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CRYSTALLOGRAPHIC TOPOLOGY 2: OVERVIEW AND WORKIN PROGRESSCARROLL K. JOHNSONChemical and Analytical Sciences Division, Oak Ridge National LaboratoryOak Ridge, TN 37831-6197,U.S.A.E-mail: ckj@ornl.govAbstractThis overview describes an application of contemporary geometrictopology and stochastic process concepts to structural crystallogra-phy. In this application, crystallographic groups become orbifolds,crystal structures become Morse functions on orbifolds, and vibratingatoms in a crystal become vector valued Gaussian measures with theRadon-Nikodym property. Intended crystallographic bene�ts includenew methods for visualization of space groups and crystal structures,analysis of the thermal motion patterns seen in ORTEP drawings,and a classi�cation scheme for crystal structures based on their Hee-gaard splitting properties.1 IntroductionGeometric topology and structural crystallography concepts are combined to de�nea research area we call Structural Crystallographic Topology, or just Crystallo-graphic Topology. The �rst paper in the series[30] describes basic crystallographyconcepts (crystallographic groups, lattice complexes, and crystal structures) andtheir replacement topology concepts (orbifolds, topological lattice complexes, andMorse functions). To make the present paper self contained we discuss those topicsagain, but from a di�erent perspective, so there is little direct repetition.The new additions are: (1) the loosely de�ned Morse function used previouslyis replaced by a stochastic Morse function, based on the Radon-Nikodym prop-erty, which provides crystallographic thermal motion analysis capability as well astopological partitioning of global thermal motion density; (2) the topological latticecomplexes are extended to include the univariant and divariant non-characteristic(pseudo-symmetry site) orbits thus, providing better algebraic and pictorial charac-terization of crystallographic 3-orbifolds; and (3) a method for topological charac-terization and classi�cation of crystal structures is introduced which uses Heegaardsplitting of a Morse function (crystal structure) on a 3-orbifold (space group) intotwo handlebody 3-orbifolds separated by a Heegaard surface 2-orbifold.For a known crystal structure, experimentally derived atomic thermal motionGaussian density functions can be used to �nd all peak, pass, pale, and pit critical267



CARROLL K. JOHNSON 268points and their stochastic separatrices, by using the Radon-Nikodym principle[12]for pairs of neighboring atoms. This provides a critical net graph of the stochasticMorse function for global thermal motion density. We then add geometric repre-sentations for the rotation axes, inversion centers, and mirrors of the crystal's spacegroup, and calculate all intersections (within a fundamental domain of the unit cell)with the stochastic Morse function Heegaard surface, which is a constant densitysurface partitioning (passes + peaks) and (pales + pits) into two disjoint sets.The fundamental domain is topologically cut out and wrapped up to super-impose all symmetry equivalent boundary points, thus producing a Euclidean 3-orbifold closed space representation of the crystal structure, space group, and Hee-gaard surface. The Heegaard surface provides Heegaard splitting[52] of the spacegroup 3-orbifold and critical net into a pair of handlebody 3-orbifolds[66] with theshared 2-orbifold Heegaard surface (usually hyperbolic) between them.To derive new (hypothetical) crystal structures, or to classify those in exist-ing data bases, one can transmute the Heegaard surface and critical net usingvarious techniques of 3-manifold topology.[29,52] The transmutation procedure re-quires topological transformations. Our plan is to characterize these transforma-tions by determining the topological di�erences between pairs of related knowncrystal structures. The procedures we plan to use for this involves Surf theorydiscriminants.[50,51,37]The stochastic Morse function also provides a framework for stochastic thermalmotion analysis[32] of ORTEP thermal ellipsoid patterns.[7] A full description isforthcoming for this vector-valued Gaussian measure approach, which is based onthe Radon-Nikodym principle of absolute continuity between Gaussian measures.1.1 BackgroundBy topology we mean distortion invariant properties of spaces and objects ratherthan their topographic description. Our topological approach to structural crystal-lography strips away all metric detail. Instead we describe crystallographic geom-etry questions in terms of connectivity in a Morse theory sense, such as: what isthe smallest number of minimum negative gradient downhill and minimum positivegradient uphill path segments required to get from peak (atom) A to peak B in athermal motion density map and how many equivalent paths exist?The distortion invariance allows us to take a crystallographic unit cell from thecrystal and adjoin the three sets of matching faces to form a 3-torus (embeddedinto Euclidean 4-space) producing a closed topological space with more manage-able mathematical properties than our original in�nite Euclidean space. However,a unit cell will contain from 1 to 192 equivalent subunit polyhedra (i.e., fundamen-tal domains or asymmetric units) depending on the space group of that crystal;thus it is more advantageous to \orbi-fold" the fundamental domain polyhedron bymatching up all equivalent pairs of surface regions. This produces a Euclidean 3-orbifold,[62,14,15,30] which is the quotient space E3=G with E3 Euclidean 3-spaceand G one of the 230 space groups; thus we end up with the remnants of the spacegroup (and crystal structure), modulo all symmetry, in the form of a closed spacelocally made up of di�erentiable (Hausdor�) submanifolds.The orbi-folding eliminates the symmetry related repetition and puts all spacegroups on a more equal footing. Thus, the 3-orbifold from a cubic space group hasroughly the same complexity as that from a monoclinic example. However, we now�nd ourselves deep into the convoluted machinery of topology. The adjective deepis meaningful because very little theory in topology is near the surface. The 230



CARROLL K. JOHNSON 269(or 219 a�ne space group orbifolds if handedness is ignored) Euclidean 3-orbifoldshave an amazing variety of underlying topological spaces and we must learn tomanipulate spaces such as D3 (3-ball), S3 (3-sphere), RP 3 (real projective 3-space),RP 2 suspensions, S2 x S1, lens spaces, solid Klein bottle, and others.There are two basic methodologies used in topology. The �rst is combinatorialPL-topology (piece-wise linear), and the second is smooth manifold topology. The�rst uses subdivision such as triangulation, analysis of the subcomponents, and atiling of the subcomponent results. PL-topology has many very powerful algorithmswhile smooth manifold topology has fewer methods available. However, our currentplan is to continue our crystallographic topology studies in the smooth manifolddomain since, in our view, this allows us to be compatible with a wider range ofcrystallographic theory and applications. Thus, in our present study we use Morsetheory, Gaussian measures, Radon-Nikodym density, and Cerf theory rather thana possible alternative based on triangulation, tiling, Voronoi diagrams, and normalsurface analysis.There are also triangulation/tiling methods available for crystal structure pre-diction and classi�cation which do not use either Morse theory or Euclidean 3-orbifolds. For example, the D-symbol approach, described by Dress, Huson, andMolnar,[13] uses the graphs of the singular sets for orbifolds separated from theirunderlying topological spaces. Friedrichs and Huson[20] �nd that there are 195di�erent \orbifold graphs" present in the 219 a�ne space groups and that abelianinvariants can be used to di�erentiate space groups within the con
ict sets.1.2 Organization OutlineThe crystallographic thermal motion analysis problem is described in section 2, andan approach to this problem based on vector-valued Gaussian measures with theRadon-Nikodym property described in section 3. Radon-Nikodym density providesa partitioning between pairs of Gaussian measures suitable for de�ning the Morsefunction and critical net of section 4. Crystallographic groups are discussed in sec-tion 5, and crystallographic lattice complexes in section 6. Underlying topologicalspaces, spherical 2-orbifolds, and Euclidean 3-orbifolds are discussed in section 7.Heegaard splitting of Euclidean 3-orbifolds and critical nets on 3-orbifolds are de-scribed in section 8, and example crystallographic Heegaard surfaces in the form ofquadrilateral Haken normal surfaces shown in section 9. A tabulation of crystallo-graphic Heegaard surfaces in the appendix is described in section 10, and suggestionsfor further research given in section 11.2 Crystallographic Methods and Published ResultsA high precision crystal structure analysis of a small (1-100 atoms, including hy-drogens, in a fundamental domain) to medium (100-500 atoms) crystal structureroutinely includes re�nement of six anisotropic temperature factor parameters, inaddition to the three mean positional parameters, per atom. With proper scaling,these thermal motion parameters for an atom form the symmetric 3x3 cumulantmatrix for the characteristic equation of a trivariant normal probability densityfunction, which is herein referred to as a Gaussian measure[61,3] since we use it ina stochastic process context in this paper.Experimental determination of the dynamic correlation between the motionsof various atoms and the mathematical modeling required is usually rather expen-sive and time consuming; thus, crystallographers usually use much simpler proce-
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Figure 1: Phenylhydroxynorbornanone (0.5 Probability Ellipsoids)dures for interpretation of their thermal motion ellipsoid patterns without resortingto molecular spectroscopic measurements and normal mode analysis, plus neutronscattering measurements and lattice dynamics interpretation.2.1 Thermal Ellipsoid PatternsMany crystal structure papers include a thermal ellipsoid drawing (often made byour ORTEP[7] program) of selected atom clusters such as a molecule, if present, asshown in Figure 1. The ellipsoids represent a constant density surface for the atomicGaussian measure and enclose a stated fraction of the total probability density,often 0.5. The global pattern of thermal ellipsoids in the drawing provides a visualsummary of the time and lattice averaged mean-square thermal displacements of theatoms. Prominent modes of molecular vibrations, such as the intermolecular wag ofhydrogen atoms and the carbonyl oxygen, and rigid-body lattice displacements arereadily apparent in Figure 1. Some readers use the reasonableness of the pictorialellipsoid pattern to judge overall reliability for a published crystal structure beforestudying the numerical results.2.2 Mechanistic Models for Thermal MotionThere are mechanistic thermal motion analysis models available such as the Scho-maker and Trueblood rigid body motion model[55] and its various extensions suchas our segmented rigid body model,[31] but these are not used routinely because thediversity of major large amplitude thermal displacement modes in crystals makesanalysis of rigid body calculation results di�cult. However, these simple mechanistic



CARROLL K. JOHNSON 271models can sometimes provide interesting information.a2.3 Crystallographic Density MapsTopological studies of electron density maps experimentally derived using x-raydi�raction (which sees electrons) are now an important tool in crystallographiccharge density studies. Quantum chemistry e�ects such as lone pair electron den-sities between covalently bonded atoms are often readily observable in such maps,particularly for experimental results at very low temperatures where thermal mo-tion is minimal. Studies using neutrons rather than x-rays produce nuclear densityrather than electron density maps since neutrons see nuclei rather than electrons;consequently, joint x-ray and neutron studies are advantageous for a cleaner sepa-ration of the thermal motion e�ects from the quantum wavefunction e�ects. Figure1 is from our unpublished neutron di�raction study, which insures reliable thermalellipsoids for even the light hydrogen atoms that are troublesome in x-ray studies.One can also work with calculated thermal motion density maps by summingall the atomic Gaussian density functions, then numerically �nding the criticalpoints[24] and their topological separatrices in the summed thermal motion densityfunction. Such a thermal motion map does not have the noise (experimental andquantum) present in the experimentally derived electron density maps.There is a signi�cant di�erence between observed (or calculated) map criticalpoint[24] (and thermal motion) analysis and the stochastic critical point (and ther-mal motion) approach described next. The stochastic approach does not sum theindividual Gaussian density functions but instead works with multiple pairwise dif-ferences to determine stochastic, rather than topological, critical points and separa-trices. The critical point analysis features of the results from these two approachesare similar but the analysis details are quite di�erent. The stochastic approachalso provides some interatomic motion correlation results without superimposingmechanistic assumptions.3 Radon-Nikodym DensityWhile researching thermal ellipsoid pattern interpretation problems, we found someinteresting stochastic process results involving the Radon-Nikodym derivative of onemeasure with respect to a second measure, which for Gaussian measures[3,61] is aclassic concept in mathematical analysis[53] and probability theory.[22,47] Whenused in a probability setting, the derivative is called the Radon-Nikodym density.Much has been written on the subject of when this can be done, particularly thebooks by Diestel and Uhl[12] and Bourgin.[5] The main criterion is that there be\absolute continuity of two Gaussian measures de�ned on the same Hilbert space,"which for crystal structure thermal motion is satis�ed by the fact that we have pairsaThe rigid-body mean-square-displacement model has 21 parameters in a 6x6 symmetric \TLS"matrix with 3x3 submatrices for translation T, libration L, and screw coupling S. The parametersare adjusted by least-squares re�nement to the experimental pattern of thermal ellipsoids. Thesegmented rigid-body has a series of rigid groups arranged as branches on a tree with upperbranches \riding" on lower branches. Flexible joints between segments are constrained by adjustingonly selected parameters of an associated TLS matrix. For the molecule in Figure 1, two segmentswere used with the phenyl group riding on the norbornanone cage. After subtracting out mean-square displacements estimated for the hydrogen atoms' internal molecular motion, a satisfactory�t to the experimental thermal ellipsoids was obtained. The rather unusual pattern of ellipsoids onthe phenyl group in Figure 1 is due to screw components in the phenyl TLS, which may physicallyarise from a buckling distortion within the cage (i.e., as the body hiccups, the molecule tosses itshead and twists its neck).



CARROLL K. JOHNSON 272of Gaussian measures interacting in the same physical Euclidean 3-space. We callthe use of this equation for coupled thermal motion the stochastic thermal motionapproximation.3.1 Two Interacting Gaussian MeasuresDerivation of the following equations is given in Gihman and Skorohod[22, pp 486].Also see Richter[47, pp 44] for a likelihood function extension.The characteristic equations for Radon-Nikodym density, in orthogonal covari-ant coordinates of crystallographic reciprocal space,�k(z) = exp(iatkz � 12(ztBkz)); k = 1; 2; (1)de�ne two adjacent atoms with mean vectors a1; a2 and temperature factor matri-ces B1; B2. A modern description of the various crystallographic structure factorequations which can be used to derive these quantities is given by Coppens.[11] The(direct space) Gaussian densities in contravariant components are:�k(x) = jB�1k j(2�)3=2exp(�(x� ak)tB�1k (x� ak)); k = 1; 2: (2)Using the symmetric B�1=22 as a transformation matrix, we de�neb = B�1=22 (a2 � a1); (3)c(x) = B�1=22 (x� a1); (4)D2;1 = B�1=22 (B1 �B2)B�1=22 ; (5)where D2;1 is a Hilbert-Schmidt matrix (for atom 2 with respect to the referenceatom 1) with 3 eigenvalues and eigenvectors denoted �k and ek, k = 1,2,3, respec-tively. The Radon-Nikodym density, !2;1(x); de�ned as the derivative of �2(x) withrespect to �1(x) is given by the equationd�2d�1 (x) = exp(�12( 3Xk=1(etkc(x))2 �k(1 + �k) � ln(1 + �k)) + ct(x)b� btb2 ): (6)When we set d�2d�1 (x) = !2;1(x) = 1 = 1!2;1 (x) = !1;2(x) = d�1d�2 (x); (7)we obtain the equation for the topological separatrix surface separating the twoGaussian thermal motion measures !2;1(x) and !1;2(x). In addition, for any pointy on the separatrix, �1(y) = �2(y)() !2;1(y) = !1;2(y) = 1: (8)



CARROLL K. JOHNSON 2733.2 Radon-Nikodym Gradient FibersThe gradient �bers in the ! (i.e. Radon-Nikodym) density space are of stochasticimportance. At the a1 site, !2;1(x) density is a minimum and increases along an!2;1(x) �ber which terminates at the separatrix with !2;1(x) = 1. At that pointanother �ber, !1;2(x), starts with a value of 1 and decreases in value to a minimumat the a2 site. Gradient ! �bers radiate in all directions from the two Gaussiancentroids, and if unrestricted by additional neighbering Gaussian measures, all ter-minate at the separatrix between the original two Gaussian measures . The solidelliptical cone angle of gradient �bers meeting the separatrix increases from zero to2�, as the available separatrix area increases. Thus, Radon-Nikodym interactionbetween Gaussian measures is proportional to the available separatrix area betweenthem, or by Stokes rule, proportional to the perimeter of that area.3.3 Three Interacting Gaussian MeasuresThe above two Gaussian measure results may be extended to three measures by thedi�erentiation chain rule d�2d�1 = d�2d�3 d�3d�1 : (9)If the above equations are generalized to have an arbitrary origin and coordinatesystem and all three ! densities are simultaneously unity in that coordinate system,the three separatrices intersect. Thus, we obtain the surprisingly simple result�1 = �2 = �3 () !2;1 = !2;3 = !3;1 = !1;2 = !3;2 = !1;3 = 1: (10)This result, which can be generalized even further, has interesting crystallographicsymmetry implications as described in section 4.2.Given three Gaussian measures in a triangular arrangement, we obtain threeseparatrix surfaces, one between each of the three measures. If the three Gaus-sians are related by a 3-fold axis, the separatrices will intersect on that 3-fold axis,and there are a number of less symmetrical possibilities, some analogous to the 2-dimensional expanding circles discussed by Siersma.[58] However, we will not pursuethat approach, since in 3-dimensions the tetrahedron is the simplest fully symmetriccon�guration, which we discuss below in the Morse Theory section.3.4 Vector-Valued Gaussian MeasuresIn crystals, a group of atoms may tend to move as a chemical unit during lattice vi-brations; thus vector-valued measure theory is required[12,5,41]. We may considera vector-valued probability measure � = (�1; :::; �s), where all component mea-sures in a unit are pairwise mutually absolutely continuous, or one where only theneighboring measures �k are pairwise absolutely continuous, while the more widelyseparated measures have ! = 0.[61] For thermal motion analysis we would use fairlylarge local \coherence zones", but for the present topology application we simplyuse local zones large enough to partition space into polyhedra around the atoms.These cage-like polyhedra are called dented bodies or dentable sets by Diestel andUhl, [12] and Bourgin.[5] The term dentable carries a stochastic meaning: if a set ofmeasures is not dentable, it does not have the Radon-Nikodym property. We referthe reader to the above references, and Ledoux and Talagrand[41] for details.



CARROLL K. JOHNSON 2744 Morse Functions and Critical NetsA critical point of a smooth function f occurs at x if and only if (@f=@x) = 0and (@2f=@2x) = M , with M a 3x3 symmetric matrix with non-zero determinant(jM j 6= 0). For convenience we name the critical points, \peak", \pass", \pale", or\pit" if the eigenvalues of M have the sign sets (-,-,-), (-,-,+), (-,+,+), or (+,+,+),respectively. A Morse function is a di�erentiable function on a smooth 3-manifoldwhich has no degenerate critical points (i.e., no zero eigenvalues). A Morse functionis homotopy equivalent to a CW-complex (i.e., closure �nite, weak topology, cellcomplex). We represent a crystallographic Morse functions as a critical net, whichis a 1-dimensional (graph) representation of the CW-complex. The critical netgives all minimum gradient paths connecting peaks to passes to pales to pits. Themaximum gradient paths between peaks and pits also could be included[23, see�gure in �nal chapter] but we always omit them from illustrations.4.1 Probability Flow ScenariosCrystallographers might visualize the following model as simply a series of modi�edORTEP drawings made at increasing probability levels. The modi�cation is that the4th-order intersection curve[59, pp 101-105] of two adjacent ellipsoids is calculatedat high probability levels where overlap occurs, and is the only feature drawn.In addition, simultaneous intersections of three or more ellipsoids are calculated[1,Ch.7] and drawn. The scenarios may aid construction of an algorithm for computingcritical point graphs, if an incremental separatrix growth approach is taken.1. We can consider the Gaussian measure mean sites a1; a2 to be ellipsoidalwavefront sources producing expanding thermal ellipsoids over a time intervalt = [0 : 1], with total enclosed density for each ellipsoid equal to t. Thus att = 0:5, the total enclosed density is 0.5. At time t1, the two ellipsoids touchat a single point y1. In the time interval [t1 : 1] the separatrix surface expandsoutward to in�nity from y1 to form a curved, but not closed, surface. If thetwo thermal ellipsoids are related by a mirror of symmetry, the separatrixsurface will be planar.2. Now assume we have four identical spherical Gaussian measures on the verticesa1; a2; a3; a4 of a regular tetrahedron. We again use expanding probability asa scenario generator:(a) At t = t0; spherical wavefronts start expanding in 3-dimensions aboutthe four vertices of the tetrahedron (the 4 peaks).(b) At t = t1; spherical wavefronts from two neighboring vertices touch atthe center of each of the six edges of the tetrahedron (the 6 passes).(c) At t = t1 + �; six two-dimensional separatrix surfaces between pairsof spherical wavefronts start to develop (as circular separatrix-fronts)normal to each of the six edges of the tetrahedron with a pass as thecenter of each edge.(d) At t = t2; three circular separatrix-fronts from three passes touch at thecenter of each of the four triangular faces of the tetrahedron (the 4 pales).(e) At t = t2+ �; one-dimensional triseparatrix lines between three sphericalwavefronts start to develop (as vectorial triseparatrix-fronts) perpendic-ular to each face of the tetrahedron, and extending from a pale.



CARROLL K. JOHNSON 275(f) At t = t3; the four spherical wavefronts, six circular separatrix-fronts,and three vectorial triseparatrix-front lines all touch simultaneously atthe center of the tetrahedron (a pit)b.4.2 Geometric aspects of Radon-Nikodym PropertyThe above tetrahedron can be distorted somewhat and the spherical distributionsreplaced by anisotropic Gaussians without changing the topology of 4 peaks, 6passes, 4 pales, and 2 pits.1. The only exact change possible is an ellipsoidal expansion of the vertices aboutthe center of the tetrahedron, and that distortion ellipsoid shape then used aswavefront generators at the four vertices.2. More complex distortions of the tetrahedron will require four di�erent ellipsoidwavefront generators. In addition, the triseparatrix lines will be curved, andthe critical levels (t0; t1; t2; t3) may form bands of discrete levels. It may evenbe necessary to \stochastically negotiate" a triseparatrix line or alter theMorse function. This negotiation may become a key factor in the stochasticthermal motion analysis to be described in a later publication.3. All atoms related by symmetry have their positions and thermal ellipsoidsrelated by that symmetry, and symmetry equivalent atoms will have separa-trices on all the special position Wycko� point, line, and plane sites of theirspace group. The simplest applications of the Radon-Nikodym property willbe for simple high symmetry crystal structures, particularly those with octa-hedral, tetrahedral, and dihedral crystallographic point group operators. Arelated tetrahedron example was discussed in the previous section.4. One can also partition each Gaussian measure into two components:[22] the�rst with Radon-Nikodym coherence and the second without that coherence.This assumption is equivalent to the Busing and Levy[8] riding model whichwe use in our segmented rigid body model.[31]5. The fact that we can also consider \normal modes", with independent coher-ence, leads to considerable 
exibility in thermal motion analysis through useof multiple vector-valued Gaussian measures as will be discussed is a separatepaper.4.3 Critical Net GraphsThe critical net graph has critical points as graph vertices and topological lines be-tween the successive types of critical points as graph lines. Figure 2 is a stereoscopicpair of drawings illustrating the critical net for the face centered cubic (FCC) typeof crystal structure (e.g., copper) which contains both tetrahedral and octahedralbActually there are two pits - the second is on the point at in�nity for the Euclidean repre-sentation of the 3-sphere S3, since we can really only count critical points in a closed manifoldsuch as S3. A second possibility is to put mirrors on all faces of the tetrahedron forming a 3-disk(3-ball), D3, which would reduce the count to 2 peaks, 3 passes, 2 pales, and 1 pit, since the counton mirrors is divided by two. A third critical point bookkeeping possibility is to consider only thesurface polyhedron (S2 topology) and use the Euler relation vertices - edges + faces = 2. The 3-torus and the 3-sphere each have the Euler-Poincare relationship peaks�passes+pales�pits= 0(i.e., � = 0), while the 2-sphere has � = 2. � is called the Euler characteristic (see section 4.40)
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Figure 2: Stereo Drawing of Face Centered Cubic Critical Net, in Fm�3m

Figure 3: Stereo Drawing of Lithium Oxide Critical Net, in Fm�3mpolyhedra, with one of each shown in the drawing. In our critical net drawings,ellipsoids are used to distinguish the four types of critical points (rather than torepresent thermal motion as in Figure 1). The large spheres, elongated ellipsoids,
attened ellipsoids, and small spheres represent peaks, passes, pales, and pits, re-spectively.Figure 3 shows the generic 
uorite-like structure (e.g. lithium oxide, Li2O) thedual of FCC, where the peaks and pits (also passes and pales) are interchanged sothere is one \chemical cage" polyhedron with two types of atoms. The largest spherefor oxygen and the next largest for lithium. In accord with section 4.1, the pale ofFCC is coplanar within the tetrahedron and octahedron faces of Figure 2, but isrequired by symmetry only to be on the 3-fold symmetry axis between the two pits.If the pale is centered between pits in Figure 2, the pass is centered between peaksfor its topological dual in Figure 3. The centered position is a non-characteristic orpseudo-symmetry site (see Section 6.2). The true pass position for Li2O dependson the relative temperature factor coe�cients for the Li and O atoms, but should



CARROLL K. JOHNSON 277be closer to the center than shown in Figure 3.For a more complex crystal structure, such as that shown in Figure 1, whichhas no atoms in special positions, the Radon-Nikodym calculations described abovecan be used with averaging for the cases where minor splitting of critical points orseparatrices occur.4.4 Morse TheoryMorse theory[23,56,57] explores questions such as: What does a manifold knowabout the Morse function on that manifold, and vice versa? For a crystal structureMorse function, let the manifold be a 3-torus (unit cell) with given space groupsymmetry. If the space group has singularities, they must be compatible withthe critical net of the Morse function. We �nd the following Euclidean 3-spacecharacterizations useful.1. Morse Inequalities: Let n0; n1; n2; n3 be the number of peak, pass, pale, andpit critical points, respectively, in the Morse function on the 3-torus. TheMorse inequalities for the unit cell contents are: n0�n1+n2 � 1; n3�n2+n1 �1; n0 � n1 � 2; n3 � n2 � 2; n0 � 1; n3 � 1, and the Morse equality isn0 � n1 + n2 � n3 = 0: (11)The equation and inequalities are helpful constraints on verifying that we havea true Morse function and have found all the critical points. The equalityalso provides a calculation of the Euler-Poincare characteristic, which is theexpected � = 0 of Euclidean 3-space, but here we are using Morse functioncritical points rather then the usual Betti numbers as coe�cients.2. Fixed Points: If the space group has �xed point singularity sites, then oneand only one critical point of the Morse function must reside on each of thesesites. Any remaining critical points of the Morse function will be positionedon lower symmetry sites.3. Critical Net Arcs: The arcs of the Morse function critical net represent gradi-ent lines; thus they cannot pass through a �xed point symmetry site, rotationaxis, or mirror of the space group since that would generate an additionalMorse function critical point at the point of intersection.4. Wagon Wheels: We observe that crystallographic critical nets have wagonwheels of pales around peak - pass - peak linear axles and wagon wheels ofpasses around pit - pale - pit linear axles with minor distortions allowed. Thismay be related to the transversality theorems of Morse theory. The wagonwheels observed to date have 3, 4, 5, and 6 spokes, with the 5-spoke examplebeing a hypothetical Morse function which �ts onto the B-type [30] cubicspace groups.5. Wagon Wheel Axles: A useful Morse function constraint based on the wagonwheel property is that there must be one and only one wagon wheel axle ateach peak and pass. We can express this in terms of the \Q rule": Q1 (resp.,Q2) = (order of Wycko� multiplicity on pass-to-peak arc (resp., pale-to-pitarc)) / (order of the Wycko� multiplicity on pass (resp., pale)) = 2, if andonly if the pass (resp., pale) is not degenerate. Instead of using Wycko�multiplicity ratios, one can use group order ratios, which is the convention



CARROLL K. JOHNSON 278used in the mathematical literature. Keep in mind that the two ratios arereciprocal.5 Crystallographic GroupsThe crystallographic groups [25] describe discrete rigid motions. An n-dimensionalspace group has a normal free Abelian subgroup of rank n, which is maximal Abelianand has �nite index.[27].5.1 The Unit CellEach 3-dimensional space group, G, has one of 14 di�erent Bravais lattices as theAbelian subgroup, L, mentioned above. The quotient G=L = T 3, with T 3 a 3-torusgroup, de�ned as the direct product of 3 copies of the torus group T = R=Z, withR the additive group of real numbers and Z the additive group of rational integers.The 3-torus concept may be interpreted in two di�erent ways. First, it is consideredas T 3 = I x I x I (I=interval) with cyclic boundary conditions where at any timethe size of each I is arbitrarily set to include as many copies of the parallelepipedunit cell as we wish for the calculation or illustration at hand. Secondly, it may beconsidered a topological torus where the cell is distorted to bring each of the threeopposite pairs of unit cell faces into physical contact T 3 = S1 x S1 x S1. The twomodels are homeomorphic. The �rst interpretation is the traditional one used indistortion-sensitive metric crystallography. However, we normally use the secondinterpretation in distortion-invariant crystallographic topology.T 3 is the �nite unit cell for the in�nite space group G, and contain m (m=1 to192) symmetry equivalent fundamental domain (asymmetric unit) polyhedra. m isthe general position Wycko� multiplicity of the unit cell. There may also be specialWycko� sites (points, lines, and planes) in the unit cell. Each will have Wycko�multiplicity m=q where q is the order of the local symmetry group (on that site),which is one of the 32 point groups discussed below. Each of these special Wycko�sites in the unit cell represents a characteristic orbit of the space group.5.2 NomenclatureA space groupG projected along one of its three distinctive non-parallel axes (choicedepending on the crystal class: i.e., triclinic, monoclinic, orthorhombic, tetragonal,trigonal, hexagonal, or cubic) gives one of the 17 in�nite plane groups J , sometimescalled wallpaper groups. The three plane group projections, Jj : j = 1; 2; 3, are notnecessarily di�erent. A symbol for the Bravais lattice, L, and a distinctive spacegroup generator from each of the three projection axes, are adjoined to form thespace group symbol.Example - A space group's full symbol, F 41d �3 2m ;(normally shortened to Fd�3m)tells us that this is a cubic space group (orthogonal axis a = b = c) with (1)face centered unit cell (F); (2) 41 screw axis along a, with diamond glide planesperpendicular to a; (3) �3 axis along the a+ b+ c body diagonal; and (4) 2-fold axisparallel to the b+ c face diagonal, and a mirror plane perpendicular to that axis.5.3 Classi�cationSpace groups[25], G, stripped of all translation components other than their Bravaislattices, L, project to the 73 arithmetic crystal classes[64], A, which modulo theBravais lattices become the 32 geometric crystal classes (i.e., point groups: discrete



CARROLL K. JOHNSON 279cyclic (2, 3, 4, and 6 only), dihedral, tetrahedral, and octahedral members of theorthogonal group O(3)), K. The classi�cation hierarchy may be represented bysurjective (onto) mapping arrows in a commutative diagram,[27]G(230)! Ga(219)! A(73)! K(32)!! L(14)! C(6); (12)with Ga the a�ne space groups (handedness ignored), and C the coproduct of Kand L over A. As an example,P6522! P61;522! 622P! 622!! P ! Hexagonal: (13)There is also a group extension (short exact sequence)[2,63]0! L! Gs ! K ! 1; (14)where Gs is the symmorphic (no screw axes or glide planes) member of the arith-metic crystal class. Short exact sequences have interesting mathematical propertieswe will not explore here. However, it tells us that K = Gs=L: There appears to beno simple mathematical algorithm which generates G from K and L.6 Lattice ComplexesLattice complexes have been known to crystallographers for over 70 years, buthave not been used much in recent years. However, we �nd them to be invaluablelandmarks for the crystallographic orbifolds.6.1 Characteristic Lattice Complexes1. Invariant Lattice Complex:[25,18,30] These sites are all the �xed point Wyck-o� sites in a space group unit cell, and all lie on a superlattice within thatunit cell, which for the cubic crystal family divides the cell into 8 x 8 x 8parts. Various patterns are formed on that superlattice, and each patternis given a one letter name[18] which characterizes that pattern. Translationof the pattern, expressed in multiples of 1/4,1/4,1/4 within the cell, is indi-cated by the number of post�x primes. Pre�x symbols (0, +, -, etc.) indicateother transformations, and a subscript 2, such as P2, indicates doubling of thelattice complex in all 3 directions within the cubic cell.2. Invariant Lattice Complex Nomenclature[18,25] and Algebra[18,30]: For thecubic family there are 16 invariant lattice complexes. Their nomenclature andalgebraic relations follow: D(diamond) = F +F 0, D00 = F 00 + F 000; F (facecentered) = P + J , F 02 = T + T 00; I(body centered) = P + P 00, I2 = D +D00 = P2 + P 02; J(jack), J* = J + J 00; P (primitive); P2 = F + F 00 = I +J*; S(Schoen
ies S4), S* = S + 0S; T (tetrahedral); +V ,�V (Schoen
ies V ),V * = +V + �V ; W (\non-intersecting rows"), W* =W + W 00, W2 = V * +S*; +Y ,�Y (\Y-shaped"), +Y * = +Y + +Y 00, �Y * = �Y + �Y 00, and Y**= +Y * + �Y *00.The number of invariant lattice complex points in a unit cell are: P (1), I(2),J(3), F (4), Y (4), W (6), D(8), S(12), V (12), and T (16) with the six starred(*) invariant lattice complexes twice their unstarred values.



CARROLL K. JOHNSON 2803. Characteristic Univariant, Divariant, and Trivariant Lattice Complexes: Theseare lines with an invariant member on each end, mirror planes containinga graph of univariant members, and the entire set of invariant, univariant,and divariant members, respectively.[18,39,25] In the cubic space groups, eachtrivariant lattice complex is unique to one space group, but this is not the casein other crystal families. A divariant, univariant, or invariant lattice complexcan occur in several di�erent space groups.c See section 6.4 for a univariantexample.6.2 Non-Characteristic Lattice ComplexesA characteristic invariant lattice complex of a space group may or may not appearas a characteristic lattice complex in the subgroups (i.e., daughter space groups)of the parent space group. If it disappears but the neighboring invariant latticecomplexes it is connected to in a monovariant lattice complex do not disappear. itbecomes a non-characteristic (pseudo-symmetry) invariant lattice complex. A moreformal description follows.The set of points generated from a point X0 by the space group G is called acrystallographic orbit �(X0). If E is the symmetry (eigensymmetry) of this set ofpoints and E = G, then �(X0) is a characteristic crystallographic orbit. Howeverif E is a supergroup of G, then �(X0) is a non-characteristic crystallographic or-bit with respect to G. These are tabulated in \The Non-characteristic Orbits ofthe Space Groups" by Engel et al.[16], and in papers by Koch[38], and by Fischerand Koch.[19] Non-characteristic orbits[16] are not exactly the same as the limit-ing lattice complexes[40] discussed in the lattice complex literature, but the maindi�erences seem to disappear in the crystallographic topology application.1. Non-characteristic Invariant Lattice Complexes:[38,16] These are points ofpseudo-symmetry which are often the preferred sites occupied by Morse func-tion critical points after the characteristic invariant sites of a space group havebeen �lled. They also provide additional landmarks for orbifold visualizationand algebraic characterization.2. Non-characteristic Univariant, Divariant, and Trivariant Lattice Complexes:The univariant and divariant non-characteristic lattice complexes (orbits) areincluded in our on-line Euclidean 3-orbifold atlas.[33]. They are useful forpseudo-symmetry crystallographic problems such as disorder, in addition toproviding convenient orbifold landmarks. See table in section 7.3.6.3 Wycko� SetsThe di�erent Wycko� positions of a space group G may permute under an isomor-phic mapping of G onto itself (i.e., under an automorphism of G). A Wycko� setis the collection of all Wycko� sites that may be permuted by automorphisms ofG.[25, Sect. 8.3.2].When an orbifold has more than one characteristic lattice complex with thesame topology lattice complex notation (de�ned below), they are members of thecThere are 16 unique invariant cubic lattice complexes in the 35 a�ne cubic space groupsand 20 more in other crystal classes for a total of 36 in the 219 a�ne space groups. There arealso 44 monovariant, 16 divariant, and 35 trivariant lattice complexes in the cubics and 62 moremonovariant, 89 more divariant, and 120 more trivariant lattice complexes in the remaining 184a�ne space groups. Thus there are 402 lattice complexes in the 230 space groups.[18]



CARROLL K. JOHNSON 281same Wycko� set. This is true for invariant, univariant, and divariant characteristiclattice complexes. See table in section 7.3.6.4 Topology Notation for Lattice ComplexesThe invariant lattice complex notation transfers directly to crystallographic topol-ogy. However, the primes referring to translations in space-group space are omittedsince that information is implicit in the singular set graphs of orbifold drawings. Wefound the standard crystallographic notation for the univariant lattice complexes(e.g., I12xx for Im�3m(h), Pn�3n(h), and I432(h)) unsuitable since non-metric topol-ogy has no coordinate systems; thus we had to derive new notation for our on-linecrystallographic orbifold atlas.[33].We also combine the lattice complex information with the Wycko� site andsymmetry information and include non-characteristic invariant lattice complexes aswell. For example, the entries for the Wycko� sets in the Euclidean 3-orbifoldscorresponding to the three space groups just mentioned becomeMult. Lat. Complex Group Graph Wyck. Set Space G.24-1 I12[J2]J*4 4030 < 20 > 4020 h : b� a Im�3m(h)24-1 I12[J2]J*4 43 < 2 > 42 h : b� a Pn�3n(h)24-1 I12[J2]J*4 43 < 2 > 42 h : b� a I432(h)The 24-1 is the Wycko� multiplicity and number of equivalent Wycko� sites inthe Wycko� set. In the lattice complex column, I12 and J*4 are the invariant latticecomplexes I and J* at the ends of the univariant lattice complex, with Wycko�multiplicity 1/12 and 1/4 that of the univariant site; [J2] is a non-characteristicinvariant lattice complex site half way between I and J , with Wycko� multiplicitythat of the univariant site. The next column gives the groups-on-graph description(described below) of the Wycko� site, with the bracketed number indicating theorder of the rotation axis (20 or 2) with the prime (0) denoting the axis lies in amirror. The next column gives the univariant Wycko� symbol, h, and that for thetwo invariant Wycko� sites, a and b, at the ends of h. The �nal column gives thespace group and Wycko� site.7 Crystallographic OrbifoldsAn orbifold [62] is a vector space modulo the symmetry group operating on thatspace. The crystallographic orbifolds[14,15,30] of interest are E3=G, E2=J , andS2=K. These are quotient groups of Euclidean 3-space, Euclidean 2-space, and the2-sphere modulo the 230 in�nite space groups, G, 17 in�nite plane groups, J , and32 �nite point groups, K, respectively. They are �nite, closed, and usually singular,spaces called Euclidean 3-orbifolds, Euclidean 2-orbifolds, and spherical 2-orbifolds,respectively.Figure 4 shows the 24 non-orientable (non-polar) cubic 3-orbifolds. The la-bels on the 3-orbifolds of Figure 4 denote the characteristic invariant lattice com-plexes (letters) and singular set components (numbers), while the labels under eachdrawing denote the parent space group's IUCr number and international Hermann-Mauguin symbol.[25]The remaining 12 cubic 3-orbifolds are orientable (polar) with underlying spaceS3. Singular set diagrams for the two sets of 2-orbifolds and all 3-orbifolds with un-derlying space S3 are illustrated in our previous paper.[30] In addition, all orientable
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Figure 4: 24 Cubic Euclidean 3-Orbifolds: 11 D3, 2 D3+RP 2, 10 Double RP 2, and 1 RP 3Euclidean 3-orbifolds, which includes those with underlying topological spaces, S1x S2 and several other lens spaces[48], are illustrated in Dunbar's thesis.[14]7.1 Underlying Topological SpacesEach Euclidean 3-orbifold has an underlying topological 3-space. The simplest arein the cubic crystal class, where the underlying spaces are S3, D3, RP 3, single RP 2suspension, and double RP 3 suspension. (i.e., 3-disk, 3-sphere, real projective 3-plane, real projective 2-plane plus a 3-disk half boundary, and double real projectiveplane, respectively). All cubic 3-orbifolds except those with underlying space S3are illustrated in Figure 4.1. S3: The 3-sphere is a 3-dimensional sphere embedded into a 4-dimensionalEuclidean space, but which can be visualized as a Euclidean 3-space plus apoint at in�nity. This is the next higher dimension analog of the projection of



CARROLL K. JOHNSON 283a 2-sphere onto a plane which is constructed by drawing a straight line fromthe north pole within the sphere to a point on the sphere, then continuing onthat line until it intersects the plane tangential to the south pole of the sphere.The north pole itself projects to in�nity in all directions in the plane, and iscalled the point at 2-in�nity. To draw lines on the 3-sphere we take sometopology artistic liberty and put the point at 3-in�nity at some convenientnearby location in Euclidean 3-space and simply curve the relevant geodesiclines to go through that point (see orbifold F23 in Figure 5).2. D3: The 3-disk is a silvered 3-ball, so named because it has a mirror on itsboundary and is a closed space since any vector from within that intersectsthe boundary is re
ected back into the 3-ball.3. RP 3: RP 3 is a 3-dimensional projective plane embedded into a 4-dimensionalEuclidean space. We cannot draw continuous lines of RP 3 in 3-dimensionalEuclidean space, but we can use the antipodal 3-ball convention where anyline that hits the boundary is rotated to the diametrically opposite point andreenters the antipodal 3-ball.4. RP 2 suspension: An RP 2 suspension is visualized as a cone with apex at anorbifold point arising from a space group center of symmetry (�1, �4, or �3) whichdoes not lie in a mirror. A 2-dimensional antipodal convention about the coneaxis is used at the cone surface so that any line that intersects the cone surfacefrom within is rotated 180 degrees about the cone axis and reenters. A dualsuspension underlying space has two antipodal cones glued at their bases whilea single suspension has a single cone with a silvered D2 disk glued to its base.More complicated suspensions occur in orbifolds from the lower symmetryspace groups, such as the one with eight antipodal cones from space groupP�1.7.2 Spherical 2-orbifolds1. Singular Set Components: On an orbifold drawing, all mirrors and lines (otherthan construction lines) combine to form the singular set. Each of the singularset components (mirrors, lines, and line intersections) is one of the 32 sphericalorbifolds with the symbol 1 for open space; m for a mirror; 44 for a linelabeled 4; 332 for the intersection of three lines labeled 3, 3, and 2; 403020 forintersection of lines 40, 30, and 20; 410 when a 4-axis meets a mirror; 230 whena 2-axis meets a 30-axis; 0 for a stand-alone RP 2 cone point; 20 when a 2-axismeets an RP 2 cone point; etc. See Johnson et al.[30] for a complete list and2-orbifold drawings.2. Groups on Graph: The singular set of the orbifold forms a graph, and allcomponents of the graph (i.e., nodes and links) are spherical orbifolds. Alink between nodes is a subgroup of both nodes. The tetrahedron orbifold inFm�3m (see Figure 5) has 403020, 303020, and 202020 nodes joined by 40-, 30-, and20-fold links. The group graph symbols for the univariant lattice complexesare 3020 < 40 > 3020, 4020 < 30 > 3020, 4030 < 20 > 2020, and 3030 < 20 > 2020 with< 40 >,< 30 >, < 20 >, and < 20 > the links. The J2[W2*]J2 univariant latticecomplex in Fm�3m of Figure 5 (a link between a point at the center of the 4040line and the 202020 vertex) is denoted 4040 < 10 > 202020. This particular linkis relevant in a later discussion.
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Figure 5: The Six Tetrahedral Euclidean 3-Orbifolds3. Knots, Links and Braids: Most of the Euclidean 3-orbifold singular sets areknotted graphs, but there is one pure knot, the �gure eight singular set in the3-orbifold for cubic group P213. There are several relatively simple links suchas the Borromean rings[63] of the orthorhombic space group I212121 and thefour link looped chain of P2221[14]. Braids are plentiful in the crystallographic3-orbifolds.[14,15]4. The Odd Axis E�ect: Crystallographic groups have only one rotation axis ofodd order, the 3-fold axis, and the rest are of order 2, 4, and 6. Even andodd order functions often behave di�erently. In orbifold drawings, a Wycko�30 site has di�erent parts of the same Wycko� mirror on the two sides of the30 axis, while even order axes do not. An intersection such as 332 has thesame 3-axis coming in and going out, and a 322 intersection has the same2-axis coming in and going out. In these cases we denote di�erent parts ofthe same Wycko� axis or mirror with subscripts. For example, note that theF�43m orbifold in Figure 5 has one 30 axis segmented into four parts and that asingle mirror covers all four faces of this silvered 3-ball orbifold. McCulloughet al.[44] discuss some aspects of this e�ect.
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Figure 6: Sodium Chloride Critical Net (Fundamental Domain and 1/8 of Unit Cell shown)7.3 Example 3-Orbifold DrawingsThe six cubic Euclidean 3-orbifolds with symmetry axes forming tetrahedra areillustrated in Figure 5. They have underlying spaces D3 and S3, as indicated,and are the simplest crystallographic 3-orbifolds. Each orbifold in Figure 5 has twodrawings to minimize clutter in the labeling. The arrows point to index 2 subgroups.Left Figure: Capital letters indicate characteristic invariant lattice complex sitesif on a vertex and non-characteristic invariant lattice complexes (de�ned below) ifnot on a vertex. The one digit numbers indicate rotation axis order and are primedif that axis lies on a mirror.Right Figure: Small letter symbols are the Wycko� letters used in ITCr-A [25]to identify speci�c Wycko� sites. Letters at a vertex denote Wycko� point sites,letters on an edge denote Wycko� axis sites, and bracketed letters denote Wycko�mirror sites.Orbifold Atlas : A description of the 3-orbifold for Pm�3m follows. This entryis taken from our on-line world wide web orbifold atlas.[33] The 2* in the bottomrow of the group graph column denotes the 2-fold axis of pseudo-symmetry in thisnon-characteristic univariant lattice complex.Mult. Lat. Complex Group Graph Wycko� Set1-2 P 403020 a; b3-2 J 402020 c; d6-2 P6[�]J2 3020 < 40 > 2020 e : a� d; f : b� c8-1 P8[P2]P8 4020 < 30 > 4020 g : a� b12-1 J4[W*]J4 4020 < 20 > 4020 h : c� d12-2 P12[�]J4 4030 < 20 > 4020 i : a� c; j : b� d24-2 m k : ehi; l : fhj24-2 m m1 : fgi;m2 : egj48.. 1 n : klm48-1 P26[�]W*4 2*= 3030 < 1 > 2020 n1 : g � h
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#225 Fm3mFigure 8: Heegaard Splitting of NaCl on Fm�3m 3-Orbifold8 Heegaard SplittingOur interest[34] in Heegaard splitting stems from the fact that a Morse function(crystal structure) on a Euclidean 3-orbifold (i.e., wrapped up [orbi-folded] funda-mental domain of a space group) is split into two parts by a level density surface,called the Heegaard surface, between the two types of saddle points.[52] This levelsurface has peaks and passes on one side, and pales and pits on the other.dSince topologists have developed a number of techniques for characterizing Hee-gaard surfaces and transforming from one to another and crystallographers haveseveral tens of thousands of crystal structures, each one of which has a di�erentHeegaard surface, it seems worthwhile to study the Heegaard splitting literature tosee what might be useful to crystallography. Here we will just make a few prelimi-dViewed from the standard crystallographic perspective, there are atoms and bonds on one sideof the Heegaard surface and interstices on the other. This description reminds one of the minimalsurface studies carried out by a number of crystallographers.[54] There are a growing number oftopology papers[49,21] comparing minimal surfaces and Heegaard surfaces.



CARROLL K. JOHNSON 287nary observations that could lead to more productive crystallographic applications.Compilations of data on small crystal structures, such as that by Hellner, Koch,and Reinhardt[26], should be useful in future research.8.1 Heegaard Splitting of NaCl Critical Net on Fm�3m OrbifoldFigure 6 shows the full critical net for a unit cell of NaCl (table salt), and Figure7 shows the singular set for its space group. Both Figures 6 and 7 show a shadedfundamental domain of the unit cell, which for Figure 7 is also the 3-orbifold sinceit is bounded by mirrors.1. Critical Net Graph: The composite of the fundamental domains from Figures6 and 7 can be stretched out in the direction of the arrows of Figure 6 bypulling up on the peaks and down on the pits to obtain the critical net graphon the right-hand side of Figure 8 with descending density sequence: peaks,pass, pale, and pit. The corresponding orbifold for Fm�3m of Figure 5 isthen placed on the left-hand side of Figure 8, and the peak/pass/pale/pitlattice complex sequence (F; F=J 02/J2/P2) from the left-hand orbifold drawingof Figure 5 is placed within the nodes of the right-hand critical net graph ofFigure 8. The prime on the �rst J 02 indicates it is a non-characteristic latticecomplex site, but that convention is not followed elsewhere in this paper.2. Heegaard Surface Nomenclature: The Heegaard surface cuts the tetrahedronorbifold parallel to the page on the left-hand drawing of Figure 8, and cuts thedistorted critical-net-on-orbifold perpendicular to the page on the right-handdrawing. Note that it cuts two 30-axes, two 20-axes, and the mirrors on theface of the 3-orbifold, which produces the orbifold component 30302020m of theHeegaard surface symbol H30302020mf10g. The critical net component f10g ofthe symbol denotes that the Heegaard surface cuts a pass-to-pale link of thecritical net, which is not an axis of the orbifold singular set. Pass-to-pale linksare usually lower symmetry than the other links of the critical net. However,in those cases where all the pass-to-pale links are part of the singular set,we move that link to the curly brace. The H in the symbol indicates it isa hyperbolic surface. The Heegaard surface is actually a 2-orbifold,[44,65,66]and we can calculate the Euler characteristic for a 2-orbifold[9] directly fromthe orbifold portion of the Heegaard surface symbol which gives � < 0; thus,this Heegaard surface is a hyperbolic 2-orbifold. Most Heegaard surfaces arehyperbolic, but we also found a few that are Euclidean (� = 0), which wedesignate with a symbol starting with E rather than H (see Appendix).3. Handlebodies: The Heegaard surface, created by Heegaard splitting, parti-tions the manifold (or orbifold) into two handlebodies. A handlebody has agenus, g (g = number of holes = number of handles), and is called a genusg handlebody. Both handlebodies from a Heegaard splitting have the samegenus and a common boundary, the Heegaard surface. This means that allholes in the handlebodies go through the Heegaard surface. The handlebodiesin Figure 8 are genus zero handlebodies since we are currently working withtetrahedral orbifolds. Since the 3-orbifold in Figure 8 has a mirror boundary,we should be using the term compression body[36] rather than handlebody,but for simplicity we will abuse topology terminology and use the term han-dlebody even when the orbifold has a (mirror) boundary.



CARROLL K. JOHNSON 2884. Handlebody Spines: The review article, \Heegaard splitting of compact 3-manifolds," by M. Scharlemann[52] discusses several approaches to Heegaardsplitting. Since our main interest involves Morse functions, we will use themethods described in his section 2.4, \Splittings as Morse functions and assweep-outs." Sweep-outs are based on the spines of the two handlebodiesformed by the Heegaard splitting, and the spine � of a handlebody H isde�ned as the �nite graph in H to which H deformation retracts.e From ourperspective, the deformation retract for H+ and H� is simply those portionsof the critical net graph above and below the Heegaard surface, respectively.5. Handlebody Spine Orbifolds: McCullough et al.[44] and Zimmermann[65,66]call the orbifold singular set components in these deformation retracts han-dlebody orbifolds. For our application where we are adding the critical netof the Morse function to the orbifold, we could call them handlebody criti-cal net orbifolds but prefer the shorter name handlebody spine orbifolds. Inour on-line orbifold atlas, they are called simply handlebody orbifolds. TheEuler constant for handlebody orbifolds can be calculated and some are tab-ulated.[44,65,66]6. Handlebody Groups on Graphs: The (+) and (-) handlebody orbifolds ofFigure 8 are 3020 < 40 > 3020 and 3030 < 20 > 2020, respectively. The unmatchedlinks 30302020, the mirrorm, and the pass to pale link 4040 < 10 > 202020 combineto form the Heegaard surface symbol H30302020mf10g.9 Quadrilateral Haken Normal SurfacesA tetrahedron has seven Haken normal surfaces.[29,28] Three of them are quadri-lateral surfaces, such as the one shown in Figure 8, and the other four are triangularsurfaces cutting the three edges extending from each vertex. Figure 9 shows thethree quadrilateral surfaces in each of the three tetrahedral 3-orbifolds of Figure 5with underlying space D3. Crystal structures which have that quadrilateral Hakennormal plane as a Heegaard surface are identi�ed on Figure 9 and described below.9.1 Normal Surface AutomorphismThe Euclidean 3-orbifolds from Fm�3m and F�43m have automorphisms, which areexpressed as isomeric quadrilateral normal surface pairs corresponding to the crystalstructure types face centered cubic (FCC) and zinc sul�de, respectively, as shownin Figure 9. The dual (reversed critical point sequence) of FCC is the Li2O (lithiumoxide) structure shown in Figure 3, which is perhaps a better default characteriza-tion than FCC because there is only one pit for Li2O and two for FCC. However,the fact that there are so many FCC metals makes it a more familiar term to mostscientists.At �rst glance one might also expect Pm�3m to have a pair of isomorphic quadri-lateral normal surfaces since two of them have the same critical point sequence oflattice complexes, P/J/J/P. However the descriptors for those two quadrilateralnormal surfaces are 30202020 and 40304020 so they cannot be isomorphic. Only the�rst of these two is a valid Heegaard surface and the corresponding structure type iseThe de�nition of deformation retract in Chapter 0 of Allen Hatcher's on-line book draft Al-gebraic Topology I at http://math.cornell.edu/~hatcher is accompanied by an informative set ofdrawings.
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Figure 9: Normal Quadrilateral Haken Surfaces for Three Tetrahedral Cubic Orbifoldscalled simple cubic. The only known real crystal with this structure is �-polonium(Po, atomic number 84). To see why the quadrilateral normal surface 30202020 ofPm�3m is a valid Heegaard surface while 40304020 is not, we use the wagon wheelaxle Q rule of section 4.4 to calculate Q1 = Q2 = 2 for the former and Q1 = Q2 =4 for the latter, as shown next.9.2 Critical Net Wycko� RatiosThe good and bad critical nets in the second and third columns of the �rst rowof Figure 9 are 3020 < 40 > 20 < 20 > 20 < 40 > 3020 and 4030 < 20 > 20 < 40 >20 < 20 > 4030 which have critical point and separatrix-line Wycko� multiplicities1(6)3(12)3(6)1 and 1(12)3(6)3(12)1, respectively. Thus Q1 = Q2 = 6/3 = 2 forthe former and Q1 = Q2 = 12/3 =4 for the latter. All adjacent multiplicity ratiosare in fact useful. For the (valid) �rst series we see that there are 6/1 = 6 passes
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Figure 10: Heegaard Splitting of FCC Critical Net on F23 3-Orbifoldaround each peak, 6/3 = 2 peaks around each pass, 12/3 = 4 pales around eachpass, 12/3 = 4 passes around each pale, 6/3 = 2 pits around each pale, and 6/1 =6 pales around each pit. Thus the wagon wheels around the peak-pass-peak axis(and pit-pass-pit axis) have 4 spokes. Instead of using Wycko� multiplicity ratios,one can use group order ratios which is the convention used in the mathematicalliterature. Keep in mind that the two ratios are reciprocal.9.3 Symmetry Breaking Subgroup SequenceNote that there are two NaCl structures in Figure 9. In addition, the simple cu-bic structure is geometrically very similar to NaCl. Thus we have three relatedstructures on a series of normal subgroups of index two. The highest symmetrystructure, simple cubic Pm�3m, is changed to a larger face centered cell, with P andJ going to P2 and J2. The larger primitive cell changes to a face centered cell bymaking adjacent peaks alternate between Na and Cl. Thus the old peak P , nowP2, splits into two F s (using the lattice complex identity P2 = F +F 00) and the oldpass, now J2, becomes a non-characteristic J2 in the new space group Fm�3m.For the change from Fm�3m to F�43m, we split the remaining P2 site into twoF sites (using the lattice complex identity P2 = F +F 00) and turn the remaining J2characteristic lattice complex site into a J2 non-characteristic site, to form F�43m.The �nal space group may at �rst seem to be higher symmetry since it has four Finvariant lattice complex sites, but these are normalizer (automorphism) equivalentsites, not symmetry equivalent sites. For a more graphic illustration of symmetrybreaking, see the cubic group/subgroup appendix and series of critical net familydiagrams in our previous paper.[30]9.4 Normal Surfaces in Triangulated OrbifoldsFigure 10 illustrates the non-planar Heegaard surface in the face centered cubicstructure, which can be represented by two Haken normal surface tetrahedra by
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on OrbifoldFigure 11: Heegaard Splitting of BCC Critical Net on Pn�3 3-Orbifoldsplitting the tetrahedra along �5; �2; �1. This process is the foundation of Haken normalsurface (and almost normal surface[28]) analysis. The mathematical description ofan arbitrary Heegaard surface in terms of a large number of tetrahedra from a �netriangulation of an orbifold can present nontrivial mathematical problems becauseof the integer nature of the equations involved, but this is currently a very activeresearch area.9.5 Heegaard Surfaces in Orbifolds with RP 2 Suspension Underlying SpaceCertain crystal structure types, particularly those in the body centered cubic (BCC)and diamond families, occur on space groups having 3-orbifolds with an RP 2 sus-pension as the underlying space. An example is the BCC critical net on the Pn�33-orbifold shown in Figure 11. One must be careful in the analysis of projectivespaces because the complete interior is unique and only the surface has the an-tipodal property described previously. Note that the W* lattice complex point isnon-characteristic; thus the 2-axis out of the characteristic J* loops back to itselfand the (-) handlebody is denoted 2 < 2 > &. Consequently, the non-characteristicW* is in the middle of the 2-axis loop and the univariant lattice complex symbolfor that handlebody becomes J*2[W*]&.9.6 Triply Periodic Minimal SurfaceFigure 12 shows the Heegaard surface for a unit cell of the simple cubic structurewhen the properly curved fundamental domain is repeated 48 times using the fullsymmetry of the Pm�3m space group. Figure 12 is actually Schwartz's triply periodicminimal surface[21] P , but the Heegaard level surface closely approximates it. Thefull surface requires gluing such units together into a three dimensional repeatingarray. This is a demonstration �gure for Brakke's Surface Evolver program.[6]The heavy lines are mirrors of Pm�3m which clearly outline the H30202020m surfacemotifs. The program seems capable of making such drawings for all the Heegaardsurface discussed above.
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Figure 12: Simple-Cubic Heegaard Surface Approximates Schwartz's P Surface (A Triply PeriodicMinimal Surface)10 Heegaard Surface KinshipThe crystal structure types appearing in Figure 9 represent surprisingly diverse ma-jor crystal chemistry families which develop increasingly complex Heegaard surfacesas the number of di�erent atoms increases. Terms like class, family, etc. are alreadyso heavily overused and ambiguous that it is hard to �nd a suitable traditional scien-ti�c term for a crystallographic Heegaard surface classi�cation. We have consideredterms like kin and kinship but need more experience with Heegaard surfaces and abetter feel for their usefulness before worrying about considering a classi�cation.A list of Heegaard surfaces directly related to and including the ones shownabove is included as the Appendix. The BCCs clearly show that Heegaard surfacesalone do not uniquely specify a crystal structure since there are a number of dupli-cates in that group. Most of the data in the appendix are easily derived from thecritical net graphs in our �rst paper.11 Whither and YonWe routinely use \whither and yon" notebooks (to what distant place and beyond)to periodically record our aspirations for future research. Our previous paper hasa section called \Where do we go from here?" which contains a number of researchneeds in crystallographic topology, and we add a few additional suggestions below.11.1 Stochastic Thermal Motion AnalysisThough the thermal ellipsoids of structural crystallography contain large quantitiesof information about thermal motion in crystals, they are usually published withoutinterpretation. A valid stochastic thermal motion analysis method is needed thatdoes not require extensive dynamic or mechanistic modeling for each new crystalstructure. It will be interesting to see how far the Radon-Nikodym property can betaken in meeting that goal.



CARROLL K. JOHNSON 29311.2 Heegaard SplittingHeegaard transformations: The mathematical literature on transforming Heegaardsurfaces is very convoluted and time consuming to understand. Some review articlesfor the layman would indeed be welcome. At present our understanding suggeststhat although normal surfaces[28] seem to work, the mathematical problems insolving the required integer equations seem too formidable for the large scale prob-lems which could develop in crystallography. We are currently putting our e�ortsinto understanding the Rubinstein-Scharlemann Graphic approach[50,51,37] whichis based on Cerf theory and uses a smooth manifold topology approach, ratherthan piece-wise linear topology. This method provides a systematic procedure forcomparing two Heegaard surfaces.Handlebody nomenclature: It seems advisable to use the handlebody orbifoldnotation of Zimmermann[66] which records the routing of connections between thetwo handlebodies as a braid to provide a more complete description of the singularset topology.Invariants: The problem with most mathematical invariants is that they aredesigned to prove theorems rather than provide physical information. However,invariants such as the Heegaard numbers described by Zimmermann and othersmay provide useful information if someone can give them a physical interpretation.11.3 Fundamental Group of an OrbifoldFor orbifolds to be useful in crystallography, they have to apply equally to all spacegroups. There are 10 space groups (13 if handedness is included) which orbi-foldinto Euclidean 3-manifolds, which have no singular set. Thus their orbifold drawingwould be a blank �gure. The Euclidean manifolds put all their symmetry intothe fundamental group.[35] On the other extreme, the symmorphic space groupsform simply connected 3-orbifolds with trivial fundamental group and an extensivesingular set. The other space groups lie between these two extremes. Thus weneed some way of adding the fundamental group to the orbifold representation.Unfortunately, fundamental groups often involve group presentation methods thatmany physical scientists �nd not useful.Stated another way, we need some way of representing screw axes and glideplanes, in an extended orbifold, as easily as we now show mirrors, rotation axes, andinversion centers. These features are all shown in the ITCr space group drawings.[25]In orbifold drawings, some screws axes show up indirectly in the helix core of atwisted pair of rotation axes, but that is not a consistent representation.11.4 Euclidean 3-Orbifold NomenclatureThere is a 2-orbifold nomenclature system[9], which we have modi�ed for crystallo-graphic 2-orbifold use[30], but we do not have one for crystallographic Euclidean 3-orbifolds. Seifert �bered Euclidean 3-orbifolds may be generated by lifting from baseEuclidean 2-orbifolds[4]. Although that approach does provide information (fromtopological obstruction theory) suitable for a rather awkward nomenclature[10] sys-tem for a large subset of the Euclidean 3-orbifolds, that approach does not workfor the cubic space groups since the 3-axis through the body diagonal of the cubicinterchanges �bration along the cube edges.



CARROLL K. JOHNSON 29411.5 Category Theory of Crystallographic TopologyThe paper, \Orbifolds, Sheaves and Groupoids", by Moerdijk and Pronk[45] andPronk's thesis[46], \Groupoid Representations for Sheaves on Orbifolds" show thatorbifolds correspond exactly to a speci�c class of smooth groupoids and that eachsuch groupoid determines a category of equivariant sheaves. Expressing orbifoldsin these terms opens the possibility of reformulating all the primitives of crystal-lographic topology into categories[42,43] which could provide even broader inroadsfor crystallographic utilization of contemporary mathematical techniquesAll the techniques described in the present paper might be classi�ed as \bot-tom up" approaches while category theory is basically a \top down" approach. Formany research problems it is highly desirable to be able to use both approaches. Ifa problem seems intractable using the traditional techniques of that discipline, itis sometimes possible to transform that problem to look like a completely di�erentproblem, which has known solutions, by using category of categories homeomor-phisms. This would not be a short term research project, but nevertheless it seemsto us both feasible and highly desirable.AcknowledgmentsI gratefully acknowledge the assistance from my topology coworkers. From 1993until my retirement in 1996, Bill Dunbar, Peter Brinkmann, and Jim Davis patientlycontinued to explained the intricacy of topology until I �nally started to understandsome of it. Klaus Johannson of the University of Tennessee, Knoxville continuesto show me the beauty of topology and supplies invaluable advice on numerousoccasions. My special thanks go to Mike Burnett for his warm friendship and closeprofessional collaboration during the past 15 years.Post retirement continuation of the research is made possible by an understand-ing spouse, the other Carol Johnson, and the kind assistance of the Chemical andAnalytical Sciences Division in providing retiree space and computing facilities atOak Ridge National Laboratory.Research sponsored in part by the Laboratory Directed Research and Devel-opment Program of the Oak Ridge National Laboratory, managed by LockheedMartin Energy Research Corp. for the U.S. Department of Energy under ContractNo. DE-AC05-96OR22464.



CARROLL K. JOHNSON 295Appendix - Cubic Crystal Structure Heegaard SurfacesThe line (203 - Fd�3 - D=T=T=D - HP 23200f1g) signi�es space group number 203(ITCr number), with peak/pass/pale/pit invariant lattice complexes critical pointsD=T=T=D, and hyperbolic Heegaard surface HP 2320f1g. HP 2 in the Heegaardsurface symbol denotes the hyperbolic surface lies in an underlying topological spacewith a single suspension projective plane RP 2. The double suspension is denotedby two zeros (00) in the hyperbolic plane symbol.Struc. ITCr Sp. Gr. Critical Points Heegaard SurfaceSCube 221 Pm�3m P=J=J=P H302020mf20g207 P432 P=J=J=P H322f2g200 Pm3 P=J=J=P H3mf2020g215 P�43m P=J=J=P H3030mf2g226 Fm�3c P2=J2=J2=P2 H32mf10g195 P23 P=J=J=P H33f22g219 F�43c P2=J2=J2=P2 H3300f1gNaCl 225 Fm�3m FF=J2=J2=P2 H30302020mf10g209 F432 FF=J2=J2=P2 H3322f1g202 Fm�3 FF=J2=J2=P2 H33mf1010gNaCl+ 216 F�43m FF=J2=J2=FF H30303030mf1g196 F23 FF=J2=J2=FF H3333f11g?? 229 Im�3m IJ*=40W*=J2=P2 H3020202mf1010gBCC 229 Im�3m I=P2=W*=J* H4020mf2g432 I432 I=P2=W*=J* H42f22g204 Im�3 I=P2=W*=J* HP 2200mf1g217 I�43m I=P2=W*=J* HP 2200mf1g222 Pn�3n I=P2=W*=J* HP 24200f1g224 Pn�3m I=FF=W*=J* H20mf22g223 Pm�3n I=P2=WW=J* H20mf22g197 I23 I=P2=W*=J* HP 3200f11g201 Pn�3 I=FF=W*=J* HP 2200f11g208 P4232 I=FF=WW=J* H2f2222g218 P�43n I=P2=WW=J* HP 2200f11g228 Fd�3c I2=F2F2=W2*=J2* HP 220f221gCsCl 221 Pm�3m PP=P2=W*=JJ H40204020mf1gFCC 225 Fm�3m FP2=30=J2=F H40302020mf10g209 F432 FP2=3=J2=F H4322f1g202 Fm�3 FP2=3=J2=F H3220mf1gFCC+ 216 F�43m FFF=TT=J2=F H3020302020mf1010g196 F23 FFF=TT=J2=F H33222f11gDiam 227 Fd�3m D=T=T=D H3020mf2g210 F4132 D=T=T=D H32f22g203 Fd�3 D=T=T=D HP 23200f1gZnCl 216 F�43m FF=T=T=FF H30203020mf1g196 F23 FF=T=T=FF H3232f11gNaTl 227 Fd�3m DD=TF2T=W2*=J2* H2020mf221g210 F4132 DD=TF2T=W2W2=J2* E22f2211g203 Fd�3 DD=TF2T=W2*=J2* EP 2220f11g
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