Persistent homotopy theory

Rick Jardine

University of Western Ontario

January 9, 2020

Basic setup I

 $X \subset Z$ finite subset, Z a metric space. D(Z) = poset of finite subsets of Z. $s \ge 0$.

• $P_s(X) = \text{poset of subsets } \sigma \subset X \text{ such that } d(x, y) \leq s \text{ for all } x, y \in \sigma.$

 $P_s(X)$ is the poset of non-degenerate simplices of the Vietoris-Rips complex $V_s(X)$. $BP_s(X)$ is barycentric subdivision of $V_s(X)$.

We have poset inclusions

$$\sigma: P_s(X) \subset P_t(X), \ s \leq t,$$

 $P_0(X) = X$, and $P_t(X) = \mathcal{P}(X)$ (all subsets of X) for t suff large.

• $k \ge 0$: $P_{s,k}(X) \subset P_s(X)$ subposet of simplices σ such that each element $x \in \sigma$ has at least k neighbours y such that $d(x, y) \le s$. $P_{s,k}(X)$ is the poset of non-degenerate simplices of the degree Rips complex $L_{s,k}(X)$.

Basic setup II

The usual inclusions: $s \leq t$

$$P_{s}(X) \xrightarrow{\sigma} P_{t}(X)$$

$$\uparrow \qquad \uparrow$$

$$P_{s,k}(X) \xrightarrow{\sigma} P_{t,k}(X)$$

$$\uparrow \qquad \uparrow$$

$$P_{s,k+1}(X) \xrightarrow{\sigma} P_{t,k+1}(X)$$

Also

•
$$P_{s,0}(X) = P_s(X)$$
 for all *s*,

•
$$P_{s,k}(X) = \emptyset$$
 for k suff. large.

Initial impression: $BP_s(X)$ is a huge model for $V_s(X)$, because all simplices of $V_s(X)$ are vertices of $BP_s(X)$.

Fundamental groupoid

 x_0, \ldots, x_k : list of elements of X such that $d(x_i, x_j) \le s$ (may have repeats).

$$[x_0,\ldots,x_k]=\{x_0\}\cup\cdots\cup\{x_k\}.$$

Graph $Gr_s(X)$: vertices are elements of X, there is an edge $x \to y$ if $[x, y] \in P_s(X)$.

There is an edge $[x, y] : x \to y$ if and only if there is an edge $[y, x] : y \to x$. There is an edge $[x, x] : x \to x$.

 $\Gamma_s(X)$ is **category** generated by $Gr_s(X)$, subject to relations defined by simplices $[x_0, x_1, x_2]$.

Lemma 1.

 $\Gamma_s(X)$ is a groupoid, and $\Gamma_s(X) \simeq G(P_s(X)) \simeq \pi V_s(X)$.

 $\pi V_s(X)$ is the fundamental groupoid of $V_s(X)$, $G(P_s(X))$ is the free groupoid on the poset $P_s(X)$.

D(Z) is the poset of finite subsets of Z (all data sets in Z), with Hausdorff metric d_H .

Hausdorff metric:

r > 0: Given $X \subset Y$ in D(Z), $d_H(X, Y) < r$ if for all $y \in Y$ there is an $x \in X$ such that d(y, x) < r.

For arbitrary $X, Y \in D(Z)$: $d_H(X, Y) < r$ if and only if (equivalently)

- 1) $d_H(X, X \cup Y) < r$ and $d_H(Y, X \cup Y) < r$.
- 2) for all $x \in X$ there is a $y \in Y$ such that d(x, y) < r, and for all $y \in Y$ there is an $x \in X$ such that d(y, x) < r.

Stability

 $X \subset Y$, $d_H(X, Y) < r$: Construct a function $\theta: Y \to X$ such that

$$heta(y) = egin{cases} y & ext{if } y \in X \ x_y & ext{ for some } x_y \in X ext{ with } d(y, x_y) < r. \end{cases}$$

If $\tau \in P_s(Y)$ then $\theta(\tau) \in P_{s+2r}(X)$. Have a diagram of poset morphisms

such that upper triangle commutes, and lower triangle commutes up to homotopy:

$$\sigma(\tau) \to \sigma(\tau) \cup i(\theta(\tau)) \leftarrow i(\theta(\tau)).$$

Theorem 2 (Rips stability).

Suppose $X \subset Y$ in D(Z) such that $d_H(X, Y) < r$. There is a homotopy commutative diagram (homotopy interleaving)

Theorem 3.

Suppose $X \subset Y$ in D(Z) such that $d_H(X_{dis}^{k+1}, Y_{dis}^{k+1}) < r$. There is a homotopy commutative diagram

Theorem 4.

Suppose given $X, Y \subset Z$ are data sets with $d_H(X, Y) < r$. Then there are maps $\phi : P_s(X) \to P_{s+2r}(Y)$ and $\psi : P_s(Y) \to P_{s+2r}(X)$ such that $\psi \cdot \phi \simeq \sigma : P_s(X) \to P_{s+4r}(X)$ and $\phi \cdot \psi \simeq \sigma : P_s(Y) \to P_{s+4r}(Y)$.

Proof

Set

$$U = \{(x, y) \mid x \in X, y \in Y, d(x, y) < r \}.$$

 $P_{s,X}(U) \subset \mathcal{P}(U)$: all subsets σ such that $d(x, x') \leq s$ for all $(x, y), (x', y') \in \sigma$. Define poset $P_{s,Y}(U)$ similarly.

1) The maps $P_{s,X}(U) \rightarrow P_s(X)$, $P_{s,Y}(U) \rightarrow P_s(Y)$ are weak equivalences (Quillen Theorem A).

2) There are inclusions

$$P_{s,X}(U) \subset P_{s+2r,Y}(U), \ P_{s,Y}(U) \subset P_{s+2r,X}(U),$$

(triangle inequality) and

$$P_{s,X}(U) \subset P_{s+2r,Y}(U) \subset P_{s+4r,X}(U)$$

 $P_{s,Y}(U) \subset P_{s+2r,X}(U) \subset P_{s+4r,Y}(U)$

Suppose that $X \subset Y$ in D(Z) and we have a homotopy interleaving

$$V_{s}(X) \xrightarrow{\sigma} V_{s+r}(X)$$

$$i \downarrow \xrightarrow{\theta} \qquad \qquad \forall i$$

$$V_{s}(Y) \xrightarrow{\sigma} V_{s+r}(Y)$$

(as in stability theorem), where upper triangle commutes and lower triangle commutes up to homotopy fixing $\sigma: V_s(X) \to V_{s+r}(X)$.

1)
$$i: \pi_0 V_*(X) \to \pi_0 V_*(Y)$$
 is an *r*-monomorphism: if
 $i([x]) = i([y])$ in $\pi_0 V_s(Y)$ then $\sigma[x] = \sigma[y]$ in $\pi_0 V_{s+r}(X)$
2) $i: \pi_0 V_*(X) \to \pi_0 V_*(Y)$ is an *r*-epimorphism: given
 $[y] \in \pi_0 V_s(Y), \ \sigma[y] = i[x]$ for some $[x] \in \pi_0 V_{s+r}(X)$.
3) All $i: \pi_n(V_*(X), x) \to \pi_n(V_*(Y), i(x))$ are *r*-isomorphisms.

A system of spaces is a functor $X : [0, \infty) \to s\mathbf{Set}$, aka. a diagram of simplicial sets with index category $[0, \infty)$.

A map of systems $X \to Y$ is a natural transformation of functors defined on $[0, \infty)$.

Examples

1) The functors $V_*(X)$, $BP_*(X)$, $s \mapsto V_s(X)$, $BP_s(X)$ are systems of spaces, for a data set $X \subset Z$.

2) If $X \subset Y \subset Z$ are data sets, the induced maps $P_s(X) \to P_s(Y)$, $V_s(X) \to V_s(Y)$ define maps of systems $P_*(X) \to P_*(Y)$ and $V_*(X) \to V_*(Y)$.

There are many ways to discuss homotopy types of systems. The oldest is the **projective structure** (Bousfield-Kan):

A map $f: X \to Y$ is a **weak equivalence** (resp. **fibration**) if each map $X_s \to Y_s$ is a weak equiv. (resp. fibration) of simplicial sets. A map $A \to B$ is a projective cofibration if it has the left lifting property with respect all maps which are trivial fibrations.

Example: $L_s(A)$ is the system with $L_s(A)_t = \emptyset$ for t < s and $L_t(A) = A$ for $t \ge s$. If $A \subset B$ is an inclusion of simplicial sets, then $L_s(A) \rightarrow L_s(B)$ is a projective cofibration.

Lemma 5.

Suppose that $X \subset Y \subset Z$ are data sets. Then $V_*(X) \to V_*(Y)$ is a projective cofibration.

r-equivalences

Suppose that $f : X \to Y$ is a map of systems. Say that f is an r-equivalence if

- 1) the map $f: \pi_0(X) \to \pi_0(Y)$ is an *r*-isomorphism of systems of sets
- 2) the maps $f : \pi_k(X_s, x) \to \pi_k(Y_s.f(x))$ are *r*-isomorphisms of systems of groups, for all $s \ge 0$, $x \in X_s$.

Observation: Suppose given a diagram of systems

$$\begin{array}{ccc} X_1 \xrightarrow{f_1} Y_1 \\ \simeq & \downarrow & \downarrow \simeq \\ X_2 \xrightarrow{}_{f_2} Y_2 \end{array}$$

Then f_1 is an *r*-equivalence iff f_2 is an *r*-equivalence.

Example (stability): Suppose that $X \stackrel{i}{\subset} Y \subset Z$ are data sets, and that $d_H(X, Y) < r$. Then the maps $i : V_*(X) \to V_*(Y)$ and $i : BP_*(X) \to BP_*(Y)$ are 2r-equivalences.

Lemma 6.

Suppose given a commutative triangle

$$X \xrightarrow{f} Y$$

$$\downarrow^{g}_{h} \chi^{g}$$

If one of the maps is an r-equivalence, a second is an s-equivalence, then the third map is a (r + s)-equivalence.

Proof.

Suppose X, Y, Z are systems of sets, h is an r-isomorphism and g is an s-isomorphism. Given $z \in Y_t$, g(z) = h(w) for some $w \in X_{t+s}$. Then g(z) = g(f(w)) in Z_{t+s} so z = f(w) in Y_{t+s+r} .

Lemma 7.

Suppose that $p : X \to Y$ is a sectionwise fibration of systems of Kan complexes and that p is an r-equivalence. Then each lifting problem

can be solved up to shift 2r.

Proof of Lemma 7

The original diagram can be replaced up to homotopy by a diagram

$$\begin{array}{ccc} \partial \Delta^{n} \xrightarrow{(\alpha_{0}, *, \dots, *)} & X_{s} \xrightarrow{\sigma} & X_{s+r} \\ \downarrow & & \downarrow^{p} & \downarrow^{p} \\ \Delta^{n} \xrightarrow{\beta} & Y_{s} \xrightarrow{\sigma} & Y_{s+r} \end{array}$$
(1)

 $p_*([\alpha_0]) = 0$ in $\pi_{n-1}(Y_s, *)$, so $\sigma_*([\alpha_0]) = 0$ in $\pi_{n-1}(X_{s+r}, *)$. The trivializing homotopy for $\sigma(\alpha_0)$ in X_{s+r} defines a homotopy from (1) (outer) to the diagram

 $\sigma_*([\omega]) \in \pi_n(Y_{s+2r},*)$ lifts to an element of $\pi_n(X_{s+2r},*)$ up to homotopy, giving the desired lifting.

Fibrations II

Lemma 8.

Suppose that $p: X \to Y$ is a sectionwise fibration of systems of Kan complexes, and that all lifting problems

$$\begin{array}{c} \partial \Delta^n \longrightarrow X_s \xrightarrow{\sigma} X_{s+r} \\ \downarrow & \downarrow^p \\ \Delta^n \longrightarrow Y_s \xrightarrow{\sigma} Y_{s+r} \end{array}$$

have solutions up to shift r, in the sense that the dotted arrow exists making the diagram commute. Then the map $p : X \to Y$ is an r-equivalence.

Proof.

If $p_*([\alpha]) = 0$ for $[\alpha] \in \pi_{n-1}(X_s, *)$, then there is a diagram on the left above. The existence of θ gives $\sigma_*([\alpha]) = 0$ in $\pi_{n-1}(X_{s+r}, *)$.

Corollary 9.

Suppose given a pullback diagram

where p is a sectionwise fibration and an r-equivalence. Then the map p' is a sectionwise fibration and a 2r-equivalence.

Question: Is there a dual statement? Do maps which are cofibrations and r equivalences push out to 2r-equivalences?

Homology

A map $f : A \to B$ of systems of simplicial abelian groups (chain complexes) is an *r*-equivalence if the induced maps $H_k(A) \to H_k(B)$ are *r*-isomorphisms for $k \ge 0$.

Example: Suppose that $X \subset Y \subset Z$ are data sets and that $d_H(X, Y) < r$. Then $\mathbb{Z}(X) \to \mathbb{Z}(Y)$ is a 2*r*-equivalence (by the interleaving), so that $H_k(X) \to H_k(Y)$ is a 2*r*-isomorphism for $k \ge 0$ (all coefficients).

Lemma 10.

- 1) Suppose that $f : A \to B$ is an *r*-equivalence with homotopy cofibre $p : B \to C$. Then the map $C \to 0$ is a 2*r*-equivalence.
- 2) Suppose that $C \rightarrow 0$ is an r-equivalence. Then $f : A \rightarrow B$ is an r-equivalence.

Warning: There is no Hurewicz theorem. We can't say that if $X \rightarrow *$ is an *r*-equivalence then $H_*(X)$ is *r*-equivalent to $H_*(*)$.

Groupoids

Question: What does it mean for $X \to *$ to be an *r*-equivalence? **Facts**: 1) If $X \to *$ is an *r*-equivalence, then all Postnikov sections P_nX and *n*-connected covers X(n) are *r*-equivalent to a point. 2) If $X \to *$ is an *r*-equivalence, then

$$\sigma_* = 0: \pi_k(X_s, *) \to \pi_k(X_{s+r}, *)$$

for $k \geq 1$. All $[x] \in \pi_0 X_s$ map to the same element of $\pi_0 X_{s+r}$.

Example: $P_1X = B\pi(X)$, so fundamental groupoid $\pi(X)$ is *r*-equivalent to a point. We can discuss systems of groupoids *G* such that $G \to *$ are *r*-equivalences.

 P_0G has same objects as G, and exactly one morphism $x \to y$ if $\hom_G(x, y) \neq \emptyset$. There is a natural functor $\pi : G \to P_0G$.

Lemma 11.

Suppose that $G \rightarrow *$ is an r-equivalence. Then there is an interleaving

and all elements of $\pi_0 G_s$ map to the same element of $\pi_0 G_{s+r}$.

Proof.

Any two morphisms $\alpha, \beta: x \to y$ of G_s map to the same morphism of G_{s+r} , so θ exists.

In effect, $\beta^{-1} \cdot \alpha \in G_s(x, x) = \pi_1(BG_s, x)$.

2-groupoids

A 2-groupoid H is a groupoid enriched in simplicial sets, such that each simplicial set H(x, y) is the nerve of a groupoid.

Each H has a bisimplicial nerve BH which defines a homotopy type.

Every 2-groupoid H has an associated groupoid P_1H with a functorial map $\pi : H \to P_1H$, such that $P_1H(x, y) = P_0(H(x, y))$.

Fact: Every space X has a fundamental 2-groupoid $\pi_2 X$ such that $B\pi_2(X) \simeq P_2(X)$.

Lemma 12 (slightly conjectural).

Suppose that H is a system of 2-groupoids such that $BH \rightarrow *$ is an r-equivalence. Then $P_1H \rightarrow *$ is an r-equivalence, and there is an interleaving

 $\begin{array}{c}
H_{s} \xrightarrow{\sigma} H_{s+r} \\
 \pi \downarrow & \swarrow & \forall \pi \\
P_{1}H_{s} \xrightarrow{\sigma} P_{1}H_{s+r}
\end{array}$

Homology

H a system of 2-groupoids s.t. $BH \rightarrow *$ is an *r*-equivalence.

0) $P_0H \rightarrow *$ is an *r*-isomorphism. P_0H is a system of disjoint unions of trivial groupoids (contractible spaces). $H_0(BP_0H) \rightarrow \mathbb{Z}$ is an *r*-isomorphism, and there are **no** non-trivial higher homology groups.

 $H_0(BH) \cong H_0(BP_0H) \to \mathbb{Z}$ is an *r*-isomorphism.

1) $P_1H \rightarrow *$ is an *r*-equivalence. The interleaving

$$\begin{array}{c} P_1H_s \xrightarrow{\sigma} P_1H_{s+r} \\ \pi \downarrow & & \downarrow \pi \\ P_0H_s \xrightarrow{\sigma} P_0H_{s+r} \end{array}$$

forces $H_k(BP_1H_s) \to 0$ to be an *r*-isomorphism for $k \ge 1$, because all higher homology groups of BP_0H_s are trivial. $H_1(BH) \cong H_1(BP_1H) \to 0$ is an *r*-isomorphism. 2) $P_2H \rightarrow *$ is an *r*-equivalence. The interleaving

$$\begin{array}{c} P_2H_s \xrightarrow{\sigma} P_2H_{s+r} \\ \pi \downarrow & & \downarrow \pi \\ P_1H_s \xrightarrow{\sigma} P_1H_{s+r} \end{array}$$

forces $H_k(BP_2H) \to 0$ to be a 2*r*-isomorphism for $k \ge 1$: $\pi \cdot \sigma(\alpha) = \sigma \cdot \pi(\alpha) = 0$ for $\alpha \in H_k(BP_2H_s)$ since $H_k(BP_1H_s) \to 0$ is an *r*-isomorphism.

Then $\sigma \cdot \sigma(\alpha) = \theta \cdot \pi \cdot \sigma(\alpha) = 0$ in $H_k(BP_2H_{s+2r})$. $H_2(BH) \cong H_2(BP_2H) \to 0$ is a 2*r*-isomorphism.

Spaces of data sets

We construct spaces from the poset of data sets D(Z). There are two choices:

1) $D_s(Z) \subset BD(Z)$ consists of strings of simplices

$$\sigma:\sigma_0\subset\sigma_1\subset\cdots\subset\sigma_n$$

such that $d_H(\sigma_0, \sigma_n) \leq s$.

2) $P_s(Z) \subset \mathcal{P}(D(Z))$ is poset consisting of finite subsets σ such that $d_H(X, Y) \leq s$ for all $X, Y \in \sigma$.

Theorem 13.

There are weak equivalences

$$D_s(Z) \stackrel{\gamma}{\leftarrow} BND_s(Z) \stackrel{\phi}{\rightarrow} BP_s(Z),$$

where $\phi(\sigma) = \{\sigma_0, \ldots, \sigma_n\}.$

Proof I

• There is a functor $f: P_s(Z) \to D(Z)$ with $\sigma = \{X_0, \ldots, X_k\} \mapsto X_0 \cup \cdots \cup X_k$.

 $f: BP_s(Z) \to BD(Z)$ takes simplices of $BP_s(Z)$ to simplices of $D_s(Z)$ and induces $f: BP_s(Z) \to D_s(Z)$.

The following diagram commutes:

• Show that f is a weak equivalence. Suppose that $\tau : Y_0 \subset \cdots \subset Y_k$ is a non-degenerate simplex of $BD_s(Z)$. Show that $f : f^{-1}(\tau) \to \Delta^k$ is a weak equivalence.

Proof II

• $f^{-1}(\tau)$ is the nerve of a poset, with objects $\{Z_0, \ldots, Z_m\}$ such that $\cup_i Z_i$ is some Y_j , with morphisms covering inclusions $Y_j \subset Y_k$.

• Given $\tau = \{Z_0, \ldots, Z_m\}$ with $\cup_i Z_i = Y_j$, there are poset morphisms

$$\{Z_0,\ldots,Z_m\}\to\{Z_0,\ldots,Z_m\}\cup\{Y_0,\ldots,Y_j\}\leftarrow\{Y_0,\ldots,Y_j\}.$$

• There is a simplicial set map $\sigma: \Delta^k \to f^{-1}(\tau)$ defined by the string of inclusions

$$\{Y_0\} \subset \{Y_0, Y_1\} \subset \cdots \subset \{Y_0, \ldots, Y_k\}$$

The map $f: f^{-1}(\tau) \to \Delta^k$ is a homotopy equivalence.

- Andrew J. Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance. *CoRR*, abs/1705.01690, 2017.
- P. G. Goerss and J. F. Jardine.

Simplicial Homotopy Theory, volume 174 of Progress in Mathematics.

Birkhäuser Verlag, Basel, 1999.

🔋 J.F. Jardine.

Data and homotopy types. Preprint, arXiv: 1908.06323 [math.AT], 2019.

F. Memoli.

A Distance Between Filtered Spaces Via Tripods. Preprint, arXiv: 1704.03965v2 [math.AT], 2017.