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Topological solitons

Topological solitons are stable, particle-like solutions to a field theory,
where they differ topologically from the vacuum.

The topological character is often captured by an integer (usually
topological degree or generalised winding number) called the
topological charge.

Smooth deformations of the field does not change the topology and
so solutions of non-trivial topological charge are stable.

Energy density is smooth and concentrated in some finite region of
space.
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Topological solitons

If there are static stable solitons in the theory - it must satisfy
Derricks theorem.

Derrick’s Theorem [J. Math. Phys. 5, 1252 (1964)]

Consider a time independent field theory with a finite
energy non-vacuum field configuration. Let e(µ) be the
energy under spatial rescaling x 7→ µx. Then if e(µ) has no
stationary point, the theory has no static solutions with
finite energy other than the vacuum.

In many cases we can find a bound on the energy in terms of the
topological charge (a Bogomolny bound).

Examples are kinks, lumps, baby Skyrmions, Skyrmions, monopoles,
instantons.
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A basic example: The kink

A one-dimensional theory of a real scalar field φ defined by the
Lagrangian

L =
1

2
∂µφ∂

µφ− U(φ),

for real non-negative function U(φ). Note for finite energy we need
these to tend to a vacuum at spatial infinity.

So long as there are multiple isolated vacua of the potential, solutions
which go from one vacua to another are called kinks, and are
topologically distinct from the vacuum solution.

Examples of potential are the φ4 kink, U(φ) = λ(m2 − φ2)2 and the
sine-Gordon kink U(φ) = 1− cosφ.
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A basic example: The kink

Since the energy will be be comprised of two terms E = E2 + E0, and
we are in one spatial dimension these will scale in opposite ways.
Thus Derrick’s theorem will not forbid static solutions.

For the φ4 kink we find associated topological charge

N =
φ+ − φ−

2m
,

where φ± = limx→±∞ φ(x). Then N ∈ {−1, 0, 1}.
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A basic example: The kink

This case is analytically solvable, with a kink given by the field

φ = m tanh
(√

2λm(x − a)
)

, where a is the location of the kink.
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The σ-model lump

We now move to two dimensions!

We upgrade φ from before to a three-component scalar field φ ∈ S2,
and have Lagrangian

L =
1

2
∂µφ · ∂µφ−m2V (φ)

For the energy to be finite again the field must tend to a vacuum
value. This compactifies the R2 to S2, and means that we have a
topological charge which is a winding number.

Looking at Derrick’s theorem though, in this extra spatial dimension
we see that this does not have stable solutions since we have no
non-trivial solution. So these σ-model lumps are not solitons and can
suffer from scale instabilities.

Paul Jennings (Durham) The Skyrme-Faddeev model 9 / 31



The baby-Skyrme model

To solve this instability we add another term to the Lagrangian.

L =
1

2
∂µφ · ∂µφ−

κ

4
(∂µφ× ∂νφ) · (∂µφ× ∂νφ)−m2V (φ)

where this term is the unique as the lowest order Lorentz invariant
with field equations involving time derivatives of no more than second
order. However becomes highly non-linear.

Has applications as an approximation in condensed matter theories
[Yu, Onose et al. Nature 465, 901 (2010)]
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The baby-Skyrme model

Numerical solutions are well known, with solutions looking like
localised lumps of energy.

With the standard analogue of the pion mass term, V (φ) = 1− φ3,
we find charge one solution.
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The Skyrme model

Can be easily extended into three dimensions by letting φ ∈ S3 be a
four-component unit vector. Again is a winding number as another
one-point compactification occurs.

This is a theory of pions, with the solitons (called Skyrmions) of the
theory representing baryons. It can be regarded as a low-energy
effective theory of QCD in the large-colour limit.
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The Skyrme model

Solutions to this are well-known, where platonic symmetries are used
to generate solutions.

[Battye, Sutcliffe;Rev. Math. Phys. 14, 29 (2002)]
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The Skyrme–Faddeev model

Three-dimensional theory with links to QCD and condensed matter
physics. [Faddeev; Princeton preprint IAS-75-QS70 (1975)]

It is defined by the static energy functional

E =
1

32π2
√

2

∫
∂iφ · ∂iφ +

1

2
(∂iφ× ∂jφ) · (∂iφ× ∂jφ) d3x ,

where φ is a three-component unit vector.

Finite energy considerations lead to φ(∞) = (0, 0, 1), so now
φ : S3 → S2. Center of soliton taken to be antipodal point.

Derrick’s scaling theorem allows static solutions with a non-zero size.
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The Skyrme–Faddeev model

We have topological charge, the Hopf charge, given by

Q =
1

4π2

∫
S3

F ∧ A,

where F = dA is the pull-back of the area two-form on the target S2.

Alternatively, we can interpret this more geometrically in terms of the
linking number of the preimages of two distinct points.
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The Skyrme–Faddeev model

Initial conditions can be generated via rational maps.
[Sutcliffe; Proc. R. Soc. Lond. A463, 3001 (2007)]

We map (x1, x2, x3) ∈ R3 to the unit three-sphere S3 ⊂ C2 via the
map

(Z1,Z0) =

(
(x1 + ix2)

sin f

r
, cos f + i

sin f

r
x3

)
,

where r2 = x2
1 + x2

2 + x2
3 and f (r) is monotonically decreasing

function satisfying f (0) = π, f (∞) = 0.

The Riemann sphere coordinate, W , of the field are given by rational
map

W =
φ1 + iφ2

1 + φ3
=

p(Z1,Z0)

q(Z1,Z0)
.
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The Skyrme–Faddeev model

We see that W = Zn
1 /Z

m
0 generates axially symmetric fields, denoted

An,m, with topological charge Q = mn. This rational map generates
the static energy configurations for charge one to four.

Note that Q3 solution buckles.
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The Skyrme–Faddeev model

We also have the possibility of linked solutions. Fields linked once,
denoted L1,1

n,n (where subscript denotes constituent charges and
superscript denotes linking number) are generated via

W =
Zn+1

1

Z 2
1 − Z 2

0

=
Zn

1

2(Z1 − Z0)
+

Zn
1

2(Z1 + Z0)
.

Solutions linked once gain charge two via linking. In general the
charge is given by the sum of subscripts and superscripts. Energy
minimum for charges five and six.
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The Skyrme–Faddeev model

Also can have solutions which are torus knots (i.e. the knot can be
drawn on the surface of a torus) the first example of which is the
trefoil knot

An (a, b) torus knot is generated by rational map

W =
Zα1 Z

β
0

Z a
1 + Zb

0

,

where α positive integer and β non-negative which has charge
Q = αb + βa. First appears at charge seven.
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Energy Minimisation

We then take our initial ansatz and follow an energy minimisation
algorithm to relax to a (quasi-) stable energy minimum, which give
static solutions.

For example, an initial field 7A17 relaxes to 7K32:
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The Skyrme–Faddeev model

Solutions have been found for charges up to charge sixteen.
[Sutcliffe; Proc. R. Soc. Lond. A463, 3001 (2007)]
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The Skyrme–Faddeev model

Solutions have been found for charges up to charge sixteen.
[Sutcliffe; Proc. R. Soc. Lond. A463, 3001 (2007)]
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Non-torus knots

250 prime knots with minimal crossing number up to 10
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Non-torus knots

250 prime knots with minimal crossing number up to 10

Only 7 of which are torus knots.
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Cable Knots

First step towards finding non-torus knots - cable knots are the
obvious extension of torus knots.

What is a cable knot? Take torus knot K2
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Cable Knots

First step towards finding non-torus knots - cable knots are the
obvious extension of torus knots.

What is a cable knot? Take torus knot K2

We call this knot the K2 cable on K1.
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Cable knot construction

We know that a cable knot can be generated by the map

W =
Zα1 Z

β
0 (Z1 − Z0)γ

Z 4
0 − 2Z 3

1Z
2
0 − 4η2Z 3

1Z0 + Z 6
1 − η4Z 3

1

,

for some η 6= 0, which describes a K32 cable on K32. Choice of
positive integer α, non-negative integer β and γ ∈ {0, 1}.

Lower charges relax to torus knots or links of torus knots, above
charge 22 we find solutions of the right form.
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Cable Knotted Hopfions

Solutions with the form of cable knots and links for charges 22− 35
with the exception of charge 33.
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Conclusion and outlook

We have seen a range of topological solitons.

We have seen the SF model, and the types of solution.

We have seen the first known examples of non-torus knots.

What happens for even higher charges? Iterated torus knots?

What about the other non-torus knots? Non-prime knots?

What is the behaviour of these knots under classical isospin?
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Thank you for listening.
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