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Introduction

Gauge theory has led to spectacular advances in mathematics.
Donaldson Theory:

• Anti-self-dual equations: (FA)+ = 0;
• Gauge group: SU(2) (or SO(3)).

Seiberg–Witten Theory:
• Seiberg–Witten equations: (FA)+ − 1

2µ(σ) = 0, /D+
Aσ = 0;

• Gauge group: U(1).
There also exist non-abelian generalizations of Seiberg–Witten
theory.

1 / 30



The solution space Sol(M) of these 1st order nonlinear PDEs on a
Riemannian manifold M can be interpreted as the zero locus
F−1(0) of a G-equivariant map:

F : E → H,

where E := Γ(E) (resp., H := Γ(H)) is the space of sections of a
fiber bundle E → M (resp., a vector bundle H → M). If H is
equipped with a G-invariant bundle metric, one can define

S(Φ) =
∫

M
|F(Φ)|2volM, Φ ∈ E . (1)
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If M = Rn, (1) can be extended to a supersymmetric action
functional S̃ over a (Fréchet) supermanifold Ẽ with underlying
(Fréchet) manifold i : E ↪→ Ẽ .

S̃ can be defined for a general Riemannian manifold M at the cost
of losing the full super Poincaré symmetries. In such case,

• Ẽ can be equipped with a compatible Z-grading;
• S̃ has degree 0 and a remaining degree 1 “scalar”

supersymmetry Q.
(Ẽ ,Q, S̃) is referred to as a cohomological field theory (CohFT)
by physicists.
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After applying a“twisting” procedure, the supersymmetries of the
4D N = 2 SU(2) pure super Yang-Mills theory become

• a scalar supersymmetry Q, Q2 = 0;
• a 1-form supersymmetry Kµdxµ, [Q,Kµ] = ∂µ;
• an ASD 2-form supersymmetry Hµνdxµ ∧ dxν .

The twisted pure super Yang-Mills theory is a CohFT (on R4),
known as the Donaldson-Witten theory.
The Seiberg–Witten invariants are closely related to the twisted 4D
N = 2 U(1) super Yang-Mills theory with matter fields.
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It might seem that the cohomology of the differential graded (dg)
superalgebra (C∞(Ẽ),Q) is dependent on S̃ and its
supersymmetries. We will show that:

• Both (C∞(Ẽ),Q) and S̃ can be constructed solely from the
data of the 1st order field equation F = 0 and admit a clear
mathematical interpretation.1

• When applied to the generalized Seiberg-Witten equations on
R4, our construction reproduces the supersymmetric
functionals of various CohFTs.

Based on joint work with Jürgen Jost: arxiv: 2407.04019.

1Our formalism is closely related to the BRST and Mathai–Quillen
formalisms of CohFTs.
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The general construction

Let gdR = g⊕ g[−1] be a graded Lie superalgebra, whose bracket
is induced by the bracket of g and the adjoint action of g on g[−1].
gdR is a dg Lie superalgebra with the differential

0 → g[−1] Id−→ g → 0.

The Weil algebra W(g) = Λ(g∗)⊗ Sym(g∗) is a gdR-algebra by
setting

ιaθ
b = δb

a , ιaφ
b = 0,

Lieaθ
b = −fbacθ

c, Lieaφ
b = −fbacφ

c.

Let P be a principal G-bundle. Ω(P) is also a gdR-algebra, with ιa
and Liea being the usual contractions and Lie derivatives.
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The de Rham complex Ω(M) ∼= C∞(T[1]M) of a dg manifold2 M
with a compatible G-action3 is a gdR-algebra. We have the
following isomorphism of dg algebras:

(CE(gdR;C∞(T[1]M)), dCE) ∼= (W(g)⊗ Ω(M), dK), (2)

where,
• (CE(gdR;C∞(T[1]M)), dCE) is the Chevalley–Eilenberg

complex of gdR with values in C∞(T[1]M);
• dK is the Kalkman differential of the BRST model of the

equivariant de Rham cohomology of M.

2A dg manifold is a supermanifold M together with a compatible Z-grading
and a degree 1 odd vector field QM that squares to 0.

3That is, for each ξ ∈ g, the fundamental vector field Xξ over M induced by
ξ commutes with QM.
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Before applying this construction to study CohFTs, let us give a
few more definitions. Let W be a gdR-algebra. An element
Θ = Θa ⊗ ξa ∈ W ⊗ g of degree 1 is called a connection of W if

ιaΘ = ξa, LieaΘ = −[ξa,Θ].

The curvature of Θ is an element Ω = Ωa ⊗ ξa ∈ W ⊗ g of degree
2 defined by the formula

Ω = δWΘ+
1
2 [Θ,Θ].

W(g) admits a canonical connection and curvature, given by the
formulas θ = θa ⊗ ξa and φ = φa ⊗ ξa.
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The Chern–Weil homomorphism

CWΘ : W(g) → W

is defined by sending θa 7→ Θa and φa 7→ Ωa. CWΘ is a morphism
between gdR-algebras. For W = Ω(P) and Θ a connection 1-form
on P, CWΘ gives us the usual Chern–Weil homomorphism.
Let W and W ′ be two gdR-algebras. Let Θ be a connection of W.
The Mathai–Quillen automorphism TΘ of W ⊗W ′ is defined as

TΘ = exp(Θa ⊗ ιa).

For W = W(g) and W ′ = Ω(M), TΘ transforms the Weil
differential into the Kalkman differential.
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Let Etot = E ×H. Consider the following Koszul complex

· · · ιF−→ Γ(ΛkE∗
tot)

ιF−→ · · · ιF−→ Γ(E∗
tot)

ιF−→ C∞(E) → 0,

where ιF is the contraction by F . This complex is equivalently to
an infinite dimensional dg manifold (Etot[−1], ιF ).
The (minimal) CohFT extension (Ẽ ,Q, S̃) of (E , S) is given by

• Ẽ = T[1](Lie(G)[1]× Etot[−1]);
• Q is the Chevalley–Eilenberg differential under the

isomorphism

C∞(Ẽ) ∼= CE(Lie(G)dR;C∞(T[1](Etot[−1]))); (3)
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Let (Φ,X) denote local coordinates of Etot[−1]. Let (Ψ,B) denote
the coordinates of its shifted tangent space. Let (θ, φ) denote the
coordinates of T[1](Lie(G)[1]). The scalar supersymmetry Q is
defined by its action on the fields:

Qθ = φ− 1
2 [θ, θ], Qφ = −[θ, φ],

QΦ = Ψ− θΦ, QΨ = −θΨ+ φΦ,

QX = B − θX + F(Φ), QB = −θB + φX − LinΦ(F)Ψ,

where we use LinΦ(F) to denote the linearization of F at Φ and
θΦ to denote the action of θ on Φ.
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• The CohFT action functional S̃ is defined as

S̃ = Q
(∫

M
〈X,B〉volM

)
.

A direct computation shows that

S̃ =

∫
M

(
|B|2 + 〈B,F〉+ 〈X,LinΦ(F)Ψ〉 − 〈X, φX〉

)
volM.

The pullback of S̃ to Etot is

S̃Boson := i∗S̃ =

∫
M

(
|B|2 + 〈B,F〉

)
volM,

which gives us a 1st order formulation of (1).
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Mathai-Quillen formalism

Let us consider the zero dimensional toy model where M is a point,
E is the frame bundle Fr(N) over an 2m-dimensional Riemannian
manifold N, Etot is Fr(N)× R2m, and G = SO(2m). Note that the
G-action on Etot is free and we have

Etot/G ∼= TN.

Therefore, an G-equivariant section F of Etot is equivalent to a
vector field over N.
The configuration space of the 0-dimensional CohFT is

Ẽ = T[1](so(2m)[1]× Fr(N)× R2m[−1]).
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Let ∆ : Fr(N) → Fr(N)× Fr(N) denote the diagonal embedding.
∆, CW∇, and T∇ together induce a homomorphism J between
so(2m)dR-algebras:

J :C∞(Ẽ) ∼= W(so(2m))⊗ Ω(Fr(N))⊗ Ω(R2m[−1]) (CW∇⊗1⊗1)−−−−−−−−→

(Ω(Fr(N))⊗ Ω(Fr(N)))⊗ Ω(R2m[−1]) T∇⊗1−−−−→

(Ω(Fr(N))⊗ Ω(Fr(N)))⊗ Ω(R2m[−1]) ∆∗⊗1−−−→

Ω(Fr(N))⊗ Ω(R2m[−1]) ∼= C∞(ẼMQ),

where
ẼMQ := T[1](Fr(N)× R2m[−1]).
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The cohomological vector field QMQ of ẼMQ is given by

QMQΦ = Ψ, QMQΨ = 0,
QMQX = B + F − A∇X, QMQB = −A∇B + R∇X −∇F .

One can check that QMQ ◦ J = J ◦ Q. The image of the CohFT
action functional S̃ under J is given by

S̃MQ := J(S̃) = |B|2 + 〈F ,B〉+ 〈X,∇F〉 − 〈X,R∇X〉.

The Berezin integral

eF∇(t) :=
1

(2π)2m

∫
dXdB exp(−tS̃MQ), t > 0,

defines a closed basic 2m-form on Fr(N).
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Moreover, d
dteF∇(t) is exact since S̃ is Q-exact, and

lim
t→0

eF∇(t) = Pf(R∇
2π ).

Thus, eF∇(t) forms a representative of the Euler class of N under
the identification Ωbas(Fr(N)) ∼= Ω(N).
For a transversal F , a proof of the Poincaré–Hopf theorem can be
obtained by letting t → ∞.
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Derived Geometric point of view

For a derived geometer, the dg manifold (Etot[−1], ιF ) provides a
concrete model for the derived manifold Sol(F) of the intersection
of F and the zero section. We may say that:
The study of a CohFT associated to F is equivalent to the study
of the “equivariant de Rham cohomology theory” of Sol(F).
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Applications to the GSW equations

Let G ⊂ Mm×m(K) be a matrix group containing −1, K = R or C.
The SpinG group is defined as

SpinG(n) := Spin(n)×Z2 G.

There is a short exact sequence

Id → Z2 → SpinG(n) Ad−−→ SO(n)× G/Z2 → Id.

Let (M, g) be a compact Riemannian n-manifold. Let L be a
G/Z2-bundle over M. A spinG structure P on M is a lift of
Fr(TM ×M L) with the corresponding fiberwise covering map being
Ad : SpinG(n) → SO(n)× G/Z2.
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Let S be an irreducible left-module of Cl(n)⊗R Mm×m(K), hence a
representation of SpinG(n). With a slight abuse of notion, we also
use S to denote the corresponding vector bundle over M.
The Levi–Civita connection ∇ on TM and a connection A on L
induces a connection ∇A on S. One can define the twisted Dirac
operator on S via the standard formula

/DAσ = (eµ ⊗ 1)ιeµ∇Aσ,

where σ ∈ Γ(S) and {eµ}n
µ=1 is a local orthonormal frame.
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For a compact G, we can equip S with a SpinG(n)-invariant bundle
metric 〈·, ·〉 satisfying

〈(e ⊗ 1)σ1, (e ⊗ 1)σ2〉 = 〈σ1, σ2〉

for all σ1, σ2 ∈ Sx and all unit vectors e ∈ TxM.
Let {εa} be a orthonormal basis of the Lie algebra g of G. We
define the following quadratic bundle map

µ : S → Λ2(M, gE)

σ 7→ 〈eµeν ⊗ εaσ, σ〉(eµ ∧ eν)⊗ εa.
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The generalized Seiberg–Witten equations on a spinG manifold M
are defined as

FA − 1
2µ(σ) = 0, /DAσ = 0.

The volume form volM induces a chirality operator ω on S. In
dimension n = 4, ω2 = 1 and S can be decomposed as
S = S+ ⊕ S−. Hence, we can consider the following equations
instead:

(FA)+ − 1
2µ(σ) = 0, /D+

Aσ = 0,

where σ ∈ Γ(S+).
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Example 1
For G = U(1), we obtain the original Seiberg–Witten equations.

Example 2
For G = U(2), a spinG structure is called a spinu structure. We
have

U(2)/Z2 ∼= U(1)× PU(2) ∼= S1 × SO(3).

The relevant GSW equations are called the SO(3) monopole
equations. The ASD SO(3) connections and the Seiberg–Witten
monopoles correspond to the two kinds of fixed points of the
S1-action on M(F).
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To sum up, we have
• E = A(L)× Γ(S+) is the product of the affine space of

connections on L and the space of sections of S+.
• H = Ω2

+(M, gL)× Γ(S−).
• F is a Aut(L)-equivariant map sending

Φ = (A, σ) 7→ F(Φ) = ((FA)+ − 1
2µ(σ),

/D+
Aσ).

Using the Weitzenböck formula, one can show that

S =

∫
M

(
|∇Aσ|2 + |(FA)+|2 + 〈σ,RM(σ)〉+ |µ(σ)|2

4

)
volM. (4)
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The scalar supersymmetry Q of the theory takes the following form:

Qθ = φ− 1
2 [θ, θ], Qφ = −[θ, φ],

QA = ψ + dAθ, Qψ = −[θ, ψ]− dAφ,

Qσ = υ − θσ, Qυ = −θυ + φσ,

Qχ = b − [θ, χ] + (FA)+ − 1
2µ(σ),

Qb = −[θ, b] + [φ, χ]− d+Aψ + µ(σ, υ),

Qξ = h − θξ + /DAσ, Qh = −θh + φξ − /DAυ − ψσ,

Qλ = η − [θ, λ], Qη = −[θ, η] + [φ, λ],

where Ψ = (ψ, υ), X = (χ, ξ), and B = (b, h).
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If M = R4, the theory also has a 1-form supersymmetry
K = eµ ∧ Kµ:

Kθ = A, Kφ = −ψ,
KA = 2χ, Kψ = 2(FA)− − 2b + µ(σ),

Kσ = −eµ ∧ (eµξ), Kυ = eµ ∧ (eµh),
Kχ = 0, Kb = 3dAχ− eµ ∧ µ(eµξ, σ),
Kξ = 0, Kh = −eµ ∧ χµν(eνσ),

One can check that [Q,Kµ] = ∂µ.
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Our CohFT construction recovers (partially) the supersymmetric
extension S̃ of the generalized Seiberg-Witten functional.

S̃ =

∫
M

volMQ (〈b, χ〉+ 〈h, ξ〉)

=

∫
M

volM
(
〈[φ, χ]− d+Aυ + µ(σ, ψ), χ〉+ 〈φξ − /D+

Aψ − υσ, ξ〉
)

+

∫
M

volM
(
〈b, b + (FA)+ − 1

2µ(σ)〉+ 〈h, h + /D+
Aσ〉

)
︸ ︷︷ ︸

S̃Boson

.
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If M = R4, one has

Kµ

(∫
R4

dx4 (〈b, χ〉+ 〈h, ξ〉)
)

=

∫
R4

dx4〈Dµχ, χ〉 = 0,

where Dµ := ιeµdA. It follows that

KµS̃ =

∫
R4

d4x ∂µ (〈b, χ〉+ 〈h, ξ〉) = 0.

In other words, S̃ is (R4)dR-invariant.
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Thank you!
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Quantization

Step 1 Apply the perturbative Batalin-Vilkovisky quantization for a
fixed solution Φ ∈ Sol(F).

Step 2 Globalize the perturbative series over the moduli space M(F).
Step 3 Integrate the globalized perturbative series over M(F).

To summarize, the first step defines a map

〈·〉pert : ObsFcl (M) → R or C

for each Φ ∈ Sol(F) and a collection of tangent vectors at
[Φ] ∈ M(F).
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The second step shows that, for an observable O of degree k,
〈O〉pert defines a differential k-form over M(F) in good cases.
The third step then defines a map

〈·〉nonpert : ObsFcl (M) → R or C

O 7→
∫
M(F)

〈O〉pert.

We are now ready to describe the final step.
Step 4 Define the “quantum cohomology” of the theory based on the

map 〈·〉nonpert and the embeddings of the open disk Br(0) into
M.
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