 0 Z/(afa)

= Z{ged{a/a,) = Z/(a/lem{a;)) = {1}.

§imilarly, if Z = (Zl,...,Zn) €V, and % =0, Zj # 0 for all i # j

then

S;= E/(a/al) N aee N @ N oy N R/(ﬁ/an)

=/ ged (afa,) = Z/(af lem (a.)) = Z/t, .
j#i 3 i ] *

We alsc have, if Z = (Zl,...,Zn) €V, and Z = Zj =0 for 1i# j
then Z =0, so Z ¢ E (al,...,an).
We must next compute the number of orbits with isotropy EVti or

more precisély, the number 5, of orbits in 'E(al;...,an) n{ £y = 0} .

i
We shall later show that (for fixed i) all these si arbits have the
same P's,

Bach orbit in z(al,...,an) M {Z1 = 0} contains at least one point
of the form (o,rz,zs,...,zn) where «r

2 € IR+.
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a} In fact each orbit contains exactly a/(aztl) such points
since Z/(a/az) maps such a point to a similar point, while

ZZ/ ged (a/ai) = ’Z/tl maps such a point to itself,
i#1
b) E(al,...,an) contains exactly a,...a such points since
4y 23 - %
aizrz + ai3z3 + oeea + uinzn =0, 1= 1,...,n-2, determines

&2 8.3 E:

(O,r2 ,23 ,...,Znn) up to a multiple., As we ars on Szn-l,

" r, 1is determined and Zj ig determined up to aj—th roots of

2
unity.
c) a) and b) imply there are (a3...an)/(a/(a2t1)) = (az...antl)/a = 8
orbits with Zl = (0, .
To complete the proof we must verify the statements concerning g
and e, and show the R's for all orbits in z(al,...,an) N {zi = 0} ate

the same for fixed 1.

We have a map @: VA(al,..,an) - {0} » VA(l,...,l) - {0} given by

a a
(Zl,aoc,zn) b (le,.u,znn)‘- I1f this map induced a4 map i E(a,ioo,an) +

E(l,...,l) we could use ¢ and theorem 3,3 to compute e. However
@(5211-1) f S.’Zn—-l and we must show ¢ can be nevertheless used to induce

*
such a . We have IR+€ ¢ and

EA(al’“"an.) c_a'vn(al""’an) - {0}

<

(V,(ayseensa) = {OD/R,

-}

(Vy(ayseensa)) - {OD/R, x 51

E.(VA(al,..;,an) - {O}JIC*

Denote EA(al,...,aﬁysl

by P&(al,...,an).
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We have:

© Vlay,eena) - {0} ~2. Vy(1,000s1) - {0)

IR+ \r/ ]R‘l-

{A(al,...,an) e ZA(l,...,l)
L/sl /st

: - 4
Py(2)50eesa) —2 PA(l‘,...,l)

¢ 1is Sl-equivariant if we let S1 ‘act non effectively on E(l,...,l)
by t(Zl,.q,Zn)u(taZl,..f,taZn}, as= 1cm(ai). Thue the degree of
¢|(non-singular fiber} is a. The degree of ¥ = degree ¢ = Gyeeedl s

Therefore
2 .
e(J(a)s.0058 ) + Plag,ceua )) = ((a)...a )/a%)e(}(1,...,1) + P(1,...,1))
2
= —(al...ﬂn)/a
by Theorem 3.3 and since I(l,...,l) + P(1,...,1) 1is the Hopf fibration.
P(al,...,an) +P{1l,...,1) is a (lla;}/a~fold branched covering. The
branching occurs over Zi = () over which we have s; points in P(al,...,an)
(because points in P(al,...,an) are, by definition, the same thing as
orbits in E(al,...,an)). The standard "Hurewitz formula" for the Euler
characteristic of a branched cover thue gives
){(P(al....,an)) = «Hai)fa)(}((f'(l,...,l)) - ﬂ) -+ Egi

= (Ma,)/a)(2-n) + }%; .
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Since ¥ = 2 - 2g, this gives the claimed value of g.

The fibers of & are the orbits of the natural H = (22/31 X aue xZ{an)
action on Vy - {0}. (H acts by multiplication by ai-th roots of unity
in the i~th coordinate). This action on VA - {0} induces actions of
H also on EA(al,...,an) and PA(al""’an)’ and the fibers of ¢ and
¢ are therefore also the orbits of this action. In particular, for fixed
i, O £ 1 < n, the orbits in Zﬁ(al,...,an) with Zi = 0 correspond te
pointg in PA(al,...,a“) with Zi-= 0 which are all related by this
H-action, since PA(I,...,l) hag exactly one point with Z, = 0. Thus the
H~-action permutes the (ti,Bi)—orbits of EA(al,...,an) transitively,
so the B's are the same for these orbits,

The whole proof can be expressed a bit more concisely in terms of

this H-action, see [N-Rl, but the elementary nature of the computation

is then even more obgcured than by the presentation given here,
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8. OUniversal Abelian Covers.

Lemma 8.1. If,_H'_g M is a finite covering of a Seifert fibered manifold

1

M, then M' is Seifert fibered by the components of p = of fibers of M

Proof. Any finite coverings of one of our "standard models” (Seifert

2 1

fibering of D" x Sl) will be a disjoint union of solid tori D2 x 8§87,

each with some standard Seifert fibering induced on it.

As an example of Lewms 8.1, assume M = H(O;(al,Bl),...,(ah,Bn))
with e(M > F) # 0. Let M E M be the universal abelian cover of M,
Therefore the covering transformation group is HI(M)’ which has order
Og e n el leqM + F)l. By the lemma K has an induced Seifert fibering
M+ F.

This example and the Breiskorn complete intersections are two
examples of Seifert fibrations arising in a "natural" way. As the nexf
theorem shows, even though these two examples arise from very different

situations, surprisingly they are the same.

Theorem 8.2. Let M = M(O;(al,ﬁl),...,(an,ﬁn)) with & = e(M+F) # 0.
Reverse the orientaticon of M if necessary to make e « 0., Let ¥E N

be the universal abelian cover. Then M = Z(al,...,an)

Proof: We must recall some facts from covering space theory, Let X be

a "nice" space (i.e. X hag a universal cover) and assume X 1is connected
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The normal coverings of X with covering transformatiom group F are
classified by homomorphisms ﬁl(X) + F. If the covering is Y + X, then
the componentg of Y are in 1-1 correspondence with the cosete of

Im wl(x) C F. Namely, given Y + X, the exact homotopy sequence gives:

my (£iber) = {1} » 7 (Y} » 1 (X) » n (fiber) = F » 7,(¥) + {1}.

n

~ Given w1(x) + F, one can construct Y as X x F (X = universal

ﬁl(x)
cover of X)), Then Y + ﬁ/nl(X) = X. The universal abelian cover is
classified by the homomorphism ﬁl(X) > HI(X).

Returning to the situation of the theorem, we have a commutative

diagram
M-—P—)M
T i
F w—— F

We want to compute the fiber degree £ and the base degree b to apply

Theorem 3.3, Recall
Hy(M) = <Qo-e5QH] a,Q; + BH =0, 0Q + ... +Q = 0>

has order al...an]e[ so the total degree bf is ul...un|e[. Let ©
be a non-exceptional fiber. The induced coverings pnl(O) >0 1is classified
by \ﬂl(O) > Hl(M)' Thus to compute f and b we must compute

| Im 7,(0)] and ]HI(M): Im ,(0)
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As we have already seen |Im m,(0)| = |<E>|. Thus

L}

IH]_(M): Im 7, (0)] (1, 00/ <i>|

b<@qyeeea@y] 0,0; = 0, Q) + +or + Q= 0]

i (Zfog % «vs x Z/Otn)kﬂi 4 ees Qn>|
=(Hai)/ lmmai

=(Hmi)/a , where g = lcm(ﬁi)
4] = (I{ai))lel/(]'[aija:) = al-e'l.

Thus we have f = a|e| and b =Ilui/a.
Using Theorem 3.3, we can calculate
e(M + F) = b/f e(¥ > F)
=T, y/2) /ale[De(M > F)

= “(Hailfaza

o

Now let Oi be the i~-th exceptional fiber.. If det[ i

o B% = 1, then
i1

™w
——s

the homology class of 01._ is

= ' '
0i aiQi + B]._I-l .
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Hence |H1(M): Im "1(01” = Ialcm)/ <oi>l

=I=I‘:an" 'sQnsﬂl anJ

= '<Q1,.n-’ai,uuc’Qn| D:jqj b 0, j = 1,...,2,.-.,1‘[, Ql""coa +Qi+ooo +Qn = 0>

+ BjH =0, ] = lysaastty Ql + osee * Qn = 0, aiQi-+BiH = 0>

={(l o )/ lemg, = a.. Thus pﬁl(o.) consists of 5, fibers, each of
ek . . 1 1 1
hfat j#iL

which covers Gi with degree

(o) lel/s; =@apfelsC 1

3 Qem o)
gl jéi ]

j#1

= .!e| lem ¢y,
a‘ j#id

= (aifti)ale[ .

Let Ei be one of the 8; fibers in M which cover 0. and U be
a neighborhood of Oi and E_ a neighborhood of Ei' Let H and H
denote non-exceptional fibers in M and M. ai is a (ai/ti)a[el—fold
cover of O, and H is an al|e]-fold cover of H. In HI(H), 0,0, v H,
Pyt Hl(ﬁ) > Hl(U) is injective, hence aia|e|5i A (ai/ti)a|e|ﬁ in

Hl(U). Therefore in HI(U)’ t.0, VH, and 0, isa (ti,Bi) fiber

for some Bi.' (Note that the R's for all B; of these fibers are equal

since these fibers are transitively permuted by the covering transformations.)

F is a (Huf/a—fold branched cover of F¥. The branching is at n

peints of F over i ot i in F
which we have respectively sl""’sn poiats in F.

Then

X(F) =((Tlay) /a)(X(F) - n) + ] F
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I1r, Crystallographic Groups

In this chapter we define and characterize 2-dimensional crystallo-

graphic groups. In the second section we use this to show that

nl(M(g;(al,Bl),...,(an,Bn)) determines the Seifert invariant of

M(g;(al,Bl),...,(un.Bn)). We begin this chapter with a short discussion of

models for the three basic 2-dimensional geometries, Spherical, Euclidean

and Hyperbolic.

1)

2)

3)

Spherical (82):Thesphere 52 is a conformal model for this
geometry. For geodesicsin:take great circles. If so desired, ta
aveid having twe lines intersect in more than one point, this

geometry can be projected onto }RPZ.

Euclidean (Ez): This 1s the usual geometry on ZRZ.

Byperbolic (Hz): There are two commonly ugsed conformal models

for ?sz the Poincare disc model and the upper half-plane model.

a) Poincaré disc model: Here the underlying space is the interior
of the unit disc Dz. Geodesics are either circular arcs that
intersect rhe boundary of D2 at right angles or diameters.

Hyperbolic length is related to Buclidean length by

22 2 2 2 . .
dsé= ds g,ﬂ.f(l ") where ds Rucl 1° the Fuclidean metric.

Poincaré disc model of B* with examples of geodesics.



b)
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Upper-half plane model: The underlying space of this model

is the upper-half plane in R2 1.e. {(x,y) E‘.R2 [x >0},

Geodesics are either circular arcs that intersect the x-axis

at right angles or vertical lines. In this model Hyperbeolic

2. ds.2 /v

distance 1s related to Euclidean distance by ds Fucl
, uc

Note:

Isom+('H2)

. Upper-half plane model of ZH2

with examples of geodesics.

{conformal orientation preserving homeomorphisms of 'Hz

]

il

{Moebius transformations}

= pSL(2,R) = {(i :) la,b,c,d € m, ad-be = 1}/ *1}.

Here (: 2) € PSL(2,R) acts in the upper-half plane model by the Moebius

transformation

z i+ {azth) /(cz+d).
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9. Crystallographic Groups

Definition 9.1. A 2-dimensional (Spherical, Euclidean or Hyperbolic)

+
crystallographic group is a discrete subgroup I C Isom (X) (X = SngZ,THZ)

guch that T acts properly discontinuously on X and X/T is compact.
More precisely this is an orientation preserving crystallographic group,

but we drop the extra adjectives for brevity.

Theorem 9.2. As an abstract group, a crystallographic group T is either
finite cyclic (if X = SZ) or is isomorphic to a unique group of the form
o

F(g,al,...,an) & <al,b1,...,ag,bg,ql,...,qn|qjj = 1 j=1,...,n,

q ?;t ooy cla b = 1
1 q“iil 1?71

with gz 0 and oy Z 2, We assume that 1f g =0 then n Z 3. Moreover

this is a spherical, Euclidean or hyperbelic group according as

n o -1
X=2-2g~- }
i=] i

satisfies X > D, X =0, X < 0, Furthermore gll

such groups T(g;al,...,an) occur as cfystallcgraphic groups. The above

condition on X gives the following poasiblilities:

n
Spherical case (X>0). We must have g =0, n =3 and }

This gives possibilities

(g;{ll,&ZsGB) = (0;2’2:11)

(0;2,3,3)
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= (0:;2,3,4)

= (05;2,3,5)

Fuclidean Case (X = 0). In this case the only possibilities are

(g;al-,,.-an) = (13 )
(0;2,4,4)
(0;2,3,8)
(0;3,3,3)

(0;2,2,2,2).

Hyperbolic Case (X < 0). This case consists of all possibilities

not previously listed.

Notation: If g = 0 we abbreviate F(O;al,...,dﬁ) to T(al,...,an).
Example. We can easily realize the spherical and Euclidean cases as orienta-
tion preserving isometries of 52 and ZEZ. The spherical crystallographic
groups can be realized as the regular polyhedral groups, i.e. isometries

of regular spherical polyhedra. More precisely we have the following chart:
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Regular Polyhedron Isometry Group Order of Group
n~gonal dihedron* r¢2,2,n) == Dzn 2n
tetrahedron r¢2,3,3) = A:' 12
cube 'é2,3,4) = 54 24
dodecahedron [(2,3,5) = AS 60

T(2,3,4) can also be realized as the isometry group of the octahedron and
I'{2,3,5) can also be realized as the isometry group of the icosohedron.

In the Euclidean case let T(al,az,ae}) be the group generated by
reflections in the sides of a triangle with angles ﬂ/al, ﬂ/az, n/aB, e.g.
TQ,4,4) is penerated by reflections in the sides of a triangle with angles
n/2, 5/4, /4, Then F(al,az,a3) = (T(a, ,o,,0 ))+ i.e. F(al,uz,a3) is

1772773

the orientation preserving subgroup of F(Otl,az,as). "IT(2,2,2,2) is the
group generated by reflections in the sides of a rectangle. Then

r,2,2,2) = (F(2,2,2,2)".

Exercise, Show that the spherical and Euclidean groups described above have

the abstract deseription claimed in Theorem 9.2.

Remark. The above construction of the Euclidean groups extends to give
I‘(Otl,....an) ag the orientation preserving subgroup of the group
-l'T(OLl,.. .,an) generated by reflections in the sides of a spherical, Euclidean

or hyperbolic n-~gon with angles w/al,. ..,'ﬂ/an.

* This is the regular spherical polyhedron with two regular n-gonal faces. Each
face is a hemisphere and the vertices are regularly spaces around the
equator. .
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Proo_f of Theorem 9.2, Throughout this proof X iz one of Sz, JE2 ’ }12 .

let T be any discrete group acting properly discontinuously on X with
X/T a compact surface. Here by properly discontinuous we mean for all
X,y € X one can find neighborhoods Nx, Ny of x and y such that

Nx i gNy = ¢ for all but finitely many g € G. X % X/I' is a branched
covering. The branching occurs over points en which [  acts with non-

trivial isotropy. Call the branch peints x ,...,x € X/I'. Then

1

‘nl -1 is a genuine covering map. Since a finite group
T (x/I‘—"{xl, P ,xn}) 9
of orientation preserving homeomorphism acting on R must be a rotation

(see [kerd) 7 restricted to each component of 1T_1(Di) (Di is a small
2

dise about x,) "looks like" D" - p? glven in complex coordinates

Y

From X/T cut out the discs D:l. and in X cut out Tr"l(])i). What

ramains 1s a geniine cover. We want to replace D, and ‘rr_l(Di) by com—

i
plexes in such a way that this new space is a cover with covering trans-

formation group I'. We do this by replacing D, by an Eilenberg Maclane

i
complex Ki = K(Zﬂi,l) for each i, pasting along a generator S:L - Ki
and correspondingly replacing ﬂ'l(Di) by the universal cover rl\{Ji of Ki
pagting along the E:over of 51 in Ki' Call the result of this pasting

Y > ¥'., Clearly Y 1is a cover of Y' and, since in X we replaced
contractible Qpaces by contractible spaces, X =~ Y. Thus Y is the universal
cover of Y'. ' &cts properly discontinuously and freely on Y and by
looking at this action on a fiber not lying above a point of Di we see

T is the group of covering transformations of Y. Thus Y2 ¥/I' and

| = 11'1(Y/I'). By Van Kampen's theorem



o

- I
m, (¥/T) <a1,bl,...,ag,bg,ql,...,qnlqj = 1,5 = 1,...,.0,

£

Qq eve 4 l_[ [a,,b,] = 1>

1 n =1 i’7i
and hence ' has the desired presentation.

&
Remark: 1) In the Euclidean and Byperbolic cases Y i1s contractible so
¥/ 1s a R(I,1).
2) Notice we have proved a slightly stronger statement in that we

did not assume [ <€ Isoﬁ+(X).

Now we assume I C Isom+(X). X/I' 4ig as shown where Xi and xj

are branch points.




If we cut X/T along the geodesic paths shown, we get a polygon with
4g + 2n sides which is a fundamental domain. The sum of the angles of the

n .
 polygon is 2T + Z Zﬂ/ui. A special case of the Gauss-Bonnet formula
i=1

states: if P is an n-sided polygon with angles Bl,...,ﬁm, then
K{area of P) = w{(2-m) + ? 6; where K= -1,-,1 accordingly as Xﬂle ’
i"l n
3 R
ZEZ, 32. In our case K(area of P) = (2-(4g+2n))}T™ + 2m(l+ E 1/ai)
n im1
= 27(2-2g~ } (o,~1)/a. ).

i=1
Therefore X classifies what space I acts on in the manner stated in
the theorem.
To finish the pfoof of Theorem 9.2 we must show:
a) Given T = F(g;al,...,mn) then I' can be embedded in
Isomf(x) as a crystallographic group;
b) The abstract group I'(830ys+++,0 ) uniquely determines BsOyseery

We have already shown by example that if T is spherical ¢

Fuclidean then T ¢ Isom+(X).- Thus assume X =1H2 and

2-2e - ? (ai-l)fai 0., To show T € Isom+(}¥2) it suffices to con-
Ci=1

2 .
struct a2 polygon P in T~ such that P is g fundamental dowain for

X/I'. Clearly P must be a polygon of the form:



)
‘i—j‘fh

,ZQ‘_ z-.zn- ¥

b

ﬁimi!ﬂr” labelled sides
are ﬁF CQUQ’ Iengtlw.

We leave the proof of the existence of such a polygon to the reader. However
a reference for such a proof 1s [Gr],

An easier way, due to Scott Wolpert, to show T ¢ Isom+(l-12) is to
congtruct the orbit space directly. This can be done for g > O by glueing

together pieces of the form

2T/ ot

c i3 the length of each Sl boundary component. This length is fixed but

arbitrary. Again the details of this construction are left to the reader.



Finally we must prove b). Note In the 8pherical case we have

r'¢z,2,n) = D of order 2n

2n
r¢z,3,3) = ﬁg of order 12
I'¢2,3,4) = Sq of order 24
re2,3,5) = AS of order 60.

It is a simple exercise to show no twe of these groups are isomorphic.
Hence this proves b) in the Spherical case.
n

Now assume 2 - 2g - Z (mi-l)/ai =0 i.e. T ¢ Isom+(X) where
i=2
2 2

X=R" or H". We claim that if {1} # FCc I' is any finite (cyclic)
subgroup then F is conjugate to a subgroup of a unique one of the

<qi>. To see this note if F is finite them F has a wvnigue fixed point
in X. {(For X = R? see [Ker]:; for X ='m2 see [Helip. 75]1). This
fixed point is a branched peoint for X 3 X/T so it lies over one of
Xl,...,xn. Say w(y) = ;- ql is a rotation ahbout some point in

nﬁl(xl) i.e. about some point <yy. Then yﬂFYﬂl fizxes vy and hence is
in Fy = <q1> which proves the claim. In particular any maximal finite
subgroup 1s conjugate to a unique one of the <qi>. Thus 1f we congider
the set of conjugacy classes of all maximal finite subgroups of [, the
number of classes is n and the orders of a representative from each
Iconjugacy class will give us the ai's. Finﬁlly if N is the normal sub-
group generated by all elements of finite order then I['/N has presentation

2
-IT[ai’bi] = 1>,

P!N = <& ,b too,a ’b
1 l’ 4 gliagl

which allows us to determine g.



Theorem 9,3, Let T = F(g;ai,...,un) be a crystallographic group {if
g =0 weassume n = 3) and let X be the corresponding geometry, i.e.
X is either §2, E° or M°. Thus T € Isom (X) = G. Then under the

above hypotheses we have:
G/T = M(g;(1,2g-2), (al,al-l) secres (an,cxn—l)) .

o,
n 1l

%y

Note: e(G/T+F) = 2 - 2g - 7§
, 1 2
= vol(X/T) (1f X # B7),
This number is called X(I') and was first defined by CZ.C. Wall, see [W]

Proof § acts by isometries on X and hence onl Tlx the unit tangent
bundle of X. This actieon on TlX is simply tramsitive, i.e. given
MRS € TlX there exists a unigue g € G such that BV = vy Thus if
we f£ix v, € Tlx the map ¢:G ~ Tlx glven by ¥(g) = g°v, is an
isomorphism. Here g- Vo is the action of G on TlX induced by the
actien of [ C Isom+(X} on X, 1f 3r zacts on G by left multiplication
and on T1X as just described ¥  is F-eqﬁivariéﬁt. Therefore
G/T Tlxﬁ and we can describe the Seifert fibered structure as the
natural projection T1X/T T X/,

If x E.X/F is the image of y € X, then the fiber over x of
the Siefert fibration is:

T X/(‘E/ai) if x =xy is singulasr

o N |
T (&) Ty Xy/ I'y

T°X otherwise.

I
<



1
Thus T %X/T = M(g;&xl,ﬁl),...,(an,ﬂn)) for some Bl,...,Bn. Hence we
need only determine the Bi. (In fact, our determination of the Bi will

also give a second proof that the o are correct.)

i
Before continuing the procf, we look at an example. Let [' be the

fundamental group of an orilentable surface of genus 2, so X/T = F,, an

) "
orientable surface of genus 2, The Seifert fibration is T1F2 -+ FZ' It

1

was classically knmown that T F, = M(2;(1,2)), bdut let us see how we

2

would prove this from ''first principles.” To determine the Seifert
n

invariant we must choose a section in Tle - {U Ti} where the T,

i=1
are disjoint neighborhoods of sultable fibers i.e. disjoint solid teri.

n
This is equivalent to choosing a unit tangent vector field on Fz—{lJ Di}
i=1

where as the disks Di we take small disks about the critical points of

the vector field. Such a vector field drawn on a fundamental domain looks

ay follows:




#fter identifying edges there are six critical points. Each critical polat

represents a deleted fiber. A solid torus neighborhood Ti of such a fiber

= Tlni, so points of Ti are unlt tangent vectors te the disk D,.

i i
Thus the following picture represents a typical closed curve in Ti = Tlni

is 7

Recall in BTi we have the homology relation aiQi_+ Biﬂinv M.
Te find (ai,Bi} we shall represent Qi’ Hi and M 1in the above form.

Hi is a non-exceptional fiber and can be represented as:

=t

M can be represented as:



On I-‘2 there are four critical points of type:

I
YV

at such a point Qi is the curve:

Thus Qi ~ Mi - Hi’

critical point of type:

80 (ai,Bi) = (1,1) at such a peoint. There is one

Here Qi o Hi + H so (ai,Bi) = {1,-1).

i,
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Finally, there is one critical point of type:

Kere (a,B) = (1,-1).

Thus Tle = M(2;4(1,1),2(1,-1)) = M(2;(1,2)).

The argument we have just given is the one which, in a more general
form, was given by Hopf to prove his theorem that the Euler characteristic
of any closed manifold is the sum of the indices of the zeroes of any vector
field with isolated zerces on that manifold.

Returning to the proof of our theorem, we can determine the (ai,ﬁi)
in exactly the same manner. Draw a fundamental domain for X/T' as on

page 60 and a veetor field on that domain.




There are {4g+2n)/2 + 2 critical points;

2g + n of type J14% with (a,B) = (1,1);
N

1 of type with (e,B) = (1,-1);

1 of type. with (a,B) = (1,-1);

and for each 1= 1,...,n

1 of type with {(a,B) = (o, ,~1).

¥Rk

Here the angle is anai,. and the fact that (a,B) = (ai,-l) follows

from the following figure, which shows aiQi = Mi + Hi.

-

Therefore /I = M(g:(2g+n)(1,1),2(1,-1), (3 5-1)} .. Gy, 1))

= M(S;(1a23"2),(al.al—l),...,(un,an-l)).
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.10, Seifert Groups

The aim of this section is to show that the Seifert invariant of
M= M(g;(al,ﬂl),...,(an,ﬁn)) is determined by ﬂl(M). Along the way we
define the notion of a Seifert group and classify these groups. Again for
thias éection we assume if g=0 then n 2 3, We.denote

“I(M(g;(01931))"'3(un98n)) bY “(g;(qlsBl)s""(anssn))'

Proposition 10,1, Either (B;(al,Bl),...,(un,Bn)),= (1; } and w(l; ) =

233, or <h> is the complete center c(‘n(g;(ul,ﬂl),...,(an,Bn)) of

T = ﬂ(g;(ul,ﬂl), SEPICIN L

Proof. Recall we have the exact sequence

1+ <h> »> ﬂ(g;(al,sl),...,(dn,ﬁn)) -+ P(g;ul,...,an) + 1

Clagim. T = F(g;al,...,an) has a trivial center unless

2
(g;ql.--.,an) = (1) (T =2z

(0;232!3) (r = P

Zn)'

Proof of Claim:

% ' is hyperbolic

By the Brouwer fixed point theorem any g € Isom+(li2) has a
fixed point in the extended plane ;;i (the closed disc in the Poincaré
model)., The elements of Isom+(]12) 2 PSL{(2,R) can be classiflied iato

+,..2
three types according to how many fixed points each g € Isom (H") has
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in ;;i $§D2 and where these fixed points are located. This classification
can algo be given in terms of the absolute value of the trace of g
considered as an element of SL(2,R}., Tet 1l # g € Isom+(1{2), then
the three types of elements are:
a) g has a fixed point which is in the interior of Dz. In this
case g 1is called an elliptic element and is a rotation about
the fixed point with |trg| < 2.
k) g has just one fixed point and it is on the bhoundary of 1}2.
Here g is called a parabolic element and ls rotations of
horospheres. When g 1s parabolic Itrgl = 2,
c¢) g has two fixed points on the boundary of Dz. g 1s called
a hyperbolic element and is a translation along a geodesic
and along curves of constant distance from this geodesic. Here

|erg) » 2

e"fpkic para belic l,yp&r&b'a'c.

+ 82 gy
B8ince if 8118 € Isom (X) and 818, ™ 8,8, then gl(X } =X
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g
X 2 4s the fixed polint sat of gz), we can conclude that any abelian

subgroup of Isoﬁ+tﬂz) is contained in a subgroup of the following type:

8" - rotatioms about a given point;
R -~ l-parameter family of parabolic elements, with a given
fixed polnt at infinity;

R - translations alomg a given geodesic.

Hence in a discrete subgroup of Isom+(lg) any abelian subgroup is cyeclic
Thus if ¢ € C(I') and ¢ # I we can choose g not in the same
l-parameter subgroup. Then eg # ge¢ which is a contradiction. Therefore

I' has a trivial center.

Cagse 2: [' is Euclidean

The only possible Euclidean subgroups are:

I'(2,4,4)
T(2,3,6)
r¢i,s3,3
r(2,2,2,2)
r'(i; ) R

If T # T(1l; ), there exists elements of finite order in T, namely
rotations about a point in ZRZ. Assume c¢ € (), then ¢ fixes the
fixed point of any such rotation., If x is a fixed point of ¥ €T

then gx is a fixed point of gyg_l €T, for any g € I'. Therefore
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¢ fixes infinitely many points, so ¢ = id.
Cage 3: T is spherical

The proof 1s just a case by case verification which we omit.

This completes the proof of the claim. The claim implies that
C{r) = <h> except for possibly wl; ) or ={(0;(2,1)(2,1),(n)).
These two cases can be checked individually (exercise), completing the

proof of Propesitien 10.1

Theorem 10,2, (spherical case) If (al,az,as) is one of (2,2,n),

(2,3,3),(2,3,8) or (2,3,5 then T = m(0;(ay,8,),(0y,8,)(0y,8,))

determines the Seifert invariant (up to sign).

Proof. n/C(n) = Fﬂul,mz,a3) which by Theorem 9.2 allows us t§ Tecover
050,04, Since In/ln,m}] = alu2a3|e(M+F)| we can recover |e(M+F)|.
It is sufficient to show Qp30,504,8 cbmpletely determine the Seifert
invariant. That is, we must compute each Bi (mod ai) in terms of
al,az,a3, and e.

Case 1: (al,uz,a3) = (2,2,n). Recalling that the o, and Bi are

i
relatively prime, the B; (mod ai) are given by:

Bl = L{mod 2), B, = 1(mod 2}, 53 g ~ne{mod n),

Case 2: (al,az,aa) = (2,3,3). Up to exchanging B2 and 33 there

are three possible cases:
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a) Bl z l(mod 2), Bz = l(mod 3, B3 g 1(mod 3), e é %{mod 1)
b) B =l(med 2), 8, =l(wod 3), By s 2(mod 3), e = %(mod 1)
c) 8, =1l(mod 2), B, = 2(mod 3), B, = 2(mod 3), e = %(mod 1).

These three possibilitles are thus distinguished by the value of e(mod 1)
The final two cases are completely analogous.

Cage 3: (al,az,a3) = (2,3,4)

Bl(mod 2) Bz(mod 3) Ba(mod 4} | e(mod 1)
1 R 1 =
1 1 3 —
1 2 1 5
1 2 3 &




Case 4 (al,az,as) = (2,3,5)

Bl(mod ) Bz(mdd 3) Bé(mod 9) | efmod 1)
1 1 1 %g-
1 1 2 %%
1 1 3 %
1 1 4 -%
1 2 1 %‘%
1 2 2 %g-
1 2 3 ;-—0
1 2 4 -3-15

Definition 10.3. A Seifert group 7w = w(g;(al,Bl),...,(an,Bn)) is a

group with presentation:

<al,b1,...,ag,b

gsqls-'°sqnahliaish} = [bi’h] = [qjsh] -1

B
1 l-ﬂ_q ']gr[a by l= s,

i=]1

Cl.
1“1,...,&,_’1“‘1,...,0(} h

Here we do not assume the (ai’Bi) are relatively prime, but we do

assume X = 2 -23+E(ui-l)/ui ig not positive,
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Remark: As before, and by a similar argument we can ghow £f T is a Seifert

3 then the center of T ié ¢i{ny = <h>, Thus

group and T # w(l; ) = Z
1+ Z » w(g;(al,Bl),...,(an,Bn)) -+ I’(g;al,...,an) > ]

is exact. By the theory of group extensions (see for example Mad), this
extension 1s c¢lassified by an element a € HZ(T;Z). In our sltuation

we can say more,

Theorem 10.4, If 7, and a are as above then HZ(I’;Z) =

Ah<XO,}(1,...,Xn|aiXi = X0,1=1,...,n> and a = lel + v + Bn}(n. Also
any automorphism f of I induces f£#: H2 (T:Z) -~ HZ(I';ZZ) of the
following type: either f*(xi) = Ki' for each i, where iw i' i a

permutation with o, = a for each 1, with

i i” 1!

1w i' as before. We say f: I + T is "orientation preserving"

* -
or f (Xi) X

or "orientation reversing" correspondingly.

Remark: In view of this theorem, the élassifying elent a E. HZ(P;Z)
is equivalent to the Seifert invariant, in that the one determines and is de-
termined by the other {up to sign)}, so the Seifert invariant of a Beifert group
is an abstract inwvariant of the group.

Observe also that if we tensor with R we have H2 T:m) =

HZ(I';R.) R =R by X, v 1/051 ¢ R, and under this identification

i
of HZ(I';R) with R, the classifying element a becomes the Euler
number. This Euler number is still an invariant for Seifert groups, not
just for Seifert manifolds.

Before proving Theorem 10.4, we need a brief summary of the theory

of central extensions.
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Fix an abstract group [I', and an abelian group A. We define an
equivalence relation on the set of short exact sequences of the form
1>A+7+T+1 where AC C(m) as follows: Given twe short exact

sequences

Elzl-rA-!-TrlI-rI‘*l, Ez: 1+A+172+I‘+1

if there exlsts a group isomorphism ¢: 7, -+ ™, such that

we say B, ~E 1

2

1+A+1rl+I‘+1

I 1¢ |

1+A-+7f2~!-1‘«+1

commutes., We define Ext(T,A) = {1 > A+ 7 >T > llA c g(m)}/~, where
~ 18 the equivalence relation just defined.
Given a homomorphism f: ['' + I we define f#*: Ext(l,A) - Ext(T',A)

by means of the following pullback diagram:

P
1+ A+ fér-—+T'=> 1 ¢ Ext(T',A)

el o

P
l+A—7—+I=— 1€ Ext(T,A)

where f#7 = {(w,y") ¢ m x I'"|p(7) = £(y")}} and the maps @: £*7 > 7
and ¢: £*T > T' are the obvious projections onte the first and second
coordinates respectively. Given a homomorphism g: A + A' we define

g, Exc(T,A) ~» Ext(T,A') by means of the following pushout diagram:
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l*-*-i w—p T re—> [ 1 € Ext(T,A)
g Y [l
l [

=+ Al g7 —>T — 1 € Ext(l,A")

where g,m =(m x A'Y{(a,g(a))|a € A} and ¢,p are the obvious maps.
Therefore what we have shown is that Ext(l',A) 1is a functor which is
covarlant in A and contravariant In T.

Let E,E' € Ext(T,A) be represented by 1+ A-+nw=+I~+1 and
1+>A+n'">T+ 1 respectively. We define E X E' € Ext(I'xT,AXA) to

be the equivalence class represented by
1>AXA»wxg'>T xT +1,

Define A: T+ T XxT by yw {y,y) and V: AX A+ A by
(a,b)» a+b, Then we let E ® E' = V A*(EXE') = ﬁ*V*(ExE'). We
leave it as an exercise to show that these two definitions of E & E'
are the same and that this Baer sum turns Ext(I',A) into a group,
It is a classical result that Ext(T,A) = HZ(Y;A), see Maclane [Mac,
p. 137] for a historical discussion. For our purposes, with A =Z we

can take 1t as a definition of H2(P;Z).

Proof of Theorem 10.4. Recall w(g;(al,Bl),...,(mn,Bn)) and

‘P(g;al,...,un) have presentations



(@5 (058, ) 0 e e s (0,8))) = <ay,byyuenia b gy e e b

o, B

= = = j j -
1=1,...,8,] = 1,...,m _TT- q 'g%: [a ,b ] =
%
T(B;als"'sqn) = <alsb1a-"Dag’bg’qli"'sqn]qj = 1!j = Lyeras

_rr'q '7%_ a;b.] = 1>

i=l

Let
1+Z +w>T+1

be a representative of an element of Ext(T,Z). If we choose lifts

gi, ﬁg, E& of a,, bi’ qj i=1,...,g, J=1,...4n respectively,

it is easily seen that s has presentation

<a, bl,...,ag bg,ql,...,q h[[ai,h} = [bi,h] - [qj ,hl = 1,

8,

2 n 8 _ 8
4.7 =hdi=1,...,8,3 =1,...,n, T4 [][a,,b,] =h
j j= i j=1 + i

for some integers 8.,...,5_ . We denote this presentation by
0 n

F(so,...,sn). We dencte the element of Ext(l',Z) represented by
1+ 2Z -+ m( 30""’8::) +T+1

by E(8.,...,8 ). MNotice that we made a choice for the lifts of
y 0 n

£
a, bi, qj' We could have chosen different lifts a; = E;h i,
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— i - —

h J in which case 7 would have presentation

<a ‘g‘ls“':a b Iql"‘"!q hl[aish} - [biyh] = [qjohl =1,

1’ g’ g

m 5.+ Kk

qj =hd 33 i1, ,8.5=1,...,n,
g ke -tk

-—ﬂ-—q —ﬁ— i'bi] -t 01 n,.

j=1 i=1

Thus any element E = E(s yress8 ) € Ext(I',Z) corresponds to an element

n+1/

= LI L) ki
[50,...,sn] € Z ¥ where I {(k + +k ,o.k s ankn?l 1(2’-}

11°
0,...,O),...,(l,O,...,O,an)}. Therefore
n+1l

span {(1,31,0,...,0},(1,0,32,

we have an injective map F: Ext(I',Z) + Z /1. We leave as au exercise
) 1 - 1 ¥
the proof that E(so,...,sn) & E(so,...,sn) = E(50+80,...,sn+sn) and
hence ¥ is a group homomorphism.
: Zn+1fI e <XO,X1,...,X |aixi = Ko,i = 1,...,0>. (This can be

geenn by representing XO = (1,0,...,0}, = (0,-1,0,0..,0),00., Xn =

X
{0,...,0,-1)). Therefore to see HZ(I';ZZ) has the desired form we must

show F is onto.

'n~{~1/:E

To this end it suffices to show that given [so,...,sn] £z
we get E(so,...,sn) € Ext(I',Z). This requires showing that given
[so,...,sn] the kernel of the map p: 'rr(so,...,sn) > T 4s Z and not
‘a non-trivial quotient of Z., We define a function wv: Zn+1!I + 8(Z) =

{subgroups of Z} by {so,...,sn] P ker(Z + Tr(so,...,.sn)). Thus

(**%) l+Z/\)([sO,...,sn]) +'rr(eo,...,sn) +T=>1

is exact. Note v has the following properties;
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1) V(k[so,‘..,'gn]) = k\?([go,.-.,sn}) for all k¢ Z

2) \}([so,...,sn] + [sé,...,sl;]) c v([so,...,gn]) +v([56,...,sr'l])

n+l /

' T '
for ﬂﬂy ISO,..o,Bn],[SO,--o,Sn] G Z II

Since (%%) is exact, 1f we can show the image of Vv {15 trivial, we will

have shown Hz(I’;Z) = <XO,X1,...,Xn|aiXi = Xo,i = 1,...,n>. Note that

n+1/I there exists k.,m € Z such that

for every [so,...,sn] € Z
k[so,...,s-n] = WXy Therefore by property 1 it is sufficlent to show
v(mxo) = <0>, In fact it is sufficient to show \;(81X1+ --'+Ban) = <Q>

n
for some lel + ses + Bn_xn with E Bi/ai # 0 since

i=1
Gpeeal (_Blﬁ{1+.'. .+[5an3 = ok, with m # 0, In the hyperbolic case
we saw (23-2)X0 + ): ((rxi— l)fai)Xi classifies (TlB)/I' and
i=1 . _

1+ wl(TlH) -+ 'rrl (TlH/l’) +T>1

z > T -~ T

n
1s exact. Hence v((2g-2)X, + 1 ((m,-1)/a,)X,) = <0>.
i=1 i . ¥

For the Euclidean case we recall that an earlier computation showed

the universal abelian covers of the Seifert manifolds
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M(05(2,8,)5(3,8,)5(6,8,))
M(05(2,8,),(4,8,), (4,8,))
M(05(3,8,),(3,8,),(3,8,))
M(0;(2,8,),(2,8,),(2,8,),(2,8,))
are

M(13(1,1))

M(13(1,2))

M(1;(1,3))

regpectively, provided we assume e(M>F) < 0 in each case., That is the
universal abelian cover is the genuine Sl-bundle over TZ of Euler
number -1,-2,-83 or -4, Thus h ha_s infinite order in the fﬁndamental
group of the cover and consequently in the fundamental group of the
Seifert manifold in guestion. |

It remains to show that gutomorphisms vy of T induce isomorphisms
v* of Hz (I';Z) of the desired type. As we saw in the proof of Theorem
9.2, Yy mnmust map <qj> to a conjugate of some <q > with u,j = aj
For simplicity of notation we assume j = j' and hence Y(qj) = g (qjj)gj

with m, € Z g.c.d., (m ,u.j

induced by v on m(sy,...,8 ). Y(qjj) = gj Y il j " h E j

) = 1 and gj ¢ I'. Consider the action

Consequently for the element X of H (T';Z) we have Y*(Xj) =m . X,.

J 13

¥* is an isomorphism hence we must have o, = +1.
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Remark: Much of the above proof can be put in a more general setting. If
we let I' = <x1,...,xg|w1 = l,...,Wr_= 1> and A be an abelian group,
then by a completely znalagous construction as in the proof of Theorem 10.4
we obtain a map F: Ext(T,A) + A?/I where I = Im(ﬂm'Ag-* AF) and

W= (Wib,...,w:b) (W:b is ;he abelianizakion of Wi)' More precisely:

given
1+ A+E+T~>1

a representative of an element of Ext{(I',A), E has presentation:

(*) <ii,...,§£,“A"|ﬁi =a,...,0 =2, "relations in A",

YA central">

(Here by "A" we mean a set of generators of A, by "relations in A"
we mean a set of defining relations of A and by "A central” we mean

A 18 central in E.) As before X s ﬁ; are lifts of Xi and Wi

respectively. If we had chosen different i;'s say Xi = Xiai we would
= = = = = = \.ab

have Wi(Xlal,...,Xnan) = Wi(K ,...,Xn)W? (al,...,an). Thug by letting

F(E) = (al,...,ar) we get a well~defined map F: Ext(I',A) +

b b
&r!Im(Wi ees ,w:

).

We define a map V: Ar/I + $(A) = {subgroups of Al by
[al,...,ar]*+ ker(A *'w(al,.,.,ar) where ﬂ(al,...,ar) 1s the group
presented as In (*) above.

Hence 1 > A/v([al,...,ar]) + w(al,...,ar) + T+ 1 4is exact.

v as defined in this more general way still satisfies properties 1) and

2) as listed in the proof of Theorem 10.4. Therefore in general, given a



_ _pxeamt«atioa ef I‘ ané an abglim &tmp A ve gec a suhgrcmp I of A

v A +__S<A> puch that BSt(T,8) = vT(0) end Bet(T.A/oA) -

"

.
e
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GEOMETRY OF QUASIHOMOGENEOUS SURFACE SINGULARITIES

Walter D. Neumann*
University of Maryland
College Park, MD 20742

This is a slightly expanded version of my talk, the first
part of which was purely expository, describing the analytic
classification of normal quasihomogeneous surface singular-
ities (from now on QH~singularity for short, our base field
is €), This clasgsification is well knownj; the earliest ver-
gion seems to be Conner and Raymond [CR, especially §13], and the
most explicit probably Pinkham [Pl, Theorem 2.1], who bases his
version on Orlik and Wagreich's in [OW] (see also [W2]). Our
approach is different from either, and seemed worth reproducing
here. It is in terms of "Seifert line bundles” on complex curves
a concept easily generalizable to higher dimensional base spaces
and maybe of use in other contexts.
| The second part of the talk, and the part to which the
title refers, is new material. The main result is a natural
"geometric structure" on the link M of any QH-singularity
(V,p), such that the geometric structure on M determines
fhe analytic structure on (V,p) and vice versa, in a one-one

fashion.
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The archetypal example of this is due to Klein [XK111.
Let T c 8S0(3) be the icosahedral group, that is the group
of orientation preserving symmetries of an icosahedron. The
universal cover of 80(3) is the group SU(2), also des-
cribable as the group s% of unit quaternions, and if we 1lift
I to §° we get the binary icosahedral group I' ¢ s3 of

order 120, Klein gave a homeomorphism

I'\s® = J(2,3,5)

4

where J(2,3,5) = V(2,3,5) n S5 with V(2,3,5)
2,3
1725
QH~-singularity (V(2,3,5),0) has the geometric structure

{2 ¢ €3|z +zg = 0}. That is, the link }(2,3,5) of the
I‘\S3. Klein gave other examples, including a treatment for
V(2,3,7) in EK1 23 and [KXF], see also Brieskorn [B]. These

results were generalized by Milner [M] to arbitrary V(a 18,52

1
and by Dolgachev [D] and the author [N1] to complete intersec-
tions of n -2 copies of the n-dimensional Brieskorn variety
V(al,...,an) in general position. The present result géner-
alizes all of these, without however giving as explicit a des-
cription of the geometric structure as was possible in these

special examples. In the general case of rational base curve
these more explicit results still hold however, see Section 7
and [Nu#]. |
Returning to V(2,3,5), we should say that Klein's for-
mulation is an analytic isomorphism between I'\C2 and
V(2,3,5). Our general correspondence is analogous. Namely

the relevant geometries are certain simply connected
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3-dimensional homogenecus spaces X = G/K. To each of them
we give a G-invariant complex structure on X x TR_. To a

INI\X on a singularity link M is

1

geometric structure M
thus associated a complex structure II\X x IR+ on M x IR+,
and this is then V - {p}.

The result is slightly more general than stated. in this
introduction. Also we give an analogous result for cusp sin-

gularities and singularities with dual resolution graphs of
2

-2 -bl -bn -
the form :>, ------ .<: " . 8ince in these cases both the

-2
geometric structure on the link,and the singularity itself are
rigid, this is of more philosophical interest. No other sin-
gularity links M admit geometric structures.

The proofs of the geometric results will appear in detail

in [N3]. Here we just sketch them in a typical case (section 6),

using the analytic classification of the first part of this paper

1. Topology of a QH-singularity

By a QH-singularity we mean a normal surface singularity
(V,p) with a good c¥-action. "Bood" means P 1is in the

closure of every C%-orbit. Denote VO = V-{pl. VU!C* is

a complex curve, which we denote X. Consider R, ¢ €

%

acting on V. After renormalizing by the automorphism t & s

of ¢* if necessary, the 1R+-orbits are rays emanating from

P, as in the schematic picture.
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We can thus identify VOIIR+ with the link M of the singu-~

larity. Since €% = R, X Sl, we have M/ST = VD/C* = X,
and the map M - X 1is a Seifert fibration of M whose fibers
are the Sl-orbits of M.

The topology of VO’ and hence also (V,p), is determined
by M, since V, is C*-equivariantly homeomorphic to M x R, -

M itself is determined (up to Sl-equivariant orientation pre-

serving diffeomorphism) by its Seifert invariant
{g;b;(al,ﬁl),...,(an,ﬁn)}.

Here g = genus (X), and each pair (ai,Bi) satisfies
0 « By < a; and gcd(ai,ﬁi) = 1, and it codes the topology

near a singular orbit of the Sl-action on M. The invariant

e(MsX) = -b -} Bi/ai

1
generalizes the usual euler number of a non-singular 5 -bundle.

Proposition (INR,§5], [P1,52]). M occéurs as the link of é

QH~singularity if and only if e(M»X) < O.
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A sharper result is in [N2, Corollary 6]. Thie proposition
completes the classifica?ion of topological types of QH-
singularities. |

We are using the orientation conventions for Seifert invar-
iants most prevalent in the literature. A reversal of orientation
replaces Bi by"ai - Bi, b by -b - »r, and these values are
sometimes used instead, particularly in the context of resolution

of singularities, where they occur naturally. This is true for

instance in [Pl], quoted above.

2. Analytic Clasgification

With notation as in §1, let =x; denote the point in X

i
over which the (ai,ﬁi) orbit lies,
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Theorem ([CRJ, Cowl, [P1]). The set of isomorphism types

of QH-singularities (V,p} with fixed Seifert invariant and

fixed analytic type of (X,x x_) is iscmorphic to Jac(X)

l,lin,n

1,..-,}{}})-

modulo an action of Aut(X,x

We just sketch our argument; the details are not hard to

£111 in. Let V = V €, that is, V. x € factored by

0 “c# 0
the €%~action t(v,z) =-(tv,t'lz). Writing V = (VU X ok c*)
U (Vg gy 103) =V U X, we see that V is obtained from V,

by adding a 0 to each €% orbit. We call X € V +the Zerg
gection. The projection Vg X €V, induces T = VG/C* = X
which is a "Seifert line bundle", that is, a complex line

bundle except that for each 1 the fiber over L is a sin-

gular fiber of the form ¢€/u, , where u; is the group of

i i
ai—th roots of unity.

We shall prove the theorem by classifying Seifert line
bundles, so we digress to explain how the Seifert line bundle
E = (V+X) determines (V,p). We can form V = v, X o ¢ for
any Seifert @#*-bundle VO -~ X, not just complements of
QH-singular points, so Seifert €%-bundles and Seifert line
bundles are egquivalent concepts. We define the Seifert
invariant of such & bundle to be the Seifert-invariant of the
éssociated Seifert fibered M3 = VD/IR+, and the euler number
e(V0+X) = e(V+X) to be g(M*X). The latter equals the self-
intersection number X:X of the zero section X c ¥V (V is a

Q-homology manifecld and so intersection numbers can be defined

Q-Poincaré dual to cup product). By Grauert's criterion [G],



which can be genheralized t¢ this situation, we can blow down
XcV to get a normal singﬁlarity (V,p) 1if and only if
XX« 0. V is in fact the first stage in a vesolution of
(V,p). It has only cyclic quotient singularities, at the points
x; € X c V, and these resolve by linear configurations of
exceptional curves to give the familiar star shaped resolution
configuration for (V,p).

Let Pic(X,(xl,al),...,(xn,an)) be the set of isomorphism
classes of Seifert line bundles E = (V+X) which have singular

fibers only over {xl,...,xh} and which are locally isomorphic,

near X, to the following:

By
(Dx{!)fp,a_ -+ D/p,a. « D,
i i
for some B, with 0 EBif(ai' Here D denctes {z ¢ €]]z| < 1}
and ui denotes the a-th roots of unity Hy acting on
- -B
D x € by t(zl,zz) = (tzl,t 22).

gcd(ai,ai) = 1. Thus the Seifert invariant will have the form

We de not require

(g;b,(ai,ﬁi),...,(aé,Bé)), where ai = ai/gcd(ai,ﬁi),
Bt = Bi/gcd(ai,ﬁi), and pairs (ai,ﬁi) = (1,0) refer to non-
singular fibers and may be deleted.

Tensor product ® 1s defined for Seifert line bundles

(do it locally in the cyelic cover and then factor by he.s OF
i

globally: use Seifert C€#*-bundles and form VD @ Vé by a
puliback, factor VD & VB by the C#*-action t(v,v'} =
(tv,tﬂlv'), and then normalize to get VD Q Vé). This gives a

semigroup structure on Pic(x,{(xi,ai)}) such that



Bj :Pic(X,{(xi,ai)}) -+ Z/ai is ‘a homomorphism. The kernel of
B = By x o x En ?Pic(X,{(xi,ai)}) AITTZ/ai consists of line
bundles with no singular fibers, that is, Ker(p) = Pic(X),
which is a group. Hence Pic(X,{(xi,ai)}) is a group and
moreover its identity component will be PicO(X) = Jac(X).

Denote Pic(X,{(xi,ai)}NUac(X) by H. We obtain

0 0
o !
) =—— Jac(X) =+ Pie(X) — 2 —0
N | [i
0 — Jac(X) — Pic(X,{(x;,3;)}) s H —— 0
i
i.
TT%/Gi = TTZ/ai
l !
0 0

with exact rows and celumns, where the top row is c¢lassical,
with d egqual to degree or chern class, and the right hand
column is induced by the rest of the diagram. The projection

map ¢ should be thought of as a chern class for Seifert bundles

By the following lemma it is an abstract version of the Seifert

invariant.

Lemma. (i) H = <g0,gl,...,gn|aigi:g0> with 1:Z - H

given by 1i(1) = 2y In particular any g € H can be uniquely

written in the form g = bg, + Zﬁigi with 0 = B8, < a,.

(ii) If E € Pic(X,{(x;,0,0}) has c(E) = -(bg,+]f.g;) with



0 =B, < o; then its Seifert invariant is

(g5b3(ay589)5..-5(alsp))) with e * a;/8cdlas,8:),

B =ﬂi/gcd(ai,ﬁi).

The content of this lemma is a formula for the Seifert
invariant for V ® V' in terms of the:Seifert invariants of
V and V'. It follows easily from the definition of the
Seifert invariant of V in terms of a nonzero continuous sec-
tion to V over X - {x;} (see [NR]) and the observation
that such sections in V and V' give one in Vo V'. The
lemma can also be proved using only naturality properties of
the euler number for nonsingular bundles to give an independent
introduction to the Seifert invariant (exercise).

The exact sequence
0 — Jac(X) — Pic(X,{(xi,Gi)}) —_— H — 0

is the desired classification of Seifert bundles. This ig also
the form in which it was proved, by very different methods, in
fCRI. In [CR] H arises as the second cohomology group Hsz)
of a certain Fuchsian or euclidean group T (unless (V,p) is
a quotient singularity), The connection will become clear in

Section b.

3. Geometry of 3-manifolds

A geometric structure on a manifold M shall mean a com-

plete leocally homogenecus riemannian metric of finite volume.
Locally homogeneous means any two points have isometric neigh-
borhoods. On the universal cover X of M such local iso-

metries extend to global cnes, sc X is a homogeneous space.
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We can thus write

X = G/K, M = INK

it
o |
/
3]
~
~

where G = G(X) is the isometry group of X, K = G the
isotropy group of some point x € ¥ (so K 1is well defined

up to innerQautomorphisms of &), I €@ is a discrete sub-
group which acts freely on X = G/K with finite volume quotient
N is of course isomorphic to nl(M). g = G+OK) will denote
orientation preserving iscmetries.

To avoid trivial distinetions, we consider two metrics
on X with the same isometry group G to be equivalent, and
we only allow maximally symmetric metrics, that is, we assume
no metric on X ,6 has strictly larger isometry group than G.
The geometry (X,8) will be relevant to 3-manifold theory
if dim ¥ = 3 and X admits finite volume quotients IMX
with @I ©€ ¢ discrete. Thurston [T} has pointed out that
there are exactly 8 such geometries. They are most easily

computed in terms of K the identity component of the group

03
K=6, of isometries fixing a point x ¢ X.

. ! - _

X, = - K =

S0(3) g E? u° 0(3)
J $% x ET H? x EX | 0(2) x 0(1)

S0(2) /jp—m—m———— Jatetlet Bt ad-taleled | Tt Ll bbbt
| N P3L 0¢2)
£

{1} S D8




All

Here Sn, 1En, and H51 are spherical, euclidean, and

hyperbolic geometry. N, PSL, and 8  are certain lie groups
with left invariant metrics. Namely PSL is the universal
cover of PSL(2,R) = G+(}¥); this geometry can also be
described as the universal cover of the unit tangent bundle
'I‘l]H:E of fﬂz, with natural metric. N 1is the group of real

3 x 3 upper triangular unipotent matrices. It is more use-

fully described for us as the group structure:

: 2
(a,b;c)(a',b';e') = (ata',btb'i;etc’+ab'-a’d®) on RT x IR.

Its center is {0} x IR, giving a central extension

0 - IR + N ~» RQ + 1, Finally S is a split extension

l-+im2 + 8 + R 1, and can be described explicitely as the

group structure

2

- t
Cat,bte™ b jc4e) on R™ x R.

(a,bic)(a',b'ic') = (ate

The isometry group for each of X = 551, N, and S is
a semidirect product G(X) = T.-K, where T is the group
ﬁgi, N, or § respectively, acting by left translations,
and K is given in the table and acts on T as follows. For
X = §§i, K= 0(2) c GGH2) acts by conjugation on G+GH2) =
PSL(2,1R), so lift this action to an acticn on T = PSL.
Tor N, with coordinates IR2 x R as above, KX =z 0(2) acts

standardly on IR2 and by determinant en IR. For S, K 1s

Jdihedral of order 8 generated by =t : (a,b:c) = (b,aj~c) and
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o : (a,bjc) » (~a,bjc).

If Ma - F is a Seifert fibration of a closed connected
oriented Ma over a possibly non-orientable surface F, the
Seifert invariant (g;b;(al,ﬁl),...,(an,sn)) is still defined
-but we use negative g to indicate non-orientable F. Thus

the euler number
n
e(M+F) = -b - J B8./a,
is still defined. We also define, with X(F) equal to euler

characteristic:

7l
X(M=+F) = x{(F) - izl (e;-1)/a;.

Theorem. Let M Eg a closed connected oriented

3-manifold which admits a geometric structure. Then:

(i) The geometry X in question is uniquely determined

Ez Ml

(ii) If M admits an Iﬁa structure we won't discuss it.

(iii) M admits an S-structure if and only if either:

sl yith fiber St x st

a) M can be fibered over

such that the monodromy h € SL(2,Z) has

|trace(h)| = 3, or

b) M is a twisted double of the orientation [0,11-

bundle over the Klein bottle, but cannot be

Seifert fibered.
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(iv) M admits an X-structure, - E‘¢IH3,S, if and only

if M admits a Seifert fibering M-TF. Thg relevant

geometry is as follows:

‘gm} >0 =0 <
bt X = X{M->F)
) 2 1 3 . 1
0 |8 xE | E (B <E e = e(M+F)
3 Fag
£0 3 N PSL

We call the six geometries of part (iv) the Seifert

geometries.

o +
Remarks. 1) For X = N or PSL, GX) = 6 (X), so all
manifolds with an X-structure are orientable. Tfor X = S3

the latter is still true but less obvious.

2) The theorem is valid with minor changes also for non-
orientable and/or noncompact M, and with slightly more change

even for arbitrary lattices 11 ¢ G(X), X #'HE, see [N31].

3) The invariants X and e arise naturally for
QH~singularities. TFor instance, Dolgachev has shown, and it
also follows easily from Pinkham [Pl, Theorem 5.1}, that the
Poincaré series for the graded affine ring of (V;p) is a

rational functien of the form

p(t) = -et/(1-t)% + x/2(1-t) + P£)/Q(L),

where Q(t) 1is cyclctomic and not divisible by (t-1). See

also [W2, §21 and [Nu, §uld.

L) With a natural normalization of the metrics on the
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geometries, the volume of M is unzxzfle] in the Seifert
case when eX # 0, and is indeterminate, depending on the
geométric structure, in all other cases with X # H' . TFor

X =N it is 82|e], where ¢ = (length of a fiber of M).

If X is a Seifert geometry cther than $3 or ES, then
the set of isometries which fix a point =x € X fixes a tangent
direction at that point up to sign, so X has a GX)-invariant

tangent line field. This line field gives a foliation of X,

2 2

which in fact fibers X over %°, E°, or .'H2 in a way which

is obvious for X = §2

x T and H? x E, and which is visible
from our description of X for X = N and X = 551. It is

this vertical fibration of X which induces the Seifert fibra-

tion of M = T\X (except for some 32 X ]E%'-str'uctur'es on

SEXSl). Each of the geometries $3 and ]E3 also fibers

geometrically over %2 and IEZ respectively (33-+82 is
Hopt fibration), but this fibration is only well defined up to
isometries, so the subgroup Gfib € @ which preserves this
fibration is only determined up to conjugation. The different
conjugates of Gfib correspond to the different "vertical

fibrations” of X, If M =T\X is a geometric 3-manifold

with X = $3 or ES, then [ 1is in some conjugate of Gflb

and a Seifert fibration of M can again be induced from the

1 1

corresponding vertical fibration of X. If M = Ta = Sl x 37 % 8

one must choose the conjugate of Gflb correctly-——otherwise
one just gets a foliation of M.

We call the Seifert fibration of M = MX, induced as
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above from a vertical fibration of X, a geometric Seifert

fibration. It is unique for X # $3,333,° but may depend on

fib 3

a choice of conjugate of G containing I for X = 8 or

ESO
If X isaSeifert geometry, let G = G_(X) < G (R) be

the subgrcup preserving a vertical fibration on X as an

oriented fibration. Then G_ = (8''7), if X =8 orE’ and

1

g = G0 otherwise. The centre C of Gc is 8§ for

o
3

=23 and is IR otherwise.

Proposition. Let M =IN\X with X a Seifert gecometry.

Then 11 <G, (respectively T is in some conjugate of G if
3

X =38 or IEa) if and only if M can be Seifert fibered with

orientable base. If M # 52 X Sl, then C/C N1 = S1 and it

acts on M inducing the geometric Seifort fibration M =+ M/Sl
3

(for M =T this holds only for suitable conjugates of GC

containing ).

Not every geometric structure on 82 X Sl admits a geo-

metric Seifert fibration, but any Seifert fibration, of any

M, 1s gecmetric for some geometric structure on M.

4. Geometry of holomorphic Seifert Cznbundles

For each Seifert geometry X let G@(X) = GC(X) x T,
acting transitively on X x IR_ in the obvious way. We shall

describe a complex analytic structure on X x T]R,  such that

G

=

L GG(X) acts by complex analytic maps.
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1

On E- x IR+ take the complex structure

-
e

E" x ]R+ - C, (6,r) » g-1«in(r).

The notation is chosen to suggest that I E! x R, 1is polar

- - ~ -
coordinates in €*, the universal cover of ¢€%. Now the com-

plex structures on 32 % ]El x R_, IFI.2

2

x I,El xR+, and

™" x ]E_‘l X ]R+ are the obvious ones: !DPl'

H x € (we use H, as opposed to 11-12 , to denote the upper

x £, € x €,

half plane with complex structure, instead of hyperbolic
metric).

on $° x R, take the obvious structure as €°-{0}, by

+
considering 83 x IR, as polar coordinates, with Gc: acting
as U(2).
On N x IR,, coordinatize N as in §3 and take the com-

plex structure
N x R, - C x €, {(a,b3c),r) = (.:_Ur:l‘.]:‘,oﬁ—;—(a2 +b2-2 in{r))).

For PSL x R, recall first that we can identify
PSL = Z\PST with the unit tangent bundle T H? of HH>.
Thus PSL x ]R, can be taken as polar coordinates in TDJH
(the bundle of non-zeroc tangent vectors), so BSL x R, is,
identified with (T H) . Since T,H = H x C¥, we have
?é”Lme'ar]i x €)Y = H x C.

In each case denote Xﬁ: =X x R, with the above complex
structure. The center“ C x IR, of GC can be identified as
€* acting by multiplication on X = (32-{ 0} when x° - SB, and

as C, acting by translations in the second factor of



X@ = (-} x € 1in cach of the other cases.
Let M=TI\X be a geometric Seifert manifold with
geometric Seifert fibration, as in the last propesition of §3.

Thus I < GC and C/CnNn = Sl. Then

M><J:R+ = H\KXIR+ = H\xc

gives a complex structure on M x H{F and 81 X IR+ acts as

(c/enm) x R & €%, acting holomorphically. That is,
M x IR, receives the structure of a holomorphic Seifert

£*-bundle.

Thecrem. Normalize by fixing vol(M) iIn the % = D

cases and fixing the length of a fiber of M in the e = 0

cases {see Remark 4 on p. 13). Then if double brackets

represent "set of equivalenge classes of ..." with an appro-

priate isomorphism concept, the above construction defines a

bijection
“(Geometric §tnugxuresgg_Ml“ ""Holomorphic structures gg!\
1) (with geometric Seifert s+ MxIR, as a Seifert .
(W fibration. ‘L

WwC%-pundle. J

In particular:

XY

{(Geometric struaturesgg_mlk
2) ({with geometric Seifert )!
fibration withnegative e/}

rQH-singularities {v,p)
R lwith 1ink homeomorphic ;g\
M.

Unless (V,p) 1is a cyeclic quotient singularity, so M is a
lens space, the singularity (V,p) has a unigue good C#*-action
and M  has a unique geometric Seifert fibration. BSo excluding

lens spaces, and assuming M admits a Seifert fibration with
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negative e, we get:

Normal singularities
{(V,p) with link homeo-'

morphic te M which
dmit a good C*-action..

3) {{Geometric structures on M}l «»

For a cyclic quotient singularity (V,p) the geometric
structure on its link ¥ 1is unique and geometric Seifert fi-

brations of M correspond one~one with €*-actions on (V,p).

5. Cusps and tlie geometry 35

There 1s a correspondence, analogous to 3) above, con-
nected with the geometry S. Coordinatize § as
{(a;b;:)|a,b,c ¢ R} as in §3. Let Gc ¢ G(S) be the sub-
group of index 4, generated by GG = 8 (acting on itself by
left translaticns) and the element = : (a,bic) =+ (b,a;-c)

mentioned in §3. Then GO acts on M x H as follows:

I

ol -C
(a,b;c)(zl,ZQ) (e 2 +a,e 22+b)

1

T(zl,zz) = (32,21).

Themap M xH->Sx R, (21’22) ~ ({Re 7y » Rezz;snImzl),Imzl-Imzz)

is a Gcwequivariant_homeomorphism. Thus an S-structure

M= TI\S, with I c G,» ona manifold M leads to a complex

structure M x R, ¥ I\8 x R, =« OI\(H xH) on M x R_.

Theorem. 1) A manifold M which admits an S-structure

admits a unique one of any chosen volume.
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2} The following are eguivalent:

a) M«=iO\8 with oI ¢ §;

b) M fibers over S1

with fiker T and mong-

dromy of trace =3;

c) M 1s homeomorphic (preserving orientation) to

the link of a cusp singularity (that is a sin-

gularity (V,p) with cyclic presolution graphl;

d) Statement c¢) is true and V-{p} = N\N(HH x H).

3) The following are equivalent:

a) Mo~ II\S with I c Gc’ nés

b)

=

is homeomorphic (respecting orientatien) to

the link of a singularity (V,p) with resolu-

tion graph of the form

-b

_2&:2} i%::-Z - bj; for all

e -
2 2 by for

v
N
1_h
Q
3
ol
-
l_l

v
oy
‘-'.,
O
3
{in
Q
8
(i)
l_J

c) Statement b) is true and V-{p} = M\(H x H).

Remarks. 1. The analytic structure on these singulari-
ties is unique, by Karras [K]. Their description as "cusps"
of discrete quotients of TH xMH is how they originally arose,
in the work Hirzebruch et. al. on Hilbert modular surfaces.

2. The double cover of the singularity of 3b) above,
determined by T N S < 1T, must be a cusp. It is the cusp with

resolution graph
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3. In sections 4 and 5 we have dealt with every singularity
link which admits a geometric structure. Indeed, a singularity
link M cannot admit an Ifa—structure,-since noe plumbed manifold
admits an IHS-structure. We have dealt with all Seifert manifolds

which are singularity links by [N2]. Thus the only case remaining

was S-structures. One can elther compute all orientable
S-manifolds and compare with [N2]. This  is not hard, they turn
out to be all 3-manifolds which can be plumbed according to a
cyclic plumbing graph or a graph as in 3b) above but without
the restrictions on bl and bk' It is easier to observe that
an S-manifold has solvable fundamental group. We have all
singularity links with solvable fundamental group by Wagreich's

list [W1].

6.- Ideas of proof

We illustrate the proof of the theorem of Section 3 by

sketching why a manifold M3

, Seifert fibered as M - X with
orientable base, has a ﬁgi structure when X « 0 and e g 0.
Let I Dbe nl(M). The center of T is Z, generated by the

class of a4 non-singular fiber, and we have an exact sequence

0 r % » 11 $ [ 1,
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where T = T{g;dl,---,an) is a Fuchsian group with signature
(g;al,...,an) {(if X had been =0 or >0 +then I would
be euclidean or spherical respectively, instead of Fuchsian).
Now the group H of Section 2 is in fact Hz(P;Z) and
the "chern class”" ¢ ¢ H described there is just the classify
ing element for this exact sequence. Note that HZ(P;IR) =
H® IR ®=R by the map gOHl, and if 1:Z - R 1is the
inclusion, then i,c ¢ H2(F;IR) = IR is just e(M-X), by
the lemma in §2.
We need to embed 0 in 83 = G4(PSL) in the following

way

0 s e 1T > T » 1

[P ] I*
0 =R — G — et (m?) =psn(2,R)) — 1

Tt is not hard to see that this is just what is necessary to
give MPSL the desived Seifert fibered structure. The map

a is given to us by choosing a complex structure (or a hyper-

belic orbifold structure) on (¥,x x_ ). Let us form the

10 0%y
following pushout and pullback extensions (%) and {(##):

0 —s % » 0 — o —
. !
o il
0 + IR » 100 +T - 1 (%)
0 —= IR s Q%D e - 1" R —] ()

! ¢
} ¢
0 —= IR » Gy —* PSL(2,R) — 1
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It suffices to show that (*) and (&%) are isemorphic.

But we have already observed that (%) is classified by

ig¢ = e = e(MaX) ¢ R = HE(T,IR), and it i1s not hard to show
that (##%) is classified by X € R = H2(r,RR) (this follows,
for instance, from the computation of Seifert invariants of
P\PSL{2,R), see [EENT or [RV]). Thus, letting B :R - IR

be multiplication by ¥%/e, the following diagram can be com-

pleted, and we are done.

(%)

0 = TR = i

ﬂj%s

T = [ o 1 (#2)

e

%
I
t
1

A 4

v

0 ——s —_— (L

The various different PSL-structures on M lying over
a fixed structure on ¥ are classified by the different homo-

morphisms vy I - GO for which

0 »y L - 17 - T — =

[ a
- )
0 — R -~ Gy e PSL(2,IR) s 1

Jd

commutes, up tTo automorphisms of II fixing T. éiven one v,
any other ' is given by +'(g) = v(g)¥r{g) Ffor sonme

¥ € Hom(T',R), with Ve Hom(r;Z) if ' 1is related to y by an
antomorphism of 0. Thus Hom(I',R)/Hom(I",2@) classifies the
ﬁgi-structures on M. The correspondence of §4 sets up a map
Hom{Tr,IRY/Hom(I,%Z) - Jac(X) and to prove the theorem of &4

for this case., we must show this is bijective. Butr it is amap
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of real tori of equal dimension, s¢ it is enough to show in-
jectivity. A computation shows that this is equivalent té
the image of the period mapping HD(X,RI) - Hom(T,C) = Hl(X,E}
being transverse to Hom(r,R) = H1(X,JR) ,» which is true, by
classical complex curve theory. |

The proofs of the results of §3 and §4 in the other cases

are similar. Details will be given in IN3].

7. An application

One interpretation of the results of §4 is that the co-
cycles which are used in ofher approaches to classify (Seifert)
C*-bundles over a curve X c¢an be put in a very special form.
This implies that one can interpret the affine coordinate ring
of a QH-singularity (V,p) as a suitable ring of automorphic
forms which transform by characters, rather by some general
cocyele "multiplier system." But this is really a non-
application, in that it would be of interest only if the type
of ring of X-automorphic forms which arises were a type which
has independent interest, say to number theorists, which it
isn't. Nevertheless, as an application of this train of

thought we get:

Theorem. Let (V,p) be a QH-singularity with VO/E* =

(x?xl,...,xn) and Seifert invariant (g;b;{al,sl),...,(an,ﬁn)).

Suppese X 1is rational, that is, g = 0. Let n=23 (i.e.,

(V,p) 1is not a cyeclic quotient singularity). Then the universal
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abelian cover (?ﬁb,p) of (V,p), branched only at p, 1is

isomorphic to (VA(al,...,an),U), where VA(al,...,an) is

the Brieskorn complete intersection:

a
1,.. “n

\ _ o n ] ~
VA(al,...,an) = {z € C Jailzi tereta, 2 =0, i=l,...,n-2}

for suitable coefficient matrix A = (aij). In fact, if one

- determines [SEEEEES WP € Dby the unique analytic isomorphism

(X,xl,...,xn) o (Cum,xl,...,kn_a,l,o,w), then one can take
1 (:) 1 ll
A - -
i i 2

O 111

Proof. We just sketch the proof, for a reason given below
Assume X < 0. We first note a general fact that if, for

i=1,2,

D — EZ —~= . —=> T 3 ]
1

Y4 Y-l a.
iz , 1 |
0 = A e G e ) e ]
is a map of central extensions, then Yl([nl,nll) = YQ(EHQ,HQJJ
Now our V_ = V=p 1is classified by an embedding II ~ Gy =

0
m" - - » »
GG(PSL) which fits in a diagram

0 —s 7 > I > T -+ 1

v ¢ v ©
0~ R-—> G, ~— PSL(Z,R) - 1.
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Also Y|[H,H] corresponds to the universai abelian cover of
VO, so our initial comment shows that if we prove the theorem
for just one (V,p) with given a, then it follecws for all
such fv,p). But such a proof was given (in fact for
VO z a(F)\TDBD in [N1], see also [D].

So this proves the case X < 0. The analogous proof
applies for X » 0, and would apply too for X =0 ‘except
- that in this case the nebessary examples had only been
analyzed by ad hoc means in [M] and [N1], and this analysis
does not give the information we need. This gap could be filled
but this is not necessary, since a much more elementary proof
of the theorem will appear elsewhere in these Proceedings [Nu].
The above is‘however essentially how I found the result, with
the observation about commutator subgoups replaced by the cor-

responding observation about rings of X-autcemorphic forms,
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