Fields Institute Communications
Volume 17, 1997

A Closed Model Structure for Differential Graded Algebras

J. F. Jardine
Mathematics Department
University of Western Ontario
London, Ontario, Canada N6A 5B7
jardine@Quwo.ca

Abstract. We derive a closed model structure for the category of noncom-
mutative differential graded algebras over an arbitrary commutative ring with
unit.

This short note constructs a closed model structure, and hence a homotopy the-
ory, for the category of differential graded algebras over an arbitrary commutative
unitary ring. Such differential graded algebras are not assumed to be commutative.

This structure was obtained in the context of a joint project between the author
and Paul Goerss to construct explicit algebraic models for mod p homotopy theory.
An initial hope, which was inspired by Karoubi’s result [4] that the Steenrod op-
erations could be modelled in the category of noncommutative DGAs over F,,, was
that non-commutative differential graded algebras might be an adequate setting in
which to realize a model for Bousfield’s H, ( ,Z/p)-local homotopy theory [1]. This
idea did not work — the problem of giving a computable algebraic model for mod
p homotopy theory, which was formulated one way or another in the late 1970’s,
remains one of the difficult problems of homotopy theory (see also [3]) — but the
closed model structure for non-commutative DGAs survives.

This structure is apparently of some interest within the cyclic homology com-
munity, so the result is presented here: it is Theorem 5 below. Subject to a proper
understanding of coproducts in the category of non-commutative DGAs, the proof
of Theorem 5 is analogous to that of the corresponding result given by Bousfield
and Gugenheim [2] for commutative differential graded algebras over fields of char-
acteristic zero.

Suppose that k is a commutative ring with 1. The category of differential graded
algebras over k will be denoted by DG Ai. An object of DG Ay, is a graded k-algebra
A ={A" Al A% ...} which is not necessarily commutative, and is equipped with
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a degree +1 differential d : A™ — A"™*! satisfying the Leibnitz formula
d(z-y) = d(z) -y + (-1)"'z - d(y), (1)

where |z| denotes the degree of z, and z - y is the product of « and y with respect
to the algebra structure on A. We shall also require that

d(1) =0 (2)

for 1 € A°, and that k is in the centre of A. It follows that the differential d is a
k-module map. I do not require my differential graded algebras A to be augmented.

The category DG Ay obviously has all inverse limits (with terminal object 0),
all filtered colimits and all coequalizers. The coproduct A *; B of the differential
graded k-algebras A and B is formed by setting

Axy B=T(A® B)/I,
where T(A ®;, B) is the tensor algebra
(A B) = (A e B

n>0
for the k-chain complex A ®; B, and I is the ideal which is (multiplicatively)
generated by elements of the form

(a1 ®b1)®(1®b2)—a1 ®b1b2 and
(al &® 1) [ (CLQ [ bQ) —aijas X bQ.

Note that I is a differential ideal in the sense that it is preserved by the differential.
The category DG Ay, has all finite coproducts (with initial object k, concentrated
in degree 0), and all filtered colimits, so DG Ay, has all coproducts, and is therefore
complete and cocomplete.

Suppose that x is a variable of degree n. The differential graded k-algebra S(z)
is defined to be the free graded k-algebra k{z} on z, equipped with a differential d
which is uniquely specified by d(z) = 0. If A is a differential graded k-algebra, and
a € A is an element such that |a| = n and d(a) = 0, then there is a unique map
ta : S(x) — A of differential graded k-algebras such that tq(z) = a.

The differential graded k-algebra T'(x) is the k-algebra k{z, dz} which is freely
generated by x and dx (with |dz| = n+1), and with differential d uniquely specified
by d(x) = dz and d(dz) = 0. If B is a differential graded k-algebra and b € B is
an element such that |b] = n, then there is a unique map of differential graded
k-algebras ¢, : T'(x) — B such that ¢,(z) = b.

In other words, T'(x) is the free differential graded k-algebra on a generator x
of degree n. The free k-cochain complex C(z), a generator x of degree n, has the
form

Cl2) = 0 1fz #n,n+1, and
k ifi=n,n+1.
The differential d : C(z)" — C(z)™! is the identity map on k. We shall identify
z with the k-generator 1 € k = C(z)". Note that C(x) is acyclic. Observe as
well that the free object T'(z) can be identified up to isomorphism with the tensor
algebra

T(C(x)) = P C@)*"

n=>0
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on the free cochain complex C(z). Tt follows that there are isomorphisms in coho-
mology of the form

k if 7 =0, and
0 otherwise.

H'T(x) = {

More generally, if A is a differential graded k-algebra and C is a k-cochain
complex, then there is an object A[C] € DGAy with

AC]=A0 (ARC®A)® (ARCRARCRA) ...
and with multiplication specified by
(a1 @b @ @by @apt1) - (@) OV @ @b ®aj,,)
= @b ®...bpRagr10) V| ® - Qb ®ap, -
This construction can be thought of (abusively, since A is not central) as the tensor
algebra over A for the free differential A-bimodule A®C ® A on the cochain complex
C.

Any map f : A[C] — B in DG A, is uniquely determined by its restriction to
A and the chain map given by the composite

cmAwCeAcCAC)L B,
where the map in is defined by ¢ +— 1® ¢ ® 1. It follows in particular that there is
an isomorphism
A s T(x) = A[C(a)],
and that the canonical map A — A %5, T(z) is a cohomology isomorphism.
A map f: A— Bin DGA, is said to be:

(a) a weak equivalence if f is a cohomology isomorphism,

(b) a fibration if f is surjective in all degrees, or

(c) a cofibration if f has the left lifting property with respect to all maps which

are fibrations and weak equivalences (aka. trivial fibrations).

These definitions (and the arguments which follow below) are direct analogues
of ideas appearing in a paper of Bousfield and Gugenheim [2]. In particular, one
can make the following observations:

Lemma 1

(1) The canonical maps k — T(z), k — S(z) and S(dx) — T(z) are all cofibra-
tions.

(2) A map f: A — B is a trivial fibration if and only if f is a fibration and has
the right lifting property with respect to all maps of the form k — S(z) and
S(dx) — T(x).

Lemma 2 Any map f : A — B in DG Ay can be factored f = q - j, where j
has the left lifting property with respect to all fibrations and is a weak equivalence,
and q is a fibration.

Proof Form the factorization
A —"— Ax (+pepT(b))

L

B,
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where j is the canonical map, and ¢ is the A-algebra map which sends the generator
b e T(b) to b € B. q is obviously a fibration, and j is a filtered colimit of maps
of the form A — T'(by) * --- x T(b,,) * A, each of which is a trivial cofibration by
successive applications of the construction T'(b;) * A = A[C(b;)] given above. O

Lemma 3 Any map f : A — B in DG A, may be factored f = p-i, where p is
a trivial fibration and the map i is a cofibration.

Proof It suffices, by Lemma 2, to presume that f is a fibration. But then the
result follows from a small object argument, based on Lemma 1 above. O

Lemma 4 Suppose that the map i : A — B in DGAy is a cofibration and a
weak equivalence. Then i has the left lifting property with respect to all fibrations.

Proof This is a standard consequence of Lemma 2. Find a factorization

A_m_.]__)"B“

N

as in Lemma 2, so that j has the left lifting property with respect to all fibrations
and is a weak equivalence, and ¢ is a fibration. Then ¢ is a trivial fibration, so the
dotted arrow exists making the diagram

AMM.‘Z___;E

B'—1->B
B

commute. The map 7 is therefore a retract of j, so 7 has the desired lifting property.
O

Theorem 5 Subject to the definitions given above, the category DGAy and
the classes of cofibrations, fibrations and weak equivalences satisfy the axioms for a
closed model category.

Proof CM1 is a consequence of the completeness and cocompleteness of the
category DG A. The weak equivalence axiom CM2 and the retraction axiom CM3
are both trivial. The factorization axiom CMS5 is a consequence of Lemma 2 and
Lemma 3, and CM4 follows from Lemma 4. O
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