Cohomological Field Theories and Generalized Seiberg–Witten Equations

(Joint work with Jürgen Jost)

Shuhan Jiang

Institut für Mathematik, Universität Zürich

Geometry, Topology, and Physics (GTP) Seminar February 2025, Center for Quantum and Topological Systems

Introduction

Gauge theory has led to spectacular advances in mathematics.

Donaldson Theory:

- Anti-self-dual equations: $(F_A)_+ = 0$;
- Gauge group: SU(2) (or SO(3)).

Seiberg-Witten Theory:

- Seiberg–Witten equations: $(F_A)_+ \frac{1}{2}\mu(\sigma) = 0$, $\not D_A^+\sigma = 0$;
- Gauge group: U(1).

There also exist non-abelian generalizations of Seiberg–Witten theory.

The solution space Sol(M) of these 1st order nonlinear PDEs on a Riemannian manifold M can be interpreted as the zero locus $\mathcal{F}^{-1}(0)$ of a \mathcal{G} -equivariant map:

$$\mathcal{F}: \mathcal{E} \to \mathcal{H}$$
,

where $\mathcal{E}:=\Gamma(E)$ (resp., $\mathcal{H}:=\Gamma(H)$) is the space of sections of a fiber bundle $E\to M$ (resp., a vector bundle $H\to M$). If H is equipped with a \mathcal{G} -invariant bundle metric, one can define

$$S(\Phi) = \int_{M} |\mathcal{F}(\Phi)|^2 \text{vol}_{M}, \quad \Phi \in \mathcal{E}.$$
 (1)

If $M = \mathbb{R}^n$, (1) can be extended to a supersymmetric action functional \widetilde{S} over a (Fréchet) supermanifold $\widetilde{\mathcal{E}}$ with underlying (Fréchet) manifold $i: \mathcal{E} \hookrightarrow \widetilde{\mathcal{E}}$.

 \widetilde{S} can be defined for a general Riemannian manifold M at the cost of losing the full super Poincaré symmetries. In such case,

- ullet $\widetilde{\mathcal{E}}$ can be equipped with a compatible \mathbb{Z} -grading;
- S has degree 0 and a remaining degree 1 "scalar" supersymmetry Q.

 $(\widetilde{\mathcal{E}},Q,\widetilde{S})$ is referred to as a **cohomological field theory (CohFT)** by physicists.

After applying a"twisting" procedure, the supersymmetries of the 4D $N=2~{
m SU}(2)$ pure super Yang-Mills theory become

- a scalar supersymmetry Q, $Q^2 = 0$;
- a 1-form supersymmetry $K_{\mu}dx^{\mu}$, $[Q,K_{\mu}]=\partial_{\mu}$;
- an ASD 2-form supersymmetry $H_{\mu\nu}dx^{\mu}\wedge dx^{\nu}$.

The twisted pure super Yang-Mills theory is a CohFT (on \mathbb{R}^4), known as the Donaldson-Witten theory.

The Seiberg–Witten invariants are closely related to the twisted 4D $N=2~\mathrm{U}(1)$ super Yang-Mills theory with matter fields.

It might seem that the cohomology of the differential graded (dg) superalgebra $(C^{\infty}(\widetilde{\mathcal{E}}), Q)$ is dependent on \widetilde{S} and its supersymmetries. We will show that:

- Both $(C^{\infty}(\widetilde{\mathcal{E}}), Q)$ and \widetilde{S} can be constructed solely from the data of the 1st order field equation $\mathcal{F}=0$ and admit a clear mathematical interpretation.¹
- When applied to the generalized Seiberg-Witten equations on R⁴, our construction reproduces the supersymmetric functionals of various CohFTs.

Based on joint work with Jürgen Jost: arxiv: 2407.04019.

 $^{^1\}mbox{Our}$ formalism is closely related to the BRST and Mathai–Quillen formalisms of CohFTs.

The general construction

Let $\mathfrak{g}_{dR}=\mathfrak{g}\oplus\mathfrak{g}[-1]$ be a graded Lie superalgebra, whose bracket is induced by the bracket of \mathfrak{g} and the adjoint action of \mathfrak{g} on $\mathfrak{g}[-1]$. \mathfrak{g}_{dR} is a dg Lie superalgebra with the differential

$$0 \to \mathfrak{g}[-1] \xrightarrow{\mathrm{Id}} \mathfrak{g} \to 0.$$

The Weil algebra $W(\mathfrak{g}) = \Lambda(\mathfrak{g}^*) \otimes \operatorname{Sym}(\mathfrak{g}^*)$ is a \mathfrak{g}_{dR} -algebra by setting

$$\begin{split} \iota_{a}\theta^{b} &= \delta_{a}^{b}, \quad \iota_{a}\phi^{b} = 0, \\ \operatorname{Lie}_{a}\theta^{b} &= -f_{ac}^{b}\theta^{c}, \quad \operatorname{Lie}_{a}\phi^{b} = -f_{ac}^{b}\phi^{c}. \end{split}$$

Let P be a principal G-bundle. $\Omega(P)$ is also a \mathfrak{g}_{dR} -algebra, with ι_a and Lie_a being the usual contractions and Lie derivatives.

The de Rham complex $\Omega(\mathcal{M}) \cong C^{\infty}(\mathcal{T}[1]\mathcal{M})$ of a dg manifold² \mathcal{M} with a compatible G-action³ is a \mathfrak{g}_{dR} -algebra. We have the following isomorphism of dg algebras:

$$(CE(\mathfrak{g}_{dR}; C^{\infty}(T[1]\mathcal{M})), d_{CE}) \cong (W(\mathfrak{g}) \otimes \Omega(\mathcal{M}), d_{K}), \qquad (2)$$

where,

- $(CE(\mathfrak{g}_{dR}; C^{\infty}(T[1]\mathcal{M})), d_{CE})$ is the Chevalley–Eilenberg complex of \mathfrak{g}_{dR} with values in $C^{\infty}(T[1]\mathcal{M})$;
- d_K is the Kalkman differential of the BRST model of the equivariant de Rham cohomology of \mathcal{M} .

 $^{^2}$ A dg manifold is a supermanifold $\mathcal M$ together with a compatible $\mathbb Z$ -grading and a degree 1 odd vector field $Q_{\mathcal M}$ that squares to 0.

³That is, for each $\xi \in \mathfrak{g}$, the fundamental vector field X_{ξ} over \mathcal{M} induced by ξ commutes with $Q_{\mathcal{M}}$.

Before applying this construction to study CohFTs, let us give a few more definitions. Let \mathcal{W} be a \mathfrak{g}_{dR} -algebra. An element $\Theta = \Theta^a \otimes \xi_a \in \mathcal{W} \otimes \mathfrak{g}$ of degree 1 is called a connection of \mathcal{W} if

$$\iota_a \Theta = \xi_a$$
, $\operatorname{Lie}_a \Theta = -[\xi_a, \Theta]$.

The curvature of Θ is an element $\Omega = \Omega^a \otimes \xi_a \in \mathcal{W} \otimes \mathfrak{g}$ of degree 2 defined by the formula

$$\Omega = \delta_{\mathcal{W}}\Theta + \frac{1}{2}[\Theta, \Theta].$$

 $W(\mathfrak{g})$ admits a canonical connection and curvature, given by the formulas $\theta = \theta^a \otimes \xi_a$ and $\phi = \phi^a \otimes \xi_a$.

The Chern–Weil homomorphism

$$CW_{\Theta}: W(\mathfrak{g}) \to W$$

is defined by sending $\theta^a\mapsto\Theta^a$ and $\phi^a\mapsto\Omega^a$. CW_Θ is a morphism between \mathfrak{g}_{dR} -algebras. For $\mathcal{W}=\Omega(P)$ and Θ a connection 1-form on P, CW_Θ gives us the usual Chern–Weil homomorphism.

Let $\mathcal W$ and $\mathcal W'$ be two $\mathfrak g_{dR}$ -algebras. Let Θ be a connection of $\mathcal W$. The Mathai–Quillen automorphism T_Θ of $\mathcal W\otimes\mathcal W'$ is defined as

$$T_{\Theta} = \exp(\Theta^a \otimes \iota_a).$$

For $W = W(\mathfrak{g})$ and $W' = \Omega(\mathcal{M})$, T_{Θ} transforms the Weil differential into the Kalkman differential.

Let $\mathcal{E}_{tot} = \mathcal{E} \times \mathcal{H}$. Consider the following Koszul complex

$$\cdots \xrightarrow{\iota_{\mathcal{F}}} \Gamma(\Lambda^k \mathcal{E}^*_{tot}) \xrightarrow{\iota_{\mathcal{F}}} \cdots \xrightarrow{\iota_{\mathcal{F}}} \Gamma(\mathcal{E}^*_{tot}) \xrightarrow{\iota_{\mathcal{F}}} C^\infty(\mathcal{E}) \to 0,$$

where $\iota_{\mathcal{F}}$ is the contraction by \mathcal{F} . This complex is equivalently to an infinite dimensional dg manifold $(\mathcal{E}_{tot}[-1], \iota_{\mathcal{F}})$.

The (minimal) CohFT extension $(\widetilde{\mathcal{E}}, Q, \widetilde{S})$ of (\mathcal{E}, S) is given by

- $\widetilde{\mathcal{E}} = T[1](\operatorname{Lie}(\mathcal{G})[1] \times \mathcal{E}_{tot}[-1]);$
- Q is the Chevalley–Eilenberg differential under the isomorphism

$$C^{\infty}(\widetilde{\mathcal{E}}) \cong CE(Lie(\mathcal{G})_{dR}; C^{\infty}(\mathcal{T}[1](\mathcal{E}_{tot}[-1])));$$
 (3)

Let (Φ, X) denote local coordinates of $\mathcal{E}_{tot}[-1]$. Let (Ψ, B) denote the coordinates of its shifted tangent space. Let (θ, ϕ) denote the coordinates of $T[1](\operatorname{Lie}(\mathcal{G})[1])$. The scalar supersymmetry Q is defined by its action on the fields:

$$\begin{split} Q\theta &= \phi - \frac{1}{2}[\theta, \theta], \ Q\phi = -[\theta, \phi], \\ Q\Phi &= \Psi - \theta\Phi, \ Q\Psi = -\theta\Psi + \phi\Phi, \\ QX &= B - \theta X + \mathcal{F}(\Phi), \ QB = -\theta B + \phi X - \operatorname{Lin}_{\Phi}(\mathcal{F})\Psi, \end{split}$$

where we use $\operatorname{Lin}_{\Phi}(\mathcal{F})$ to denote the linearization of \mathcal{F} at Φ and $\theta\Phi$ to denote the action of θ on Φ .

• The CohFT action functional \tilde{S} is defined as

$$\widetilde{S} = Q\left(\int_{M} \langle X, B \rangle \operatorname{vol}_{M}\right).$$

A direct computation shows that

$$\widetilde{S} = \int_{M} (|\mathsf{B}|^2 + \langle \mathsf{B}, \mathcal{F} \rangle + \langle \mathsf{X}, \mathrm{Lin}_{\Phi}(\mathcal{F}) \Psi \rangle - \langle \mathsf{X}, \phi \mathsf{X} \rangle) \, \mathrm{vol}_{M}.$$

The pullback of \widetilde{S} to \mathcal{E}_{tot} is

$$\widetilde{S}_{Boson} := i^*\widetilde{S} = \int_M (|\mathsf{B}|^2 + \langle \mathsf{B}, \mathcal{F} \rangle) \operatorname{vol}_M,$$

which gives us a 1st order formulation of (1).

Mathai-Quillen formalism

Let us consider the zero dimensional toy model where M is a point, $\mathcal E$ is the frame bundle $\operatorname{Fr}(N)$ over an 2m-dimensional Riemannian manifold N, $\mathcal E_{tot}$ is $\operatorname{Fr}(N) \times \mathbb R^{2m}$, and $\mathcal G = \operatorname{SO}(2m)$. Note that the $\mathcal G$ -action on $\mathcal E_{tot}$ is free and we have

$$\mathcal{E}_{tot}/\mathcal{G}\cong TN$$
.

Therefore, an \mathcal{G} -equivariant section \mathcal{F} of \mathcal{E}_{tot} is equivalent to a vector field over N.

The configuration space of the 0-dimensional CohFT is

$$\widetilde{\mathcal{E}} = T[1](\mathfrak{so}(2m)[1] \times \mathrm{Fr}(N) \times \mathbb{R}^{2m}[-1]).$$

Let $\Delta: \operatorname{Fr}(N) \to \operatorname{Fr}(N) \times \operatorname{Fr}(N)$ denote the diagonal embedding. Δ , $\operatorname{CW}_{\nabla}$, and T_{∇} together induce a homomorphism J between $\mathfrak{so}(2m)_{dR}$ -algebras:

$$\begin{split} J : & C^{\infty}(\widetilde{\mathcal{E}}) \cong W(\mathfrak{so}(2m)) \otimes \Omega(\operatorname{Fr}(N)) \otimes \Omega(\mathbb{R}^{2m}[-1]) \xrightarrow{(CW_{\nabla} \otimes 1 \otimes 1)} \\ & (\Omega(\operatorname{Fr}(N)) \otimes \Omega(\operatorname{Fr}(N))) \otimes \Omega(\mathbb{R}^{2m}[-1]) \xrightarrow{T_{\nabla} \otimes 1} \\ & (\Omega(\operatorname{Fr}(N)) \otimes \Omega(\operatorname{Fr}(N))) \otimes \Omega(\mathbb{R}^{2m}[-1]) \xrightarrow{\Delta^{*} \otimes 1} \\ & \Omega(\operatorname{Fr}(N)) \otimes \Omega(\mathbb{R}^{2m}[-1]) \cong C^{\infty}(\widetilde{\mathcal{E}}_{MQ}), \end{split}$$

where

$$\widetilde{\mathcal{E}}_{MQ} := \mathcal{T}[1](\operatorname{Fr}(\mathcal{N}) \times \mathbb{R}^{2m}[-1]).$$

The cohomological vector field Q_{MQ} of $\widetilde{\mathcal{E}}_{MQ}$ is given by

$$\begin{split} &Q_{MQ}\Phi=\Psi,\quad Q_{MQ}\Psi=0,\\ &Q_{MQ}X=\mathsf{B}+\mathcal{F}-A_{\nabla}X,\quad Q_{MQ}\mathsf{B}=-A_{\nabla}\mathsf{B}+R_{\nabla}X-\nabla\mathcal{F}. \end{split}$$

One can check that $Q_{MQ} \circ J = J \circ Q$. The image of the CohFT action functional \widetilde{S} under J is given by

$$\widetilde{S}_{MQ} := J(\widetilde{S}) = |\mathsf{B}|^2 + \langle \mathcal{F}, \mathsf{B} \rangle + \langle \mathsf{X}, \nabla \mathcal{F} \rangle - \langle \mathsf{X}, R_{\nabla} \mathsf{X} \rangle.$$

The Berezin integral

$$e_{\nabla}^{\mathcal{F}}(t) := \frac{1}{(2\pi)^{2m}} \int d\mathsf{X} d\mathsf{B} \exp(-t\widetilde{S}_{MQ}), \quad t > 0,$$

defines a closed basic 2m-form on Fr(N).

Moreover, $\frac{d}{dt}e_{\nabla}^{\mathcal{F}}(t)$ is exact since \widetilde{S} is Q-exact, and

$$\lim_{t\to 0} e_{\nabla}^{\mathcal{F}}(t) = \operatorname{Pf}(\frac{R_{\nabla}}{2\pi}).$$

Thus, $e^{\mathcal{F}}_{\nabla}(t)$ forms a representative of the Euler class of N under the identification $\Omega_{bas}(\operatorname{Fr}(N)) \cong \Omega(N)$.

For a transversal \mathcal{F} , a proof of the Poincaré–Hopf theorem can be obtained by letting $t \to \infty$.

Derived Geometric point of view

For a derived geometer, the dg manifold $(\mathcal{E}_{tot}[-1], \iota_{\mathcal{F}})$ provides a concrete model for the derived manifold $\mathrm{Sol}(\mathcal{F})$ of the intersection of \mathcal{F} and the zero section. We may say that:

The study of a CohFT associated to \mathcal{F} is equivalent to the study of the "equivariant de Rham cohomology theory" of $Sol(\mathcal{F})$.

Applications to the GSW equations

Let $G \subset M_{m \times m}(\mathbb{K})$ be a matrix group containing -1, $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . The Spin^G group is defined as

$$\mathrm{Spin}^G(n) := \mathrm{Spin}(n) \times_{\mathbb{Z}_2} G.$$

There is a short exact sequence

$$\operatorname{Id} \to \mathbb{Z}_2 \to \operatorname{Spin}^G(n) \xrightarrow{\operatorname{Ad}} \operatorname{SO}(n) \times G/\mathbb{Z}_2 \to \operatorname{Id}.$$

Let (M,g) be a compact Riemannian n-manifold. Let L be a G/\mathbb{Z}_2 -bundle over M. A spin^G structure P on M is a lift of $\mathrm{Fr}(TM\times_M L)$ with the corresponding fiberwise covering map being $\mathrm{Ad}: \mathrm{Spin}^G(n) \to \mathrm{SO}(n) \times G/\mathbb{Z}_2$.

Let S be an irreducible left-module of $\mathrm{Cl}(n)\otimes_{\mathbb{R}} M_{m\times m}(\mathbb{K})$, hence a representation of $\mathrm{Spin}^G(n)$. With a slight abuse of notion, we also use S to denote the corresponding vector bundle over M. The Levi–Civita connection ∇ on TM and a connection A on A induces a connection A on A. One can define the twisted Dirac operator on A via the standard formula

$$\not\!\!D_{\mathcal{A}}\sigma=(e^{\mu}\otimes 1)\iota_{e_{\mu}}\nabla_{\mathcal{A}}\sigma,$$

where $\sigma \in \Gamma(S)$ and $\{e_{\mu}\}_{\mu=1}^{n}$ is a local orthonormal frame.

For a compact G, we can equip S with a $\mathrm{Spin}^G(n)$ -invariant bundle metric $\langle \cdot, \cdot \rangle$ satisfying

$$\langle (e \otimes 1)\sigma_1, (e \otimes 1)\sigma_2 \rangle = \langle \sigma_1, \sigma_2 \rangle$$

for all $\sigma_1, \sigma_2 \in S_x$ and all unit vectors $e \in T_xM$. Let $\{\epsilon_a\}$ be a orthonormal basis of the Lie algebra $\mathfrak g$ of G. We define the following quadratic bundle map

$$\mu: S \to \Lambda^2(M, \mathfrak{g}_E)$$

$$\sigma \mapsto \langle e_{\mu} e_{\nu} \otimes \epsilon^{a} \sigma, \sigma \rangle (e^{\mu} \wedge e^{\nu}) \otimes \epsilon_{a}.$$

The generalized Seiberg–Witten equations on a $\mathrm{spin}^{\mathsf{G}}$ manifold M are defined as

$$F_A - \frac{1}{2}\mu(\sigma) = 0, \quad \not D_A \sigma = 0.$$

The volume form vol_M induces a chirality operator ω on S. In dimension n=4, $\omega^2=1$ and S can be decomposed as $S=S_+\oplus S_-$. Hence, we can consider the following equations instead:

$$(F_A)_+ - \frac{1}{2}\mu(\sigma) = 0, \quad \not D_A^+\sigma = 0,$$

where $\sigma \in \Gamma(S_+)$.

Example 1

For G = U(1), we obtain the original Seiberg–Witten equations.

Example 2

For G = U(2), a $spin^G$ structure is called a $spin^u$ structure. We have

$$\mathrm{U}(2)/\mathbb{Z}_2\cong\mathrm{U}(1)\times\mathrm{PU}(2)\cong\mathrm{S}^1\times\mathrm{SO}(3).$$

The relevant GSW equations are called the SO(3) monopole equations. The ASD SO(3) connections and the Seiberg–Witten monopoles correspond to the two kinds of fixed points of the S^1 -action on $\mathcal{M}(\mathcal{F})$.

To sum up, we have

- $\mathcal{E} = \mathcal{A}(L) \times \Gamma(S^+)$ is the product of the affine space of connections on L and the space of sections of S^+ .
- $\mathcal{H} = \Omega^2_+(M, \mathfrak{g}_L) \times \Gamma(S^-)$.
- \mathcal{F} is a $\operatorname{Aut}(L)$ -equivariant map sending

$$\Phi = (A, \sigma) \mapsto \mathcal{F}(\Phi) = ((F_A)_+ - \frac{1}{2}\mu(\sigma), \not D_A^+\sigma).$$

Using the Weitzenböck formula, one can show that

$$S = \int_{M} \left(|\nabla_{A} \sigma|^{2} + |(F_{A})_{+}|^{2} + \langle \sigma, \mathfrak{R}_{M}(\sigma) \rangle + \frac{|\mu(\sigma)|^{2}}{4} \right) \operatorname{vol}_{M}. \tag{4}$$

The scalar supersymmetry Q of the theory takes the following form:

$$Q\theta = \phi - \frac{1}{2}[\theta, \theta], \quad Q\phi = -[\theta, \phi],$$

$$QA = \psi + d_A\theta, \quad Q\psi = -[\theta, \psi] - d_A\phi,$$

$$Q\sigma = \upsilon - \theta\sigma, \quad Q\upsilon = -\theta\upsilon + \phi\sigma,$$

$$Q\chi = b - [\theta, \chi] + (F_A)_+ - \frac{1}{2}\mu(\sigma),$$

$$Qb = -[\theta, b] + [\phi, \chi] - d_A^+\psi + \mu(\sigma, \upsilon),$$

$$Q\xi = h - \theta\xi + \mathcal{D}_A\sigma, \quad Qh = -\theta h + \phi\xi - \mathcal{D}_A\upsilon - \psi\sigma,$$

$$Q\lambda = \eta - [\theta, \lambda], \quad Q\eta = -[\theta, \eta] + [\phi, \lambda],$$

where $\Psi = (\psi, v)$, $X = (\chi, \xi)$, and B = (b, h).

If $M=\mathbb{R}^4$, the theory also has a 1-form supersymmetry $\mathcal{K}=e^\mu\wedge\mathcal{K}_\mu$:

$$\begin{split} & K\theta = A, \quad K\phi = -\psi, \\ & KA = 2\chi, \quad K\psi = 2(F_A)_- - 2b + \mu(\sigma), \\ & K\sigma = -e^\mu \wedge (e_\mu \xi), \quad K\psi = e^\mu \wedge (e_\mu h), \\ & K\chi = 0, \quad Kb = 3d_A\chi - e^\mu \wedge \mu(e_\mu \xi, \sigma), \\ & K\xi = 0, \quad Kh = -e^\mu \wedge \chi_{\mu\nu}(e^\nu \sigma), \end{split}$$

One can check that $[Q, K_{\mu}] = \partial_{\mu}$.

Our CohFT construction recovers (partially) the supersymmetric extension \widetilde{S} of the generalized Seiberg-Witten functional.

$$\widetilde{S} = \int_{M} \operatorname{vol}_{M} Q(\langle b, \chi \rangle + \langle h, \xi \rangle)
= \int_{M} \operatorname{vol}_{M} \left(\langle [\phi, \chi] - d_{A}^{+} \upsilon + \mu(\sigma, \psi), \chi \rangle + \langle \phi \xi - \cancel{D}_{A}^{+} \psi - \upsilon \sigma, \xi \rangle \right)
+ \underbrace{\int_{M} \operatorname{vol}_{M} \left(\langle b, b + (F_{A})_{+} - \frac{1}{2} \mu(\sigma) \rangle + \langle h, h + \cancel{D}_{A}^{+} \sigma \rangle \right)}_{\widetilde{S}_{ROCOL}}.$$

If $M = \mathbb{R}^4$, one has

$$\mathcal{K}_{\mu}\left(\int_{\mathbb{R}^{4}}d\mathsf{x}^{4}\left(\langle b,\chi
angle + \langle h,\xi
angle
ight)
ight) = \int_{\mathbb{R}^{4}}d\mathsf{x}^{4}\langle D_{\mu}\chi,\chi
angle = 0,$$

where $D_{\mu} := \iota_{e_{\mu}} d_{A}$. It follows that

$$K_{\mu}\widetilde{S} = \int_{\mathbb{D}^4} d^4x \ \partial_{\mu} \left(\langle b, \chi \rangle + \langle h, \xi \rangle \right) = 0.$$

In other words, \widetilde{S} is $(\mathbb{R}^4)_{dR}$ -invariant.

Thank you!

Quantization

- **Step 1** Apply the perturbative Batalin-Vilkovisky quantization for a fixed solution $\Phi \in \operatorname{Sol}(\mathcal{F})$.
- **Step 2** Globalize the perturbative series over the moduli space $\mathcal{M}(\mathcal{F})$.
- **Step 3** Integrate the globalized perturbative series over $\mathcal{M}(\mathcal{F})$.

To summarize, the first step defines a map

$$\langle\cdot
angle_{\mathsf{pert}}: \mathsf{Obs}^{\mathcal{F}}_{cl}(\mathit{M}) o \mathbb{R} \;\mathsf{or}\; \mathbb{C}$$

for each $\Phi \in \mathrm{Sol}(\mathcal{F})$ and a collection of tangent vectors at $[\Phi] \in \mathcal{M}(\mathcal{F})$.

The second step shows that, for an observable O of degree k, $\langle O \rangle_{pert}$ defines a differential k-form over $\mathcal{M}(\mathcal{F})$ in good cases. The third step then defines a map

$$\langle \cdot \rangle_{\mathbf{nonpert}} : \mathbf{Obs}_{cl}^{\mathcal{F}}(M) \to \mathbb{R} \text{ or } \mathbb{C}$$

$$O \mapsto \int_{\mathcal{M}(\mathcal{F})} \langle O \rangle_{\mathbf{pert}}.$$

We are now ready to describe the final step.

Step 4 Define the "quantum cohomology" of the theory based on the map $\langle \cdot \rangle_{nonpert}$ and the embeddings of the open disk $B_r(0)$ into M.