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Introduction

This paper was written to express a personal attitude about derived categories
of presheaves and sheaves of chain complexes, much of which has existed for
some time but has not previously appeared in the literature.

The attitude begins this way: the category of presheaves of positively graded
chain complexes on a Grothendieck site C is equivalent to the category of
presheaves of simplicial abelian groups under the Dold-Kan correspondence,
and thus inherits a good closed model structure from the standard closed model
structure for simplicial presheaves on C. Unbounded, or Z-graded, presheaves
of chain complexes correspond to spectrum objects in the category of simpli-
cial abelian presheaves, and the category of such things thus acquires the usual
strict and stable closed model structures from the closed model structure for
presheaves of spectra. In other words, a Z-graded chain complex is best viewed
as a stable homotopy type.

Precise versions of these statements are proved in the first three sections
of this paper. The unstable model structure appears here as Lemma 1.5, and
the stable structures appear in Theorem 2.5, Theorem 2.6 and Theorem 3.6.
All results are stated in terms of presheaves of chain complexes and spectrum
objects over a presheaf of rings R which is commutative and has a unit.

All model structures discussed in this paper are cofibrantly generated. The
model structures for presheaves of chain complexes and simplicial modules given
here specialize (see Remark 1.8) to the standard structures [15] for the usual
categories of chain complexes of modules over an ordinary ring. It is important
to note, however, that the classical description of these structures does not
globalize, precisely because the naive approach to cofibrant generation breaks
down for presheaves and sheaves.

The fibrant objects on the presheaf level are interesting, and behave like
chain complexes of injectives in the sense that chain complexes of injective
sheaves I which are bounded above satisfy descent: any weak equivalence I → J
with J fibrant induces a homology isomorphism in each section. This is a
fundamental point which has been understood in one form or another for some
time [1], [8]; it is expressed in this paper as Theorem 2.7. The outcome is that
bounded complexes of injective sheaves and their fibrant models have the same
homological properties, and play essentially the same role in the theory.
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Another basic aspect of the theory is that it makes no appeal to projective
resolutions. Instead, one has cofibrant resolutions which appear universally, and
are the basis of the construction of all left derived functors. In particular, the
higher derived functors Tori(A, B) of the tensor product are defined as sheaves
of homotopy groups by first taking cofibrant resolutions X → A and Y → B
(ie. quasi-isomorphisms such that A and B are cofibrant in the ambient model
structures); then one sets

Tori(A, B) = πi(X ⊗ Y ).

The description of the tensor product is of interest in its own right. The
monoidal structures found in this theory do not arise from the classical tensor
product of chain complexes; they instead are induced by the tensor product
of simplicial modules. The two constructions are homologically equivalent, but
the tensor product of simplicial modules is transparently symmetric monoidal
in a homotopical sense, while the classical tensor product of presheaves of chain
complexes is not.

The simplicial module tensor product can be bootstrapped to a symmetric
monoidal tensor product on the category of Z-graded chain complexes through
the various equivalences given in the first three sections of this paper, but at
the cost of introducing a suitable category of symmetric spectrum objects of
presheaves of simplicial modules. These objects are defined by analogy with the
symmetric spectra of Hovey, Shipley and Smith [7], and the presheaves of sym-
metric spectra of [13] and [14]. Analogues of the standard results hold: there
is a stable closed model structure on symmetric spectrum objects in the cate-
gory of simplicial modules (Theorem 4.9), and an equivalence of the associated
homotopy category with the stable homotopy category of ordinary spectrum ob-
jects in the category of simplicial modules (Theorem 4.10). Lemma 4.16 shows
that the stable model structure on symmetric spectrum objects and the tensor
product arising from simplicial modules together satisfy the monoidal property.
These results are the subject of Section 4 of this paper.

The interesting part of the proof of Theorem 4.9 begins with the definition
of stable equivalence of symmetric spectrum objects. This definition is external
in the sense that a map A → B of symmetric spectrum objects in simplicial
modules is defined to be a stable equivalence if the underlying map of presheaves
of symmetric spectra is a stable equivalence in the sense of [13]. This approach
forces one to show that the the free module functor on presheaves of symmetric
spectra preserves trivial stable cofibrations — this is the substance of Lemma
4.8, and its proof involves some of the more delicate arguments in the paper.
The key point is Proposition 4.7, which in effect gives explicit weak equivalences
relating abelian homology functors for a spectrum X to the effect of smashing
X with Eilenberg-Mac Lane spectra.

Section 5 contains an elaboration of the basic properties of the higher Tor
functors, for simplicial modules and for spectrum objects respectively. There is
a spectral sequence of the form

Ep,q
2 = Torp(A, πqB)⇒ Torp+q(A, B) (0.1)
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in both cases (Lemma 5.7, Lemma 5.16); this spectral sequence converges in the
simplicial module case, and converges if A is bounded below in the stable case.
In both cases the E2-term can be calculated with a subsidiary spectral sequence

Er,s
2 = Torr(πsA, πqB)⇒ Torr+s(A, πqB)

which arises as a special case of (0.1).
The derivation of the spectral sequence (0.1) in the stable case uses a refor-

mulation of the definition of the Tor functors for spectrum objects in terms of a
naive tensor product which appears in Lemma 5.12. This result is the abelian
analogue of a result explicitly relating naive smash products of spectra with
smash products of symmetric spectra that appears in Lemma 5.9.

I would like to thank the referee for a series of useful comments which have
helped to sharpen the exposition in this paper.

This research was supported by a grant from the Natural Sciences and En-
gineering Research Council of Canada.
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1 Simplicial modules

Suppose that C is a small Grothendieck site, and let R be a presheaf of com-
mutative rings with unit on C. We shall use the notation ModR to denote the
category of presheaves of left R-modules on C; an R-module M is a presheaf of
abelian groups which carries a R-module structure R×M →M . The category
of Z-graded R-chain complexes in ModR will be denoted by Ch(ModR), and the
category of ordinary, or positively graded R-chain complexes will be denoted by
Ch+(ModR). We shall write s ModR for the category of simplicial R-modules.

In all that follows, the tensor product M ⊗N = M ⊗R N of two presheaves
of R-modules will be defined (in each section) over the presheaf of rings R.

Say that a map f : A → B of simplicial R-modules is a weak equivalence if
and only if (equivalently) f is a local weak equivalence of the underlying sim-
plicial presheaves [10], or f induces an quasi-isomorphism f∗ : MA → MB of
Moore complexes; the latter means that f induces an isomorphism f∗ : H∗MA ∼=
H∗MB in all homology sheaves. Roughly speaking, a local weak equivalence
of simplicial presheaves is a map which induces an isomorphism on all possible
sheaves of homotopy groups; in the presence of stalks, the local weak equiva-
lences are those maps which induce weak equivalences of simplicial sets in all
stalks.

The Moore complex MA of a simplicial R-module A is a chain complex with
n-chains defined by

MAn = An

and boundary map ∂ : MAn →MAn−1 specified as an alternating sum of face
maps by

∂ =

n
∑

i=0

(−1)idi.

A map p : X → Y is a fibration if and only if the underlying simplicial
presheaf map is a global fibration [10]. A global fibration of simplicial presheaves
is a map which has the right lifting property with respect to all maps which are
cofibrations (ie. inclusions) and local weak equivalences. Say that i : C → D
is a cofibration if it has the left lifting property with respect to all maps of
simplicial R-modules which are fibrations and weak equivalences.

Lemma 1.1. Suppose that f : X → Y is a local weak equivalence of simplicial
presheaves. Then the induced map f∗ : RX → RY is a weak equivalence of
simplicial R-modules.

If X is a pointed simplicial presheaf, write R̃X for the kernel of the map
RX → R∗, equivalently for the cokernel of the map R∗ → RX induced by the
inclusion of the base point.

Proof. The free R-module functor X 7→ RX preserves pointwise equivalences,
so we can assume that f : X → Y is a cofibration. It therefore suffices to show
that the cofibre Y/X has trivial reduced homology sheaves in the sense that
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R̃(Y/X) is acyclic. We can replace Y/X up to pointwise weak equivalence by
a pointwise fibrant simplicial presheaf Z, and then the idea is to show that R̃Z
is acyclic.

Every homology class x ∈ πnR̃Z(U) is carried on a finite pointed complex
K in the sense that there is a map α : K → Z(U) and a class y ∈ πnR̃(U)K
such that α∗(y) = x. The map Z → ∗ is a trivial local fibration, so there is a
covering sieve {φ : V → U} for U such that α factors through the cone CK for
K over R in the sense that there are commutative diagrams

K
α //

��

Z(U)

φ∗

��
CK // Z(V )

and hence induced diagrams

R̃(U)K
α∗ //

��

R̃Z(U)

φ∗

��
R̃(V )CK // R̃Z(V )

But then φ∗(x) = φ∗α∗(y) = 0 for all members φ of the covering sieve, so that
x maps to 0 in the associated homology sheaf.

Lemma 1.2. With these definitions, the category s ModR of simplicial R-
modules satisfies the axioms for a proper closed simplicial model category. Every
cofibration is a monomorphism.

Proof. The category s ModR of simplicial R-modules is complete and cocom-
plete, giving CM1. The weak equivalence axiom CM2 and the retract axiom
CM3 are both trivial to verify.

The maps RY → RLU∆n freely associated to the simplicial presheaf inclu-
sions Y ⊂ LU∆n generate the cofibrations. There is a set of generating trivial
cofibrations A ⊂ B for the closed model structure on the category s Pre(C) of
simplicial presheaves, and the induced maps RA → RB generate the trivial
cofibrations of the simplicial R-module category; all such maps RA → RB are
weak equivalences by Lemma 1.1. The factorization axiom CM5 follows, by a
standard transfinite induction, and then CM4 is a formal consequence in the
usual way. It also follows that every cofibration is a retract of a monomorphism
and is hence a monomorphism.

The function complex hom(A, B) is the simplicial R-module having n-simp-
lices consisting of all simplicial R-module maps A⊗R∆n → B. The simplicial
presheaf BK is defined in sections by

BK(U) = hom(K, Y (U))
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for a simplicial set K and a simplicial R-module B. The object BK inherits the
structure of a simplicial R-module from B. Also, if p : A → B is a fibration of
simplicial R-modules and i : K → L is a cofibration of simplicial sets, then the
induced map of simplicial R-modules

(i∗, p∗) : AL → AK ×BK BL

is a fibration of simplicial R-modules, which is trivial if either i is a weak equiv-
alence of simplicial sets or p is a weak equivalence of simplicial R-modules. This
follows from the corresponding statement for simplicial presheaves. In particu-
lar, the category s ModR has a closed simplicial model structure.

Weak equivalences are preserved by pullback along fibrations because this is
true in the simplicial presheaf category, and one shows that weak equivalences
are preserved by pushout along cofibrations by looking at induced long exact
sequences arising from pushouts of Moore complexes, where we note that the
free R-module functor preserves monomorphisms.

Lemma 1.3. With the definitions given above, the simplicial R-module tensor
product ⊗ gives the category s ModR of simplicial abelian groups the structure
of a monoidal proper closed simplicial model category.

Proof. We will only verify that the closed model structure is monoidal. For
this, it is enough to take cofibrations i : K ⊂ L and j : X ⊂ Y of simplicial
presheaves, and show that the induced map

(RL⊗RX) ∪(RK⊗RX) (RK ⊗RY )→ RL⊗RY (1.1)

is a cofibration of simplicial R-modules which is trivial if either i or j is a weak
equivalence of simplicial presheaves.

But there is a natural isomorphism

RX ⊗RK ∼= R(X ×K)

and so the map (1.1) is isomorphic to the map

R((L×X) ∪(K×X) (K × Y ))→ R(L× Y )

which is induced by applying the free R-module functor to the cofibration

(L×X) ∪(K×X) (K × Y ) ⊂ L× Y (1.2)

which is induced by i and j. It follows that the map (1.1) is a cofibration. The
map (1.2) is a trivial cofibration of simplicial presheaves if either i or j is trivial,
so the same is true of the map (1.1).

Remark 1.4. One can use a spectral sequence argument to show that the
functor A 7→ X ⊗A preserves weak equivalences of simplicial R-modules.
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The Dold-Kan correspondence (N, Γ) [3] is used to give the category of
positively graded R-chain complexes Ch+(ModR) the structure of a monoidal
proper closed simplicial model category. In effect, say that a map f : C → D
of R-chain complexes is a weak equivalence (respectively fibration, cofibration)
if the induced map f∗ : ΓC → ΓD is a weak equivalence (respectively fibration,
cofibration) of simplicial R-modules. Then we have

Lemma 1.5. With these definitions, the category Ch+(ModR) of chain com-
plexes of R-modules, together with the tensor product functor ⊗ has the structure
of a monoidal proper closed simplicial model category. The functors Γ and N
induce an equivalence of homotopy categories

Ho(Ch+(ModR)) ≃ Ho(s ModR).

Remark 1.6. The simplicial R-module tensor product gives the R-chain com-
plex category Ch+(ModR) the structure of a monoidal model category. In effect,
one defines

C ⊗D = N(ΓC ⊗ ΓD).

This is not the standard R-chain complex tensor product.

Recall [10] that a map p : F → G of presheaves on the site C is said to be
a local epimorphism if for all x ∈ G(U) there is a covering sieve R ⊂ hom( , U)
such that φ∗(x) = p(yφ) for all φ ∈ R. A pointwise epimorphism is a map
f : C → D of presheaves such that all maps of sections f : C(U) → D(U) are
surjective.

We shall need to know that every global fibration p : X → Y of simplicial
presheaves induces Kan fibrations p : X(U) → Y (U) of simplicial sets in all
sections [10].

Lemma 1.7. 1) Suppose that p : C → D is a fibration of Ch+(ModR). Then
p : Cn → Dn is a pointwise epimorphism for all n ≥ 1.

2) Suppose p : C → D is a trivial fibration of Ch+(ModR). Then p : Cn →
Dn is a pointwise epimorphism for n ≥ 0, and the kernel of p is acyclic
in each section.

Proof. If p is a fibration, then all induced maps ΓC(U) → ΓD(U) in sections
are fibrations, so all lifting problems

Λn
n

0 //

��

ΓC(U)

p∗

��
∆n

x
//

;;

ΓD(U)

can be solved for x ∈ Dn(U) = NΓDn(U), giving the first statement.
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If p : C → D is an acyclic fibration with kernel K, then each map ΓK(U)→ 0
is a trivial fibration of simplicial sets, so that K(U) must be acyclic. Also, all
lifting problems above can be solved, and the lifting problem

∅ //

��

ΓC(U)

p∗

��
∆0

x
//

;;

ΓD(U)

for x ∈ D0(U) = ND0(U) = ΓND0(U) has a solution, so that p is surjective in
degree 0.

Remark 1.8. The converse of both statements of Lemma 1.7 hold for ordi-
nary chain complexes of modules over a ring, with the result that the model
structure of Lemma 1.5 specializes to the standard model structure for these
objects [15]. This is not true in general for presheaves of chain complexes: the
presheaves of Kan complexes K(A, n), for example, are almost never globally
fibrant since they represent sheaf cohomology in the homotopy category of sim-
plicial presheaves.

If X and Y are pointed simplicial presheaves, then the pushout square

R(X ∨ Y ) //

��

R(X × Y )

��
R∗ // R(X ∧ Y )

can be used to show that there is a natural exact sequence

R(X ∨ Y )→ R(X × Y )→ R̃(X ∧ Y )→ 0

At the same time, it is easily seen that there is an exact sequence

0→ (RX ⊗R∗) + (R ∗ ⊗RY )→ RX ⊗RY → R̃X ⊗ R̃Y → 0

It follows that there is an isomorphism of simplicial R-modules

R̃(X ∧ Y ) ∼= R̃X ⊗ R̃Y

and that this isomorphism is natural in pointed simplicial presheaves X and Y .

If C is a R-chain complex and n ∈ Z, identify C with a Z-graded R-chain
complex by inserting 0 in negative degrees, and define C[n] to be the R-chain
complex with

C[n]p =

{

Cp+n for p > 0

ker∂ : Cn → Cn−1 if p = 0.
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In other words C[−n] shifts n times while C[n] is the good truncation if n ≥ 0.
If n > 0 there are natural isomorphisms

C[−n] ∼= C ⊗R[−n] ∼= C ⊗R[−1]⊗n

where the R-chain complex R[−n] consists of a copy of the ring R concentrated
in degree n. In this case, the displayed tensor product is the ordinary R-chain
complex tensor product.

Recall that there is a natural isomorphism

N(WA) ∼= (NA)[−1]

for simplicial R-modules A, where A 7→ WA is Eilenberg-Mac Lane W con-
struction. We shall also use the fact [12, IV.4] that there is an isomorphism of
R-chain complexes

N(WA) ∼= (NA)[−1]

which is natural in simplicial R-modules A.

Lemma 1.9. The shift functor A 7→ A[−1] preserves cofibrations of R-chain
complexes.

Proof. It is enough to show that any cofibration of simplicial presheaves j : K →
L induces a cofibration j∗ : (NRK)[−1] → (NRL)[−1] of R-chain complexes.
In order to do this, we show that the map j∗ : WRK → WRL is a cofibration
of simplicial R-modules.

We have a natural isomorphism

RX ∼= R̃(X+)

where X+ denotes X with a disjoint base point attached. There is also a natural
isomorphism

WR̃Y ∼= R̃(ΣY )

for pointed simplicial presheaves Y , where ΣY denotes the Kan suspension of Y
[12]. If j : X → Y is a pointed cofibration (respectively trivial cofibration), then
the induced map j∗ : ΣX → ΣY is a cofibration (respectively trivial cofibration)
of pointed simplicial sets. Finally, the functor X 7→ R̃X is left adjoint to the
inclusion of simplicial R-modules (pointed by 0) in pointed simplicial presheaves,
and hence takes pointed cofibrations to cofibrations of simplicial R-modules.

2 Z-graded chain complexes

A R-chain complex spectrum A consists of R-chain complexes An, n ≥ 0, and
R-chain maps σ : An[−1]→ An+1. A morphism f : A→ B of R-chain complex
spectra consists of R-chain maps f : An → Bn which respect structure in the
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sense that the diagram

An[−1]
σ //

f [−1]

��

An+1

f

��
Bn[−1] σ

// Bn+1

Write Spt(Ch+(ModR)) for the category of R-chain complex spectra. This
category is complete and cocomplete.

Say that a map f : C → D of R-chain complex spectra is a strict weak
equivalence (respectively strict fibration) if all constituent maps f : Cn → Dn

are weak equivalences (respectively fibrations) of R-chain complexes.
A morphism g : A → B of R-chain complex spectra is a cofibration if the

following hold:

1) the R-chain map g : A0 → B0 is a cofibration of R-chain complexes, and

2) the morphisms
Bn[−1] ∪An[−1] An+1 → Bn+1

are cofibrations of R-chain complexes.

It follows from Lemma 1.9 that all maps g : An → Bn are cofibrations of R-chain
complexes if g is a cofibration of R-chain complex spectra.

Lemma 2.1. The category Spt(Ch+(ModR)), together with the definition of
strict weak equivalence, strict fibration and cofibration given above, satisfies the
axioms for a proper closed model category.

Proof. The axioms CM1, CM2 and CM3 are trivial to verify. The factor-
ization axiom CM5 and the lifting axiom CM4 are verified directly, as for
ordinary spectra. The properness assertion follows from properness for the R-
chain complex category Ch+(ModR).

The identification of an ordinary R-chain complex C with an integer graded
R-chain complex by inserting 0 in all negative degrees defines a fully faithful
functor i0 : Ch+(ModR) → Ch(ModR) with right adjoint T0 : Ch(ModR) →
Ch+(ModR) defined by the good truncation in degree 0. This means that

T0Ep =











Ep if p > 0,

ker ∂ : E0 → E−1 if p = 0,

0 if p < 0.

Observe that T0 preserves quasi-isomorphisms. There are analogously defined
good truncation functors Tn for all n ∈ Z. Note that the adjoint (and inverse)
of the shift functor E 7→ E[n] on Ch(ModR) is the shift F 7→ F [−n].

Suppose that A is a R-chain complex spectrum. Then the bonding mor-
phisms σ : An[−1]→ An+1 induce a string of morphisms

i0A
0 → (i0A

1)[1]→ (i0A
2)[2]→ · · ·

10



Write SA for the filtered colimit of this diagram of complexes in Ch(ModR).
Say that a map f : A → B of R-chain complex spectra is a stable equivalence
if and only if it induces a homology isomorphism f∗ : SA → SB of Z-graded
R-chain complexes. The following is a trivial observation:

Lemma 2.2. Every strict weak equivalence of Spt(Ch+(ModR)) is a stable
weak equivalence.

Suppose that E is an object of Ch(ModR). Then the good truncations TnE,
n ≤ 0 line up in a diagram

T0E → T−1E → T−2E → · · ·

with colimit E. These morphisms therefore determine a sequence of R-chain
complexes

(T−nE)[−n] = T0(E[−n])

and maps of R-chain complexes

(T−n+1E)[−n + 1][−1]→ (T−nE)[−n].

These constructions are functorial in Z-graded R-chain complexes E, so that
we have a functor T : Ch(ModR)→ Spt(Ch+(ModR)). Observe that there is a
natural isomorphism

ǫ : STE
∼=
−→ E (2.1)

induced by taking colimits, for all Z-graded R-chain complexes E. There is also
a natural morphism of R-chain complex spectra

η : A→ TSA (2.2)

which is induced by the canonical map i0A
n[n]→ SA.

There is a natural commutative triangle

SA
Sη //

1 ##H
HH

HH
HH

HH
STSA

ǫ∼=

��
SA

(2.3)

It follows that Sη is an isomorphism for all A, so that η : A→ TSA is a stable
equivalence for all R-chain complex spectra A. In particular, f : A → B is a
stable equivalence if and only if the induced map f∗ : TSA → TSB is a strict
equivalence. Also, applying T to the diagram shows that TSη is an isomorphism
for all A. We have in particular proved the following

Lemma 2.3. The maps ηTSA, TSηA : TSA→ (TS)2A are strict weak equiva-
lences for all R-chain complex spectra A.
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Say that a map p : C → D of Spt(Ch+(ModR)) is a stable fibration if it has
the right lifting property with respect to all maps which are cofibrations and
stable equivalences.

Suppose that A is a R-chain complex. There is a R-chain complex spectrum
FnA such that

(FnA)p =

{

0 if p < n,

A[n− p] if p ≥ n.

There is a natural bijection

hom(FnA, B) ∼= homCh+(ModR)(A, Bn)

If i : A → B is a cofibration of R-chain complexes, then i∗ : FnA → FnB is
a cofibration of R-chain complex spectra which is strictly trivial if i is a quasi-
isomorphism. A stable fibration p : X → Y has the right lifting property with
respect to all maps which are cofibrations and strict weak equivalences. All
of its constituent maps p : Xn → Y n must therefore be fibrations of R-chain
complexes. In other words, every stable fibration is a strict fibration.

Suppose that p : C → D is a strict fibration with kernel K. Then p : Cn →
Dn is pointwise surjective above degree 0 for all n. Factorize p as

Cn
π //

p
!!C

CC
CC

CC
C

En

j

��
Dn

for all n, such that π is epi and j is monic. Then the maps π and j define
morphisms of R-chain complex spectra, and j : E → D is a stable equivalence.
It follows that every strict fibre sequence

0→ K
i
−→ C

p
−→ D

determines a long exact sequence

· · · → Hn+1SD
∂
−→ HnSK

i∗−→ HnSC
p∗
−→ HnSD

∂
−→ · · · (2.4)

in homology sheaves (aka. sheaves of stable homology groups).
If i : A → B is a cofibration then i : An → Bn is a cofibration of R-chain

complexes and hence a monomorphism for all n. Then if C is the cokernel of i
there is an induced long exact sequence

· · · → Hn+1SC
∂
−→ HnSA

i∗−→ HnSB
p∗
−→ HnSC

∂
−→ · · · (2.5)

in homology sheaves.
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Lemma 2.4. 1) Suppose given a pullback square

A×D C
g∗ //

��

C

p

��
A g

// D

in which p is a stable fibration and g is a stable equivalence. Then g∗ is a
stable equivalence.

2) Suppose given a pushout square

A
f //

i

��

C

��
B

f∗

// B ∪A C

in which i is a cofibration and f is a stable equivalence. Then f∗ is a
stable equivalence.

Proof. This follows from the long exact sequences (2.4), (2.5) for strict fibrations
and cofibrations displayed above. Recall that every stable fibration is a strict
fibration.

We have now assembled a proof of the following

Theorem 2.5. The category Spt(Ch+(ModR)) together with the classes of cofi-
brations, stable weak equivalences and stable fibrations as defined above, satisfies
the axioms for a proper closed model category.

Proof. This is a consequence of Lemma 2.2, Lemma 2.3 and Lemma 2.4, together
with Theorem X.4.1 of [3].

One can show that the triangle of functors

TC
η //

1 $$H
HH

HH
HH

HH
TSTC

Tǫ

��
TC

(2.6)

commutes — this follows from the commutativity of the triangle (2.3), plus the
fact that ǫ is a natural isomorphism: one applies the functor S to the diagram
(2.6) to show that it commutes. It follows that the stabilization functor S is
left adjoint to the truncation functor T .

The game is now to find a model structure on the full R-chain complex
category Ch(ModR) such that the functors S and T form a Quillen equivalence.
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The weak equivalences are obvious: these should be the quasi-isomorphisms,
meaning the maps which induce isomorphisms in all homology sheaves.

We want the functor T to take fibrations to stable fibrations. We know that
a map p : A→ B of Spt(Ch+(ModR)) is a stable fibration if and only if it is a
strict fibration and the diagram

A
ηA //

p

��

TSA

p∗

��
B ηB

// TSB

is a strict homotopy cartesian diagram [3, IV.4.8]. But the map ηTC : TC →
TSTC is an isomorphism, so it is enough to define a map f : C → D in
Ch(ModR) to be a fibration if and only if all induced maps (T−nC)[−n] →
(T−nD)[−n] are fibrations of R-chain complexes. A cofibration of Ch(ModR)
is a map which has the left lifting property with respect to all maps which are
fibrations and quasi-isomorphisms.

Theorem 2.6. With these definitions, the category Ch(ModR) of Z-graded R-
chain complexes has the structure of a proper closed model category. The func-
tors S and T form a Quillen equivalence

S : Ho(Spt(Ch+(ModR)))
≃

⇆ Ho(Ch(ModR)) : T

Proof. The axioms CM1 – CM3 are trivial. A map f is a weak equivalence
of Ch(ModR) if and only if the induced map Tf is a strict weak equivalence; it
follows that the functor S preserves cofibrations.

There are generating sets I of cofibrations and J of trivial cofibrations for the
strict model structure on Spt(Ch+(ModR)). It follows that a R-chain complex
map f : C → D is a fibration (respectively trivial fibration) if and only if it has
the right lifting property with respect to all maps Si : SA→ SB associated to
maps i : A→ B in the generating set I (respectively in the set J).

By a small object argument, every R-chain complex map f : C → D has
factorizations

D
i //

j

��

f

  @
@@

@@
@@

E

p

��
F q

// D

where p is a fibration and i is a trivial cofibration which has the left lifting
property with respect to all fibrations, and q is a trivial fibration and j is a
cofibration. This gives CM5, and CM4 follows by a standard argument.

The functors S and T both preserve weak equivalences in the respective
model structures, the adjunction map η : A→ TSA is a stable equivalence, and
the adjunction map ǫ : STC → C is an isomorphism. These observations
guarantee that the functors T and S form a Quillen equivalence — see [4,
p.19].
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This section closes with the statement and proof of a descent result for chain
complexes of injective sheaves which are bounded above. The following result
implies, for example (see Remark 2.8 below), that sheaf cohomology can be
recovered from the model structures discussed in Lemma 1.5 and Theorem 2.6.
The basic point behind the proof has been understood for some time [1], [8],
but has not been expressed in the present form before. The proof given here
is a sketch — the technology of Brown’s categories of fibrant objects [1] lurks
behind — but an attempt has been made for completeness, for the benefit of
the reader.

Theorem 2.7. Suppose that I is a Z-graded chain complex of R-modules such
that all objects Ip are injective sheaves of R-modules and such that Ip = 0 for
p > 0. Suppose that f : I → J is a weak equivalence such that J is fibrant. Then
the induced maps I(U)→ J(U) are homology isomorphisms for all objects U of
the site C. The weak equivalence f induces homology isomorphisms Γ∗I → Γ∗J
in global sections.

Proof. Suppose that A is a chain complex which is concentrated in non-negative
degrees in the sense that Aq = 0 for q < 0. Then the bicomplex

hom(A, I)p,q = hom(Ap, I−q)

has a total complex Tot hom(A, I) with homology

Hn Tot(A, I) = π(A, T0(I[−n]))

where π( , ) denotes chain homotopy classes of maps. The functors hom( , Iq)
are exact, so there is a spectral sequence with

Ep,q
2 = Hq hom(HpA, I−∗)⇒ π(A, T0(I[−p− q])),

where HpA denotes the pth homology sheaf of A (this is where we require that
the modules Ip are sheaves). It follows that the functors A 7→ π(A, T0(I[−n]))
take weak equivalences in A to isomorphisms.

Say that a chain map π : C′ → C which is a weak equivalence and induces
a sheaf epimorphism in all degrees is a local trivial fibration. Any local trivial
fibration π induces a map

π(C′, D)→ [C, D]

which is defined on chain homotopy classes of maps from C′ to D and takes
values in morphisms [C, D] in the derived category: this map is defined by taking
a chain map represented by f : C′ → D to the map f∗π

−1
∗ in the homotopy

category. The collection of all such maps defines a morphism

φC,D : lim−→
C′

[π]
−−→D

π(C′, D)→ [C, D].

where the colimit is defined on the comma category of chain homotopy classes of
maps C′ → D which are represented by local trivial fibrations. In the presence
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of the model structure of Lemma 1.5, it is an exercise to show that this colimit
is filtered (although it is an avatar of a much more general calculus of fractions
argument [1]).

One also knows that every chain map g : D → D′ has a factorization

D
g //

σ
��@

@@
@@

@@
D′

E

π

>>}}}}}}}}

where π is a local fibration in the sense that it induces a sheaf epimorphism in all
degrees greater than 0 and σ is a section of a trivial local fibration. In particular,
if g is a weak equivalence, then π is a trivial local fibration. The existence of this
factorization is a basic property of Brown’s categories of fibrant objects (see [1]
again), but it’s really just an instance of the standard replacement of a map by
a fibration up to weak equivalence which holds formally in the chain complex
setting. The factorization can be used to show that every weak equivalence
g : D → D′ induces an isomorphism

lim
−→

C′
[π]
−−→D

π(C′, D) ∼= lim
−→

C′
[π′]
−−→D

π(C′, D′),

because g can be replaced by a trivial local fibration.
One then verifies that the map πC,D is an isomorphism in general. In effect,

there is a weak equivalence D → D′ where D′ is fibrant for the model structure of
Lemma 1.5, and the map φC,D′ is an isomorphism since Lemma 1.7 implies that
the chain homotopy classes represented by local trivial fibrations π : C′ → C
with C′ cofibrant are cofinal in the filtered system.

Suppose that f : I → J is a weak equivalence such that J is fibrant. Suppose
that the chain complex A is cofibrant. Then all chain complexes T0(J [−n]) are
fibrant and there are commutative diagrams of isomorphisms

π(A, T0(I[−n])) //

∼=

��

π(A, T0(J [−n]))

∼=

��
[A, T0(I[−n])]

∼=
// [A, T0(J [−n])]

(2.7)

For each object U of the site C, the presheaf of chain complexes R(U)[q] consist-
ing of the free R-module R(U) concentrated in degree q is cofibrant. It follows
that all ordinary chain complex maps in sections

T0(I[−n])(U)→ T0(J [−n])(U)

are homology isomorphisms for all objects U of C, and hence that all maps
I(U)→ J(U) of ordinary Z-graded complexes are homology isomorphisms.

The claim about the homology isomorphism in global sections arises from
the diagram (2.7) in the same way, by using the cofibrant object A = R[q]
consisting of a copy of R concentrated in degree q.
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Remark 2.8. Theorem 2.7 has many consequences, including the fact that
fibrant resolutions can be used to define sheaf cohomology. In particular, if B
is a sheaf of R-modules, then an injective resolution

B → I0 → I−1 → I−2 → . . .

in the category of sheaves of R-modules can be viewed as a chain complex
concentrated in negative degrees, as displayed. Then the qth sheaf cohomology
group Hq(C, B) of the site C with coefficients in B can be defined by

Hq(C, B) = H−qΓ∗I.

Theorem 2.7 implies that if B[0]→ J is a weak equivalence with J fibrant, then
there is an isomorphism

Hq(C, B) = H−qΓ∗J.

In other words, in the language of spectra, sheaf cohomology with coefficients
in B appears as stable homotopy groups of global sections of a stably fibrant
model J of the Eilenberg-Mac Lane object B[0].

3 Simplicial module spectra

Suppose that K is a pointed simplicial presheaf and that A is a simplicial R-
module. Write

K ⊗A = R̃K ⊗A.

In this notation, if L is a second pointed simplicial set, then there is an isomor-
phism of simplicial R-modules

K ⊗ R̃L ∼= R̃(K ∧ L).

A simplicial R-module spectrum A consists of simplicial R-modules An, n ≥
0, together with simplicial R-module homomorphisms σ : S1 ⊗ An → An+1,
which are often called bonding maps. A morphism of f : A → B of simplicial
R-module spectra consists of simplicial R-module homomorphisms f : An → Bn

which respect structure in the sense that the following diagram commutes:

S1 ⊗An σ //

S1
⊗f

��

An+1

f

��
S1 ⊗ Bn

σ
// Bn+1

The simplicial R-module spectra and their morphisms form a category, which
will be denoted by Spt(s ModR). This category is complete and cocomplete.

A morphism f : A→ B of simplicial R-module spectra is said to be a strict
weak equivalence (respectively strict fibration) if all maps f : An → Bn are weak
equivalences (respectively fibrations) of simplicial R-modules. A map i : C → D
is said to be a cofibration if

17



1) the map i : C0 → D0 is a cofibration of simplicial R-modules, and

2) all maps
S1 ⊗Dn ∪S1⊗Cn Cn+1 → Dn+1

are cofibrations of simplicial R-modules.

Lemma 3.1. With these definitions of strict weak equivalence, strict fibration
and cofibration, the category Spt(s ModR) satisfies the axioms for a proper
closed simplicial model category.

Proof. The assertion that Spt(s ModR) is a proper closed model category follows
from the standard argument (see the proof of Lemma 2.1). For this we need
to know that if i : A → B is a cofibration (respectively trivial cofibration)
of simplicial R-modules, then the induced map i∗ : S1 ⊗ A → S1 ⊗ B is a
cofibration (respectively trivial cofibration). More generally, the functor A 7→
X ⊗ A preserves cofibrations and trivial cofibrations since

X ⊗RK ∼= X ⊗ R̃(K+) ∼= R̃(X ∧K+)

and the functor K 7→ X ∧K+ preserves cofibrations and trivial cofibrations of
simplicial presheaves. Finally, the free R-module functor X 7→ RX preserves
weak equivalences of simplicial presheaves by Lemma 1.1.

The simplicial structure is given by the functors A 7→ A⊗K and the func-
tors B 7→ BK = hom(K, A); the latter is defined for simplicial presheaves K
in the simplicial presheaf category. The n-simplices of the function complex
hom(A, B) are the morphisms A ⊗ ∆n → B. As in the simplicial R-module
case, Quillen’s axiom SM7 is most easily proved by observing that if p : A→ B
is a strict fibration and K ⊂ L is an inclusion of simplicial presheaves, then the
induced map

AL → BL ×BK AK

is a strict fibration, on account of the validity of SM7 in the simplicial presheaf
category.

It follows from Lemma 4.48 of [12, p.120] that there is a natural homotopy
equivalence of simplicial R-modules

S1 ⊗A ≃WA. (3.1)

In effect, there is an isomorphism S1⊗A ∼= Z̃S1⊗Z A with R-module structure
coming from A, while WA is formed in the simplicial abelian group category.
The quoted result implies a natural homotopy equivalence of simplicial abelian
groups, and one checks that the data for the homotopy equivalence is R-linear;
the most efficient way to do this is to compare coend constructions for the
functors A 7→ S1 ⊗A and A 7→WA.

The existence of the natural homotopy equivalence (3.1) means that there
are natural transformations

S1 ⊗A
µ
−→WA

ν
−→ S1 ⊗A
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and natural homotopies h : S1 ⊗ A ⊗∆1 → S1 ⊗ A from ν · µ to the identity,
and H : WA⊗∆1 →WA from µ · ν to the identity on WA.

Every simplicial R-module spectrum A determines a R-chain complex spec-
trum NA. The R-chain complex NAn is the normalized complex of the simpli-
cial R-module An as the notation suggests, and the bonding map σ : S1⊗An →
An+1 induces a composite

NAn[−1] ∼= NWAn ν∗−→ N(S1 ⊗An)
Nσ
−−→ NAn+1

This assignment determines a functor

N : Spt(s ModR)→ Spt(Ch+(ModR))

which preserves strict fibrations and strict weak equivalences. Simlarly, if C is
a R-chain complex spectrum, then there is a composite

S1 ⊗ ΓCn µ
−→WΓCn ∼= Γ(Cn[−1])

Γσ
−−→ ΓCn+1

and so there is an induced functor

Γ : Spt(Ch+(ModR))→ Spt(s ModR).

The functor Γ plainly preserves strict weak equivalences and strict fibrations.

Lemma 3.2. The functors N and Γ induce an equivalence

Hostrict(Spt(Ch+(ModR))) ≃ Hostrict(Spt(s ModR))

of strict homotopy categories.

Proof. See the proof of Theorem 4.52 of [12]. We use a telescope construction
in the categories of R-chain complex and simplicial R-module spectra to show
that there are natural strict weak equivalences

B
≃
←− TB

≃
−→ NΓB

for cofibrant objects B in Spt(Ch+(ModR)) and natural strict weak equivalences

A
≃
←− TA

≃
−→ ΓNA

for cofibrant simplicial R-module spectra A.

The relation between the functors N and Γ can be expressed in a different
way. First of all, there is the following

Lemma 3.3. 1) The canonical map η : A→ Ω(S1⊗A) of simplicial abelian
groups is a weak equivalence.

2) The canonical map ǫ : S1 ⊗ ΩA → A induces an isomorphism in πn for
n ≥ 1.
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Proof. For the first statement, the functor B 7→ S1⊗B shifts homotopy groups
so that a triangle identity implies that η is a split monomorphism in all homotopy
groups. By truncating suitably, it’s enough to show that η is an isomorphism
in all homotopy groups for simplicial abelian groups of the form K(C, n). If
C is a copy of Z or is a finite abelian group, then η is an isomorphism in
homotopy groups for K(C, n). Both functors involved in η preserve fibrations
and filtered colimits of simplicial R-modules, so that η is an isomorphism in π∗

for all K(C, n) with C finitely generated, and hence for all C.
The second statement is an easy consequence of the first.

Corollary 3.4. 1) The canonical map η : A → Ω(S1 ⊗ A) of simplicial R-
modules is a strict weak equivalence.

2) The canonical map ǫ : S1⊗ΩA→ A induces an isomorphism in homotopy
group sheaves πn for n ≥ 1.

Suppose given a simplicial R-module homomorphism σ : A → ΩB. The
natural composition

WΩB
ν
−→ S1 ⊗ ΩB

ǫ
−→ B

induces a natural R-chain map ν∗ : NΩB → (NB)[1] by adjointness, and there
is more generally a commutative diagram

NA
∼= //

Nσ

��

NA[−1][1]
∼= // NWA[1]

Nν[1]// N(S1 ⊗A)[1]

Nσ∗[1]

��
NΩB ν∗

// NB[1]

(3.2)

for any morphism σ : A→ ΩB. The composite ν∗ ·Nσ : NA→ NB[1] therefore
coincides with the adjoint of the map NA[−1] → NB which is induced by the
map σ∗ : S1 ⊗A→ B. The picture (3.2) and Corollary 3.4 together imply that
the map ν∗ : NΩB → NB[1] is a quasi-isomorphism.

Suppose that K and L are pointed simplicial presheaves and that A is a
simplicial R-module. The functor K 7→ R̃K is left adjoint to the forgetful
functor A 7→ uA from simplicial R-modules to pointed simplicial presheaves,
where uA is pointed by 0. There is a natural map

γ : K ∧ uA→ u(R̃K ⊗A) = u(K ⊗A)

which is given in sections by the assignment k ∧ a 7→ k ⊗ a. This map is initial
among all maps f : K ∧ uA→ uB which determine R-module homomorphisms
a 7→ f(x ∧ a) in all degrees. In other words, given such a map f , there is a
unique simplicial R-module homomorphism f∗ : R̃K ⊗A→ B which makes the
diagram

K ∧ uA
γ //

f
&&MMMMMMMMMMM

u(K ⊗A)

uf∗

��
uB
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commute.
The adjunction map ǫ : S1⊗hom(S1, B)→ B can be defined as the unique

simplicial R-module homomorphism which makes the diagram

S1 ∧ uhom(S1, B)

γ

��

= // S1 ∧ hom(S1, uB)

ev

��
u(S1 ⊗ hom(S1, B)) uǫ

// uB

commute, where ev is the standard evaluation map. It follows that there is a
commutative diagram

uB
η //

uη

��

hom(S1, S1 ∧ uB)

γ∗

��
uhom(S1, S1 ⊗B) =

// hom(S1, u(S1 ⊗B))

(3.3)

relating the simplicial presheaf and simplicial R-module adjunction maps η. The
simplicial presheaf adjunction uA→ hom(S1, uB) of the composite

S1 ∧ uA
γ
−→ u(S1 ⊗A)

uσ
−−→ uB

therefore coincides with the simplicial presheaf map underlying the simplicial
R-module adjoint σ∗ : A → hom(S1, B) of the simplicial R-module homomor-
phism σ : S1 ⊗A→ B.

There is a natural commutative diagram

K ∧ L
1∧η //

η

��

K ∧ uR̃L

γ

��
uR̃(K ∧ L)

∼=

uc
// u(R̃K ⊗ R̃L)

(3.4)

where c : R̃(K ∧ L) → R̃K ⊗ R̃L is the canonical isomorphism. It follows by
adjointness that there is a commutative diagram

R̃(K ∧ uA)
c
∼=

//

R̃γ

��

R̃K ⊗ R̃uA

1⊗ǫ

��
R̃u(R̃K ⊗A) ǫ

// R̃K ⊗A

(3.5)

There are also natural commutative diagrams

K ∧ L ∧ uA
1∧γ //

γ

��

K ∧ u(L⊗A)

γ

��
u((K ∧ L)⊗A)

u(c⊗1)

∼= // u(K ⊗ L⊗A)

(3.6)
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The forgetful functor u and the reduced free R-module functor R̃ determine
functors

u : Spt(s ModR)→ Spt

and
R̃ : Spt→ Spt(s ModR).

Here, Spt denotes the category of presheaves of spectra on the site C. Explicitly,
if A is a simplicial R-module spectrum, then uA is the presheaf of spectra with
(uA)n = u(An), and with bonding maps

S1 ∧ uAn γ
−→ u(S1 ⊗An)

uσ
−−→ uAn+1.

Also, if X is a presheaf of spectra then R̃X is the simplicial R-module spectrum
with (R̃X)n = R̃(Xn), and having bonding maps

S1 ⊗ R̃Xn ∼=
−→ R̃(S1 ∧Xn)

R̃σ
−−→ R̃Xn+1

It follows from the commutativity of the diagram (3.5) that the adjunction maps
ǫ : R̃uAn → An for a simplicial R-module spectrum A assemble to give a natural
map

ǫ : R̃uA→ A

of simplicial R-module spectra. Similarly, it follows from the commutativity of
the diagram (3.4) that the maps η : Xn → uR̃Xn for a presheaf of spectra X
determine a natural map of spectra

η : X → uR̃X.

In particular, the spectrum level functor R̃ is left adjoint to the spectrum level
version of the forgetful functor u.

The forgetful functor u preserves strict weak equivalences and strict fibra-
tions, while the functor R̃ preserves strict weak equivalences and cofibrations.

Say that a map f : A → B is a stable weak equivalence (respectively stable
fibration) of simplicial R-module spectra if the underlying map uf : uA → uB
is a stable equivalence (respectively stable fibration) of presheaves of spectra.

Lemma 3.5. The functor X 7→ R̃X preserves stable weak equivalences of pre-
sheaves of spectra X.

Proof. It is enough to show that R̃ takes maps which are cofibrations and stable
equivalences to stable equivalences of simplicial R-module spectra. Suppose that
i : X → Y is a cofibration of spectra with cofibre Y/X . Then the sequence

0→ R̃X → R̃Y → R̃(X/Y )→ 0

is exact in all levels, and hence induces a long exact sequence in sheaves of stable
homotopy groups

· · · → πn+1uR̃(Y/X)
∂
−→ πnuR̃X → πnuR̃Y → πnuR̃(Y/X)

∂
−→ · · ·
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It suffices, therefore, to show that π∗uR̃Z = 0 if π∗Z = 0, for all spectra Z.
We can assume that Z is level fibrant. Since π∗Z = 0, the presheaf of

spectra QZ consists of simplicial presheaves QZn such that the maps QZn → ∗
are trivial local fibrations. It follows that if K is a finite pointed simplicial set,
and α : K → Zn(U) is a pointed simplicial set map, then there is a covering
sieve R ⊂ hom( , U) such that α determines a commutative diagram of maps of
ordinary spectra

Σ∞K[−n]
α // Z(U)

φ∗

��
Σ∞(Sm ∧K)[−n−m]

β
//

≃

OO

Z(V )

where β = 0 in the ordinary stable category: in effect, α factors locally through
the cone CK of K, stably. Thus, any class α : Σ∞K[−n] → Z(U) dies after
refinement along a covering sieve. All elements x of the presheaf of stable
homotopy groups for R̃Z are carried by such maps α, so each presheaf of stable
homotopy groups for R̃Z maps to 0 in its associated sheaf. This means that
π∗uR̃Z = 0, as required.

Theorem 3.6. 1) With the definitions of stable weak equivalence, stable fi-
bration and cofibration given above the category Spt(s ModR) of simplicial
R-module spectra satisfies the axioms for a proper closed simplicial model
category.

2) The functors N and Γ induce an equivalence of associated stable homotopy
categories

Hostable(Spt(Ch+(ModR)) ≃ Hostable(Spt(s ModR)).

Proof. The simplest way to demonstrate the existence of the stable model struc-
ture on Spt(s ModR) begins by recalling [2] that the category of presheaves of
spectra Spt has sets of generating cofibrations and generating trivial cofibra-
tions. Thus, there is a set of trivial cofibrations X → Y of presheaves of spectra
such that a map p : A → B of objects of Spt(s ModR) is a stable fibration
if and only if it has the right lifting property with respect to all induced map
R̃X → R̃Y . Similarly, there is a set of cofibrations U → V of presheaves of
spectra such that p : A → B is a stable fibration and a stable equivalence if
and only if it has the right lifting property with respect to all R̃U → R̃V . The
functor R̃ takes cofibrations of pointed simplicial presheaves to cofibrations of
simplicial R-modules, and hence takes cofibrations of presheaves of spectra to
cofibrations of simplicial R-module spectra. We also know from Lemma 3.5 that
R̃ takes stable equivalences to stable equivalences. It follows that every map
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f : A→ B has a factorization

A
i //

j

��

f

  @
@@

@@
@@

C

p

��
D q

// B

where p is a stable fibration and i is a cofibration and a stable equivalence which
also has the left lifting property with respect to all fibrations, and q is a stable
fibration and a stable equivalence and j is a cofibration. This gives CM5, and
then CM4 by the standard argument. The axioms CM1 – CM3 are trivial
to verify. The axiom SM7 is a consequence of the corresponding axiom for
spectra.

Stable equivalences are preserved by pullback along fibrations, as a result
of the corresponding statement for the category Spt of presheaves of spectra.
Every cofibration i : A → B is a levelwise monomorphism, and such a map
induces a long exact sequence

· · · → πnuA
i∗−→ πnuB → πnu(B/A)

∂
−→ πn−1uA→ . . .

in sheaves of stable homotopy groups (aka. homology groups). A comparison
of long exact sequences is used to show that stable equivalences are preserved
by pushout along cofibrations.

Suppose that A is a simplicial R-module spectrum. Write QAn for the
filtered colimit in the simplicial R-module category of the string of homomor-
phisms

An σ∗−→ ΩAn+1 Ωσ∗−−→ Ω2An+2 → · · ·

Then there is an isomorphism of pointed simplicial presheaves

uQAn ∼= Q(uA)n,

since the simplicial R-module adjoint of a map f : S1 ⊗ B → C coincides as a
map of simplicial presheaves with the adjoint of the composite

S1 ∧ uB
γ
−→ u(S1 ⊗B)

uf
−−→ uC

on account of the commutativity of diagram (3.3). It follows that a map g :
A → B of simplicial R-module spectra is a stable equivalence if and only if all
induced maps g∗ : QAn → QBn of simplicial R-modules are weak equivalences.

The diagram (3.2) implies that there are commutative diagrams of R-chain
maps

NAn Nσ //

σ∗ %%KKKKKKKKKK NΩAn+1

ν∗

��
NAn+1[1]
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where ν∗ is the natural canonical quasi-isomorphism. It follows that g : A→ B is
a stable equivalence of simplicial R-module spectra if and only if g∗ : NA→ NB
is a stable equivalence of R-chain complex spectra. Statement 2) now follows
from the proof of Lemma 3.2.

Lemma 3.7. Any short exact sequence

0→ A
i
−→ B

p
−→ C → 0

in Spt(s ModR) is a stable homotopy fibre sequence in Spt.

Proof. The map p has a factorization

B
p //

j

��

C

D

π

>>~~~~~~~

in Spt(s ModR), where the map j is a stable equivalence and a cofibration and
π is a stable fibration. The map π is an epimorphism (in all sections and levels)
since p is an epimorphism. Let F = ker(π). Then there is a comparison diagram
of short exact sequences

0 // A
i //

j∗

��

B
p //

j

��

C //

1

��

0

0 // F // D π
// C // 0

The resulting comparison in long exact sequences of stable homotopy groups
implies that the induced map j∗ : A→ F is a stable equivalence.

Corollary 3.8. Fibre and cofibre sequences of simplicial R-module spectra co-
incide up to stable equivalence.

Proof. Every cofibre sequence

A
i
−→ X → X/A

is short exact, and is therefore a fibre sequence by Lemma 3.7.
Given a fibre sequence

0→ A
j
−→ X

p
−→ Y,

form the diagram

A
i //

1A

��

X̃ //

π

��

X̃/A

π∗

��
A

j
// X p

// Y

where i is a cofibration and π is a trivial cofibration. This map is a comparison of
fibre sequences by Lemma 3.7, so the induced map π∗ is a stable equivalence.
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Lemma 3.9. Suppose that Ai, i ∈ I is a set of simplicial R-module spectra.
Then the canonical map

ω :
∨

i∈I

uAi → u(
⊕

i∈I

Ai)

is a stable equivalence of spectra.

Proof. The functors on both sides of the transformation ω preserve filtered
colimits in I. The set I is a filtered colimit of its finite subsets, so it suffices to
assume that I is finite. In this case, ω is the canonical equivalence relating a
finite wedge of spectra to the corresponding finite product.

4 Symmetric simplicial module spectra

A symmetric simplicial R-module spectrum A consists of simplicial R-modules
An, n ≥ 0, such that each An has a symmetric group action Σn × An → An.
The object A also comes equipped with bonding maps S1 ⊗ An → An+1 such
that all composites

Sr ⊗An ∼= S1 ⊗ · · · ⊗ S1 ⊗An → Ar+n

are Σr+n-equivariant, where Σr acts by permuting smash factors in the simpli-
cial r-sphere

Sr = S1 ∧ · · · ∧ S1.

A morphism f : A → B of symmetric simplicial R-module spectra consists of
Σn-equivariant simplicial R-module morphisms f : An → Bn which respect the
bonding maps. The resulting category of symmetric simplicial R-module spectra
is denoted by SptΣ(s ModR). This category is complete and cocomplete.

Write SptΣ for the category of presheaves of symmetric spectra. The forget-
ful functor u and the pointed free abelian group functor R̃ determine functors

u : SptΣ(s ModR)→ SptΣ

and
R̃ : SptΣ → SptΣ(s ModR)

as in the ordinary spectrum case. If A is a symmetric simplicial R-module
spectrum, then uA is the presheaf of symmetric spectra with (uA)n = u(An),
and with bonding maps

S1 ∧ uAn γ
−→ u(S1 ⊗An)

uσ
−−→ uAn+1.

The symmetry condition, namely that the composite map

Sr ∧ uAn → uAr+n
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should be (Σr×Σn)-equivariant, is a consequence of the commutativity of (3.6).
If X is a presheaf of symmetric spectra then R̃X is the symmetric simplicial
R-module spectrum with (R̃X)n = R̃(Xn), with bonding maps

Sr ⊗ R̃Xn ∼=
−→ R̃(Sr ∧Xn)

R̃σ
−−→ R̃Xr+n

It follows from the commutativity of the diagram (3.5) that the adjunction maps
ǫ : R̃uAn → An assemble to give a natural map

ǫ : R̃uA→ A

of symmetric simplicial R-module spectra. It follows from the commutativity
of the diagram (3.4) that the maps η : Xn → uR̃Xn determine a natural map
of presheaves of symmetric spectra

η : X → uR̃X.

In particular, the spectrum level functor R̃ is left adjoint to the spectrum level
version of the forgetful functor u.

It is shown in [11] that the category SptΣ has a proper closed simplicial
model structure such that the following properties hold:

1) the cofibrations and weak equivalences are defined levelwise,

2) the fibrations, or injective fibrations, are defined to have the right lifting
property with respect to all maps which are level weak equivalences and
level cofibrations

3) there are generating sets I of trivial cofibrations and J of cofibrations.

The generating set I (respectively J) for the injective model structure on
the category SptΣ of presheaves of symmetric spectra can be described as the
collection of all maps FnK → FnL associated to a generating set of pointed
trivial cofibrations (respectively cofibrations) K → L of simplicial presheaves,
where Fn is the left adjoint to the level n functor X 7→ Xn.

A map f : A → B of symmetric simplicial R-module spectra is a levelwise
weak equivalence (respectively cofibration, fibration) if all maps g : An → Bn are
weak equivalences (respectively cofibrations, fibrations) of simplicial R-modules.

Say that a map f : A → B of symmetric simplicial R-module spectra is an
injective fibration if the underlying map f∗ : uA → uB of presheaves of sym-
metric spectra is an injective fibration. An injective cofibration is a map which
has the left lifting property with respect to all morphisms which are levelwise
weak equivalences and injective fibrations. Observe that all level cofibrations
i : X → Y of presheaves of symmetric spectra induce injective cofibrations
i∗ : R̃X → R̃Y of symmetric simplicial R-module spectra.

Lemma 4.1. The category SptΣ(s ModR) together with the levelwise weak
equivalences, injective fibrations and injective cofibrations, satisfies the axioms
for a proper closed simplicial model category.
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Proof. The existence of the model structure is the standard argument: the sets
R̃I and R̃J give generating families of trivial cofibrations and fibrations for
SptΣ(s ModR).

The simplicial structure is given by the functors A 7→ A⊗ R̃(K+) and B 7→
BK , and the fibration version of Quillen’s axiom SM7 is a consequence of the
corresponding result for presheaves of symmetric spectra.

The generating cofibrations are levelwise cofibrations, so that all cofibra-
tions are levelwise cofibrations. All injective fibrations are levelwise fibrations.
Properness for this model structure on SptΣ(s ModR) therefore follows from
properness for simplicial R-modules.

Remark 4.2. The model structure given in Lemma 4.1 is called the injec-
tive model structure for SptΣ(s ModR). Unlike either symmetric spectra or
presheaves of symmetric spectra, the injective model structure is not used to
construct a stable model structure for the category SptΣ(s ModR) of symmetric
simplicial R-modules. A construction analogous to the injective fibrant model
is, however, required for the proof of Lemma 4.14 below.

We shall need an explicit description of the left adjoint FnA of the level n
functor B 7→ Bn for a simplicial R-module A. First of all, write

A⊗ Σn =
⊕

σ∈Σn

A

Then A⊗Σn, concentrated in degree n is the free symmetric sequence GnA on
the simplicial R-module A, and then FnA is specified by the symmetric sequence
tensor product

FnA = R̃S ⊗GnA

The symmetric spectrum object FnA can also be described at level p by the
identification

(FnA)p = (R̃Sp−n ⊗ (
⊕

σ∈Σn

A))⊗Σp−n×Σn
Σp

For a simplicial R-module B, there is a symmetric simplicial simplicial R-
module spectrum Σ∞B, specified by the sequence of simplicial R-modules

B, S1 ⊗B, S2 ⊗B, . . .

It is clear that F0B = Σ∞B.
The functor B 7→ Σ∞B, interpreted to take values in Spt(s ModR) is left

adjoint to the 0-level functor A 7→ A0 on the category of simplicial R-module
spectra. In general, given a simplicial R-module spectrum A and an integer n,
the spectrum object A[n] is specified in levels by

A[n]k =

{

An+k if n + k ≥ 0

0 if n + k < 0
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If n ≥ 0 then B 7→ Σ∞B[−n] is left adjoint to the level n functor A 7→ An.
There is an obvious functor

UR : SptΣ(s ModR)→ Spt(s ModR)

which forgets the symmetric structure. This functor has a left adjoint VR which
is determined by the assignment

VR(Σ∞A[−n]) = FnA

More generally, every simplicial R-module spectrum B has a layer filtration
B = lim

−→
LnB, where LnB is specified by the sequence

B0, . . . , Bn, S1 ⊗Bn, S2 ⊗Bn, . . .

There are natural pushouts

Σ∞(S1 ⊗Bn)[−n− 1] //

��

LnB

��
Σ∞Bn+1[−n− 1] // Ln+1B

It follows that VR = lim−→VRLnB, where the objects VRLnB are specified induc-
tively by the pushouts

Fn+1(S
1 ⊗Bn) //

��

VRLnB

��
Fn+1B

n+1 // VRLn+1B

Observe that if X is a presheaf of spectra, then

VRR̃X ∼= R̃V X

where V : Spt → SptΣ is the left adjoint to the forgetful functor U : SptΣ →
Spt, as defined in [13].

Lemma 4.3. Suppose that i : A → B is a cofibration of simplicial R-module
spectra. Then the map i∗ : VRA→ VRB is a levelwise cofibration of symmetric
simplicial R-module spectra.

Proof. It is enough to prove the result for cofibrations

VRR̃X → VRR̃Y

arising from cofibrations of presheaves of spectra X → Y . There is a natural
isomorphism

VRR̃X ∼= R̃V X

so the result follows from Lemma 3 of [13].
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A map f : A → B of symmetric simplicial R-module spectra is said to be
a stable equivalence (respectively stable fibration) if the underlying map f∗ :
uA→ uB is a stable equivalence (respectively stable fibration) of presheaves of
symmetric spectra.

Lemma 4.4. Suppose given a pushout diagram

A

i

��

// C

i∗

��
B // D

in SptΣ(s ModR), where i is a level cofibration and a stable equivalence. Then
the map i∗ is a level cofibration and a stable equivalence.

Proof. We only have to show that i∗ is a stable equivalence. The maps i and i∗
have a common cokernel E. The sequence

A
i
−→ B → E

is a stable homotopy fibre sequence of the underlying presheaves of spectra, by
Lemma 3.7, and is therefore a stable homotopy cofibre sequence of presheaves
of symmetric spectra.

This analysis holds for any short exact sequenc, so one can finish the proof
by showing that, given a cofibre sequence

X
j
−→ Y → Y/X

of presheaves of symmetric spectra, the map j is a stable equivalence if and only
if Y/X is stably equivalent to a point.

This last claim follows from a standard argument. Certainly trivial cofi-
brations are preserved by pushout in this category, so that one statement is
obvious. For the other, recall that a map i : A→ B is a weak equivalence if and
only if the induced map i∗ : hom(B, Z) → hom(A, Z) is a weak equivalence
of simplicial sets for all stably fibrant injective objects Z. Any such Z has a
delooping Z ≃ ΩZ[1] (where Z 7→ Z[1] is the symmetric spectrum shift), and
so there is a fibre sequence

hom(B, Z)
i∗

−→ hom(B, Z)→ hom(B/A, Z[1])

→ hom(B, Z[1])
i∗
−→ hom(A, Z[1]).

If B/A is stably trivial, it follows that i∗ : hom(B, Z)→ hom(A, Z) is a map of
H-spaces which induces an isomorphism in all homotopy groups, and is therefore
a weak equivalence.

We shall need to know that the functor Y 7→ Y ∧ X takes stable trivial
cofibrations of presheaves of symmetric spectra to stable equivalences, for any
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presheaf of symmetric spectra X . This is a consequence of the proof of Propo-
sition 4.19 of [14], but see also Theorem 5.3.6 of [7].

If A is a symmetric simplicial R-module spectrum and K is a pointed sim-
plicial presheaf, write A ⊗K for the symmetric simplicial R-module spectrum
A⊗ R̃(K). There is a natural map of presheaves of symmetric spectra

γ : uA ∧K → u(A⊗K) (4.1)

which is defined at level n by the map γ : uAn ∧ K → u(An ⊗ K) discussed
above. The commutativity of the diagram (3.6) implies that the maps γ respect
the symmetric spectrum structures.

Lemma 4.5. Suppose that A is a symmetric simplicial R-module spectrum and
that K is a pointed simplicial presheaf. Then the map

γ : uA ∧K → u(A⊗K)

is a stable equivalence of the underlying presheaves of spectra.

Proof. The map γ is the diagonal of maps of simplicial presheaves of symmetric
spectra

γ : uA ∧Kn → u(A⊗Kn)

and all such maps are stable equivalences by Lemma 3.9.

The tensor product A⊗Σ B of the symmetric simplicial R-module spectra A
and B is defined, by analogy with the smash product of symmetric spectra, as
a coequalizer

R̃S ⊗A⊗B ⇉ A⊗B → A⊗Σ B

in the symmetric sequence category of simplicial R-modules. The defining maps
R̃S ⊗A⊗B are the multiplication map σ ⊗ 1 : R̃S ⊗A⊗B → A⊗B and the
composite

R̃S ⊗A⊗B
τ⊗1
−−→ A⊗ R̃S ⊗A

1⊗σ
−−−→ A⊗B

A map f : A⊗Σ B → C in SptΣ(s ModR) is therefore determined by simpli-
cial R-module homomorphisms fp,q : Ap ⊗ Bq → Cp+q such that the following
diagrams commute:

Sr ⊗Ap ⊗Bq σ⊗1 //

1⊗fp,q

��

Ar+p ⊗Bq

fr+p,q

��
Sr ⊗ Cp+q

σ
// Cr+p+q

Sr ⊗ Ap ⊗Bq τ⊗1 //

σ⊗1

��

Ap ⊗ Sr ⊗Bq 1⊗σ // Ap ⊗Br+q

fp,r+q

��
Ar+p ⊗Bq

fr+p,q

// Cr+p+q
cr,p⊗1

// Cp+r+q
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Here, τ flips tensor factors and cr,p ∈ Σr+p shuffles the first r elements of the
set {1, . . . , r + p} past the last p elements.

In particular, the bonding maps σ : Sp ⊗ Aq → Ap+q assemble to define a
natural isomorphism

σ : R̃S ⊗Σ A
∼=
−→ A

for all symmetric simplicial R-module spectra A.
If Y is a presheaf of symmetric spectra, the composites

uAn ∧ Y m γ
−→ u(An ⊗ Y m)→ u(A⊗ Y )n+m

determine a map γ : uA ∧ Y → u(A ⊗Σ Y ) which is natural in A and Y , and
specializes to the map γ : uA ∧K → u(A⊗K) of (4.1) if Y = Σ∞K.

Observe as well that the functor

K 7→ A⊗Σ Fn(R̃K)

takes pointed cofibrations of simplicial sets K ⊂ L to level cofibrations, since
there are canonical isomorphisms

A⊗Σ Fn(R̃K) ∼= (A⊗Σ Fn(R̃S0))⊗K.

Lemma 4.6. Suppose that A is a symmetric simplicial R-module spectrum.
Then the map

γ : uA ∧ V (S[−r])→ u(A⊗Σ V (S[−r]))

is a stable equivalence of underlying presheaves of spectra.

Proof. The map γ can be identified with the canonical map γ : (uA)[−r] →
u(A[−r]) from the set theoretic r-shift functor to the R-module r-shift functor.
Explicitly,

(uA)[−r]p =
∨

Σp/(Σp−r×Σr)

(uA)p−r ∧ (Σr)+

If we identify Σp/(Σp−r ×Σr) with the set of subsets of cardinality p− r in the
set of numbers p = {1, . . . , p}, then the bonding map

S1 ∧ (uA)[−r]p → (uA)[−r]p+1

is defined on the summand corresponding to a subset I ⊂ r = {1, . . . , r} by the
composite

S1 ∧ (uA)p−r ∧ (Σr)+

σ

��
(uA)p+1−r ∧ (Σr)+ in1⊕s(I)

//
∨

Σp+1/(Σp+1−r×Σr)(uA)p+1−r ∧ (Σr)+,

where the shift map s : {1, . . . , p} → {1, . . . , p + 1} is defined by s(i) = i + 1.
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In general, write TnX = X [−n][n] for a presheaf of spectra X and n ≥ 0, so
that

TnX i =

{

X i if i ≥ n

∗ if i < n.

Then it follows from the analysis above that there is a natural isomorphism of
presheaves of spectra

uA[−r] ∼=(uA ∧ (Σr)+)[−r] ∨ (
∨

(r

1)

Tr+1((uA ∧ (Σr)+)[−r])∨

(
∨

(r+1
2 )

Tr+2((uA ∧ (Σr)+)[−r]) ∨ . . .

A corresponding decomposition

A[−r] ∼=(A⊗ (Σr)+)[−r] ⊕ (
⊕

(r
1)

Tr+1((A⊗ (Σr)+)[−r])⊕

(
⊕

(r+1
2 )

Tr+2((A ⊗ (Σr)+)[−r])⊕ . . .

holds for the symmetric simplicial R-module spectrum shift A 7→ A[−r]. Note,
for example, that

(

r+1
2

)

is the number of 2-element subsets of r+2 which do
not contain the element 1. The map γ : (uA)[−r] → u(A[−r]) is induced in
all summands by the obvious map uA ∧ (Σr)+ → u(A ⊗ (Σr)+), which is a
stable equivalence of underlying presheaves of spectra by Lemma 3.9. It follows
from the same result that γ is a stable equivalence of underlying presheaves of
spectra.

Proposition 4.7. Suppose that X is a cofibrant presheaf of spectra and that A
is a symmetric simplicial R-module spectrum. Then the canonical map

γ : uA ∧ V X → u(A⊗Σ V X)

is a stable equivalence of underlying presheaves of spectra.

Proof. The functors on both sides of the transformation γ preserve cofibre se-
quences of cofibrant presheaves of spectra. In effect, for any presheaf of symmet-
ric spectra Y the functor X 7→ Y ∧ V X preserves cofibre sequences of cofibrant
presheaves of spectra because Y can be replaced up to level equivalence by a
cofibrant model and the functor ? ∧ V X preserves level equivalences since X
is cofibrant. On the other side, any cofibre sequence X → Y → Y/X induces
a level cofibre sequence V X → V Y → V (Y/X) of presheaves of symmetric
spectra, and hence induces an exact sequence

A⊗Σ V X → A⊗Σ V Y → A⊗Σ V (Y/X)→ 0 (4.2)
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Finally, the functor X 7→ A ⊗Σ V X takes cofibrations of the form FnK →
FnL (and hence all cofibrations) to level cofibrations, so the sequence (4.2) is
actually short exact, and is therefore a stable cofibre sequence of the underlying
presheaves of spectra by Lemma 3.7.

The layer filtration LnX for X is defined by pushout squares

Σ∞(S1 ∧Xn)[−n− 1] //

σ∗

��

LnX

��
Σ∞Xn+1[−n− 1] // Ln+1X

in which all maps σ∗ are cofibrations since X is cofibrant. It follows that all
induced maps LnX → Ln+1X are cofibrations and that all objects LnX are
cofibrant. It suffices therefore, by comparing cofibres, to show that all maps

γ : uA ∧ Σ∞K[−r]→ u(A⊗Σ V (Σ∞K[−r]))

are stable equivalences.
There is an isomorphism

uA ∧ Σ∞K[−r] ∼= uA ∧ V (S[−r]) ∧K

and the map γ for this object can be identified with the composite

uA ∧ V (S[−r]) ∧K
γ∧1
−−→ u(A⊗Σ V (S[−r])) ∧K

γ
−→ u(A⊗Σ V (S[−r])⊗K)

These maps are stable equivalences of underlying presheaves of spectra by Lem-
mas 4.6 and 4.5.

Lemma 4.8. Every map f : A→ B of symmetric simplicial R-module spectra
has a natural factorization

A
i //

f ��@
@@

@@
@@

C

p

��
B

where p is a stable fibration, i is a stable equivalence, and i is a level cofibration
which has the left lifting property with respect to all stable fibrations.

Proof. This is a transfinite small object argument, which is based on the obser-
vation that a map p is a stable fibration if and only if it has the right lifting
property with respect to all maps R̃V X → R̃V Y arising from a set of trivial
stable cofibrations j : X → Y of presheaves of spectra. The map i is a filtered
colimit of a sequence of pushouts of maps of this form. The cofibre Y/X of the
test map j is a cofibrant presheaf of spectra such that the map Y/X → ∗ is a sta-
ble equivalence. It follows from Proposition 4.7 (with A = R̃S) that the induced
map R̃V (Y/X)→ 0 is a stable equivalence, and so the map j : R̃V X → R̃V Y
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is a stable equivalence as well as a level cofibration. Thus, for any pushout
diagram

R̃V X //

��

A

i∗

��
R̃V Y // B

Lemma 4.4 implies that the level cofibration i∗ is stable equivalence.
Filtered colimits of stable equivalences are stable equivalences in category of

presheaves of symmetric spectra, by a standard argument.

Say that a map i : A → B of SptΣ(s ModR) is a stable cofibration if it has
the left lifting property with respect to all maps which are stable fibrations and
stable weak equivalences. The map i in the factorization of Lemma 4.8 has the
left lifting property with respect to all stable fibrations, and is therefore a stable
cofibration.

Observe that a map p : A→ B of SptΣ(s ModR) is a stable fibration and a
stable weak equivalence if and only if all maps p : An → Bn are weak equiva-
lences and fibrations of simplicial R-modules. It follows that all level cofibrations

FnR̃K → FnR̃L

arising from cofibrations K ⊂ L of simplicial presheaves are stable cofibrations.
There is a generating set for all such cofibrations, so that every map f : A→ B
has a factorization

A
j //

f   @
@@

@@
@@

D

q

��
B

such that j is a stable cofibration and q is stable fibration and a stable weak
equivalence.

Theorem 4.9. With the definition of stable fibration, stable equivalence and
stable cofibration given above the category SptΣ(s ModR) of symmetric simpli-
cial R-module spectra satisfies the axioms for a proper closed simplicial model
category.

Proof. The factorization axiom CM5 follows from Lemma 4.8 and the remarks
preceding the statement of Theorem 4.9. The axiom CM4 is a consequence
of Lemma 4.8. The simplicial model axiom SM7 is a consequence of the cor-
responding statement for the stable structure on Spt(s ModR). The cofibra-
tion part of properness follows from a long exact sequence argument which is
based on Lemma 3.7, while the fibration part is a consequence of properness for
presheaves of symmetric spectra.

The forgetful functor UR : SptΣ(s ModR) → Spt(s ModR) preserves stable
fibrations and stable equivalences between stably fibrant objects — for the lat-
ter, use the fact that a stable equivalence of stably fibrant objects is a level
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equivalence, since this is so for presheaves of symmetric spectra. It follows the
adjoint pair (VR, UR) is a Quillen pair, but more is true:

Theorem 4.10. The adjoint pair

VR : Spt(s ModR) ⇆ SptΣ(s ModR) : UR

is a Quillen equivalence, and therefore induces an equivalence of stable homotopy
categories

Hostable(Spt(s ModR)) ≃ Hostable(SptΣ(s ModR)).

The forgetful functor UR reflects stable equivalences, so it suffices to show
[4] that the composite map

A
η
−→ URVRA

j∗
−→ UR(VRA)s

is a stable equivalence of simplicial R-module spectra if A is cofibrant, and
where j : VRA→ (VRA)s is a choice of stably fibrant model in SptΣ(s ModR).
The demonstration of this statement requires some preliminary lemmas.

Lemma 4.11. Suppose that A is a simplicial R-module spectrum. Then the
composite

A
η
−→ Ω(A⊗ S1)

j∗
−→ Ω(A⊗ S1)s

is a stable equivalence, where j : A⊗S1 → (A⊗S1)s is a choice of stably fibrant
model in Spt(s ModR).

Proof. The loop functor Ω on Spt(s ModR) preserves stable equivalences, so it
suffices to show that the map η : A → Ω(A ⊗ S1) induces an isomorphism on
stable homotopy groups. The map η is actually a strict weak equivalence, on
account of Corollary 3.4.

Lemma 4.12. Suppose that f : A → B is a map of symmetric simplicial R-
module spectra. Then f is a stable equivalence if and only if the induced map
f∗ : A⊗ S1 → B ⊗ S1 is a stable equivalence.

Proof. There is a commutative diagram

uA ∧ S1
f∗∧1 //

γ

��

uB ∧ S1

γ

��
u(A⊗ S1)

f∗

// u(B ⊗ S1)

in which the vertical maps γ are stable equivalences by Lemma 4.5. Thus, the
map f∗ : A ⊗ S1 → B ⊗ S1 is a stable equivalence if and only if f∗ ∧ 1 is a
stable equivalence of presheaves of symmetric spectra. But the corresponding
fact about smashing with S1 for presheaves of symmetric spectra (see the proof
of Lemma 4.25 in [14]) implies that f∗∧1 is a stable equivalence of presheaves of
symmetric spectra if and only if f : A→ B is a stable equivalence of symmetric
simplicial R-module spectra.

36



Corollary 4.13. Suppose that Y is a cofibrant symmetric simplicial R-module
spectrum.

1) The composite

Y
η
−→ Ω(Y ⊗ S1)

j∗
−→ Ω(Y ⊗ S1)s

is a stable equivalence of symmetric simplicial R-module spectra. for any
choice of stably fibrant model j : Y ⊗ S1 → (Y ⊗ S1)s for Y ⊗ S1.

2) Suppose that Y is stably fibrant. Then any stably fibrant model j : Y ⊗
S1 → (Y ⊗ S1)s is a stable equivalence of the underlying simplicial R-
module spectra.

Proof. The first statement follows from Lemma 4.12 and the commutativity of
the diagram

Y ⊗ S1
(j∗η)⊗1//

j ''OOOOOOOOOOOO
Ω(Y ⊗ S1)s ⊗ S1

ev

��
(Y ⊗ S1)s

The map ev in the diagram above is a stable equivalence of the underlying
simplicial R-module spectra (consequence of Corollary 3.4). For the second
statement, note that j∗η : Y → Ω(Y ⊗ S1)s is a stable equivalence of stably
fibrant objects, and hence a level equivalence of the underlying simplicial R-
module spectra, so the diagram above implies that j is a stable equivalence of
the underlying simplicial R-module spectra.

Lemma 4.14. Suppose that B is a simplicial R-module, and write S ⊗ B =
F0B for the corresponding suspension object in SptΣ(s ModR). Then any stably
fibrant model j : S⊗B → (S⊗B)s induces a stable equivalence j∗ : UR(S⊗B)→
UR(S ⊗B)s of simplicial R-module spectra.

Proof. The objects (S∗ ⊗B)⊗ Sm comprise a spectrum object (S ⊗B)⊗ S in
SptΣ(s ModR). Equivalently,

S ⊗ (B ⊗ S) ∼= (S ⊗B)⊗ S

is a symmetric spectrum object in Spt(s ModR). There is a generating set of
trivial stable cofibrations for Spt(s ModR), so an argument similar to that for
Lemma 4.1 shows that there is a map

j : Sn ⊗ (B ⊗ Sm)→ Y n,m

of symmetric spectrum objects in Spt(s ModR), such that each simplicial R-
module spectrum map Sn ⊗ (B ⊗ S)→ Y n,∗ is a stable equivalence, with Y n,∗

stably fibrant for each n. The adjoint bonding maps Y n,∗ → ΩY n+1,∗ are stable
equivalences of stably fibrant simplicial R-module spectra by Lemma 4.11, so
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that the symmetric simplicial R-module spectrum Y ∗,0 at level 0 is stably fi-
brant. The map j induces an isomorphism of sheaves of stable homotopy groups
of the underlying presheaves of bispectra, and the sheaves of stable homotopy
groups of Y ∗,0 and S ⊗ B are isomorphic to the sheaves of stable homotopy
groups of the presheaves of bispectra Y and (S ⊗B)⊗ S (the latter by Lemma
4.11 again). In summary, Y ∗,0 is a stably fibrant object in SptΣ(s ModR), and
the map S ⊗ B → Y ∗,0 is a stable equivalence of the underlying simplicial
R-module spectra.

Lemma 4.15. Suppose that A is a cofibrant simplicial R-module spectrum.
Then the composite morphism

A
η
−→ URVRA

j∗
−→ UR(VRA)s

is a stable equivalence if and only if the composite

A⊗ S1 η
−→ URVR(A⊗ S1)

j∗
−→ UR(VR(A⊗ S1))s

is a stable equivalence of simplicial R-module spectra.

Proof. This proof boils down to knowing that the map j ⊗ 1 : (VRA) ⊗ S1 →
(VRA)s ⊗ S1 is a stable cofibration and a stable equivalence of SptΣ(s ModR),
so that there is a map f : (VRA)s⊗S1 → VR(A⊗S1)s which makes the diagram

(VRA)⊗ S1 j⊗1 //

∼=

��

(VRA)s ⊗ S1

f

��
VR(A⊗ S1)

j
// VR(A⊗ S1)s

commute. In particular, part 2) of Corollary 4.13 implies that the map f is a
stable equivalence on the underlying simplicial R-mdoule spectra. This detail
allows us to check (see the argument in [14]) that the composite

A⊗ S1 η⊗1
−−→ URVRA⊗ S1 j∗⊗1

−−−→ UR(VRA)s ⊗ S1

is a stable equivalence of simplicial R-module spectra.
Now use Lemma 4.11 to show that the composite j∗η is a stable equivalence of

simplicial R-module spectra if and only if the map j∗η⊗S1 is a stable equivalence
of simplicial R-module spectra.

Proof of Theorem 4.10. We use the layer filtration LnA for a cofibrant simplicial
R-module spectrum A. There are natural stable equivalences

Σ∞An[−n]→ LnA

and
Σ∞An[−n]⊗ Sn → Σ∞An.
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The functors at both ends of the map

A
η
−→ URVRA

j∗
−→ UR(VRA)s

preserve stable weak equivalences between cofibrant simplicial R-module spec-
tra, so Lemma 4.15 shows that proving the statement of Theorem 4.10 for LnA
reduces to proving the statement for A = Σ∞B, but this is Lemma 4.14.

The final step is to show that the composite map

lim
−→

LnA
η
−→ URVR(lim

−→
LnA)

j∗
−→ UR(VR(lim

−→
LnA))s

is a stable equivalence. This follows from the previous assertions and the obser-
vation that there is a stable equivalence

lim
−→

(VRLnA)s → (VR(lim
−→

LnA))s.

Lemma 4.16. Suppose that the maps A→ B and C → D are stable cofibrations
of SptΣ(s ModR). Then the induced map

(B ⊗Σ C) ∪A⊗ΣC (A⊗Σ D)→ B ⊗Σ D (4.3)

is a stable cofibration, which is also a stable equivalence if either i or j is a
stable equivalence.

Proof. Suppose that A1 → B1 and A2 → B2 are cofibrations of pointed simpli-
cial presheaves. Then the map

(FnB1 ⊗Σ FmA2) ∪ (FnA1 ⊗Σ FmB2)→ FnB1 ⊗Σ FmB2 (4.4)

can be identified with the map induced by applying the functor Fn+m to the
map of free simplicial R-modules which is induced by the cofibration

(B1 ∧A2) ∪ (A1 ∧B2)→ B1 ∧B2

of pointed simplicial presheaves (compare [7, Prop.2.2.6]). It follows that the
map (4.4) is a stable cofibration, and insofar as all stable cofibrations are built
by pushouts and filtered colimits of maps of this form up to retraction, all maps
(4.3) are stable cofibrations.

The cokernel of the map (4.3) is the object B/A⊗Σ D/C, where both B/A
and D/C are cofibrant. To prove the second claim, it suffices to show that
E ⊗Σ E′ is stably trivial if E and E′ are both cofibrant and E is stably trivial.

It is a consequence of Lemmas 4.5 and 4.6 that there is a stable equivalence
of presheaves of symmetric spectra

u(E ⊗Σ FnR̃K) ≃ uE ∧ V S[−n] ∧K,

and smashing with V S[−n] ∧K preserves level equivalences in the category of
presheaves of symmetric spectra. We can therefore replace uE by a cofibrant,
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stably trivial presheaf of symmetric spectra, and then the monoidal structure
for the model structure of presheaves of symmetric spectra implies that u(E⊗Σ

FnK) is stably trivial. The object E ⊗Σ E′ is a retract of a filtered colimit
of pushouts of cofibrations involving objects of the form E ⊗Σ FnR̃K, so that
E ⊗Σ E′ is stably trivial.

5 Higher Tor functors

5.1 The unstable case

Suppose that C and D are ordinary (ie. positively graded) chain complexes
of R-modules, and recall that the classical tensor product C ⊗ D is the chain
complex defined in degree n by

(C ⊗D)n =
⊕

i+j=n

Ci ⊗Dj ,

with boundary ∂ : (C ⊗D)n → (C ⊗D)n−1 defined on the summand Ci ⊗Dj

by
∂(x⊗ y) = ∂(x)⊗ y + (−1)ix⊗ ∂(y).

It is also typical to refer to this object as the total complex Tot(C ⊗ D) of a
bicomplex, also denoted by C ⊗D, where

(C ⊗D)i,j = Ci ⊗Dj

and having horizontal (respectively vertical) boundary specified on Ci ⊗Dj by

∂h(x⊗ y) = ∂(x)⊗ y, ∂v(x ⊗ y) = (−1)ix⊗ ∂(y).

Suppose that A is a simplicial R-module. Then the Moore complex MA for
A has n-chains specified by MAn = An, and has boundary defined by

∂(x) =

n
∑

i=0

(−1)idi(x).

Suppose that A and B are simplicial R-modules. Then the bisimplicial R-
module A⊗B is specified by

(A⊗B)i,j = Ai ⊗Bj

and has horizontal and vertical simplicial structure maps defined in the obvious
way. The diagonal simplicial R-module d(A⊗B) has

d(A⊗B)n = An ⊗Bn.

In the language developed here, the generalized Eilenberg-Zilber theorem [3,
p.205] specializes to the assertion that there is a natural chain homotopy equiv-
alence

Md(A⊗B) ≃ Tot(MA⊗MB).
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The Moore chains MA on a simplicial R-module are naturally homotopy
equivalent to the normalized chain complex NA associated to A, by the same
argument as for simplicial abelian groups [3, Th.IV.2.5]. Recall that the nor-
malized chains are defined in degree n by

NAn = ∩n−1
i=0 kerdi

and ∂(x) = (−1)ndn(x) defines the boundary. Then there is an obvious inclusion
NA ⊂ MA, and this inclusion induces an isomorphism NA ∼= MA/DA of
simplicial R-modules, where DA is the subcomplex of MA which is generated
by degenerate simplices in each degree.

If A and B are simplicial R-modules, the chain equivalences NA ⊂MA and
NB ⊂MB induce a natural homology isomorphism

Tot(NA⊗NB)→ Tot(MA⊗MB),

by a standard spectral sequence argument. It follows that the are natural quasi-
isomorphisms

Nd(A⊗B) ⊂Md(A⊗B) ≃ Tot(MA⊗MB)← Tot(NA⊗NB) (5.1)

Suppose that C and D are chain complexes. Then in view of the natural
equivalences appearing in (5.1), there are natural identifications up to quasi-
isomorphism of the form

Tot(C ⊗D) ∼= Tot(NΓC ⊗NΓD) ≃ Nd(ΓC ⊗ ΓD).

It is therefore harmless to identify the chain complex tensor product Tot(C⊗D)
with the simplicial abelian group tensor product ΓC ⊗ ΓD = d(ΓC ⊗ ΓD)
in the derived category. It also follows [3, Cor.IV.2.7] that there are natural
isomorphisms

πr(ΓC ⊗ ΓD) ∼= Hr(C ⊗D). (5.2)

Suppose that A and B are simplicial R-modules, and define Torn(A, B) as
a homology sheaf by

Torr(A, B) = πr(X ⊗ Y )

where the maps X → A and Y → B are cofibrant models for A and B, in the
sense that both maps are local weak equivalences and X and Y are cofibrant.
Note that there is a natural sheaf isomorphism

Tor0(A, B) ∼= π0A⊗ π0B

on account of the identificiations above, where the indicated tensor product is
in the sheaf category.

The monoidal model structure for the category of simplicial R-modules is
used to show that Torr(A, B) is invariant up to isomorphism of the choices of
X and Y , since the closed model structure of Lemma 1.3 on the category of
simplicial abelian presheaves is monoidal with respect to the tensor product.
More generally, we have the following:
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Lemma 5.1. Suppose that X is a cofibrant simplicial R-module. Then the
functor A 7→ X ⊗ A is exact, and preserves weak equivalences.

Proof. The small object argument implies that X is a retract of a simplicial
R-module Y , where Y is a transfinite filtered colimit

Y = lim
−→

Vi

such that V0 = RK0 is free on a simplicial presheaf K0, and there are pushouts
of simplicial R-modules

RKi
//

j∗

��

Vi

��
RKi+1

// Vi+1

where j∗ is induced by a cofibration j : Ki → Ki+1 of simplicial presheaves.
Then j∗ is a split monomorphism in each choice of section and degree, so all
sequences

0→ RKi ⊗A→ (RKi+1 ⊗A)⊕ (Vi ⊗A)→ Vi+1 ⊗A→ 0

are exact sequences of simplicial R-modules, in the presheaf category. The
functors A 7→ RK⊗A are plainly exact, so it suffices to show that they preserve
quasi-isomorphisms.

This last claim is proved with a spectral sequence argument, which is based
on the observation that there is a sheaf isomorphism

Hr(RKn ⊗A) ∼= L(RKn)⊗HrA

since tensoring with a free module is exact. Here, L denotes the associated sheaf
functor.

Corollary 5.2. Suppose that X is a cofibrant simplicial R-module. Then for
all n ≥ 0 the functor A 7→ A⊗Xn is exact. There is a natural sheaf isomorphsm

πr(A⊗Xn) ∼= (πrA)⊗ L(Xn),

Proof. The exactness is a consequence of the proof of Lemma 5.1. It follows
that the canonical map

NA⊗Xn → N(A⊗Xn)

is an isomorphism of chain complexes, and that the sheaf map

(HrNA)⊗ L(Xn)→ Hr(NA⊗Xn)

is an isomorphism.
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Corollary 5.3. Suppose that X is a cofibrant simplicial R-module. Then the
functor A 7→ A ⊗ NXn is exact on simplicial R-modules, for all n ≥ 0. There
is a natural sheaf isomorphism

πr(A⊗NXn) ∼= (πrA)⊗ L(NXn).

Proof. Following the proof of [3, Th. IV.2.1], write

NjXn = ∩j
i=0 ker(di) ⊂ Xn

for 0 ≤ j < n. In particular, NXn = Nn−1Xn; write N−1Xn = Xn. There are
exact sequences

0→ Nj+1Xn → NjXn
dj+1
−−−→ NjXn−1 → 0

and the face map dj+1 is split by the degeneracy sj+1 : NjXn−1 → NjXn.
All functors A 7→ N−1Xn ⊗ A are exact by the Corollary 5.2, so that all maps
A 7→ NjXn ⊗A are exact by induction on j. It follows that the canonical map

NA⊗NXn → N(A⊗NXn)

is an isomorphism of chain complexes.

Example 5.4. Suppose that R is a commutative ring with identity, so that
the category ModR has enough projectives. Then every chain complex C of
R-modules has a projective resolution, in the sense that there is a homology
isomorphism P → C, where P is a chain complex of projective R-modules —
this is usually shown by using the Eilenberg-Cartan resolution of C. Then there
is an analogue of Lemma 5.1 for chain complexes of R-modules: if P is a chain
complex of projectives, then the functor A 7→ A⊗ ΓP on simplicial R-modules
is exact and preserves quasi-isomorphisms. Suppose that C and D are chain
complexes, and choose projective resolutions P → C and Q → D. Choose
cofibrant resolutions X → ΓP and Y → ΓQ. Then the composites

X → ΓP → ΓC, Y → ΓQ→ ΓD

are cofibrant resolutions for ΓC and ΓD respectively, and there are weak equiv-
alences of simplicial R-modules

X ⊗ Y
≃
−→ ΓP ⊗ Y

≃
−→ ΓP ⊗ ΓQ

by Lemma 5.1 and by the corresponding observation about projective resolu-
tions. Finally,

πr(ΓP ⊗ ΓQ) ∼= Hr(P ⊗Q) = Torr(C, D)

so that
πr(X ⊗ Y ) ∼= Torr(C, D).

In other words, the definition of the Tor∗ functors given above for simplicial
R-modules on a presheaf of rings R specializes to the definition we know in the
case of chain complexes of R-modules when R is an ordinary ring.
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Corollary 5.5. Suppose that A and B are simplicial R-modules, and that X →
A is a cofibrant resolution of A. Then there is a sheaf isomorphism

Torr(A, B) ∼= Hr(X ⊗B).

Proof. Suppose that Y → B is a cofibrant resolution of B. Then

Torr(A, B) = Hr(X ⊗ Y ),

while the map X ⊗ Y → X ⊗B is a weak equivalence since X is cofibrant.

Corollary 5.6. Suppose that A is a simplicial R-module and that

0→ B1 → B2 → B3 → 0

is a short exact sequence of simplicial R-modules. The there is a long exact
sequence of sheaves

· · · → Tor1(A, B3)→ π0A⊗ π0B1 → π0A⊗ π0B2 → π0A⊗ π0B3 → 0

Proof. Suppose that X → A is a cofibrant resolution of A. Then the sequence

0→ X ⊗B1 → X ⊗B2 → X ⊗B3 → 0

is exact since X is cofibrant, and πr(X ⊗Bi) ∼= Torr(A, Bi).

The skeletal filtration skn A of a simplicial R-module corresponds to the bad
truncation TnNA of the normalized chain complex NA at level n. In general,
the bad truncation TnC of a chain complex C is defined by

TnCj =

{

Cj if j ≤ n,

0 if j > n.

The truncation TnC is “bad” because it does not preserve homology isomor-
phisms. The good news is that C = ∪n TnC, and there are short exact sequences
of chain complexes

0→ TnC → Tn+1C → Cn+1[−n− 1]→ 0

Here, Cn+1[−n − 1] is the chain complex consisting of a copy of Cn+1 concen-
trated in degree n + 1.

Lemma 5.7. Suppose that A and B are simplicial R-modules. Then there is a
convergent spectral sequence of sheaves of R-modules, with

Ep,q
2 = Torp(A, πqB)⇒ Torp+q(A, B)

where πqB is identified with the simplicial R-module K(πqB, 0).
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Proof. We can suppose that A and B are cofibrant. Then the functor ?⊗ B is
exact, and so the skeletal filtration on A gives exact sequences

0→ skn−1 A⊗B → skn A⊗B → Γ(NAn[−n])⊗B → 0

The spectral sequence arising from this filtration of A⊗B has E1-term

Ep,q
1 = πp+q(Γ(NAp[−p])⊗B) ∼= Hp+q(NAp[−p]⊗NB) ∼= NAp ⊗HqNB.

The last isomorphism follows from the fact (Corollary 5.3) that tensoring with
NAp is exact since A is cofibrant. It follows that there are isomorphisms

Ep,q
2
∼= Hp(NA⊗HqNB) ∼= Torp(A, πqB)

as required.

Remark 5.8. The invariants Torn(A, πqB) in the E2-term of the spectral se-
quence of Lemma 5.7 can be computed with a second application of the same
result: there is a spectral sequence

Er,s
2 = Torr(πsA, πqB)⇒ Torr+s(A, πqB).

5.2 The stable case

Suppose that X and Y are spectra, and let X ∧n Y be the following particular
choice of naive smash product:

(X ∧n Y )2n = Xn ∧ Y n, (X ∧n Y )2n+1 = Xn+1 ∧ Y n,

and the bonding maps are specified by:
{

S1 ∧Xn ∧ Y n σ∧1
−−→ Xn+1 ∧ Y n

S1 ∧Xn+1 ∧ Y n τ∧1
−−→ Xn+1 ∧ S1 ∧ Y n 1∧σ

−−→ Xn+1 ∧ Y n+1

Suppose that Z is a symmetric spectrum, and choose θi ∈ Σi for i ≥ 1.
Then there is a spectrum θ∗(UZ) with level spaces θ∗(UZ)n = Zn, and having
bonding maps σθ given by the composites

S1 ∧ Zn σ
−→ Zn+1 θn+1

−−−→ Zn+1

There is a natural isomorphism of spectra νθ : UZ → θ∗UZ which is defined by
finding elements νθ,n ∈ Σn inductively. We require that νθ,n is the identity in
levels 0 and 1. Then there is a commutative diagram

S1 ∧ Zn σ //

1∧νθ,n

��

Zn+1

1⊕νθ,n

��
S1 ∧ Zn σ //

σθ %%J
JJJJJJJJ Zn+1

θn+1

��
Zn+1
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Then

νθ,n+1 = θn+1(1⊕ νθ,n) = θn+1(1⊕ θn)(1 ⊕ θn−1) · · · (1⊕ θ2)

Suppose now that X and Y are symmetric spectra. Then there are commu-
tative diagrams

S1 ∧Xn ∧ Y n σ∧1 //

c

��

Xn+1 ∧ Y n

c

��
S1 ∧ (X ∧ Y )2n

σ
// (X ∧ Y )2n+1

and

S1 ∧Xn+1 ∧ Y n τ∧1 //

1∧c

��

Xn+1 ∧ S1 ∧ Y n 1∧σ // Xn+1 ∧ Y n

c

��
S1 ∧ (X ∧ Y )2n+1

σ
// (X ∧ Y )2n+2

c1,n+1⊕1
// (X ∧ Y )2n+2

Here, c : Xp ∧Y q → (X ∧Y )p+q is the canonical map, and c1,n+1 ∈ Σn+2 is the
shuffle map which moves the number 1 past the numbers 2, . . . , n + 2, in order.

It follows that the canonical maps c : Xp ∧ Y q → (X ∧ Y )p+q determine a
natural map of spectra

c : UX ∧n UY → θ∗U(X ∧ Y ),

where

θi =

{

1 if i = 2n + 1,

c1,n+1 ⊕ 1 if i = 2n + 2.

Lemma 5.9. The map c∗ given by the composite

X ∧n Y → UV X ∧n UV Y
c
−→ θ∗U(V X ∧ V Y )

Uj
−−→ θ∗U(V X ∧ V Y )s

is a stable equivalence if the spectra X and Y are cofibrant.

The proof of Lemma 5.9 requires the following:

Lemma 5.10. Suppose that X is a stably fibrant symmetric spectrum and that
K is a pointed simplicial set. Then any stably fibrant model j : X∧K → (X∧K)s

is a stable equivalence of the underlying spectra.

Proof. The map j : X ∧ S1 → (X ∧ S1)s is adjoint to the composite

X
η
−→ Ω(X ∧ S1)

j∗
−→ Ω(X ∧ S1)s

which is a stable equivalence [7, Th. 3.1.14]. This map is a level equivalence
since X is stably fibrant, so it is a stable equivalence of the underlying spectra.
Its adjoint j is therefore a stable equivalence of the underlying spectra.
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The fact that the map j : X ∧ S1 → (X ∧ S1)s is a stable equivalence of the
underlying spectra implies that all maps

j : X ∧ Sn → (X ∧ Sn)s

are stable equivalences of underlying spectra. In effect, the question of whether
or not j has this property is insensitive to the model for Sn up to homotopy
type, so that we can use Sn = S1 ∧ · · · ∧S1 and iterate the construction for S1.

Fibre sequences and cofibre sequences coincide in the homotopy category of
symmetric spectra. In particular, if

A ⊂ B
p
−→ B/A

is a level cofibre sequence of symmetric spectra and F is the stable homotopy
fibre of p, then the canonical map A → F is a stable equivalence (a prototype
proof appears in [14, Cor. 3.10]).

Suppose that K is a pointed simplicial set, and consider the cofibre sequence

skn−1 K → skn K →
∨

NKn

Sn

Form the diagram

X ∧ skn−1 K //

��

X ∧ skn K //

i

��

X ∧ (
∨

Sn)

F // Z

p

77ooooooooooooo

where p is a stable fibration, and i is a stable cofibration and a stable equiv-
alence of symmetric spectra. Then the induced map X ∧ skn−1 K → F is a
stable equivalence of symmetric spectra and F is stably fibrant; this map can
inductively be assumed to be a stable equivalence of the underlying spectra,
so that the map i is a stable equivalence of underlying spectra. Now form the
comparison diagram

F //

��

Z
p //

i′

��

X ∧ (
∨

Sn)

j

��
F ′ // Z ′

p′

// (X ∧ (
∨

Sn))s

of stable fibre sequences of symmetric spectra, where p′ is a stable fibration
and i′ is a stable cofibration and stable weak equivalence. Then the map j is
a stable equivalence of underlying spectra, and the induced map F → F ′ is a
stable hence level equivalence of fibres. It follows that the map i′ : Z → Z ′ is a
stable equivalence of underlying spectra. Note finally that the composite map

X ∧ skn K
i
−→ Z

i
−→ Z ′
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is a stably fibrant model for X ∧ skn K in the category of symmetric spectra.
If F is a finite pointed set and X is stably fibrant, then the canonical map

X ∧ F+ =
∨

F

X →
∏

F

X

is a stable equivalence of the underlying spectra, and the product
∏

F X is a
stably fibrant symmetric spectrum. Any filtered colimit

Y = lim
−→

i

Yi

of stably fibrant symmetric spectra Yi is an Ω-spectrum and is thus stably
fibrant. It follows that any stably fibrant model

X ∧ sk0 K → (X ∧ sk0 K)s

is a stable equivalence of the underlying spectra.

Proof of Lemma 5.9. Both models for the smash product preserve stable equiv-
alences and filtered colimits in Y , and one can show that the map

c∗ : X ∧n (Y ∧K)→ θ∗U(V X ∧ V (Y ∧K))

is isomorphic to the map

c∗ ∧ 1 : (X ∧n Y ) ∧K → θ∗U(V X ∧ V Y ) ∧K

for any pointed simplicial set K. There is also a map f making the diagram

(V X ∧ V Y ) ∧K
j∧1 //

∼=

��

(V X ∧ V Y )s ∧K

f

��
(V X ∧ V (Y ∧K))

j
// (V X ∧ V (Y ∧K))s

commute, since j and j ∧ 1 can be chosen to be stably trivial cofibrations of
symmetric spectra. It follows that f is a stably fibrant model, and is therefore
a stable equivalence of underlying spectra, by Lemma 5.10

A layer filtration argument thus implies that it suffices to show that the
maps

c∗ : X ∧n S[−p]→ θ∗U(V X ∧ V (S[−p]))s

are stable equivalences for all p ≥ 0.
It also follows that the map c∗ : X ∧n Y → θ∗U(V X ∧ V Y )s is a stable

equivalence if and only if the map c∗ : X ∧n (Y ∧S1)→ θ∗U(V X ∧V (Y ∧S1))s

is a stable equivalence. It therefore suffices to show that the map c∗ : X ∧n S →
θ∗U(V X ∧ S)s is a stable equivalence.
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A similar analysis applied to the cofibrant spectrum X implies that it is
enough to show that the map

c∗ : S ∧n S → θ∗(S ∧ S)s

is a stable equivalence of spectra.
There is an identification

S ∧n S = θ∗S,

and a canonical isomorphism

m : S ∧ S
∼=
−→ S.

The composite
S ∧n S → θ∗(S ∧ S)s

m∗−−→ θ∗Ss

can be identified with the twist θ∗j of the spectrum map underlying the stably
fibrant model j : S → Ss of the symmetric sphere spectrum, which induces a
stable equivalence of the underlying spectra.

Corollary 5.11. Suppose that X is a stably fibrant presheaf of symmetric spec-
tra and that K is a pointed simplicial presheaf on a small Grothendieck site C.
Then any stably fibrant model X∧K → (X∧K)s in the category of presheaves of
symmetric spectra is a stable equivalence of the underlying presheaves of spectra.

Proof. Forget about the topology for a moment: the object X is pointwise (ie.
sectionwise) stably fibrant, and any pointwise stably fibrant model X∧K → Z is
a pointwise stable equivalence of presheaves of spectra, by Lemma 5.10. Putting
the topology back in, one sees that there is a level equivalence α : Z → Zi

where Zi is an injective fibrant model for Z [13, Th. 2]. Then Z is a presheaf
of Ω-spectra, so that Zi is a stably fibrant presheaf of symmetric spectra. The
composite

X ∧K → Z
α
−→ Zi

is a stable equivalence of the underlying presheaves of spectra.

Suppose that A and B are simplicial R-module spectra, and let A⊗n B be
the following particular choice of naive tensor product: (A⊗n B)2n = An ⊗Bn,
(A⊗n B)2n+1 = An+1 ⊗Bn, and the following are the bonding maps:

{

S1 ⊗An ⊗Bn σ⊗1
−−−→ An+1 ⊗Bn

S1 ⊗An+1 ⊗Bn τ⊗1
−−→ An+1 ⊗ S1 ⊗Bn 1⊗σ

−−−→ An+1 ⊗Bn+1

Suppose that C is a symmetric simplicial R-module spectrum, and choose
θi ∈ Σi for i ≥ 1. Then there is a simplicial R-module spectrum θ∗(URC)
with level spaces θ∗(URC)n = Cn, and having bonding maps σθ given by the
composites

S1 ⊗ Cn σ
−→ Cn+1 θn+1

−−−→ Cn+1
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There is a natural isomorphism of simplicial R-module spectra

νθ : URC → θ∗URC

which is defined by finding elements νθ,n ∈ Σn inductively. We require that νθ,n

is the identity in levels 0 and 1. Then there is a commutative diagram

S1 ⊗ Cn σ //

1⊗νθ,n

��

Cn+1

1⊕νθ,n

��
S1 ⊗ Cn σ //

σθ %%J
JJJJJJJJ Cn+1

θn+1

��
Cn+1

Then

νθ,n+1 = θn+1(1⊕ νθ,n) = θn+1(1⊕ θn)(1 ⊕ θn−1) · · · (1⊕ θ2)

Suppose now that A and B are symmetric simplicial R-module spectra. Then
there are commutative diagrams

S1 ⊗An ⊗Bn
σ⊗1 //

c

��

An+1 ⊗Bn

c

��
S1 ⊗ (A⊗Σ B)2n

σ
// (A⊗Σ B)2n+1

and

S1 ⊗An+1 ⊗Bn
τ⊗1 //

1⊗c

��

An+1 ⊗ S1 ⊗Bn
1⊗σ // An+1 ⊗Bn

c

��
S1 ⊗ (A⊗Σ B)2n+1

σ
// (A⊗Σ B)2n+2

c1,n+1⊕1
// (A⊗Σ B)2n+2

It therefore follows that the canonical maps c : Ap ⊗Bq → (A⊗Σ B)p+q deter-
mine a natural map of simplicial R-module spectra

c : URA⊗n URB → θ∗UR(A⊗Σ B),

where

θi =

{

1 if i = 2n + 1,

c1,n+1 ⊕ 1 if i = 2n + 2.

Lemma 5.12. The map c∗ given by the composite

A⊗nB → URVRA⊗nURVRB → θ∗UR(VRA⊗ΣVRB)
URj
−−−→ θ∗UR(VRA⊗ΣVRB)s

is a stable equivalence if the simplicial R-module spectra A and B are cofibrant.
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Lemma 5.13. Suppose that A is a stably fibrant symmetric simplicial R-module
spectrum and that K is a pointed simplicial presheaf. Then any stably fibrant
model j : A⊗K → (A⊗K)s is a stable equivalence of the underlying simplicial
R-module spectra.

Proof. Suppose that j : A ⊗ K → (A ⊗ K)s is a stably fibrant model in the
category of symmetric simplicial R-module spectra. Then the underlying map
j∗ : u(A⊗K)→ u(A⊗K)s is a stable equivalence of presheaves of symmetric
spectra, and the objects uA and u(A ⊗ K)s are stably fibrant. The canonical
map γ : uA∧K → u(A⊗K) is a stable equivalence of the underlying presheaves
of spectra by Lemma 4.5, so that the composite

uA ∧K
γ
−→ u(A⊗K)

j∗
−→ u(A⊗K)s

is a stably fibrant model for uA ∧ K. It follows from Corollary 5.11 that this
composite is a stable equivalence of the underlying presheaves of spectra, and
hence that j is a stable equivalence of the underlying simplicial R-module spec-
tra.

Proof of Lemma 5.12. Both models for the tensor product preserve stable equiv-
alences and filtered colimits in B, and one can show that the map

c∗ : A⊗n (B ⊗K)→ θ∗UR(VRA⊗Σ VR(B ⊗K))

is isomorphic to the map

c∗ ⊗ 1 : (A⊗n B)⊗K → θ∗UR(VRA⊗Σ VRB)⊗K

for any pointed simplicial set K. There is also a map f making the diagram

(VRA⊗Σ VRB)⊗K
j⊗1 //

∼=

��

(VRA⊗Σ VRB)s ⊗K

j

��
(VRA⊗Σ VR(B ⊗K))

j
// (VRA⊗Σ VR(B ⊗K))s

commute, since j and hence j⊗ 1 can be chose to be a stably trivial cofibration
of symmetric simplicial R-module spectra. It follows that f is a stably fibrant
model, and is therefore a stable equivalence of the underlying simplicial R-
module spectra, by Lemma 5.13.

It therefore follows from a layer filtration argument that it suffices to show
that the maps

c∗ : A⊗n S[−p]→ θ∗UR(VRA⊗Σ VR(S[−p]))s

are stable equivalences for all p ≥ 0.
It also follows that the map c∗ : A ⊗n B → θ∗UR(VRA ⊗Σ VRB)s is a

stable equivalence if and only if the map c∗ : A ⊗n (B ⊗ S1) → θ∗UR(VRA ⊗Σ
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VR(B⊗S1))s is a stable equivalence. It therefore suffices to show that the map
c∗ : A⊗n S → θ∗UR(VRA⊗Σ S)s is a stable equivalence.

A similar analysis applied to the cofibrant simplicial R-module spectra A
shows that it is enough to show that the map

c∗ : S ⊗n S → θ∗(S ⊗Σ S)s

is a stable equivalence of simplicial R-module spectra.
There is an identification of spectrum objects

S ⊗n S = θ∗S,

and a canonical isomorphism of symmetric spectrum objects

m : S ⊗Σ S
∼=
−→ S.

The composite
S ⊗n S → θ∗(S ⊗Σ S)s

m∗−−→ θ∗Ss

can be identified with the twist θ∗j of the simplicial R-module spectrum map
underlying the stably fibrant model j : S → Ss of the symmetric simplicial R-
module sphere spectrum, which induces a stable equivalence of the underlying
simplicial R-module spectra.

In general, if A and B are symmetric spectrum objects, we take cofibrant
resolutions X → A and Y → B, and define the sheaves of R-modules Tori(A, B)
by

Tori(A, B) = πiUR(X ⊗Σ Y )s.

In particular, if Z and W are cofibrant spectrum objects, then Lemma 5.12
implies that there is an isomorphism

Tori(VRZ, VRW ) ∼= πi(Z ⊗n W )

so that Tori can be defined by stable homotopy groups of naive tensor products.

Lemma 5.14. Suppose that A is a simplicial R-module and that B is a simpli-
cial R-module spectrum. Then there is an isomorphism

Tori(VRB, Σ∞A) ∼= lim
−→
n

Tori+n(Bn, A).

Proof. We can assume that the simplicial R-module A and the spectrum object
B are cofibrant. There is an isomorphism of symmetric spectrum objects

VRB ⊗Σ Σ∞A ∼= VR(B ⊗A),

where B ⊗ A is the spectrum object with (B ⊗ A)n = Bn ⊗ A. The spectrum
object B ⊗A is cofibrant, so that the composite

B ⊗A
η
−→ URVR(B ⊗A)→ UR(VR(B ⊗A))s
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is a stable equivalence, by the proof of Theorem 4.10. There is an isomorphism

πi(B ⊗A) ∼= lim
−→
n

πi+n(Bn ⊗A).

Corollary 5.15. Suppose that A and B are simplicial R-modules. Then there
is an isomorphism

Tori(Σ
∞B, Σ∞A) ∼=

{

Tori(B, A) for i ≥ 0,

0 for i < 0.

The skeletal filtration skn A of a simplicial R-module spectrum A corre-
sponds to the bad truncation TnNA of the normalized chain complex NA at
level n. Explicitly, we define skn A by

skn A = ΓTnNA.

There is a natural equivalence

A ≃ ΓNA = ∪nΓ skn A,

and there are short exact sequences

0→ skn A→ skn+1 A→ ΓNAn+1[−n− 1]→ 0

Suppose that A and B are simplicial R-module spectra, and write

Tori(A, B) = Tori(VRX, VRY ),

where X → A and Y → B are choices of cofibrant models for A and B respec-
tively. In view of Lemma 5.12, there is an isomorphism

Tori(A, B) ∼= πi(X ⊗n Y ).

If D is a presheaf of R-modules, write

Tori(A, D) = Tori(A, K(D, 0)).

Lemma 5.16. Suppose that A and B are simplicial R-module spectra. Then
there is a spectral sequence of sheaves of R-modules, with

Ep,q
2 = Torp(A, πqB)⇒ Torp+q(A, B).

The spectral sequence converges if A is bounded below in the sense that πjA = 0
if j < m for some m.
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Proof. We can suppose that A and B are cofibrant. Then the functor ? ⊗n B
is exact and preserves stable equivalences. It follows that the skeletal filtration
on A gives exact sequences

0→ skm−1 A⊗n B → skm A⊗n B → Γ(NAm[−m])⊗n B → 0

The spectral sequence arising from this filtration of the naive tensor product

A⊗n B ≃ (ΓNA)⊗n B

has E1-term

Ep,q
1 = πp+q(Γ(NAp[−p])⊗n B) ∼= NAp ⊗ πqB.

The last isomorphism is a consequence of the fact (Corollary 5.3) that tensoring
with NAp is exact since A is cofibrant. It follows that there are isomorphisms

Ep,q
2
∼= Hp(NA⊗ πqB) ∼= Torp(A, πqB)

as required.
If A is bounded below, then there is a cofibrant model Σ∞C[−m] → A,

where C is a cofibrant simplicial R-module. Then there is a quasi-isomorphism
NC[−m] ≃ NΣ∞C[−m], and a comparison of filtrations

ΓT iNC[−m]⊗n B → ski A⊗n B

which induces an isomorphism of spectral sequences at the E2 level. Then
T iNC[−m] = 0 for i < m, so the filtration {ΓT iNC[−m]} is bounded below.

Remark 5.17. As in Remark 5.8 the the invariants Torn(A, πqB) in the E2-
term of the spectral sequence of Lemma 5.16 can be computed with a second
application of the same result: there is a spectral sequence

Er,s
2 = Torr(πsA, πqB)⇒ Torr+s(A, πqB).

We finish by noting that the Tor functors respect shift in the expected way.
There are isomorphisms

Tori(A, B ⊗ S1) ∼= Tori−1(A, B) (5.3)

for all symmetric spectrum objects A and B. In effect, we may as well assume
that A and B are cofibrant since tensoring with S1 preserves stable equivalences
of symmetric spectrum objects. Then there is a map

(A⊗Σ B)s ⊗ S1 → ((A ⊗Σ B)s ⊗ S1)s

which is a stable equivalence of the underlying spectra by Lemma 5.13, and the
object ((A⊗Σ B)s ⊗ S1)s is a stably fibrant model for

A⊗Σ (B ⊗ S1) ∼= (A⊗Σ B)⊗ S1.
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It follows that there are isomorphisms

Tori(A, B[−1]) ∼= Tori+1(A, B). (5.4)

To see this, observe that there is an isomorphism

A⊗Σ B[−1] ∼= A⊗Σ B ⊗Σ S[−1],

and tensoring with S[−1] preserves level equivalences. Thus, we can assume
that A and B are cofibrant, and apply the isomorphism (5.3) in conjunction
with the stable equivalence S[−1] ∧ S1 ≃ S.
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