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Abstrat. In this paper we extend the yoga of Grothendiek's six (derived) funtors to

as broad a setting as possible. The general frame-work we adopt for our work is that

of enrihed symmetri monoidal ategories whih is broad enough to inlude most or all

of the appliations. The theory has already found several appliations: for example to

the theory of harater yles for onstrutible sheaves with values in K-theory whih

is disussed in detail in Chapter V. In addition, other potential appliations exist, for

example, to the theory of derived shemes and motivi derived ategories, some of whih

are surveyed in Chapter VI.
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Introdution

One of the most global duality results in mathematis is the Grothendiek-Verdier du-

ality. These are statements in the derived ategory of suitable sheaves on a topology and

inorporate many other duality results: for example Poinar�e duality for manifolds has a

formulation in this setting using onstrutible sheaves. The yoga of the (six) derived fun-

tors is inorporated into this theory of duality. The original setting for these is either that of

onstrutible sheaves on suitable Grothendiek topologies or oherent sheaves on shemes.

However, progress in various �elds has neessitated that the basi theory be extended to in-

reasingly more general ontexts: for example to the setting of D-modules, oherent sheaves

on super-ommutative varieties, algebrai geometry over DGAs, simpliial presheaves on

general sites et. The theory of sheaves of modules over di�erential graded algebras is �nd-

ing important appliations in present-day algebrai geometry: see for example [Kon℄, [CK1℄,

[CK2℄ as well as [Voe-1℄, [K-M℄. Moreover, the theory of simpliial presheaves, started in [B-

G℄ over 25 years ago, has been �nding ever inreasing appliations: see the various papers of

Simpson, ([Simp-1℄ through [Simp-3℄), Toen (see [Toe-1℄ and [Toe-2℄), Morel and Voevodsky

(see [M1℄ and [M-V℄). Reent progress in the theory of motives has led to several onjetures

on extending the mahinery of Grothendiek-Verdier duality to the motivi setting as well.

However, the mere fat that Grothendiek-Verdier duality is formulated in the derived ate-

gory of abelian sheaves or oherent sheaves on shemes (or algebrai spaes), makes it rather

restritive: it does not apply to generalized ohomology theories, for example to K-theory.

In this monograph we establish a general version of Grothendiek-Verdier duality in

a suÆiently broad setting so as to be readily appliable to the above situations as well

as others. We disuss one partiular appliation in detail in Chapter V, namely a diret

onstrution of miro-loal harater yles in response to a question of P. Shapira. Other

appliations are disussed briey at the end of Chapter IV and in Chapter VI. To make

our theory appliable to a wide variety of situations, (inluding that of presheaves of E

1

-

di�erential graded modules over a sheaf of E

1

-di�erential graded algebras), we have adopted

an axiomati situation.

The frame-work adopted for our work is that of enrihed symmetri monoidal t-ategories.

Suh ategories are triangulated ategories (to be preise, what we all strongly triangu-

lated ategories) with the extra struture of a symmetri monoidal ategory and a strong

t-struture. It is shown that, with minor modi�ations, this framework is broad enough

to inlude all the above appliations: it inludes sites provided with sheaves of di�eren-

tial graded algebras, sheaves of di�erential graded algebras over an operad or presheaves

E

1

-ring spetra (in the sense of algebrai topology).

Next we give an overview of our work by onsidering the problem of obtaining a good

notion of (Grothendiek-Verdier) duality on ringed sites. Let S denote a ringed site, i.e.

a site provided with a sheaf, R, of ommutative rings with unit. Let Sh

R

(S) denote the

ategory of sheaves of R-modules on S. This is a symmetri monoidal ategory under

the tensor produt of sheaves of R-modules and has R as a strit unit. In this ontext it is

possible to obtain a left-derived funtor: �

L




R

� : D

b

(Sh

R

(S))�D

b

(Sh

R

(S))! D

b

(Sh

R

(S))

by �nding a resolution of any sheaf of R-modules M by a omplex, eah term of whih is of

the form �

U"C

j

U !

j

�

U

(R), where the sum is over U in the site S. (Here D

b

(Sh

R

(S)) denotes

the ategory of bounded omplexes in Sh

R

(S). We may further assume that the site S is

small, for the time being.)

If we further assume that the site C has enough points, then we will show it is possi-

ble to de�ne RHom as the derived funtor of the internal Hom in the ategory Sh

R

(S).
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Given any M , N"Sh

R

(S), we hoose a resolution P (M)

�

! M by a omplex as before

and let RHom(M;N) = TotHom(P (M)

�

; G

�

N) where G

�

N is the Godement resolution

of N and Tot is a total omplex. That this de�nes RHom follows from the following ob-

servations. First, Hom(j

U !

j

�

U

(R); G

�

N)

�

=

j

U�

G

�

(j

�

U

(N)), whih shows that the bi-funtor

RHom( ; ) preserves distinguished triangles and quasi-isomorphisms in the seond ar-

gument. To see that the bi-funtor RHom( ; ) preserves distinguished triangles and

quasi-isomorphisms in the �rst argument, one needs to use basi properties of the Gode-

ment resolution and the fat that P (M)

�

! M is a projetive resolution of M at eah

stalk.

We observe that the above framework is also partiularly suitable for obtaining a bi-

duality theorem. A partiularly simple form of this bi-duality is the observation that the

obvious mapM !RHom(RHom(M;R);R) is a quasi-isomorphism ifM is loally free and

of �nite rank.

One of the observations that started our projet is the realization that, in the above

example, the ategory Sh

R

(S) is symmetri monoidal with a strit unit R and that this

fat plays a key role in being able to de�ne �

L




R

� as well as RHom. In a sense what we do

in the paper is to replae the sheaf of rings R by a sheaf or presheaf of di�erential graded

objets: a presheaf of ring spetra (or �-rings) is a generalization of a presheaf of di�erential

graded algebras.

It has to be noted that there have been several attempts at obtaining a theory of

Grothendiek-Verdier-duality. For example, in [Neem℄, it is shown that one an establish

the existene of a funtor Rf

!

(assoiated to a map of sites f) whih is right adjoint to Rf

�

.

However, a bi-duality theorem and therefore the full theory of Grothendiek-Verdier duality

does not seem to exist in this ontext. Any bi-duality theorem an hold only for objets

that are �nite in a suitable sense. The notions of being perfet, pseudo-oherent and of �nite

tor-dimension on a ringed site are all various forms of �niteness onditions. (See [SGA℄6,

Expos�e I.) However, one may observe that if (S;R) is a ringed site and j

U

: U ! S is an

objet in the site, the sheaf j

U !

j

�

U

(R) need not be pseudo-oherent but learly is of �nite

tor dimension. On a general ringed site as above, not every bounded omplex is pseudo-

oherent, but one an �nd resolutions of any bounded omplex by a omplex whose terms

are sums of sheaves of the form j

U !

j

�

U

(R). The notions of pseudo-oherene and perfetion

seem useful only on ringed sites (S;R) where every �nitely presented sheaf ofR-modules has

a resolution by a pseudo-oherent omplex. Therefore, the appropriate notion of �niteness

that one has on sheaves of modules on general ringed sites seems to be that of having �nite

tor dimension along with �nite ohomologial dimension and ohomology sheaves of �nite

presentation (or that are onstrutible). (It has to be pointed out that the notion of being

onstrutible is limited to the ase where R is a loally onstant sheaf on S.) In ase every

�nitely presented sheaf of R-modules has a resolution by a pseudo-oherent omplex, the

notion of perfetion seems to be the right notion of �niteness.

However, the property of having �nite tor dimension is not neessarily preserved by tak-

ing sub-quotients and hene not preserved by spetral sequenes. Therefore, we adopt the

following mehanism for de�ning suh a property in our setting. To simplify our disussion

we onsider a site S provided with a presheaf of di�erential graded algebras A. Moreover, we

assume that there exists a anonial �ltration on A whose assoiated graded terms Gr(A)

may be assumed to be a presheaf of graded rings. Therefore, we onsider presheaves of mod-

ulesM on the site (S;A) provided with a �ltration so that Gr(M) is a presheaf of modules

over the ringed site (S; Gr(A)). Now we say M is of �nite tor dimension (onstrutible)

if Gr(M) is of �nite tor dimension (is onstrutible over Gr(A), respetively). We show
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that this de�nes a good notion of �niteness. Those used to working with �ltered derived

ategories, may �nd this approah quite familiar. Another issue that beomes important for

us is to be able to work with ease in unbounded derived ategories. The notion of homotopy

olimits and limits provide adequate substitutes for the notion of total omplexes in this

setting.

The monograph is divided into six hapters and two appendies. In Chapter I we

develop the basi axiomati framework adopted throughout and in Chapter II we disuss

several onrete realizations of this axiomati set-up. In Chapter III, we establish several

spetral sequenes that form one of our key-tehniques. Chapter IV is devoted to a thorough

disussion of Grothendiek-Verdier style duality based on these tehniques and in as broad a

setting as possible. The results of Chapter IV, setions 1 and 2 hold in great generality: here

we de�ne the derived funtors Rf

�

, Rf

#

!

, Lf

�

and Rf

!

#

. The stronger results on bi-duality

and the remaining formalism of Grothendiek-Verdier duality hold on ringed sites (S;R)

only under the stronger hypothesis that the sheaf of rings R is loally onstant or for perfet

objets. (Perfet objets are de�ned in Chapter III, De�nition (2.11).)

We disuss one appliation to miro-loal harater yles for onstrutible sheaves in

detail in Chapter V and survey some of the remaining appliations in Chapter VI and at

the end of Chapter IV. Eah hapter has its own introdution and the reader may onsult

these now for a survey of our results. Appendix A shows that the ategories of �-spaes and

symmetri spetra satisfy the axioms of stable losed simpliial model ategories while Ap-

pendix B disusses some rather well-known relations between simpliial objets, osimpliial

objets and hain omplexes in an abelian ategory.

Aknowledgments. This has been a rather long projet for us, espeially so, sine when

we started on this projet there was no well de�ned framework to work with, exept that

of [Rob℄. (See [J-3℄ whih is written in this set-up; in fat the appliation to miro-loal

harater yles was �rst worked out in this setting.) In the meanwhile, the theory of

symmetri spetra and smash produts for �-spaes, and the theory of sheaves of DGAs and

modules over them were developed by several mathematiians, whih neessitated a thorough

revision. Rather than restrit to any of these speial ases, we have hosen to work in a very

general frame-work: the urrent and emerging appliations seem to indiate that this deision

has payed o� well. Disussions with many mathematiians have ontributed in several ways

that may not be readily apparent. These inlude Spener Bloh, Mihel Brion, Patrik

Brosnan, Jean-Lu Brylinski, Zig Fiedorowiz, Eri Friedlander, Mike Hopkins, Amnon

Neeman, Pierre Shapira, J. P. Shneiders, Je� Smith, the late Robert Thomason, Bertrand

Toen, Burt Totaro and Rainer Vogt. Finally as pointed out earlier, various problems and

onjetures from the theory of motives as well as the work on motivi ohomology by Morel

and Voevodsky and the work on simpliial presheaves by Simpson (and his ollaborators)

have been a soure of motivation for us. We also thank the Max Plank Institut and the

IHES for generously supporting our work and for hospitality.



CHAPTER I

The basi framework

1. Introdution

The goal of this setion is to formulate a framework for Grothendiek-Verdier duality as

broad as possible. We begin by onsidering what are alled strongly triangulated ategories,

whih are stronger than triangulated ategories. The typial example of this is the ategory

of hain omplexes in an exat ategory - see Example 2.6 for more details. The homotopy

ategory and the derived ategory assoiated to suh ategories of hain omplexes are

both triangulated ategories; however they are not losed under �nite olimits and limits

in general, and hene annot be strongly triangulated. On the other hand the ategory of

hain omplexes in an exat ategory, though not triangulated, is strongly triangulated. In

the rest of this hapter we onsider unital monoidal strutures and t-strutures that are

ompatible with the strongly triangulated struture. We also need to onsider homotopy

olimits and limits of diagrams whih may be thought of as derived funtors of the olimits

and limits respetively. We list the relevant axioms for these as well. A ategory with these

strutures is alled an enrihed monoidal t-ategory.

In summary an enrihed monoidal t-ategory has three basi strutures, namely (i) that

of a strongly triangulated ategory (see below for the de�nition) whih indues the struture

of a triangulated ategory on the assoiated derived ategory, (ii) that of a monoidal ategory

and (iii) a strong t-struture: these are required to be ompatible in a ertain sense. In

addition, there are a few extra hypotheses needed to ensure the existene of the derived

funtors of the olimit and limit funtors for small diagrams in suh a ategory.

2. Axioms for strongly triangulated ategories

Let C denote a pointed ategory. The distinguished zero objet will be denoted �. We

say C is strongly triangulated if it satis�es the axioms (STR0) through (STR7.3):

(STR0) C is losed under all small olimits and limits. The sums in the ategory C will

be denoted t. We further require that C have a small family of generators.

(STR1) There exists an equivalene relation alled homotopy on the Hom-sets in the

ategory C. If K, L"C, we will let Hom

HC

(K;L) denote the set of these equivalene lasses

of morphisms in C from K to L. We require that this de�nes a ategory alled the homotopy

ategory and denoted HC. (Observe that we are not requiring this ategory to be additive.)

A map f : K ! L is a homotopy equivalene, if there exists a map g : K ! L so that g Æ f

and f Æ g are homotopi to the identity. We will assume that any map that is a homotopy

equivalene is a quasi-isomorphism (de�ned in (STR3) below). We say, a diagram ommutes

upto homotopy, if the appropriate ompositions of the maps get identi�ed under the above

equivalene relation.

5



6 I. THE BASIC FRAMEWORK

(STR2) C is provided with a olletion of diagrams A

0

i

!A

j

!A

00

! TA

0

alled strong

triangles (often alled triangles) and a translation funtor T : C ! C satisfying the properties

(STR3) through (STR5):

(STR3) There exists a (ovariant) ohomology funtor fH

n

jng : C !(an abelian tensor

ategory A) that sends triangles to long exat sequenes. We will say a map f : X ! Y in

C (or HC) is a quasi-isomorphism if H

n

(f) is an isomorphism for all n. Then the lass of

maps in HC that are quasi-isomorphisms admits a alulus of left frations and a alulus

of right frations. D(C) will denote the loalization of HC by inverting maps that are quasi-

isomorphisms. We will also require that A is losed under all small limits and olimits, that

�ltered olimits in A are exat, and that eah H

n

ommute with �ltered olimits, with �nite

sums and produts.

(STR4) D(C) is a triangulated ategory. Let F : C ! D(C) denote the funtor that

is the identity on objets and sends a map f to its lass in D(C). Then the distinguished

triangles in D(C) are preisely the images of the triangles by F and the funtor T in C is

sent to the translation funtor in D(C). Moreover F has the following universal property:

(STR5) if F

0

: C ! D is any funtor to a triangulated ategory sending the triangles

to the distinguished triangles, the funtor T to the translation funtor of D, and quasi-

isomorphisms to isomorphisms, there exists a unique funtor F

00

: D(C)! D of triangulated

ategories so that F

0

= F

00

Æ F .

We will also require the following :

(STR6) There is given a olletion of mono-morphisms in C alled admissible monomor-

phisms whih are stable under o-base extension, ompositions and retrats so that if

� : X ! Y is an admissible monomorphism in C, Cone(�) (de�ned below) is quasi-

isomorphi to Coker(�). We further require that admissible monomorphisms are stable

under all (small) inverse limits, �ltered olimits and homotopy olimits. (See 4.1.1 for their

de�nition.) There is given also a olletion of epi-morphisms in C alled admissible epi-

morphisms that are stable under base extension, ompositions, all (small) olimits and all

homotopy inverse limits. If � : Y ! Z is an admissible epimorphism, then T (ker(�)) is

quasi-isomorphi to Cone(�). Moreover the obvious map ker(�) ! Y is an admissible

monomorphism. All isomorphisms are both admissible mono-morphisms and admissible

epi-morphisms. Objets X for whih the obvious map � ! X (X ! �) is an admissi-

ble monomorphism (admissible epimorphism, respetively) will be alled mono-objets (epi-

objets, respetively). We assume there exist funtors M : C ! C (E : C ! C) so that

for eah objet X, there is given a natural quasi-isomorphism M(X) ! X (X ! E(X))

with M(X) a mono-objet (E(X) an epi-objet, respetively). In addition we require that

if f : X ! Y is given withX mono (Y epi), the map f fators as X ! M(Y ) ! Y

(X ! E(X)! Y , respetively).

Remark. Observe as a onsequene of the axioms (STR7.1) (see below) and (STR6),

that, ifX !

�

Y is an admissible monomorphism with bothX and Y mono-objets, X

�

!Y !

Coker(�)! TX is a strong triangle. Similarly the axiom (STR7.2)(see below) and (STR6),

imply that if Y

�

!Z is an admissible epimorphism with both of them epi-objets, ker(�)!

Y

�

!Z ! T (ker(�)) is a strong triangle. If one onsiders the ategory of omplexes of

presheaves in any abelian ategory, both the funtors e and m may be taken to be the

identity. (See, for example, Chapter II, setion 3.) These funtors beome non-trivial,

however, when C = a ategory of presheaves that has the struture of a losed model ategory

- see Chapter II, setion 4. See also the remark 2.5, below.
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(STR7.1) Existene of anonial ylinder objets. Let A"C and let O : A t A ! A be

the obvious map. A ylinder objet for A is an objet A� I"C provided with an admissible

mono-morphism d

0

�d

1

: AtA! A�I and a map s : A�I ! A suh that the omposition

s Æ (d

0

� d

1

) = O. We require s to be a quasi-isomorphism and that A 7! A � I is natural

in A, preserves admissible monomorphisms and ommutes with all small limits as well as

�ltered olimits. Furthermore we require the following onditions on a ylinder objet.

(i) Let f : A ! B denote a map in C. Then let Cyl(f) = A � It

A

B where the map

A! A�I is d

0

and A! B is the given map f . Let r : Cyl(f)! B denote the map de�ned

by s on A� I, by f on A and by the identity on B. Then r is a homotopy-equivalene with

inverse given by the obvious map i : B ! Cyl(f). Given a ommutative diagram

A

g

����! C

f

?

?

y

?

?

y

f

0

B

g

0

����! R

in HC, there exists a ylinder objet A � I in C so that if P = Cyl(f)t

A

C (with the map

A! Cyl(f) indued by d

1

: A! A� I and the map A! C the given map g), there exists

a unique map P ! R in HC making the diagram

A

g

//

f

��

C

��
f

0

��/
/
/
/
/
/
/
/
/
/
/
/
/
/

B

//

''OOOOOOOOOOOOOO P

��@
@@

@@
@@

R

ommute in HC. We all P the homotopy pushout of the two maps f and g.

(ii) It follows from the axioms in (STR6) that the map d

1

:M(A)! Cyl(M(f)) is now

an admissible mono-morphism. We let Cone(M(f)) = Coker(d

1

: M(A) ! Cyl(M(f))).

Now we also require that there exist a map Cone(M(f)) ! TM(A), natural in f so that

M(A)

d

1

!Cyl(M(f)) ! Cone(f) ! TM(A) is a triangle. (Observe that this triangle or-

responds to the distinguished triangle A ! B ! Cone(f) ! TA in the derived ategory

D(C).)

(iii) We also require that if

A

f

//

��

B

��
A

0

f

0

//
B

0

is a ommutative square with A! A

0

and B ! B

0

admissible monomorphisms, the indued

map Cyl(f)! Cyl(f

0

) is also an admissible monomorphism.

Remark 2.1. Sine A 7! A � I is natural in A, one may observe that f 7! Cyl(f) is

natural in f .
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(STR7.2) Existene of o-ylinder objets. If A"C, let � : A! A�A denote the diagonal

map. A o-ylinder objet for A is an objet A

I

"C with an admissible epi-morphisms

d

0

� d

1

: A

I

! A � A, and a map s : A ! A

I

so that the omposition (d

0

� d

1

) Æ s = �.

The map s is required to be a quasi-isomorphism. We also require that A! A

I

is natural,

ommutes with �ltered olimits and small limits while preserving admissible monomorphisms

and epimorphisms. Furthermore we require the following onditions on a o-ylinder objet.

(i) Let f : A! B denote a map in C. Let Coyl(f) = B

I

�

B

A where the map A

I

! A is

d

0

and A! B is the given map f . Let r : A! Coyl(f) denote the map de�ned by s�

f

id

A

.

Then r is a homotopy-equivalene with inverse given by the obvious map p : Coyl(f)! A.

Finally given a ommutative diagram

R

g

0

��

f

0

//
C

g

��
A

f

//
B

in HC, there exists a oylinder objet B

I

in C so that if P = Coyl(f)�

B

C (with the map

Coyl(f)! B indued by d

1

: B

I

! B and the map C ! B the given map g) there exists

a unique map R! P making the diagram

R

��/
/
/
/
/
/
/
/
/
/
/
/
/
/

g

0

��@
@@

@@
@@

''OOOOOOOOOOOOOO

P

f

0

//

��

C

g

��
A

f

//
B

ommute in HC. We all P the homotopy pull-bak of the two maps f and g.

(ii) It follows one again from the axioms in (STR6) that the map d

1

: Coyl(E(f))!

E(B) is now an admissible epi-morphism. We let fib

h

(E(f)) = ker(d

1

: Coyl(E(f)) !

E(B)) and all it the homotopy �ber of f . Now we also require that there exist a map

E(B)! Tfib

h

(f), natural in f so that fib

h

(E(f))! Coyl(E(f))! E(B)! Tfib

h

(E(f))

is a strong triangle.

(iii) Finally we require that if

A

f

//

��

B

��
A

0

f

0

//
B

0

is a ommutative square with A ! A

0

and B ! B

0

admissible monomorphisms (epimor-

phisms), the indued map Coy(f)! Coyl(f

0

) is also an admissible monomorphism (epi-

morphism, respetively).

Remark 2.2. Observe that f 7! Coyl(f) is also natural in f .

(STR7.3) Let f : A ! B denote a map in C. Let i : fib

h

(EM(f)) = d

�1

1

(�) !

E(M(A)) denote the omposition of the obvious map fib

h

(EM(f))! Coyl(EM(f)) and
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p : Coyl(EM(f)) ! EM(A). Then there exists a map Cone(i) ! EM(B) natural in f

whih is a quasi-isomorphism.

Definition 2.3. Let X"C and let p : EM(X) ! � (i : � ! EM(X)) denote the

obvious maps to (from, respetively) the zero objet � of C. Then we de�ne �X = Cone(p),


X = fib

h

(i).

Proposition 2.4. Let X"C. Then there exists a natural quasi-isomorphism X '


�X ' �
X. If fX

i

ji"Ig is a �nite olletion objets of C, the natural map t

i

X

i

! �

i

X

i

is a quasi-isomorphism.

Proof. Take f in (STR7.3) to be the map i

0

: � ! �X. Then (STR7.3) implies that

there exists a natural quasi-isomorphism Cone(
�X ! �)

'

!�X. It follows that one obtains

a long-exat sequene:

� � �

//
H

n

(
�X)

//
H

n

(�)

//
H

n

(�X)

//
� � �

Sine X ! � ! �X ! � is a strong triangle, one also gets a similar long exat sequene

involving the ohomology of X, � and �X. A omparison of these two long exat sequenes

shows that X and 
�X are naturally quasi-isomorphi. The quasi-isomorphism �
X ' X

is obtained similarly. The last assertion follows from the hypothesis in (STR3) that the

funtor H

�

ommute with �nite sums and produts. �

2.0.1. Convention. Apart from this setion, we will routinely omit the funtors m and

e in forming the ylinder or oylinder objets; we hope this will keep our notations simpler

throughout.

Axioms on o�brant and �brant objets

Now we will further assume the existene of full sub-ategories of C alled the sub-

ategory of o�brant objets (denoted C

f

) and the sub-ategory of �brant objets (denoted

C

f

) with the following properties:

(STR8.1) there is given a funtor Q : C ! C

f

, along with a natural transformation

id ! Q so that the map X ! Q(X) is a quasi-isomorphism for all X"C. Moreover, we

require that the sub-ategory C

f

be stable by the funtor Q and that the funtor Q preserves

admissible monomorphisms and �ltered olimits.

(STR8.2) For every objetX"C, there exists a map C(X)

'

!X that is a quasi-isomorphism,

with C(X)"C

f

(STR8.3) For eah P"C

f

and K"C, the natural map Hom

HC

(P;QK)! Hom

DC

(P;K)

is an isomorphism.

(STR8.4) If X is o�brant (�brant) the obvious map � ! X is an admissible monomor-

phism (X ! � is an admissible epimorphism, respetively).

Remark 2.5. Observe as a onsequene, that the ondition � ! X being an admissible

monomorphism is assumed to be weaker than X being o�brant. If C = Presh = a ategory

of presheaves on a site that forms a stable simpliial model ategory as in Chapter II,

Theorem 4.10, the ondition � ! X is an admissible monomorphism orresponds to requiring

the stalks of X be o�brant whereas X being o�brant orresponds to X being o�brant in

the given model struture of presheaves. Similarly the ondition that X ! � is an admissible

epimorphism orresponds to requiring the stalks of X to be �brant, whereas X being �brant
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orresponds to X being �brant in the given model struture of presheaves. The last ould

be muh stronger than the �rst.

Examples 2.6. (i) Let C denote the ategory of all omplexes in an abelian ategory.

This satis�es the axioms (STR0) through (STR5) with T = [1℄. The axiom (STR1) ((STR3))

is satis�ed with the homotopy being hain-homotopy (the ohomology funtor being the

usual one sending a omplex to its ohomology objets, respetively). The triangles are the

diagrams A

0

! A! A

00

! A

0

[1℄ whih are isomorphi in the homotopy ategory to mapping

one sequenes whih are de�ned as usual. One may take the admissible monomorphisms

(epimorphisms) in (STR6) to be the maps of omplexes that are degree-wise split monomor-

phisms (epimorphisms, respetively). Moreover the axioms (STR7.1) through (STR7.3) are

satis�ed where the ylinder objets and o-ylinder objets may be de�ned as in ([Iver℄ p. 24

or [T-T℄ (1.1.2). (For the sake of ompleteness we will presently reall these de�nitions. Let

g : A! G denote a map. Then Cyl(g) is the omplex de�ned by Cyl(g)

n

= A

n

�A

n+1

�G

n

with the di�erential de�ned by d(a

n

; a

n+1

; x

n

) = (d(a

n

)+a

n+1

;�d(a

n+1

); d(x

n

)�g(a

n+1

)).

Coyl(g) is the omplex de�ned by Coyl(g)

n

= A

n

�A

n�1

�G

n

with the di�erential de�ned

by d(a

n

; a

n�1

; y

n

) = (d(a

n

);�d(a

n�1

) + a

n

� g(y

n

); d(y

n

)).) The remaining axioms need

not be satis�ed in general.

(ii) Let C denote the ategory of (bounded below) hain-omplexes in an exat ategory E

that is also losed under �nite limits and olimits. Assume further that, for eah morphism

f : K ! L in C, the sequene 0 ! ker(f) ! K ! Coim(f) ! 0 is exat. (Observe

that, the existene of �nite olimits and limits show that both ker(f) and Coim(f) exist in

C.) A typial example of this is the ategory of all �ltered objets in an abelian ategory

provided with an asending �ltration. Let T = [1℄. Let the triangles denote the olletion

of diagrams A ! B ! C ! TA in C that are isomorphi to mapping-one-sequenes

in the homotopy ategory, whih may be de�ned as in (i). (i.e. diagrams of the form :

A

u

!B ! Cone(u)! A[1℄). Let a map u : K ! L be alled an admissible monomorphism if

eah of the maps u

n

: K

n

! L

n

is an admissible mono-morphism in the exat ategory E ;

admissible epimorphisms may be de�ned similarly.

Proposition 2.7. Assume the situation in 2.6(ii). Then C satis�es all the axioms

(STR0) through (STR7.3) exept possibly for the existene of arbitrary small olimits and

limits.

Proof. Clearly the homotopy ategory is additive and a triangulated ategory. Let

h : E ! A denote a fully-faithful imbedding of the exat ategory into an abelian ategory.

(See [Qu℄ setion 2.) Then one de�nes a omplex K to be ayli if h(K) is ayli as a

omplex in the abelian ategory A. It is shown in ([Lau℄ p. 158) that this is equivalent to

the map d

n�1

: K

n�1

! ker(d

n

) being an admissible epimorphism for all n. Now one may

de�ne a map f : K ! L to be a quasi-isomorphism if Cone(f) is ayli. It is shown in

([Lau℄ p. 159) that the lass of omplexes that are ayli form a null system in the sense

of ([K-S℄ p. 43) and hene that the lass of maps that are quasi-isomorphisms admits a

alulus of left and right frations. One may de�ne the natural t-struture on C as in [Hu℄

p. 11 or [Lau℄ p. 160. This de�nes a ohomology funtor H on C taking values in the heart

of the derived ategory.

H

n

(K) = (:::! 0! Coim(d

n�1

)! ker(d

n

)! 0! :::)

Then H

n

(K) = 0 if and only if the above map Coim(d

n�1

) ! ker(d

n

) is an isomorphism.

The admissible epimorphism K

n�1

! Coim(d

n�1

) implies H

n

(K) = 0 if and only if K is

ayli in degree n. In partiular, it follows that K is ayli if and only if H

n

(K) = 0

for all n. It follows that we obtain the axioms (STR0) through (STR5). The mapping
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ylinders and o-ylinders may be de�ned as in the ase of omplexes in an abelian ategory

onsidered in (2.5)(i). One may readily verify that these (as well as the mapping ones and

the homotopy �bers as in (STR7.1) and (STR7.2)) ommute with the imbedding h. The map

h(Cone(i))! h(B) exists and is a quasi-isomorphism in the setting of (STR7.3); therefore

one obtains the map Cone(i) ! B whih is also a quasi-isomorphism. To verify (STR6)

observe that if L

0

u

!L is an admissible mono-morphism, then h(Cone(u)) is quasi-isomorphi

to h(L=L

0

). One may similarly verify the hypothesis on admissible epimorphisms. �

2.1. To obtain another example of a di�erent avor, let C denote the ategory of

all (simpliial) spetra as in [B-F℄. (See Appendix A, setion 2 for details.) Let T denote

the suspension funtor. Given a map u : A ! B, let Cone(u) denote the mapping one

of u. One has a well-de�ned unstable (or strit) homotopy ategory de�ned in the usual

manner - see [Qu-1℄. We will denote this HC. (Observe that this ategory is not additive,

sine we are onsidering the unstable situation.) Then we let the triangles be the diagrams

A

u

!B

v

!C ! TA that are isomorphi in HC to mapping one-sequenes. The �brant (o-

�brant) objets in this ategory are the stritly �brant spetra (the stritly o�brant spetra,

respetively) in the sense of [B-F℄. Let Q

st

: C ! C denote a funtor that onverts a spetrum

into a �brant spetrum as in Appendix A. We de�ne the stable homotopy groups of a

spetrum K, by �

n

(K) = Hom

HC

(�

n

S; Q

st

K), where S denotes the sphere spetrum, �

n

S

is its n-fold suspension. A map f : K ! L of spetra is a quasi-isomorphism if it indues an

isomorphism on all the stable homotopy groups. (Thus the ohomology funtor H

n

is given

by the stable homotopy group �

�n

.) Then one de�nes the derived ategory assoiated to C

(denoted D(C)) to be the loalization of HC by inverting maps that are quasi-isomorphisms.

This is an additive ategory and is ommonly alled the stable homotopy ategory. Moreover,

it is a triangulated ategory when one de�nes the distinguished triangles to be the ones that

are isomorphi in D(C) to mapping one sequenes. One thus obtains all the axioms through

(STR5). One de�nes the ylinder and o-ylinder objets the usual manner: this readily

shows (STR7.1) through (STR7.2) are satis�ed. The axiom (STR7.3) is satis�ed sine we

are working in the stable homotopy ategory. In (STR6) one takes the admissible mono-

morphisms to be strit o�brations and admissible epi-morphisms to be strit �brations in

the sense [B-F℄. Moreover the axioms (STR8.1) through (STR8.4) are also satis�ed with Q

in (STR8.1) identi�ed with the funtor Q

st

.

2.2. One may onsider in a similar manner the ategory of all �-spaes, or the ategory

of symmetri spetra. (We skip the details here. One may onsult Appendix A for more

details in this diretion.)

3. Axioms on the monoidal struture

(M0) Next we assume C also has a unital monoidal struture, the operation being

denoted 
, whih we will assume, ommutes with all olimits in both arguments. An objet

M"C is at if M 
K is ayli for all ayli objets K"C. (An objet K in C is ayli if it

is quasi-isomorphi to the zero-objet �.) Moreover, we require that every o�brant objet

is at. In addition, we require that � 
M = � =M 
 � for any M"C.

We will further assume there exists a small full sub-ategory F of at objets suh that

the following hold:

(M1) for every objet M"C, there exists an objet P (M)"F and a quasi-isomorphism

P (M)

'

!M .
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Remark 3.1. The hypothesis that every o�brant objet is at shows (STR8.2) implies

(M1).

Observe as a onsequene of the hypotheses in (ST0) on the existene of a small family

of generators and the Speial Adjoint Funtor theorem (see [Ma℄ p.125) the following: let

m, K"C be �xed. Now the funtor M !M 
� has a right adjoint whih will be denoted

Hom(�, K). If K

'

!K

0

(M

0

'

!M ) is a quasi-isomorphism between �brant objets (objets

that are mono, respetively), Hom(M , K) ' Hom(M

0

, K

0

). IfM is an objet that is mono,

Hom(M; ) preserves triangles between objets that are �brant; if K is a �brant objet,

Hom( ;K) preserves triangles between objets that are mono.

(M2) If F"F, the funtors F 
� and �
F send triangles in C to triangles and preserve

admissible monomorphisms.

Let S"C denote the unit for the operation 
. We require the following additional

hypotheses on S.

(M3) S is a o�brant objet in C.

(M4.0)There exists a bi-funtor � 
 � : ( pointed simpliial sets) �C ! C ommuting

with olimits in the seond argument and satisfying the following properties.

(M4.1) Let K denote a �xed pointed simpliial set. Now the funtor Y ! K 
 Y ,

C ! C has a right adjoint whih will be denoted Y

K

. The funtor K ! K 
 Y , (pointed

simpliial sets) ! C has a right adjoint, whih will be denoted Map(Y; :)

K

. (Observe that

Map(Y; :)

�[n℄

+

=Map(Y; :)

n

.)

(M4.2) If K is a pointed simpliial set and X, Y "C, there exist an isomorphism X 


(K 
 Y )

�

=

K 
 (X 
 Y ) natural in K, X and Y . (The naturality implies that if � : K ! L

is a map of pointed simpliial sets, then id

X


 (�
 id

Y

)

�

=

�
 (id

X


 id

Y

).)

(M4.3) If K

0

! K ! K=K

0

! �K

0

is a o�bration sequene of pointed simpli-

ial sets (i.e. the map K

0

! K is a mono-morphism) and X"C is suh that � ! X

(X ! �) is an admissible monomorphism (epimorphism, respetively), the indued dia-

gram K

0


 X ! K 
 X ! K=K

0


 X ! �K

0


 X (X

�K

0

! X

K=K

0

! X

K

! X

K

0

)

is a strong triangle in C. Moreover, the indued map K

0


 X ! K 
 X (X

K

! X

K

0

) is

an admissible monomorphism (epimorphism, respetively). If Y

0

'

!Y (Z

0

'

!Z) is a quasi-

isomorphism between o�brant objets (�brant objets, respetively), the indued map

Map(Y; Z

0

) ! Map(Y

0

; Z) is a weak-equivalene of pointed simpliial sets. If Y is a o�-

brant objet, Map(Y; ) sends triangles between �brant objets to �bration sequenes of

simpliial sets. If Z is a �brant objet,Map( ; Z) sends triangles between o�brant objets

to �bration sequenes of simpliial sets.

(M4.4) If K is a pointed simpliial set and X

f

!Y is a quasi-isomorphism in C, then the

indued maps id

K


 f : K 
X ! K 
 Y and f

id

: X

K

! Y

K

are also quasi-isomorphisms.

(M4.5) If X

0

! X ! X

00

! TX is a strong triangle in C and K is a pointed simpliial

set, then the indued diagrams K
X

0

! K
X ! K
X

00

! K
TX and X

0

K

! X

K

!

X

00

K

! TX

K

are also triangles in C.

(M4.6) We also require that the funtors X ! X � I and X ! X

I

are ompatible

with the given tensor struture in the following manner: there exists natural isomorphisms

X 
 (Y � I)! (X 
 Y )� I and (X � I)
 Y ! (X 
 Y )� I and similarly Hom(Y;X

I

)

�

=

Hom(Y � I;X)

�

=

Hom(Y;X)

I

.
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(M5) Compatibility of the funtors, m, e and Q with the tensor struture. Given objets

K

i

"C, i = 1; :::; n, there exists a map 


i=n

i=1

Q(K

i

) ! Q(


i=n

i=1

K

i

), natural in K

i

. The same

holds with the funtor Q replaed by m (e, respetively).

Remark 3.2. The hypotheses in (M4.0) through (M4.6) imply the axioms in (STR7.1)

and (STR7.2) provided for every objet X"C, the map � ! X (X ! �) is an admissible

monomorphism (epimorphism, respetively). To see this, observe that now one may de�ne

the anonial ylinder (oylinder) objet A�I to be �[1℄

+


A (A

I

= A

�[1℄

+

, respetively).

Proposition 3.3. Assume that C is a ategory satisfying the axioms (STR0) through

(STR8.4) provided with a bi-funtor 
 : C � C ! C satisfying the hypotheses (M1) and

(M2). Now the bi-funtor 
 indues a derived funtor

L


 : D(C)�D(C)! D(C) that sends

distinguished triangles in either argument to distinguished triangles. D(C) is a monoidal

ategory with respet to

L


. S is a unit for this monoidal struture on D(C).

Proof. LetM , N"C and let P (M)

�

M

!

'

M , P (N)

�

N

!

'

N , P (N)

0

�

0

N

!

'

N denote at objets in C

hosen as in (M1). Now the indued map d

1

: Coyl(�

0

N

)! N is an admissible epimorphism.

Let Q = Coyl(�

0

N

)�

N

P (N); sine fib

h

(�

0

N

) = ker(d

1

) is ayli, it follows that the indued

maps Q ! Coyl(�

0

N

) and Q ! P (N) are quasi-isomorphisms. Now apply (M1) to �nd a

P (N)

00

'

!Q with P (N)

00

"F. It follows that we may assume without loss of generality that

there exists a map P (N)

0

!

�

P (N) in C making the square

P (N)

0

'

����! N

?

?

y

id

?

?

y

P (N)

'

����! N

ommute. Now we will show that the natural maps P (M) 
 P (N)

0

! M 
 P (N)

0

and

P (M)
P (N)!M 
P (N) are quasi-isomorphisms. To see this let � : P (M)!M denote

the given map and let Cone(�) be its one. Sine P (N)

0

and P (N) are at, the diagrams:

P (M)
 P (N)

0

�
id

! M 
 P (N)

0

! Cone(�)
 P (N)

0

and

P (M)
 P (N)

�
id

! M 
 P (N)! Cone(�)
 P (N)

are triangles. Sine Cone(�) is ayli and P (N)

0

, P (N) are at, the last terms are also

ayli showing the �rst maps are quasi-isomorphisms.

Now we will show that the indued map P (M)
P (N)

0

id
�

! P (M)
P (N) is also a quasi-

isomorphism. To see this let Cone(�) denote the one of �. Sine P (M) is at, by (M2),

the diagram P (M)
P (N)

0

id
�

! P (M)
P (N)! P (M)
Cone(�)! P (M)
TP (N)

0

is a

strong triangle. Sine Cone(�) is ayli and P (M) is at, it follows P (M)
Cone(�) is also

ayli. It follows that the map P (M)
P (N)

0

!

id
�

P (M)
P (N) is a quasi-isomorphism.

The arguments above show that we may hoose a at objet P (N)

'

!N as in (M2) and

onsider the funtor �
 P (N) : H(C)! H(C). The arguments above show that the above

funtor preserves quasi-isomorphisms and indues a funtor at the level of derived ategories.

(Moreover the same arguments show that the orresponding funtor is independent of the

hoie of P (N)

'

!N .) A similar argument works with N in the �rst argument. �

Remark 3.4. Amonoidal ategory will always mean one whih satis�es all of the axioms

(M0) through (M5) above. For emphasizing the existene of a unit, we will, however refer
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to suh ategories as unital monoidal. For the appliations in Chapter IV, we will also need

to assume the monoidal struture is symmetri.

4. Axioms on the strong t-struture

(ST1): For eah integer n, there exists a funtor �

�n

: C ! C along with a natural

transformation �

�n

Q(K) ! Q(K) whih is an admissible mono-morphism for eah K"C.

The funtors �

�n

preserve homotopies and quasi-isomorphisms; the indued funtors at the

level of the derived ategories are idempotent.

(ST2): Moreover we require that H

i

(�

�n

QX)

�

=

H

i

(X) if i � n and

�

=

0 otherwise.

The funtors �

�n

de�ne a �ltration on eah Q(K) by F

n

Q(K) = �

�n

Q(K). We all this

the anonial Cartan �ltration . Clearly this is a non-dereasing �ltration. Sine we have as-

sumed C is losed under small olimits, it follows thatGr

C

(Q(K)) = t

n

F

n

(Q(K))=F

n�1

(Q(K))

also belongs to C.

(ST3): LetD(C)

�n�

denote the heart ofD(C) shifted by n i.e. D(C)

�n�

= fX"D(C)jH

i

(X) =

0 if i 6= ng Let A denote the abelian ategory in (STR3). We will assume that A is provided

with a unital symmetri monoidal struture whih we denote by 
. Furthermore, we will

assume that the funtor H

n

: D(C)

�n�

! A is an equivalene of ategories. Moreover,

there exists a sub-ategory, C

�n�

f

of C

f

so that the obvious funtor C ! D(C) indues an

equivalene of C

�n�

f

with D(C)

�n�

.

(ST4) Let EM

n

: A! C

�n�

f

denote an inverse to the omposition C

�n�

f

! D(C)

�n�

!

A. Eah EM

n

sends short-exat sequenes in A to triangles in C.

(ST5) We require that there exist a natural map Gr

C

(Q(X)) ! GEM(H

�

(X)) =

�

n

EM

n

(H

n

(X)) natural in X"C.

(ST6) Given �, �

0

in A, there exists an indued pairing EM

n

(�) 
 EM

m

(�

0

) !

EM

n+m

(� 
 �

0

) natural in � and �

0

where the 
 on the left-hand-side (right-hand-side)

denotes the given tensor struture 
 in C (the tensor produt in A, respetively). Moreover

we require that this pairing makes the funtor GEM (de�ned in (ST5)) into a monoidal

funtor sending the tensor produt on A to the funtor 
 on C.

(ST7) We require that the tensor struture is ompatible with the t-struture. i.e. If

X

i

"C, i = 1; :::; n are provided with a pairing 


i=n

i=1

X

i

! Z, there exists an indued pairing




i=n

i=1

Gr

C

(Q(X

i

))! Gr

C

(Q(Z)).

(ST8) Finally we require that the maps in (ST5) and (ST7) are ompatible. i.e. if

Gr

C

(Q(X)) ! GEM(�), Gr

C

(Q(Y )) ! GEM(�

0

) and Gr

C

(Q(Z)) = GEM(�

00

), then the

pairings Gr

C

(Q(X)) 
 Gr

C

(Q(Y )) ! Gr

C

(Q(Z)) and GEM(�) 
 GEM(�

0

) ! GEM(�

00

)

are ompatible.

Corollary 4.1. Assume the above situation. Now Gr

C

(Q(A)) and GEM(H

�

(A)) are

both algebras in C and the map in (ST5) is a quasi-isomorphism of algebras.

Proof. The proof is lear. �

Definition 4.2. We say C is a strong t-ategory if C is a ategory satisfying the hy-

potheses (STR0) through (STR8.4) along with a strong t-struture satisfying the axioms

(ST1) through (ST5)
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4.1. We may also generalize the above situation as follows - see (6.1) for an example.

A pairing of strong-t-sub-ategories is the following data:

two strong t-sub-ategories C

0

, C

00

of C along with a bi-funtor 
 : C

0


 C

00

! C so that

the following onditions are satis�ed:

(i)there exists a small sub-ategory F

0

(F

00

) of C

0

(C

00

, respetively) so that if F

0

"F

0

(F

00

"F

00

) then the funtor F

0


� : C

00

! C (the funtor �
F

00

: C

0

! C, respetively) sends

an ayli objet to an ayli objet,

(ii) for eah objetM

0

"C

0

(M

00

"C

00

) there exists a quasi-isomorphism P (M

0

)!M

0

with

P (M

0

)"F

0

(P (M

00

)!M

00

with P (M

00

)"F

00

, respetively) and

(iii) Compatibility of the t-strutures with the pairing. There exist strong t-sub-ategories,

C

0

gr

, C

00

gr

of C so that the funtor Gr

C

sending an objet in C to its assoiated graded objet

with respet to the Cartan �ltration sends C

0

(C

00

) to C

0

gr

(C

00

gr

, respetively) and there exists

a bi-funtor 


gr

: C

0

gr

� C

00

gr

! C

gr

so that if M"C

0

, N"C

00

and M 
 N"C one obtains a

natural map: Gr

C

(M)


gr

Gr

C

(N)! Gr

C

(M 
N).

Proposition 4.3. Assume the above situation. Now the bi-funtor 
 indues a derived

funtor

L


 : D(C

0

)�D(C

00

)! D(C).

Proof. This is similar to that of (3.4) and is therefore skipped. �

In addition to these we will also need to de�ne the analogue of the homotopy olimits

and limits. For these we require the axioms denoted (HCl) and (Hl) below.

Let I denote a small ategory and let C

I

op

denote the ategory of ontravariant funtors

from I to C. Let n! S(n) denote an objet in C

I

op

i.e. a funtor I

op

! C. Now we onsider

the funtor:

T (fS(n)jng) : I � I

op

! C, de�ned by (n;m)! I=m
 S(n)

4.1.1. We de�ne the homotopy olimit hoolim

I

fS(n)jng to be the o-end of this funtor

in the sense of [Ma℄ p. 222. Now we require the axiom:

(HCl) A map f : S

0

! S of objets in C

I

op

is alled a quasi-isomorphism if the maps

f(n) : S

0

(n)! S(n) (in C) are all quasi-isomorphisms. A diagram S

0

! S ! S

00

! TS

0

in

(C)

I

op

is a strong triangle if the orresponding diagrams S

0

(n) ! S(n)! S

00

(n) ! TS

0

(n)

are strong-triangles in C for all n. Then the funtor hoolim

I

preserves triangles and quasi-

isomorphisms. Moreover, in ase I = �, there exists a spetral sequene:

E

2

s;t

= H

�s

(fH

�t

(S

n

)jng)) H

�s�t

(hoolim

�

S)

The E

2

s;t

-term is the�s-th o-homology group of the simpliial abelian group fH

�t

(S

n

)jng.

Let n ! C(n) denote an objet in C

I

i.e. a ovariant funtor I ! C. Now we onsider

the funtor:

T (fC(n)jng) : I � I

op

! C, de�ned by (n;m)! C(n)

Inm

4.1.2. We de�ne the homotopy limit holim

I

fC(n)jng to be the end of this funtor in the

sense of [Ma℄ p. 218. Now we require the axiom:
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(Hl) A map f : C

0

! C of objets in C

I

is alled a quasi-isomorphism if the maps

f(n) : C

0

(n)! C(n) (in C) are all quasi-isomorphisms. A diagram C

0

! C ! C

00

! TC

0

in

(C)

I

is a strong triangle if the orresponding diagrams C

0

(n) ! C(n) ! C

00

(n) ! TC

0

(n)

are strong-triangles in C for all n. Then the funtor holim

�

ÆQ preserves triangles and quasi-

isomorphisms. Moreover, when I = �, there exists a spetral sequene:

E

s;t

2

= H

s

(fH

t

(C

n

)jng)) H

s+t

(holim

�

C)

if eah C

n

is a �brant objet in C. The E

s;t

2

-term is the s-th (o-)homology of the osimpliial

abelian group fH

t

(C

n

)jng.

In addition we will require the following axiom that enables one to ompare two homo-

topy inverse limits or olimits.

Let I denote a small ategory and let f : I ! J denote a ovariant funtor. We say

f is left-o�nal if for every objet j"J , the nerve of the obvious omma-ategory f=j is

ontratible. Let F : J ! C be a funtor.

Co�nality. We require that the indued map holim

J

F ! holim

I

F Æ f is a quasi-

isomorphism if the funtor f is left-o�nal. We also require a parallel axiom on the o�nality

of homotopy olimits.

Proposition 4.4. Assume the above situation. Let �

Z

A denote the ategory of Z-graded

objets in A and let C

0

(�

Z

A) denote the ategory of o-hain omplexes in �

Z

A that are trivial

in negative degrees. Then one may de�ne a funtor Sp

0

: C

0

(�

Z

A) ! C that sends distin-

guished triangles (quasi-isomorphisms) of hain omplexes to triangles (quasi-isomorphisms,

respetively) in the ategory C.

Proof. LetM = �

n"Z

M(n) be a graded objet ofA. Now reallGEM(M) = �

n

EM

n

(M(n))

in C. Next let K = K

0

d

0

!K

1

d

1

!:::

d

n�1

! K

n�1

d

n

!K

n

! ::: denote a o-hain omplex in �

Z

A that

is trivial in negative degrees. DN(K) denotes a o-simpliial objet in �

Z

A. We apply the

funtor GEM degree-wise to DN(K) to obtain a osimpliial objet of �brant objets in

C. Finally we take the homotopy inverse limit of this osimpliial objet to de�ne Sp

0

(K).

Now the proposition follows readily from the hypothesis that the funtor GEM preserves

sends distinguished triangles to triangles and from the standard properties of the homotopy

inverse limit funtor. �

Remarks 4.5. (i) IfM"�

Z

A and M [0℄ is the assoiated omplex onentrated in degree

0, Sp

0

(M [0℄) ' GEM(M). This follows from the degeneration of the spetral sequene for

the homotopy limit onsidered in (Hl).

(ii) We may extend the funtor Sp

0

to the whole ategory of bounded below o-hain

omplexes in �

Z

A as follows. Let N denote an integer and let C

N

(�

Z

A) denote the ategory

of all o-hain omplexes of Z-graded objets in A that are trivial in degrees less than N .

Let M denote suh a o-hain omplex and let M [�N ℄ denote the same omplex shifted to

the right N -times. Then M [�N ℄ is trivial in negative degrees. We let

(4.1.3) Sp

N

(M) = �

N

Sp

0

(M [�N ℄)
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4.2. We proeed to show that there are natural maps Sp

N

(M)! Sp

N+1

(M) that are

quasi-isomorphisms for any N so that the omplex M is trivial in degrees less than N . To

see this, reall �rst of all that the funtor GEM sends short-exat sequenes of omplexes

to triangles and preserves quasi-isomorphisms; the de�nition of the funtor Sp

0

as above

shows, it inherits the same property. One may dedue from this property that there exists

a natural quasi-isomorphism Sp

0

(M [�N � 1℄) ' 
Sp

0

(M [�N ℄). This proves the required

assertion.

Definition 4.6. We let Sp(M) = lim

N!1

Sp

N

(M).

It follows that the funtor Sp de�nes an extension of the funtor Sp

0

to the ategory of all

bounded below o-hain omplexes in �

Z

A.

(ST9) Standing hypothesis. We will make the following hypothesis from now on. Let

�

M = �

i

�

M(i) (

�

N) denote a o-hain omplex in �

Z

A (in A) trivial in negative degrees and

bounded above by m. Then there exists a quasi-isomorphism:

Sp(

�

M) ' 


m

hoolim

�

DN(GEM(

�

M [m

h

℄))

(holim

�

DN(EM

n

(

�

N)) ' 


m

hoolim

�

DN(EM

n

(

�

N [m

h

℄)), respetively)

natural in

�

M (in

�

N , respetively), where

�

M [m

h

℄ (

�

N [m

h

℄) is the hain-omplex de�ned by

(

�

M [m

h

℄)

i

=

�

M

m�i

((

�

N [m

h

℄)

i

=

�

N

m�i

, respetively) and DN denotes the denormalization

funtor as in Appendix B that produes a simpliial objet from a hain omplex.

Remark. The purpose of this ondition is to be able to pass between homotopy limits

and olimits with ease. One knows that, in general, they are quite di�erent; but for bounded

simpliial and osimpliial objets in abelian ategories, they are both equivalent to a (in

fat, the same) total omplex onstrution. By making use of the given t-struture, one is

able to redue the general homotopy limits and olimits we onsider to ones taking plae in

Abelian ategories.

Definitions 4.7. (i) A ategory C is alled a strongly triangulated ategory if it satis�es

the axioms (STR0) through (STR8.4) and the axioms on the homotopy olimits and limits.

(ii) C is a strongly triangulated monoidal ategory if it is strongly triangulated and

satis�es the axioms (M0) through (M5).

(iii) C is an enrihed monoidal t-ategory if it is a strongly triangulated monoidal ategory

satisfying the axioms (ST1) through (ST9) on the strong t-struture as well.

The next hapter is devoted to a thorough examination of various examples of suh

ategories.





CHAPTER II

The basi examples of the framework

1. Sites

In this hapter, we onsider in detail, various onrete examples of the axiomati frame-

work introdued in the �rst hapter. After disussing the general frame-work, we onsider

in detail three distint ontexts for the rest of our work: these are disussed in setions

two, three and four respetively. Throughout this hapter S will denote a site satisfying the

following hypotheses.

1.0.1. In the language of [SGA℄4 Expos�e IV, there exists a onservative family of points

on S. Reall this means the following. Let (sets) denote the ategory of sets. Then there

exists a set

�

S with a map p : (sets)

�

S

! S of sites so that the map F ! p

�

ÆU Æ a Æ p

�

(F ) is

injetive for all Abelian sheaves F on S. (Equivalently, if i

�s

: (sets)! S denotes the map

of sites orresponding to a point �s of

�

S, an Abelian sheaf F on S is trivial if and only if

i

�

�s

F = 0 for all �s"

�

S.) Here (sets)

�

S

denotes the produt of the ategory (sets) indexed by

�

S. a is the funtor sending a presheaf to the assoiated sheaf and U is the forgetful funtor

sending a sheaf to the underlying presheaf. We will also assume that the orresponding

funtor p

�1

: S! (sets)

�

S

ommutes with �nite �bered produts.

1.0.2. If X is an objet in the site S, we will let S=X denote the ategory whose

objets are maps u : U ! X in S and where a morphism � : u! v (with v : V ! X in S)

is a ommutative triangle

U

//

u

  @
@@

@@
@@

V

v

~~~~
~~

~~
~

X

We will further assume that the site S has a terminal objet whih will be denoted X (i.e.

S=X = S) and that the ategory S is losed under �nite inverse limits.

1.0.3. Let Y be an objet in the site S and i

�s

: �s ! S a point of the site S. We say

i

�s

is a point of Y if the map i

�s

: �s ! S fators through S=Y . Given a point i

�s

of Y , a

neighborhood of i

�s

in the site S is an objet U in the site with a map u : U ! Y together

with a lifting of i

�s

to U .

1.0.4. We will assume that the system of neighborhoods of any point has a small o�nal

family.

1.0.5. We will also assume the sites we onsider are oherent and loally oherent sites

as in [SGA℄4 Expos�e VI (2.3). Let S denote a site and let U"S. Then U is quasi-ompat

if every over of U has a �nite sub-over. An objet U"S is quasi-separated if for any two

maps V

v

!U andW

w

!U in S, the �bered produt V�

U

W is quasi-ompat. An objet U"S is

oherent if it is both quasi-ompat and quasi-separated. A site S is oherent if the following

hold:

1.0.6. (i) Every objet quasi-separated inS is quasi-separated over the terminal objet,

X, of the site S (an objet U"S is quasi-separated over the terminal objet X if the indued

map � : U ! U�

X

U is quasi-ompat) and

19
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(ii) The terminal objet X of the site S is oherent.

A site S satisfying the ondition (i) is alled algebrai. A site S is alled loally oherent

if there exists a overing fX

i

jig of the terminal objet X so that the sites S=X

i

are all

oherent. Observe that if X is a sheme and the site S is either the Zariski or the small

�etale site of X, then S is oherent if and only if X is quasi-ompat and separated as a

sheme. (See [SGA℄4 Expos�e VI.)

(The main need for oherene is given by the following result in [SGA℄4 Expos�e VI,

Th�eoreme (5.1):

Theorem. Let f : S! S

0

denote a map of sites.

(i) Suppose S satis�es the �rst ondition in ( 1.1) and S

0

is loally oherent. Then the

funtors R

n

f

�

ommute with �ltered diret limits of abelian sheaves for eah n.

(ii) Suppose S is oherent (and X is the terminal objet of S). Then, for eah n, the

funtor F ! H

n

(S; F ) = R

n

�(X;F ) ,

(abelian sheaves on S)!(abelian groups)

ommutes with �ltered diret limits. �)

Observe that the same onlusions as in (i) hold if the sites are the obvious sites asso-

iated to loally ompat Hausdor� topologial spaes and f is a ontinuous map of these

topologial spaes. Therefore, we will make either of the following assumptions throughout

the rest of the paper:

1.0.7. The site is loally oherent or

1.0.8. The site is the obvious site assoiated to a loally ompat Hausdor� topologial

spae.

We will expliitly onsider only the �rst ase, leaving the orresponding statements in the

seond ase to the reader.

1.0.9. Godement resolutions. Let Presh = Presh(S) denote a ategory of presheaves

on a site S so that it satis�es the axioms (STR0) through (STR8.4)) and the axioms (Hl),

(HCl) on the existene of homotopy limits and olimits. We will further assume that the

abelian ategory A is a ategory of abelian sheaves on the site S. Reall our site has

a onservative family of points as in ( 1.0.1). We will assume further that Presh(

�

S))

denotes a ategory of presheaves on the disrete site

�

S satisfying the same axioms and

that p indues funtors p

�

: Presh(S) ! Presh(

�

S), p

�

: Presh(

�

S) ! Presh(S). Given

a presheaf P"Presh, we let G

�

P : P:::GP:::G

2

P:::G

n

P::: denote the obvious osimpliial

objet in Presh, where G = p

�

Æ U Æ a Æ p

�

. We let GP = holim

�

fG

n

P jng. From the

properties of the homotopy limits as in (Hl), the following are now obvious:

The indued map

(1.0.10) �(U;GQ(P

0

))! �(U;GQ(P ))

is a quasi-isomorphism for eah U in the site and for eah quasi-isomorphism P

0

! P of

presheaves.

The indued diagram

(1.0.11) 
�(U;GQ(P

00

))! �(U;GQ(P

0

))! �(U;GQ(P ))! �(U;GQ(P

00

))

is a triangle for eah U in the site and eah diagram 
P

00

! P

0

! P ! P

00

whih is a

triangle.

A map of presheaves that indues a quasi-isomorphism at eah stalk, will be denoted '.
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1.1. De�nition of derived funtors via the Godement resolution. Let Presh,

Presh

0

denote two ategories of presheaves on sites as above and let � : Presh ! Presh

0

denote a funtor so that the following two properties hold.

� Given a triangle P

0

! P ! P

00

! P

0

[1℄ in Presh, the indued diagram �GP

0

!

�GP ! �GP

00

! �GP

0

[1℄ is a triangle in Presh

0

and

� Given a quasi-isomorphism P

0

! P in Presh, the indued map �GP

0

! �GP is also

a quasi-isomorphism.

In this ase we may de�ne the right derived funtor, R� of � by � Æ G. Then the spetral

sequene for the homotopy inverse limit in Chapter I provides a spetral sequene:

(1.1.1) E

s;t

2

= H

s

(f�G

n

H

t

(P )jng)) H

s+t

(R�P )

The E

s;t

2

-term is the s-ohomology of the osimpliial abelian sheaf f�G

n

H

t

(P )jng. We will

onsider various examples of this in this paper. For example, let S

0

denote another site and

let � : S ! S

0

denote a map of sites. We may now de�ne the right derived funtor R� to

be � Æ G. In partiular, one may take S

0

to be the puntual site pt. A map of sites S! pt

may be identi�ed with the global setion funtor (i.e. setions over X= the terminal objet

of the site S.) Then we let R�(X;P ) = �(X;GP ). We will also denote this by H (X;P ) and

all it the hyperohomology objet assoiated to X and P .

1.2. Algebras and modules. Assume in addition that the ategory Presh is sym-

metri monoidal with respet to a bi-funtor 
 and that it satis�es the axioms (M0) through

(M4.6) in Chapter I exept possibly for the existene of a unit for the monoidal struture.

(Often we require, in addition, that there exist a unit S for 
) . Let A be an algebra

in Presh. i.e. A is an objet in Presh provided with a oherently assoiative pairing

� : A
A ! A. (Moreover if S is a unit, we require that there is a unit map i : S ! A so

that the omposition A

�

=

S 
 A

i
id

! A 
 A

�

!A is the identity and that i is an admissible

monomorphism.) LetMod

l

(S;A) (Mod

r

(S;A)) denote the ategory of left-modules (right-

modules, respetively) over A. A left-module M over A onsists of an objet M"Presh

provided with a oherently assoiative pairing A 
M ! M .) We will always require that

the presheaf U ! H

�

(�(U;A)) be a presheaf of Noetherian rings.

1.2.1. In what follows we need to onsider two distint situations: (i) where the funtors

m and e (as in Chapter I, (STR6) are the identity. (See for example, setion 3.) and (ii)

where these funtors are not neessarily the identity. (See for example, setions 2 and 4).

We will �rst onsider the situation in (i).

We will next de�ne a pairing (i.e. a bi-funtor)

(1.2.2) 


A

:Mod

r

(S;A)�Mod

l

(S;A)! Presh

If M"Mod

r

(S;A) and N"Mod

l

(S;A), M


A

N is de�ned as the o-equalizer:

Coeq(

M 
A
N

f //

g

// M 
N )

where f : M 
 A 
 N ! M 
 N (g : M 
 A 
 N ! M 
 N) is the map f = �

M


 id

N

,

with �

M

:M 
A !M the module struture on M (g = id

M


 �

N

, with �

N

: A
N ! N

the module struture on N , respetively). If M"Mod

l

(S;A) and N"Mod

l

(S;A) we also



22 II. THE BASIC EXAMPLES OF THE FRAMEWORK

de�ne:

(1.2.3)

Hom

A

(M;N) = Equalizer(

Hom

Mod

l

(S;A)

(A; N)

f //
g

// HomMod

l

(S;A)

(A
M;N)

)

where f = Hom

Mod

l

(S;A)

(�

M

; N) and g = Hom

Mod

l

(S;A)

(A
M;�

N

).

Let Hom denote the internal Hom in the ategory Presh. This exists as a right adjoint

to 
 sine the ategory Presh has a small generating set. Observe that if M , N and

P"Presh, then,

(1.2.4) Hom

Presh

(M;Hom(P;N))

�

=

Hom

Presh

(M 
 P;N)

One de�nes Hom

A;l

: Mod

l

(S;A)

op

� Mod

l

(S;A) ! Presh as in ( 1.2.3) using the

funtor Hom in the plae of Hom. Similarly one may de�ne Hom

A;r

: Mod

r

(S;A)

op

�

Mod

r

(S;A) ! Presh. (When there is no ause for onfusion, we will omit the the sub-

sript l, r in Hom

A;l

and Hom

A;r

.) Finally one may also de�ne the struture of a simpliial

ategory on Mod

l

(S;A) by

(1.2.5) Map

A

(M;N)

n

= Hom

A

(�[n℄

+


M;N);M;N"Mod

l

(S;A)

Reall that �[n℄

+


M is de�ned as part of the axiom (M4.0) in Chapter I. One may now

observe, the isomorphisms:

Map

A

(M;N)

0

�

=

Hom

A

(M;N); Hom

A

(A
M;N)

�

=

Hom(M;For(N))

Map

A

(A
M;N)

�

=

Map(M;For(N)) and Hom

Presh

(M


A

P;N)

�

=

Hom

A

(P;Hom(M;N))

(1.2.6)

whereM , N"Mod

l

(S;A) in the �rst three terms above,M , N"Mod

r

(S;A), P"Mod

l

(S;A)

in the last term above and For :Mod

l

(S;A)! Presh is the obvious forgetful funtor.

Next we onsider the situation in (ii) where the funtors m and e in Chapter I, (STR6)

are non-trivial. Now will de�ne a pairing (i.e. a bi-funtor) for P"Mod

r

(S;A),m, N"Mod

l

(S;A).

We may assume without loss of generality that A is mono.

(1.2.7) P


A

M = hoolim( m(P )
A
M

f //

g

// m(P )
M )

where the two maps f and g are as in 1.2.2 and hoolim denotes the homotopy olimit.

Similarly,

(1.2.8) Hom

A;l

(M;N) = holim( Hom(m(M); e(N))

m

�

//
n

�

// Hom(A
m(M); e(N)) )

where the maps m

�

and n

�

are again as in 1.2.3 and holim denotes the homotopy inverse

limit. We will de�ne a bi-funtor Map

A

: Mod

l

(S;A)�Mod

l

(S;A)! (simpliial sets)

by

Map

A

(M;N) = holim( Map(m(M); e(N))

m

�

//
n

�

// Map(A
m(M); e(N)) ).

(Map : Presh�Presh! (simpliial sets) is the obvious funtor. Observe that �

0

(Map

A

(M;N))

denotes homotopy lasses of maps f :M ! N whih belong to the ategory Mod

l

(S;A).
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2. When Presh is a strongly triangulated unital monoidal ategory

Throughout the rest of this setion, we will assume that S is a unit for 
. Let B, A

denote two algebras in Presh. We will let Mod

bi

(S;A;B) denote the ategory of objets in

Presh that have the struture of a presheaf of left-B and weak right A bi-modules so that

the two ommute. (This means if � : A
M !M and � :M 
B !M are the two module

strutures, then � Æ (id 
 �) = � Æ (� 
 id).) Now one of the key tehnial results we need

in the body of the paper is the following.

Proposition 2.1. (i) Assume the above situation. Now P


A

A ' P , A


A

N ' N and

Hom

A

(A; N) ' N , P , N"Mod

l

(S;A).

(ii) Assume that M"Mod

bi

(S;A;A).

Now Hom

A

(M; ) and 


A

M indue funtors Mod

r

(S;A)!Mod

r

(S;A). Moreover

if N , P"Mod

r

(S;A), one obtains a natural weak-equivalene:

Map

A

(P


A

M;N) 'Map

A

(P;Hom

A

(M;N))

(iii) Assume that N"Mod

bi

(S;B;A), P"Mod

r

(S;B) and M"Mod

r

(S;A). In this ase

one also obtains

(2.0.9) Hom

B

(M


A

N;P ) ' Hom

A

(M;Hom

B

(N;P )) and

(2.0.10) Map

B

(M


A

N;P ) 'Map

A

(M;Hom

B

(N;P ))

Moreover, one may also replae ' everywhere by

�

=

in the situation (ii) onsidered in 1.2.1.

Proof. The diagram

A
A
N

f //
g

// A
N
//
N

is a split fork in the sense of [Ma℄ p. 145, the splitting

provided by the maps N

�

=

S 
N ! A
N and A
N

�

=

S 
 A 
N ! A
A
N . By

([Ma℄ Lemma p. 145) N is in fat the o-equalizer of the above diagram i.e.

(2.0.11) A


A

N

�

=

N

The weak-equivalene Hom

A

(A; N) ' N is established similarly. This ompletes the proof

of (i). Clearly one may replae ' by

�

=

everywhere in the situation (i) of 1.2.1.

The right-module struture on Hom

A

(M;N) (P


A

M) is indued by the left-module

struture (the right-module struture) of M over A. Let p : P 
A ! P , m : A
M !M ,

m

0

:M 
A !M and n : N 
A ! N denote the given module strutures. Then

(2.0.12) Map

A

(P


A

M;N) = holim

Map(P


A

M; e(N))

n

�

//

m

0

�

// Map(P


A

M 
A; e(N))

Next reall P


A

M = hoolim(

m(P )
A
m(M)

p

� //

m

�

// m(P )
m(M)

). This homotopy

olimit pulls out of the Map as a homotopy inverse limit; the two homotopy inverse limits

ommute. Using the adjuntion between 
 and Hom, we see that the last term may be
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identi�ed with

holim( Map(m(P );Hom

A

(M;N))

p

�

//

m

�

// Map(m(P )
A;Hom

A

(M;N)) )

'Map

A

(m(P );Hom

A

(M;N))

(2.0.13)

Therefore, this proves (ii) in the ase the funtors m and e are nontrivial. The other

ase may be established more diretly. The �rst identity in (iii) may be established in the

situation (i) of 1.2.1 as follows. N"Mod

bi

(A;B) and P"Mod

r

(S;B). Now onsider the

funtor

(2.0.14) Mod

r

(S;A)!Mod

r

(S;B); M !M


A

N

The observation that the omposition M 
 S ! M 
 A ! M is the identity for any

M"Mod

r

(S;A), shows that if F is a small generating set for Presh, fF 
 AjF"Fg is a

generating set for Mod

r

(S;A). Clearly the funtor in ( 2.0.14) preserves all olimits and

the ategory on the left is o-omplete. By the speial adjoint funtor theorem (see [Ma℄

p. 125) the above funtor has a right adjoint whih we may identify with Hom

B

(N;P ). i.e.

we obtain the isomorphism

(2.0.15) Hom

B

(M


A

N;P )

�

=

Hom

A

(M;Hom

B

(N;P ))

We skip the proofs of the remaining assertions. �

Remark 2.2. Observe that, in the situation of (ii) of 1.2.1, one really needs to adopt

the de�nition of 


A

in 1.2.7 and 1.2.8 to obtain the results of the last proposition.

Hom

A

( ; ) to obtain the

Definition 2.3. LetM"Mod

l

(S;A). M is at if for every ayli moduleN"Mod

r

(S;A),

M


A

N is also ayli. M is loally projetive if for every ayli objet N"Mod

l

(S;A),

Hom

A

(M;N) is ayli as well. If P"Presh, P is at if for every K"Presh that is ayli

P 
 K is also ayli. P is loally projetive if Hom(P;R) is ayli for every ayli

R"Presh. (Here Hom is the internal Hom in the ategory Presh.) We let P denote the full

sub-ategory of objets in Mod

l

(S;A) that are both at and loally projetive.

2.0.16. Loally projetive and at resolutions. Let Presh denote a ategory of presheaves

on a site S so that it satis�es the axioms (STR0) through (STR7.3) and the axiom (HCl)

on the existene of homotopy olimits. Now we may de�ne a bi-funtor Map : Presh �

Presh

op

! (simpliial sets) byMap(M;N) = Hom

Presh

(�[n℄

+


M;N) where the fun-

tor 
 is de�ned as in Chapter I, (M4.0). We will further assume that the following hypothesis

holds:

(2.1.1.*) the abelian ategory A in Chapter I, (STR3), admits an imbedding into

the ategory of abelian presheaves on the site S where the latter is provided with the

obvious tensor struture. Let the latter ategory be denoted Presh

Ab

(S) and let the

given imbedding be denoted U . We assume that U is ompatible with the tensor stru-

tures and that the the presheaf P ! U Æ H

n

(P ) may be identi�ed with the presheaf

P ! �

�n

(Map(j

�

U

(S); j

�

U

Q(P ))), j

U

: S=U ! S in the site.

Remark 2.4. 1. We will often denote U Æ H

n

by just H

n

.

2. Observe that the restrition funtor j

�

U

: Presh(S) ! Presh(S=U) has always a

left-adjoint (see [SGA4℄ Expos�e IV) whih we will denote by j

#

U !

.
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Lemma 2.5. Let M"Mod

l

(S;A). Then there exists a set of integers fn

s

jsg, a set of

objets fj

U

: U ! SjUg in the site S and a map

� : t

U

t

s

j

#

U !

j

�

U

�

n

s

(S)
A !M

(where �

n

s

is the n

s

-fold iterate of � if n

s

� 0 and the �n

s

-fold iterate of 
 if n

s

< 0)

induing a surjetion:

H

�k

(�)

p

: t

U

t

s

H

�k

(j

#

U !

j

�

U

�

n

s

(S)
A))

p

H

�k

(�)

p

! H

�k

(M)

p

, for all k and all points p.

Proof. Reall the funtor Q is ompatible with the tensor struture. Therefore, we

may assume, without loss of generality that M has been replaed by Q(M). For eah

integer n, eah point p and eah lass [�℄ � H

�n

(M)

p

, let � : j

#

U !

j

�

U

(�

n

S) ! Q(M) denote

a representative map. If i : S ! A denotes the unit of the algebra A, we obtain the

ommutative diagram

S 
 j

#

U !

j

�

U

�

n

S

i
id //

id

��

A
 j

#

U !

j

�

U

�

n

S

id
� //
A
Q(M)

�

��
S 
 j

#

U !

j

�

U

�

n

S ' j

#

U !

j

�

U

�

n

S

� //
Q(M)

where � : A
Q(M)! Q(M) is part of the struture making Q(M) an A-module. It follows

that one may let S = f� : �

n

S ! M j�; ng; that this is a set follows from the hypotheses

that one has a onservative family of points and that the system of neighborhoods of any

point has a small o�nal family. �

Definition 2.6. (i)The modules of the form t

s�S

�

n

s

A will be alled free A�modules.

(ii). The modules M for whih there exists a �nite set S so that the map H

�

(�) in

Lemma ( 2.5) is a surjetive map of H

�

(A)-modules will be alled onstrutible A�modules.

(Reall that we have assumed the presheaf of graded rings H

�

(A) to be Noetherian, whih

justi�es this terminology. Nevertheless, the notion of onstrutibility is useful only when

H

�

(A) is loally onstant.)

(iii) The free funtor. We de�ne a free funtor F : Presh ! Mod

l

(S;A) by F(N) =

A
N . One de�nes a free funtor F : Presh!Mod

r

(S;A) by F(N) = N 
A.

Proposition 2.7. Assume the hypotheses as in 2.0.16. Let M"Presh. (i) Then there

exists an objet

~

M , whih is at and loally projetive, and a map � :

~

M ! M whih is

a quasi-isomorphism at eah stalk. Moreover, there exists a simpliial objet P

�

= fP

k

jkg,

eah P

k

"P with an augmentation P

0

! M so that the following hold: a)

~

M = hoolim

�

P

�

and � is the obvious indued map. (We will all P

�

a simpliial resolution of M .) b)

fH

�

(P

n

)~jng is a resolution of the sheaf of H

�

(A)~-modules H

�

(M)~.

(ii) The same onlusions hold ifM"Mod

l

(S;A) (orM"Mod

r

(S;A)) with A an algebra

in Presh

Proof. Observe that by taking A = S, we see that (i) is a speial ase of (ii). Therefore

we will only prove (ii) in detail. Let For :Mod

l

(S;A)! Presh denote the obvious forgetful

funtor.

LetM"Mod

l

(A) and let p denote a point of the siteS. Then For(M)

p

= olim

p"U

�(U; For(M))

andH

�n

(For(M)

p

)

�

=

olim

p"U

H

�n

(�(U; For(M)))

�

=

olim

p"U

H

�n

(Hom(j

#

U !

j

�

U

S; For(M))) where
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S is the onstant presheaf on S with stalks isomorphi to S. In view of Lemma ( 2.5), it

follows that one may �nd a set S, a overing U = fU

s

js"Sg of X and a olletion of

maps j

#

U !

j

�

U

(�

n

s

S)

�

s

!For(M) so that for eah integer n, the indued map H

�n

~( t

s"S

�

s

)) :

H

�n

~( t

s"S

j

#

U

s

!

j

�

U

s

(�

n

s

S)! H

�n

~(For(M)) is a surjetive map of Abelian sheaves.

Next we onsider P

0

0

= A
 ( t

s"S

j

#

U !

j

�

U

(�

n

s

S)) = F( t

s"S

j

#

U !

j

�

U

(�

n

s

S)). Then the natural

map P

0

0

! t

s"S

j

#

U !

j

�

U

(�

n

s

A) is an isomorphism. Let d

�1

denote the omposition:

id

A


 t

s"S

�

s

: A
 ( t

s"S


 j

#

U !

j

�

U

(�

n

s

S))! A
M !M

Sine the omposition of the map

S 
 ( t

s"S


 j

#

U !

j

�

U

(�

n

s

S))! A
 ( t

s"S

j

#

U !

j

�

U

(T

n

s

S))

and the map d

�1

indues the map H

�n

( t

s"S

�

s

))~ in ohomology, it follows that H

�n

(d

�1

)~

is a surjetion for eah n.

2.0.17. Let Q

0

= M and u

0

0

= d

�1

: P

0

0

! M the above map. We onsider P

0

=

Coyl(u

0

0

) and u

0

: P

0

!M is the map denoted d

1

in Chapter I, (STR7.2). (As mentioned

in Chapter I, Remark (2.0.1), throughout the rest of the proof we will suppress mentioning

the funtor E expliitly, though it needs to be applied �rst before taking the o-ylinders.

We hope this makes our disussion simpler.) Let n > 0 be a �xed integer. Assume we have

de�ned P

i

"P , X

i

, u

0

i

: P

0

i

! X

i

, and P

i

for all 0 � i � n so that the following hold

P

i

= Coyl(u

0

i

), X

i

= fib

h

(P

0

i�1

u

0

i�1

! X

i�1

), u

i

: P

i

! X

i

is the map indued by u

0

i

(as in

Chapter I, (STR7.2))

H

�k

(u

i

)~is surjetive as a map of Abelian sheaves for all k and

H

�

(P

i

)

p

is a free graded module over the graded ring H

�

(A)

p

for all points p

We let X

n+1

= fib

h

(u

0

n

: P

0

n

! X

n

). By replaingM"Presh by X

n+1

and applying the

arguments in 2.0.17 one may �nd an objet P

0

n+1

"Presh along with a map u

0

n+1

: P

0

n+1

!

X

n+1

so that the following hold:

P

0

n+1

is loally projetive and at

H

�

(P

0

n+1

)

p

is a free graded module over H

�

(A)

p

for all points p and

H

�k

(u

0

n+1

)~ is surjetive as a map of Abelian sheaves for all k.

Now we let P

n+1

= Coyl(u

0

n+1

) and u

n+1

: P

n+1

! X

n+1

the obvious map indued by

u

0

n+1

. Now observe that there exists a natural homotopy-equivalene between P

n

and P

0

n

for all n. It follows that if K"Presh, K
P

n

is homotopy equivalent to K
P

0

n

for all n and

hene ayli if K is. Therefore P

n

is at. One may similarly prove that P

n

is also loally

projetive. Now observe that X

n

= ker(u

n�1

: P

n�1

! X

n�1

) for all n > 0. We will let the

omposite map P

n

u

n

!X

n

! P

n�1

, n > 0, be denoted d

n

. It follows that the diagram

! :::P

n

d

n

!P

n�1

d

n�1

! :::

d

0

!P

0

is a omplex in Mod

l

(S;A) i.e. the omposition of the two maps d

n�1

Æ d

n

= �. Moreover

the map u

0

: P

0

! X

0

= M is an augmentation. Next we apply the denormalization

funtor DN to the above omplex to produe a simpliial objet in Mod

l

(S;A); this will
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be denoted DN(P

�

). We let

~

M = hoolim

�

DN(P

�

). Let K"Mod

r

(S;A). Then K


A

DN(P

�

)

is a simpliial objet in Presh. Clearly eah DN(P

�

)

k

"Mod

l

(S;A) is at and loally

projetive; now the spetral sequene in Chapter I, (HCl) for the homotopy olimit shows

that hoolim

�

DN(P

�

) is also at. The orresponding spetral sequene for the homotopy

inverse limit ( and the observation that homotopy olimits in the �rst argument in Hom

omes out of the Hom as homotopy limits) shows that it is also loally projetive. �

2.0.18. The homotopy ategories and the derived ategories. We de�ne

(2.0.19) Hom

HMod

l

(S;A)

(K;L) = �

0

(Map(S;Hom

A

(K;L)))

Now observe that we obtain the following isomorphisms:

Hom

HMod

l

(S;A)

(K;L) = �

0

(Map(S;Hom

A

(K;L))

�

=

�

0

Map

A

(S 
K;L)

�

=

�

0

Map

A

(K;L)

The �rst isomorphism follows from ( 2.0.15) by taking B = A and A = S in ( 2.0.15).

Finally reall that 
 may be identi�ed with 


S

: this provides the last isomorphism. It follows

immediately that there exists a funtor from the ategory Presh to the homotopy ategory

sending a map f : K ! L to its lass in �

0

Map

A

(K;L)

�

=

Hom

HMod

l

(S;A)

(K;L). Observe

that the derived ategory assoiated to Mod

l

(S;A) is obtained from the above homotopy

ategory by inverting maps that are stalk-wise quasi-isomorphisms. (See Proposition 2.9

below.) This will be denoted D(Mod

l

(S;A)).

We proeed to obtain a onrete realization of the derived ategory. Let P (K) ! K

denote a quasi-isomorphism from a loally projetive objet as in Proposition 2.7 .

Proposition 2.8. Assume the above situation. Then there exists isomorphisms:

Hom

D(Mod

l

(S;A))

(K;L)

�

!

�

=

�

0

(Map

A

(P (K);GQ(L)))

�

=

�

0

(Map(S;Hom

A

(P (K);GQ(L))))

�

=

�

0

(holim

�

fMap(S;Hom

A

(P (K);G

n

Q(L)))jng)

Proof. The identi�ation of the last term on the right-hand-side with

�

0

(Map(S;Hom

A

(P (K);GQ(L)))) follows sine holim

�

ommutes withMap(S;�) andHom

A

(P (K);�);

this in turn follows from the de�nition of holim

�

in the ategory Mod

l

(S;A) as an end (see

setion 1). The seond

�

=

is lear. Clearly there is a natural map from Hom

HPresh

(K;L)

to �rst term on the right-hand-side. One may readily see that if K

0

! K, L ! L

0

are

stalk-wise quasi-isomorphisms, then one obtains an isomorphism:

�

0

(Map

A

(P (K);GQ(L

0

))))

�

=

�

0

(Map

A

(P (K);GQ(L)))

�

=

�

0

(Map

A

(P (K

0

);GQ(L))).

This shows the above map � fators through the derived ategory. If � : P (K)! GQ(L) is

a map (representing a lass on the right-hand-side), the diagram

K

'

 P (K)! GQ(L)

de�nes a lass in the left hand side. Moreover if K

'

 K

0

! L is sent to the map P (K

0

) !

GQ(L) whih is null-homotopi, one an see readily that the map K

'

 K

0

! L ! GQ(L)

in the derived ategory D(Mod

l

(A)) is itself identi�ed with the trivial map. Therefore the

given map K

'

 K

0

! L also is identi�ed with the trivial map in the derived ategory. This

provides the required isomorphism. �
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Proposition 2.9. Assume the above situation. Then Mod

l

(S;A) is a strongly trian-

gulated ategory satisfying the axioms (STR8.1) through (STR8.4) with the funtor Q in

Chapter I, (STR8.1) given by the omposition G ÆQ

0

where G = the Godement resolution,

the funtor Q

0

= the given funtor Q in Presh and the o�brant objets being identi�ed

with the loally projetive objets. In ase the given monoidal struture is symmetri and

A is a ommutative algebra, Mod

l

(S;A) = Mod

r

(S;A) is symmetri monoidal with re-

spet to 


A

and A is a o�brant objet in Mod

l

(S;A). Moreover there exists a funtor

F : Presh!Mod

l

(S;A) left adjoint to the forgetful funtor For :Mod

l

(S;A)! Presh.

Proof. One begins with the observation that the ategory Mod

l

(S;A) is losed under

the formation of the ylinder and o-ylinder objets as well the anonial homotopy �ber

and mapping ones. This follows from the axioms (M4.6) and (M5). This also shows

that HMod

l

(S;A) admits a alulus of left and right frations. The abelian ategory A in

Chapter I, (STR3) and the ohomology funtor H

n

are the same as the ones for the ategory

Presh. One may now readily verify that the ategory obtained by loalizing with respet to

ohomology isomorphisms is triangulated. The admissible monomorphisms (epi-morphisms)

and the funtors m, e are de�ned to be the orresponding ones in the ategory Presh.

Propositions 2.7 and Proposition 2.8 show that the axiom (STR8.2) is satis�ed; i.e. one may

take o�brant objets to be the loally projetive ones. We de�ne �brant objets to be those

objetsM so that the obvious map �(U;M)! �(U;GQM) is a quasi-isomorphism for every

U in the site S. Now the axioms (STR8.1) and (STR8.4) are lear. The axiom (STR8.3)

follows from Proposition 2.8 above. The assertions on the symmetri monoidal struture

of Mod

l

(S;A) are lear. Reall the free funtor F is de�ned by F(N) = A 
 N . That

this is left adjoint to the forgetful funtor follows from the observation that the omposition

S 
N ! A
N ! N is the identity for any N"Mod

l

(S;A). �

Remark 2.10. It follows from the above result that the ategory of omplexes of sheaves

of modules over a ringed site (S;R), where R is a sheaf of ommutative rings with unit,

is strongly triangulated. We will assume here that for every objet X, the obvious map

� ! X (X ! �) is an admissible monomorphism (admissible epimorphism, respetively).

One de�nes the tensor produt S 
 K (between a pointed simpliial set S and an objet

K"C(Mod(S;R))) by taking the hoolim

�

of the obvious simpliial objet n ! �

S

n

K; this

de�nes a bi-funtor (pointed simpliial sets)�Mod

l

(C;A)!Mod

l

(C;A). Moreover the

remaining axioms on the monoidal and t-struture are satis�ed so that C(Mod(S;R)) is an

enrihed unital symmetri monoidal t-ategory. If A is a sheaf of di�erential graded algebras

over a site S, the ategory of sheaves of modules over A is a strongly triangulated ategory.

It is neither monoidal nor has a strong t-struture in general. We proeed to establish that,

similarly, if A is a sheaf of di�erential graded algebras over an E

1

-operad on a site S, the

ategory of sheaves of modules over A is strongly triangulated. However, in general, the

ategory of modules over suh an E

1

sheaf of DGAs is neither monoidal nor has a strong

t-struture. These observations make it neessary to onsider this ase separately in the next

setion. Observe that, sine C(Mod(S;R)) is an enrihed unital monoidal ategory, many

of the tehniques from the last setions arry over with minor modi�ations.

3. Sheaves of algebras and modules over operads

Let S denote a site and let R denote a sheaf of ommutative Noetherian rings on S.

For the purposes of this introdution to operads in C(Mod(S;R)) we will let 
 denote 


R

.

(See [K-M℄ for more details.)

Reall that an (algebrai) operad O in Mod(S; R) is given by a sequene fO(k)jk � 0g

of di�erential graded objets in Mod(S; R) along with the following data:

for every integer k � 1 and every sequene (j

1

; :::; j

k

) of non-negative integers so that

�

s

j

s

= j there is given a map 

k

: O(k)
O(j

1

)
 :::
O(j

k

)! O(j) so that the following
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assoiativity diagrams ommute, where �j

s

= j and �i

t

= i; we set g

s

= j

1

+ ::: + j

s

and

h

s

= i

g

s�1

+1

+ :::+ i

g

s

for 1 � s � k:

(3.0.20)

O(k)
 (

k




s=1

O(j

s

))
 (

j




r=1

O(i

r

))

shuffle

��


id

//
O(j)
 (

j




r=1

O(i

r

))



��
O(i)

O(k)
 (

k




s=1

O(j

s

))
 (

j

s




q=1

O(i

g

s�1

+q

))

id
(


s

)

//
O(k)
 (

k




s=1

O(h

s

))



OO

In addition one is provided with a unit map � : R! O(1) so that the diagrams

O(k)
 (R

k




) �

=

//

id
�

k

��

O(k)

O(k)
O(1)

k






99ttttttttttt

and

R
O(j)

�

=

//

�
id

��

O(j)

O(1)
O(j)



99rrrrrrrrrr

ommute.

An A

1

-operad is an assoiative operad fO(k)jkg so that eah O(k) is ayli. A sym-

metri operad is an assoiative operad as above provided with an ation by the symmetri

group �

k

on eah O(k) so that the above diagrams are equivariant with respet to the

ations by the appropriate symmetri groups. (See [K-M℄ p. 13.) An E

1

-operad is an

A

1

-operad fO(k)jkg whih is also symmetri so that, in addition, the given ation of �

k

on eah O(k) is free.

Remark 3.1. An operad of pointed simpliial sets, topologial spaes, Gamma spaes

or symmetri spetra is de�ned similarly with the following important hanges: we replae

C(Mod(S;R)) with the ategory of pointed simpliial sets, Gamma spaes or symmetri

spetra. Observe that these are all (unital) monoidal ategories. The objets fO(k)jkg

will be a sequene of objets in this ategory satisfying similar hypotheses. Now all of

the disussion in this setion applies with minor hanges: for example the term di�erential

graded objet will need to be replaed by an objet in one of the above ategories. In

partiular suh a disussion will de�ne A

1

and E

1

objets in the ategory of Gamma

spaes or symmetri spetra.

Remark 3.2. Next observe that if O

0

is an operad of topologial spaes (as above), by

applying the singular funtor followed by the free-abelian-group-funtor one may onvert it

to an operad whih will be a hain omplex of abelian groups. One may now tensor the

resulting omplex with R to obtain an algebrai operad in the above sense.

An A

1

-di�erential graded algebra A over an A

1

-operad O is an objet in C(Mod

r

(S;

R)) provided with maps � : O(j)
A

j

! A for all j � 0 that are assoiative and unital in

the sense that the following diagrams ommute:
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O(k)
O(j

1

)
 :::
O(j

k

)
A

j


id

//

shuffle

��

O(j)
A

j

�

��
A

O(k)
O(j

1

)
A

j

1


 :::
O(j

k

)
A

j

k

id
�

k

//
O(k)
A

k

�

OO

and

R
A

'

//

�
id

��

A

O(1)
A

�

::vvvvvvvvv

If A is an A

1

algebra over an operad O as above, one de�nes a left A-module M to

be an objet in C(Mod

r

(S; R)) provided with maps � : O(j)
A

j�1


M !M satisfying

similar assoiativity and unital onditions. Right-modules are de�ned similarly.

An E

1

algebra over an E

1

-operad O is an A

1

algebra over the assoiative operad O

so that the following diagrams ommute:

O(j)
A




j

�
�

�1

//

�

$$J
JJJJJJJJJ

O(j)
A




j

�

zztttttttttt

A

Given an E

1

-algebra A over a ommutative operad O, an E

1

left-module M over A is an

A

1

left-module M so that the following diagrams ommute:

O(j)
A

j�1


M

�
�

�1


id

//

�

''NNNNNNNNNNNN
O(j)
A

j�1


M

�

wwpppppppppppp

M

If A denotes either an A

1

or E

1

-algebra in C, the ategory of all left modules (right

modules) over A will be denoted Mod

l

(S;A) (Mod

r

(S;A), respetively).

One may now observe the following. For eah integer, let R[�

n

℄ = �

�

n

R denote the sum

of R indexed by the symmetri group �

n

. Now one may de�ne the struture of a monoid

on R[�

n

℄ as follows:

let R

g

denote the opy of R indexed by g"�

n

. Now we map R

g


R

h

to R

g:h

by the given

map � : R
R ! R.

If O is a ommutative operad in Mod(S;R), one may now observe that eah O(k) is a

right-module over the monoid R[�

k

℄. (Observe that O(k) 
 R[�

k

℄

�

=

�

g"�

k

O(k) 
 R

g

. We

map O(k)
R

g

to O(k)
R by the map g
id. Now apply the given map O(k)
R ! O(k).)

Finally observe that if O is an operad as above, the struture in ( 3.0.20) with k = 1

and j = 1 shows O(1) is a di�erential graded algebra. Moreover O(2)"Mod

r

(S;O(1)) as

well by letting the seond fator in O(1)




2

at trivially on O(2).
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We may assume without loss of generality that the operad fO(i)jig is obtained from the

linear isometries operad as in [K-M℄ p. 130. In this ase, we make the following additional

observations.

3.1. (i) there exist maps � : O(2)! O(1) and � : O(1)! O(2) in Mod

r

(S;O(1))

(ii) there exist homotopies H : �[1℄ 
O(2) ! O(2) in Mod

r

(S;O(1)) and K : �[1℄ 


O(1)! O(1) in Mod

r

(S;O(1)) so that H Æ d

0

= � Æ �, H Æ d

1

= id

O(2)

, K Æ d

0

= � Æ � and

K Æ d

1

= id

O(1)

(iii) there exist augmentations � : R! O(i) and � : O(i)!R so that the ompositions

� Æ� and � Æ� are hain homotopi to the identity. (In ase i = 1, we assume these are maps

of sheaves of di�erential graded algebras.)

Now we may de�ne a (non-unital) symmetri-monoidal struture � (alled the operadi

tensor produt on the ategory Mod(S;O(1)) by :

(3.1.1) M �N = O(2) 


O(1)

2

M


R

N; M; N"Mod(C;O(1))

(Observe that M 
 N belongs to Mod

l

(S;O(1)) using the left-module struture of O(2)

over O(1).) See [K-M℄ p. 101 for a proof that this de�nes a symmetri monoidal struture

on C(Mod(S;O(1))). We will let C denote the monoidal ategory Mod(S;O(1)) provided

with the operadi tensor produt.

Remark 3.3. One may now de�ne all the funtors in ( 2.0.14) and ( 1.2.3) in this

ontext if A is an algebra in the monoidal ategory C. However, sine R is not in general, a

unit for the funtor �, one will not obtain the isomorphisms M�

A

A

�

=

M, M"Mod

r

(S;A),

N

�

=

A�

A

N , N"Mod

l

(S;A) and similarly Hom

A

(A; N)

�

=

N . We orret this problem by

de�ning the following funtors.

Remark 3.4. Observe that O(1) is a DGA provided with augmentations R ! O(1)

and O(1) ! R whose omposition is the identity. A sheaf of modules M over O(1) is a

unital O(1)-module if there is an augmentation R!M ompatible with the augmentation

of O(1). It is shown in [K-M℄ pp. 112-113 that the ategory of unital O(1)-modules may be

provided with a bi-funtor (whih is a variant of the operadi tensor produt) with respet

to whih it is symmetri monoidal. A ommutative monoid in this ategory now orresponds

to an E

1

-algebra over the operad fO(k)jkg.

Let A denote an algebra in the ategory C as above. Reall that R[0℄ is not, in general,

a unit for the bi-funtor � provided on C. Let M"C. Now we may de�ne A / M by the

pushout:

R�M

i
id

����! A�M

�

?

?

y

?

?

y

�

M ����! A /M

One may de�neM.A similarly by interhanging theA andM . Moreover the above de�nition

applies to any algebra in C. Therefore it applies in partiular to the algebra R[0℄. It should

be lear from the above de�nition that R[0℄ / M

�

=

M

�

=

M . R[0℄. We let Mod

l

(C;A)

(Mod

r

(C;A)) denote the full sub-ategory of C = Mod(S;O(1)) of left-modules (right-

modules, respetively) over A. By identifying hain-homotopy lasses of maps we obtain

the (additive) homotopy ategories assoiated to Mod

l

(C;A) and Mod

r

(C;A). We use the

same ohomology funtors H

n

to de�ne quasi-isomorphisms inMod

l

(C;A) andMod

r

(C;A).

(The Abelian ategory A in (STR3) is simply the ategory Mod(S;R).) Observe that
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both Mod

l

(C;A) and Mod

r

(C;A) are losed under the formation of the mapping ylinder,

mapping one, the o-ylinders and the anonial homotopy �bers. Sine quasi-isomorphisms

are de�ned as above, one may readily see that the axioms (STR0) through (STR7.3) for a

strongly triangulated ategory are satis�ed. (One de�nes the tensor produt S
K (between

a pointed simpliial set S and an objet K"C(Mod(S;R))) as in Remark 2.10; this de�nes

a bi-funtor (pointed simpliial sets) �Mod

l

(C;A) ! Mod

l

(C;A). As in remark 3.2,

Chapter I, one may use this observation to onstrut funtorial ylinder and o-ylinder

objets.) Therefore one may de�ne the homotopy ategory assoiated to these ategories in

the obvious manner. The derived ategories D(Mod

l

(C;A)) and D(Mod

r

(C;A)) are de�ned

by inverting maps in the homotopy ategories that are quasi-isomorphism. Next we may

de�ne the free-funtor

F

A;l

: C !Mod

l

(C;A) (F

A;r

: C !Mod

r

(C;A)) by F

A;l

(M) = A / M

(F

A;r

(M) =M .A; respetively)

(3.1.2)

Definition 3.5. Let C be as before. We de�ne an internal hom in C as an adjoint to �

exatly as in 2.0.15. This will be denoted Hom

C

. We say an objet F (P ) in C is at (loally

projetive) if for every ayli objet K"C, F �K (Hom

C

(P;K), respetively) is ayli.

Proposition 3.6. Let F

O(1)

: C(Mod(S;R)) ! Mod(S;O(1)) be the funtor de-

�ned by F

O(1)

(M) = O(1)


R

M . Then F

O(1)

is right adjoint to the forgetful funtor For :

Mod(S;O(1))! C(Mod(S;R)). Moreover the following onditions are satis�ed

(i) if K"C, the natural map F

O(1)

(For(K))! K is an epimorphism

(ii)O(1) is at with respet to the operadi tensor produt �

(iii) if K"C and M"C(Mod(S;R)), K �F

O(1)

(M) (F

O(1)

(M)�K) is naturally hain-

homotopy equivalent to K


R

M (M


R

K).

(iv)Hom

C

(F

O(1)

(L);K) is homotopy equivalent to Hom

R

(L;K), for every K"C and

L"C(Mod(S;R)), with the homotopy equivalene being natural in L and K

Proof. The epimorphism in the �rst statement is indued by the epimorphism O(1)!

R and is therefore obvious. If K"C, K�O(1) is hain homotopy equivalent to K. (See 3.1.)

Therefore, if K is ayli, so is K �O(1). This proves (ii). Similar observations prove (iii).

LetK

0

,K"C and let L"C(Mod(S;R)). NowHom

C

(K

0

;Hom

C

(F

O(1)

(L);K))

�

=

Hom

C

(K

0

�

O(1)


R

L;K) ' Hom

C

(K

0




R

L;K) where the last is a hain homotopy equivalene. Making

use of the fat that R is ommutative and that any map of O(1)-modules is a map of

R-modules, one may show the last term is learly isomorphi to Hom

C

(K

0

;Hom

R

(L;K)).

Sine this holds for all K

0

"C, it follows from lemma ( 3.8) below that Hom

C

(F

O(1)

(L);K)

is hain homotopy equivalent to Hom

R

(L;K). This proves (iv). �

Proposition 3.7. (i) F

A;l

(F

A;r

) is left-adjoint to the forgetful funtor For :Mod

l

(C;A)!

C

(For :Mod

r

(C;A)! C) and the following onditions are satis�ed:

(ii) if M"Mod

l

(C;A) (N"Mod

r

(C;A)), the natural map F

A;l

(For(M))!M

(F

A;r

(For(N))! N) is an epimorphism

(iii) if M"Mod

r

(C;A) and K"C, M


A

F

A;l

(K) is naturally isomorphi to K �M while

Hom

A

(F

A;l

(K);M) is naturally isomorphi to Hom

C

(K;M).
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(iv)F

A;l

(O(1)
K) is naturally isomorphi in the derived ategory to A


R

K,

K"C(Mod(S;R)).

(v) F

A

(O(1)) and A are at and loally projetive in Mod

l

(C;A)

(vi) Hom

A

(F

A;l

(F

O(1)

(K)); L) is hain homotopy equivalent to Hom

R

(K;For(L)),

L"Mod

l

(C;A) and K"C(Mod(S;R)) with the hain homotopy-equivalene being natural in

L and K and preserving the obvious �ltrations.

Proof. The �rst two statements follow from the observation that the omposition

R/M ! A/M !M (N.R ! N.A ! N) is the identity ifM"Mod

l

(C;A) (N"Mod

r

(C;A),

respetively).

One may obtain the �rst assertion in (iii) as follows. Take P = F

A;l

(K), K"C in the

last adjuntion in ( 1.2.6) to obtain the isomorphism

Hom

C

(M


A

F

A;l

(K); N)

�

=

Hom

Mod

l

(S;A)

(F

A;l

(K);Hom

C

(M;N)).

By (i) this is isomorphi to Hom

C

(K;Hom

C

(M;N))

�

=

Hom

C

(M �K;N). Sine this holds

for all N"C, one obtains a natural isomorphism M


A

F

A;l

(K)

�

=

M � K. One obtains the

seond assertion in (iii) similarly.

Next we onsider (iv) assuming (vi). By (vi) Hom

A

(F

A;l

(F

O(1)

(K)); N) is hain-

homotopy equivalent to Hom

R

(K;N). On the other hand, if K = j

U !

j

�

U

(R) for an objet U

in the site S, we see that Hom

A

(A


R

K;N) ' Hom

R

(K;N) by hain homotopy equivalenes

that are natural in K. In general, one may �nd a resolution of the given K by a omplex

eah term of whih is a sum of terms of the form j

U !

j

�

U

(R), U"S. Therefore (iv) follows.

Take K = O(1) in (iii) to see that M


A

F

A;l

(O(1)) is hain homotopy equivalent to

M � O(1); therefore, if M"Mod

r

(C;A) is ayli, so is M


A

F

A;l

(O(1)). This shows that

F

A;l

(O(1)) is at. Now one observes that A is hain homotopy equivalent to A / O(1) =

F

A;l

(O(1)). Therefore A is also at. Finally observe that Hom

A

(F

A;l

(F

O(1)

(K)); L)

�

=

Hom

C

(F

O(1)

(K); L) ' Hom

R

(K;L) whih proves (vi) and the assertion on the loal pro-

jetivity in (v). �

Lemma 3.8. Let A and B denote two ategories of hain omplexes of abelian sheaves

on a site S. Let F; F

0

: A ! B (G;G

0

: B ! A) denote two funtors so that F (F

0

) is

left-adjoint to G (G

0

, respetively). Let � : F ! F

0

and  : F

0

! F denote two natural

transformations so that the omposition  Æ � (� Æ ) is homotopy-equivalent to the identity

natural transformation id

F

(id

F

0

, respetively). Assume that F (�[1℄
K)

�

=

�[1℄ 
 F (K),

and similarly F

0

(�[1℄
K)

�

=

�[1℄
 F

0

(K) for K"A.

Let �

�

: G

0

! G and  

�

: G! G

0

denote the two indued natural transformations. Then

there exists an indued homotopy equivalene  

�

Æ �

�

' id

G

0

(�

�

Æ  

�

' id

G

, respetively)

Proof. This is straightforward �

Corollary 3.9. Assume the situation as above. Then the ategories Mod

l

(C;A) and

Mod

r

(C;A) are strongly triangulated ategories.

Proof. The proof is more or less lear from the above disussion. We begin with the

observation that the ategory C(Mod(S;R)) is learly a strongly triangulated ategory.
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Now we obtain a free funtor:

(3.1.3) F : C(Mod(S;R))!Mod

l

(C;A)

by F(M) = F

A;l

(F

O(1)

(M)) and similarly F : C(Mod(S;R)) ! Mod

r

(C;A) by F(N) =

F

A;r

(F

O(1)

(N)). These are now left adjoint to the obvious forgetful funtors. Using these and

the observation that C(Mod(S;R)) has a small family of generators, one onludes that so

doMod

l

(C;A) andMod

r

(C;A). For this observe that the ompositionsR/M ! A/M !M

and N .R ! N . N ! N are the identity if M"Mod

l

(C;A) and N"Mod

r

(C;A): now the

same argument as in ( 2.0.15) applies. ClearlyMod

l

(C;A) andMod

r

(C;A) are losed under

all small limits. As observed earlier, these ategories satisfy all the axioms (STR0) through

(STR7.3) for a strongly triangulated ategory.

In order to prove the remaining hypotheses (STR8.1) through (STR8.4) it suÆes to

show that lemma 2.5 as well as Propositions 2.7 and 2.8 again hold in this setting one we

replae j

#

U !

j

�

U

�

n

(S) 
 A with F(j

#

U !

j

�

U

(R)). This is lear for Lemma ( 2.5) and Proposi-

tion 2.7 by the above propositions. Observe that the funtor Q in this ontext is the identity.

Now the isomorphism

Hom

D(Mod

l

(C;A))

(K;L)

'

!�

0

(Map

A

(P (K);GL)) is lear by the same argument as in Propo-

sition 2.8. The funtor Map

A

:Mod

l

(C;A)

op

�Mod

l

(C;A)! (pointed simpliial sets)

is de�ned so that we obtain the isomorphism:

(3.1.4) Hom

pointed simpl sets

(S;Map

A

(M;N))

�

=

Hom

Mod

l

(C;A)

(S 
M;N)

) �

Definition 3.10. In the above situation we will denote the ategoryMod

l

(C;A) (Mod

r

(C;A))

by Mod

l

(S;A) (Mod

r

(S;A), respetively).

Remark 3.11. Observe that the ategory C(Mod(S;R)) satis�es all the axioms (ST1)

through (ST8) on the strong t-struture with �

�n

denoting a familiar funtor that kills

the ohomology in degrees above n. One lets the funtor EM

n

in this ontext be de�ned

by EM

n

(

�

M) =

�

M [�n℄. Observe also that if

�

A = �

i

�

A(i) is a sheaf of graded modules

in Mod(S;R), one may de�ne GEM(

�

A) = �

i

EM

i

(

�

A(i)) = �

i

�

A(i)[i℄ and GEM(

�

M) =

�

i

EM

i

(

�

M(i)). Now GEM(

�

A) is a sheaf of di�erential graded algebras in C(Mod(S;R))

whih one may view as a sheaf of algebras over an operad in a trivial manner. Moreover if

�

M"Mod

l

(

�

A), GEM(

�

M)"Mod

l

(GEM(

�

A)). One may now see readily that C(Mod(S;R)) is

an enrihed monoidal t-ategory. However, the ategory Mod(S;O(1)) is not unital though

otherwise symmetri monoidal with the operadi tensor produt and learly the axioms

on the strong t-struture do not hold here. Therefore Mod(S;O(1)) is not an enrihed

monoidal t-ategory. SimilarlyMod

l

(S;A) andMod

r

(S;A) are also not enrihed monoidal

t-ategories, if A"C(Mod(S;R)) is an E

1

-algebra over an E

1

-operad. Nevertheless the

observation that the ategory C(Mod(S;R)) is an enrihed symmetri monoidal t-ategory

enables us to onsider the ategories Mod

l

(S;A) and Mod

r

(S;A) without diÆulty in the

next hapter.

4. Presheaves with values in a strongly triangulated symmetri monoidal

ategory

As one of the last examples, we will establish the following theorem.

Theorem 4.1. Let C denote a strongly triangulated monoidal ategory and let S denote

a site as in setion1. Let S denote the unit for the tensor struture on C. Assume further

that the hypothesis (2.1.1.*) is satis�ed. Now the ategory Presh

C

(S) of presheaves on S

with values in C is also a strongly triangulated monoidal ategory. In ase C is an enrihed
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monoidal t-ategory, the ategory Presh

C

(S) is also an enrihed monoidal t-ategory. In

ase C is symmetri monoidal, so is Presh

C

(S).

Remark 4.2. We will establish below that both the ategories of symmetri spetra

and �-spaes are enrihed symmetri monoidal t-ategories. It will follow as a onsequene

that the orresponding ategories of presheaves on a site (as in setion 1) are also enrihed

symmetri monoidal t-ategories.

Proof. Observe that if fP

�

j�g is a diagram of presheaves indexed by a small ategory

I, the olimit lim

!

I

P

�

(the limit lim

I

P

�

) is the presheaf de�ned by �(U; lim

!

I

P

�

) = lim

!

I

�(U; P

�

)

(�(U; lim

I

P

�

) = lim

I

�(U; P

�

), respetively). It follows that the ategory Presh

C

(S) is losed

under all small olimits and limits. One de�nes a pairing 
 : Presh

C

(S) � Presh

C

(S) !

Presh

C

(S) by �(U; P

0


 P ) = �(U; P

0

) 
 �(U; P ). One may verify that this funtor is

symmetri monoidal with the onstant presheaf S assoiated to S as a unit. Next we

de�ne a pairing (pointed simpliial sets)�Presh

C

(S)! Presh

C

(S) by �(U;K 
P ) =

K 
 �(U; P ).

We let f ' g be the equivalene relation of homotopy de�ned on the morphisms of

Presh

C

(S) and generated by the following: if H : �[1℄

+


P ! P

0

is a map, then H de�nes

a homotopy between H Æ (d

0


 id) and H Æ (d

1


 id) where d

i

: P

�

=

�[0℄

+


P ! �[1℄

+


P

is the obvious fae map. The resulting homotopy ategory is denoted HPresh

C

(S).

Given a map f : P

0

! P , we may de�ne Cyl(f) (Cone(f)) by �(U;Cyl(f)) = Cyl(�(U; f))

(�(U;Cone(f)) = Cone(�(U; f)), respetively). One de�nes Coyl(f) and fib

h

(f) similarly.

We de�ne the funtor T (f) by �(U; T (f)) = �(U;�(f)) where � is de�ned as in Chapter I,

De�nition (2.3). A diagram P

0

! P ! P

00

! TP

0

is a triangle if it is isomorphi in the

homotopy ategory to a diagram of the form: P

0

f

!P ! Cone(f)! �(f).

Let fH

n

jng denote the ohomology funtor on the ategory C. Now we de�ne a o-

homology funtor fH

n

jng on Presh

C

(S) by letting H

n

denote the sheaf assoiated to the

presheaf P ! H

n

(�(U; P )), U in the site S. We de�ne a map f : P

0

! P to be a quasi-

isomorphism if the indued maps H

n

(f) are all isomorphisms. The following lemma shows

that HPresh

C

(S) admits a alulus of left and right frations.

Lemma 4.3. The lass of maps in HPresh

C

(S) that are quasi-isomorphisms admits a

alulus of left and right frations

Proof. Let Qis denote the lass of maps in HPresh

C

(S) that are quasi-isomorphisms.

Reall that Qis admits a alulus of left frations, if the following hold:

(i) Qis is losed under �nite ompositions and ontains all the maps that are the iden-

tities

(ii) Given a diagram X

2

q

 X

1

f

!X

3

in Presh

C

(S) with q in Qis, there exists a diagram

X

2

g

!X

4

q

0

 X

3

in Presh

C

(S) with q

0

in Qis so that the square:

X

1

f

����! X

3

q

?

?

y

?

?

y

q

0

X

2

g

����! X

4

ommutes.

(iii) Given

X

1

q //
X

2

f //

g

// X3

with q in Qis with f Æ q = g Æ q, there exists a map

X

3

q

0

!X

4

so that q

0

Æ f = q

0

Æ g and q

0

"Qis.



36 II. THE BASIC EXAMPLES OF THE FRAMEWORK

Now (i) is lear. In order to prove (ii), one may �rst replae the map q : X

1

! X

2

by

the indued map X

1

! Cyl(q) and f : X

1

! X

3

by the orresponding map X

1

! Cyl(f).

Now take X

4

= X

2

t

X

1

X

3

. The natural map X

2

=X

1

! X

4

=X

3

is now an isomorphism. Sine

X

1

! X

2

! X

2

=X

1

! TX

1

is a triangle and the homology funtor H

�

takes it long-

exat sequenes with H

�

(X

1

)

H

�

(q)

! H

�

(X

2

) an isomorphism, it follows that H

�

(X

4

=X

3

)

�

=

H

�

(X

2

=X

1

)

�

=

0. Now X

3

! X

4

! X

4

=X

3

! �X

3

is a strong triangle and therefore the

map q

0

is a quasi-isomorphism.

In order to prove (iii), one may assume one again that q is also replaed by the orre-

sponding map X

1

! Cyl(q). Let H : �[1℄

+


 X

1

! X

3

denote a homotopy between the

two maps f Æ q and g Æ q. Now let Spool denote the diret limit of the diagram

�[0℄
X

2

j �[1℄

+


X

1

�[0℄
X

2

�[0℄
X

1

id
q

ggNNNNNNNNNNN d

0


id

77ppppppppppp

�[0℄
X

1

d

1


id

ggNNNNNNNNNNN id
q

88ppppppppppp

and let Cyl denote �[1℄

+


X

2

. Now one may observe readily that the obvious map Spool!

Cyl is a quasi-isomorphism. (To see this: observe that Spool! Cyl! �(X

2

=X

1

)! �Spool

is a strong-triangle and that the map q : X

1

! X

2

is a quasi-isomorphism. It follows that

H

�

(�(X

2

=X

1

))

�

=

0 whih proves the map Spool ! Cyl is also a quasi-isomorphism.) Now

let X

4

be de�ned by the pushout square:

Spool ����! X

3

?

?

y

?

?

y

Cyl ����! X

4

The top row is de�ned by the two maps f , g and the homotopy H. Now the indued

map X

3

! X

4

is also a monomorphism and the natural map Cyl=Spool ! X

4

=X

3

is an

isomorphism. It follows that the indued map X

3

! X

4

is also a quasi-isomorphism. These

arguments prove that Qis admits a alulus of left frations. The proof that it also admits

a alulus of right frations is similar using o-ylinders instead. �

Observe that S is an algebra in Presh

C

(S). Taking A = S, in Proposition 2.7, one

may produe o�brant resolutions for presheaves. A presheaf P"Presh

C

(S) will be alled

o�brant if it is loally projetive and at. We de�ne the funtor Q

C

on Presh

C

(S) by

�(U;Q

C

P ) = Q(�(U; P )) where the Q on the right is the funtor as in (STR8.1) for C.

A presheaf P (as above) is �brant if the obvious map �(U; P )! �(U;GQ

C

P ) is a quasi-

isomorphism for eah U in the site S. (We also let the funtor Q = G ÆQ

C

.) Now the axiom

Chapter I, (STR8.3) may be veri�ed as in Proposition 2.7. One may also readily verify the

axiom Chapter I, (M5). One de�nes admissible monomorphisms (epimorphisms) to be maps

F

0

! F so that for eah stalk, the indued map is an admissible monomorphism (epimor-

phism, respetively). In order to prove that the derived ategory is additive, observe in view

of (STR8.3) that it suÆes to show the homotopy ategory is additive. More spei�ally

observe that if f , g : �P (X)! 
�Y are two maps, their sum in Hom

HPresh

C

(S)

(P (X); Y )

is given by the omposition:

�P (X)

�

=

S

1


 P (X)

O

!(S

1

t S

1

)
 P (X)

�

=

(�P (X)) t (�P (X))

ftg

!
�Y .

Observe 
�Y is a homotopy assoiative monoid with the operation indued by the map

S

1

! S

1

tS

1

. Now [Sp℄ p. 43 shows that the above sum is ommutative. i.e. Hom

D(C)

(X;Y )

is an Abelian group for all X and Y . It follows that the derived ategory D(C) is additive.
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We leave the veri�ation that the triangles de�ned above in fat satisfy the axioms for

distinguished triangles.

One may take the sub-ategory F to be the same as o�brant objets. The remaining

axioms in Chapter I, (M0) through (M5) are easily veri�ed. We have thereby shown that if

C is a strongly triangulated symmetri monoidal ategory, so is Presh

C

(S).

Next assume that C satis�es the axioms on the strong t-struture as well. We de�ne

funtors �

�n

on Presh

C

(S) by �(U; �

�n

P ) = �

�n

�(U; P ). Now the axioms in Chapter I,

(ST1) and (ST2) are lear. Observe thatD(Presh

C

(S))

�n�

= fX"D(Presh

C

(S))jH

i

(X) =

0 if i 6= ng. Let A

C

denote the Abelian ategory whih is equivalent to the heart of

D(C). We let A = the ategory of sheaves on S with values in A

C

. We de�ne a funtor

EM

0

n

: A ! Presh

C

(S) by �(U;EM

0

n

(F )) = EM

C

n

(�(U; F )) where EM

C

n

is the funtor

in Chapter I, (ST3) assoiated to the ategory C as part of its strong t-struture. We let

EM

n

= G ÆEM

0

n

. Now it is lear that the axioms in Chapter I on the strong t-struture are

satis�ed. �

4.0.5. Presheaves with values in enrihed stable model ategories. With a view to further

possible appliations, (see Chapter V and Appendix A) we show that the following set of

axioms on a ategory C imply the ategory is strongly triangulated.

Definition 4.4. (Stable simpliial model ategories) A ategory C is alled a stable

simpliial model ategory if it satis�es the following axioms (PM0) through (PM4), (M4),

(SM0) through (SM3.4), (SM4) through (SM6), and the axioms (HCl), (Hl) along with

(o�nality) on the homotopy limits and olimits.

We will assume that C has a zero objet � and that it is losed under all small olimits

and limits. Sums in the ategory C will be denoted t. We will further assume that �ltered

olimits in C ommute with �nite limits.

(PM0) A partial model struture on C is provided by three lasses of maps alled weak-

equivalenes, o�brations and �brations satisfying the following onditions:

(PM1) The lass of �brations is stable under ompositions and base hange; any iso-

morphism is a �bration. The lass of o�brations is stable under ompositions and o-base

hange; any isomorphism is a o�bration. Moreover any retrat of a �bration (a o�bration,

a weak-equivalene) is a �bration (a o�bration, a weak-equivalene respetively).

(PM2) Any isomorphism is a weak-equivalene. If f and g are maps in C so that g Æ f

is de�ned and two of the maps f , g or g Æ f are weak-equivalenes, so is the third.

Any map that is both a �bration and a weak-equivalene (a o�bration and a weak-

equivalene) will be alled a trivial �bration ( trivial o�bration, respetively).

(PM3) Any map f an be fatored as f = p Æ i with p a �bration, i a trivial o�bration

and both depending funtorially on f . Any map f an also be fatored as f = p Æ i with p

a trivial �bration, i a o�bration and both depending funtorially on f .

(PM4) Every o�bration in C is a monomorphism. (The onverse is not assumed to be

true. In partiular, not every objet in C need be o�brant.)

A model ategory struture on C is a partial model ategory struture satisfying the

axioms (PM1) through (PM3) and also satisfying the following lifting axiom:

(M4) For every ommutative square
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A ����! X

i

?

?

y

?

?

y

p

B ����! Y

in C, there is a map h : B ! X making the two triangles ommute provided either

(a) i is a trivial o�bration and p is a �bration or

(b) i is a o�bration and p is a trivial �bration.

Suh a model struture is losed if the �brations (o�brations) are haraterized by the

lifting property in (a) ((b), respetively) and a map is a weak-equivalene if and only if it

an be fatored as the omposition of a trivial o�bration and a trivial �bration. (We will

always assume this is the ase and omit the adjetive losed heneforth.) It is a simpliial

model struture if one has a bi-funtor Map : C

op

� C ! (pointed simpliial sets) so

that Map

0

= Hom

C

. Moreover we require the following. For eah �xed M"C, the funtor

N 7!Map(M;N), C ! (pointed simpliial sets) has a left adjoint whih will be denoted

�
M .

A stable simpliial model ategory struture on C is provided by two strutures:

(SM0) a simpliial model struture on C where the o�brations (�brations, weak-equivalenes)

are alled strit o�brations (strit �brations, strit weak-equivalenes, respetively) as well

as another simpliial model struture (where the �brations (o�brations, weak-equivalenes)

are alled stable �brations (stable o�brations, stable weak-equivalenes, respetively)) so

that the onditions (SM1) through (SM7) are satis�ed:

(SM1) every strit weak-equivalene is a stable weak-equivalene

(SM2) every stable �bration (stable o�bration) is a strit �bration (strit o�bration,

respetively)

(SM3.1) There exist two funtors Q : C ! C and Q

st

: C ! C along with natural

transformations id ! Q, Q ÆQ! Q and id ! Q

st

, Q

st

ÆQ

st

! Q

st

so that if X"C, Q(X)

is stritly �brant while Q

st

(X) is stably �brant.

(SM3.2) The maps X ! Q(X), Q(Q(X)) ! Q(X) (X ! Q

st

(X), Q

st

Æ Q

st

(X) !

Q

st

(X)) are required to be strit weak-equivalenes (stable weak-equivalenes respetively).

(SM3.3) The funtor Q (Q

st

) preserves strit �brations (stable �brations, respetively).

(SM3.4) We will also require that the two funtors 
 : (pointed simpliial sets) �

C ! C de�ned as part of the simpliial model struture for the strit and stable model

strutures oinide. (Observe, as a onsequene, that the two funtors Map assoiated

to the strit and stable simpliial model strutures also oinide.) Moreover the following

are assumed to hold: if K is a pointed simpliial set, K 
 � preserves strit and stable

o�brations as well as strit and stable weak-equivalenes. If M"C is a stably o�brant

objet of C, � 
M sends o�brations of simpliial sets to stable o�brations and weak-

equivalenes to stable weak-equivalenes. It is also required to ommute with olimits in

either argument.

Observe that the axiom (PM3) implies the existene of funtorial ylinder and oylinder

objets for the partial model struture - see [Qu℄ hapter I. (Using the simpliial struture,

it is possible to de�ne them expliitly in the usual manner as well.)
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4.0.6. Now we de�ne ylinder and oylinder objets using the strit and stable model

strutures as follows - see [Qu℄ hapter I. Let X t X

d

0

+d

1

! Cyl

strit

(X)

s

!X denote a fa-

torization of the obvious map O : X t X ! X as the omposition of a strit o�bration

followed by a strit weak-equivalene. We will all Cyl

strit

(X) an strit ylinder objet for

X. A ylinder objet de�ned using the stable model struture will be denoted Cyl

st

(X).

Let �[1℄ denote the obvious simpliial set; �[1℄

+

will denote this with an extra base point

added. If X"C, we let Cyl

an

(X) = �[1℄

+


X with d

i

: X

�

=

�

+

[0℄
X ! �[1℄

+


X, the

obvious map for i = 0; 1 and s : �

+

[1℄ 
X ! �[0℄

+


X

�

=

X the obvious maps. We all

Cyl

an

(X) the anonial ylinder objet for X. If the objet X is stritly o�brant, this is in

fat a strit ylinder objet for X, and it is a stable ylinder objet for any X that is stably

o�brant. (These onlusions follow readily sine the bi-funtor 
 is onsidered part of the

stable struture.)

4.0.7. Let f : X ! Y denote a map in C; now we let Cyl

strit

(f) = Cyl

strit

(X)t

X

Y

and all it a strit mapping ylinder of f . Cyl

an

(f) = Cyl

an

(X)t

X

Y will be alled the

anonial mapping ylinder of f . Similarly we let Cyl

st

(f) = Cyl

st

(X)t

X

Y and all it the

stable mapping ylinder of f . Observe that the anonial mapping ylinder will be a stable

mapping ylinder if X and Y are stably o�brant. We will often denote any one of the above

mapping ylinders generially by Cyl(f).

(1.1.3) Now the map indued by d

1

, X ! Cyl(f) is a strit o�bration (stable o�bration

if X and Y are stritly o�brant (stably o�brant, respetively). (This map will be denoted

d

1

heneforth.) The pushout

X

d

1

����! Cyl(f)

?

?

y

?

?

y

� ����! Cone(f)

de�nes the mapping one Cone(f). This is stritly o�brant (stably o�brant) if X and

Y are stritly o�brant (if X and Y are stably o�brant, respetively). The mapping one

de�ned using the anonial (strit, stable) mapping ylinder will be denoted Cone

an

(f)

(Cone

strit

(f), Cone

st

(f), respetively). If both X and Y are stritly (stably) o�brant,

this oinides with Cone

strit

(f) (Cone

st

(f), respetively).

4.0.8. Next we onsider the dual notion of a o-ylinder objet. LetX ! Coyl

strit

(X)!

X�X denote the fatorization of the diagonal as the omposition of a strit weak-equivalene

and a strit �bration. We all Coyl

strit

(X) a strit o-ylinder of X. A o-ylinder objet

de�ned similarly using the stable model struture will be alled a stable o-ylinder objet

of X and will be denoted Coyl

st

(X). We will let Coyl

an

(X) = X

�[1℄

+

with the map

d

0

� d

1

: X

�[1℄

+

! X

�[0℄

+

t�[0℄

+ �

=

X � X and s : X

�

=

X

�[0℄

+

! X

�[1℄

+

the obvious

maps. This will be a strit (stable) o-ylinder objet for X if X is stritly �brant (stably

�brant, respetively). One again these onlusions follow readily from the assumption that

the bi-funtor Map is onsidered part of the stable struture.

4.0.9. Let f : X ! Y denote a map in C. We let Coyl

strit

(f) = Coyl

strit

(Y )�

Y

X

and all it a strit mapping o-ylinder for f . The orresponding funtor de�ned us-

ing Coyl

st

will be alled a stable mapping o-ylinder for f . Finally Coyl

an

(f) =

Coyl

an

(Y )�

Y

X will be alled the anonial mapping o-ylinder for f : this will be a strit

(stable) mapping o-ylinder for f if X and Y are stritly �brant (stably �brant, respe-

tively). We will denote any one of the above mapping o-ylinders generially by Coyl(f).
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4.0.10. The map indued by d

1

, Coyl(f) ! Y is a strit (stable ) �bration if X and

Y are stritly (stably, respetively) �brant. (This map will be denoted d

1

heneforth.) The

pull-bak

fib

h

(f) ����! Coyl(f)

?

?

y

d

1

?

?

y

� ����! Y

de�nes the homotopy-�ber of f . This is stritly �brant (stably �brant) ifX and Y are stritly

�brant (stably �brant, respetively). The homotopy �ber de�ned using the anonial (strit,

stable) o-ylinder for f will be denoted fib

an

h

(f) (fib

strit

h

(f), fib

st

h

(f), respetively).

Now we will require several axioms that will ensure that the derived ategory assoiated

to the stable model struture is in fat an additive ategory. Let P

st

: C ! C denote the

funtor of stably o�brant approximation as in (PM3); i.e. the obvious map � ! X fators

as � ! P

st

(X) ! X with P

st

(X) stably o�brant and the map P

st

(X) ! X a stable

weak-equivalene.

Let f : X ! Y denote a map in C. Let i : fib

an

h

(Qf)! QX and p : Y ! Cone

an

(f)

denote the obvious maps. Now

(SM4) Cone

an

(f) is stably equivalent to Cone

st

(P

st

(f)) always. If f : X ! Y is

a monomorphism, there exists a stable weak-equivalene Cone

an

(f) ' Coker(f) where

Coker(f) denotes the okernel of f .

(SM5) Cone

an

(i) is naturally stably weakly equivalent to QY and hene Y as well

(SM5)' fib

an

h

(Qp) is naturally stably weakly equivalent to QX.

(SM6) fib

st

h

(Q

st

(f)) is naturally stably weakly equivalent to Q

st

(fib

an

h

(Q(f))). (Ob-

serve that this axiom implies that the funtor Q

st

preserves stable �bration sequenes.)

(SM6)' Cone

st

(P

st

(f)) and Cone

st

(f) are naturally weakly-equivalent to Cone

an

(f).

Remark 4.5. (SM4) along with the axioms above imply that if f : X ! Y is a mono-

morphism, Coker(f) is stably weakly equivalent to Cone

st

(f) and also to Cone

st

(P

st

(f))

where P

st

(f) is de�ned as above. Moreover the above axioms imply that a strit �bration

(o�bration) sequene when viewed as a diagram in the stable model ategory on C may

be identi�ed with a stable �bration (o�bration, respetively) sequene. This is true in the

setting of both �-spaes as we show in detail in setion 5. (To see this simply observe any

monomorphism of �-spaes indues a monomorphism of the assoiated spetra. Therefore,

it is possible to replae any monomorphism of �-spaes by a stable o-�bration up-to natural

stable weak-equivalene.) Moreover this failitates work with stable �bration and o�bration

sequenes and enables us to obtain the spetral sequenes in setions 3 and 4.

Definition 4.6. We de�ne stable o�bration sequenes in C to be diagrams T

0

! T !

T

00

! �T

0

that are isomorphi in the homotopy ategory HC

st

(see below) to diagrams

of the form: T

0

i

!T ! Cone

st

(i) ! �T

0

. One may de�ne stable �bration sequenes in C

to be diagrams 
T

00

! T

0

! T

f

!T

00

that are isomorphi in HC to diagrams of the form:


T

00

! fib

st

h

(Q(f))! Q(T )

f

!Q(T

00

).

Remark 4.7. In view of the axioms above, one may identify stable o�bration sequenes

with stable �bration sequenes.
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Axioms on homotopy limits and olimits. We will onlude this list of hypotheses by

axiomatizing the existene of homotopy olimits and homotopy limits of small diagrams

in C with suitable properties. For this we invoke standard material from [B-K℄. Let I

denote a small ategory; for eah objet i"I, I=i (Ini) will denote the nerve of the omma

ategory denoted I=i (Ini, respetively) also. We let (C)

I

o

((C)

I

) denote the ategory of

all ontravariant (ovariant, respetively) funtors from I taking values in C. We de�ne the

funtor hoolim

I

: (C)

I

o

! C exatly as a o-end in Chapter I. Now the above funtor is

left-adjoint to the funtor Hom(I= � 
S;�) : C ! (C)

I

o

that sends an objet K"C to the

simpliial objet fHom(I=n
 S;K)jng. (Hom is the internal Hom in the ategory C.) We

require the following hypotheses:

(HCl):there exists a simpliial model struture on (C)

I

o

with weak-equivalenes be-

ing stable weak-equivalenes in C in eah simpliial degree so that hoolim

I

sends weak-

equivalenes to stable weak-equivalenes. Moreover hoolim

I

sends diagrams fA

0

! A !

A

00

! �A

0

g in (C)

I

o

that are triangles in C in eah simpliial degree to a triangle in C. In

addition, we require, in ase I = � (so that (C)

I

o

= the ategory of simpliial objets in C)

that there exist a spetral sequene:

E

2

s;t

= H

s

(f�

t

(S

n

)jng)) �

s+t

(hoolim

�

fS

n

jng)

(The homotopy groups are de�ned below.) We de�ne the funtor holim

I

: (C)

I

! C as an end

in Chapter I. Now the above funtor is right-adjoint to the funtor I=�
 : C ! (C)

I

o

that

sends an objet K"C to the diagram fI=n
Kjng. We require the following hypotheses:

(Hl):there exists a simpliial model struture on (C)

I

with weak-equivalenes being

stable weak-equivalenes in C in eah osimpliial degree so that holim

I

ÆQ

st

sends weak-

equivalenes to stable weak-equivalenes. Moreover holim

I

ÆQ

st

sends diagrams f
A

00

!

A

0

! A! A

00

!g in (C)

I

that are triangles in C in eah degree to a triangle in C. Moreover

we require that, in ase I = � (so that (C)

I

= the ategory of osimpliial objets in C) there

exist a spetral sequene with E

s;t

2

= H

s

(f�

t

(C

n

)jng)) �

�s+t

(holim

I

C

:

). The E

s;t

2

-term is

the s-th (o-)homology of the osimpliial Abelian group f�

t

(C

n

)jng.

In addition we will require the following axiom that enables one to ompare two homo-

topy inverse limits or olimits.

Let I denote a small ategory and let f : I ! J denote a ovariant funtor. We say

f is left-o�nal if for every objet j"J , the nerve of the obvious omma-ategory f=j is

ontratible. Now let F : J ! C be a funtor.

(o�nality). We require that the indued map holim

J

F ! holim

I

F Æ f is a stable weak-

equivalene if the funtor f is left-o�nal.

Remark 4.8. The hypothesis that C

I

and C

I

op

are simpliial model ategories is satis�ed

if the ategory C is a o�brantly generated simpliial model ategory.

The strit homotopy ategory. Let X, Y "C. By (funtorially) fatoring the map � ! X

we may �nd a strit weak-equivalene P (X) ! X with P (X) o�brant. Let Q denote the

funtor as in (SM3.1). Now we let Hom

C

strit

(X;Y ) = �

0

(Map(P (X); Q(Y )). It follows

readily from the axioms of the (strit) simpliial model ategory struture that this depends

only on X and Y . One de�nes the strit homotopy ategory HC

strit

to have the same

objets as C, but where the morphisms are de�ned as above.
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4.0.11. We de�ne the stable homotopy ategory HC

st

by

Hom

HC

st

(X;Y ) = Hom

HC

strit

(P

st

(X); Q

st

Y )

and with the same objets as C. (Reall the right hand side = �

0

(Map(P

st

(X); Q

st

Y ). Re-

all also that the funtorMap assoiated to the strit and stable simpliial model strutures

oinide.)

Now the funtor Q

st

sends stable �brations to stable �brations and hene preserves

stable �bration sequenes. Given a stable o�bration sequene as above, one may also

obtain a triangle: P

st

(X

0

) ! P

st

(X) ! P

st

(X

00

) ! P

st

(�X

0

). Therefore if we de�ne

Ext

�n

(X;Y ) = Hom

D(C)

(�

n

X;Y ), then fExt

�n

jng is a ohomologial funtor from D(C)

to the ategory of Abelian groups sending distinguished triangles in eah argument to long

exat sequenes of Abelian groups. (The derived ategory is de�ned by loalizing HC

st

with

respet to stable weak-equivalenes.)

Let K"C. We de�ne

(4.0.12) �

n

(K) = Hom

HC

strit

(�

n

S; Q

st

(K))

�

=

Hom

D(C)

(�

n

S;K)

where S is de�ned in (M3.1). If K

0

'

!K is a stable weak-equivalene, the indued maps

�

n

(K) ! �

n

(K

0

) are all isomorphisms. Moreover if K

0

! K ! K

00

! �K

0

is a stable

o�bration sequene, one obtains a long-exat sequene:

:::! �

n

(K

0

)! �

n

(K)! �

n

(K

00

)! �

n�1

(K

0

)! :::

These are lear sine S is stably o�brant and Q

st

(L) for any L is stably �brant. We will

show below that a map f is a stable weak-equivalene if and only if it indues an isomorphism

on �

n

for all n.

Proposition 4.9. (i) Given any objet Z"C, there exists a olletion fn

s

jsg of integers

and a map � : t

n

s

�

n

s

S ! Q

st

Z that indues an epimorphism on all �

n

. (We use the notation:

�

n

s

= the n

s

-fold iterate of � if n

s

� 0 and = the �n

s

fold iterate of 
 if n

s

< 0.)

(ii) Given an objet Z"C, there exists a simpliial objet S(Z)

�

in C along with an

augmentation � : S(Z)

0

! Q

st

Z so that eah term S(Z)

k

is of the form in (i) and (ii)

hoolim

�

(�) is a stable-weak-equivalene. Moreover hoolim

�

S(Z)

�

is stably o�brant.

(iii) f : X ! Y in C indues an isomorphism on all �

n

if and only if f is a stable

weak-equivalene.

Proof. (i) is lear from the de�nition of �

n

. Now we let S(Z)

0

to be the term given in

(i). (ii) is a speial ase of Proposition 2.7 where the site S is the puntual site and A = S.

It is lear that if f is a stable weak-equivalene, it indues an isomorphism on all �

n

.

Therefore, it suÆes to prove the onverse. Let S(Z)

�

! Z denote a simpliial objet hosen

as in (ii). Let P (Z) = hoolim

�

S(Z)

�

. Now onsider Map(P (Z), Q

st

(f)) : Map(P (Z),

Q

st

X) ! Map(P (Z), Q

st

Y ). One may identify this with holim

�

Map(S(Z)

�

, Q

st

(f)) :

holim

�

Map(S(Z)

�

, Q

st

X)! holim

�

Map(S(Z)

�

, Q

st

Y ). Sine f indues an isomorphism on

all �

n

, Map(S(Z)

n

, Q

st

(f)) is a weak-equivalene for all n; it follows from the hypothesis

(Hl) that so is holim

�

Map(S(Z)

�

; Q

st

(f)). �

Theorem 4.10. A stable simpliial model ategory and the ategory of presheaves with

values in suh ategory de�ne a strongly triangulated ategory in the sense of Chapter I.
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Proof. The assertion about the ategory of presheaves follows exatly as in Theorem

( 4.1). Therefore we will skip this and prove only the assertion that a stable simpliial

model ategory is a strongly triangulated ategory. Clearly the axiom (STR0) is implied

by the axiom (PM0). The axioms (STR1) through (STR5) are shown to be satis�ed by

Chapter I, 2.1, 2.2 and Proposition 2.7 with H

n

= �

�n

and with A = the ategory of all

abelian groups. The admissible mono-morphisms (epi-morphisms) in (STR6) are the stable

o�brations (stable �brations, respetively). The hypotheses in the axiom (STR6) is implied

by the stable simpliial model struture. The ylinder and o-ylinder objets were already

de�ned in (1.1) Chapter I. Now the axioms (STR7.1) through (STR7.3) are lear. We let

the funtor Q in (STR8.1) be the funtor Q

st

as in (SM4). The o�brant (�brant) objets

in (STR8.1) and (STR8.2) are the stably o�brant (stably �brant ones, respetively) in the

sense of the stable model struture. Now the axioms in (STR8.1) through (STR8.4) are

implied by the stable model struture and Proposition 2.5 above. �

Definition 4.11. An enrihed stable simpliial model ategory C is a stable simpliial

model ategory provided with a symmetri monoidal bi-funtor 
 satisfying the following:

i) the axioms in Chapter I, (M0) through (M4.6) with the strong triangles de�ned to

be stable o�bration (or equivalently stable �bration) sequenes and with the bi-funtor


 : (pointed simpliial sets)� C ! C in Chapter I, (M4.0) de�ned by (SM3.4).

ii) the axiom Chapter I, (M5) with Q = Q

st

, e = Q

st

and m = P

st

.

Definition 4.12. Let Presh denote a ategory of presheaves on a site so that it falls

into any one of the three situations onsidered in the previous three setions. Let F de-

note the free funtor de�ned there. Let A denote an algebra in Presh. Now we de�ne

RHom

A

(M;N) = holim

�

�fHom

A

(P (M)

�

;GQ(N)) where P (M)

�

! M is a resolution de-

�ned as in Proposition 2.4 using the free funtor. One de�nes RMap

A

in a similar manner.





CHAPTER III

Homologial algebra in enrihed monoidal ategories

1. Basi Spetral Sequenes

In this setion we provide several spetral sequenes that are ruial for the development

of a satisfatory theory of Grothendiek-Verdier duality as in hapter IV.

1.1. Basi Hypotheses. Throughout the remaining hapters, we will assume that the

following hypotheses are satis�ed:

S will denote a site as in Chapter II, setion 1 and either (i) Presh is an enrihed unital

monoidal ategory of presheaves on S or

(ii) Presh = C(Mod(S;R)) for a ringed site (S;R) with R a ommutative sheaf of

Noetherian rings and that A is a sheaf of algebras over an operad in Presh in the sense of

Chapter II, setion 3. (Reall that, in this ontext, the funtor Q as in Chapter I, (STR8.1)

is the identity.)

1.2. Terminology. In the situation in (i) we will let S denote the unit of the symmetri

monoidal struture on Presh. fH

n

jng will denote a ohomologial funtor as in Chapter II,

2.1.1. In this ase, if A is a given algebra in Presh, using the observation that the funtor

Q (in Chapter I, (STR8.1)) is ompatible with the monoidal struture, we will replae A by

Q(A) and we will heneforth onsider only modules over Q(A) of the form Q(M) for some

M"Mod

l

(S;A) or M"Mod

r

(S;A). However, we will denote Q(A) by A and Q(M) by M

for simpliity. Moreover, if neessary, by replaing an objet M"Mod

l

(S; Q(A)) by Q(M),

one may assume that every objet in Mod

l

(S;A) will have a anonial Cartan �ltration.

The same applies to Mod

r

(S;A). F : Presh!Mod

l

(S;A) (Mod

r

(S;A)) will denote the

free funtor de�ned by F(M) = A 
M , (F(N) = N 
 A, M;N"Presh. We will let 


denote 


S

and Hom de�ned as the internal hom in Presh. (See Chapter II, (1.2.3).) In the

situation in (ii), we let S = R and if A is a sheaf of algebras over an operad fO(k)jkg, we let

F(M) = F

A;l

(F

O(1)

(M)) ( =F

A;r

(F

O(1)

(N))) as in Chapter II, setion 3. Now 
 will denote




R

and Hom will denote Hom

R

(whih is the internal hom in C(Mod(S;R)). Moreover, the

funtors 


A

:Mod

l

(S;A)�Mod

r

(S;A)! Presh, Hom

A

:Mod

l

(S;A)

op

�Mod

l

(S;A)!

Presh and Hom

A

: Mod

r

(S;A)

op

�Mod

r

(S;A)! Presh will denote the ones de�ned as

in Chapter II, setion 1. The external hom in the ategory Presh will be denoted Hom and

the funtor T

n

: Presh! Presh (where T is as in Chapter I, (STR2)) will be denoted [n℄.

1.2.1. Throughout, a map f : P

0

! P of objets in Presh will be alled a quasi-

isomorphism, if it indues a quasi-isomorphism of the stalks. This will be denoted '.

1.2.2. One may observe readily that, for eah objet U in the siteS, the objet j

#

U !

j

�

U

(S)

is a ompat objet in Presh in the sense that giving any map from it to a �ltered olimit

of objets in Presh is equivalent to giving a map to one of the objets forming the �ltered

olimit.

45
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Remark 1.1. Observe that the hypotheses in (i) are in fat satis�ed in both the sit-

uations onsidered in Chapter II, setions 2 and 4. We begin with the following spetral

sequenes and then proeed to obtain a vast generalization of them.

Proposition 1.2. Assume the above situation. LetM"Mod

r

(S;A) and N;N

0

"Mod

l

(S;A).

Then there exist spetral sequenes

E

2

s;t

= T or

H

�

(A)

s;t

(H

�

(M), H

�

(N))) H

�s+t

(M

L




A

N)

E

s;t

2

= Ext

s;t

H

�

(A)

(H

�

(N);H

�

(N

0

))) H

s+t

(RHom

A

(N;N

0

)) and

E

s;t

2

= Ext

s;t

H

�

(A)

(H

�

(N);H

�

(N

0

))) H

s+t

(RHom

A

(N;N

0

)).

The �rst always onverges strongly, while the last two onverge onditionally, in general, in

the sense of [Board℄. The identi�ation of the E

2

s;t

-term (E

s;t

2

-term) is as the t-th graded

piee of the s-th Tor (the t-th graded piee of the s-th Ext or Ext, respetively).

Proof. (See [Qu℄ hapter II, setion 6.8, Theorem 6 and also [K-M℄ Chapter V for a

similar result for simpliial rings.) Let Q ! N denote a quasi-isomorphism with Q loally

projetive and at; let P

�

= P (M)

�

! M denote a simpliial resolution as in Chapter II,

Proposition 2.4. Reall eah term P (M)

n

is a sum of terms of the form F(j

#

U

s

!

j

�

U

s

(S)). Now

we onsider the �rst spetral sequene. We onsider the simpliial objet P

�




A

Q in Presh.

As n varies fH

t

(P

n




A

Q)jng forms a simpliial Abelian sheaf. We take the homology

of this simpliial Abelian sheaf. The required spetral sequene is given by the spetral

sequene for the homotopy olimit as in Chapter I:

E

s;t

2

= H

s

(H

t

(P

�




A

Q))) H

�s+t

(hoolim

�

(P

�




A

Q)).

It suÆes to identify the abutment withH

�s+t

(M

L




A

N) and theE

2

-term with T or

H

�

(A)

s;t

(H

�

(M),

H

�

(N)). Observe that eah term P

n

is of the form F(P

0

n

) for some P

0

n

an objet in Presh

whih is a sum of terms j

U !

j

�

U

(S). Therefore, P

n




A

Q ' P

0

n


Q

�

=

t

s"S

j

U

s!

j

�

U

s

(Q) for eah n.

Now H

�

(P

n

) = H

�

(P

0

n


A)

�

=

�

s"S

j

U

s!

j

�

U

s

H

�

(A)

�

=

H

�

(P

0

n

)
H

�

(A). Therefore, H

�

(P

n




A

Q)

is isomorphi to:

H

�

(P

n

) 


H

�

(A)

H

�

(Q).

Reall H

�

(Q)

�

=

H

�

(N) and that fH

�

(P

n

)jng is a at resolution of H

�

(M). Therefore, one

obtains the required identi�ation of the E

2

-terms. To identify the abutment it suÆes to

show that hoolim

�

fP

�




A

Qg ' hoolim

�

P

�




A

Q ' M


A

Q. The last quasi-isomorphism follows

sine Q is at and the �rst follows from the fat that the homotopy olimit ommutes with

o-equalizers. This establishes the �rst spetral sequene.

Next we onsider the last two spetral sequenes. We begin with the identi�ation:

Hom

A

(F(j

#

U

s

!

j

�

U

s

(S)), G

n

N) ' Hom

S

(j

#

U

s

!

j

�

U

s

(S), G

n

N)

' Hom

S

(j

�

U

s

(S), j

�

U

s

G

n

N) ' j

�

U

s

G

n

N)

The �rst identi�ation follows in the situations of Chapter II, setions 2 or 4 by Chapter II,

Proposition 2.1 (i) while it follows in the situation of Chapter II, setion 3 by Chapter II,

Proposition 3.8 (vi). Therefore
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H

�

(Hom

A

(F(j

#

U

s

!

j

�

U

s

(S)), G

n

N)) ' H

�

(j

�

U

s

G

n

N)

' Hom

H

�

(A)

(j

#

U

s

!

j

�

U

s

H

�

(A), H

�

(G

n

N)) ' Hom

H

�

(A)

(j

#

U

s

!

j

�

U

s

H

�

(A) , G

n

H

�

(N))

Next observe that fHom

A

(P (M)

k

;G

n

N)jk; ng is a double osimpliial objet; we take

its diagonal. The required spetral sequene is simply the spetral sequene for the homotopy

limit of the orresponding osimpliial objet. Sine

holim

�

�fHom

A

(P (M)

k

;G

n

N)jk; ng ' holim

�

holim

�

fHom

A

(P (M)

k

;G

n

N)jk; ng

where the outer (inner) holim

�

is in the diretion of n (k, respetively), the latter identi�es

with RHom

A

(M;N) and thereby provides the identi�ation of the abutment.

Taking the diagonal of the double osimpliial Abelian sheaf

fHom

H

�

(A)

(H

�

(P (M))

k

;G

n

(H

�

(N)))jk; ng provides the termRHom

H

�

(A)

(H

�

(M);H

�

(N)).

Taking the ohomology of this osimpliial Abelian sheaf one obtains the identi�ation of

the E

2

-terms. �

2. Stronger spetral sequenes

Definition 2.1. Let L"Presh. A non-dereasing �ltration on L is given by a olletion

fF

k

Ljkg of objets in Presh provided with the following struture:

(i) for eah k and eah U in the site S, there exist admissible monomorphisms i

k;k+1

:

j

#

U !

j

�

U

(F

k

L) ! j

#

U !

j

�

U

(F

k+1

L) and i

k

: j

#

U !

j

�

U

(F

k

L) ! j

#

U !

j

�

U

(L) so that i

k

= i

k+1

Æ i

k;k+1

.

(Here j

U

: U ! S is the obvious map assoiated to an objet in the site S. j

�

U

is the

restrition to S=U and j

#

U !

is its left adjoint.)

(ii) on taking the diret limits over all neighborhoods of any point p in the site S, the

admissible monomorphisms in (i) indue admissible monomorphisms i

k;k+1;p

: i

p�

i

�

p

(F

k

L)!

i

p�

i

�

p

(F

k+1

L) and i

k;p

: i

p�

i

�

p

(F

k

L) ! i

p�

i

�

p

(L). (Here i

�

p

is the restrition funtor from

presheaves on the site S to presheaves on the point p and i

p�

is its right adjoint.)

(iii) A non-dereasing �ltration fF

k

Ljkg on L as above is exhaustive ( omplete) if the

natural map

olim

k!1

H

n

(F

k

L)! H

n

(L) (the natural map H

n

(L)! H

n

(holim

�1 k

L=F

k

L), respetively) is an

isomorphism of sheaves for all n. Suh a �ltration is strongly separated if for eah integer q,

there exists an integer N

q

so that H

q

(F

k

L) = 0 for all k < N

q

. It is separated if L = t

�

L

�

with eah L

�

"Presh and strongly separated. (If L"Mod

l

(S;A), we will in fat require that

eah summand L

�

"Mod

l

(S;A).)

(iv) Let L"Mod

l

(S;A). A non-dereasing �ltration fF

k

Ljkg on L as above is ompatible

with the Cartan �ltration on A if:

Gr(L) = t

k

F

k

L=F

k�1

L belongs toMod

l

(S; Gr

C

(A)). (Equivalently, the pairing A
L!

L sends F

i

A
F

k

L! F

i+k

L where fF

i

(A)jig denotes the Cartan �ltration onA and fF

k

Ljkg

denotes the given �ltration on L.)

Proposition 2.2. Let M , N"Presh be provided with exhaustive �ltrations. Then the

indued produt �ltration on M 
N (de�ned by F

k

(M 
N) = Image( t

i+j=k

F

i

M 
 F

j

N !

M 
N)) is also exhaustive. It will be separated if either of the two holds:

� the given �ltration on M is separated and N = t

�

�

n

�

S or

� the given �ltration on N is separated and M = t

�

�

n

�

S
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Here S"Presh is the unit as in 1.0.2.

Proof. Sine olimits ommute with sums and 
, it is lear that the indued �ltration

on M 
 N is exhaustive. To see it is also separated, one may proeed as follows. Reall

M
�

n

S = �

n

M provided with the indued �ltration whih is learly separated if the given

�ltration on M is separated. One onsiders the other situation similarly. �

2.0.3. Convention. Throughout the remaining setions, the full sub-ategory ofMod

l

(S;A)

onsisting of objets provided with a an exhaustive and separated non-dereasing �ltration

will be denoted Mod

filt

l

(S;A).

Theorem 2.3. Assume as in the above situation that A is an algebra in Presh. Then

the following hold:

Let M"Mod

l

(S;A) be provided with a non-dereasing exhaustive �ltration.Then there exists

a loally projetive and at objet P

00

0

provided with a non-dereasing exhaustive and �ltration

ompatible with the Cartan �ltration on A and a �ltration preserving map P

00

0

! M whih

indues a stalk-wise surjetion H

n

(P

00

0

)

k

)! H

n

(F

k

M) for all n and all k. Moreover, P

00

0

is

loally projetive and at in Mod

l

(S;A) and the �ltration on P

00

0

is separated if the given

�ltration on M is separated.

Proof. We will �rst onsider the ase when Presh is a unital symmetri monoidal

ategory. Let j

U

: U ! X denote an objet in the site S, let n denote an integer and let

M"Presh. Now we will let

(2.0.4) S(n; U)(M) = Hom

Presh

(�

n

j

#

U !

j

�

U

(S);M)

and

(2.0.5) P

0

0

= t

n"Z

( t

UinS

t

S(n;U)(M)

�

n

j

#

U !

j

�

U

(S))

with the �ltration on it de�ned by F

k

P

0

0

= t

n"Z

( t

UinS

t

S(n;U)(F

k

M)

�

n

j

#

U !

j

�

U

(S)). One de�nes

a map u

0

�1

: P

0

0

!M by mapping the summand indexed by � : �

n

j

#

U !

j

�

U

(S)!M to M by

the map �. Now u

0

�1

is a map of �ltered objets. The de�nition of the �ltration fF

k

P

0

0

jkg

shows that eah

(2.0.6) H

n

(F

k

(u

0

�1

)) : H

n

(F

k

(P

0

0

))! H

n

(F

k

M)

is a surjetion for eah k and n. Moreover, the �ltration on P

0

0

is exhaustive sine eah

objet j

#

U !

j

�

U

(S) was observed to be ompat.

Next we let

(2.0.7) P

00

0

= F(P

0

0

)(= A
 P

0

0

);

u

0

�1

indues a map u

00

�1

: P

00

0

!M obtained as the omposition A
P

0

0

id

A


u

0

�1

! A
M !M .

We �lter P

00

0

using the produt �ltration with the Cartan �ltration on A and the above

�ltration on P

0

0

. This is learly exhaustive; in view of Proposition 2.2 and the observation

that the Cartan �ltration (on A) is learly strongly separated, it is also separated. Sine the

map S 
 P

0

0

! A
 P

0

0

! A
 P

0

0

! P

0

0

is the identity and is �ltration preserving, ( 2.0.6)

shows that the indued map H

n

(F

k

(P

00

0

))! H

n

(F

k

M) is also surjetive for eah k and n.

Next we onsider the operadi ase. In this ase we will let

(2.0.8) S(n; U)(M) = Hom

Mod(S;R)

(j

U !

j

�

U

(R)[n℄;M)

and

(2.0.9) P

0

0

= �

n"Z

(�

U

�

S(n;U)(M)

j

U !

j

�

U

(R))[n℄
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with the �ltration on it de�ned by F

k

P

0

0

= �

n"Z

(�

U

�

S(n;U)(F

k

M)

�

n

j

U !

j

�

U

(R)[n℄). (Here U

varies over a o�nal set of open neighborhoods of every point of X.) One de�nes a map

u

0

�1

: P

0

0

! M by mapping the summand indexed by � : j

U !

j

�

U

(R)[n℄ ! M to M by the

map �. Now u

0

�1

is a map of �ltered objets. The de�nition of the �ltration fF

k

P

0

0

jkg shows

that eah

(2.0.10) H

n

(F

k

(u

0

�1

)) : H

n

(F

k

(P

0

0

))! H

n

(F

k

M)

is a surjetion. Next we let

(2.0.11) P

00

0

= F

A;l

(F

A(1)

(P

0

0

))(= A / (O(1)
 P

0

0

));

u

0

�1

indues a map u

00

�1

: P

00

0

!M obtained as the ompositionA/(O(1)
P

0

0

)

id

A

/(id

O(1)


id)

! A/

(O(1)
M)! A /M !M . (The last map is the A-module struture on M , while the one

before that is the O(1)-module struture on For(M)"Mod(S;O(1)).) We �lter P

00

0

using

the produt �ltration with the Cartan �ltration on A and A(1) and the above �ltration

on P

0

0

. Sine the given �ltration on M is ompatible with the given �ltration on A and

O(1), it follows that the map u

00

�1

: P

00

0

! M is a map of objets in Mod

l

(S;A). This

�ltration will be exhaustive and separated by similar reasons. Moreover, sine the ompo-

sition P

0

0

�

=

R / P

0

0

! A / (O(1)
 P

0

0

)! P

0

0

is the identity and is also �ltration preserving,

( 2.0.10) shows that the indued map H

n

(F

k

(P

00

0

))! H

n

(F

k

M) is also surjetive for eah k

and n. �

Proposition 2.4. Assume the above situation. Let M"Mod

l

(S;A) be provided with an

exhaustive �ltration. Then there exist loally projetive and at objets P

i

"Mod

l

(S;A), i � 0

provided with non-dereasing �ltrations fF

k

(P

i

)jig and maps d

i

: P

i

! P

i�1

in Mod

l

(S;A),

i � 1, and a map d

�1

: P

0

!M so that the following onditions hold:

(i) for eah i, Gr(P

i

)"Mod

l

(S; Gr

C

(A)) is loally projetive and at

(ii) the maps d

i

preserve the �ltrations

(iii) d

i

Æ d

i+1

= �

(iv) for eah �xed n and k,

:::

H

n

(F

k

(d

i+1

))

! H

n

(F

k

(P

i

))

H

n

(F

k

(d

i

))

! H

n

(F

k

(P

i�1

))! :::

H

n

(F

k

(d

�1

))

! H

n

(F

k

M)

is exat stalkwise.

(v) Moreover, the �ltration fF

k

(P

n

)jng on eah P

n

is exhaustive and separated.

Proof. We de�ne P

0

i

and P

i

using asending indution on i. We will let P

0

0

be as

de�ned in ( 2.0.5) or ( 2.0.9). We let P

00

0

as in ( 2.0.7) or ( 2.0.11). Next we let

(2.0.12) P

0

= Coyl(u

00

�1

)

with the indued map u

�1

: P

0

! M . We provide P

0

with the indued �ltration. i.e.

F

k

P

0

= Coyl(F

k

(u

00

�1

)) = (F

k

M)

I

�

F

k

M

F

k

(P

00

0

). Reall fib

h

(u

�1

) = fib(u

�1

) = u

�1

�1

(�);

this is �ltered by F

k

fib(u

�1

) = fib(F

k

(u

�1

)). It follows that the indued �ltration on

P

0

is exhaustive. It is also separated by Proposition 2.2. Let Gr

k

denote the assoiated

graded term with respet to the above �ltration. Observe that F

k�1

P

0

! F

k

P

0

! Gr

k

P

0

is a triangle in Presh and that there exists a natural quasi-isomorphism fib

h

(Gr

k

(u

�1

)) '

Gr

k

(fib(u

�1

)). Furthermore, P

0

is a at objet in Mod

l

(S;A) whih is loally projetive;

this follows from the fat that P

0

is naturally homotopy equivalent to P

00

0

= F(P

0

0

). Similarly

Gr(P

0

) is a at objet inMod

l

(S; Gr

C

(A)) whih is loally projetive - this follows from the
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fat that Gr(P

0

) is naturally homotopy equivalent to Gr(P

00

0

) = F

Gr

C

(A)

(Gr(P

0

0

)). Finally,

it follows from the onstrution that, for eah k and n, the indued map of Abelian sheaves

H

n

(F

k

(u

�1

)) : H

n

(F

k

P

0

)! H

n

(F

k

M) is an epi-morphism.

Now repeat the same onstrution withM replaed by fib(u

�1

) provided with the above

�ltration. (Stritly speaking one needs to �rst apply the funtor e as in Chapter I, (STR6)

to P

0

before proeeding with the onstrution; however, for the sake of simpliity, we will

not mention the funtor e expliitly.) This provides an objet P

1

"Mod

l

(S;A) provided

with a non-dereasing �ltration fF

k

P

1

jkg and a �ltered map u

0

: P

1

! fib(u

�1

) so that the

following hold:

(i) F

k�1

P

1

! F

k

P

1

! Gr

k

P

1

is a triangle in Presh for all k"Z

(ii) P

1

is a at and loally projetive objet in Mod

l

(S;A); similarly Gr

C

(P

1

) is a at

and loally projetive objet in Mod

l

(S; Gr

C

(A)).

(iii) there exists a natural quasi-isomorphism fib

h

(Gr

k

(u

0

)) ' Gr

k

(fib

h

(u

0

))

(iv) the diagrams F

k

(fib

h

(u

0

)) = fib

h

(F

k

(u

0

)) ! F

k

(P

1

)

F

k

(u

0

)

! F

k

fib

h

(u

�1

) are trian-

gles for all k. The same onlusion holds for the diagram: fib

h

(u

0

) ! P

1

u

0

!fib

h

(u

�1

) as

well as for Gr

k

(fib

h

(u

0

)) ' fib

h

(Gr

k

(u

0

))! Gr

k

(P

1

)

Gr

k

(u

0

)

! Gr

k

(fib

h

(u

�1

))

(v) for eah k and n, the indued map of Abelian sheaves H

n

(F

k

(u

�1

)) : H

n

(F

k

P

1

) !

H

n

(F

k

(fib

h

(u

�1

))) is an epi-morphism.

Continuing this way we obtain a olletion of at objets fP

n

jn � 0g in Mod

l

(S;A)

that are at and loally projetive. Moreover, there exists a non-dereasing exhaustive and

separated �ltration fF

k

P

n

jkg on eah P

n

so that the above onditions hold with P

n

(P

n�1

)

replaing P

1

(P

0

, respetively). In this situation, one may now observe the following:

The map u

i

: P

i

! fib(u

i�1

) is the one orresponding to u

�1

when fib(u

i�1

) (P

i

)

replaes N (P

0

, respetively).

For i � 0, d

i+1

: P

i+1

! P

i

be the omposition P

i+1

u

i

!fib

h

(u

i�1

)! P

i

and d

�1

= u

�1

:

P

0

!M . Now one may readily verify the onditions of the proposition. �

2.1. Let M and fP

i

jig be as in the proposition above. First one observes that

fP

i

d

i

!P

i�1

ji � 0g, fF

k

(P

i

)

F

k

(d

i

)

! F

k

(P

i�1

ji � 0g and fGr

k

(P

i

)

Gr

k

(d

i

)

! Gr

k

(P

i�1

)ji � 0g are

omplexes i.e. the omposition of the suessive di�erentials is �. (This follows from the

onstrution where the map d

i

fators through the �ber of u

i�1

and d

i�1

is the ompo-

sition of u

i�1

and another map. Observe that this is true, though we have omitted the

funtors e throught the disussion.) Therefore, one may apply the denormalization funtor

DN to it to obtain a simpliial objet DN(P

�

) provided with a non-dereasing �ltration

fF

k

(DN(P

�

))jkg by sub-simpliial objets. Now one may take the homotopy olimits to

obtain:

hoolim

�

DN(P

�

) 'M; hoolim

�

F

k

(DN(P

�

)) ' F

k

(M) and

hoolim

�

Gr

k

(DN(P

�

)) ' F

k

M=F

k�1

M for all k

(2.1.1)

The �rst two follow readily from the observation that the spetral sequene for the homotopy

olimit of the above simpliial objets degenerates in view of the onlusions (iv) and (v)

in the Proposition. We proeed to establish the third quasi-isomorphism. Sine the maps

F

k�1

DN(P

�

)

n

i

k

!F

k

DN(P

�

)

n

are admissible monomorphisms in Presh for all k and all n,
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we see that Cone(i

k

)

n

' Gr

k

(DN(P

�

))

n

for all k and all n. (This follows from the hy-

pothesis (STR6) of Chapter I. Stritly speaking one needs to onsider Cone(m(i

k

))

n

.) Here

Cone(i

k

)

�

is the simpliial objet de�ned by fCone(i

k

)

n

jng. Sine hoolim

�

preserves quasi-

isomorphisms, it follows that hoolim

�

Gr

k

DN(P

�

) ' hoolim

�

Cone(i

k

)

�

�

=

Cone(hoolim

�

(i

k

)) '

Cone(F

k�1

M ! F

k

M) ' F

k

(M)=F

k�1

(M) = Gr

k

(M).

Definition 2.5. The simpliial objet DN(P

�

) de�ned in the last proposition will be

denoted P(M)

�

heneforth. This will be referred to as a �ltered simpliial resolution of the

�ltered objet M .

2.1.2. Let M , N"Mod

l

(S;A) be provided with non-dereasing �ltrations ompatible

with the Cartan �ltration on A. Now we de�ne an indued �ltration on Hom

A

(M;N) and

on Hom

A

(M;N) as follows. Let K"Presh and let k denote a �xed integer. We let K 
M

be �ltered by F

i

(K 
M) = Image(K 
 F

i

(M)! K 
M). We let

F

k

Hom

A

(K 
M;N) = ff : K 
M ! N"Hom

A

(K 
M;N)jf

K
F

i

M

fators through

the obvious map F

i+k

N ! Ng.

Now �x k, M and N . Consider the funtor K ! F

k

Hom

A

(K 
M;N), Presh ! (sets).

Sine the funtor 
 preserves olimits in either argument, it is lear that the above funtor

sends olimits in K to limits. Now, we let F

k

Hom

A

(M;N) be de�ned by:

Hom

A;k

(K 
M;N)

�

=

Hom

Presh

(K;F

k

Hom

A

(M;N)).

(It should be lear that fF

k

Hom

A

(M;N)jkg de�nes a �ltration of Hom

A

(M;N).) Let M

and N be provided with non-dereasing �ltrations ompatible with the Cartan �ltration on

A. Let P(M)

�

! M denote a simpliial resolution hosen as above applied to M instead

of L. Eah P(M)

k

"Mod

l

(S;A); it is provided with a non-dereasing �ltration ompatible

with the struture maps of the augmented simpliial objet P(M)

�

! M and ompatible

with the Cartan �ltration on A. The above �ltration, along with the one on N , de�nes an

indued �ltration on eah Hom

A

(P(M)

k

;G

n

N) ' Hom

A

(P(M)

k

;G

n

N) and hene on

RHom

A

(M;N) = holim

�

�fHom

A

(P(M)

k

;G

n

N)jn; kg

We will denote this by fF

k

RHom

A

(M;N)jkg. One de�nes a similar �ltration on onRMap

A

(M;N).

Lemma 2.6. Let M"Presh be provided with a non-dereasing �ltration fF

k

M jkg. As-

sume the �ltration is separated. Let j

U

: U ! X be in the site S and let n denote an integer.

A map f"S(n; U)(F

k

M) will be alled a trivial map if H

�

(f) is the trivial map. Then, after

identifying the trivial map with the base point, one obtains the isomorphisms

olim

k!1

S(n; U)(F

k

M)

�

=

t

k

S(n; U)(F

k

M)=S(n; U)(F

k�1

M)

(Observe that S(n; U)(F

k�1

M) is a subset of S(n; U)(F

k

M) for eah k. Eah S(n; U)(F

k

M)

is pointed with the trivial map being the base point. The quotient on the right hand side is

the set theoreti quotient where all maps in S(n; U)(F

k�1

M) are identi�ed with the base

point.)

Let f : M

0

! M denote a �ltration preserving map between objets in Presh provided

with �ltrations as above. If the �ltrations on M

0

and M are exhaustive (separated), so is the

indued �ltrations on Coyl(f) and fib

h

(f).

Proof. Fix an integer k. Suppose f"S(n; U)(F

k

M) be a non-trivial map, i.e. H

�

(f) 6=

�. The hypothesis that the �ltration is separated shows that, there exists a smallest in-

teger m � k so that f"S(n; U)(F

m

M). Now f does not belong to S(n; U)(F

m�1

M).

Therefore, f represents a non-trivial lass in S(n; U)(F

m

M)=S(n; U)(F

m�1

M). The map
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S(n; U)(F

m

M)! S(n; U)(F

m

M)=S(n; U)(F

m�1

M) is bijetive on all maps f"S(n; U)(F

m

M)�

S(n; U)(F

m�1

M). This provides the required isomorphisms.

The last assertion follows readily by onsidering the long-exat sequene on applying

the ohomology funtor fH

q

jqg to the triangle fib

h

(f)!M

0

' Coyl(f)!M ! Tfib

h

(f)

and sine H

q

is assumed to ommute with sums. �

Proposition 2.7. Assume in addition to the hypotheses of Proposition 2.4 that the

�ltration on M is separated.

(i) If F

k

Hom

A

(P(M)

i

;G

n

N) denotes the k-th term of the �ltration, then

(2.1.3) F

t�1

Hom

A

(P(M)

i

;G

n

N)! F

t

Hom

A

(P(M)

i

;G

n

N)! Gr

t

Hom

A

(P(M)

i

;G

n

N)

is a triangle in Presh.

(ii) Moreover, there exists a quasi-isomorphism

(2.1.4) Gr

t

(RHom

A

(M;N)) ' RHom

Gr

C

(A)

(Gr(M); Gr(N))

t

and

a triangle:

(2.1.5) F

t�1

RHom

A

(M;N)! F

t

RHom

A

(M;N)! Gr

t

RHom

A

(M;N)

Proof. Throughout the proof we will let S denote the unit of Presh (i.e. for the

symmetri monoidal struture) in the situations of Chapter II, setions 2 and 4; in the

situation of Chapter II, setion 3, it will denote R. Observe that the triangle in ( 2.1.5) is

obtained from the triangle in ( 2.1.3) by taking the diagonal followed by homotopy limits.

Moreover, by ( 2.1.1), fGr(P(M)

i

)jig is a resolution of Gr(M). Therefore, it suÆes to

prove (i) and show the existene of a natural quasi-isomorphism for all t, i and n:

(2.1.6) Gr

t

(Hom

A

(P(M)

i

;G

n

N) ' RHom

Gr

C

(A)

(Gr(P(M))

i

;G

n

GrN)

t

Next reall that fP(M)

i

ji � 0g is de�ned using asending indution on i as in Propo-

sition 2.4. We let P

i

in Proposition 2.4 be given by P (M)

i

. Now P(M)

�

= DN(P (M)

�

).

Observe that Hom(DN(P (M)

�

); L) = DN(fHom(P (M)

�

; L)g) for any L"Presh where the

DN on the right is the denormalization funtor sending o-hain omplexes to osimpli-

ial objets. Therefore, to prove (i), it suÆes to prove the orresponding statement when

P(M)

�

has been replaed by P (M)

�

. Reall

(2.1.7) P (M)

i

= t

m"Z

t

U"S

t

S(n;U)(fib

h

(u

i�1

))

Fj

#

U !

j

�

U

(�

m

S)

where the free funtor F is de�ned as in ( 1.0.2) . Let

P (M)

0

i

= t

m"Z

t

U"S

t

S(n;U)(fib

h

(u

i�1

))

j

#

U !

j

�

U

(�

m

S).

Now P (M)

0

i

is �ltered by the �ltration:

F

k

P (M)

0

i

= t

m"Z

t

U"S

t

S(n;U)(F

k

(fib

h

(u

i�1

)))

j

#

U !

j

�

U

(�

m

S)

and P (M)

i

= F(P (M)

0

i

) is given the �ltration indued from the Cartan �ltration of A and

the above �ltration on P(M)

0

i

.

Now we will �x an i and j

U

: U ! X in the siteS. Let S

k

(U) = t

n

S(n; U)(F

k

fib

h

(u

i�1

))

and S(U) = olim

k!�1

S

k

(U). Sine the indued �ltration on fib

h

(u

i�1

) is also separated,
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Lemma 2.6 shows S(U) = t

k

S

k

(U)=S

k�1

(U) modulo the identi�ation of the trivial map

with the base point. Next onsider the situations in Chapter II, setions 2 or 4 where

Presh is provided with a unital symmetri monoidal struture. In this ase, one ob-

tains the quasi-isomorphism (making use of the �ltration preserving quasi-isomorphism:

Hom

A

(F(M);M

0

)

�

=

Hom

S

(M;M

0

), M"Presh, M

0

"Mod

l

(S;A)):

F

t

(Hom

A

(P (M)

i

;G

n

N) ' �

k

�

j

U

�

S

k

(U)=S

k�1

(U)

j

U�

G

n

F

t+k

N , for eah t.

Therefore, in this ase, one obtains a quasi-isomorphism:

Gr

t

(Hom

A

(P (M)

i

;G

n

N)

�

=

�

k

�

j

U

�

S

k

(U)=S

k�1

(U)

j

U�

G

n

Gr

t+k

N

Sine the map F

t+k�1

N ! F

t+k

N is an admissible monomorphism, the diagram in (i) is

indeed a triangle. On the other hand, in the same situation,

RHom

Gr

C

(A);t

(Gr(P (M))

i

;G

n

GrN)

�

=

�

k

�

j

U

�

S

k

(U)=S

k�1

(U)

j

U�

G

n

Gr

t+k

N

as well. This proves the proposition in the situations of Chapter II, setions 2 or 4. In

the situation of Chapter II, setion 3, where A is assumed to be a sheaf of di�erential

graded algebras over an operad, Chapter II, Proposition 3.7 shows that one instead obtains

a �ltration preserving hain homotopy equivalene between the orresponding terms, that is

natural in the arguments M and N . Therefore one obtains the required quasi-isomorphism

in this ase as well. This proves the isomorphism in ( 2.1.6). �

Remark 2.8. Now �x an integer t

0

. The given �ltrations on M and N indue a non-

dereasing �ltration F

t

on F

t

0

(RHom

A

(M;N)). The same proof as above now shows one

obtains

Gr

t

(F

t

0

RHom

A

(M;N)) ' RHom

Gr(A)

(Gr(M); Gr(N))

t

; t � t

0

and(2.1.8)

' � t > t

0

(2.1.9)

and therefore a triangle:

(2.1.10) F

t�1

RHom

A

(M;N)! F

t

RHom

A

(M;N)! Gr

t

RHom

A

(M;N); t � t

0

Lemma 2.9. Let �

�

: Mod

l

(S; Gr

C

(A)) ! Mod

l

(S; GEM(H

�

(A))) denote the fun-

tor sending an objet

~

M to GEM(H

�

(A)) 


Gr

C

(A)

~

M . If � :

~

M !

~

M

0

denotes a quasi-

isomorphism of objets inMod

l

(S; Gr

C

(A)), the indued map �

�

(�) is also a quasi-isomorphism.

Similar onlusions hold for the ategory of right-modules.

Proof. Consider a ommutative square:

P

�

0

����! P

0

�

~

M

?

?

y

�

~

M

0

?

?

y

~

M

�

����!

~

M

0

with P , P

0

at objets in Mod

l

(S;A) and where the vertial maps are quasi-isomorphisms.

Now L�

�

(

~

M) = GEM(H

�

(A)) 


Gr

C

(A)

P and L�

�

(

~

M

0

) = GEM(H

�

(A)) 


Gr

C

(A)

P

0

; the �rst

spetral sequene in Proposition 1.2 omputes both terms. Consider the spetral sequene

for the �rst term:
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E

s;t

2

= Tor

H

�

(A)

s;t

(H

�

(GEM(H

�

(A)), H

�

(P ))) H

�s+t

(GEM(H

�

(A)) 


Gr

C

(A)

P ):

This spetral sequene degenerates sine H

�

(GEM(H

�

(A)))

�

=

H

�

(A). The same onlu-

sions hold for the orresponding spetral sequene for the seond term. It follows that the

required onlusions hold with L�

�

in the plae of �

�

.

Next reall that P = hoolim

�

P

�

, with P

�

a simpliial objet in Mod

l

(S; Gr

C

(A)) with

eah P

n

being at. The augmentation �

~

M

is indued by a map of simpliial objets �

~

M

:

P

�

! K(

~

M; 0), the right-hand-side being the obvious onstant simpliial objet. Reall

that spetral sequene above is the spetral sequene for the homotopy olimit as in setion

1. Therefore the above simpliial map indues a map of the above spetral sequene to

the orresponding spetral sequene for the homotopy olimit of the onstant simpliial

objet GEM(H

�

(A)) 


Gr

C

(A)

K(

~

M; 0). Clearly the spetral sequene for the above onstant

simpliial objet also degenerates thereby showing the augmentation L�

�

(

~

M) ! �

�

(

~

M) is

a quasi-isomorphism. �

2.1.11. We let �

�

: Mod

l

(S; GEM(H

�

(A))) ! Mod

l

(S; Gr

C

(A)) denote the obvious

funtor sending an objet K in the �rst ategory to an objet in the seond ategory using

the map �.

Proposition 2.10. (i) LetM"Mod

fil

r

(S;A), N"Mod

fil

l

(S;A). Let

�

M"D(Mod

l

(S;H

�

(A)))

and

�

N"D(Mod

l

(S;H

�

(A))) so that Gr

F

(M) ' �

�

(Sp(

�

M)) and Gr

F

(N) ' �

�

(Sp(

�

N)). Then

there exist quasi-isomorphisms:

Gr

F

(M)

L




Gr

C

(A)

Gr

F

(N) ' Sp(

�

M)

L




Sp(H

�

(A))

Sp(

�

N)

(ii) Let M , N"Mod

filt

l

(S;A). Let

�

M"D(Mod

l

(S;H

�

(A))) and

�

N"D(Mod

r

(S;H

�

(A))) so

that Gr

F

(M) ' �

�

(Sp(

�

M)) and Gr

F

(N) ' �

�

(Sp(

�

N)). Then there exist quasi-isomorphisms:

RHom

Gr(A)

(Gr(M), Gr(N)) ' RHom

Sp(H

�

(A))

(Sp(

�

M), Sp(

�

N))

Proof. Observe that the maps

Gr

F

(M) ' Gr

F

(M)

L




Gr

C

(A)

Gr

C

(A) ! Gr

F

(M)

L




Gr

C

(A)

GEM(H

�

(A)) = L�

�

(Gr

F

(M))

and

Gr

F

(N) ' Gr

F

(N)

L




Gr

C

(A)

Gr

C

(A)! Gr

F

(N)

L




Gr

C

(A)

GEM(H

�

(A)) = L�

�

(Gr

F

(N))

are quasi-isomorphisms. (This follows readily from the degeneration of the �rst spetral

sequene in Proposition 1.2 .) The given quasi-isomorphisms Gr

F

(M) ' �

�

Sp(

�

M) and

Gr

F

(N) ' �

�

Sp(

�

N) show that

L�

�

(Gr

F

(M)) ' L�

�

(�

�

(Sp(

�

M))) and L�

�

(Gr

F

(N)) ' L�

�

(�

�

(Sp(

�

N))).

Finally observe that there exist natural maps L�

�

(�

�

(Sp(

�

M)))! Sp(

�

M) and

L�

�

(�

�

(Sp(

�

N))) ! Sp(

�

N). These maps are quasi-isomorphisms, one again by the degen-

eration of the spetral sequenes in Proposition 1.2. It follows that

Gr

F

(M)

L




Gr

C

(A)

Gr

F

(N) ' Gr

F

(M)

L




Gr

C

(A)

Sp(H

�

(A))

L




Sp(H

�

(A))

Gr

F

(N)

L




Gr

C

(A)

Sp(H

�

(A))
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' Sp(

�

M)

L




Sp(H

�

(A))

Sp(

�

N).

The �rst assertion follows.

Next we onsider the seond assertion. Let P(M)

�

!M denote the omplex onstruted

as in De�nition ( 2.5). Now

Hom

Gr

C

(A)

(Gr(P (M)

i

, G

n

Gr(N))) ' Hom

Gr

C

(A)

(Gr(P (M)

i

, G

n

�

�

(Sp(

�

N))))

sine Gr(P (M))

i

is loally projetive inMod

l

(Gr

C

(A)). The latter term is quasi-isomorphi

to

Hom

Gr

C

(A)

(Gr(P (M)

i

, �

�

G

n

(Sp(

�

N))))

�

=

Hom

Gr

C

(A)

(Gr(P (M)

i

, �

�

(Hom

Sp(H

�

(A))

(Sp(H

�

(A));G

n

(Sp(

�

N))))))

�

=

Hom

Gr

C

(A)

(Gr(P (M)

i

, Hom

Sp(H

�

(A))

(Sp(H

�

(A));G

n

(Sp(

�

N)))))

where Hom

Sp(H

�

(A))

(Sp(H

�

(A));G

n

(Sp(

�

N))) has the struture of a sheaf of left-modules

overGr

C

(A) indued from the struture of a sheaf of right-modules overGr

C

(A) on Sp(H

�

(A)).

By Chapter II, (2.0.9) with B replaed by Sp(H

�

(A)) and A replaed by Gr

C

(A), the last

term above is quasi-isomorphi to

Hom

Sp(H�(A))

(F

Gr

C

(A)

(Gr(P (M)

0

i

)) 


Gr

C

(A)

(Sp(H

�

(A)));G

n

Sp(

�

N))

Here F

Gr

C

(A)

is the free funtor assoiated to Gr

C

(A). Reall

P (M)

0

k

= t

m"Z

t

U"S

t

S(m;U)(fib

h

(u

i�1

))

j

#

U !

j

�

U

(�

m

S)

whih is �ltered as in Theorem ( 2.3). Therefore

F

Gr

C

(A)

(Gr(P(M)

0

))

�

=

t

m"Z

t

U"S

t

S(m;U)(Gr(fib

h

(u

i�1

)))

j

#

U !

j

�

U

(�

m

Gr

C

(A)).

We de�ne a omplex

�

d

i+1

!

�

P

i

�

d

i

!

�

P

i�1

�

d

i�1

! :::

�

d

�1

!

�

M of Abelian sheaves as follows. We let

�

P

0

=

H

�

(P

0

),

�

P

i

= H

�

(P

i

), �u

i

= H

�

(u

i

) :

�

P

i+1

= H

�

(P

i+1

) ! H

�

(fib

h

(u

i�1

))

�

=

ker(H

�

(u

i�1

))

and

�

d

i

= H

�

(d

i

) : H

�

(P

i

)! H

�

(P

i�1

). Now one may observe that

:::

�

P

i

�

d

i

!

�

P

i�1

�

d

i�1

! :::

�

d

0

!

�

P

0

�

d

�1

!

�

M

is a resolution of

�

M by a omplex of sheaves of H

�

(A)-modules. Moreover, there exists

a natural map (see Chapter I, (ST8)) F

Gr

C

(A)

Gr(P(M)

0

i

= Gr(P(M))

i

! �

�

Sp(

�

P

i

) of

objets in Mod

l

(S; Gr

C

(A)); this map is a quasi-isomorphism. Therefore, there exists a

quasi-isomorphism:

F

Gr

C

(A)

(Gr(P (M)

0

)

i

) 


Gr

C

(A)

(Sp(H

�

(A)))

'

!�

�

(Sp(

�

P ))

i




Gr

C

(A)

(Sp(H

�

(A))) ' �

�

�

�

(Sp(

�

P )

i

) ' Sp(

�

P )

i

where one obtains the last quasi-isomorphism as in (i). By �rst applying the denormalization

funtor and then taking the homotopy limit over �, one ompletes the proof of (ii). �

Definition 2.11. Let M"Mod

fil

r

(S;A). We will onsider the following two onditions

on the given �ltration F :
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(i) Gr(M) = fF

n

M=F

n�1

M jng"Mod

r

(S; Gr

C

(A)) and

(ii) Gr(M) ' Sp(

�

M),

�

M"D(Mod

r

(S;H

�

(A))).

We say M is of �nite tor dimension or f.t.d if

�

M is. We say M is globally of f.t.d

if in addition

�

M

:

is globally of f:t:d. Similar de�nitions apply to N"Mod

l

(S;A). We

say M is pseudo-oherent (perfet) if the hypotheses (i) is satis�ed and Gr(M) ' Sp(

�

M),

�

M"D((Mod

r

(S;H

�

(A))) with

�

M pseudo-oherent (perfet, respetively).

Proposition 2.12. Let

�

M"D

b

(Mod

r

(S;H

�

(A))) and

�

N"D

b

(Mod

l

(S;H

�

(A))). As-

sume that

�

M is globally of �nite tor dimension. Then there exists a quasi-isomorphism:

Sp(

�

M)

L




Sp(H

�

(A))

Sp(

�

N) ' Sp(

�

M 


H

�

(A)

�

N)

Proof. First assume that both

�

M and

�

N are omplexes onentrated in degree 0. Now

we show that there exists a natural map

(2.1.12) GEM(

�

M) 


GEM(H

�

(A))

GEM(

�

N)! GEM(

�

M 


H

�

(A)

�

N)

The hypothesis in Chapter I, (ST6) shows there exists a ommutative diagram:

GEM(

�

M)
GEM(H

�

(A))
GEM(

�

N)! GEM(

�

M)
GEM(

�

N)

?

?

y

?

?

y

GEM(

�

M 
H

�

(A)


�

N)! GEM(

�

M 


�

N)

The horizontal map in the �rst row is given by �

GEM(

�

M)


 id

GEM(

�

N)

, with �

GEM(

�

M)

:

GEM(

�

M) 
GEM(H

�

(A)) ! GEM(

�

M) the indued module struture on GEM(

�

M) and

the horizontal map in the seond row is given by GEM(�

�

M


 id

�

N

, with �

�

M

:

�

M 
H

�

(A)!

�

M being the module struture on

�

M . A similar ommutative square also exists where the

top horizontal map is given by id

GEM(

�

M)


 �

GEM(

�

N)

, with �

GEM(

�

N)

: GEM(H

�

(A)) 


GEM(

�

N)! GEM(

�

N) the indued module struture on GEM(

�

N) and where the bottom

row is given by GEM(id

�

M


�

�

N

), with �

�

N

being the module struture on

�

N . The de�nition

of GEM(

�

M) 


GEM(H

�

(A))

GEM(

�

N) as in Chapter II, (1.2.2) and (1.2.7), shows that the map

in ( 2.1.12) exists.

Next onsider the ase when

�

M is a presheaf of graded at modules over H

�

(A). Now

the �rst spetral sequene in Proposition 1.2 omputes

H

�

(GEM(

�

M) 


GEM(H

�

(A))

GEM(

�

N)

i

)

�

=

H

�

(GEM(

�

M)) 


H

�

(GEM(H

�

(A)))

H

�

(GEM(

�

N)

i

)

�

=

�

M 


H

�

(A)

�

N

i

for eah i. One may diretly ompute H

�

(GEM(

�

M 


H

�

(A)

�

N

i

))

�

=

�

M 


H

�

(A)

�

N

i

for eah �xed

i. (See for example the proof of 2.17 below.) It follows that in this ase the map in ( 2.1.12)

is a quasi-isomorphism.

Now one may observe from ( 2.1.12) and Appendix B that there exists a map:

DN(GEM(

�

M)) 


GEM(H

�

(A))

DN(GEM(

�

N))! DN(GEM(

�

M)) 


H

�

(A)

GEM(

�

N))
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(Here DN is the funtor onsidered in Appendix B, 0.1.) Next we will assume that

�

M and

�

N are bounded above by an integer m. In this ase we may �nd a resolution of the hain

omplex

�

M [m

h

℄ by a hain-omplex

�

F

�

all whose terms as in Theorem 2.3. By Chapter I,

(ST9)

Sp(

�

M) ' 


m

hoolim

�

DN(GEM(

�

M [m

h

℄)) ' 


m

hoolim

�

DN(

�

F :) and

Sp(

�

N) ' 


m

hoolim

�

DN(GEM(

�

N [m

h

℄)).

Therefore

Sp(

�

M)

L




Sp(H

�

(A))

Sp(

�

N)

' 


m

hoolim

�

DN(GEM(

�

F:)) 


GEM(H

�

(A))




m

hoolim

�

DN(GEM(

�

N [m

h

℄))

' 


2m

hoolim

�

�[DN(

�

F ) 


GEM(H

�

(A))

DN(GEM(

�

N [m

h

℄))℄

' 


2m

hoolim

�

DN(GEM(TOT (

�

F [m

h

℄ 


H

�

(A)

�

N [m

h

℄)))

= 


2m

hoolim

�

DN(GEM(TOT (

�

F 


H

�

(A)

�

N)[m

h

℄)) ' Sp(TOT (

�

F 


H

�

(A)

�

N) = Sp(

�

M

L




H

�

(A)

�

N).

(Here TOT denotes the total omplex.) �

Proposition 2.13. Let

�

M"D(Mod

l

(S;H

�

(A))) and

�

N"D(Mod

l

(S;H

�

(A))). Assume

that

�

M is globally of �nite tor dimension. Then there exists a quasi-isomorphism:

RHom

Sp(H

�

(A))

(Sp(

�

M), Sp(

�

N)) ' Sp(RHom

H

�

(A)

(

�

M ,

�

N))

Proof. We will �rst onsider the ase when the site S is puntual,

�

M =

�

P is a proje-

tive module over H

�

(A) and

�

N is a single module over H

�

(A). Now the right-hand-side iden-

ti�es with Sp(Hom

H

�

(A)

(

�

P;

�

N)) and the left-hand-side identi�es withHom

Sp(H

�

(A))

(P; Sp(

�

N))

where P ! Sp(M) is a quasi-isomorphism with P a projetive objet inD(Mod

l

(S; Sp(H

�

(A)))).

Using the observation that

�

P is a split summand of a free H

�

(A)-module, one may now

obtain a quasi-isomorphism: Hom

Sp(H

�

(A))

(P; Sp(

�

N)) ' Hom

Sp(H

�

(A))

(Sp(

�

P ); Sp(

�

N)) =

Hom

GEM(H

�

(A))

(GEM(

�

P ); GEM(

�

N)). Using the de�nition of the latter as an equalizer

(see Chapter II, (1.2.2) and (1.2.8)), one may now obtain a natural map

Sp(Hom

H

�

(A)

(

�

P;

�

N)) = GEM(Hom

H

�

(A)

(

�

P;

�

N))! Hom

GEM(H

�

(A))

(GEM(

�

P ); GEM(

�

N)).

One may ompute the ohomology sheaves of the left-hand-side as in Proposition 2.17 below

and one may ompute the ohomology sheaves of the right-hand-side by the third spetral

sequene in Proposition 1.2. It follows the above map is a quasi-isomorphism.

Next we onsider the ase when

�

M is a sheaf of graded modules over H

�

(A) that is

stalk-wise projetive (as a module over the orresponding stalks of H

�

(A)) and

�

N is a single

sheaf. Now the right-hand-side identi�es with Sp(Hom

H

�

(A)

(

�

P ;G

�

N)). Using the �rst ase,

one may identify the left-hand-side now with Hom

Sp(H

�

(A))

(Sp(

�

P );GSp(

�

N)). Sine the

homotopy inverse limits ommute with themselves and with produts, one may identify the

former (the latter) with

holim

�

GEM(Hom

H

�

(A)

(

�

P;G

n

�

N))

(holim

�

Hom

GEM(H

�

(A))

(GEM(

�

P ); G

n

GEM(

�

N)), respetively)
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Next we proeed to show these are quasi-isomorphi. Clearly it suÆes to show

(2.1.13) GEM(Hom

H

�

(A)

(

�

P;G

�

N))

and

(2.1.14) Hom

GEM(H

�

(A))

(GEM(

�

P ); GGEM(

�

N))

are quasi-isomorphi. Reall that G = �p

�

ÆU Æa Æ �p

�

as in Chapter II, (1.0.1). Now ( 2.1.13)

identi�es with GEM(�p

�

U(Hom

aÆ�p

�

H

�

(A)

(a Æ �p

�

(

�

P ); a Æ �p

�

(

�

N)))) whih, by the �rst ase

onsidered above identi�es with

�p

�

UHom

GEM(aÆ�p

�

H

�

(A))

(GEM(a Æ �p

�

(

�

P ); a Æ �p

�

(

�

N))).

( 2.1.14) identi�es with �p

�

U(Hom

aÆ�p

�

(GEM(H

�

(A)))

(a Æ �p

�

GEM(

�

P ); a Æ �p

�

GEM(

�

N))).

Moreover, as in the �rst ase above, one may show there exists a natural map from the former

to the latter. Next observe that �p

�

GEM(

�

P ) is a projetive module over �p

�

GEM(H

�

(A))

while GEM(�p

�

(

�

P )) is a projetive module over GEM(�p

�

(

�

P )). Now onsider the third

spetral sequene in Proposition 1.2 applied to these. It follows readily that they degenerate

at the E

2

-terms and the above map indues an isomorphism there. It follows that the terms

in ( 2.1.13) and ( 2.1.14) are quasi-isomorphi, thereby proving the proposition in this ase.

Next onsider the ase where everything remains as above, exept that

�

N is a bounded

omplex that is trivial in negative degrees. In this ase Sp(

�

N) = �

i

holim

�

DN(GEM(

�

N(i))),

if

�

N = �

i

�

N(i). The above holim

�

omes out of the Hom and ommutes with the holim

�

assoiated to the Godement resolution. Therefore, this ase follows readily from the previous

one.

Next we assume

�

M is a bounded omplex that is globally of �nite tor-dimension. We

may now replae

�

M by a bounded omplex

�

P eah term of whih is stalk-wise projetive

over the orresponding stalk of H

�

(A). By applying appropriate shifts (see the proof of the

previous proposition), one may now write Sp(

�

P ) = 


m

hoolim

�

DN(GEM(P [p

h

℄)). Then

RHom

Sp(H

�

(A))

(Sp(

�

M); Sp(

�

N)) identi�es with

holim

�

f�

m

Hom

Sp(H

�

(A))

(DN(GEM(P [p

h

℄)); G

n

DNGEM(

�

N))jng. Sine eah term of the

simpliial objet

DN(GEM(P [p

h

℄)) is stalkwise projetive over the stalks of H

�

(A), one may apply the

previous ase along with the results on shifts and suspension in Appendix B to identify it

with holim

�

fSp(RHom

H

�

(A)

(

�

P;G

n

(

�

N)))jng. The ase when

�

N is not neessarily trivial in

negative degrees is also handled by applying ertain shifts. (See Appendix B.) �

Lemma 2.14. Let

�

M"Mod

l

(S;H

�

(A)). Then the following are true:

(i)

�

M has a resolution by sheaves of the form

~

F

n

= �

�

j

#

U

�

!

((H

�

(A))

jU

�

),

where eah U

�

"S.

(ii) If

�

M is loally of �nite type, for eah point �x of S, there exists a neighborhood U

x

of x in S so that eah

~

F

n

has only �nitely many summands

(iii) If

~

M is of f.t.d, we may �nd a resolution

�

F

�

!

�

M , so that the following onditions

are also satis�ed:

for eah point �x of X there is a neighborhood U

x

and an integer m

�x

>> 0 so that

(a) (

�

F

i

)

�x

= 0 if i > N

�x

,

�

F

i

for i < m

�x

are as in (i) and
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(b) (

�

F

m

�x

) = ker(�

�

j

U

�

!

((

�

F

m

�x

�1

)

jU

�

)! �

�

j

U

�

!

((

�

F

m

�x

�2

)

jU

�

))

whih is a sheaf of at graded H

�

(A)-modules. (If the site S is quasi-ompat, one may �nd

a ommon m that works for all points �x.)

Proof. Sine the site S has enough points, the above three statements are lear. �

Lemma 2.15. Let fK

i;j

ji; jg denote a double omplex in Mod

l

(S;H

�

(A)) so that the

di�erentials in the indies i and j are of degree +1. Assume that K

i;j

= 0 if i < 0 or j < 0.

Now DN ÆDN(

b

GEM(K)) is a double osimpliial objet in Mod

l

(GEM(H

�

(A))). If Tot

1

and Tot

2

denote the funtor Tot (whih is the Tot funtor as in [B-K℄), applied in the �rst

and seond degrees respetively, one obtains a natural quasi-isomorphism:

Tot

1

Æ Tot

2

DN ÆDN(GEM(K)) ' Tot�(DN ÆDN(GEM(K)))

' Tot(DN(TOT (fGEM(K

i;j

)ji; jg)))

where TOT (fGEM(K

i;j

)ji; jg) is the total o-hain omplex de�ned by

(TOT (fGEM(K

i;j

)ji; jg))

k

= �

u+v=k

GEM(K

u;v

)

Remark 2.16. Observe that TOT (fGEM(K

i;j

)ji; jg) = GEM(TOT (fK

i;j

ji; jg)).

Proof. This is lear sine we are working in an Abelian ategory. �

Proposition 2.17. (i) Let

�

M = �

i

�

M(i)"D(Mod

r

(S;H

�

(A))) be globally of �nite tor

dimension,

�

N = �

i

�

N(i)"Mod

l

(S;H

�

(A)). Then

H

s+t

(Gr

t

[Sp(

�

M

L




H

�

(A)

�

N)℄)

�

=

H

s

([

�

M

L




H

�

(A)

�

N ℄(t))

�

=

H

s

([

�

F 


H

�

(A)

�

N ℄(t))

�

=

Tor

H

�

(A)

�s;t

(

�

M;

�

N)

(ii) Let

�

M = �

i

�

M(i)"D(Mod

l

(S;H

�

(A))) be globally of �nite tor dimension,

�

N = �

i

�

N(i)"D(Mod

l

(S;H

�

(A))). Then

H

s+t

(Gr

t

[Sp(RHom

H

�

(A)

(

�

M ,

�

N))℄)

�

=

H

s

([RHom

H

�

(A)

(

�

M ,

�

N)℄(t))

�

=

H

s

([Hom

H

�

(A)

(

�

F ,

G

�

�

N)℄(t))

�

=

Ext

s;t

H

�

(A)

(

�

M;

�

N)

Proof. This follows from the following omputation. Let

�

K = �

i

�

K(i)"D(Mod

r

(S;H

�

(A))).

By applying some shifts as in Appendix B, one may assume without loss of generality that

this o-hain omplex is trivial in negative degrees. Now reall that Sp(

�

K) = �

i

holim

�

(EM

i

(

�

K(i)).

Moreover, H

k

(EM

i

(

�

K(i))

�

=

�

K(k) if i = k and

�

=

0 otherwise. Moreover, observe that the

�ltration on Sp(

�

K) is given by Sp(

�

K)

t

= �

i�t

EM

i

(

�

K(i)). Therefore the spetral sequene

for the homotopy inverse limit in Chapter I, (Hl) shows that

H

s+t

(Gr

t

[Sp(

�

K)℄)

�

=

H

s+t

(holim

�

(EM

t

(

�

K(t))))

�

=

H

s

(H

t

(EM

t

(

�

K(t))))

�

=

H

s

(

�

K(t))
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Let

�

P !

�

M denote a quasi-isomorphism from a bounded omplex of sheaves of H

�

(A)-

modules that is stalkwise projetive. Take

�

K =

�

P 


H

�

(A)

�

N (

�

K = Hom

H

�

(A)

(

�

P;G(

�

N))) to

obtain the �rst (seond, respetively) result. �

Theorem 2.18. (i) LetM"Mod

fil

r

(S;A), N"Mod

fil

l

(S;A) and let

�

M"D(Mod

r

(S;H

�

(A))),

�

N"D(Mod

l

(S;H

�

(A))) so that Gr(M) ' Sp(

�

M) and Gr(N) ' Sp(

�

N).

In this situation, there exists a spetral sequene:

E

2

s;t

= T or

H

�

(A)

s;t

(

�

M;

�

N)) H

�s+t

(M

L




A

N)

Moreover, this spetral sequene onverges strongly if at least one of M or N is of �nite tor

dimension.

(ii) Let M"Mod

fil

l

(S;A), N"Mod

fil

l

(S;A) and let

�

M"D(Mod

l

(S;H

�

(A))),

�

N"D(Mod

l

(S;H

�

(A))) so that Gr(M) ' Sp(

�

M) and Gr(N) '

Sp(

�

N). Assume further that both

�

M and

�

N are globally of �nite tor dimension (and in

partiular, bounded).

In this situation, there exists a spetral sequene:

E

s;t

2

= Ext

s;t

H

�

(A)

(

�

M;

�

N)) H

s+t

(RHom

A

(M , N))

In general, this spetral sequene onverges only onditionally in the sense of [Board℄. How-

ever, this spetral sequene onverges strongly in the following ases:

(a) if M is perfet (with no further hypotheses) or

(b) if H

�

(A) is loally onstant on the site S and

�

M is onstrutible.

Proof. Let P(M)

�

!M denote a resolution as in Proposition 2.4. Consider (i). Now

we �lter M

L




A

N = hoolim

�

P(M)

�




A

N by the �ltration indued from the given �ltrations on

M , N and the Cartan �ltration on A. Now we obtain the identi�ation:

Gr(M

L




A

N) = Gr(hoolim

�

P(M)

�




A

N)

' hoolim

�

Gr(P(M)

�




A

N) ' hoolim

�

[GrP(M)

�




Gr

C

(A)

Gr(N)℄

' (hoolim

�

GrP(M)

�

) 


Gr

C

(A)

Gr(N) ' Gr(M)

L




Gr

C

(A)

Gr(N)

The �rst ' is lear sine hoolim

�

ommutes with taking the assoiated graded terms, while

the seond ' follows from the observation that taking the assoiated graded terms ommutes

with o-equalizers, the third follows from the ommutativity of hoolim

�

with 


Gr

C

(A)

and the

fourth follows from ( 2.1.1).

i.e. F

t�1

(M

L




A

N)! F

t

(M

L




A

N)! Gr

t

(M

L




A

N) = [Gr(M)

L




Gr

C

(A)

Gr(N)℄

t

is a triangle. We take H

�

of the above triangle to obtain a long exat sequene and the

assoiated exat-ouple. This provides the required spetral sequene. Now the identi�ation

of the E

2

-terms follows from Proposition 2.10 (i), Proposition 2.12 and Proposition 2.17.
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The strong onvergene of the spetral sequene is lear from the hypotheses that either M

or N is of �nite tor dimension.

Now we onsider (ii). GrRHom

A

(M;N) ' RHom

Gr

C

(A)

(Gr(M); Gr(N)) by ( 2.1.4).

i.e. we obtain the triangle

F

t�1

RHom

A

(M;N)! F

t

RHom

A

(M;N)! RHom

Gr

C

(A);t

(Gr(M); Gr(N)).

On taking the ohomology sheaves, we get a long exat sequene whih provides the exat

ouple for the spetral sequene in (ii). It suÆes to identify the E

2

-terms of this spetral

sequene. Now Proposition 2.10 (ii) and Proposition 2.13 show that

F

t

RHom

Gr

C

(A)

(Gr(M); Gr(N)) ' Sp(F

t

RHom

H

�

(A)

(

�

M;

�

N))

Proposition 2.17(ii) omputes the ohomology sheaves of the last term to obtain the iden-

ti�ation of the E

2

-terms. Under either of the assumptions one may show that there exists

an integer N >> 0 so that E

s;t

2

= 0 if s > N . Observe that the system of neighborhoods

of any point have uniform �nite ohomologial dimension. Therefore the spetral sequene

onverges strongly under the given hypotheses. �

Remark 2.19. Reall the results in Remark 2.8. These show that, under the same

hypotheses as in the theorem, for any �xed t

0

, one obtains a spetral sequene:

E

s;t

2

�

=

Ext

s;t

H

�

(A)

(

�

M;

�

N); t � t

0

�

=

0; t > t

0

) H

s+t

(F

t

0

RHom

A

(M;N))

In partiular taking t

0

= 0, one obtains a spetral sequene whose E

s;t

2

terms are trivial

if s < 0 or t > 0 i.e. the spetral sequene is a fourth quadrant spetral sequene. The

onvergene of this spetral sequene is onditional, in general, under the same hypotheses

as in (ii) of the above theorem. However, [Board℄ Theorem (7.2) shows that if M

0

, N

0

are

two objets in Mod

l

(S;A) satisfying the hypotheses of (ii) in the above theorem provided

with maps M

0

! M , N

0

! N induing an isomorphism of the orresponding E

2

-terms

of the above spetral sequene, then one obtains an isomorphism of the abutments. In a

similar manner, one obtains a spetral sequene

E

2

s;t

�

=

T or

H

�

(A)

s;t

(

�

M;

�

N); t � t

0

�

=

0; t > t

0

) H

�s+t

(F

t

0

T or

A

(M;N))

3. Triangulated ategory struture on the derived ategory of objets with

�nite tor dimension or objets that are perfet

We end this hapter by de�ning a derived ategory assoiated to the ategory of objets

that are globally of f.t.d or perfet in the sense of De�nition 2.11.

Definition 3.1. Assume the situation in setion 1. (i) If A"Presh is an algebra,

we will let Mod

f:t:d

l

(S;A)) (Mod

perf

l

(S;A)) denote the following ategory. An objet of

Mod

f:t:d

l

(S;A) (Mod

perf

l

(S;A)) is an objetM"Mod

l

(S;A) whih is globally of f.t.d (per-

fet, respetively) together with the a non-dereasing exhaustive and separated �ltration F

ompatible with the Cartan �ltration onA along-with the hoie of an

�

M"D

b

(Mod

l

(S;H

�

(A)))

globally of f.t.d (perfet) so that Sp(

�

M) ' Gr

F

(M). In ase H

�

(A) is loally onstant on
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the site S, we will de�ne an M"Mod

l

(S;A) to be onstrutible, if H

�

(M) is onstrutible

as a sheaf of modules over H

�

(A). The full sub-ategory of D(Mod

f:t:d

l

(S;A)) onsisting of

objets that are also onstrutible will be denoted D(Mod

;f:t:d

l

(S;A)).

(ii) Given two suh objets M , N , we let Hom(M;N) denote the subset of all maps

f"Hom

A

(M;N) so that f preserves the given �ltrations on M and N i.e. Hom(M;N) =

F

0

Hom

A

(M;N).

(iii) Given a map f : M ! N as in (ii), f is a �ltered quasi-isomorphism if it indues

a quasi-isomorphism F

i

M ! F

i

N for all i. (Observe that this implies Gr

F

(M)! Gr

F

(N)

is also a quasi-isomorphism; onversely, if the �ltrations are bounded below in the sense

F

i

M = F

i�1

M for all i << 0 and similarly for N , the last ondition is equivalent to f being

a �ltered quasi-isomorphism.)

(iv) In the situation of Chapter II, setions 2 or 4, we observe that F

0

Hom

A

(M;N) =

Map(S; F

0

Hom

A

(M;N)). In this ase we de�ne the homotopy ategory assoiated to

Mod

f:t:d

l

(S;A) (Mod

perf

l

(S;A)) to be given by the same objets as Mod

f:t:d

l

(S;A)

(Mod

perf

l

(S;A), respetively) and with morphisms H

0

(Map(S; F

0

Hom

A

(M;N))). In the

situation of Chapter II, setion 3, we de�ne the homotopy ategory assoiated toMod

f:t:d

l

(S;A)

(Mod

perf

l

(S;A)) by the same objets as Mod

l

(S;A) (Mod

perf

l

(S;A), respetively) and

where the morphisms are given by H

0

(F

0

Map

A

(M;N)).

Proposition 3.2. Assume the above situation.

(i) The

�

M in (i) in the above de�nition is uniquely determined by the given �ltration

(ii) The homotopy ategories de�ned above are additive

(iii) The lass of �ltered quasi-isomorphisms admits a alulus of left and right frations.

Proof. Observe that H

�

(Gr

F

(M))

�

=

H

�

(Sp(

�

M))

�

=

�

M . Therefore

�

M is uniquely

determined by the given �ltration. This proves (i). In the situation of Chapter II, setions

2 or 4, observe that F

0

Hom

A

(M;N)"Presh and therefore H

0

(Map(S; F

0

Hom

A

(M;N))) is

an abelian group. In the ase of Chapter II, setion 3, it is lear that H

0

(F

0

(Map

A

(M;N)))

may be identi�ed with ertain hain homotopy lasses of �ltration preserving maps M to N

in Mod

l

(S;A). Therefore this group is also abelian. Moreover, the ategory Mod

l

(S;A)

is learly losed under sums and one may readily verify now that the homotopy ategory is

additive. In order to prove (iii), we simply remark that the proof in Chapter II, lemma (4.3)

arries over to the �ltered setting, sine all the onstrutions there preserve �ltrations. �

Definition 3.3. D(Mod

f:t:d

l

(S;A)) (D(Mod

perf

l

(S;A))) will denote the loalization of

the homotopy ategory assoiated to Mod

f:t:d

l

(S;A) (Mod

perf

l

(S;A)) by inverting �ltered

quasi-isomorphisms.

Proposition 3.4. Let D denote one of the above derived ategories. Now

(i) Hom

D

(M;N)

�

=

H

0

(Map(S; F

0

RHom

A

(M;N))) in the situation of Chapter II,

setions 2 or 4 and

�

=

H

0

(F

0

RMap

A

(M;N)) in the situation of Chapter II, setion 3. (ii)

The above derived ategory has the struture of a triangulated ategory.

Proof. We will only onsider the �rst situation, sine the proof of the seond situ-

ation is similar. If M

0

! M and N ! N

00

are �ltered quasi-isomorphisms, the spetral

sequene in Remark 2.19 shows that the indued maps H

0

(Map(S; F

0

RHom

A

(M

0

; N)))!

H

0

(Map(S; F

0

RHom

A

(M;N))) ! H

0

(Map(S; F

0

RHom

A

(M;N

00

))) are isomorphisms. It
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follows that the natural map from H

0

(F

0

Map

A

(M;N)) to H

0

(Map(S; F

0

RHom

A

(M;N)))

fators through the derived ategory de�ned above. Now an argument as in the proof of

Chapter II, Proposition 2.7 ompletes the proof of (i).

Sine the homotopy ategory is additive, so is the derived ategory. Now it suÆes to

de�ne the triangles. We de�ne these to be diagrams of the form: X

u

0

!Y

v

0

!Z

w

0

!�X where

the maps all preserve the given �ltrations and whih are isomorphi in the �ltered derived

ategory above to diagrams of the form: X

u

!Y

v

!Cone(u)

w

!�X (Here all the maps are again

supposed to preserve the obvious �ltrations.) We skip the veri�ation that these satisfy the

usual axioms on distinguished triangles. �

3.1. Next assume one of the following: under the hypotheses that Presh is a unital

symmetri monoidal ategory, A is a ommutative algebra in Presh or under the hypotheses

that Presh = C(Mod(S;R)) for a ommutative ringed site (S;R), A is an E

1

-sheaf of

algebras over an E

1

-operad. We may identify Mod

l

(S;A) and Mod

r

(S;A) and denote

them by Mod(S;A). The results of the last setion show the following:

There exists bi-funtors

L




A

: D(Mod

f:t:d

(S;A))�D(Mod

f:t:d

(S;A))! D(Mod

f:t:d

(S;A))(3.1.1)

RHom

A

: D(Mod

f:t:d

(S;A))

op

�D(Mod

f:t:d

(S;A))! D(Mod

f:t:d

(S;A))(3.1.2)

so that RHom

A

(M;RHom

A

(U; V )) ' RHom

A

(M

L




A

U; V ). Similar onlusions hold for the

ategory

D(Mod

perf

(S;A)). i.e. The ategories D(Mod

f:t:d

(S;A)) and D(Mod

perf

(S;A)) are ten-

sor ategories with an internal hom de�ned by RHom

A

. In the next hapter, we will

establish the formalism of Grothendiek-Verdier duality in the setting of the above derived

ategories.

3.1.3. We end this hapter with a summary of the basi results.

� There are essentially two distint frameworks for the rest of the paper: a ategory

of presheaves on a site that is an enrihed unital symmetri monoidal t-ategory

and presheaves (and sheaves) of modules over an E

1

-operad on a site. Though the

latter is not an enrihed unital symmetri monoidal ategory, it is a sub-ategory of

the ategory of omplexes of sheaves of modules over a ringed site in the usual sense.

The latter is an enrihed unital symmetri monoidal t-ategory: this observation

enables one to apply the tehniques for enrihed unital symmetri monoidal t-

ategories to presheaves and sheaves of modules over an E

1

-operad. For example,

one may obtain a sheaf of E

1

-DGAs assoiated to the motivi omplex on the

�etale, Nisnevih or Zariski site of a sheme and one may onsider the ategory of

sheaves of E

1

-modules over it. (See [J-6℄.)

� In the �rst ase one an onsider either a ategory of presheaves on a site whih is

an enrihed (unital symmetri) monoidal ategory or one an onsider a ategory

of presheaves on a site taking values in an enrihed unital symmetri monoidal

ategory. Presheaves taking values in a stable simpliial model ategory (for ex-

ample the stable simpliial model ategory of �-spaes, symmetri spetra) form

an example of the latter. The A

1

-loal presheaves of spetra in the sense of [M-V℄

form an example of the former. (One the axioms on the strong t-struture are

veri�ed in this ase, the entire theory of Grothendiek-Verdier duality developed

here, will apply to this ase.)
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� In all the above situations, one has an assoiated homotopy ategory (whih is

additive) and a derived ategory whih is obtained by loalizing the homotopy

ategory by inverting a lass of morphisms that are quasi-isomorphisms. The

additivity of the homotopy ategory follows as in the disussion following the proof

of Lemma (4.3) in Chapter II for the ase of enrihed unital symmetri monoidal

ategories: this is lear in the ase of presheaves of algebras and modules over an

E

1

-operad. One may also verify readily that �nite sums are anonially quasi-

isomorphi to �nite produts in all of the above ases.

� Assume any one of the above situations and that A is either an algebra with respet

to the unital symmetri monoidal struture in that ase or that A is an algebra

over the given E

1

-operad in the operadi ase. Let S denote the unit for the

symmetri monoidal struture and let it denote the sheaf of rings R as in hapter

II, setion 3 (i.e. in the operadi ase.) Let Mod

l

(S;A) denote the ategory of all

left-modules over A and letD(Mod

l

(S;A)) denote the assoiated derived ategory.

Let D(Mod(S;S)) denote the derived ategory of modules over S. In this ase

there exists a free-funtor F : D(Mod(S;S)) ! D(Mod

l

(S;A)) adjoint to the

forgetful funtor U : D(Mod

l

(S;A))! D(Mod(S;S)).



CHAPTER IV

Grothendiek-Verdier duality

1. Introdution

In this hapter we omplete the theory of Grothendiek-Verdier duality in the setting of

enrihed symmetri monoidal t-ategories. We show that the familiar six derived funtors

of Grothendiek may be de�ned in this setting with reasonable properties. The key to muh

of these is the frame-work developed in the �rst three hapters; in partiular the spetral

sequenes in hapter 3 play a key role.

Throughout this setion we will losely follow the framework and terminology adopted

in Chapter II, setion 1. In addition to the hypotheses and onventions there, we will adopt

the following as well.

1.0.1. We will often impose various other hypotheses on the sites. Some of our results

are often easier to establish if all the objets in a given site have �nite L-ohomologial

dimension for some (possibly empty) set of primes L in the following sense: an objet U

in the site S has �nite L-ohomologial dimension , if there exists an integer N >> 0

so that for every abelian l-torsion sheaf F , l"L, H

i

S

(U; F ) = 0 for all i > N . (Here H

i

S

denotes the ohomology omputed on the site S.) (If L is empty, the above hypothesis will

mean that for every abelian sheaf F on the site S, H

i

S

(U; F ) = 0 for suÆiently large i.)

Nevertheless, sine we will need to onsider shemes de�ned over arbitrary base shemes (for

example, �elds that have in general in�nite ohomologial dimension), we will never make

this hypothesis a requirement. (On the other hand, when onsidering the right derived

funtor of the diret image funtor and the diret image funtor with proper supports, there

is no loss of generality in making a similar assumption: see ( 2.2) below.)

1.0.2. There are often properties that we an require of morphisms between sites. Some

of these are left as primitive, as the meaning may hange from one situation to another.

For example, the notion of a morphism being proper, of �nite type, an open immersion or

imbedding are left as primitive. If the sites are assoiated to shemes or algebrai spaes,

these will have the familiar meaning.

Examples of sites. Clearly most of the sites that one enounters often satisfy these hypothe-

ses: these inlude the big and small �etale, Nisnevih and Zariski sites as well as the h-topology

or site in [MV℄ assoiated to algebrai spaes of �nite type over a Noetherian base sheme.

In addition, one an also onsider the familiar sites assoiated to loally ompat Hausdor�

topologial spaes as shown in 2.13.

1.0.3. We will assume that if S is a site (as above), Presh(S) denotes a ategory of

presheaves on the site S satisfying either one of the two hypotheses as in Chapter III, and

B is an algebra in Presh(S). Reall this means it is either an enrihed unital symmetri

monoidal t-ategory and A is an algebra in the underlying symmetri monoidal ategory or

that Presh(S) = C(Mod(S;R)) for a sheaf of ommutative Noetherian rings R and that

A is a sheaf of algebras over an E

1

-operad. In the either ase, we will let S denote the unit

of the ategory Presh(S), i.e. in the �rst ase S will denote the unit of the given unital

symmetri monoidal struture and in the seond ase it will denoteR. (The existene of suh

65
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a unit will simplify the proofs often.) H

�

will denote the orresponding ohomology funtor

taking values in an Abelian ategory A: we will require that this satisfy the hypothesis

as in Chapter II, (2.1.1.*). The homotopy ategory and the derived ategory assoiated to

Presh(S) will be again as in Chapter II. If B is an algebra, the derived ategory assoiated to

Mod

l

(S;B) will often be denoted by D(Mod

l

(S;B)). In ase X is the terminal objet of the

site S, we will often denote the ringed site (S;B) by (X;B) and the above derived ategory

by D(Mod

l

(X;B)). We will also onsider the derived ategories D(Mod

;f:t:d

l

(X;B)) (in

ase H

�

(B) is loally onstant on the site) and also D(Mod

perf

l

(X;B)) in the sense of last

hapter.

LetS and S

0

denote two sites as above provided with presheaves of algebras B (onS) and B

0

on S

0

. Let X and X

0

denote the orresponding terminal objets. If f : (X;B)! (X

0

;B

0

) is

a map of suh ringed sites, we de�ne several derived funtors assoiated to f in this setion.

The main result we obtain shows that these derived funtors satisfy the usual formalism of

Grothendiek-Verdier duality. These may be stated as follows. (Throughout, we will require

the hypotheses as in 2.2 hold in the following statements.)

Theorem 1.1. (See 2.9.) Let f : (X;B)! (X

0

;B

0

) denote a map as in 2.4. (i) Under

the hypotheses of 2.5 through 2.7, there exists a funtor

Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

))

whih satis�es a projetion formula as in 2.17. (ii) In ase f is proper, Rf

#

!

may be identi�ed

with Rf

�

= the derived funtor of the diret image funtor. (iii) Moreover, the funtor Rf

#

!

has a right-adjoint Rf

!

#

: D(Mod

l

(X

0

;B

0

))! D(Mod

l

(X;B)).

(iv) Let Sp denote the funtor in Chapter I, De�nition 4.6. Then there exist natural iso-

morphisms of funtors Rf

#

!

ÆSp ' SpÆRf

#

!

: D(Mod

l

(X;H

�

(B)))! D(Mod

l

(X

0

; Sp(H

�

(B

0

))))

and Rf

!

#

Æ Sp ' Sp ÆRf

!

#

: D(Mod

l

(X

0

;H

�

(B

0

)))! D(Mod

l

(X;Sp(H

�

(B)))).

1.0.4. Next we onsider dualizing presheaves both in the relative and absolute situation.

We will assume throughout that all maps are ompati�able in the sense of 2.4. Further-

more we will assume that (S;A) is a ommutative base-ringed site and that all ringed sites

we onsider are ommutative and de�ned over it. We let D(Mod

?

l

(S;B)) denote either

D(Mod

perf

l

(S;B)) in general or D(Mod

;f:t:d

l

(S;B)) when H

�

(B) is loally onstant on the

site S. (We will similarly let D(Mod

?

l

(S;H

�

(B))) denote either one of the derived ategories

D(Mod

perf

l

(S;H

�

(B))) and D(Mod

;f:t:d

l

(S;H

�

(B))).) In this ase we let D

B

= Rp

!

#

(A)

and all it the dualizing presheaf. We let D

B

: D(Mod

l

(X;B)) ! D(Mod

r

(X;B)) denote

the funtor F !RHom

B

(F;D

B

). Now we obtain the bi-duality theorem.

Theorem 1.2. Bi-duality Theorem(See Theorem 4.7.) Assume in addition to the

above situation that the following hypothesis holds.

Let D

H

�

(B)

denote the dualizing omplex (de�ned in the usual sense) for the ategory

D(Mod

?

l

(S;H

�

(B))) of omplexes of sheaves of H

�

(B)-modules. Let

�

F"D(Mod

?

l

(S;H

�

(B)))

be so that the natural map

�

F ! D

H

�

(B)

(D

H

�

(B)

(

�

F ) is a quasi-isomorphism.

Let F"D(Mod

?

l

(S;B)) so that Gr(F ) ' Sp(

�

F ). Then the natural map F ! D

B

(D

B

(F ))

is a quasi-isomorphism.

The above theorem applies in (at least) the following three situations:
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(i) Consider shemes or algebrai spaes of �nite type over a base sheme S. Assume

all the shemes and algebrai spaes are provided with the �etale topology and L is a non-

empty set of primes di�erent from the residue harateristis. Let A denote a presheaf

of ommutative algebras on S so that for eah n, H

n

(A) is loally onstant on the �etale

topology of S and has L-primary torsion. Now the hypotheses in the Bi-duality theorem

are satis�ed by any

�

F"D(Mod

;f:t:d

l

(S;H

�

(A))). (See [SGA℄4

1=2

p. 250.) Therefore, the

bi-duality theorem holds for any F"D(Mod

;f:t:d

l

(S;A)). The bi-duality theorem also holds

for suitable L-ompletions of a presheaf of algebras A. See 6.1 for a detailed disussion of

this appliation.

(ii) Next assume

�

F"D(Mod

perf

l

(S;H

�

(B))) and that D

H

�

(B)

is loally quasi-isomorphi

to H

�

(B) modulo ertain shift. In this ase, the onlusion of the theorem holds for any

F"D(Mod

perf

l

(S;B)) so that Gr(F ) ' Sp(

�

F ).

(iii) Consider loally ompat Hausdor� topologial spaes over a base spae S of the

same type. Assume that L is a (possibly empty) set of primes for whih all the spaes are of

�nite L-ohomologial dimension. (Reall that if L is empty, this means all the spaes are of

�nite ohomologial dimension.) Let A denote a presheaf of ommutative algebras on S so

that eah H

n

(A) is loally onstant and of L-primary torsion. Then the hypotheses in the

bi-duality theorem are satis�ed by any

�

F"D(Mod

;f:t:d

l

(S;H

�

(A))). (See [K-S-2℄ hapter

III.) Therefore, the bi-duality theorem applies to the ase when A is the onstant presheaf

of spetra representing a generalized ohomology theory, for example topologial (omplex)

K-theory. The details are worked out at the end of this hapter. (See 6.4.)

In the following theorem, if (S;A) is a ringed site, D(Mod

?

l

(S;A)) will denote either

D(Mod

;f:t:d

l

(S;A)) or D(Mod

perf

l

(S;A)).

Theorem 1.3. (Grothendiek-Verdier duality)

Assume in addition to the situation of the above theorem that f : (X;H

�

(B))! (X

0

;H

�

(B

0

))

is either of �nite tor dimension or perfet.

(i) If Rf

!

: D(Mod

?

l

(X;B)) ! D(Mod

?

l

(X

0

;B

0

)) is de�ned by D

B

0

Æ Rf

�

Æ D

B

, there

exists a natural isomorphism Rf

!

' Rf

#

!

. If Rf

!

= D

B

Æ Lf

�

Æ D

B

0

, there exists a natural

isomorphism Rf

!

' Rf

!

#

of funtors D(Mod

?

l

(X

0

;B

0

))! D(Mod

?

l

(X;B)).

(ii) There exist the following natural isomorphisms of funtors:

Rf

�

Æ D

B

' D

B

Æ Rf

#

!

: D(Mod

l

(X;B)) ! D

r

(X

0

;B

0

), Rf

!

#

Æ D

B

0

' D

B

Æ Lf

�

:

D(Mod

l

(X

0

;B

0

))! D(Mod

r

(X;B)),

D

B

0

ÆRf

�

' Rf

!

Æ D

B

: D(Mod

?

l

(X;B))! D(Mod

?

r

(X

0

;B

0

)) and Lf

�

Æ D

B

0

' D

B

ÆRf

!

:

D(Mod

?

l

(X

0

;B

0

))! D(Mod

?

r

(X;B))

If X belongs to the site S, we de�ne the generalized homology of X with respet to

A to be the hyperohomology of X with respet to Rp

!

#

(A). (Here X denotes the ter-

minal objet of the site S.) We say that X has Poinar�e-Verdier duality if there exists a

lass [X℄"H

�n

(H (X;Rp

!

#

(A))) so that ap-produt with this lass indues an isomorphism

H

k

(H (X; p

�

(A))) ! H

�n+k

(H (X;Rp

!

#

(A))). We onlude by showing that if we are on-

sidering shemes over a base-sheme provided with the �etale site, Poinar�e-Verdier duality

in the above sense implies an isomorphism between the funtors Rf

!

and f

�

Æ�

n

. We also

derive various other formal onsequenes of Grothendiek-Verdier duality.
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Next we will provide a quik summary of the various setions. In the seond setion

we onsider the derived funtors of the diret image and inverse image funtors assoiated

to a map of ringed sites as in 2.1 or 2.4. We also de�ne the hyperohomology spetrum

funtor, the derived funtor of the diret image funtor with proper supports and obtain a

projetion formula. In the third setion we show, under the hypothesis that the sites are

loally oherent and oherent, that there exists a right adjoint to the derived funtor of the

diret image with proper supports.

In the fourth setion, we de�ne various dualizing presheaves and end with the bi-duality

theorem. In the �fth setion we derive the Grothendiek-Verdier formalism of duality be-

tween the various derived funtors: we show that all the familiar results on Grothendiek-

Verdier duality arry over to our general setting. (In turn, these are applied in the next

hapter to provide miro-loal harater-yles for onstrutible sheaves with values in om-

plex K-theory.) We end by onsidering some onrete examples in setion six.

2. The derived funtors of the diret and inverse image funtors

2.1. Maps of ringed sites. Let Presh (Presh

0

) denote the ategory of presheaves

on a site S

0

(S, respetively) as in Chapter III, 1.2. We will further assume one of the

following:

� Both are unital symmetri monoidal t-ategories. X

0

(X) is the terminal objet

of the site S

0

(S) and B

0

(B) is a presheaf of algebras in Presh(S

0

) (Presh(S),

respetively) or

� O

0

(O) is an E

1

-operad on the ringed site (S

0

;R

0

) ((S;R), respetively). B

0

(B)

is a presheaf of algebras over the operad O

0

(O, respetively) and X

0

(X) is the

terminal objet of the site S

0

(S, respetively)

Definition 2.1. In the �rst ase, a map f : (X;B) ! (X

0

;B

0

) of ringed sites is a

map of sites f : S ! S

0

so that the indued funtors: f

�

: Presh(S) ! Presh(S

0

), f

�

:

Presh(S

0

)! Presh(S) satisfy the following onditions. f

�

preserves admissible monomor-

phisms and ommutes with the funtors EM

n

, n"Z, while f

�

preserves the monoidal stru-

ture. We let S (S

0

) denote the unit of Presh(S) (Presh(S

0

), respetively). The inverse-

image funtor Mod(S

0

;S

0

)!Mod(S;S) indued by f will be denoted f

�1

and we require

that f

�1

(S

0

) = S. Moreover, in ase B = f

�1

(B

0

), we require that f

�

also preserves the

strongly triangulated struture and strong t-struture.

In the seond ase, a map f : (X;B)! (X

0

;B

0

) is given by a map of sites f : (S;R)!

(S

0

;R

0

) so that f

�1

(R

0

) = R, f

�1

(O

0

(k)) = O(k) for all k � 0. In addition one is given a

map B

0

! f

�

(B) of algebras over the operad O

0

.

In this ontextMod

l

(X;B) andMod

l

(X

0

;B

0

) will denote the ategory of sheaves of mod-

ules over (X;B) and (X

0

;B

0

) respetively. f

�

(f

�

) now indues a funtor f

�

:Mod

l

(X;B)!

Mod

l

(X

0

;B

0

) (f

�

:Mod

l

(X

0

;B

0

)!Mod

l

(X;B), respetively).

(Following 1.0.3, we let S (S

0

) denote the unit of Presh(S) (Presh(S

0

), respetively).

Reall that in the seond ase this is R (R

0

, respetively).)

Remark 2.2. Often we may assume that there is a base-ringed site (S;A) and that the

given map f : (X;B)! (X

0

;B

0

) is a map of ringed sites over (S;A).
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Example 2.3. As an example of the �rst ase of maps of ringed sites, we may onsider

the following. Let C denote a �xed enrihed unital symmetri monoidal t-ategory. Let

B (B

0

) denote a presheaf of algebras with values in C on the site S (S

0

). Then any map

f : S ! S

0

for whih there exists an indued map B

0

! f

�

(B) of presheaves of algebras

de�nes a map of ringed sites f : (X;B)! (X

0

;B

0

) if X

0

(X) denotes the terminal objet of

the site S

0

(S, respetively).

2.2. Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites in the above sense. If

F"D(Mod

l

(X;B)), we de�ne Rf

�

(F )"D(Mod

l

(X

0

;B

0

)) as in Chapter II, (1.1). The de�ni-

tion of holim

�

as an end shows one may identify Rf

�

(F ), upto a natural quasi-isomorphism,

with f

�

holim

�

G

�

F . In this ontext we will always make the following assumption:

there exists an integerN >> 0 so thatR

s

f

�

(

�

M) = 0 for all s > N and all

�

M"Mod

l

(X;H

�

(B)).

One may de�ne the hyperohomology of an objet U"S=X with respet to an F"D(Mod

l

(X;B))

by H (U; F ) = holim

�

f�(U;G

n

F )jng. Observe that there exist spetral sequenes:

(2.2.1) E

s;t

2

= R

s

f

�

H

t

(F )) H

s+t

(Rf

�

(F )) and

(2.2.2) E

s;t

2

= H

s

(U;H

t

(F ))! H

s+t

(H (U; F ))

In view of the hypothesis 2.2, the �rst spetral sequene onverges strongly. Sine we do not

assume a similar ondition of �nite ohomologial dimension on the objets of the site, the

seond spetral sequene does not onverge strongly in general.

2.3. One may de�ne Lf

�

: D(Mod

l

(X

0

;B

0

))! D(Mod

l

(X;B)) by

Lf

�

(K) = B

L




f

�1

(B

0

)

f

�1

(K), K"D(Mod

l

(X

0

;B

0

))

where the left derived funtor

L




f

�1

(B

0

)

is de�ned as hoolim

�

(B 


f

�1

(B

0

)

f

�1

(P (K)

�

)) where

P (K)

�

! K is a at resolution as in Chapter II, Proposition 2.4. Now there exist spetral

sequenes:

(2.3.1) E

2

s;t

= L

s

f

�

(H

t

(N))) H

�s+t

(Lf

�

(N)); N"D(Mod

l

(X

0

;B

0

))

Proposition 2.4. (i) If 
F

00

! F

0

! F ! F

00

is a triangle in D(Mod

l

(X;B)),

Rf

�

(
F

00

) ! Rf

�

(F

0

) ! Rf

�

(F ) ! Rf

�

(F

00

) is a triangle in D(Mod

l

(X

0

;B

0

)). Moreover,

if F

0

! F is a quasi-isomorphism in D(Mod

l

(X;B)), the indued map Rf

�

(F

0

)! Rf

�

F is

a quasi-isomorphism in D(Mod

l

(X

0

;B

0

)).

(ii) If F

0

! F ! F

00

! �F

0

is a triangle in D(Mod

l

(X

0

;B

0

)), the indued diagram

Lf

�

(F

0

)! Lf

�

(F )! Lf

�

(F

00

)! Lf

�

(�F

0

) is a triangle in D(Mod

l

(X;B)). Moreover, if

F

0

! F is a quasi-isomorphism in D(Mod

l

(X

0

;B

0

)), the indued map Lf

�

F

0

! Lf

�

F is a

quasi-isomorphism in D(Mod

l

(X;B)).

Proof. These are immediate from our de�nitions, and the hypotheses on homotopy

limits and homotopy olimits. �

Next we reall the funtors RHom

B

for an algebra B"Presh(S). We de�ne RHom

B;l

(RHom

B;r

) to be the funtor RHom

B

applied to the ategory Mod

l

(X;B) (Mod

r

(X;B),

respetively). We proeed to onsider variants of these presently.
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Lemma 2.5. Let B

0

, B denote two algebras in Presh(S). We will let Mod

B;l;B

0

;r

(S)

denote the ategory of objets in Presh(S) that have the struture of a presheaf of left-B

and right B

0

-bi-modules. Let N"Mod

B;l;B

0

;r

(S) and P"Mod

B;r

(S). Assume there exists a

map B

0

! B of algebras. Then

(i) RHom

B

0

;r

(M

L




B

N;P ) ' RHom

B;r

(M;RHom

B

0

;r

(N;P )) and

(ii) RMap

B

0

;r

(M

L




B

N;P ) ' RMap

B;r

(M;RHom

B

0

;r

(N;P ))

Proof. Let P (M)

�

!M denote a simpliial resolution as in Chapter II, Proposition 2.4

by objets in Mod

r

(S;B

0

) and let P (N)

�

! N denote a orresponding simpliial resolution

in Mod

r

(S;B). Let fG

n

P jng denote the Godement resolution. Now

RHom

B

0

;r

(M

L




B

N;P ) = holim

�

�fHom

B

0

;r

(P (M)

�




B

P (N)

�

; P )g

' holim

�

�fHom

B;r

(P (M)

�

:;�Hom

B

0

;r

(P (N)

�

:;G

n

QP )g

' holim

�

fHom

B;r

(P (M)

�

; holim

�

fHom

B

0

;r

(P (N)

�

;G

n

QP )g)g

' RHom

B;r

(M;RHom

B

0

;r

(N;P ))

The �rst ' follows from Chapter II, (2.0.15) while the seond ' follows from hapter I,

o�nality of the homotopy limits. The last ' is lear from the de�nition of the above

derived funtors. This proves (i). The proof of (ii) is similar. �

Proposition 2.6. Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites as before.

Then one obtains the quasi-isomorphism:

(i) Rf

�

RHom

B;r

(Lf

�

M;N) ' RHom

B

0

;r

(M;Rf

�

N), M"D(Mod

r

(S

0

;B

0

)) and

N"D(Mod

r

(S;B)).

Under the same hypotheses, one also obtains:

(ii) RMap

B;r

(Lf

�

M;N) ' RMap

B

0

;r

(M;Rf

�

N). (i.e. The funtor Rf

�

is right adjoint

to Lf

�

.)

Proof. We will let S (S

0

) denote a unit for the ategory Presh(S) (Presh(S

0

), re-

spetively) as in 1.0.3. Clearly it suÆes to show that one obtains a quasi-isomorphism after

applying the funtor RMap

S

(K;�) to both sides, where K"Presh

C

(S

0

). On applying this

funtor to the left-hand-side, one obtains:

RMap

S

(K;Rf

�

RHom

B;r

(Lf

�

(M); N)) ' RMap

S

0

(f

�1

(K);RHom

B;r

(Lf

�

(M); N))

' RMap

B;r

(f

�1

(K)

L




S

0

Lf

�

(M); N) = RMap

B;r

(f

�1

(K)

L




S

0

f

�1

(M)

L




f

�1

(B

0

)

B; N)

' RMap

f

�1

(B

0

);r

(f

�1

(K)

L




S

0

f

�1

(M);RHom

B;r

(B; N))

' RMap

f

�1

(B

0

);r

(f

�1

(K)

L




S

0

f

�1

(M), N) ' RMap

B

0

;r

(K

L




S

M , Rf

�

N)

' RMap

S

(K;RHom

B

0

;r

(M;Rf

�

N))
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The �rst ' follows from the adjuntion between f

�1

and f

�

while the seond and third

follow from Lemma ( 2.5). The next ' follows from Chapter II, Proposition 2.1 (i), while

the one following it results from the adjuntion between f

�1

and f

�

. Finally the last '

follows by another appliation of Lemma 2.5. Chapter II, 2.4.2, shows how to obtain the

seond assertion from the �rst. �

Proposition 2.7. Let f : (X;B) ! (X

0

;B

0

), g : (X

0

;B

0

) ! (X

00

; C) denote maps of

ringed sites. Then the natural map R(g Æ f)

�

F ! Rg

�

Æ Rf

�

F , F"D(Mod

l

(X;B)) is a

quasi-isomorphism.

Proof. This results readily from the following observations:

(i) R(g Æ f)

�

F = holim

�

f(g Æ f)

�

G

n

F jng ' g

�

Æ f

�

holim

�

fG

n

F jng and

(ii) the natural map g

�

Æ f

�

holim

�

fG

n

F jng ! g

�

holim

�

fG

m

f

�

(holim

�

fG

n

F jng)jmg is a

quasi-isomorphism.

The �rst is lear. Now observe that both sides of (ii) are funtorial in F and send triangles

in F to triangles. This shows that there exist spetral sequenes:

E

s;t

2

= R

s

(g Æ f)

�

H

t

(F )~) H

s+t

(R(g Æ f)

�

(F ))~and

E

s;t

2

= H

s

(Rg

�

ÆRf

�

H

t

(F ))~) H

s+t

(Rg

�

ÆRf

�

(F ))~

These spetral sequenes onverge strongly in general in view of the hypothesis 2.2. There-

fore the above spetral sequenes redue the proof to that of abelian sheaves. In this

ase the quasi-isomorphism R(g

�

Æ f

�

)(F ) = R(g Æ f)

�

(F )

'

!Rg

�

Æ Rf

�

(F ) is lear, sine

Rf

�

(F ) = f

�

fG

n

F jng is a omplex of sheaves, eah term of whih is abby on the site

S

0

. �

Theorem 2.8. Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites.

(i) Suppose S is algebrai and S

0

is loally oherent. Let fF

�

j�g denote a �ltered diret

system of objets in D(Mod

l

(X;B)). Now the natural map olim

�

Rf

�

(F

�

)

'

!Rf

�

(olim

�

F

�

)

is a quasi-isomorphism in general (under the hypothesis 2.2). The funtor Rf

�

ommutes

upto quasi-isomorphism with �nite sums and hene with all small sums.

(ii) Suppose S is oherent. Then, for eah n, the funtor F ! H

�

(H(X;F )) , F ,

D(Mod

l

(X;B))! (abelian groups) ommutes with �ltered diret limits under the hypothesis

of �nite L-ohomologial dimension as in 1.1 on the site S and the presheaves all have

l-torsion ohomology sheaves. For eah n, the funtor F ! H

n

(H(X;F )) ommutes with

�nite sums.

Proof. Under the hypothesis of 2.2, the spetral sequene in ( 0.5.2) onverges strongly

for all F . Therefore the above spetral sequene redues the �rst assertions to abelian sheaves

whih are lear. The assertion about Rf

�

and F 7! H

(

X;F ) ommuting with �nite produts

is lear. Finite sums were observed to be �nite produts in our basi framework - see hapter

I, Proposition 2.4. Under the hypothesis on �nite L-ohomologial dimension, the spetral

sequene in ( 0.5) onverges strongly reduing the statements in (ii) to the orresponding

ones for abelian sheaves whih were observed to be true by the disussion in hapter II,

(1.0.6). �
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We end this setion by onsidering the derived funtor of the diret image funtor with

proper supports. For this we will onsider olletions of ringed sites f(X;B)g, with B a sheaf

of algebras in Presh(X) so that the following hypotheses are satis�ed:

2.4. Every map f : (X;B) ! (X

0

;B

0

) is ompati�able, i.e. �ts in a ommutative

triangle

(X;B)

j

//

f $$J
JJJJJJJJ

(

�

X;

�

B)

�

fzzttttttttt

(X

0

;B

0

)

with

�

f proper and j an open imbedding and B

�

=

j

�

(

�

B).

In this situation, we de�ne Rf

#

!

F = R

�

f

�

(j

#

U !

F ), F"Presh(S

0

). This will be alled the

derived funtor of the diret image funtor with proper supports assoiated to f .

We will further assume that, so de�ned Rf

#

!

has the following properties:

2.5. if j

U

: U ! X is an objet in the site S and f

U

= f Æ j

U

, Rf

#

U !

F ' Rf

#

!

j

#

U !

F ,

F"D(Mod

l

(U;B))

2.6. if f is proper, Rf

#

!

(F ) ' Rf

�

(F ), F"D(Mod

l

(X;B))

2.7. Moreover, Rf

#

!

is independent (upto natural quasi-isomorphism) of the fator-

ization of f into

�

f and j.

We will next onsider, under what hypotheses, the properties 2.4 through 2.7 hold.

For this we begin by onsidering proper base-hange. Let f : (X;B)! (X

0

;B

0

) denote

a map of ringed sites as before. Let F"D(Mod

l

(X;B)). We say that the pair (F; f) is

ohomologially proper if for every map g : (Y

0

; C

0

)! (X

0

;B

0

) of ringed spaes, the indued

map

(2.7.1) Lg

�

(Rf

�

F )! Rf

0

�

Lg

0

�

F

is a quasi-isomorphism, where the maps g

0

, f

0

are de�ned by the artesian square:

(Y; C)

g

0

����! (X;B)

f

0

?

?

y

?

?

y

f

(Y

0

; C

0

)

g

����! (X

0

;B

0

)

where C = f

0

�1

(C

0

) 


f

0

�1

(g

�1

(B

0

))

g

0

�1

(B).

2.8. We say that proper-base-hange holds for all presheaves F we onsider, if the

onlusions above are valid for every proper map f : (X;B) ! (X

0

;B

0

) and for any map

g : (Y

0

; C

0

)! (X

0

;B

0

) of sites.

2.9. An alternate, somewhat weaker, hypothesis is the following: let
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(

�

X;

�

B)

�

f

��
(U;B

jU

)

�

j

::ttttttttt

j

//
(X;B)

denote a ommutative triangle with

�

j and j open imbeddings and

�

f proper. Then the natural

map j

#

U !

! R

�

f

�

Æ

�

j

#

U !

is an isomorphism of funtors: D(Mod

l

(U;B

U

)! D(Mod

l

(X;B)).

Proposition 2.9. Assume that the hypothesis ( 2.4) holds and that either ( 2.8) or

( 2.9) holds for every sheaf F we onsider. Then Rf

!

# is independent of the fatorization

of f as above. This also implies the hypotheses in 2.5 and 2.6.

Proof. This is a standard proof. Consider two ompati�ations (X;B)

j

1

!(

�

X

1

;

�

B

1

)

and (X;B)

j

2

!(

�

X

2

;

�

B

2

). Take the produt j

1

� j

2

omposed with the diagonal (X;B) !

(X �X; p

�1

1

(B)
 p

�1

2

(B)). Let the losure of X in

�

X

1

�

�

X

2

by the above map be denoted

�

X; we provide

�

X with the presheaf of algebras whih is the restrition of p

�1

1

(B)
 p

�1

2

(B).

As a result one may assume without loss of generality that there exists a proper map

p : (

�

X

1

;

�

B

1

) ! (

�

X

2

;B

2

) so that p Æ j

1

= j

2

. Now proper base-hange shows that there is a

natural quasi-isomorphism: j

#

2!

(F ) ' Rp

�

(j

#

1!

(F )). Alternatively, the weaker hypothesis 2.9

also shows the same. Now ompose with R

�

f

�

to omplete the proof of the independene on

the fatorization of f . Clearly this implies that if f is proper, Rf

#

!

(F ) ' Rf

�

(F ) and thereby

proves 2.6. To prove the hypothesis 2.5, observe that one may fator the map U

j

0

!X

j

1

!

�

X as

the omposition of an open imbedding U

j

!

�

U followed by a proper map p :

�

U !

�

X. Now

both 2.8 and 2.9 one again provide a quasi-isomorphism: Rp

�

Æ j

#

!

(F ) ' j

#

1!

Æ j

#

0!

. Finally

ompose with R

�

f

�

to obtain 2.5. �

2.10. Moreover, 2.4 through 2.7 imply that if f : (X;B)! (X

0

;B

0

) and g : (X

0

;B

0

)!

(X

00

;B

00

) are maps of ringed sites as above, thenRg

#

!

ÆRf

#

!

(F ) ' R(gÆf)

#

!

(F ), F"D(Mod

l

(X;B)).

This may be established exatly as Proposition 2.7. (See, for example, [SGA℄4 Expos�e XVII.)

We skip the details.

Next we will speialize to various speial sites to apply the above results. We will mention

at least three distint situations where the hypotheses in 2.4 through 2.7 are satis�ed.

2.11. The simplest situation is where, for every ringed site (S;B) we onsider, S is

proper over a base S and where for every morphism between ringed sites (S;B)

f

!(S

0

;B

0

),

the underlying map f : S ! S

0

of sites is proper. For example: we restrit to proper

shemes or proper algebrai spaes over a Noetherian separated base sheme. In this ase

Rf

#

!

identi�es with Rf

�

.

2.12. Assume next that the sites we onsider are all sites assoiated to shemes or

algebrai spaes of �nite type over a Noetherian base sheme S provided with a presheaf of

algebras A. For example, the sites ould be the small or big Zariski, �etale or the Nisnevih

sites, the at site, or the reent h-site as in [Voe-1℄ of shemes of �nite type over a Noetherian

base sheme S. We will further assume that the morphism f : S ! S

0

of sites is indued

by a map of shemes f : X ! Y over S. (Here X (Y ) is the terminal objet of S (S

0

,

respetively).) Furthermore, if p

X

: X ! S is the struture map of X, we let the site S

be provided with the pre-sheaf of algebras B = p

�1

X

(A). We say a map f : X ! Y of

shemes (or algebrai spaes) is ompati�able, if it an be fatored as the omposition of

an open immersion j : X !

�

X and a proper map

�

f :

�

X ! Y . (If we restrit to shemes

that are quasi-projetive over the base sheme S, this is always possible.) Now every map
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f : (S;B) ! (S

0

;B

0

) of ringed sites is ompati�able in the sense of 2.4 if the map of

shemes (or algebrai spaes) f : X ! Y is ompati�able.

Proposition 2.10. Assume we are in the situation of 2.12 and that proper-base-hange

holds for all sheaves of H

�

(A)-modules. Then proper base-hange in the sense of 2.7.1 holds.

Proof. Observe that, under the hypotheses of 2.12, the funtor Lg

�

(Lg

0

�

) may be

identi�ed with g

�1

(g

0

�1

, respetively). There exist spetral sequenes:

E

s;t

2

= g

�

R

s

f

�

(H

t

(F ))~) H

s+t

(g

�

Rf

�

F ) and E

s;t

2

0

= R

s

f

0

�

g

0

�

H

t

(F )~! H

s+t

(Rf

0

�

g

0

�

F )~

for any F"D(Mod

l

(X;B)). These spetral sequenes onverge strongly in view of the hy-

pothesis 2.2. In this ase, it suÆes to show that one obtains an isomorphism at the E

2

-terms.

This is lear from the proper base-hange for all sheaves of H

�

(A)-modules. �

Corollary 2.11. (i) Assume we are in the situation of 2.12 and that proper base hange

holds for all sheaves of H

�

(A)-modules. Assume all maps of shemes or algebrai spaes

we onsider are ompati�able and the sites we onsider are all oherent in the sense of

Chapter II. Then the funtor Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

; ;B

0

) is well de�ned and

has the properties in 2.4 through 2.7 for all maps f : (X;B)! (X

0

;B

0

) of sites. Moreover,

it ommutes upto quasi-isomorphism with �ltered olimits and sums upto quasi-isomorphism

in general.

(ii) In partiular, the onlusions above hold if the sites onsidered are the small �etale

sites assoiated to shemes or algebrai spaes, all maps are ompati�able and ifH

n

(�(U;B))

is torsion for all n, all U in the orresponding site of the base sheme S.

Proof. (i) The �rst statement is lear from Proposition 2.9. The last statement in (i)

is lear from 2.8. (ii) follows from (i) sine, proper base-hange holds for all torsion abelian

sheaves on the �etale site. �

2.13. We will next onsider sites whih are the usual sites assoiated to loally ompat

Hausdor� topologial spaes over a base topologial spae S whih is also assumed to be

loally ompat and Hausdor�. We will assume that all spaes are of �nite ohomologial

dimension. If X is a topologial spae, the assoiated site will be denoted simply by X. Let

A denote a presheaf of algebras on S. If p : X ! S is the struture map of X, we will let

B = p

�1

(A). The morphism f : (X;B)! (X

0

;B

0

) of sites will be the one assoiated in the

obvious manner to a ontinuous map f : X ! Y of topologial spaes. In this ase we may

de�ne a funtor f

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

)) (intrinsially) by

(2.13.1)

�(V; f

!

#(M)) = fs"�(V; f

�

M)jf : support(s)! Y is properg; M"D(Mod

l

(X;B))

(Reall that a ontinuous map f : X ! Y of topologial spaes is proper if and only if the

image of losed sets is losed.) So de�ned, one may readily verify that if f = j : X ! Y is

an open imbedding, then f

#

!

is merely extension by zero. Moreover, if f is proper, f

#

!

= f

�

.

Therefore, it follows that if the map f admits a fatorization f =

�

f Æj with

�

f proper and j an

open imbedding, the funtor f

#

!

=

�

f

�

Æ j

#

!

and therefore the right-hand-side is independent

of the fatorization of f =

�

f Æ j.

Assume as above that f : (X;B) ! (X

0

;B

0

) is a map of ringed spaes with X, X

0

loally ompat Hausdor� topologial spaes. Assume that f fators as the omposition

(X;B)

j

!(

�

X;

�

B)

�

f

!(X

0

;B

0

) with j an open imbedding and

�

f proper. Now we de�ne

Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

)) by Rf

#

!

(M) = R

�

f

�

(Æj

#

!

)(M)),M"D(Mod

l

(X;B)).
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One may readily see, in view of the hypothesis on �nite ohomologial dimension, that

the last funtor is independent of the fatorization.

Proposition 2.12. Reall the funtors

Sp : D

+

(Mod

l

(S;H

�

(B)))! D

+

(Mod

l

(S; Sp(H

�

(B))))

( and Sp : D

+

(Mod

l

(S

0

;H

�

(B

0

)))! D

+

(Mod

l

(S

0

; Sp(H

�

(B

0

))))

from Chapter I, De�nition 4.6. Let f : (S;B)! (S

0

;B

0

) denote a map of ringed sites. Then

one obtains natural quasi-isomorphisms:

(i) Sp(Rf

�

�

M) ' Rf

�

(Sp(

�

M)) ,

�

M"D

+

(Mod

l

(S;H

�

(B)~)) and

Sp(Lf

�

(

�

N)) ' Lf

�

(Sp(

�

N)),

�

N"D

+

(Mod

l

(S

0

;H

�

(B

0

)~))

(ii) The same onlusions hold with the funtor Rf

�

replaed by Rf

#

!

if f is a ompat-

i�able map of shemes or algebrai spaes in the situation of 2.12, or in the situation as

in 2.13

Proof. Reall that if K = �

i

K(i)"D

+

(S;H

�

(A)), Sp(K) = �

i

holim

�

DN(EM

i

(K(i))).

Now the hypotheses in 2.1 , shows that the funtor f

�

ommutes with EM

i

. f

�

also learly

ommutes with produts and homotopy inverse limits. This proves the �rst assertion for the

derived funtor of the diret image funtor.

Reall that the funtor EM

n

is exat and therefore ommutes with �ltered olimits.

Now the hypotheses in 2.1 shows the funtor f

�1

ommutes with EM

n

. This readily shows

that Sp(f

�1

(

�

N)) ' f

�1

(Sp(

�

N)). Now hapter III, Proposition (2.12) with

�

M = H

�

(B)

and B replaed by f

�1

(B

0

) shows that Lf

�

(Sp(

�

N)) = Sp(H

�

(B))

L




f

�1

Sp(H

�

(B

0

))

f

�1

Sp(

�

N) '

Sp(H

�

(B)

L




f

�1

H

�

(B

0

)

f

�1

�

N) = Sp(Lf

�

(

�

N)). This proves the seond quasi-isomorphism in (i).

Now we onsider the assertion in (ii). Let j : X !

�

X denote the given open imbed-

ding and let i : Z =

�

X � X !

�

X denote the losed imbedding of its omplement. Let

�

N"D(Mod

l

(

�

X;

�

B)). Now one obtains the triangles:

j

#

!

j

�

�

N !

�

N ! i

�

i

�1

�

N and j

#

!

j

�

Sp(

�

N)! Sp(

�

N)! i

�

i

�1

Sp(

�

N).

Sine the funtor Sp sends triangles to triangles (see Chapter I, Proposition 4.4), one also

obtains the triangle: Sp(j

#

!

j

�

�

N)! Sp(

�

N)! Sp(i

�

i

�1

�

N). The natural quasi-isomorphism

of the last and middle terms with the orresponding terms of the previous triangle show

that there exists a natural quasi-isomorphism j

#

!

j

�

Sp(

�

N)

'

!Sp(j

#

!

j

�

�

N). This proves the

assertion in (ii) in view of (i). �

Definition 2.13. Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites. We say

Rf

�

is perfet (of �nite tor dimension, respetively) if it sends D(Mod

perf

(X;H

�

(B)))

to D(Mod

perf

(X

0

;H

�

(B

0

))) (D(Mod

f:t:d

(X;H

�

(B))) to D(Mod

f:t:d

(X

0

;H

�

(B))), respe-

tively). We will similarly de�ne Rf

#

!

to be perfet (of �nite tor dimension, respetively).

We will say f is perfet (of �nite tor dimension) if both Rf

#

!

and Rf

�

are perfet (of �nite

tor dimension, respetively).

Proposition 2.14. Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites.
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(i) If Rf

�

is perfet (of �nite tor dimension) the funtor Rf

�

sends D(Mod

perf

l

(X;B))

to D(Mod

perf

l

(X

0

;B

0

)) (D(Mod

f:t:d

l

(X;B)) to D(Mod

f:t:d

l

(X

0

;B

0

)), respetively). The or-

responding assertion also holds with Rf

#

!

in the plae of Rf

�

.

(ii) Lf

�

is always perfet (of �nite tor dimension). i.e. Lf

�

sends D(Mod

perf

l

(X

0

;B

0

))

to D(Mod

perf

l

(X;B))

(D(Mod

f:t:d

l

(X

0

;B

0

)) to D(Mod

f:t:d

l

(X;B)), respetively).

Proof. Let fF

k

N jkg denote the exhaustive and separated �ltration of N with re-

spet to whih N is globally of �nite tor dimension. Reall this means there exists an

objet

�

N"D(S;H

�

(B)) globally of �nite tor dimension so that Sp(

�

N) ' Gr

F

(N). Now

Rf

#

!

(F

k�1

N) ! Rf

#

!

(F

k

N) ! Rf

#

!

(Gr

F;k

N) ! Rf

#

!

(�F

k�1

N) is a triangle and the �rst

map is an admissible mono-morphism (sine produts and homotopy limits preserve admis-

sible mono-morphisms). Therefore fRf

#

!

F

k

N jkg is a �ltration of Rf

#

!

N and GrRf

#

!

N '

Rf

#

!

(Gr

F

N) ' Rf

#

!

(Sp(

�

N)) ' Sp(Rf

#

!

(

�

N)). Clearly, the same arguments show that

fRf

�

F

k

N jkg is a �ltration of Rf

�

N and that GrRf

�

N ' Rf

�

(Gr

F

N) ' Rf

�

(Sp(

�

N)) '

Sp(Rf

�

(

�

N)). To omplete the proof of the �rst assertion, now it suÆes show that Rf

#

!

sends an exhaustive (separated) �ltration to an exhaustive (a separated) �ltration. Sine

Rf

#

!

ommutes with �ltered olimits (as shown in Theorem 2.8), it follows immediately that

Rf

#

!

sends an exhaustive �ltration to an exhaustive �ltration. In view of the hypotheses

in 2.2 and Theorem 2.8, one may show readily that the separatedness of the �ltration on N

implies the �ltration fRf

#

!

F

k

N jkg is also separated.

Now we onsider the seond assertion. We may �rst replae M"D(Mod

perf

l

(X

0

;B

0

)) by

an objet that is also at over B

0

by Chapter II, 2.1.1. Therefore we may assume M itself

is at; now we will show f

�

(M) = B 


f

�1

(B

0

)

f

�1

(M) belongs to D(Mod

perf

l

(X;B)). For this

observe that the �ltration onM is ompatible with the Cartan �ltrations on B and f

�1

(B

0

).

Therefore, Gr

F

(f

�

(M)) = Gr

F

(B 


f

�1

(B

0

)

f

�1

(M)) = Gr

C

(B) 


f

�1

(Gr

C

(B

0

))

f

�1

(Gr

F

(M)) =

f

�

(Gr

F

(M)). Now the morphism F

k�1

(B 


f

�1

(B

0

)

f

�1

(M))! F

k

(B 


f

�1

(B

0

)

f

�1

(M)) is an ad-

missible mono-morphism, sine it is the kernel of the admissible epimorphism

F

k

(B 


f

�1

(B

0

)

f

�1

(M))! Gr

k

(B 


f

�1

(B

0

)

f

�1

(M)).

(To see the last map is in fat an admissible epimorphism, reall

F

k

(B 


f

�1

(B

0

)

f

�1

(M)) = Coequalizer(

F

k

(B 
 f

�1

(B

0

)
 f

�1

(M))

f //

g

// Fk(B 
 f�1(M)

))

while

Gr

k

(B 


f

�1

(B

0

)

f

�1

(M)) = Coequalizer(

Gr

k

(B 
 f

�1

(B

0

)
 f

�1

(M))

f //

g

// Grk(B 
 f�1(M)

))

and o-equalizers preserve admissible epimorphisms. See axiom (STR6) in Chapter I. (Al-

ternatively, one replaes the o-equalizers above with homotopy o-equalizers as in Chapter

II, 1.2.1.) One may see readily that Lf

�

sends an exhaustive �ltration to an exhaustive

�ltration; one may use the seond strongly onvergent spetral sequene of Chapter III,

Remark 2.19 to onlude that the indued �ltration on f

�

(M) is also separated. Therefore,

it follows readily that Lf

�

sends D(Mod

perf

l

(X

0

;B

0

)) ! D(Mod

perf

l

(X;B)). The proof in

the ase of �nite tor dimension is similar. �
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Corollary 2.15. Suppose (X

0

;B

0

) is the ringed site assoiated to the �etale site of a

sheme or algebrai spae X

0

so that in addition H

�

(B) = �

n

H

n

(B) is loally onstant. Let

f : X ! X

0

be a map of algebrai spaes and B = f

�1

(B

0

). Then Rf

#

!

indues a funtor

D(Mod

f:t:d

l

(X;B))! D(Mod

f:t:d

l

(X

0

;B

0

)).

Proof. In view of the hypothesis in 2.1.1, it is a standard result (whih one may readily

prove using the projetion formula) that Rf

#

!

(

�

N) is of �nite tor dimension as an objet in

D(Mod

l

(X

0

;H

�

(B

0

))) if

�

N"D(Mod

l

(X;H

�

(B))) is of �nite tor dimension. �

Proposition 2.16. (Base-hange) Assume the situation of 2.8. Then the map Lg

�

Rf

#

!

F !

Rf

0

#

!

Lg

0

�

F is a quasi-isomorphism provided proper base-hange as in 2.8 holds.

Proof. This is lear sine every morphism is assumed to be ompati�able. �

Proposition 2.17. (Projetion formula). Assume in addition to the above situation

that Rf

#

!

has �nite tor dimension. Then

Rf

#

!

(N

L




B

f

�

M) ' Rf

#

!

(N)

L




B

0

M

for N"D(Mod

r

(X;B)), M"D(Mod

l

(X

0

;B

0

) and either N or M is of �nite tor dimension.

Proof. One �rst observes that there exists a map Rf

#

!

(N

L




B

f

�

M)! Rf

#

!

(N)

L




B

0

M that

preserves the �ltration on either side. (Reall these �ltrations are indued in the obvious

manner from the anonial Cartan �ltrations on N , B,M and B

0

.) Now onsider the spetral

sequenes obtained from these �ltrations:

E

s;t

2

= H

s+t

(Gr

t

[Rf

#

!

(N

L




B

f

�

M)℄)~) H

s+t

(Rf

#

!

(N

L




B

f

�

M))~ and

E

s;t

2

= H

s+t

(Gr

t

[Rf

#

!

(N)

L




B

0

M ℄)~) H

s+t

(Rf

#

!

(N)

L




B

0

M)~

The natural map above indues a map of these spetral sequenes; the two spetral sequenes

onverge strongly by the hypotheses 2.2 and on �nite tor dimension. (See also 2.15 as well

as the identi�ation of the E

2

-terms below.) Therefore it suÆes to show one obtains

an isomorphism at the E

2

-terms. Now Chapter III, Proposition (2.10)(i), Chapter III,

Proposition (2.12) and the proof of Proposition (2.12) above show that

Gr[Rf

#

!

(N

L




B

f

�

M)℄ ' Rf

#

!

[Gr(N

L




B

f

�

M)℄

' Rf

#

!

(Gr(N)

L




Gr(B)

Grf

�

(M)) ' Rf

#

!

(Sp(

�

N)

L




Sp(H

�

(B))

Sp(f

�

(

�

M)))

' Rf

#

!

(Sp(

�

N

L




H

�

(B)

f

�

(

�

M))) ' Rf

#

!

(Sp(

�

N

L




f

�1

(H

�

(B

0

))

f

�1

(

�

M)))

' Sp(Rf

#

!

(

�

N

L




f

�1

(H

�

(B

0

))

f

�1

(

�

M))).

By the usual projetion formula, one may now identify the last term with Sp(Rf

#

!

(

�

N)

L




H

�

(B

0

)

�

M).

An argument (just as above) using Chapter III, Propositions (2.10)(i) and (2.12) as well as

the proof of Proposition (2.12) above identi�es this with Gr[Rf

#

!

(N)

L




B

0

M ℄. �
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3. The right adjoint to the derived diret image funtor with proper supports

We will assume throughout this setion that f : (X;B) ! (X

0

;B

0

) is a map of ringed

sites and that one may de�ne a funtor Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

)) satisfying

the hypotheses of 2.4 through 2.7. The goal of this setion is to de�ne a right adjoint to

this funtor. We will �rst de�ne a funtor Rf

!

#

expliitly and show this is in fat a right

adjoint for objets of �nite tor dimension or objets that are perfet. We also provide a

seond onstrution of this funtor using a reent theorem of Neeman that applies sine the

funtor Rf

#

!

is shown to ommute with all (small) sums upto quasi-isomorphism. We will

then onsider various properties of this funtor.

We begin by de�ning the funtor Rf

!

#

: D(Mod

l

(X

0

;B

0

)) ! D(Mod

l

(X;B)). Let

K"D(Mod

l

(X

0

;B

0

)). Let j

U

: U ! X be in the site S

0

and let B

U

= j

#

U !

j

�

U

(B). We let

(3.0.2) �(U;Rf

!

#

K) = R�(X

0

;RHom

B

0

(Rf

#

!

(B

U

);K))

Alternatively we may de�ne a sequene of funtorsRf

!

#;n

: D(Mod

l

(X

0

;B

0

))! D(Mod

l

(X;B)),

n � 1, by �(U;Rf

!

#;n

K) = R�(X

0

;Hom

B

(Rf

#

!

(B

U

); G

n

QK)). Now f�(U;Rf

!

#;n

(K))jng

forms a osimpliial objet and we let

(3.0.3) �(U;Rf

!

K) = holim

�

f�(U;Rf

!

#;n

(K))jng

Let j : X !

�

X denote an open imbedding and

�

f :

�

X ! X

0

a proper map so that f =

�

f Æj. Let

�

B denote a presheaf of algebras on

�

X so that j

�

(

�

B) = B and

�

f : (

�

X;

�

B)! (X

0

;B

0

)

is a map of ringed sites. Observe the pairing

j

�

Æ j

U�

j

�

U

j

�

(

�

B)
 j

#

!

Æ j

#

U !

j

�

U

j

�

(

�

B)
 j

�

Æ j

U�

j

�

U

j

�

(

�

B)! j

#

!

Æ j

#

U !

j

�

U

j

�

(

�

B)

that fators in the obvious two ways showing that j

#

!

Æj

#

U !

j

�

U

j

�

(

�

B)"Mod

bi

(X; j

�

Æ j

U�

j

�

U

j

�

(

�

B)),

i.e. j

#

!

Æ j

#

U !

j

�

U

j

�

(

�

B) has the struture of a presheaf of bi-modules over j

�

Æ j

U�

j

�

U

j

�

(

�

B). This

shows that Rf

#

!

(B

U

) = R

�

f

�

(j

#

!

Æ j

#

U !

j

�

U

j

�

(

�

B)) has the struture of a presheaf of bi-modules

over the presheaf of algebras R(

�

f

�

Æ j

�

Æ j

U�

)j

�

U

j

�

(

�

B)). The latter is a presheaf of alge-

bras over B

0

. Therefore, by taking setions over X

0

and using ( 3.0.2), it follows that both

RHom

B

0

(Rf

#

!

(B

U

);K) and RHom

B

0

(Rf

#

!

(B

U

);G

n

QK) have the struture of a presheaf of

left modules over the presheaf of algebras over B. i.e.

So de�ned, Rf

!

#

(K) and Rf

!

#;n

(K)"D(Mod

l

(X;B)).

Proposition 3.1. Assume the above situation. Then

(i) R�(U;RHom

B

(B

U

; Rf

!

#

K)) ' R�(U;RHom

B

0

(Rf

#

!

(B

U

);K))

(ii) If K

0

! K ! K

00

! �K

0

is a triangle in D(Mod

l

(X

0

;B

0

)) and j

U

: U ! X is in

the site S, the diagram

�(U;Rf

!

#

K

0

)! �(U;Rf

!

#

K)! �(U;Rf

!

#

K

00

)! �(U;Rf

!

#

�K

0

)

is a triangle in D(Mod

l

(X;B)).

(iii) IfK

0

! K is a quasi-isomorphism in D(Mod

l

(X

0

;B

0

)), the indued map �(U;Rf

!

#

K

0

)!

�(U;Rf

!

#

K) is a quasi-isomorphism for eah U in the site S.

(iv) If f = j : U ! X belongs to the site S, Rf

!

#

= j

�

.
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The properties in (i) through (iii) also hold for the funtors Rf

!

#;n

, n � 0.

Proof. (i) is lear from the de�nition and Chapter II, (1.2.6). (ii) is lear from the

de�nition of the funtor RHom

B

0

as in Chapter II, De�nition (4.12), and the de�nition of

R�(X;�) as in Chapter II, (1.1.1). (iii) is also lear for the same reasons. In the ase of

(iv), the funtor j

#

!

has a right adjoint j

�

; therefore Rj

!

#

may be identi�ed with j

�

. �

Remark 3.2. The above proposition shows that the funtor Rf

!

#

indues a funtor

Rf

!

#

: D(Mod

l

(X

0

;B

0

))! D(Mod

l

(X;B)).

Next we proeed to prove a result that holds for the funtor Rf

#

!

as well as the funtor

Rf

!

#

. To handle both ases simultaneously we will onsider the following abstrat situation.

3.1. Let (X;B), (X

0

;B

0

) denote two ringed sites as above. Let � : D(Mod

l

(X;B))!

D(Mod

l

(X

0

;B

0

)) denote a funtor with the following properties.

(i) � preserves triangles and quasi-isomorphisms and eah �(F ) has a �ltration indued

by the Cartan �ltration on F .

(ii) there exist a sequene of funtors f�

n

: Mod

l

(X;B)) ! Mod

l

(X

0

;B

0

)jng so that

if K"D(Mod

l

(X;B)), f�

n

(K)jng forms a osimpliial objet in Mod

l

(X

0

;B

0

) and �(K) =

holim

�

f�

n

(K)jng

(iii) for eah n � 0, there exists a funtor

�

�

n

:Mod

l

(X;H

�

(B))!Mod

l

(X

0

;H

�

(B)

0

) so

that Sp Æ

�

�

n

is naturally quasi-isomorphi to �

n

Æ Sp

(iv) There exists a spetral sequene E

u;v

2

= H

u

(f�

n

(H

v

(F ))jng)~) H

u+v

(�(F ))~,

F"D(Mod

l

(X;B)) with E

u;v

2

= 0 for u < 0. Moreover, there exists an integer N >> 0 so

that E

u;v

2

= 0 if u > N independent of v and F"D(Mod

l

(X;B)).

3.2. Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites as above. Now Rf

#

!

:

D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

)) as de�ned above learly satis�es the above hypotheses.

To see this just observe that the hypothesis in 2.2 implies the vanishing ondition (iv) above,

whereas the other onditions (i) through (iii) are lear. Moreover, one may readily see, in

view of the de�nition of the funtor Rf

!

#

above, that the same hypotheses as above, imply

the onditions in (iv) for the funtor Rf

!

#

at least if H

�

(B

0

) is loally onstant, B = f

�1

(B

0

)

and the sites are Noetherian. (See ?? for a proof.) See Proposition 5.12 for an appliation

of this result.

Lemma 3.3. Let L"D(Mod

l

(S;B)) be of �nite tor dimension in the sense of hapter

III, De�nition (3.1). If P (L)

�

! L is a simpliial resolution of L in the sense of Chapter

II, Proposition (2.4) we obtain the quasi-isomorphisms:

hoolim

�

f�(P (L)

n

)jng ' �(hoolim

�

fP (L)

n

jng ' �(L)

Proof. The ondition (iv) in 3.1 shows that if M"D(Mod

l

(S;A)), and n is a �xed

integer, there are only �nitely many E

u;v

2

-terms whose sub-quotients appear as the assoiated

graded terms of H

�n

(�(M))~.

For suh an M , we will de�ne a non-inreasing �ltration by letting F

m

(M) = �

��m

M

where �

��m

is de�ned as in hapter I. We let F

m

(�(L)) = �(F

m

L): by the hypotheses this

de�nes a �ltration of �(L). Let n denote a �xed integer throughout the rest of the proof.

By the de�nition of the �ltration F

m

on F and by the hypothesis (iv) above, for eah �xed

integer q,
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(3.2.1) H

q

(F

m

(�(L)))~

�

=

H

q

(�(L))~

if m is suÆiently small.

The key-step in the proof will be to show that for eah �xed integer q, the natural map

hoolim

�

fF

m

(�(P (L)

k

))jkg ! F

m

(�(L)) indues an isomorphism:

(3.2.2) H

q

(hoolim

�

fF

m

(�(P (L)

k

))jkg)~

�

=

H

q

(F

m

(�(L)))~

if m is suÆiently small.

We will �rst omplete the proof assuming ( 3.2.2). Observe that

olim

m!�1

hoolim

�

fF

m

(�(P (L)

n

))jng ' hoolim

�

folim

m!�1

F

m

(�(P (L)

n

))jng

' hoolim

�

f�(P (L)

n

)jng

(where the last ' is by ( 3.2.1)) applied to eah P (L)

n

instead of L; by ( 3.2.1) again

olim

m!�1

F

m

(�(L)) ' �(L).

Therefore, it will follow hoolim

�

f�(P (L)

n

)jng ' �(L).

Now we proeed to prove ( 3.2.2). First observe that H

v

(F

m

(L))~

�

=

0 if v > �m and

for all F . Now onsider the spetral sequene for the homotopy olimit in hapter I, setion

1, (HCl):

(3.2.3) E

2

u;v

= H

u

(H

v

(F

m

(f�(P (L)

n

)jng)))~) H

�u+v

(hoolim

�

fF

m

(�(P (L)

n

))jng)~

For a �xed integer q, the only E

2

u;v

-terms whose sub-quotients appear as the assoiated

graded terms of H

q

(hoolim

�

fF

m

(�(P (L)

n

))jng)~are those with q � v � q + u and v � �m

and hene in partiular m � �q. The same spetral sequene in ( 3.2.3) for F

m

L also shows

that E

u;v

2

6= 0 only form � �q. Therefore, form > �q, H

q

(hoolim

�

fF

m

(�(P (L)

n

))jng)~= 0

and H

q

(F

m

(�(L)))~= 0. Therefore, in order to prove ( 3.2.2), it suÆes to show that the

natural map

(3.2.4) hoolim

�

f(F

n

�(P (L)

k

)=F

m

�(P (L)

k

))jkg ! F

n

(�(L))=F

m

(�(L))

indues an isomorphism on H

q

for all m and n with n � m and all q (in fat it suÆes to

onsider m � �q). Sine both sides preserve triangles, one may use asending indution on

m� n and redue to the ase where m = n+ 1. Now the left-hand-side (right-hand-side) of

( 3.2.4) may be identi�ed with

hoolim

�

fGr

n

(�(P (L)

k

))jkg ' hoolim

�

f�(Gr

n

(P (L)

k

))jkg ' hoolim

�

f�(Sp(P (

�

L)

k

)

n

jkg

' hoolim

�

fSp(

�

�(P (

�

L)

k

))

n

jkg
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(�(Gr

n

(L)) ' �(Sp(

�

L)

n

) ' Sp(

�

�(

�

L))

n

, respetively).

Therefore, it suÆes to show :

(3.2.5) hoolim

�

fSp(

�

�(P (

�

L)

k

))jkg ' Sp(

�

�(

�

L))

Now one may identify the left-hand-side of ( 3.2.5) with

hoolim

�

holim

�

fDN ÆGEM(

�

�

r

(P (

�

L)

s

))jrg

where the outer homotopy olimit is over all s and the inner homotopy limit is over all r.

For a �xed s, f

�

�

r

(P (

�

L)

s

)jrg is a osimpliial abelian presheaf. Therefore its normalization

N(f

�

�

r

(P (

�

L)

s

)jrg) is a o-hain omplex. Now the hypothesis ( 3.1(iv)) shows we may

replae this o-hain omplex, by the bounded o-hain omplex �

�N

N(f

�

�

r

(P (

�

L)

s

)jrg).

By axiom (ST9) of hapter I, we see that, for eah �xed s:

(3.2.6)

holim

�

DN(GEM(�

�N

N(f

�

�

r

(P (

�

L)

s

)jrg))) ' 


N

hoolim

�

DNGEM(�

�N

N(f

�

�

r

(P (

�

L)

s

)jrg))[N

h

℄

Sine two homotopy olimits ommute, the left-hand-side of ( 3.2.5) may be identi�ed with:




N

hoolim

�

hoolim

�

fGEM(DN(GEM(�

�N

N(f

�

�

r

(P (

�

L)

s

)jrg))[N

h

℄))g

where the inner (outer) hoolim

�

is over the s (r, respetively). A diret omputation using

the spetral sequene for the homotopy olimit shows the latter may be identi�ed with




N

hoolim

�

fDN(GEM(�

�N

(

�

�

r

(

�

L))[N

h

℄))jrg. By the same argument as above, one may

identify this with

holim

�

fDNGEM(�

�N

(

�

�

r

(

�

L)))jrg ' holim

�

fSp(�

�N

(

�

�

r

(

�

L)))jrg

' holim

�

fSp(

�

�

r

(

�

L))jrg ' holim

�

f�

r

Sp(

�

L)jrg ' �Sp(

�

L).

We have thereby shown that the map in ( 3.2.5) is a quasi-isomorphism. �

Remark 3.4. Observe that we have used the strong-t-struture in an essential manner.

As pointed out in Chapter I this is needed mainly to be able make homotopy olimits and

limits ommute.

Theorem 3.5. Assume the above situation. LetK"D(Mod

l

(X

0

;B

0

)) and L"D(Mod

l

(X;B)).

Let j

U

: U ! X

0

be in the site S and let V = U�

X

0

X. Then one obtains:

(i) R�(V;RHom

B

(L;Rf

!

#

(K))) ' R�(U;RHom

B

0

(Rf

#

!

(L);K)) (or equivalently

Rf

�

(RHom

B

(L;Rf

!

#

(K))) ' RHom

B

0

(Rf

#

!

(L);K)) and therefore

(ii) RMap

B

(L;Rf

!

#

(K))

�

=

RMap

B

0

(Rf

#

!

(L);K)

Proof. Choose a simpliial resolution P (L)

�

! L as in hapter II, Proposition 2.7.

Reall eah term P (L)

n

is of the form t

s"S

j

#

U !

j

�

U

(�

n

s

B). Now

RHom

B

(L;Rf

!

#

(K)) = holim

�

fRHom

B

(P (L)

n

; Rf

!

#

K)jng

Next �x an integer n. Now
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RHom

B

(P (L)

n

; Rf

!

#

K) = RHom

B

( t

s"S

j

#

U !

j

�

U

(�

n

s

B), Rf

!

#

K)

' �

s"S

RHom

B

(j

#

U !

j

�

U

(�

n

s

B), Rf

!

#

K) ' �

s"S

RHom

B

(Rf

#

!

(j

#

U !

j

�

U

(�

n

s

B)), K)

where the last ' follows from Proposition 3.0.2 (i) and Chapter II, Proposition 2.1. The pre-

vious ' follow from the de�nition of Hom

B

as an equalizer in hapter II, (1.2.3) and(1.2.7).

(See also hapter II, Propositions (3.5), (3.7) for the operadi ase.) Now one may identify

the last term with:

RHom

B

( t

s"S

Rf

#

!

(j

#

U !

j

�

U

(�

n

s

B)), K) ' RHom

B

(Rf

#

!

( t

s"S

j

�

U

(�

n

s

B)), K)

= RHom

B

0

(Rf

#

!

(P (L)

n

);K)

The ' follows from Theorem 2.8. Now

RHom

B

(L;Rf

!

#

(K)) = RHom

B

(hoolim

�

P (L)

�

; Rf

!

#

(K))

' holim

�

fRHom

B

(P (L)

n

; Rf

!

#

(K))jng ' holim

�

fRHom

B

0

(Rf

#

!

(P (L)

n

);K)jng

' RHom

B

0

(hoolim

�

fRf

#

!

(P (L)

n

)jng, K) ' RHom

B

0

(Rf

#

!

(L);K)

The last ' follows from the observation that hoolim

�

fRf

#

!

(P (N))

n

jng ' Rf

#

!

L. This in

turn follows from the previous lemma. This proves (i). The assertion (ii) follows from (i) by

Chapter II, Proposition (2.8). �

Remark 3.6. Observe that the proof uses in an essential way the hypothesis in 2.2 as

well as the axiom (ST9) from hapter I.

Corollary 3.7. Let f : (X;B) ! (X

0

;B

0

) and g : (X

0

;B

0

) ! (X

00

;B

00

) denote two

maps of ringed sites as before. Now there is a natural isomorphism Rf

!

#

ÆRg

!

#

' R(g Æf)

!

#

:

D(Mod

l

(X;B))! D(Mod

l

(X

00

;B

00

)).

Proof. Observe from 2.10 that there is a natural isomorphism of the derived funtors

Rg

#

!

ÆRf

#

!

' R(g Æ f)

#

!

. Now theorem 3.5 provides the required isomorphism. �

Proposition 3.8. Assume the above situation. Let

�

K"D(Mod

l

(X

0

;H

�

(B

0

)) and K =

Sp(

�

K). Now Rf

!

#

(Sp(

�

K)) ' Sp(Rf

!

#

(K))

Proof. Take B = Sp(H

�

(B)), B

0

= Sp(H

�

(B

0

)) and L = j

#

U !

j

�

U

Sp(H

�

(B)) in the above

theorem. Let

�

L = j

�

U !

j

�

U

(H

�

(B)). Now

RHom

Sp(H

�

(B))

(L;Rf

!

#

(Sp(

�

K))) ' Rf

�

RHom

Sp(H

�

(B))

(Rf

#

!

(L); Sp(

�

K))

' Rf

�

RHom

Sp(H

�

(B))

(Rf

#

!

(Sp(

�

L)); Sp(

�

K)) ' Rf

�

RHom

Sp(H

�

(B))

(Sp(Rf

#

!

(

�

L)); Sp(

�

K))

' Rf

�

Sp(RHom

H

�

(B)

(Rf

#

!

(

�

L);

�

K)) ' Sp(Rf

�

RHom

H

�

(B)

(Rf

#

!

(

�

L);

�

K))

' Sp(RHom

H

�

(B)

(

�

L;Rf

!

#

(

�

K))) ' RHom

Sp(H

�

(B))

(Sp(

�

L); Sp(Rf

!

#

(

�

K)))

The third and �fth ' are by Proposition 2.12 while the fourth and last ' are by Chapter

III, Proposition (2.13). Now take R�(U;�) of both sides. The left-hand-side now beomes

R�(U;Rf

!

#

(Sp(

�

K))) while the right-hand-side beomes R�(U; Sp(Rf

!

#

(

�

K))). �
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Proposition 3.9. (i) Let i : Y ! X denote a losed imbedding with j : U = X �

Y ! X the orresponding open imbedding. De�ne a funtor i

�

Ri

!

: D(Mod

l

(X;B)) !

D(Mod

l

(X;B)) by

i

�

Ri

!

F = the anonial homotopy �ber of the map F ! Rj

�

j

�

F , F"D(X;B).

Then there exists a natural quasi-isomorphism i

�

Ri

!

F ' i

�

Ri

!

#

F , natural in F .

(ii) Consider a artesian square:

(Y; C)

g

0

����! (X;B)

f

0

?

?

y

?

?

y

f

(Y

0

; C

0

)

g

����! (X

0

;B

0

)

where Y = Y

0

�

X

0

X and C = f

0

�1

(C

0

) 


(f

0

�1

(g

�1

(B

0

)))

f

�1

(B). Assume further that the base-

hange map Lf

�

Rg

#

!

! Rg

0

#

!

Lf

0

�

is a natural isomorphism of funtors D(Mod

l

(Y

0

; C

0

))!

D(Mod

l

(X;B)). Then one obtains the anonial isomorphism of funtors Rg

!

#

Æ Rf

�

'

Rf

0

�

Æ Rg

0

!

#

as funtors D(Mod

l

(X;B)) ! D(Mod

l

(Y

0

; C

0

)) and Lf

0

�

Æ Rg

!

#

' Rg

0

!

#

Æ Lf

�

as funtors D(Mod

l

(X

0

;B

0

))! D(Mod

l

(Y; C)).

(iii) Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites. Then there exists a natural

transformation:

Rf

!

#

(�)

L




B

Lf

�

(�)! Rf

!

#

(�

L




B

0

�)

Proof. (i) Let K"D(Mod

l

(X;B)). We begin with the triangle j

#

!

j

�

(K) ! K !

i

�

i

�1

K. Taking RHom

B

, we obtain the triangle:

RHom

B

(i

�

i

�1

K;F )!RHom

B

(K;F )!RHom

B

(j

#

!

j

�

K;F )

Now the �rst term may be identi�ed with i

�

RHom

A

(K; i

�

Ri

!

#

F ) while the last may be

identi�ed with

RHom

B

(K;Rj

�

j

�

F ). Now take K = B to obtain the triangle: i

�

Ri

!

#

F ! F ! Rj

�

j

�

F .

The de�nition of i

�

Ri

!

shows one may identify i

�

Ri

!

F and i

�

Ri

!

#

F . This proves (i).

(ii) Let K"D(Mod

l

(X;B)) and L"D(Mod

l

(X

0

;B

0

)). Now

RMap

C

0

(L;Rg

!

#

Rf

�

K) ' RMap

B

0

(Rg

#

!

L;Rf

�

K) ' RMap

B

(Lf

�

(Rg

#

!

L);K)

' RMap

B

(Rg

0

#

!

Lf

0

�

L;K) ' RMap

C

(Lf

0

�

L;Rg

0

!

#

K) ' RMap

C

0

(L;Rf

0

�

Rg

0

!

#

K).

The �rst and fourth ' are by Theorem 3.5, the seond and last are by Proposition 2.6 and

the third by our assumption. This proves the �rst assertion in (ii). The seond is established

similarly.

(iii) Let S denote the unit of ategory Presh(S) as in 1.0.3. Let F"D(S

0

;S), F

1

"D(Mod

l

(X

0

;B

0

)),

F

2

"D(Mod

r

(X

0

;B

0

)) respetively. We obtain:

RMap

S

(Rf

!

#

F

1

L




B

Lf

�

(F

2

); Rf

!

#

F ) ' RMap

S

(Rf

#

!

(Rf

!

#

F

1

L




B

Lf

�

(F

2

)); F )
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' RMap

S

(Rf

#

!

Rf

!

#

(F

1

)

L




B

0

F

2

; F )

The last ' follows by the projetion formula in setion 1. Now take F = F

1

L




B

0

F

2

. The natural

map Rf

#

!

Rf

!

#

(F

1

)! F

1

provided by Theorem 3.5 provides a map Rf

#

!

Rf

!

#

(F

1

)

L




B

F

2

! F .

This provides the required map by the above quasi-isomorphisms. �

We will onlude this setion with a some-what di�erent onstrution of the funtor

Rf

!

#

making use of some reent results of Neeman. We begin by realling the notion of

ompat objets from [Neem℄ p. 210. An objet K"D(Mod

l

(X; B)) is ompat if for any

olletion fF

�

j�g of objets in D(Mod

l

(X; B))

(3.2.7) Hom

D(Mod

l

(X;B))

(K;�

�

F

�

)

�

=

�

�

Hom

D(Mod

l

(X;B))

(K;F

�

)

Proposition 3.10. (i) Every objet of the form j

#

U !

j

�

U

(�

n

B) for U"S and n an integer

is ompat. (ii) The ategory D(Mod

l

(X; B)) is ompatly generated by the above objets

as U varies among a o�nal set of neighborhoods of all the points i.e. the above olletion

of objets is a small set T of ompat objets in D(Mod

l

(X; B)), losed under suspension,

so that Hom

D(Mod

l

(X;B))

(T; x) = 0 for all T implies x = 0.

Proof. One again we will let S denote the unit of Presh(S) as in 1.0.3.

(i) Observe that

Hom

D(Mod

l

(X;B))

(j

#

U !

(j

�

U

�

n

B)), F )

�

=

Hom

D(Mod

l

(X;B))

(j

�

U

(�

n

B), j

�

U

F )

�

=

Hom

D(Mod

l

(X;S)

(�

n

S

jU

, j

�

jU

(F ))

�

=

H

�n

(R�(U , F ))

- see hapter II, Proposition 2.1 and hapter II, Proposition 3.7. Therefore, by Theorem 2.8,

one now observes that

Hom

D(Mod

l

(X;B))

(j

#

U !

(j

�

U

(�

n

B)), �

�

F

�

)

�

=

H

�n

(R�(U , �

�

F

�

))

�

=

�

�

H

�n

(R�(U , F

�

))

This proves (i). Suppose H

�n

(R�(U , F )) = 0 for all U that form a o�nal system of

neighborhoods of all points in the site S and all n. It follows immediately that F is ayli

and therefore is isomorphi to 0 in the derived ategory D

l

(S; B). This proves (ii). �

Definition 3.11. (Compatly generated triangulated ategories) Let S denote a trian-

gulated ategory. Suppose all small o-produts exist in S. Suppose also that there exists a

small set of objets S of S so that

(i) for every s"S, Hom

S

(s;�) ommutes with o-produts in the seond argument and

(ii) if y"S is an objet so that Hom

S

(s; y) = 0 for all s"S, then y = 0.

Suh a triangulated ategory is said to be ompatly generated. An objet s in a triangulated

ategory S is alled ompat if it satis�es the hypothesis (i) above.

Theorem 3.12. (Neeman: see [N℄ Theorems 4.1 and 5.1) Let S denote a ompatly

generated triangulated ategory and let F : S! T denote a funtor of triangulated ategories.

Suppose F has the following property:
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if fs

�

j�g is a small set of objets in S, the o-produt t

�

F (s

�

) exists in T and the natural

map t

�

F (s

�

)! F (t

�

s

�

) is an isomorphism.

Then F has a right adjoint G. Moreover, the funtor G preserves o-produts (i.e. if

ft

�

j�g is a small set of objets in T whose sum exists in T, G(t

�

t

�

) = t

�

G(t

�

)) if for every

s in a generating set S for S, F (s) is a ompat objet in T.

We will apply the above theorem in the following manner.

Theorem 3.13. Let T denote a funtor T : D(Mod

l

(X;B)) ! D(Mod

l

(X

0

;B

0

)). If T

sends sums in D(Mod

l

(X;B)) to sums in D(Mod

l

(X

0

;B

0

)), T has a right adjoint whih we

will denote by T

!

#

. Moreover, if T (j

#

U !

(j

�

U

(�

n

B))) is a ompat objet in D(Mod

l

(X

0

;B

0

))

for all objets j

U

: U ! X in the site S and all integers n, then the funtor T

!

#

preserves

sums.

Proof. Reall the derived ategories D(Mod

l

(X;B)) and D(Mod

l

(X

0

;B

0

)) are tri-

angulated ategories and that (see Proposition 3.10 above), that fj

#

U !

(j

�

U

(�

n

B))jj

U

!

S in S; n"Zg is a small set of ompat objets that generate the ategoryD(Mod

l

(X;B)).

Therefore, if T preserves sums, Theorem 3.12 shows it has an adjoint T

!

#

. The funtor T

!

#

preserves sums, if T (j

#

U !

(j

�

U

(�

n

B))) is a ompat objet in D(Mod

l

(X

0

;B

0

)) for all objets

j

U

: U ! X in the site S and all integers n. �

Theorem 3.14. (Existene of a right adjoint to Rf

#

!

) Let f : (X;B)! (X

0

;B

0

) denote

a map of ringed sites. Suppose the site S is algebrai and S

0

is loally oherent. Suppose

the funtor Rf

#

!

is well-de�ned. Then the funtor

Rf

#

!

: D(Mod

l

(X;B))! D(Mod

l

(X

0

;B

0

))

has a right adjoint (whih we denote by Rf

!

#

). Moreover, if Rf

#

!

sends a ompat generating

set for D(Mod

l

(X;B)) to ompat objets in D(Mod

l

(X

0

;B

0

)), the funtor Rf

!

#

preserves

sums.

Proof. First observe from Theorem 2.8 that the funtor Rf

#

!

ommutes with �ltered

diret limits of presheaves. Therefore, it follows that if fM

�

j�g is a olletion of objets in

D(Mod

l

(X;B)), the natural map:

t

�

Rf

#

!

(M

�

)

'

!Rf

#

!

(t

�

M

�

)

is a quasi-isomorphism. It follows that the funtor Rf

#

!

preserves sums. Sine the derived

ategory D(Mod

l

(S;B)) is ompatly generated as shown in Proposition 3.10, it follows

that Rf

#

!

has a right adjoint. The last assertion is now lear from the last assertion of

Theorem 3.12. �

Remark 3.15. Despite the elegane of the above onstrution, one looses the bi-module

struture (see the remarks in 4.2 below) on Rf

!

#

(B) by the above onstrution. This bi-

module struture is essential in obtaining a bi-duality theorem and hene the full strength

of Grothendiek-Verdier duality as in the next setion.

4. The dualizing presheaves and the bi-duality theorem

We begin by de�ning dualizing presheaves both in the relative and absolute situation.

We will assume throughout that all maps are ompati�able in the sense of 2.4. Furthermore
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we will assume that (S;A) is a base-ringed site and that all ringed sites we onsider are

de�ned over it. Let Z denote the terminal objet in the site S. Moreover, we will assume

that the following hypothesis holds:

A"Presh(S) and B"Presh(S) are ommutative algebras.

Definition 4.1. (i) Let f : (X;B) ! (X

0

;B

0

) denote a map of ringed sites. Now we

de�ne the relative dualizing presheaf D

f

to be Rf

!

#

(B

0

).

(ii) If p : (X;B)! (Z;A) is the struture map of the ringed spae, we let D

B

= Rp

!

#

(A)

and all it the dualizing presheaf for the ategories D(Mod

l

(X;B)) and D(Mod

r

(X;B)).

(iii) Assume the situation in (ii). We de�ne a funtor D

B

: D(Mod

l

(X;B))! D(Mod

r

(X;B))

(and similarly D

B

: D(Mod

r

(X;B))! D(Mod

l

(X;B)) by D(F ) = RHom

B

(F;D

B

).

Remark 4.2. Reall that

(4.0.8) �(U;D

B

) = R�(S;RHom

A

(Rp

#

!

(B

U

);A))

for eah U in the site S. In taking the RHom

A

, we use the struture of a presheaf of left A-

modules on Rf

#

!

(B

U

). We already saw in ( 3.0.2) thatD

B

belongs toD(Mod

l

(X;B)). In fat

one may show readily that D

B

has the struture of a presheaf of bi-modules over B: ( 4.0.8)

in fat shows that the left -module- struture (right-module-struture) is indued from the

struture of a presheaf of right B-modules (right-B-modules, respetively) on Rp

#

!

(B

U

).)

Observe that, in this ase, the ommutativity of the algebras implies the left A-module

struture on Rp

#

!

(B

U

) ommutes with the left B-module struture. Therefore D

B

has the

struture of a presheaf of bi-modules and therefore de�nes funtors D

B

as stated.

4.1. Let D

B

be �ltered by the �ltration indued from the Cartan �ltration on A and

B. Now Gr(D

B

) ' D

Gr(B)

' D

Sp(H

�

(B))

. The �rst ' follows from the de�nition of D

B

along with Chapter III, Proposition 2.7. The seond ' now follows from Chapter III,

Proposition 2.10 (ii) and Chapter III, Proposition 2.13.

Proposition 4.3. Assume the situation of 4.1. Then Rf

�

D

B

(F ) ' D

B

0

(Rf

#

!

(F ))

Proof. This follows readily from Theorem 3.5(i) and orollary 3.7. �

In order to prove the dualizing pre-sheaf is reexive (see Theorem 4.7 below) one will

have to further restrit to one of the following two situations:

4.2. (i) (S;A) is a ringed site so that H

�

(A) is loally onstant on the site S, B =

p

�1

(A) and we restrit to the full sub-ategory D(Mod

;f:t:d

(S;B)) of D(Mod

f:t:d

(S;B))

of objets that are onstrutible in the sense of the following de�nition or

(ii) with no further restrition on the ringed site (S;A), we restrit toD(Mod

perf

(S;B)).

Definition 4.4. Assume the �rst situation above. (i) Let F"D(Mod

l

(S;B)). We say

F is loally onstant on S if H

�

(F )~ is loally onstant as a sheaf of graded left modules

over the sheaf H

�

(B)~.

(ii) F is onstrutible if H

�

(F )~ is onstrutible as a sheaf of graded left-modules over

the sheaf H

�

(B)~. Reall this means: there exists a �nite �ltration

X

0

i

0

�X

1

i

1

�:::

i

n

�X

n
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by loally losed subspaes of X, so that H

�

(F )

~

jX

i

�X

i�1

is loally onstant (and �nitely

generated) as a sheaf of H

�

(B)

~

X

i

�X

i�1

-modules for eah i. (Reall that H

�

(B) is assumed

to be a sheaf of Noetherian rings so that there is no distintion between �nitely generated

and �nitely presented objets.)

Proposition 4.5. Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites as before. Sup-

pose that Rf

#

!

(Rf

�

) sends onstrutible sheaves of H

�

(B)~-modules to onstrutible sheaves

of H

�

(B

0

)~-modules on X

0

. Then Rf

#

!

(Rf

�

, respetively) sends onstrutible presheaves of

modules over B to onstrutible presheaves of modules over B

0

.

Proof. Reall the spetral sequene:

E

s;t

2

= R

s

f

#

!

H

t

t(F )~! H

s+t

(Rf

#

!

F )~, F"D(Mod

l

(S;A))

Now the hypothesis of 2.2 shows that it suÆes to prove �

s

R

s

f

#

!

H

t

(F )~is onstrutible as a

sheaf of modules over H

�

(B

0

)~. This is lear from the hypothesis. The assertion about Rf

�

is established similarly. �

Definition 4.6. We say f is onstrutible if Rf

�

and Rf

#

!

send onstrutible sheaves

of H

�

(B)-modules to onstrutible sheaves of H

�

(B

0

)-modules.

4.3. Terminology and onventions for the rest of the hapter. For the rest

of this hapter, we will adopt the following terminology. With no further restritions on

the site, D(Mod

?

(X;B)) = D(Mod

perf

l

(X;B)). In ase the ringed site (X;B) satis�es the

hypotheses in 4.2 (i), D(Mod

?

(X;B)) will denote D(Mod

;f:t:d

l

(X;B)) as in de�nition 4.4.

In the former ase D

?

(X;H

�

(B))) will denote the derived ategory D(Mod

perf

l

(X;H

�

(B)))

of perfet omplexes of sheaves of H

�

(B)-modules. Moreover, any map f : (X;B)! (X

0

;B

0

)

of ringed sites in the above sense will be automatially assumed to be perfet in the �rst ase

and of �nite tor dimension and onstrutible in the seond ase in the sense of de�nition 2.13

and the de�nition ?? above. In either ase D

H

�

(B)

will denote the dualizing omplex in the

derived ategory D

?

(X;H

�

(B)).

Theorem 4.7. (Bi-duality) Assume in addition to the above situation that the natural

map

�

F ! D

H

�

(B)

(D

H

�

(B)

(

�

F ))

is a quasi-isomorphism for every

�

F"D

?

(X;H

�

(B)~). Let F"D(Mod

?

(X;B)). Then the natu-

ral map F ! D

B

(D

B

(F )) is a quasi-isomorphism. The same onlusions hold if D

B

"D

?

(Mod

bi

(X;B))

so that the hypotheses in 4.1 are satis�ed.

Proof. The seond spetral sequene in Chapter III, Theorem 2.18 plays a key-role in

the proof. Observe next that the given �ltration on F and the anonial Cartan �ltration on

B indue a �ltration on D

B

(F ) as well as on D

B

(D

B

(F )). The natural map F ! D

B

(D

B

(F ))

is ompatible with the above �ltrations. Now the �ltrations provide us with spetral se-

quenes; sine the above map is ompatible with the �ltrations, we also obtain a map of

these spetral sequenes.

Next reall that for F , Gr(F ) = Sp(

�

F ), where

�

F"D

?

(X;H

�

(B)) is a bounded omplex

of �nite tor dimension (or is a perfet omplex). Reall

�

F = �

i

�

F (i). The spetral sequene
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for F now is given by:

E

s;t

2

= H

s+t

(Gr

t

(F ))~

�

=

H

s+t

(Gr

t

(Sp(

�

F )))~

�

=

H

s+t

(Gr

t

(holim

�

�

i

EM

i

(

�

F (i))))~

�

=

H

sf+t

(holim

�

EM

t

(

�

F (t)))~) H

s+t

(F )~

(4.3.1)

One may ompute H

s+t

(holim

�

EM

t

(

�

F (t)))~by means of the spetral sequene:

E

u;v

2

= H

u

(H

v

(EM

t

(

�

F (t))))~) H

u+v

(holim

�

EM

t

(

�

F (t)))~.

This spetral sequene degenerates sine E

u;v

2

= 0 unless v = t and E

u;v

2

= H

u

(

�

F (t)) if

v = t. i.e.

H

s+t

(holim

�

EM

t

(

�

F (t)))~

�

=

H

s

(

�

F (t)). Sine

�

F is a bounded omplex, there exists an integer

N >> 0, independent of t so that H

s

(

�

F (t)) = 0 if s > N or if s << 0. It follows that

H

s+t

(Gr

t

(F ))~

�

=

0 if s > N or if s << 0. Thus the spetral sequene in ( 4.3.1) onverges

strongly.

Now we onsider the spetral sequene for D

A

(D

A

(F )) = RHom

A

(RHom

A

(F;D

A

); D

A

).

The E

s;t

2

-terms are given by

(4.3.2) E

s;t

2

= H

s+t

(Gr

t

(RHom

A

(RHom

A

(F;D

A

); D

A

)))~

By Chapter III, Proposition 2.7 applied twie we see thatGr(RHom

B

(RHom

B

(F;D

B

); D

B

))

' RHom

Gr(B)

(Gr(RHom

B

(F;D

B

)); Gr(D

B

))

' RHom

Gr(B)

(RHom

Gr(QB)

(Gr(F ); Gr(D

B

)); Gr(D

B

)).

By Chapter III, Proposition 2.10(ii) and Proposition 2.13 this may be identi�ed with

RHom

Sp(H

�

(B))

(RHom

Sp(H

�

((B)))

(Sp(

�

F ); D

Sp(H

�

(B))

); D

Sp(H

�

(B))

)

' RHom

Sp(H

�

(B))

(Sp(RHom

H

�

(B)

(

�

F;D

H

�

(B)

)); Sp(D

H

�

(B)

))

' Sp(RHom

H

�

(B)

(RHom

H

�

(B)

(

�

F ;D

H

�

(B)

); D

H

�

(B)

)).

Now one may apply the omputation in Chapter III, Proposition 2.17(ii) to identify the E

s;t

2

-terms in ( 4.3.2) with

Ext

s;t

H

�

(B)

(RHom

H

�

(B)

(

�

F ;D

H

�

(B)

); D

H

�

(B)

).

Under the hypothesis of the theorem, we see that natural map

�

F !RHom

H

�

(B)

(RHom

H

�

(B)

(

�

F;D

H

�

(B)

); D

H

�

(B)

)

is a quasi-isomorphism. Therefore we obtain an isomorphism of the E

s;t

2

-terms in ( 4.3.1)

and ( 4.3.2). (In partiular the seond spetral sequene also onverges strongly.) Sine

both the spetral sequenes onverge strongly (reall the hypothesis of �nite tor dimension

or perfetion on F ), it follows that the map F ! D

B

(D

B

(F )) is a quasi-isomorphism. �

Situations where the theorem applies.

4.4. Consider shemes or algebrai spaes of �nite type over a base sheme S. Assume

all the shemes and algebrai spaes are provided with the �etale topology and L is a non-

empty set of primes di�erent from the residue harateristis. Let A denote a presheaf
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of ommutative algebras on S so that, H

�

(A) = �

n

H

n

(A) is loally onstant on the �etale

topology of S and has L-primary torsion. Now the hypotheses in the Bi-duality theorem

are satis�ed by any

�

F"D(Mod

;f:t:d

l

(S;H

�

(A))). (See [SGA℄4

1=2

p. 250.) The bi-duality

theorem also holds for suitable L-ompletions of a presheaf of algebras A. See 6.1 for a

detailed disussion of this appliation.

4.5. Next assume B is a ommutative algebra on X,

�

F"D

perf

(Mod(X;H

�

(B))) and

that (modulo a globally determined shift) D

H

�

(B)

is loally quasi-isomorphi to H

�

(B). In

this ase the onlusion of the theorem holds for any F"D(Mod

perf

(X;B)) so that Gr(F ) '

Sp(

�

F ).

4.6. Consider loally ompat Hausdor� topologial spaes over a base spae S of the

same type. Assume that L is a (possibly empty) set of primes for whih all the spaes are of

�nite L-ohomologial dimension. (Reall that if L is empty, this means all the spaes are

of �nite ohomologial dimension.) Now let A denote a presheaf of ommutative algebras

on S so that H

�

(A) = �

n

H

n

(A) is loally onstant and of L-primary torsion. Let X denote

a topologial spae as above and let p : X ! S denote the obvious struture map. Now

the hypotheses in the bi-duality theorem are satis�ed by any

�

F"D

;f:t:d

(X;H

�

(A)). (See

[K-S-2℄ hapter III.)

We onlude this setion by de�ning the homology with ompat supports. Assume one

of the above situations. Let F"D(Mod

l

(X;B)). We let

Definition 4.8. H

�

(X;F ) = H(X; D

B

(F )) and H

�

(X;F ) = H

��

(H

�

(X;F )). We all

this the homology of X with ompat supports with respet to F .

5. The extra-ordinary derived funtors and the formalism of

Grothendiek-Verdier duality

In this setion we omplete formalism of Grothendiek-Verdier duality. Throughout we

will assume all the hypotheses in 4.3.

Proposition 5.1. Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites.

(i) Now there exists a natural isomorphism of derived funtors: Rf

�

Æ D

B

�

=

D

B

0

ÆRf

#

!

:

D(Mod

l

(X;B))! D(Mod

r

(X

0

;B

0

))

(ii) There exists also a natural isomorphism of derived funtors: Rf

!

#

Æ D

B

0

�

=

D

B

Æ

Lf

�

: D(Mod

l

(X

0

;B

0

)) ! D(Mod

r

(X;B)). More generally, if L, K"D(Mod

l

(X

0

;B

0

)),

there exists a quasi-isomorphism

Rf

!

#

(RHom

B

0

(L;K)) ' RHom

B

(Lf

�

(L); Rf

!

#

K)

Proof. We will let S denote the unit of Presh(S) as in 1.0.3. The �rst assertion follows

readily from Theorem 3.5 and Corollary 3.7 by taking K = D

B

. Let P"D(Mod

l

(X

0

;S).

Then one obtains the following quasi-isomorphisms:

RMap

S

(P;Rf

!

#

(RHom

B

0

(L;K))) ' RMap

S

(Rf

#

!

(P );RHom

B

0

(L;K))

' RMap

B

0

(Rf

#

!

(P )

L




S

L;K) ' RMap

B

0

(Rf

#

!

(P

L




S

Lf

�

(L));K)

' RMap

B

(P

L




S

Lf

�

(L); Rf

!

#

(K)) ' RMap

S

(P;RHom

B

(Lf

�

(L); Rf

!

#

(K)))
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The �rst and fourth quasi-isomorphisms are by Theorem 3.5, the seond and last quasi-

isomorphisms are by Chapter II, 2.0.15 and the third by the projetion formula. This proves

the seond assertion in (ii). The �rst assertion in (ii) follows by taking K = D

B

0

. Observe

in view of orollary 3.7 that Rf

!

#

(D

B

0

) ' D

B

.) �

5.1. Next we de�ne funtors

(5.1.1) Rf

!

: D(Mod

?

(X;B))! D(Mod

?

(X;B

0

)) by Rf

!

(F ) = D

B

0

(Rf

�

(D

B

(F ))) and

(5.1.2) Rf

!

: D(Mod

?

(X

0

;B

0

))! D(Mod

?

(X;B)) by Rf

!

(K) = D

B

(Lf

�

(D

B

0

(K)))

Proposition 5.2. (i) Let f : (X;B)! (X

0

;B

0

) denote a map of ringed sites as above.

Then Rf

!

#

(D

B

0

) ' D

B

.

(ii) There exists a natural isomorphism of funtors Rf

!

�

=

Rf

#

!

: D(Mod

?

(X;B)) !

D(Mod

?

(X

0

;B

0

))

(iii) There exists a natural isomorphism of funtors Rf

!

�

=

Rf

!

#

: D(Mod

?

(X

0

;B

0

)) !

D(Mod

?

(X;B)).

Proof. (i) Let p : (X;B) ! (S;A) (p

0

: (X

0

;B

0

) ! (S;A)) denote the struture map

of the ringed site (X;B) ((X

0

;B

0

), respetively). Let K"D(Mod

?

(X;B)). Now one obtains

the quasi-isomorphisms:

RHom

B

0

(Rf

#

!

(K); D

B

0

) ' RHom

B

0

(Rf

#

!

(K); Rp

0

!

#

(A)) ' RHom

A

(Rp

0

#

!

Rf

#

!

(K);A)

' RHom

A

(R(p

0

Æ f)

#

!

(K);A) ' RHom

B

(K;R(p

0

Æ f)

!

#

(A)) ' RHom

B

(K;D

B

).

By Theorem 3.5, the �rst term above may also be identi�ed with RHom

B

(K;Rf

!

#

D

B

).

Sine this holds for all K"D(Mod

?

(X;B)), we see that there exists a quasi-isomorphism

Rf

!

#

(D

B

0

) ' D

B

. This ompletes the proof of (i).

Let K"D(Mod

?

(X;B)). By the de�nition of Rf

!

, Rf

!

Æ D

B

(K) = D

B

0

Rf

�

D

B

(D

B

(K)) '

D

B

0

Rf

�

(K). Moreover, by our hypotheses f is perfet (or of �nite tor dimension and on-

strutible as the ase may be), so that Rf

�

(K)"D(Mod

?

(X

0

;B

0

)). Therefore, Rf

�

(K) '

D

B

0

(D

B

0

(Rf

�

(K))) ' D

B

0

(Rf

!

(D

B

(K))). Finally replaeK, by D

B

(K) to obtain: Rf

�

(D

B

(K)) '

D

B

0

(Rf

!

(K)). Next reall from Proposition 5.1 above that Rf

�

Æ D

B

�

=

D

B

0

ÆRf

#

!

. It follows

that there is a natural quasi-isomorphism D

B

0

(Rf

#

!

(K)) ' D

B

0

(Rf

!

(K)). Take the dual

with respet to D

B

0

one more to obtain (ii).

In view of (ii), it suÆes to show that the funtor Rf

!

is right adjoint to Rf

!

. This may

be established as follows. Let P"D(Mod

?

(X;B)) and K"D(Mod

?

(X

0

;B

0

)). Then

RHom

B

(P;Rf

!

K) = RHom

B

(P; D

B

(Lf

�

D

B

0

(K))) = RHom

B

(P;RHom

B

(Lf

�

D

B

0

(K); D

B

))

' RHom

B

(Lf

�

D

B

0

(K)

L




B

P;D

B

) = RHom

B

(Lf

�

D

B

0

(K)

L




B

P;Rf

!

#

(D

B

0

))

' RHom

B

0

(Rf

#

!

(Lf

�

D

B

0

(K)

L




B

P ); D

B

0

) ' RHom

B

0

(D

B

0

(K)

L




B

Rf

#

!

(P ); D

B

0

)

' RHom

B

0

(Rf

#

!

(P ); D

B

0

(D

B

0

(K))) ' RHom

B

0

(Rf

#

!

(P );K)

This ompletes the proof of (iii). �
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Definition 5.3. HeneforthRf

!

will denote eitherRf

#

!

: D(Mod

?

(X;B))! D(Mod

?

(X

0

;B

0

))

or the funtor D(Mod

?

(X;B)) ! D(Mod

?

(X

0

;B

0

)) de�ned above. Similarly Rf

!

will de-

note either the funtor Rf

!

#

: D(Mod

?

(X

0

;B

0

)) ! D(Mod

?

(X;B)) or the funtor Rf

!

:

D(Mod

?

(X

0

;B

0

)) ! D(Mod

?

(X;B)) de�ned above. The trae map will be the natural

transformation Rf

!

ÆRf

!

! id adjoint to the identity Rf

!

! Rf

!

.

Corollary 5.4. Let f : (X;B) ! (X

0

;B

0

). Then there exists a natural isomorphism

of derived funtors: D

B

0

ÆRf

�

�

=

Rf

!

Æ D

B

: D(Mod

?

(X;B))! D(Mod

?

(X

0

;B

0

)).

(ii) There exists also a natural isomorphism of derived funtors: D

B

ÆRf

!

�

=

Lf

�

Æ D

B

0

:

D(Mod

?

(X

0

;B

0

))! D(Mod

?

(X;B))

Proof. (i) It suÆes to apply D

B

0

to both sides of the isomorphism Rf

�

Æ D

B

�

=

D

B

0

Æ

Rf

#

!

followed by the observation that D

B

ÆD

B

�

=

id on D(Mod

?

(X;B)) and D

B

0

ÆD

B

0

�

=

id on

D(Mod

?

(X

0

;B

0

)). This proves (i). Apply D

B

to both sides of the isomorphism Rf

!

Æ D

B

0

�

=

D

B

ÆLf

�

followed by the observation that D

B

ÆD

B

�

=

id onD(Mod

?

(X;B)) and D

B

0

ÆD

B

0

�

=

id

on D(Mod

?

(X

0

;B

0

)). This proves (ii). �

5.2. Cohomologial orrespondene. Consider the following artesian squares:

X

1

�

S

X

2

p

1

||xxxxxxxx
p

2

""F
FFFFFFF

X

1

g

$$H
HH

HH
HH

HH
H

X

2

h

zzvvv
vv

vv
vv

v

S

Y

1

�

S

Y

2

q

1

}}zz
zz

zz
zz q

2

!!D
DD

DD
DD

D

Y

1

g

0

##G
GGGGGGGG Y

2

h

0

{{wwwwwwwww

S

We will let A denote a sheaf of algebras on the base site S so that H

�

(A) is loally

onstant. The orresponding inverse image of this presheaf of algebras on all the spaes on-

sidered above will also be denoted A. Let M

1

, N

1

"D(Mod

?

bi

(X

1

;A)), N

2

"D(Mod

?

l

(X

2

;A))

and M

2

"D(Mod

?

l

(X

2

;A)). Let M = M

1

L

�

A

M

2

= p

�

1

(M

1

)

L




A

p

�

2

(M

2

), N = N

1

� N

2

=

p

�

1

(N

1

)

L




A

p

�

2

(N

2

). There exists a natural map

(5.2.1) RHom

A

(M

1

; N

1

)

L

�

A

RHom

A

(M

2

; N

2

)!RHom

A

(M;N)

as in [SGA℄5 Expos�e III, (2.2.4).

Proposition 5.5. The above map is a quasi-isomorphism.

Proof. We will provide all the presheaves with the Cartan �ltration; now Chapter

III, 2.1 and Chapter III, Proposition 2.7 show that the assoiated graded terms for the

indued �ltrations on the terms above are given by:

Gr(RHom

A

(M

1

, N

1

)

L

�

A

RHom

A

(M

2

, N

2

))

' RHom

Gr(A)

(Gr(M

1

), Gr(N

1

))

L

�

Gr(A)

RHom

Gr(A)

(Gr(M

2

), Gr(N

2

))

while Gr(RHom

A

(M , N)) ' RHom

Gr(A)

(Gr(M), Gr(N)). Now Gr(M

i

) ' Sp(H

�

(M

i

)),

and learly
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�

n

H

n

(M

i

)"Mod

H

�

(A);r

(X

i

), i = 1; 2. Therefore Chapter III, Proposition 2.10(ii) provides

the identi�ation:

RHom

Gr(A)

(Gr(M

i

), Gr(N

i

)) ' RHom

Gr(A)

(Sp(H

�

(M

i

)), Sp(H

�

(N)))

' Sp(RHom

H

�

(A)

(H

�

(M

i

), H

�

(N

i

)))

Chapter III, 2.1 and Proposition 2.10 again show

(5.2.2) Gr(RHom

A

(M

1

; N

1

)

L

�

A

RHom

A

(M

2

; N

2

))

' Sp(RHom

H

�

(A)

(H

�

(M

1

), H

�

(N

1

))

L




H

�

(A)

RHom

H

�

(A)

(H

�

(M

2

), H

�

(N

2

)))

Clearly the last term is quasi-isomorphi to

(5.2.3) Sp(RHom

H

�

(A)

(H

�

(M

1

)

L




H

�

(A)

H

�

(M

2

); H

�

(N

1

))

L




H

�

(A)

H

�

(N

2

))

(See [SGA℄ Expos�e III, Proposition (2.3).) Moreover,

RHom

H

�

(A)

(H

�

(M

1

)

L




H

�

(A)

H

�

(M

2

), H

�

(N

1

))

L




H

�

(A)

H

�

(N

2

))

�

=

RHom

H

�

(A)

(H

�

(M

1

), RHom

H

�

(A)

(H

�

(M

2

), H

�

(N

1

))

L




H

�

(A)

H

�

(N

2

))

Therefore two appliations of Chapter III, Propositions 2.10(2.11), 2.12 and 2.13 show

the term in ( 5.2.2) is quasi-isomorphi to:

RHom

Gr(A)

(Sp(H

�

(M

1

)), RHom

Gr(A)

(Sp(H

�

(M

2

)), Sp(H

�

(N

1

))

L




H

�

(A)

H

�

(N

2

)))

' RHom

Gr(A)

(Sp(H

�

(M

1

)

L

�

Gr(A)

Sp(H

�

(M

2

)), Sp(H

�

(N

1

))

L




Gr(A)

Sp(H

�

(N

2

)))

' RHom

Gr(A)

(Gr(M), Gr(N))

These also show that the spetral sequene (obtained from the indued �ltrations) for

both sides of ( 5.2.1) are strongly onvergent and that therefore it suÆes to obtain a quasi-

isomorphism at the assoiated graded terms. We have therefore ompleted the proof that

the map of ( 5.2.1) is a quasi-isomorphism. �

Proposition 5.6. (Kunneth formulae). Consider the situation in 5.2. Assume further

that base-hange as in ( 2.7.1) holds.

Let L

1

"D(Mod

?

r

((X

1

;A), L

2

"D(Mod

?

l

((X

2

;A)), N

1

"D(Mod

?

r

(Y

1

;A)), N

2

"D(Mod

?

l

(X

2

;A));

let f

i

: X

i

! Y

i

denote maps over S and let f = f

1

�

S

f

2

: X ! Y denote the indued map.

Now there exists a natural quasi-isomorphism:
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(5.2.4) Rf

1�

L

1

L

�

A

Rf

2�

L

2

' Rf

�

(L

1

L

�

A

L

2

) and Rf

1!

L

1

L

�

A

Rf

2!

L

2

' Rf

!

(L

1

L

�

A

L

2

)

(5.2.5) f

�

1

N

1

L

�

A

f

�

2

N

2

�

=

f

�

(N

1

L

�

A

N

2

) and

(5.2.6) Rf

!

1

N

1

L

�

A

Rf

!

2

N

2

' Rf

!

(N

1

L

�

A

N

2

):

Proof. We onsider the proof of the seond quasi-isomorphism in ( 5.2.4). First observe

that left-hand-side and the right-hand-side are related by maps natural in the arguments.

Now it suÆes to prove these maps are quasi-isomorphisms at eah point of Y

1

�

S

Y

2

. By

base-hange we redue to the ase where q

1

, q

2

, g

0

and h

0

are all isomorphisms and that S

is a point (i.e the orresponding site is trivial). Observe that f = f

1

�

S

f

2

= f

1

Æ p

1

= f

2

Æ p

2

where the maps p

i

: X

1

�

S

X

2

! X

i

, i = 1; 2, are the two projetions. Now

Rf

1!

L

1

L

�

A

Rf

2!

L

2

'

!Rf

1!

L

1

L




A

Rf

2!

L

2

'

!Rf

1!

(L

1

L




A

Lf

�

1

(Rf

2!

(L

2

)))

'

!Rf

1!

(L

1

L




A

Rp

1!

Lp

�

2

(L

2

))

'

!Rf

1!

Rp

1!

(Lp

�

1

(L

1

)

L




A

Lp

�

2

(L

2

)) = Rf

!

(p

�

1

(L

1

)

L




A

Lp

�

2

(L

2

))

where the last = is obvious from the de�nition, the seond and the fourth are by the

projetion formula 2.17 while the �rst ' is by the hypotheses whih redue to the ase

where g

0

and h

0

are the identity maps. This proves the seond quasi-isomorphism in ( 5.2.4).

The �rst is established similarly.

One may readily establish ( 5.2.5) using the observations that q

i

Æ f = f

i

Æ p

i

, i = 1; 2.

Now we onsider the proof of ( 5.2.6). First observe that Rf

!

i

(N

i

) = D

A

Lf

�

i

D

A

(N

i

),

Rf

!

(N

1

L

�

A

N

2

) = D

A

Lf

�

(D

A

(N

1

)

L

�

A

D

A

(N

2

)). Therefore, by ( 5.2.5) and Proposition 5.5 it

suÆes to onsider the ase where N

1

and N

2

are both A on the respetive sites. i.e. it

suÆes to show that

(5.2.7) D

A

L

�

A

D

A

' D

A

where the D

A

on the right is the dualizing presheaf for X

1

�

S

X

2

. One may easily show that

there exists a natural from the left-hand-side to the right-hand-side whih is ompatible with

the indued �ltrations on eah. Therefore we redue, as in the proof of Proposition 5.5, to

the ase where A is replaed by H

�

(A). This is lear, for example, by [SGA℄ 5, Expos�e III,

(1.7.3). �

5.3. Consider the situation of 5.2.1. Assume that S is a point. LetM

1

= L

1

, N

2

= L

2

,

M

2

= the onstant pre-sheaf S on X

2

and N

1

= Rg

!

(S) ' D

S

in D(Mod

;f:t:d

l

(X

1

; S)).

Moreover, D

S

(L

1

) = RHom

S

(L

1

, Rg

!

(S)) and L

2

' RHom

S

(S, L

2

). Therefore one obtains

a natural quasi-isomorphism:

D

S

(L

1

)� L

2

= RHom

S

(L

1

, Rg

!

(S))

L

�

S

RHom

S

(S, L

2

)

'

!RHom

S

(L

1

L

�

S

S, Rg

!

(S)

L

�

S

L

2

)

'

!RHom

S

(p

�

1

(L

1

), p

�

1

Rg

!

(S)

L




S

p

�

2

(L

2

))
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Next let Y

1

= S, Y

2

= X

2

, g

0

: Y

1

! S = the identity and f

2

: X

2

! Y

2

= the identity. Now

( 5.2.6) provides the quasi-isomorphism:

Rg

!

(S)

L

�

S

L

2

'

!Rp

!

2

(S

L

�

S

L

2

) ' Rp

!

2

(L

2

)

Combining this with the above quasi-isomorphisms, in the above ase, one obtains a natural

quasi-isomorphism:

(5.3.1) D

S

(L

1

)� L

2

'

!RHom

S

(p

�

1

(L

1

); Rp

!

2

(L

2

))

5.4. Poinar�e-Verdier duality. Let A denote a ommutative presheaf of algebras on S

so that H

�

(A) is loally onstant. Let X denote an objet over S with the struture map

p : X ! S. Let F"D(Mod

l

(S;A)). Now one obtains a pairing:

(5.4.1) Rp

!

(A)
 p

�

(F )! Rp

!

(F )

This is adjoint to a map Rp

!

(Rp

!

(A)
 p

�

(F )) ' Rp

!

(Rp

!

(A))
 F

tr

A


id

! A
 F ! F where

the last map is given by the struture of a presheaf of left-A-modules on F . It follows that

taking hyperohomology, we obtain a pairing:

(5.4.2) H(X;Rp

!

(A))
H(X; p

�

(F ))! H(X;Rp

!

(F ))

In partiular it follows that if �"H

n

(X;A) is a lass, we obtain a pairing:

(5.4.3) � \ � : H

k

H(X; p

�

(F ))! H

n�k

(X;F )

For the following disussion, we will assume that S is a sheme and that we are onsid-

ering shemes or algebrai spaes of �nite type over S.

Definition 5.7. (Poinar�e duality property) Suppose the L-ohomologial dimension

of X over S is n. We say that X has the Poinar�e-Verdier duality property for X, if there

exists a lass [X℄"H

n

(X;A) so that [X℄ \ � is an isomorphism with F = p

�

(A) and for all

k. We all [X℄ a fundamental lass of X in the homology with ompat supports of X with

respet to A. We say that the algebra A has the Poinar�e-Verdier duality property over

S provided all smooth shemes (or algebrai spaes) X over S have the Poinar�e-Verdier

duality property.

Proposition 5.8. Assume that p : X ! S is smooth and that A is a presheaf of algebras

on S having the Poinar�e-Verdier duality property. If D

X

A

= Rp

!

(A), D

X

A

' �

n

Lp

�

(A) where

n denotes the l-ohomologial dimension of X over S.

Proof. Fix a (geometri) point p of X. Now the fundamental lass of X restrits

to fundamental lasses [U ℄"H

n

(U ;A) for eah open neighborhood U of p. Eah suh [U ℄

de�nes an isomorphism [U ℄ \ � : H

k

(H(U ;A))

�

=

H

k�n

(H(U ; �

n

A)) ! H

n�k

(U ;A)

�

=

H

k�n

(H(U ;Rp

!

A)). Taking the olimit over all open neighborhoods of the point p, we

obtain a quasi-isomorphism: �

n

p

�

(A)

p

' Rp

!

(A)

p

. Sine this holds for all points p, we

obtain �

n

p

�

(A) ' Rp

!

(A) = D

X

A

. �
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The following proposition is onsidered solely for the appliations in Chapter V. We let

pt denote a point in the usual sense provided with the trivial topology. Let A = KU = the

obvious onstant sheaf on pt, where KU is the spetrum representing omplex K-theory.

(Reall from Appendix A that this has the struture of a ring objet in the ategory of

symmetri spetra.)

Proposition 5.9. Let p : R

1

! pt denote the obvious projetion of R

1

to a point. Now

Rp

!

KU ' �p

�1

KU .

Proof. It suÆes to show that if K



(R

1

) denotes the spetrum of omplex K-homology

with ompat supports for R

1

, there exists a fundamental lass [R

1

℄"�

1

(K



(R

1

)). One may

ompute the above group using an Atiyah-Hirzebruh spetral sequene and the observation

that the integral Borel-Moore homology of R

1

is trivial in all degrees exept 1 where it is

Z. �

5.5. For the rest of the disussion we will restrit to the ategory of algebrai spaes (or

shemes) of �nite type over a base sheme S provided with the big �etale topology. In either

ase we will assume that there exists a set L of primes so that all the spaes we onsider are

of �nite L-ohomologial dimension. Let Presh(S) denote a ategory of presheaves on the

big �etale site of S. Let A denote a presheaf of algebras on S and let A denote their inverse

images on X, X

0

, Y and Y

0

. Let f : (X;A)! (Y;A) denote a map of ringed sites as before.

We will say smooth base-hange holds if the following ondition is satis�ed: let

(5.5.1) (X

0

;A)

f

0

//

g

0

��

(X;A)

g

��
(Y

0

;A)

f //
(Y;A)

denote a artesian square with f smooth. Now the natural map f

�

(Rg

�

(F ))! Rg

0

�

f

0

�

(F )

is a quasi-isomorphism for all F"D

;f:t:d

(Mod

l

(X;A)).

Lemma 5.10. Smooth-base hange holds in the following situations. We are onsidering

algebrai spaes provided with the �etale topology and for eah ringed spae (X;A) as above

eah H

�n

(A) is torsion. Moreover, the base-sheme S has �nite L-ohomologial dimension

for some non-empty set L of primes di�erent from the residue harateristis and eah

H

�n

(A) is L-torsion.

Proof. The proof is entirely similar to that of Proposition 2.10. �

Proposition 5.11. Assume the above situation. Then the funtor

Rf

!

#

: D

;f:t:d

(Mod

l

(Y;A))! D

;f:t:d

(Mod

l

(X;A))

satis�es the hypotheses of 3.1(iv).

Proof. Reall �(U;Rf

!

#

(K)) = R�(Y;RHom

A

(Rf

#

!

(A

U

);K)). Moreover one has the

spetral sequene

E

u;v

2

= H

u

(R�(Y; )ÆGr

v

(RHom

H

�

(A)

(Rf

#

1

(H

�

(A

U

));H

�

(K))))) H

u+v

(�(U;Rf

!

#

(K))

In view of the hypotheses on uniform �nite ohomologial dimension and the hypothesis that

f

�

is onstrutible, one may now readily verify that there exists an N >> 0 independent of

K and v so that E

u;v

2

= 0 for u > N . �
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Proposition 5.12. Assume the situation of 5.5. Let f : X ! Y denote a smooth map

as above and let the L-ohomologial dimension of the �ber be n. Then there exists a natural

isomorphism of funtors:

Rf

!

�

=

f

�

�

n

: D(Mod

?

l

(Y;A))! D(Mod

?

l

(X;A)).

Proof. Step 1. We �rst onsider a presheaf of the form j

#

U !

j

�

U

(A), where j

U

: U ! Y

belongs to the big �etale site of Y . Then Gr(j

#

U !

j

�

U

(A)) ' j

#

U !

j

�

U

(Gr

C

(A) ' j

#

U !

j

�

U

(Sp(H

�

(A)))

and therefore, by the hypotheses, j

#

U !

j

�

U

(A) has �nite tor dimension . Let V = X�

Y

U =

f

�1

(U). We will show there exists a quasi-isomorphism

(5.5.2) Rf

!

(j

#

U !

j

�

U

(A)) ' j

#

V !

j

�

V

f

�

�

n

(A)

natural in U . First observe that if f

U

: V ! U is the indued map, there exists a natural

map

(5.5.3) j

#

V !

Rf

!

U

j

�

U

(A)! Rf

!

(j

#

U !

j

�

U

(A))

By Proposition 5.8, Rf

!

U

(j

�

U

(A)) ' f

�

U

�

n

(A). Therefore the left-hand-side identi�es with

j

#

V !

f

�

U

�

n

(j

�

U

(A))

' f

�

�

n

(j

#

U !

j

�

U

(A)) ' j

#

V !

j

�

V

f

�

U

�

n

(A). Thus it suÆes to show the map in ( 2.1.4) is a quasi-

isomorphism. Reall j

#

V !

Rf

!

U

j

�

U

(A) ' D

A

Rj

U�

D

A

D

A

f

�

U

(D

A

j

�

U

(A)) ' D

A

Rj

U�

f

�

U

j

�

U

(D

A

)

and Rf

!

(j

#

U !

j

�

U

(A))

' D

A

f

�

D

A

D

A

Rj

U�

D

A

j

�

U

(A) ' D

A

f

�

Rj

U�

j

�

U

(D

A

) . The last two are quasi-isomorphi by

the smooth-base hange in ( 5.5.1). This ompletes step 1.

Step 2. Next onsider an L"D(Mod

l

(Y;A)) and let P (L)

�

! L denote a simpliial

resolution as in Chapter II, Proposition (2.4). Reall eah term P (L)

k

= t

U;k

j

#

U !

j

�

U

�

n

(A).

Therefore, by step 1, there exists a quasi-isomorphism

Rf

!

(P (L)

k

)

'

!f

�

�

n

(P (L)

k

)

natural in k. Now take the homotopy olimit hoolim

�

fRf

!

(P (L)

k

)jkg. By Lemma 3.3

with � = Rf

!

= Rf

!

#

this is quasi-isomorphi to Rf

!

hoolim

�

fP (L)

k

jkg ' Rf

!

L. (See the

proposition above whih shows that Rf

!

in fat satis�es the hypotheses there.) On the other

hand taking homotopy olimits preserve quasi-isomorphisms and ommute with the funtor

f

�

. It follows that hoolim

�

ff

�

�

n

(P (L)

k

)jkg ' f

�

�

n

(hoolim

�

f(P (L)

k

)jkg) ' f

�

�

n

(L). �

Corollary 5.13. Let f : X ! Y denote a smooth between omplex quasi-projetive

varieties of relative dimension n. Now the funtor

Rf

!

: D(Mod

;f:t:d

l

(Y;KU)! D(Mod

;f:t:d

l

(X;KU))

identi�es naturally with the funtor f

�

�

2n

. In partiular, there exists a fundamental lass

in H

�

(X;KU) whih is the homology of X with ompat supports with respet to KU as

de�ned earlier.

Proof. This is similar to the proof of the last proposition. �

6. Examples

With a view towards further appliations (see for example, the next hapter), we will

presently disuss in detail the two examples onsidered in (i) and (iii) after the statement

of the bi-duality theorem in setion 1.
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6.1. The

�

Etale topoi. Here S will denote a base Noetherian sheme. (shemes=S)

will denote the ategory of shemes loally of �nite type over S. ((smt:shemes=S) will

denote the full-subategory of smooth shemes over S.) We will provide this ategory with

the big �etale topology: this site will be denoted (shemes=S)

Et

. (One may similarly onsider

the big �etale site of all algebrai spaes loally of �nite type over S, though for simpliity

we will restrit to shemes.) Presh((shemes=S)

Et

) will denote a ategory of presheaves

on this site as before. Let l denote a prime di�erent from the residue harateristis of S.

Presently we will disuss an l-adi variant of the basi theory developed so far, under some

mild additional assumptions.

Let l denote a �xed prime. We let Presh((shemes=S)

Et

; l) denote the full sub-ategory

of Presh((shemes=S)

Et

) onsisting of objets P so that eah H

n

(P ) is l-primary torsion

as a presheaf.

6.2. Existene of ompletions. We will assume that the obvious inlusion of

Presh((shemes=S)

Et

; l) into Presh((shemes=S)

Et

) has a left-adjoint whih we all the

l-ompletion funtor.

Given an objet P"Presh((shemes=S)

Et

), its l-ompletion will be denoted P

^

l

. We will

assume that this funtor preserves the struture of strongly triangulated ategories and that

any pairingM

1


M

2


:::
M

n

! N will indue a pairing (M

1

)

^

l


(M

2

)

^

l


:::
(M

n

)

^

l

! (N)

^

l

.

It follows readily that if A is an algebra in Presh((shemes=S)

Et

), then its l-ompletion A

^

l

will also be an algebra in Presh((shemes=S)

Et

).

Examples 6.1. (i) As examples of this one may onsider the following. Let

Presh((shemes=S)

Et

) denote a ategory of presheaves of spetra; in this ase the Bous�eld-

Kan ompletion funtor for simpliial sets extends to suh a ompletion funtor.

(ii) In ase Presh((shemes=S)

Et

) = C(Mod((shemes=S)

Et

;R)) where R is the on-

stant sheaf assoiated to a ommutative ring with unit, the ompletion at l will have the

usual meaning.

Let A denote a ommutative algebra in Presh((shemes=S)

Et

). We will put the fol-

lowing assumption on A:

6.3. (i) for eah � � 0, there is natural map l

�

:

b

A

l

!

b

A

l

whih on H

�

indues

multipliation by l

�

.

(ii) the natural map

b

A

l

! holim

�

(

b

A

l

=l

�

) is a quasi-isomorphism and

(ii) the natural map H

n

(holim

�

(

b

A

l

=l

�

))! lim

�

H

n

((

b

A

l

))=l

�

is an isomorphism for eah n.

Examples 6.2. (i) Let Presh((shemes=S)

Et

) denote the ategory of all presheaves of

symmetri spetra on (shemes=S)

Et

. We letKU denote the spetrum representing omplex

(topologial) K-theory. Let

d

KU

l

denote the l-adi ompletion of the onstant presheaf of

spetra representing omplex K-theory. In this ase

d

KU

l

=l

�

has the usual meaning. If KU

denotes the spetrum representing omplex K-theory, reall that �

n

(KU)

�

=

Z if n is even

and trivial otherwise. Therefore, the above hypotheses are met by

d

KU

l

. (The next hapter

will onsider a detailed appliation of these ideas to the onstrution of Euler-lasses.)

(ii) Let S = Spe k denote the spetrum of an algebraially losed �eld of hara-

teristi p. We will onsider the big �etale site of all quasi-projetive smooth shemes over

k: this will be denoted ((qp:sm:shemes=k))

Et

. Let Presh((qp:sm:shemes=Spe k)

Et

) =

C(Mod((shemes=Spe k)

Et

;Z[1=p℄)). We letA denote the sheaf of E

1

di�erential graded
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algebras assoiated to the motivi omplex as in [J-6℄: we will denote this by �

n

Z

mot

(n).

In this ase, the rigidity property of mod-l

�

motivi omplexes shows that Z

mot

=l

�

(n) is

simply the pull-bak of the omplex (Z

mot

=l

�

)

jSpe k

. The latter is omputed in [FSV℄ to

be given by H

i

((Z

mot

=l

�

)

jSpe k

(n)) = Z=l

�

, i = 2n � 0 and trivial otherwise. Therefore

the hypotheses in 6.3 are satis�ed by A

^

l

.

Definition 6.3. Let S denote one of the sites onsidered above. We will de�ne

M"Mod

filt

l

(S;

b

A

l

) to be onstrutible if the following hold:

(i) there exists an

�

M"D

b

(Mod

l

(S;H

�

(

b

A

l

))) so that Gr(M) ' Sp(

�

M) and

(ii)

�

M ' lim

�

�

M=l

�

,

�

M=l

�

"D

;f:t:d

b

(Mod

l

(S;H

�

(

b

A

l

)=l

�

)), for eah � � 0.

M will be of �nite tor dimension if

�

M is of �nite tor dimension.

Theorem 6.4. With the above de�nition, the formalism of Grothendiek-Verdier duality

as in the earlier setions arries over to D(Mod

;f:t:d

l

(S;

b

A

l

)).

Proof. It suÆes to observe that the derived funtors of the diret and inverse image

funtors preserve the derived ategory of objets with onstrutible ohomology sheaves. �

Remark 6.5. Assume that, in addition, H

�

(

b

A

l

) is a sheaf of regular rings. In this,

ase every sheaf of modules over it is of �nite tor dimension. Therefore the formalism

of Grothendiek-Verdier duality will hold for all objets that are onstrutible; i.e. every

objet is automatially of �nite tor dimension. In partiular, this applies to the two examples

onsidered in 6.2.

6.4. Loally ompat Hausdor� spaes of �nite ohomologial dimension.

One may onsider a big site where the objets are loally ompat Hausdor� spaes of

�nite ohomologial dimension. The overings will given by overings in the usual sense

for the given topology on eah spae. Let S denote this big site and Presh(S) denote

the orresponding ategory of presheaves as before. Let A denote a ommutative algebra in

Presh(S) so that eah H

n

(A) is onstant. (For example A itself is onstant.) It is lear that

in this ase the entire formalism of Grothendiek-Verdier duality as in the earlier setions

applies. Suppose, in addition, that H

�

(A) is a sheaf of graded regular rings. In this ase,

every sheaf of modules over H

�

(A) is of �nite tor dimension, so that the entire formalism of

Grothendiek-Verdier duality applies to all objets that are onstrutible.

As an example of this one may let Presh(S) denote the ategory of presheaves of

(symmetri) spetra on S. If KU"Presh(S) denotes the onstant presheaf assoiated to

the spetrum representing omplex K-theory, the above hypotheses are satis�ed. The next

hapter will onsider a detailed appliation of these ideas.



CHAPTER V

Charater yles in K-theory for onstrutible sheaves

1. Introdution

In this hapter we provide a onrete appliation of the theory developed so far to

de�ne an additive map from the Grothendiek group of onstrutible sheaves on a spae to

its K-homology. There are various avatars of the basi tehnique: if X is a suitably nie

topologial spae and F is a onstrutible sheaf of Z-modules on X, we assoiate to F a

lass in the omplex K-homology of X. The same tehnique applies in the �etale setting

to onstrutible l-adi sheaves on the �etale topology of a variety in positive harateristi

p 6= l and provides lasses in its �etale K-homology (ompleted at l). These are Euler lasses

and generalize the yle lasses in K-homology assoiated to losed smooth subvarieties of

smooth varieties. Finally we also obtain a miro-loal version of these lasses; we also show

that these are K-theoreti versions of the harater yles with values in homology with

loally ompat supports as de�ned by Kashiwara and Shapira.

In the seond setion we will provide de�nitions of Fourier transformation, speialization

and miroloaliztion for presheaves of spetra. (All the spetra we onsider in this setion

may be assumed to be symmetri spetra (as in [H-S-S℄) and may in fat be replaed by

presheaves of �-spaes if one is willing to onsider onneted spetra.) These will be related

by strongly onvergent spetral sequenes whose E � 2-terms will be the orresponding

operations applied to the homotopy sheaves of the above presheaves of spetra. In the

next setion we de�ne and study the properties of a trae-map (and an assoiated Euler-

lass) for onstrutible presheaves of KU -module spetra on omplex varieties as well as

for onstrutible presheaves of

d

KU

`

-module spetra on the �etale site of varieties in positive

harateristi. (Here l is assumed to be di�erent from the harateristi of k and

d

KU

`

is

the ompletion at l in the sense of [B-K℄ and [T-1℄ of the symmetri ring spetrum KU . See

Appendix A and the end of the last hapter for some details on this.)

In the fourth setion we show how to assoiate funtorially a onstrutible presheaf of

KU - (

d

KU

`

-) module spetra to any onstrutible sheaf of Z-modules (any onstrutible

l-adi sheaf, respetively). In the �fth setion we explore the relationship between our

lasses in K-homology and the orresponding lasses in homology with loally ompat

supports as de�ned by Kashiwara and Shapira. (See [K-S-2℄). Topologial K-homology will

mean the homology with ompat supports with respet to the onstant sheaf of spetra

KU (or with respet to

d

KU

l

in positive harateristi p 6= l) in the sense of Chapter

IV, De�nition 4.8. For a spae X, H

0

(X;KU) (H

0

(X;

d

KU

l

)) will be denoted K

top

0

(X)

(

\

K

top

0

(X)

l

, respetively). In the �nal setion we ombine the results of the earlier setions

to de�ne an Euler-lass with values in topologial K-homology as an additive homomorphism

from the Grothendiek group of onstrutible sheaves to topologial K-homology ommuting

with diret images under suitable restritions. We also obtain suh a miro-loal Euler lass

for Z-onstrutible sheaves on omplex varieties. One may state the main theorem as follows.

If X is a omplex variety, we will let Const(X;Z) denote the ategory of all onstrutible

99
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sheaves of Z-modules on X. If X is a variety de�ned over a �eld k of positive harateristi p

(satisfying the onditions in (1.1.1)), l is a prime di�erent from p and � is a positive integer,

Const

f:t:d

(X; l� adi) will denote the full sub-ategory of onstrutible l-adi sheaves that

are of �nite tor dimension. We will let K(Const(X;Z)) (K(Const

f:t:d

(X; l� adi))) denote

the Grothendiek group of the orresponding ategory.

Theorem 1.1. (See Theorem (6.1)) (i) If X is a omplex algebrai variety, there exists

an additive homomorphism:

Eu : K(Const(X;Z)) ! K

top

0

(X).

(ii) If X is, in addition, a smooth quasi-projetive variety, there exists another additive

homomorphism:

Eu

�

: K(Const(X;Z)) ! K

top

0

(T

�

X)

whih fators through the obvious map K

top

0

(�

F

) ! K

top

0

(T

�

X) where �

F

is the miro-

support of F . The Todd homomorphism sends these lasses to the orresponding Euler-

lasses in Borel-Moore homology.

(iii). If X is a variety de�ned over a �eld k as in (0.1) of harateristi p and l is a

prime di�erent from p, there exists an additive homomorphism

Eu : K(Const

f:t:d

(X; l� adi))!

\

K

top

0

(X)

l

The map from K-homology to �etale homology (as in ( 5.0.7)) sends these lasses to the

orresponding Euler-lasses, at least, in the ase of projetive varieties.

(iv). The maps in (i) and (iii) ommute with diret-images for proper maps. The map

in (ii) ommutes with diret images for proper and smooth maps of omplex varieties.

Our interest in these problems was awakened by a question of Pierre Shapira about

the possibility of de�ning suh lasses diretly (i.e. without the intermediary mahinery of

D-modules) whom we thank warmly. One may also observe that the theory of D-modules

an provide suh lasses for C - onstrutible sheaves, while our onstrutions apply also to

onstrutible sheaves of Z-modules and also to varieties in positive harateristi.

1.1. Throughout the hapter, we will follow most of the onventions and terminology

of the earlier hapters; any exeption to this will be stated expliitly below. Topologial

K-homology will mean topologial K-homology with loally ompat supports for loally

ompat Hausdor� spaes and �etale K-homology with loally ompat supports as de�ned

in hapter IV for varieties in positive harateristis. These are de�ned by ring spetra in

the sense of appendix A, setion 2: the ring spetrum representing omplex K-theory will be

denoted KU . In positive harateristi p, we will restrit to shemes of �nite type de�ned

over a �eld k with �nite ohomologial dimension and so that for eah prime l di�erent from

the harateristi of k, eah H

n

(Gal(

�

k=k); Z=l

�

) is �nite for all n, � � 1. Here

�

k is the

separable losure of k: (For example k ould be a �nite �eld or the separable losure of one.)

If X is a loally ompat Hausdor� spae with �nite ohomologial dimension (a sheme

of �nite type over a �eld k as above) C

X

will denote the usual site (the small �etale site,

respetively) assoiated to X. We will use the generi term spae to denote a topologial

spae or a sheme as above.

1.2. We will adopt the basi terminology as in [K-S-1℄ or [K-S-2℄ for various aspets

of the miro-loal theory. The funtor ~ will denote the shea�fying funtor; we will apply
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this only to abelian presheaves. If R is a noetherian ring D

+

(C

X

; R) will denote the derived

ategory of bounded-below omplexes of R-modules on the site C

X

. (R will denote Z if X

is a topologial spae as above while it will denote

b

Z

l

, � >> 0 and l di�erent from har (k)

if X is a sheme in positive harateristi.) D



+

(C

X

; R) (D

;f:t:d

+

(C

X

; R)) will denote its full

subategory of omplexes with onstrutible ohomology sheaves (that are also of �nite tor

dimension, respetively).

1.3. Let E denote a ring spetrum in the sense of appendix A. Now Mod

l

(C

X

; E)

will denote the ategory of presheaves of left-module-spetra over E on the site C

X

. The

derived ategory D



(X;E) will denote the derived ategory of presheaves of E-modules

that are onstrutible as in earlier hapters, i.e. D(Mod



l

(C

X

; E)) while D

;f:t:d

(X;E) will

denote the assoiated full sub-ategory of all objets of �nite tor dimension. (Reall this

was denoted D(Mod

;f:t:d

l

(X;E)) in earlier hapters.)

Remark 1.2. In positive harateristis, we will assume that the given spetrum E is

the l-ompletion of another spetrum E

0

so that the homotopy groups of E are in fat the

l-ompletion of the homotopy groups of E

0

. (See Appendix A, (2.2).)

2. Fourier transformation, speialization and miro-loalization for presheaves

of spetra

In this setion we will restrit to omplex varieties or often to loally ompat topolog-

ial spaes. (All our results should arry over to arry over to positive harateristis (at

least in priniple) using the �etale site using the appropriate variations of the Fourier trans-

form, speialization and miro-loalization. With suh an extension, it would be possible to

obtain miro-loal lasses in �etale K-theory for onstrutible sheaves on varieties in positive

harateristis. However the details seem to be a bit involved - for example, the appropriate

notion of miro-loalization would be that of Gabber and Laumon and the appropriate no-

tion of Fourier transformation would be that of Deligne and Laumon (see [Lau℄). We hope

to disuss this more fully elsewhere.)

2.1. The Fourier-transformation. Let q

1

: E ! Z denote a loally trivial real vetor

bundle on a loally ompat spae Z with �nite ohomologial dimension. If R denotes a

graded ring, we will let D

+

(E ; R) denote the derived ategory of bounded-below omplexes

of sheaves of graded R-modules on E . Let D

+;oni

(E ; R) denote the full-subategory of

D

+

(E ; R) of omplexes whose ohomology sheaves are loally onstant on half-lines of E .

2.1.1. Let D



+;oni

(E ; E) will denote the full sub-ategory of the ategory D

;f:t:d

(E ;

E) onsisting of presheaves F so that �

�

(F )~= �

i

�

i

(F )~ belongs to D



+;oni

(E ; �

�

(E)).

Let i

1

: Z ! E (i

2

: Z ! E

�

) denote the losed imbedding provided by the zero-setion.

Let F

0

"D



+;oni

(E ; E). Now the map q

�1

1

Rq

1�

(F

0

)! F

0

de�nes a map

(2.1.2) Rq

1�

(F

0

)

'

!i

�1

1

q

�1

1

Rq

1�

(F

0

)! i

�1

(F

0

)

natural in F

0

.

Similarly the map i

1!

Ri

!

1

(F

0

)! F

0

de�nes a map

(2.1.3) Ri

!

1

(F

0

)

'

!Rq

1!

Æ i

1!

ÆRi

!

1

(F

0

)! Rq

1!

(F

0

);

again natural in F

0

. The Cartan-�ltration on F

0

is ompatible with the above maps (by

naturality); this �ltration provides spetral sequenes that onverge to the sheaves of homo-

topy groups of the above and whose E

s;t

2

-terms are given by the orresponding s-th derived

funtor applied to the sheaf H

�t

(F

0

) ~ = �

t

(F

0

) ~ - see (7.1.2). Sine the above spetral
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sequenes onverge strongly and we obtain an isomorphism at the E

2

-terms (see [K-S-2℄ p.

170), we observe that the above maps are quasi-isomorphisms in general.

Let q

2

: E

�

! Z denote the dual bundle to E . Let

P = f(x; y)"E�

Z

E

�

j < x; y >� 0g, P

0

= f(x; y)"E�

Z

E

�

j < x; y >� 0g,

Let i : P ! E�

Z

E

�

and i

0

: P

0

! E�

Z

E

�

denote the obvious losed imbeddings. Let R�

P

=

i

�

Ri

!

. Let p

1

: E�

Z

E

�

! E (p

2

: E�

Z

E

�

! E

�

) denote the obvious projetion. Let z

1

: E�

Z

Z !

E�

Z

E

�

and z

2

: Z�

Z

E

�

! E�

Z

E

�

denote the obvious zero-setions.

Now one de�nes the Fourier-Sato transform (see [K-S-2℄ hapter III and [Bryl-2℄) of

F"D



+;oni

(E ; E) to be

(2.1.4)

b

F = Rp

2�

R�

P

(p

�1

1

(F )) ' R(p

2�

Æ �

P

)(p

�1

1

(F ))

Observe from (7.1.2), that, so de�ned, there exists a spetral sequene

(2.1.5) E

s;t

2

= H

s

(

\

�

�t

(F ) ) = R

s

(p

2�

Æ �

P

)(p

�1

1

(

\

pi

�t

(F )))) �

�s�t

(

b

F )

whih is strongly onvergent sine all the spaes are assumed to have �nite ohomologial

dimension. Observe that the E

2

-terms are the ohomology sheaves of the Fourier transforms

of the abelian sheaf �

�t

(F )

~

. Using this spetral sequene, and various basi results from

Chapter IV, one an easily reover all the usual properties (see [K-S-2℄ hapter III or [Bryl-2℄

) of the Fourier transform. For example, one may show readily that

(2.F.1)

b

F "D



+;oni

(E

�

; E), if F"D



+;oni

(E ; E).

There exists a natural quasi-isomorphism:

(2.F.2)

b

F ' Rp

2!

i

0

�

i

0

�

(p

�1

1

F ), F"D



+;oni

(E ; E)

To see this, �rst observe the existene of the following natural maps:

Rp

2�

R�

P

(p

�1

1

F )! Rp

2�

R�

P

i

0

�

i

0

�

(p

�1

1

F ) Rp

2!

R�

P

i

0

�

i

0

�

(p

�1

1

F )! Rp

2!

i

0

�

i

0

�

(p

�1

1

F )

These maps are ompatible with the Cartan-�ltration on F and hene they indue maps of

spetral sequenes that onverge to the respetive sheaves of homotopy groups. The E

s;t

2

-

terms are the orresponding s-th derived funtor applied to �

t

(F )~. Therefore we obtain an

isomorphism of the orresponding E

2

-terms as shown in in [K-S-2℄p.171. This suÆes to

prove the maps in (2.F.2) are quasi-isomorphisms in general - see (7.1.2).

Similarly one also obtains a quasi-isomorphism:

(2.F.3) Rq

2�

(

b

F ) ' Rq

1!

(F ).

One may dedue this from 2.1.2 and 2.1.3 as follows. First observe the existene of

natural maps:

Rq

2�

(

b

F ) = Rq

2�

(Rp

2�

R�

P

(p

�1

1

(F )))! Rq

2�

(Rp

2�

R�

P

(i

0

�

i

0

�

p

�1

1

(F )))

 � Rq

2!

(Rp

2!

R�

P

(i

0

�

i

0

�

p

�1

1

(F )))
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By [K-S-2℄ p. 171, and by (7.1) the above maps may be seen to be quasi-isomorphisms. Now

we apply 2.1.3 to p

2

and q

2

; this provides the quasi-isomorphism of the last term above with

Ri

!

1

Rz

!

1

R�

P

(i

0

�

i

0

�

p

�1

1

(F )).

It is shown in [K-S-2℄ p.171 that the support of i

0

�

i

0

�1

R�

P

(p

�1

1

(�

�

(F ))~is ontained in

Z�

Z

E

�

. Therefore we may replae the Rz

!

1

with z

�1

1

. Now there exists a natural map

Ri

!

1

z

�1

1

i

0

�

i

0

�1

R�

P

(p

�1

1

F )! Ri

!

1

z

�1

1

i

0

�

i

0

�1

(p

�1

1

F ) = Ri

!

1

(F ) ' Rq

1!

(F )

where the last quasi-isomorphism follows from 2.1.3 applied to q

1

. Now (7.1) shows the

omposition:

Rq

2�

(

b

F )! Rq

1!

(F )

is a quasi-isomorphism.

Assume E has the Poinar�e-duality property. Let L"D

;f:t:d

(Z; E). Now we also obtain

the natural quasi-isomorphism:

(2.F.4)

\

Rq

!

1

(L) ' q

�1

2

(L).

To see this, observe

\

Rq

!

1

(L) ' Rp

2!

i

0

�

i

0

�1

(p

�1

1

(Rq

!

1

(L))) ' Rz

!

2

i

0

�

i

0

�1

(Rp

!

2

q

�1

2

(F )) sine

Rq

!

i

' q

�1

i

[2d℄ and Rp

!

i

' p

�1

i

[2d

0

℄ for suitable d and d

0

by the Poinar�e duality property

of E. Now the last term has a natural map from Rz

!

2

Rp

!

2

(q

�1

2

(L)) = q

�1

2

(L). By (7.1) we

redue to showing the above maps are quasi-isomorphisms when L"D

;f:t:d

b

(Z; �

�

(E)). This

is lear by [K-S-2℄ p. 175.

Finally one may also observe that

(2.F.5) Sp(

b

F ) '

\

(Sp(F )), F"D



+;oni

(E ; �

�

(E)).

where Sp : D



+;oni

(E ; �

�

(E)) ! D



+;oni

(E ; Gr(E)) is the funtor de�ned in Chapter I,

De�nition (4.6). This follows readily from Chapter IV, Proof of Proposition 2.12 and the

disussion following it, where it is shown that all the funtors involved in the de�nition of

the Fourier transformation ommute with the funtor Sp.

2.2. Speialization. Let X denote a real manifold of lass C

�

, � � 2 and let f :M �

X denote the imbedding of a submanifold in X. We let

~

X

M

denote the blow-up of X � R

along M � 0. We let p :

~

X

M

! X and t :

~

X

M

! R denote the obvious maps. The �bers

t

�1

() are isomorphi to X for  6= 0, while for  = 0, t

�1

(0) ' T

M

X = the normal bundle

to the imbedding of M in X. Let 
 = t

�1

(fx"R jx > 0g), j : 
 !

~

X

M

the obvious open

imbedding and s : T

M

X !

~

X

M

the obvious losed imbedding. If F"D



(X; E), one lets

�

M

(F ) = (Rj

�

j

�1

p

�1

F )j

T

M

X

= s

�1

Rj

�

j

�1

(p

�1

F )

and all it the speialization of F alongM . In this ontext one obtains a strongly onvergent

spetral sequene (as in (7.1.2)):

E

s;t

2

= H

s

(�

M

(�

�t

(F )

~

))) �

�s�t

(�

M

(F ))

~

using whih one reovers the usual properties (see [K-S-1℄ hapter 2) of speialization. For

example, one obtains a natural quasi-isomorphism:

(2.S.1) �

M

(F ) ' Rs

!

j

!

j

!

Rp

!

(F )
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To see this, one begins with the �bration sequene:

s

�

Rs

!

(j

!

j

�1

(p

�1

F ))! j

!

j

�1

(p

�1

F )! Rj

�

j

�1

p

�1

(F )

On applying s

�1

to it, one observes that s

�1

Æ j

!

' � and hene

s

�1

Rj

�

j

�1

p

�1

(F ) ' �(Rs

!

j

!

j

�1

p

�1

F ) ' Rs

!

j

!

�(~p

�1

F )

where ~p = p Æ j : 
 ! X. Now 
 ' X � fr"R jr > 0g and ~p = the projetion to the

�rst fator. One may therefore onlude readily that �(~p

�1

F ) ' R~p

!

(F ) - see Chapter

IV, Proposition 5.12. This gives (2.S.1). As a orollary to (2.S.1) one obtains the natural

quasi-isomorphism

(2.S.2) �

M

(D

E

X

(F )) ' D

E

T

M

X

(�

M

(F )).

One also obtains the following property. Let f : M ! X denote the losed imbedding

of M in X, � : T

M

X !M and � : T

�

M

X !M the obvious projetions. Let z :M ! T

M

X

denote the zero-setion. Now one veri�es readily that there is a natural map:

(2.S.3) f

�1

(F )! R�

�

(�

M

(F ))

(To see this, observe f

�1

(L) = z

�1

s

�1

p

�1

(F ) ! z

�1

s

�1

Rj

�

j

�1

p

�1

(F ) = z

�1

(�

Y

(F )).

The last term may be identi�ed with R�

�

(�

M

(F )) by 2.1.2.) Using the spetral sequene

above (whih onverges strongly) along with the identi�ation of its E

2

-terms, one may

show readily that this map is a quasi-isomorphisms stalkwise. Now apply the above map

to D

X

(F ) instead of F . Using the theory of generalized Verdier duality as in hapter IV,

(2.S.2) and (2.S.3) one now obtains a natural quasi-isomorphism:

(2.S.4) f

!

(F ) ' D

M

(f

�1

D

X

(F )) D

M

(R�

�

D

T

M

X

(�

M

(F )) ' R�

!

(�

M

(F ))

Next assume L"D

;f:t:d

(M ; E). Applying (2.S.4) to F = f

!

(L) = f

�

(L), one obtains a

natural map

L ' Rf

!

f

!

(L)

'

 R�

!

(�

M

(f

!

(L)))

Applying R�

!

to this map, one obtains a natural map

(2.S.5) R�

!

(L)

'

 R�

!

R�

!

(�

M

(f

!

L)) �

M

(f

!

L)

Finally one may also show that one has a natural quasi-isomorphism:

(2.S.6) Sp(�

M

(

�

F )) ' �

M

(Sp(

�

F )),

�

F"D



b

(M ; �

�

(E)). This follows readily from Chapter

IV, Proof of Proposition 2.12 and the disussion following it, where it is shown that all the

funtors involved in the de�nition of the funtors involved in �

M

ommute with the funtor

Sp.

2.3. Miro-loalization. Assume the situation of 1.1 through 1.3. If F"D

;f:t:d

(X;

E), we de�ne the miro-loalization of F along M to be

�

M

(F ) =

\

(�

M

(F )).

In this ontext one obtains a strongly onvergent spetral sequene:

E

s;t

2

= H

s

(�

M

(�

�t

(F )

~

))) �

�s�t

(�

M

(F ))

using whih one may reover all the usual properties (see [K-S-1℄ hapter 2) of miro-

loalization. (Observe one again that the E

2

-terms are now the miro-loalizations of the
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abelian sheaf �

�t

(F )

~

.) For example let f : Y ! X denote a losed imbedding of manifolds

as above. Now one obtains a natural quasi-isomorphism

(2.3.1) f

!

(F )

'

!R�

!

(�

Y

(F )) ' R�

�

(�

Y

(F ))

where the �rst quasi-isomorphism is from (2.S.4) while the seond one is from (2.F.3) with

q

1

: E ! Z (q

2

: E

�

! Z) being � : T

M

X ! M (� : T

�

M

X ! M , respetively). Using this

one may readily obtain the following result as well. Let f : Y ! X denote a map between

manifolds. Let q

j

, j = 1; 2 denote the j � th projetion on X � Y and let � denote the

graph of f in X � Y . Let � : T

�

�

(X � Y ) ! �

�

=

Y denote the obvious projetion. (Here

T

�

�

(X � Y ) is the onormal bundle assoiated to the imbedding Æ : � ! X � Y .) Let

F"D

;f:t:d

(X; E) and let G"D

;f:t:d

(Y ; E). Then one obtains natural quasi-isomorphisms:

R�

�

�

�

RHom

E

(q

�1

2

(G); q

!

1

(F )) ' Æ

!

(RHom

E

(q

�1

2

(G); q

!

1

(F )))

' RHom

E

(Æ

�1

Æ q

�1

2

G; Æ

!

Æ q

!

1

(F )) ' RHom

E

(G;Rf

!

F )

(2.3.2)

where the �rst quasi-isomorphism follows from 2.3.1 with F (f) there replaed byRHom

E

(q

�1

2

(G),

q

!

1

(F )) (Æ, respetively) and the seond quasi-isomorphism follows from Chapter IV, Propo-

sition 5.1(ii). Moreover, Chapter IV (5.6.6), provides the quasi-isomorphism:

(2.3.3) RHom

E

(q

�1

2

(G); q

!

1

(F )) ' D

X

(G)� F:

Assume the situation of (1.1); let F"D

;b

(X; E) and let Æ : X ! X � X denote the

obvious diagonal imbedding. Now one obtains a natural map (observe that Æ is a losed

imbedding) making use of (2.F.4) and (2.S.5):

(2.3.4) �

�

(Æ

!

F ) =

\

(�

�

(Æ

!

(F )))!

\

(R�

!

(F )) ' �

�1

(F )

Let F"D

;f:t:d

(X; E) so that there are only �nitely many distint �

i

(F ). (i.e. either

they are nontrivial in all but �nitely many degrees or they are periodi. For example if F

is a onstrutible presheaf of KU -module spetra, the sheaf of homotopy groups of F are

Bott-periodi of period 2.) If i

1

,... i

n

are these distint values, one may de�ne the miro-

support of F to be the smallest losed oni subspae of T

�

X ontaining the miro-supports

of SS(�

i

j

(F )

~

), j = 1; :::; n.

3. The Trae map and the Euler-lass

We will assume the basi situation in 1.1 through 1.3. In this setion we will de�ne a

trae-map

(3.0.5) Tr

F

: R�(X;RHom

E

(F; F ))! H (X;D

E

X

)); F"D

;f:t:d

(X;E)

where it is assumed that there are only �nitely many distint nontrivial �

i

(F ).

If X is a smooth variety over the omplex numbers or the reals and F"D

;b

(X; E) has

only �nitely many distint �

i

(F ) ( so that its miro-support may be de�ned), we will also

de�ne a miro-loal trae-map

(3.0.6) Tr

F

�

: R�(X;RHom

E

(F; F ))! H (�

F

;D

E

X

)

where �

F

is the miro-support of F .
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Let F"D

;f:t:d

(X; E) be globally of �nite tor dimension. Now one observes the natural

quasi-isomorphism:

RHom

E

(F , F ) ' D

E

X

(F )� F . (Take X

1

= X

2

= S in hapter IV (5.6.5) and S = E.)

Therefore one obtains a natural map � : D

X

E

(F ) � F ! D

X

E

. This is simply the evaluation

map. Taking hyperohomology we obtain the trae-map

(3.0.7) Tr

F

: R�(X;RHom

E

(F; F ))! H (X;D

X

E

)

(Observe that Tr

F

(above) may also be viewed as the omposition of the following maps:

R�(X;RHom

E

(F


E

E;F


E

E))

'

!R�(X;RHom

E

(E;RHom

E

(F; F


E

E)))

'

 R�(X;RHom

E

(E;F


E

D

E

(F )))

�

!R�(X;RHom

E

(E;D

X

E

))

(3.0.8)

One may ompare this with the de�nition of the trae-map adopted in [Ill℄.)

Next assume that F"D

;f:t:d

(X; E) has only �nitely many distint �

i

(F )~ so that the

miro-support �

F

of F is de�ned as a oni subset of T

�

X. Now we observe the quasi-

isomorphisms:

RHom

E

((F , F )

'

!R�

�

R�

�

F

�

�

RHom

E

(q

�1

2

F , q

!

1

F )

'

!R�

�

R�

�

F

�

�

(D

X

E

(F )� F )

Clearly there is a natural map D

X

E

(F )�F ! Æ

�

Æ

�

(D

X

E

(F )�F )! Æ

�

(D

X

E

(F )
F )! Æ

�

(D

X

E

)

where the last map is �. Now ( 2.3.4) provides a natural map :

R�

�

R�

�

F

�

�

(Æ

�

(D

X

E

))! R�

�

R�

�

F

(�

�1

(D

X

E

)).

On taking the hyperohomology spetrum on X, therefore one obtains a map:

R�(X;RHom

E

(F; F ))! H (X; R�

�

R�

�

F

(�

�1

D

X

E

))) ' H (�

F

; D

E

)

3.1. The omposition of the above maps will be alled the miro-loal trae and will

be denoted Tr

F

�

. (One may ompare this with [K-S-2℄ p. 377.) We proeed to establish the

main properties of these trae maps.

(3.Tr.1) On taking the homotopy groups, the trae-map indues an additive homomor-

phism Tr

F

: �

n

(RHom

E

(F , F )) ! �

n

(H (X; D

X

E

)) for eah n. Similarly the miro-loal

trae indues an additive homomorphism Tr

�

: �

n

(R�(X;RHom

E

(F; F ))) ! �

n

(H (�

F

;

D

E

))! �

n

(H (T

�

X; D

E

)).

(3.Tr.2) Gr(Tr

F

) ' Tr

Gr(F )

and similarly Gr(Tr

F

�

) ' Tr

Gr(F )

�

, where Gr denotes the

assoiated graded terms with respet to the Cartan �ltration. If

�

M

:

"D

;b

(X; �

�

(E)), one

also obtains natural quasi-isomorphisms: Tr

Sp(

�

M

:

)

' Sp(Tr

�

M

:

) and Tr

Sp(

�

M

:

)

�

' Sp(Tr

�

M

:

�

).

For the trae-map, this follows readily from Chapter III, Propositions 2.7, 2.10(ii), 2.13

and Chapter IV, (4.2.1). For the miro-loal trae this follows from the same and (2.F.5)

along-with (2.S.6).

3.2. In order to establish the additivity of the trae-map, it is onvenient to onsider the

�ltered ategory Presh

fil;f:t:d

(C

X

;E). (See [Ill℄ hapitre V .) The objets of this ategory are

presheaves F"Presh

f:t:d

(C

X

;E) provided with a �nite inreasing �ltration by sub-objets

in the same ategory and indexed by the integers so that there exist integers m and M suh

that F

i

= � if i < m and F

i

= F

M

for all i > M . i.e. One obtains

� � F

m

� F

i+1

� :::: � F

M

= F
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We also require that eah map �(U; F

i

)! �(U; F

i+1

) is a stable o�bration for eah U"C

X

and so is (F

i

)

�x

! (F

i+1

)

�x

for eah point �x in the site C

X

. The orresponding derived

ategory will be denoted D

fil;f:t:d

(C

X

; E).

3.3. One may also de�ne the graded ategory Presh

gr;f:t:d

E

(C

X

). The objets of this

ategory are presheaves F"Presh

f:t:d

E

(C

X

) provided with a grading by the integers so that

all but �nitely many terms are trivial. (i.e. There exist F

m

,..., F

M

"Presh

E

(C

X

) along

with an isomorphism F

�

=

W

m�i�M

F

i

. The orresponding derived ategory will be denoted

D

gr;f:t:d

(C

X

; E)

3.4. Given F , F

0

"Presh

fil;f:t:d

E

(C

X

) one puts the obvious �ltration on RHom

E

(F , F

0

).

i.e. RHom

E

(F , F

0

)

n

= ff"RHom

E

(F; F

0

jf(F

i

) � F

0

i+n

g. Given F"Presh

fil;f:t:d

E

(C

X

) and

F

0

"Presh

fil;f:t:d

E

(C

X

), we let F


E

F

0

be �ltered by (F


E

F

0

)

n

= the image of

W

i+j=n

F

i




E

F

0

j

!

F


E

F

0

3.5. Let F = f� � F

0

� F::: � F

p

= Fg be an objet in Presh

fil;f:t:d

E

(C

X

). Sine the

�ltration is �nite, it is automatially exhaustive and omplete. Moreover, by re-indexing

the �ltration, one may also assume it is dereasing.) Therefore, Chapter III, Proposition 2.7

(where E is provided with the trivial �ltration) provides a natural quasi-isomorphism:

gr(R�(X;RHom

E

(F; F ))) ' R�(X;RHom

E

(gr(F ), gr(F )))

Here gr denotes taking the assoiated graded terms with respet to the given �ltration.

3.6. Let Gr(E) denote the assoiated graded spetrum obtained from E using the

Cartan �ltration. Observe that an objet F"Presh

fil;f:t:d

E

(C

X

) onsists of a �ltered objet

so that the �ltration as above is ompatible with another dereasing �ltration fF

n

jng so

that

(i) Gr(F ) = fF

n

=F

n+1

jng"Presh

fil

Gr(E)

(C

X

) and

(ii) there exists an objet

~

P

:

0

! ::: !

~

P

:

p

"D

fil

�

�

(E);r

(C

X

) whih is globally of �nite tor

dimension so that one obtains a homotopy ommutative diagram:

Gr(F

0

)

//

'

��

Gr(F

1

)

//

'

��

:::::

//
Gr(F

p

) ' Gr(F )

'

��
Sp(

~

P

:

0

)

//
SP (

~

P

:

1

)

//
:::::

//
Sp(

~

P

:

p

) ' Sp(

~

P

:

)

)

3.7. An objet F"Presh

gr;f:t:d

E;r

(C

X

) is a graded objet F =

W

i

F

i

"Presh

gr

E;r

(C

X

) so

that the gradation above is ompatible with a dereasing �ltration fF

n

jng so that

(i) Gr(F ) = fF

n

=F

n+1

jng"Presh

gr

Gr(E)

(C

X

) and

(ii) there exists an objet

~

P

:

= �

0�i�p

~

P

:

i

"D

gr

�

�

(E);r

(C

X

) whih is globally of �nite tor

dimension so that one has a homotopy ommutative diagram
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W

i

Sp(

~

P

:

i

)

'

����! Sp(

~

P:)

'

?

?

y

'

?

?

y

W

i

Gr(F

i

)

'

����! Gr(F )

)

Notation. Let F"Presh(C

X

;E). Gr(F ) will denote the assoiated graded objet ob-

tained from a dereasing �ltration on F ompatible with the Cartan �ltration on E. If

F"Presh

fil

(C

X

), gr(F ) will denote the assoiated graded objet with respet to the given

�ltration on F . This belongs to Presh

gr

E

(C

X

).

Observe that the same de�nition of the trae Tr

F

applies to the �ltered and graded

ases. Observe (from 3.4) that the dualizing presheaf D

X

E

has only the trivial �ltration

(with D

X

E

in degree 0) and that

(D

X

(F )� F )

0

= D

X

(U(F ))� U(F )

where F is a �ltered objet as in 3.5, U(F )"Presh

E;r

(C

X

) is the objet obtained by forgetting

the �ltration and D

X

(F )�F is provided with the obvious indued �ltration. It follows that

(3.7.1) �

�

(Tr

F

(f)) = �

�

(Tr

U(F )

(U(f))); f"R�(X;RHom

E

(F; F ))

3.8. Next assume F

�

=

W

i

F

i

"Presh

gr;f:t:d

E;r

(C

X

). Observe that now an f"R�(X;RHom

E

(F; F ))

of grade 0 is given by a olletion ff

i

"RHom

E

(F

i

, F

i

)jig. Now one may readily show that

�

�

(Tr

F

(f)) = �

i

�

�

(Tr

F

i

(f

i

))

Let F"Presh

fil;f:t:d

E;r

(C

X

) denote a �ltered objet as in 3.5. In view of the quasi-

isomorphism there, the funtor gr indues a map

�

�

(R�(X;RHom

E

(F; F )))! �

�

(gr(R�(X;RHom

E

(F; F ))))

�

=

�

�

(R�(X;RHom

E

(gr(F ),

gr(F )))).

Now one obtains the ommutative square

R�(X;RHom

E

(F; F ))

0

Tr

F

����! R�(X;RHom

E

(E;D

X

E

))

0

gr

?

?

y

?

?

y

gr=id

R�(X;RHom

E

(gr(F ); gr(F )))

0

Tr

gr(F )

�����! R�(X;RHom

E

(E;D

X

E

))

0

by taking the assoiated graded terms of degree 0. (Reall that RHom

E

(E;D

X

E

) is provided

with the trivial �ltration.) Therefore, one obtains the ommutative square:

(3.8.1) �

�

(R�(X;RHom

E

(F; F )))

�

�

(Tr

F

)//

gr

��

�

�

(R�(X;RHom

E

(E;D

X

E

)))

gr

��
�

�

(RHom

E

(gr(F ); gr(F )))

�

�

(Tr

gr(F)

)//
�

�

(R�(X;RHom

E

(E;D

X

E

)))
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Sine �

�

(Tr

F

(f)) = �

�

(Tr

U(F )

(f)) (see ( 3.7.1), 3.8) the above square shows that, if

f"R�(X;RHom

E

(F; F )) is of degree 0:

(3.8.2) �

�

(Tr

U(F )

(U(f))) = �

i

�

�

(Tr

gr

i

(F )

(gr

i

(f)))

Proposition 3.1. Let

(3.8.3)

F

0

f

0

��

//
F

f

��

//
F

00

f

00

��
F

0

//
F

//
F

00

denote a ommutative diagram in Presh

f:t:d

E

(C

X

) so that the two rows are o�bration se-

quenes. Then

Tr

F

(f) = Tr

F

0

(f

0

) + Tr

F

00

(f

00

) as lasses in �

�

(H (X; D

E

))

If X is a smooth variety over the real or omplex numbers and F , F

0

and F

00

all have

only �nitely many distint sheaves of homotopy groups one also obtains:

Tr

F

�

(f) = Tr

F

0

�

(f

0

) + Tr

F

00

�

(f

00

) as lasses in �

�

(H (�; D

E

))

where � is the smallest oni subspae of T

�

X ontaining the miro-supports of all the

sheaves �

i

(F

0

)

~

, �

i

(F )

~

and �

i

(F

00

)

~

for all i.

Proof. We will only prove this for the trae-map sine the proof for the miro-loal

trae will be similar. It suÆes to interpret the diagram in ( 3.8.3) as a map f of �ltered

objets: we let F be �ltered by F

0

= F

0

and F

1

= F . We proeed to verify that there is an

objet

�

P

:

"D

fil;

�

�

(E);r

(C

X

) �ltered by

�

P

:

0

�

�

P

:

1

=

�

P

:

so that we obtain a homotopy ommutative

diagram:

(3.8.4) Gr(F

0

)

//

'

��

Gr(F

1

) = Gr(F )

'

��
Sp(

�

P

:

0

)

//
Sp(

�

P

:

1

) = Sp(

�

P

:

)

Let

�

F

0

:

,

�

F

:

and

�

F

00

:

"D



r

(C

X

;�

�

(E)) be globally of �nite tor dimension so that Sp(

�

F

0

:

) '

Gr(F

0

), Sp(

�

F

:

) ' Gr(F ) and Sp(

�

F

00

:

) ' Gr(F

00

). On taking the homotopy groups, the

ommutative diagram ( 3.8.3) provides the ommutative diagram:

�

F

0

:

��

//

�

f

0

��

�

F

:

//

�

f

��

�

F

00

:

�

f

00

��
�

F

0

:

��

//
�

F

:

//
�

F

00

:

in the ategory of omplexes of sheaves of graded modules over �

�

(E). Let

~

P

:

= Cyl(~�)

denote the mapping ylinder of the map � of omplexes. There is a monomorphism,

�

F

0

:

! Cyl(�) whih is split degree-wise. Therefore we may de�ne a �ltration on Cyl(�) by

Cyl(�)

0

=

�

F

0

:

, Cyl(�)

i

= � if i < 0 and Cyl(�)

1

= Cyl(�). It follows that, with the above

�ltration,

�

P

:

"D

fil;

(C

X

;�

�

(E)) is globally of �nite tor dimension and provides a diagram

as in 3.8.4. The hypotheses guarantee that we now obtain a map f in Presh

fil;f:t:d

(C

X

;E).

This ompletes the proof of the above proposition. �
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3.9. Assume the above situation. We de�ne the Euler lass of F (denoted eu(F)) to

be Tr

F

(id

F

)"�

0

(H (X; D

E

))

3.10. Next assume the situation of 3.1. Now we will de�ne the miro-loal Euler lass

of F (denoted eu

�

(F)) to be the image of Tr

F

�

(id

F

)"�

0

(H (�

F

; D

E

)) in �

0

(H (T

�

X; D

E

)).

Proposition 3.2. Assume the hypotheses of (3.Tr.3). Then eu(F ) = eu(F

0

) + eu(F

00

)

and eu

�

(F ) = eu

�

(F

0

) + eu

�

(F

00

).

Proof. This is lear from ( 3.8.3) and ( 3.0.7), 3.1. �

Let i : Y ! X denote the losed immersion of a smooth sub-variety into a smooth

variety, both being de�ned over an algebraially losed �eld k of harateristi p � 0. Let

E = KU if p = 0 and

d

KU

l

, l 6= p, � >> 0 if p > 0. Let F = i

�

i

�

(E), E being the onstant

sheaf on C

X

. Consider the following quasi-isomorphisms:

H (X, RHom

E

(i

�

i

�

(E), i

�

i

�

(E)))

'

!H (X, D

E

(i

�

i

�

(E))


E

i

�

i

�

(E))

'

!H (X, i

�

Ri

!

(D

X

E

)


E

i

�

i

�

(E))

'

!H (X, i

�

Ri

!

D

X

E

)

'

!H (Y , D

Y

E

)! H (X; D

X

E

)

(The last term is the presheaf-hyperohomology of X with respet to E.) The trae-map

sends id

F

to the image of the fundamental lass of Y in H

0

(X; E). By Poinar�e-Lefshetz-

duality this lass identi�es with the yle lass l(Y )"H

0

(H (X; E)). Now observe that the

yle lass l(Y ) = the Euler-lass of the normal-bundle to the imbedding of Y in X. This

justi�es alling the lasses in 3.9 Euler-lasses.

4. Passage from onstrutible sheaves of Z-modules to onstrutible presheaves

of KU-module spetra

In this setion we will show how to funtorially assoiate to any onstrutible sheaf of

Z-modules (

b

Z

l

-modules) on a suitable spae a onstrutible presheaf of KU -module spetra

(

d

KU

l

-module spetra, respetivelyif � >> 0).

4.1. Let X denote a spae as before and let C

X

denote its assoiated site. If X is a

real or omplex variety with C

X

its usual site, we onsider the ring spetrum KU (the ring

Z, respetively). If X is a sheme of �nite type over a �eld k with harateristi p > 0 and

l is a prime number 6= p, � >> 0, we will instead onsider the ring spetrum

d

KU

l

(the

ring

b

Z

l

, respetively). KU (Z,

d

KU

l

,

b

Z

l

) will denote the obvious onstant sheaves. One key

observation is that �

i

(KU)

�

=

Z (�

i

(

d

KU

l

)

�

=

b

Z

l

) if i is even and trivial otherwise.

We will �rst onsider the ase where X is a real or omplex variety. Let

�

F denote a

onstrutible sheaf of Z-modules on C

X

. Let R(

�

F ) !

�

F denote a resolution by a hain

omplex of at sheaves of Z-modules. Let � denote the sphere spetrum and let � denote

the assoiated onstant sheaf: now form �

�

(�)


Z

R(

�

F ) = �

�

(�)

L




Z

�

F . Apply the funtor

GEM from Chapter I, setion 1 (ST4) (see also Chapter I, setion 4, Proposition 4.4 to

this objet in eah degree to obtain a hain-omplex of presheaves of generalized Eilenberg-

Malane spetra. Next we de-normalize this to obtain the orresponding simpliial objet

of presheaves of Eilenberg-Malane spetra. Now we onsider:

(4.1.1) K

�

(

�

F ) = KU

L




�

DN(GEM(�

�

(�)

L




Z

(

�

F )))
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This is a simpliial objet of presheaves of KU -module spetra. Next one takes its homotopy

olimit to obtain a presheaf of spetra whih will be denoted

(4.1.2) K(

�

F )

By taking a �xed at resolution of �

�

(�), one may observe that the funtor

�

F 7! K(

�

F ) is

an exat funtor in the following sense:

4.2. if 0 ! F

0

! F ! F

00

! 0 is a short exat sequene of sheaves of Z-modules on

the site C

X

, the orresponding diagram K(F

0

)! K(F )! K(F

00

) is a distinguished triangle

in Presh(C

X

;KU).

Proposition 4.1. Assume the above situation. Now �

i

(K(F ))

~

�

=

�

F if i is an even

integer and trivial otherwise.

Proof. We ompute the homotopy groups of eah term, K

n

(

�

F ), of the simpliial objet

using the spetral sequene in Chapter III, Proposition 1.2. Here

E

s;t

2

= Tor

�

�

(�)

s;t

(�

�

(KU); �

�

([DN(GEM(�

�

(�)))

L




Z

(

�

F )℄

n

))

) �

s+t

(K

n

(

�

F ))

One may identify �

�

(DN(GEM(�

�

(�))

L




Z

(

�

F ))) with DN(�

�

(�)

L




Z

(

�

F )). The latter is a at

module over �

�

(�) in eah simpliial degree. Therefore

E

2

s;t

= 0 if s > 0 and

E

2

o;t

= (�

�

(KU)


Z

R

n

(

�

F )))

t

�

=

R

n

(

�

F ) if t is even and trivial otherwise.

(Reall that �

t

(KU) = Z if t is even and trivial otherwise.) It follows that �

t

(K

n

(

�

F ))

�

=

R

n

(

�

F ) if t is even and

�

=

0 otherwise. Therefore, when we ompute the homotopy groups

of �

�

(K(

�

F )) using the spetral sequene for the homotopy olimit of a simpliial objet as

in Chapter I, setion 1, (HCl), we obtain the isomorphism as stated in the proposition. �

4.3. In positive harateristi p, we will need to modify the de�nition of K

�

(

�

F ) as

follows. We replae Z (KU) everywhere by its l-adi ompletion

b

Z

l

(the l-ompletion

d

KU

l

,

respetively). One also needs to replae � by its l-ompletion

b

�

l

; R

�

(

�

F ) !

�

F will be a

resolution by a omplex of sheaves of at

b

Z

l

-modules. Then the same omputations show

that �

i

(K(

�

F ))

�

=

�

F if i is even and

�

=

0 if i is odd.

In ase F = fF

�

j�g is an inverse system of sheaves of l-adi sheaves one applies the

funtor K to eah term of the inverse system to obtain the inverse system fK(F

�

)j�g. Now

one takes the homotopy inverse limit of the fK(F

�

)j�g to obtain K(F ).

Proposition 4.2. In harateristi 0, the assignment

�

F ! K(

�

F ) sends short exat

sequenes of sheaves of Z-modules to �bration sequenes of presheaves of spetra. In positive

harateristis, the orresponding statement also holds for l-adi sheaves.

Proof. This should be lear from the de�nition of the funtor

�

F ! K(

�

F ). �

Definition 4.3. If

�

F is a onstrutible sheaf as above, we de�ne Eu(

�

F )"K

0

(X) (

\

K

0

(X)

l

)

as eu(K(

�

F )). If X is a smooth omplex variety, and

�

F is a Z-onstrutible sheaf, we let

Eu

�

(

�

F ) = eu

�

(K(

�

F )).
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5. Relations with the Euler lass in homology with loally ompat supports

In this setion we will relate the above Euler lasses to the ones taking values in homology

with loally ompat supports. Throughout this setion we will restrit to omplex projetive

varieties. We also let KU denote the ring spetrum representing omplex K-theory and let

Gr(KU) denote the assoiated graded objet de�ned with respet to the Cartan �ltration;

now Gr(KU) =

W

i

Gr

i

(KU) and Gr

0

(KU) is also a ring spetrum and the obvious map

Gr

0

(KU)! Gr(KU) is a map of ring spetra.

Proposition 5.1. D

Gr(KU)

' D

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

Proof. We begin with the following observations:

5.0.1. If f : X ! Y is a map of spaes, thenRf

!

(Gr(KU)) ' Rf

!

(Gr

0

(KU)) 


Gr

0

(KU)

Gr(KU).

This follows from the projetion formula in Chapter IV, Proposition 2.17.

5.0.2. If K"Presh

KU

(X) so that Gr(K) = Gr

0

(K) 


Gr

0

(KU)

Gr(KU), then

RHom

Gr(KU)

(Gr(KU); Gr(K)) ' RHom

Gr

0

(KU)

(Gr

0

(KU); Gr

0

(K)) 


Gr

0

(KU)

Gr(KU).

This follows from Chapter II, (2.0.11).

Now

RHom

Gr(KU)

(Rf

!

(Gr(KU)); Gr(K))

' RHom

Gr(KU)

(Rf

!

(Gr

0

(KU)) 


Gr

0

(KU)

Gr(KU); Gr(K))

' RHom

Gr

0

(KU)

(Rf

!

(Gr

0

(KU)); Gr(K))

The �rst ' follows from the observation 5.0.1 above, while the seond ' follows from Chapter

II, (2.0.11). In view of the hypothesis on K, one may identify the last term with

RHom

Gr

0

(KU)

(Rf

!

(Gr

0

(KU)); Gr

0

(K) 


Gr

0

(KU)

Gr(KU)).

By replaing Rf

!

(Gr

0

(KU)) with a resolution as in Chapter II, Proposition 2.4 and making

use of (5.1.2), we may now identify the latter with

RHom

Gr

0

(KU)

(Rf

!

(Gr

0

(KU)); Gr

0

(K)) 


Gr

0

(KU)

Gr(KU).

Finally this identi�es with

RHom

Gr

0

(KU)

(Gr

0

(KU); Rf

!

(Gr

0

(K))) 


Gr

0

(KU)

Gr(KU) ' Rf

!

(Gr

0

(K)) 


Gr

0

(KU)

Gr(KU).

�

It follows by applying the projetion formula (see Chapter IV (2.17)) to the struture

map p : X ! pt, (when p is proper) that

H (X;D

X

Gr(KU)

) ' H (X;D

X

Gr

0

(KU)

)

L




Gr

0

(KU)

Gr(KU) and

�

i

(H (X;D

X

Gr(KU)

))

�

=

�

n

H

2n�i

(X;�

0

(KU)); i = 0 or i = 1

(5.0.3)

whih is the sum of all the integral homology groups (with loally ompat supports) of X.
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Let

�

F denote a onstrutible sheaf of Z-modules on X and let F = K(

�

F ) denote the

presheaf ofKU -module-spetra de�ned as in 4.2. Reall from Proposition 4.1 that �

i

(F )~=

�

F

for all i even and trivial otherwise. Let Gr(F ) =

W

i

Gr(F )

i

"Presh



(C

X

;Gr(KU)). Then

Gr(F ) ' Gr

0

(F ) 


Gr

0

(KU)

Gr(KU). Now one obtains the natural quasi-isomorphisms:

R�(X;RHom

Gr(KU)

(Gr(F ); Gr(F ))) ' H (X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F ))

L




Gr

0

(KU)

Gr(KU))

' H (X; (D

X

Gr

0

(KU)

(Gr

0

(F ))�Gr

0

(F ))

L




Gr

0

(KU)

Gr(KU))

' H (X; (D

X

Gr

0

(KU)

(Gr

0

(F ))�Gr

0

(F )))

L




Gr

0

(KU)

Gr(KU))

' R�(X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F )))

L




Gr

0

(KU)

Gr(KU)

(5.0.4)

The last-but-one quasi-isomorphism follows from the projetion formula in Chapter IV,

(2.17) applied to the obvious map p : X ! pt.

Moreover the spetral sequenes in Chapter III, Proposition 1.2 applied to the above tensor-

produts degenerate identifying

�

i

(R�(X;RHom

Gr(KU)

(Gr(F ); Gr(F ))))~

�

=

�

i

(R�(X;RHom

Gr(KU)

0

(Gr

0

(F ); Gr

0

(F ))) 


Gr

0

(KU)

Gr(KU))~

�

=

�

n

�

2n�i

(R�(X;RHom

Gr(KU)

0

(Gr

0

(F ); Gr

0

(F ))))~ and

(5.0.5)

(5.0.6) �

i

(H (X;D

X

Gr(KU)

))

�

=

�

n

�

2n�i

(H (X;D

X

Gr

0

(KU)

))~

Moreover RHom

Gr

0

(KU)

(Gr

0

(F ), Gr

0

(F )) ' Sp(RHom

Z

(

�

F ,

�

F )) aording to Chapter III,

Proposition 2.13 The spetral sequene in Chapter III, Theorem 2.18(ii) degenerates and

provides the identi�ations:

�

�

(R�(X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F ))))~

�

=

R�(X;RHom

Z

(

�

F;

�

F )) and

�

�

(H (X;D

X

Gr

0

(KU)

))~

�

=

H

�

(X; D

Z

) = H

�

(X; Z)

Next we de�ne a homomorphism

(5.0.7) Gr : K

top

(X) ' H (X;D

KU

)! H (X;D

Gr(KU)

)

as follows. Observe the left-hand side may be identi�ed with

RMap(�

0

; D

KU

)

'

!RHom

KU

(KU

X

; D

KU

).

Now the funtorGr de�nes a map from the above term toRHom

Gr(KU)

(GrKU

X

; D

Gr(KU)

) '

RMap(�

0

, D

Gr(KU)

) ' H (X; D

Gr(KU)

). Thus the map in ( 5.0.7) indues a map Gr :

K

top

(X) ! H

�

(X; Z). Observe that the same de�nition applies in positive harateristis

and de�nes a map Gr :

\

K

top

(X)

l

' H (X;D

d

KU

l

)! H (X;D

Gr(

d

KU

l

)

).

Proposition 5.2. Assume the above situation. Then �

i=0;1

�

i

(Gr(Tr

F

(f))) = Tr

�

F

(f)

and �

i=0;1

�

i

(Gr(Eu(

�

F ))) = the Euler lass of

�

F with values in H

�

(X; Z). Similarly if X is
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a smooth omplex quasi-projetive variety, �

i=0;1

�

i

(Eu

�

(

�

F )) = the miro-loal Euler lass of

�

F with values in H

�

(T

�

X; Z).

Proof. ( 5.0.4), ( 5.0.5) and the above disussion provide us with the ommutative

diagram

R�(X;RHom

Gr(KU)

(Gr(F ); Gr(F )))

Tr

Gr(F)

Gr(KU) //

'

��

H (X;D

X

Gr(KU)

)

'

��
R�(X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F ))) 


Gr

0

(KU)

Gr(KU)

Tr

Gr

0

(F )

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

//
H (X;D

X

Gr

0

(KU)

) 


Gr

0

(KU)

Gr(KU)

where we have used Tr

K

A

to denote the trae-map de�ned for the presheaf K of module-

spetra over A as in setion 2. Sending F to its assoiated graded objet Gr(F ) de�nes a

quasi-isomorphism: Gr(RHom

KU

(F , F ))

'

!RHom

Gr(KU)

(Gr(F ), Gr(F )). One may there-

fore extend the above diagram to:

R�(X;RHom

KU

(F; F ))

Tr

F

KU //

Gr

��

H (X;D

X

KU

)

Gr

��
R�(X;RHom

Gr(KU)

(Gr(F ); Gr(F )))

Tr

Gr(F)

Gr(KU) //

'

��

H (X;D

X

Gr(KU)

)

'

��
R�(X;RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F ))) 


Gr

0

(KU)

Gr(KU)

Tr

Gr

0

(F )

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

//
H (X;D

X

Gr

0

(KU)

) 


Gr

0

(KU)

Gr(KU)

We have thereby shown:

Gr(Tr

F

KU

) = Tr

Gr

0

(F )

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

One may similarly show that

Gr((Tr

F

�

)

KU

) = (Tr

Gr

0

(F )

�

)

Gr

0

(KU)




Gr

0

(KU)

Gr(KU)

Now onsider the map

�

�

(RHom

Gr

0

(KU)

(Gr

0

(F ); Gr

0

(F )) 


Gr

0

(KU)

Gr(KU))

�

�

(Tr

Gr

0

(F )

Gr

0

(KU)




Gr

0

(KU)

Gr(KU))

��������������������! �

�

(H (X;D

X

Gr

0

(KU)

) 


Gr

)

(KU)

Gr(KU))

On taking �

�

, the spetral sequenes in Chapter III, Proposition 1.2 degenerates. Observe

that on taking the sum �

i=0;1

�

i

, the term in ( 5.0.5) identi�es with H

�

(RHom

Z

(

�

F ;

�

F )) while

the term in ( 5.0.6) identi�es with H

�

(X;Z). Therefore we obtain the �rst assertion. Con-

sidering �

i=0;1

�

i

(Tr

F

KU

(id

F

)) and �

i=0;1

�

i

((Tr

�

)

F

KU

), one obtains the remaining two assertions

as well. �
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If X denotes a omplex variety K

top

�

(X) will denote the (omplex) topologial K-theory

of X. (Reall this is represented by the spetrum KU .) By arguments as in [J-3℄, one may

identify this with �

i=0;1

�

i

(H (X;KU )). One may now identify the Chern-harater map with

the map:

h

0

: �

i=0;1

�

i

(H (X;KU ))

Gr

! �

i=0;1

�

i

(H (X;Gr(KU )))

! �

i=0;1

�

i

(H (X;Gr(KU )

Q

)))

�

=

H

�

(X; Q )

(5.0.8)

(In fat, the above map is indued by the universal hern-harater h : KU ! KU

Q

'

�

i

K(Q ; 2i).) Next onsider the map

�

0

: �

i=0;1

�

i

(H (X;D

KU

))

Gr

! �

i=0;1

�

i

(H (X;D

Gr(KU)

))

! �

i=0;1

�

i

(H (X;D

Gr(KU)

Q

))

�

=

H

�

(X; Q )

(5.0.9)

One may observe readily that the map �

0

is a module map over the multipliative map h

0

and that it is a natural transformation of funtors that are ovariant with respet to proper

maps between quasi-projetive omplex varieties. Moreover, one may see readily that, if pt

denotes a point and [pt℄

K

([pt℄) denotes the fundamental lass in K-homology (in homology)

�

0

([pt℄

K

) = [pt℄. (See Chapter IV, Corollary (5.12) that provides fundamental lasses in

omplex K-homology.) These two properties show, as in [BFM℄ p. 129 and [F-2℄ p. 166,

that the transformation �

0

must be the Todd homomorphism. Therefore, we obtain the

following theorem.

Theorem 5.3. Let X denote a omplex projetive variety. Let

�

F denote a onstrutible

sheaf of Z-modules on X.

(i) Then �

0

(Eu(

�

F )) = Eu(

�

F )"H

�

(X; Q ) if X is projetive.

(ii) If X is a smooth projetive omplex variety, �

0

(Eu

�

(

�

F

:

)) = Eu

�

(

�

F

:

)"H

�

(T

�

X; Q )

where the Euler-lass in rational homology (the miro-loal Euler lass in rational homology)

is the one de�ned as in [K-S-2℄ p.377.

Proof. This is lear from the above disussion. �

6. The main Theorem

We will adopt the terminology of setion 3 for the rest of the paper. If X is a omplex

variety, we will let Const(X;Z) denote the ategory of all onstrutible sheaves of Z-modules

on X. If X is a variety de�ned over a �eld k of positive harateristi p (satisfying the on-

ditions in 1.1), l is a prime di�erent from p and � is a positive integer, Const

f:t:d

(X; l�adi)

will denote the full sub-ategory of onstrutible l-adi sheaves that are also of �nite tor di-

mension. We will let K(Const(X;Z)) (K(Const

f:t:d

(X; l�adi))) denote the Grothendiek

group of the orresponding ategory.

Theorem 6.1. (i) If X is a omplex variety, there exist an additive homomorphism:

Eu : K(Const

Z

(X))! K

top

0

(X).
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(ii) If X is, in addition, a smooth quasi-projetive variety, there exists another additive

homomorphism:

Eu

�

: K(Const

Z

(X))! K

top

0

(T

�

X)

whih fators through the obvious map K

top

0

(�

F

) ! K

top

0

(T

�

X) where �

F

is the miro-

support of F . The Todd homomorphism sends these lasses to the orresponding Euler-

lasses in rational homology at least for projetive varieties.

(iii). If X is a variety de�ned over a �eld k as in 1.1 of harateristi p, there exists

an additive homomorphism

Eu : K(Const

f:t:d

(X;

b

Z

l

))!

\

K

top

0

(X)

l

The map from K-homology to �etale homology (as in 5.0.7) sends these lasses to the orre-

sponding Euler-lasses at least for projetive varieties.

(iv). The maps in (i) and (iii) ommute with diret-images for proper maps.The map

in (ii) ommutes with diret images for proper and smooth maps of omplex varieties.

Proof. Clearly it suÆes to prove the last assertion. Let F"D(Mod

l

(C

X

; E)) where E

denotes KU and C

X

is the usual site in harateristi 0 (

d

KU

l

and C

X

denotes the �etale site

in positive harateristi p, respetively, with l 6= p). The proof that the maps in (i) and (iii)

ommute with the diret image funtor for proper maps will follow from the ommutativity

of the following diagram:

Rf

�

(D

X

E

(F ))


E

Rf

�

(F ) //

��

Rf

�

(D

X

E

(F )


E

F ) //
Rf

�

(D

X

E

)

��
D

Y

E

(Rf

�

(F ))


E

Rf

�

(F ) //
D

Y

E

The left-most vertial map exists beause Rf

�

D

X

E

(F ) ' Rf

!

D

X

E

(F ). One observes that the

above diagram is the same as:

Rf

�

RHom

E

(F;Rf

!

D

Y

E

)


E

Rf

�

(F )

//

��

Rf

�

Rf

!

D

Y

E

id

��
RHom

E

(Rf

�

(F ); Rf

�

Rf

!

D

Y

E

)


E

Rf

�

(F )

//

��

Rf

�

Rf

!

D

Y

E

��
RHom

E

(Rf

�

F;D

Y

E

)


E

Rf

�

(F ) //
D

Y

E

where the map Rf

�

Rf

!

D

Y

E

' Rf

!

Rf

!

D

Y

E

! D

Y

E

is the trae de�ned in hapter IV. The

ommutativity of the above diagram is lear and this proves (iv) for the maps in (i) and

(iii).

Next we onsider the proof of (iv) for the map in (ii). First one observes the ommuta-

tivity of the diagram:
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Rf

�

(D

X

E

(F ))�Rf

�

(F )

//

��

Rf

�

(D

X

E

(F )� F )

//
Rf

�

(Æ

Y

�

D

X

E

)

��
D

Y

E

(Rf

�

(F ))�Rf

�

(F )

//
Æ

Y

�

D

Y

E

This is established by the same argument as above. (Here Æ

Y

: Y ! Y � Y is the diagonal

immersion.) It suÆes to observe a natural quasi-isomorphism:

Rf

�

R�

X

�

R�

�

M

�

�

X

(F ) ' R�

Y

�

R�

�

Rf

�

F

�

�

Y

Rf

�

(F )

where �

X

: T

�

X ! X (�

Y

: T

�

Y ! Y ) is the obvious projetions, �

F

(�

Rf

�

F

) is the miro-

support of F , �

�

X

(�

�

Y

) is the miro-loalization along �

X

: X ! X � X (�

Y

: Y !

Y � Y , respetively). The hypothesis that f be proper and smooth implies f is transverse

to X ! X �X and also proper on the support of F . The above quasi-isomorphism follows

from [K-S-2℄ Proposition 4.2.4 along with the spetral sequene in (7.1.2). �

7. A general tehnique

We will use the following general tehnique for extending results from abelian sheaves

to presheaves of spetra.

Theorem 7.1. Let S and S

0

denote two sites as before. (In partiular they have �-

nite ohomologial dimension (�nite l-ohomologial dimension in positive harateristi,

respetively). Let T; T

0

: Presh

KU

(S) ! Presh

KU

(S

0

) denote two ovariant (or two on-

travariant) funtors that preserve �bration sequenes and quasi-isomorphisms for any ring

spetrum in the sense of Chapter I. Let � : T ! T

0

denote a natural transformation. Assume

there exists funtors T

ab

, T

0

ab

: D

b

(S, �

�

(KU)) ! D

b

(S

0

; �

�

(KU)) provided with natural

quasi-isomorphisms T (Sp(

�

F

:

)) ' Sp(T

ab

(

�

F

:

)) and similarly for T

0

. Assume further that T

ab

and T

0

ab

have �nite ohomologial dimension.

(7.1.1) Suppose in addition that there exists a natural map �

�

F

:

: T

ab

(

�

F

:

) ! T

0

ab

(

�

F

:

)

so that �

Sp(

�

F

:

)

= Sp(�

�

F

:

). Then �

F

is a quasi-isomorphism for all F"Presh

KU

(S) if and

only if �

�

F

:

is a quasi-isomorphism for eah

�

F

:

"D

b

(C; �

�

(KU)).

(7.1.2) Moreover there exist strongly onvergent spetral sequenes:

E

s;t

2

= H

s

(T

ab

(�

�t

(F )~))) �

�s�t

(T (F ))~and

E

s;t

2

= H

s

(T

0

ab

(�

�t

(F )~))) �

�s�t

(T

0

(F ))~.

Proof. It is enough to onsider the anonial Cartan �ltration on any F"Presh(C).

Sine both T and T

0

preserve �bration sequenes, they send the above �ltration to �bration-

sequenes. These provide long-exat sequenes on taking the homotopy groups. The spetral

sequenes arise this way. The hypotheses on T and T

0

ensure the spetral sequenes are

strongly onvergent.

Moreover the hypotheses ensure that there exists a natural map from the former to the

latter. Therefore an isomorphism of the E

2

-terms provides an isomorphism of the abutments.

This proves the suÆieny of the hypothesis in (7.1.1). For presheaves of spetra of the form

Sp(

�

F

:

),

�

F

:

"D

b

(C; �

�

(KU)) a quasi-isomorphism T (Sp(

�

F

:

)) ' T

0

(Sp(

�

F

:

)) is equivalent to

a quasi-isomorphism T

ab

(

�

F

:

) ' T

0

ab

(

�

F

:

). This proves the neessity of the hypothesis in

(7.1.1). �





CHAPTER VI

Survey of other appliations

In this hapter we will provide a survey of various appliations and potential appliations

of the theory developed so far.

1. Filtered Derived ategories

In this setion, we will show how to provide an extension of the basi theory to inlude

algebras A that are provided with a non-dereasing �ltration (i.e. in addition to the anoni-

al Cartan �ltration). We will assume that Presh(S) is as in Chapter III, (1.1) and (1.2) and

that A"Presh(S) is an algebra provided with a non-dereasing exhaustive and separated �l-

tration F (indexed by the integers). Reall the Cartan �ltration on any objet P"Presh(S)

is de�ned by f�

�n

P jng where �

�n

is the ohomology trunation funtor as in Chapter I.

This �ltration will be denoted C. Now f�

�n

F

m

Ajn;mg is a ommon re�nement of both

the �ltrations: we will let the �ltration C Æ F be de�ned by (C Æ F )

k

A = +

k=n+m

�

�n

F

m

(A).

Clearly this �ltration is also exhaustive and separated.

1.1. We will now make an assumption that the assoiated graded term of the �ltra-

tion C Æ F in bi-degree (n;m) is Gr

C;n

(Gr

F;m

(A)) for all m and n. (We observe that the

assoiated graded term in bi-degree (n;m) of the �ltration C ÆF is given by Gr

CÆF;n;m

(K) =

�

�n

F

m

K=(�

�n�1

F

m

K + �

�n

F

m�1

K). Observe also that sine �

�n

need not ommute with

taking quotients, the above assumption need not be satis�ed in general.)

Observe that Gr

F

(A)"Presh(S) is also an algebra and Gr

C;n

(Gr

F

(A)) is its assoiated

graded term of degree n with respet to the Cartan �ltration. i.e. H

i

(Gr

C;n

(Gr

F

(A))) = 0

unless i = n. (For example onsider the ase Presh(S) is the ategory of omplexes of

abelian presheaves on a site S. Now a �ltered algebra A in Presh(S) orresponds to a

di�erential graded algebra provided with a �ltration ompatible with the struture of a

di�erential graded algebra. In this ase one may require the di�erentials of the (di�erential

graded) algebra A are strit, i.e. their images and o-images are isomorphi. This ondition

implies that the spetral sequene (in H

�

) assoiated to the given �ltration degenerates,

whih in turn implies the hypothesis 1.1 at least under the hypothesis that H

i

(A) = 0 for

i << 0 and that the �ltration F is bounded below.)

In this situation, we will letMod

filt

l

(S;A) denote the ategory of all left-modulesM over

A provided with an exhaustive and separated �ltration F

M

ompatible with the �ltration

C Æ F on A. One de�nes Mod

filt

r

(S;A) similarly. Moreover one may arry over the entire

theory developed in Chapter III to this ontext; in partiular one de�nes Mod

;f:t:d

l

(S;A)

and Mod

perf

l

(S;A) as in hapter III. One may de�ne Mod

perf

bi

(S;A) as the orresponding

ategory of bi-modules over A.

In this ontext the Bi-duality theorem of Chapter IV, setion 4 applies to provide a

dualizing omplex for this derived ategory. This theorem may be restated in this ontext

as follows.

119
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Theorem 1.1. Assume the above situation. A perfet omplex D "Mod

perf

bi

(S;A) will

be a dualizing omplex for the ategory Mod

perf

l

(S;A) provided it omes equipped with a

non-dereasing �ltration F ompatible with the given �ltration on A, so that Gr

F

(D ) is a

dualizing omplex for the ategory Mod

perf

l

(S;H

�

(Gr

F

(A))).

Grothendiek-Verdier style duality for derived ategories assoiated to sites provided

with �ltered sheaves of rings is learly a speial ase of the above framework where the

Cartan �ltration is trivial. The following are examples of this.

Examples 1.2. 1. Let X denote a omplex non-singular algebrai variety and let

A = D

X

= the sheaf of rings of di�erential operators on X. above theorem shows what

ould be andidates for a dualizing omplex for the ategory of perfet omplexes of D

X

-

modules. In fat, sine, every oherent D

X

-module may be given a �ltration so that it

is a perfet omplex, this theorem shows why the usually de�ned dualizing omplex for

D

X

-modules is in fat a dualizing omplex.

2. Similar onsiderations apply to super-varieties and shows what are possible andidates

for a dualizing omplex. (Reall that the struture sheaves of super-varieties are �ltered so

that the assoiated graded objets are ommutative.)

2. Derived shemes

Reall that a derived sheme is given by a ringed site (X;A = �

i"Z

A

i

) where A = �

i"Z

A

i

is

a sheaf of graded di�erential graded algebras so that (X;A

0

) is a sheme (in the usual sense)

and eah A

i

is a oherent A

0

-module. (See [Kon℄, [CK1℄, [CK2℄ for basi details on derived

shemes.) The derived versions of the quot-shemes and Hilbert shemes are onstruted in

[CK1℄ and [CK2℄. A quasi-oherent (oherent) sheaf on suh a derived sheme is a sheaf of

graded di�erential graded modules F = �

i

F

i

so that eah F

i

is a quasi-oherent (oherent,

respetively) sheaf on the sheme (X;A

0

). The basi theory of Chapter IV applies now

to de�ne perfet omplexes over the ringed site (X;A). Moreover, the general theory of

Grothendiek-Verdier duality as formulated in Chapter IV applies to extend the formalism

of Grothendiek-Verdier duality to derived shemes.

In addition, the disussion in the last setion provides a bi-duality theorem for the

derived ategory of oherent D-modules (de�ned suitably) on smooth derived shemes.

3. Derived ategories of mixed (Tate) motives over a general sheme

Over a �eld, there has been an elegant onstrution of the ategory of mixed Tate

motives by Bloh, Kriz and May. (See [Bl-3℄, [Bl-K℄ and [K-M℄.) This depends ruially

on the onstrution of a di�erential graded algebra assoiated to the yle omplex for the

�eld. There have been nontrivial diÆulties in extending this onstrution to all smooth

quasi-projetive varieties over a �eld; these have been overome in [J-6℄, by making use of

the motivi omplexes. (Reall the motivi omplex is known to be quasi-isomorphi to the

yle omplex for all smooth quasi-projetive shemes. See [Voe-2℄.) The main idea again

is to assoiate a DGA to the motivi omplex (tensored with Q ), provide the ategory of

�nitely generated modules over this DGA with a t-struture and then take the heart of

this t-ategory. At least for smooth linear varieties, it is shown in [J-6℄ that this provides

a reasonable theory of relative Tate motives. Similar tehniques are expeted to extend to

general smooth shemes: however, it seems quite likely that an appropriate shea��ation

of the motivi omplex is required. In this ontext, the onjetures of Beilinson on motivi

derived ategories seem quite relevant.

For example, we quote (part of) what is referred to as the version 4 of Beilinson's

onjeture on motivi derived ategories - see [Jan℄ p. 280.
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Let k denote a �eld. For every k-sheme X, there exists a triangulated Q -linear tensor

ategory DM(X) with a t-struture so that the following hold:

(i) If f : X ! Y is a map between suh shemes, there exist the derived funtors f

�

,

f

!

, f

�

and f

!

between these derived ategories so that the usual formalism of Grothendiek-

Verdier duality (i.e. the usual relations among these funtors) arries over.

(ii) There exist exat realization funtors:

r

l

: DM(X)! D

b

m

(X

et

; Q

l

), l 6= har(k) and

r

B

: DM(X)! D

b

(MH(X)), k = C

Here D

b

m

(X

et

; Q

l

) is the derived ategory of bounded omplexes of Q

l

-sheaves on the �etale

topology of X with mixed onstrutible ohomology sheaves. MH(X) is the ategory of

mixed Hodge modules on X.

(iii) There exists a t-struture on DM(X) so that its heart is the Q -linear abelian

ategory, M(X), of mixed motivi sheaves. The realization funtor r

l

sends M(X) to the

ategory of mixed perverse Q

l

-sheaves on X

et

. r

B

sends M(X) to MH(X). Moreover the

above realization funtors are exat and faithful on M(X).

The general theory of Grothendiek-Verdier style duality developed in this paper should

apply in this ontext to provide at least part of the onjetured formalism of Grothendiek-

Verdier style duality in the setting of motivi derived ategories, perhaps for a derived

ategory of relative Tate motives.

One key issue in this setting would be the de�nition of a t-struture for the ategory of

sheaves of modules over a DGA. In the setting of Tate motives over a �eld (or relative Tate

motives for linear varieties over a �eld) where no shea��ation is required, suh a t-struture

is provided easily using the theory of minimal models. This is non-trivial when shea��ation

is needed. Moreover the issue of de�ning a t-struture for sheaves of modules over DGAs is

related to the following.

4. Generalized intersetion ohomology theories

In fat this is a problem that had been the starting point of our interest in generalizing

the Grothendiek-Verdier formalism of duality. This is stated as an open problem in [Bo℄,

last setion. Briey stated the question is the following. Intersetion ohomology seems to

be the orret variant of singular ohomology (i.e. ohomology with respet to the onstant

sheaf Z) adapted to the study of singular spaes. What are the the orresponding variants of

the familiar generalized ohomology theories (for example, topologial K-theory) adapted to

the study of singular spaes?

A key step in the de�nition of suh a theory would be the de�nition of t-strutures for

presheaves of module-spetra over the spetrum representing the given generalized oho-

mology theory. There have been partial suess in this diretion in [Kom℄ and also [J-7℄.

(Komezano uses obordism theory with singularities and provides a de�nition of generalized

intersetion ohomology theories; however a detailed analysis shows that despite super�ial

di�erenes, the two approahes are similar at least in priniple.) In fat, using the tehniques

established in this work work, we hope to omplete the work begun in [J-7℄.
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5. Motivi Homotopy Theory

In this setion we will show that the basi formalism adopted in Chapters I and II

applies to motivi homotopy theory or more preisely the stable homotopy theory assoiated

to the unstable A

1

-homotopy theory of [M-V℄. (Here the stabilization is with respet to

T = S

1

^ G

m

.)

Let S denote a Noetherian base sheme; we will let (smt:shemes=S)

Nis

denote the

ategory of all shemes of �nite type over S provided with the Nisnevih topology. Reall

now the basi result of unstable motivi homotopy theory is the following:

Theorem 5.1. (See [M-V℄.) Let SPresh((smt:shemes=S)

Nis

) denote the ategory of

all simpliial presheaves on (smt:shemes=S)

Nis

. This has the following struture of a

proper simpliial model ategory:

the o�brations are monomorphisms

the weak-equivalenes are the A

1

-weak-equivalene and

the �brations are de�ned by right lifting property with respet to o�brations whih are

also weak-equivalenes.

Using smashing with T (instead of with S

1

) one may de�ne the notion of spetra in this

ategory; these form T -spetra. Moreover one may de�ne symmetri spetra in the ategory

SPresh((smt:shemes=S)

Nis

). We will let SSpPresh((smt:shemes=S)

Nis

) denote the

ategory of all symmetri spetra obtained this way.

Theorem 5.2. SSpPresh((smt:shemes=S)

Nis

) is an enrihed stable losed simpliial

model ategory in the sense of Chapter II, De�nition 4.11.

Proof. The stable simpliial model struture and the axioms on the monoidal struture

as in Chapter I follow by more or less standard arguments. �

Therefore, in order, to be able to apply the results of Chapter III to this setting, it suÆes

to show that SSpPresh((smt:shemes=S)

Nis

) has a strong t-struture as in Chapter I. We

will refer to objets in

SSpPresh((smt:shemes=S)

Nis

) as motivi spetra.

Reall that the presheaves of motivi stable homotopy groups are bi-graded by a degree t

and weight s and de�ned as:

(5.0.1) �

t;s

(�(U; P )) = Hom

H

(�

T

(S

t

^ G

s

m

)

jU

; P

jU

)

whereHom

H

denotes Hom in an appropriate homotopy ategory. One lets �

t

(P ) = �

s

�

t;s

(P )

where the latter denotes the above presheaf: by abuse of notation, we will all these the mo-

tivi stable homotopy groups. It is known that a o�ber-sequene in SSpPresh((smt:shemes=S)

Nis

)

provides a long-exat sequene in �

�

, where � denotes the degree.

The de�nition of the Eilenberg-Malane funtor as in Chapter I is, however not lear,

sine the motivi stable homotopy seems diÆult to ompute. To be able to de�ne Eilenberg-

Malane spetra as in Chapter I (and therefore a strong t-struture) one needs to be able

to kill o� the homotopy indexed by the weight as well the degree, for example by a suitable

analogue of attahing ells.

On the other hand, the slies introdued in [Voe-3℄ may be related to providing a di�erent

sort of t-struture.



APPENDIX A

Veri�ation of the axioms for �-spaes and symmetri

spetra

1. �-spaes

Theorem 1.1. The ategory of �-spaes endowed with the smash-produt de�ned in

[Lyd℄ is an enrihed stable simpliial model t-ategory.

The rest of this setion will be devoted to a proof of this theorem. Throughout we will

adopt the following onvention. A simpliial set (a pointed simpliial set) will be denoted

spae (pointed spae, respetively).

Let �

op

denote the ategory with objets n

+

= f0; :::; ng. (We view n

+

as pointed by

0.) The morphisms f : m

+

! n

+

are all maps so that f(0) = 0. A �-spae is a funtor

A : �

op

! (pointed spaes)

so that A(0) = �. The sphere �-spae S is the �-spae de�ned by: S(n

+

) = n

+

, for eah

n. A map between two �-spaes is a natural transformation of funtors. The ategory of

all �-spaes will be denoted GS. The Hom-sets in this ategory will be denoted Hom

GS

(or

merely Hom, if there is no ause for onfusion).

We �rst reall the following strit simpliial model strutures for �-spaes from [B-F℄

setion 3. This will de�ne the strit model struture on the ategory of �-spaes.

1.1. For eah �xed integer k � 0, let �

op

k

denote the full sub-ategory of � onsisting

of objets n

+

, n � k. A �

k

-spae is a funtor �

op

k

!(pointed spaes). Now one de�nes the

k-trunation

Tr

k

: (�-spaes) ! (�

k

-spaes)

as the funtor restriting a �-spae A to the sub-ategory �

op

k

. This has a left-adjoint

denoted sk

k

and a right adjoint denoted osk

k

. Often we will denote the omposition

sk

k

Æ Tr

k

(osk

k

Æ Tr

k

) by sk

k

(osk

k

, respetively) as well. (See [B-F℄ pp.89-90 for more

details.) Now a map f : A ! B of �-spaes is a o�bration if for eah n, the indued

map (sk

n�1

B)(n

+

) t

(sk

n�1

A)(n

+

)

A(n

+

) ! B(n

+

) is injetive and the symmetri group �

n

ats freely on the simplies not in the image of the above map. A map f : A ! B is a

�bration if the indued map A(n

+

) ! (osk

n�1

A)(n

+

) �

(osk

n�1

B)(n

+

)

B(n

+

) is a �bration of

pointed spaes for eah n. A �-spae A is o�brant (�brant) if the obvious map � ! A

is a o�bration (A ! � is a strit �bration, respetively). A map f : A ! B of �-

spaes is a weak-equivalene if the map f(n

+

) : A(n

+

) ! B(n

+

) is a weak-equivalene

of pointed spaes. It is shown in [B-F℄ Theorem (3.5) that this de�nes a simpliial model

struture on the ategory of �-spaes. The same proof applies to show that one may de�ne a

simpliial model ategory struture on the sub-ategories �

�k

-spaes = the funtor ategory

fA : �

op

k

!(pointed spaes)jA(0) = �g in an entirely similar manner. (i.e. A map f : A ! B

123
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in �

�k

-spaes is a weak-equivalene (o�bration, �bration) if the orresponding onditions

above are satis�ed for all n � k.)

1.2. The funtor 
 : (pointed simpliial sets) � (� � spaes) ! (� � spaes) is

given by sending a pointed simpliial set K and a �-spae A to the �-spae (K ^A)(n

+

) =

K ^ A(n

+

). Observe that not every monomorphism is a o�bration. However (PM4) of

Chapter II, setion 4 is shown to be satis�ed by Lemma (3.7) of [B-F℄. The above strit

simpliial model struture de�nes the required partial model ategory struture as in Chapter

II, setion 4.

1.3. Next we onsider the stable simpliial model struture from [B-F℄. For this we

reall the onnetion between �-spaes and onnetive spetra. (Here spetra mean as in

[B-F℄ and not the more sophistiated symmetri spetra onsidered below.)

1.4. A spetrum K is given by a olletion fK

n

jn � 0g of pointed simpliial sets

provided with maps S

1

^K

n

! K

n+1

for eah n. (Here S

1

= �[1℄=Æ(�[1℄) is the simpliial

one-sphere.) A map of spetra K = fK

n

jng ! L = fL

n

jng is given by a ompatible

olletion of maps f

n

: K

n

! L

n

of pointed spaes ommuting with the suspension. The

homotopy groups of a spetrum K are de�ned by �

k

(K) = olim

n!1

�

n+k

(Sing(jK

n

j). A map

f : K ! L is a stable-equivalene of spetra if it indues an isomorphism on the above

homotopy groups. A spetrum K is onnetive (or �1-onnetive) if �

k

(K) = 0 for all

k < 0.

1.5. Now let A denote a �-spae. One may progressively extend A to a funtor (�nite

pointed sets) !(pointed spaes), (pointed sets) ! (pointed spaes), (pointed spaes) !

(pointed spaes) in the obvious manner. (See [B-F℄ setion 4.) Now letK denote a spetrum.

One may show that there exist natural maps S

1

^ A(K

n

) ! A(S

1

^K

n

) ! A(K

n+1

) for

eah n; these show that one may �nally extend A to a funtor (spetra) !(spetra).

Let � = fS

0

; S

1

; S

2

; :::; S

n

; :::g denote the sphere spetrum. Now given the �-spae A,

A(�) is a spetrum whih is learly onnetive. This de�nes the funtor:

�(�) : (�-spaes) ! (onnetive spetra)

Given the onnetive spetrum K, one de�nes the assoiated �-spae �(K) by

�(K)(n

+

) =Map(�

n

;K).

Here �

n

denotes the n-fold produt of the sphere spetrum and Map(�

n

;K) is the pointed

spae given in degree k as the set of pointed maps �

n

^�[k℄

+

! K of spetra. There is an

adjuntion:

(1.5.1) Hom

��spaes

(A;�(K))

�

=

Hom

spetra

(A(�);K)

Therefore one obtains natural maps A ! �(A(�)) and �(K)(�)! K for a �-spae A and

a onnetive spetrum K.

A map f : A ! B of �-spaes is a stable equivalene if the indued map f(�) : A(�)!

B(�) of onnetive spetra is a stable equivalene of spetra. A map f : A ! B of �-spaes

is a stable o�bration if it is a strit o�bration in the sense of 1.1 and a map f : A ! B of

�-spaes is a stable �bration if it has the right lifting property with respet to all maps that

are stable o�brations and stable-equivalenes. It is shown in [B-F℄ Theorem (4.2) that the

above struture is in fat a simpliial model ategory struture on the ategory of �-spaes.

Now we will adopt the above stable model struture to de�ne the stable simpliial model

struture as in Chapter II, setion 4. Clearly the axiom (SM0) is satis�ed. Clearly every
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strit weak-equivalene is a quasi-isomorphism: this shows axiom (SM1) is also satis�ed. (See

[B-F℄ Lemma (4.7) to see that a strit weak-equivalene is a stable-equivalene.) Moreover

the above de�nition of stable o�brations shows that the statement in (SM2) on o�brations

is satis�ed. To omplete the proof of (SM2) it suÆes to hek that every stable �bration

is a strit �bration. This may be done by heking that every stable �bration satis�es the

orresponding right lifting property for �brations in the sense of 1.1. This is lear sine every

stable o�bration is a strit o�bration in the sense of (4.2) and every strit weak-equivalene

is a stable weak-equivalene.

Next we onsider (SM3.1) through (SM3.3). First observe that the funtor K !

Sing(jKj) from pointed spaes to pointed spaes has the following properties: there is a

natural map K ! Sing(jKj) whih is a weak-equivalene of pointed spaes and moreover

Sing(jKj) is a �brant simpliial set. This funtor readily extends to a funtor �-spaes! �-

spaes and de�nes the funtor Q. If X = fX

n

jng is a spetrum so that eah X

n

is a �brant

pointed spae, one may onvert X to a �brant 
-spetrum by the (usual) funtor we denote

by T

0

: T

0

(X)

k

= 

n

olim


n

X

n+k

. If eah X

n

is not neessarily a �brant pointed spae, one

may �rst apply Sing Æ j j to X degreewise to onvert it to a spetrum whih onsists of

�brant pointed spaes in eah degree. The omposition T

0

ÆSing Æ j j will be denoted T . We

now de�ne the funtor Q

st

as follows: let A denote a �-spae. Now Q

st

(A) = �(T (A(�))).

So de�ned, we will now verify that the funtors Q and Q

st

satisfy the axiom (SM3). The

assertions in (SM3) are easy to verify for the funtor Q. We may verify the orrespond-

ing assertions for the funtor Q

st

as follows. Let A denote a �-spae: to obtain a map

A ! Q

st

(A) = �T (A(�)), it suÆes to show the existene of a map A(�)! T (A(�)) and

the latter learly exists. Next observe that there exists a natural map T ÆT ! T . In view of

the adjuntion between the funtor � and A ! A(�), this suÆes to de�ne a natural map

Q

st

ÆQ

st

! Q

st

.

The pairing (pointed simpliial sets) � (� � spaes) ! (� � spaes) is the one

onsidered in 1.2 . This has all the properties required in (SM3.4). The hypotheses in

(SM4) through (SM6)' may be veri�ed readily at the level of spetra (where the model

strutures provided by [B-F℄ may be used). Now applying the funtor �(�) to pass from

a �-spae to a onnetive spetrum and applying the funtor � to pass bak to a stably

weakly equivalent �-spae proves these axioms are in fat satis�ed.

Next onsider the axioms (HCl) and (Hl). The model ategory-struture on the ategory

of diagrams C

�

op

and C

�

when C is the ategory of pointed simpliial sets is established in

[B-K℄. The stable versions (i.e. when C is replaed by the ategory of spetra and �-spaes)

may be de�ned as in [B-F℄: we skip the details.

Now we provide the ategory of �-spaes with the smash-produt de�ned in [Lyd℄. This

will be denoted ^. We proeed to verify the axioms on the monoidal struture in Chapter I.

Theorem 1.2. (Lydakis) The ategory of �-spaes is symmetri monoidal with respet

to the above smash produt. Moreover the sphere �-spae is a strit unit.

The above theorem establishes the axiom (M0) for the ategory of �-spaes. The last

assertion in the theorem learly shows the sphere spetrum is a strit unit. We take F

to be the full subategory of stably o�brant objets. The axioms on the stable model

struture now show that (M1) is satis�ed. Moreover the sphere spetrum is known to be

stably o�brant, so that the axiom (M3) is also satis�ed. The pairing required in (M3)

is de�ned in (1.3) above. Moreover now one may readily verify the axiom (M4.0) through

(M4.5). [Lyd℄ (3.20) shows smashing with a �-spae preserves injetive maps and it is shown

in [Lyd℄(4.1) that if A and B"(�-spaes) are both stably o�brant, the funtors A ^ � and
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�^B preserve stable o�brations and that A^ B is stably o�brant. Moreover it is shown

[Lyd℄(4.18) that both the above funtors also preserve stable weak-equivalenes. These prove

(M2). The assertion aboutHom is now an immediate onsequene of this and the adjuntion

with A
�.

Next we onsider the axiom (M5) for both the funtos Q and Q

st

as de�ned in. First

onsider the funtor Sing Æ j j applied to pointed spaes. Let X, Y denote two pointed

spaes. Now there exists a natural map SingjXj ^ SingjY j ! SingjX ^ Y j. (To see

this observe that suh a map is adjoint to a map j(SingjXj) ^ (SingjY j)j ! jX ^ Y j.

The latter exists sine j(Sing(jXj))^ (SingjY j)j

�

=

(j(Sing(jXj))j ^ j(Sing(jY j))j)

Kelley

and

jX^Y j

�

=

(jXj^jY j)

Kelley

; here we have used the notation that if Z is a Hausdor� topologial

spae Z

Kelley

is the underlying set of Z retopologized by the �ner Kelley topology. (See

[G-Z℄ p.10, p.53.) Finally observe again that the geometri realization is left adjoint to the

singular funtor.) Now reall that the funtor Q is a degree-wise extension of the funtor

Sing Æ j j to �-spaes; therefore it has the property mentioned in (M5).

Next we show the axiom (M5) is satis�ed for the funtor Q

st

. For this it is good to

reall the relation between pairings of �-spaes and that of the assoiated spetra again

from [Lyd℄. A spetrum with no odd terms onsists of a sequene fE

2n

jn � 0g of pointed

simpliial sets and pointed maps S

2

^ E

2n

! E

2n+2

, for all n � 0. One may extend all

the standard notions like maps, homotopy groups, weak-equivalene et. from spetra to

spetra with no odd terms. Let E and E

0

denote two spetra in the usual sense; now the

naive-smash produt E ^ E

0

is the spetrum with no odd terms de�ned by

(1.5.2) (E ^ E

0

)

2n

= E

n

^ E

0

n

and where the map S

2

^ (E ^ E

0

)

2n

! (E ^ E

0

)

2n+2

is de�ned as the omposition: S

1

^

S

1

^ (E

n

^E

0

n

)

�

=

(S

1

^ E

n

) ^ (S

1

^ E

0

n

)! E

n+1

^ E

0

n+1

= (E ^ E

0

)

2n+2

. Convention: the

smash produt of two spetra will denote this naive smash produt in this setion

Any spetrum E in the usual sense de�nes a spetrum with no odd terms E

t

by (E

t

)

2n

=

E

2n

. Conversely any spetrum with no odd terms E

t

= fE

t

2n

jng de�nes a spetrum E in

the usual sense by (E)

n

= E

t

2n

. One may now readily observe that the ategory of spetra

is equivalent to the ategory of spetra with no odd terms. It follows that if E, E

0

are two

spetra in the usual sense and E

t

, E

0

t

are the assoiated spetra with no odd terms, then

there is an isomorphism

Map(E;E

0

)

�

=

Map(E

t

; E

0

t

)

of pointed spaes.

Proposition 1.3. Let A, B denote two �-spaes. Now the following hold:

(i) There exists a natural map TA(�)^TB(�)! T (A^B)(�)

t

. (Here T is the funtor

onsidered in earlier.)

(ii) There exists natural maps �(TA(�))^�(TB(�))! �(TA(�)^TB(�))! �(T (A^

B)(�)

t

)

(iii) If X , Y are spetra, then there exists a natural map �(X) ^ �(Y ) ! �(X ^ Y )

of �-spaes where the �-spae on the left is the one de�ned using the smash produt in 1.2.

The smash produt X ^ Y on the right is de�ned as in 1.5.2 .

Proof. First, it is shown in [Lyd℄ setion 4 that, under the above hypotheses, there

exists a natural map A(�) ^ B(�)! (A ^ B)(�)

t

of spetra with no odd terms. We apply

the geometri realization followed by the singular funtor degree-wise to obtain the pairing:
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Sing(jA(�)j) ^ Sing(jB(�)j)! Sing(j(A^ B)(�)

t

j).

Now we apply the funtor T

0

to both sides. Clearly there exists a natural map T

0

(Sing(jA(�)j))^

T

0

(Sing(jB(�)j)) ! T

0

(Sing(jA(�)j) ^ Sing(jB(�)j)). Now the de�nition of the funtor T

as above ompletes the proof of (i).

We will next onsider (iii). We �rst show that, in order to establish (iii), it suÆes to

show that if n, m are two non-negative integers, there exists a natural map:

(1.5.3) �(X)(n

+

) ^ �(Y )(m

+

)! �(X ^ Y )(n

+

_

m

+

)

To see this reall that

(�(X) ^ �(Y ))(p

+

) = olim

n

+

^m

+

!p

+

�(X)(n

+

) ^�(Y )(m

+

).

Therefore, in order to prove (iii), it suÆes to show that for eah map n

+

^m

+

! p in �

op

,

there exists an indued map

(1.5.4) �(X)(n

+

) ^ �(Y )(m

+

)! �(X ^ Y )(p

+

)

Observe there exist natural maps n

+

W

m

+

! n

+

^ m

+

and n

+

^ m

+

! p

+

. There-

fore the map in 1.5.4 may be obtained by pre-omposing the map �(X ^ Y )(n

+

W

m

+

) =

Map(�

n

+

W

m

+

�+

; X^Y )!Map(�

n

+

^m

+

�+

; X^Y ) = �(X^Y )(n

+

^m

+

)!Map(�

p

+

; X^

Y ) = �(X ^ Y )(p

+

) with the map in 1.5.3. This shows that it suÆes to prove 1.5.3. Now

given two maps f : �[k℄

+

^ �

n

! X and g : �[k℄

+

^ �

m

! Y , we may de�ne a map

f ^ g : �[k℄

+

^�

n+m

! X ^ Y as the omposition:

�[k℄

+

^�

n

^ �

m

�^id

! �[k℄

+

^�[k℄

+

^ �

n

^�

m

f^Y

! X ^ Y

This proves (iii).

Now onsider (ii). By (iii) applied to X = TA(�) and Y = TB(�), we see that there

exists a natural map �(T (A(�))) ^ �(T (B(�))) ! �(T (A(�)) ^ T (B(�))). This provides

the �rst map in (ii). Combining this with the pairing T (A(�))^ T (B(�))! T (A^B)(�)

t

,

we obtain the seond map in (ii). �

Now we may omplete the proof that (M5) is satis�ed by the funtor Q

st

. Reall

Q

st

(A) = �(TA(�)). Therefore Q

st

(A)^Q

st

(B) = �(TA(�))^�(TB(�)) maps naturally to

�(TA(�)^TB(�)). By (ii) of 1.3, the latter maps naturally to �(T (A^B)(�)

t

) = Q

st

(A^B).

Next we verify the axioms on the strong t-struture as in Chapter I. (ST1) through

(ST5). We will �rst onsider (ST3) and (ST4). The ategory C

�n�

f

is given by the sub-

ategory fAjA fibrant and �

k

(A) = 0; k 6= ng of �-spaes. The Abelian ategory A is

in fat the ategory of all Abelian groups. Let � denote an Abelian group. Now we onsider

the hain omplex �[n℄ whih is onentrated in degree n. We may denormalize this to obtain

a simpliial Abelian group DN(�[n℄) whih has only one homotopy group that is non-trivial,

namely in degree n, and where it is �. We may deloop this simpliial Abelian group to obtain

a onneted spetrum: Sp(�) = fSp(�)

m

= B

m

(DN(�[n℄))jm � 0g. This spetrum will be

denoted K(�; n). Now we apply the funtor � to this spetrum to obtain a �-spae whih we

denote by EM

n

(�). Clearly �

n

(EM

n

(�))

�

=

� and �

k

(EM

n

(�))

�

=

0 if k 6= n. Moreover the

above de�nition of the funtors EM

n

, n"Z shows that if �, �

0

are objet in A, there exists

a natural map K(�; n)^K(�

0

;m)! K(�
�

0

; n+m)

t

of spetra where the smash-produt

on the left is de�ned as in 1.5.2. Now 1.3 (ii) applies to show that there exists a pairing:
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EM

n

(�)^EM

m

(�

0

) = �(K(�; n))^�(K(�

0

;m))! �(K(�
�

0

; n+m)) = EM

n+m

(�
�

0

).

This proves (ST6).

Next reall that the ategory of all onneted abelian group spetra is equivalent to

the ategory of all hain omplexes of abelian groups that are trivial in negative degrees.

Moreover the ategory of all suh abelian group spetra is equivalent to a orresponding sub-

ategory of the ategory of all �-spaes whih we all abelian �-spaes. These observations

prove (ST3) and (ST4).

One may show axiom (ST9) holds by an argument as in Appendix II, (0.7.3). Now

we onsider the axioms (ST1), (ST2), (ST5), (ST7) and (ST8). We begin by realling the

funtorial Postnikov trunation de�ned for �brant simpliial sets. Let X denote a �brant

pointed simpliial set and let n � 0 denote an integer. We let P

n

X be the simpliial set

de�ned by

(P

n

X)

k

= X

k

if k < n and = X

k

= eif k � n.

Here e denotes the equivalene relation where two k-simplies of X are identi�ed if their

n � 1-dimensional faes are all idential. Clearly there is a natural map X ! P

n

X of

pointed simpliial sets and X ! P

n

X de�nes a funtor on �brant pointed simpliial sets

and pointed maps. We let

~

P

n

X = the �ber of the map X ! P

n

X. Now one observes that

�

k

(

~

P

n

X)

�

=

�

k

(X) if k � n and

�

=

0 otherwise. Observe also that (

~

P

n

X)

k

= �, k < n and

= fx

k

"X

k

j all the (n � 1)-dimensional faes of x

k

are trivialg. As a onsequene we may

haraterize j

~

P

n

Xj as the maximal pointed sub-spae of jXj having no ells exept the base

point in degrees 0 through n � 1. In general (i.e. in ase X is not a �brant simpliial set),

one may de�ne

~

P

n

X =

~

P

n

(SingjXj).

One may also observe that if n < 0,

~

P

n

(SingjXj) = SingjXj and that \

n

~

P

n

(SingjXj) =

�.

Now we will extend the funtor

~

P

n

to spetra. ( For this purpose, the de�nition we

adopt needs to use the geometri realization and the singular funtor; the only way to avoid

this seems to be by adopting a di�erent notion of smash produt of pointed simpliial sets

as in [Kan℄. However this would then mean a reworking of all the foundational material

on spetra and �-spaes that use the more familiar notion of smash produts of pointed

spaes. Even if one is willing to do so, the feasibility of this approah is doubtful.) Let

X = fX

m

jm � 0g denote a degree-wise �brant spetrum i.e. eah X

m

is a �brant pointed

simpliial set. Now we de�ne

~

P

n

X = fSing(j

~

P

n+m

X

m

j)jm � 0g.

The struture map S

1

^ Sing(j

~

P

n+m

X

m

j) ! Sing(j

~

P

n+m+1

X

m+1

j) is de�ned as follows.

First suh a map is adjoint to a map jS

1

^ Sing(j

~

P

n+m

X

m

j)

�

=

jS

1

j ^ jSing(j

~

P

n+m

X

m

j)!

j

~

P

n+m+1

X

m+1

j. (See [G-Z℄ p.47 to see the isomorphism above.) Now jS

1

j^jSing(j

~

P

n+m

X

m

j)

maps naturally to jS

1

j^j

~

P

n+m

X

m

j. Clearly the latter maps into jS

1

j^jX

m

j

�

=

jS

1

^X

m

j !

jX

m+1

j where the last map is the given map S

1

^X

m

! X

m+1

. We will show that the last

map fators through the natural map j

~

P

n+m=1

X

m+1

j ! jX

m+1

j. To see this observe that

jS

1

j^ j

~

P

n+m

X

m

j is isomorphi to a spae with no ells in degrees less than n+m exept the

base point and that j

~

P

n+m+1

X

m+1

j is the maximal subspae of jX

m+1

j with no ells exept

the base-point in degrees less than n +m. The required fatorization follows and provides

the struture maps of the spetrum

~

P

n

X. In ase X is not a degree-wise �brant spetrum,

we will �rst apply the funtor T to onvert it to a degree-wise �brant 
-spetrum.

If A is a �-spae and n is an integer, we will de�ne
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�

�n

A = �(

~

P

�n

T (A(�)))

One may readily see that both (ST1) and (ST2) are now satis�ed. (The exhaus-

tiveness and separatedness of the �ltration will follow readily from 1.5 .) We proeed

to verify the axiom (ST7). For this we begin with a pairing K ^ L ! M of �brant

pointed simpliial sets and let n, m � 0 be two integers. Now onsider j

~

P

n

Kj ^ j

~

P

m

Lj.

In general this may not have the struture of a C:W -omplex; however, by [G-Z℄ p.53,

j

~

P

n

Kj ^ j

~

P

m

Lj

�

=

(j

~

P

n

Kj ^ j

~

P

m

Lj)

Kelley

whih is the same underlying set re-topologized

using the Kelley topology. On applying the singular funtor, we therefore obtain a map

Sing((j

~

P

n

Kj ^ j

~

P

m

Lj)

Kelley

) ! Sing(j

~

P

n

K ^

~

P

m

Lj). Now there exists a natural map

(Singj

~

P

n

Kj) ^ (Singj

~

P

m

L) ! Sing((j

~

P

n

Kj ^ j

~

P

m

Lj)

Kelley

). (Suh a map is adjoint to

a map : j(Singj

~

P

n

Kj) ^ (Singj

~

P

m

L)j

�

=

(j(Singj

~

P

n

Kj)j ^ j(Singj

~

P

m

Lj)j)

Kelley

! (j

~

P

n

Kj ^

j

~

P

m

Lj)

Kelley

. This map learly exists sine the geometri realization funtor is left adjoint

to the singular funtor.) As a result we have obtained a map:

(Singj

~

P

n

Kj) ^ (Singj

~

P

m

Lj)! Sing(j

~

P

n

K ^

~

P

m

Lj)

�

=

Sing((j

~

P

n

Kj ^ j

~

P

m

Lj)

Kelley

)

Clearly j

~

P

n

K ^

~

P

m

Lj maps naturally to jK ^Lj whih maps to jM j using the given pairing.

We proeed to show this fators through j

~

P

n+m+1

M j. For this we will onsider sub-spaes of

the spae j

~

P

n

K^

~

P

m

Lj of the form jF

1

j^jF

2

j, where F

1

is a ountable pointed sub-simpliial

set of

~

P

n

K and F

2

is a ountable pointed sub-simpliial set of

~

P

m

L. Now jF

1

j ^ jF

2

j has

the struture of a C:W -omplex; sine F

1

is trivial in degrees less than n and F

2

is trivial

in degrees less than m, it follows that jF

1

j ^ jF

2

j has no ells exept the base-point in

degrees less than n + m. Now onsider j

~

P

n+m

M j. This is the maximal sub-spae of jM j

having no ells exept the base-point in degrees less than n+m. Therefore the natural map

jF

1

j ^ jF

2

j ! jM j fators through j

~

P

n+m

M j.

Now onsider the natural map j

~

P

n

Kj ^ j

~

P

m

Lj

�

!jM j. The above argument shows that

for every ountable pointed sub-simpliial set F

1

of

~

P

n

K and F

2

of

~

P

m

L, �(jF

1

j ^ jF

2

j)

has no ells exept the base-point in degrees less than n + m and hene is ontained in

j

~

P

n+m

M j. Therefore the same onlusion holds for

S

F

1

;F

2

�(jF

1

j ^ jF

2

j). It follows that the

map j

~

P

n

Kj ^ j

~

P

m

Lj ! jM j fators through the natural map j

~

P

n+m

M j ! jM j.

Now onsider a pairing K ^ L ! M of degree-wise �brant spetra. (i.e. we may view

K ^L as a spetrum with no odd terms and we have a map from this to the spetrum with

no odd-terms assoiated to M .) The above arguments show that if n, m are two integers,

one obtains a pairing:

~

P

n

K ^

~

P

m

L!

~

P

n+m

.

These readily show that if A ^ B ! C is map of �-spaes, and n, m are two integers, one

obtains an indued pairing of �-spaes:

�

�n

A
 �

�m

B ! �

�n+m

C and F

n

(Q

st

(A))
 F

m

(Q

st

(B))! F

n+m

(Q

st

(C)).

On taking the assoiated graded terms of the Cartan �ltrations, one obtains (ST7).

It remains to verify the axioms (ST5) and (ST8): these are established in the following

proposition.

Proposition 1.4. (i) Let X denote a spetrum. Let n denote an integer so that

�

i

(X)

�

=

0 for all i 6= n. Now there exists natural maps of presheaves X ! ZX[�1,

n℄ ! K(�

n

(X); n) of abelian spetra whih are weak-equivalenes. (Here [�1, n℄ is the
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funtorial Postnikov-trunation that kills the homotopy above degree n de�ned as the homo-

topy o�ber

~

P

n�1

(X)! SingjXj.)

(ii) If A is a gamma-spae so that �

i

(A) = 0 if i 6= n, there exists a natural map

A ! EM

n

(�

n

(A); n) whih is a stable weak-equivalene.

(iii) If A^B ! C is a pairing of �-spaes, the indued pairings Gr

C

(Q

st

(A))^Gr

C

(B)!

Gr

C

(C) and �

�

(A)
 �

�

(B)! �

�

(C) are ompatible under the map in (ii).

Proof. The existene of the �rst map in (i) is lear; that it is a weak-equivalene

follows from an appliation of the Hurewiz theorem. Sine the last two are presheaves of

abelian group spetra, these are both of the form A = fA

n

jng, where eah A

n

is a simpliial

abelian group and one is given maps A

n

!Map(S

1

; A

n+1

) of simpliial abelian groups, for

all n. The above map is adjoint to a map A

n


 S

1

! A

n+1

of simpliial abelian groups,

where (A

n


 S

1

)

k

= �

(S

1

)

k

(A

n

)

k

. Observe that on taking the normalizations, one obtains

the map N(Z(S

1

)) 
 N(A

n

) ! N(A

n+1

) of hain-omplexes. Observe that N(Z(S

1

)) is

the hain-omplex with Z in degree 1 and 0 elsewhere. One may view tensoring with this

omplex as a suspension funtor for hain omplexes.

Using the normalization funtor, one may now view both ZX[�1, n℄ and

K(�

n

(X); n) as systems of omplexes fA

n

jng of abelian groups ommuting with the above

suspension. Let D denote suh a hain omplex. Now the Cartan �ltration on D may

be identi�ed with (D:[m;1℄)

j

= Ker(d : D

j

! D

j�1

) if j = m, = D

j

if j > m and

= 0 otherwise. Moreover �

i

(D:) = ker(d : D

i

! D

i�1

)=Im(d : D

i+1

! D

i

) whih is a

quotient of (D:[i, 1℄=D:[i + 1, 1℄)

�

=

D:[i, i℄. It follows that the existene of the last map

in the lemma is lear when the simpliial abelian groups are replaed by their assoiated

hain omplexes. We may therefore apply the denormalization funtor (see Appendix II,

(0.1)) �nally to obtain the required map. That it is a weak-equivalene is lear. This

proves (i). To obtain (ii) we take X in (i) to be T (A(�)). Finally apply the funtor � to

the map T (A(�)) ! K(�

n

(X); n) to obtain a weak-equivalene: A(�) ! �(T (A(�))) !

EM

n

(�

n

(X)).

Now we onsider (iii). Using the funtor T as before, we may �rst assume that X,

Y and Z are �brant 
-spetra and that there is a pairing X ^ Y ! Z

t

as in 1.5.2. This

indues a pairing Gr

C

(X)^Gr

C

(Y )! Gr

C

(Z

t

) as in 1.5.2 and also a pairings Z(Gr

C

(X)


Z

Z(Gr

C

(Y )) ! Z(Gr

C

(Z)). As in the proof of (i), the latter pairing may be interpreted as

a pairing of hain-omplexes ommuting with the suspension 
Z(S

1

). Therefore one may

readily verify that the above pairing is ompatible with the natural map to GEM(�

�

(X))


GEM(�

�

(Y ))! GEM(�

�

(Z)). �

These omplete the veri�ation of the axioms for the ase of �-spaes.

2. The axioms for symmetri spetra

We will prove the following theorem .

Theorem 2.1. The ategory of symmetri spetra with the smash produt of symmetri

spetra de�nes an enrihed stable simpliial model t-ategory.

Proof. Sine many of the arguments are similar to that of �-spaes we will verify

the axioms rather briey. We de�ne the strit (partial) model struture as follows. A

map f : X = fX

n

jng ! Y = fY

n

jng of symmetri spetra is a strit o�bration (strit

weak-equivalene) if for eah n, the map f

n

: X

n

! Y

n

is a o-�bration (weak-equivalene,

respetively). The �brations de�ned by the right lifting property with respet to o�brations
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that are also weak-equivalenes. This de�nes a strit simpliial model struture. Now axioms

(PM1), (PM2) and (PM3) follow, while (PM4) is lear. In fat every monomorphism is a

strit o�bration.

The stable o�bration, stable �brations and stable weak-equivalenes are de�ned as in

[H-S-S℄ setion (3.4). This de�nes the struture of a simpliial model ategory on symmetri

spetra. It is shown in [H-S-S℄ (See Propositions (3.3.8) and (3.4.3)) that every strit weak-

equivalene is a stable weak-equivalene and every stable o�bration is a strit o�bration.

To show every stable �bration is a strit �bration, we will simply observe that the free-

funtor Fr

n

left-adjoint to the evaluation funtor Ev

n

, send o�brations (weak-equivalenes)

of pointed spaes to stable o�brations (stable weak-equivalenes, respetively) of symmetri

spetra. We have essentially veri�ed the axioms (SM1) through (SM3.3). Observe from [H-

S-S℄ Corollary (3.4.1.3) that a degree-wise �brant symmetri spetrum is stably �brant if

and only if it is an 
-spetrum. Now we may let Q = Sing Æ j j extended to symmetri

spetra; (Q

st

X)

n

= olim

m




n+m

(QX)

m

.

The usual smash produt funtor between pointed spaes extends to de�ne the operation


 in (SM3.4). As in the ase of �-spaes, all of the axiom (SM3.4) are diret onsequenes of

the simpliial model strutures provided by the strit and stable simpliial model strutures.

Sine this does not appear in [H-S-S℄ we will sketh an argument to show that the stable

struture on symmetri spetra is in fat a simpliial model ategory struture. Reall we

have de�ned stable o�brations to be the ones with left lifting property for all degree-wise

�brations that are also strit weak-equivalenes. As in [B-F℄ p. 84 one may now see readily

that a map i : K ! L of symmetri spetra is a stable o�bration if and only if the maps

K

n+1

t

S

1

^K

n

S

1

^ L

n

! L

n+1

is a level o�bration. Now one may readily verify the axiom

denoted (SM7)(b) in [Qu℄. Let L! K denote a o�bration of �nite pointed simpliial sets

and let A! B denote a stable o�bration of symmetri spetra. Now we need to show that

the indued map

K ^A t

L^A

L ^B ! K ^B

is a stable o�bration whih is also a stable weak-equivalene if the map A ! B is a stable

weak-equivalene. One may hek the �rst assertion readily using the haraterization of sta-

ble o�brations mentioned above. To show that the above map is a stable weak-equivalene,

one may onsider the ommutative diagram:

K ^A

//

id

��

K ^A t

L^A

^B

//

'

��

(B=A) ^ L

'

��
K ^A

//
K ^B

//
(B=A)K

The two rows are distinguished triangles in the sense of setion 1. If A ! B is a stable

o�bration whih is also a stable weak-equivalene, B=A is stably weakly-equivalent to �

and hene so are B=A ^ L and B=A ^K. It follows therefore that the middle map is also a

stable weak-equivalene. Now the axiom (SM6) and (SM7) follow readily as in the ase of

�-spaes. (See [H-S-S℄ (3.3.11).)

The tensor produt 
 :(symmetri spetra) �(symmetri spetra) !(symmetri spe-

tra) is de�ned by the symmetri smash produt over the symmetri sphere spetrum de�ned

in [H-S-S℄(2.2.3). Now (M1) and (M3) are lear. Observe that the unit in (M3) is now the

symmetri sphere spetrum. The funtors Q and Q

st

are straightforward adaptations of

the orresponding funtors for spetra. i.e. Q = Sing Æ j j extended to symmetri spetra
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and Q

st

= T

0

Æ Q where T

0

is the funtor onsidered in (4.8). To see (M2) we proeed

as follows. Let Fr: (pointed spaes) !(symmetri spetra) be the funtor onsidered in

[H-S-S℄(3.4.1). Now Fr(X) is a stably o�brant symmetri spetrum for any pointed spae

X. Now axiom (M2) holds if A or B is of the form Fr(X) : Fr(X) ^ � ' X 
 � where


 on the right is the tensor produt de�ned in [H-S-S℄(2.1.3). Clearly the latter preserves

stable weak-equivalenes and stable o�brations. To omplete the proof of (M2) it suÆes

to show that the lass of symmetri spetra that satisfy (M2) is losed retrations and under

trans�nite ompositions of maps (as in [Sh℄ appendix A) that are stable o�brations. This

follows readily if one observes that �ltered olimits are in fat homotopy olimits. (See [B-K℄

p. 332.)

Next we onsider the axioms on the t-struture. The funtors �

�n

are de�ned as follows.

�

�n

X =

~

P

�n

T (X), X = a symmetri spetrum

To see this applies to symmetri spetra, observe that K !

~

P

n

K is a funtor from pointed

�brant simpliial sets to pointed �brant simpliial sets, for eah n � 0. Therefore, if a

(symmetri) group �

k

ats on K

~

P

n

K has an indued ation by �

k

. Now it is lear that

(ST1) and (ST2) are satis�ed. (The exhaustiveness and separatedness of the �ltration follows

as in 1.5 .) To see that (ST7) is also satis�ed, it suÆes to make the following observations.

Let X = fX

n

jn � 0g, Y = fY

n

jn � 0g and Z = fZ

p

jpg denote symmetri spetra whih

are degree-wise �brant and let k, l denote two �xed integers. Assume there exists a pairing

X 
 Y ! Z where 
 now denotes the tensor-produt of symmetri spetra as in [H-S-S℄

(2.1.3). Reall (X
Y )

p

= ^

n+m=p

�

+

p

^

�

n

��

m

(X

n

^Y

m

) As observed above,

~

P

k+n

X

n

^

~

P

l+m

X

m

has an indued ation by the group �

n

� �

m

and so does

~

P

k+l+n+m

(Z

n+m

) so that the

indued map (as in 1.5 )

~

P

k+n

X

n

^

~

P

l+m

X

m

!

~

P

k+l+n+m

(Z

n+m

) is �

n

� �

m

-equivariant.

This shows that axiom (ST7) is satis�ed if we use the tensor produt of symmetri spetra

as in [H-S-S℄ (2.1.3). Reall the smash produt of the symmetri spetra X and Y is de�ned

as the o-equalizer of the two maps X
S
Y

id
�

�!

�!

�
id

X
Y . Sine taking the assoiated graded

terms of a �ltration ommute with respet to taking o-equalizers, we obtain (ST7).

In (ST4) we take A to be the whole ategory of all abelian groups. Now we de�ne, in

outline, the funtors EM

n

. First we onsider a di�erent suspension for simpliial abelian

groups. LetK(Z; 1) denote the simpliial abelian group obtained by denormalizing the hain

omplex Z[1℄ onentrated in degree 1. Now observe that there exists a natural map from the

simpliial sphere to K(Z; 1), sine �

1

(S

1

) = Z. Moreover if A denotes a simpliial abelian

group, there exists natural maps S

1

^ A! K(Z; 1) ^ A! K(Z; 1) 
 A where K(Z; 1) 
 A

denotes the degree-wise tensor produt of the two simpliial abelian groups K(Z; 1) and A.

One may readily verify that K(Z; 1) 
A ' BA: we view this as the suspension funtor for

simpliial abelian groups. Starting with a simpliial abelian group A one now obtains the

suspension spetrum fK(Z; 1)


n


 Ajng. We may view this as a symmetri spetrum by

letting the symmetri group �

n

at on K(Z; 1)


n


 A by letting it at on K(Z; 1)


n

by

permuting the n-fators in the tensor produt. So de�ned we obtain a funtor

Sp:(simpliial abelian groups ) !(symmetri spetra)

One may readily see that this funtor is faithful. The funtor EM

n

is the restrition of the

above funtor to the sub-ategory of simpliial abelian groups of the formDN(�[n℄), where �

is an abelian group, �[n℄ the orresponding omplex onentrated in degree n, and DN is the

denormalization funtor sending a hain-omplex to a simpliial abelian group. This proves

(ST4). The funtor Sp ÆDN now de�nes a faithful funtor from the ategory of all hain
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omplexes that are trivial in negative degrees to that of symmetri spetra. One may readily

extend this funtor to a faithful funtor from the ategory of all unbounded hain-omplexes

of abelian groups to the ategory of symmetri spetra - however the details are skipped.

This proves (ST3). The remaining properties, (ST5), (ST6) and (ST8) are established by

arguments very similar to those in the ase of �-spaes and are therefore skipped. Appendix

I, (0.7.3) readily adapts to the ase of symmetri spetra to prove axiom b(ST9). �

2.1. The spetra of K-theory. We onlude this setion by making some observa-

tions that the spetra of algebrai and topologial K-theory are in fat symmetri spetra.

Theorem 2.2. (Geisser-Hasselholt: see [G-H℄) Let S denote a ategory with o�brations

and weak-equivalenes in the sense of Waldhausen (i.e. [Wald℄). Then the assoiated K-

theory spetrum K(S) is a symmetri spetrum. If, in addition, S is also a symmetri

monoidal ategory with a tensor produt that preserves o�brations and weak-equivalenes

in both arguments, the assoiated K-theory spetrum K(S) is an algebra in the ategory of

symmetri spetra (i.e. a ring objet so that the unit map from the sphere spetrum is a map

of ring objets).

Corollary 2.3. It follows that if X is an algebrai variety or a sheme, the spetrum

of the K-theory of vetor bundles on X is an algebra in the ategory of symmetri spetra.

If X is a suitable topologial spae, the spetrum of topologial omplex K-theory on X is

also an algebra in the ategory of symmetri spetra.

2.2. Completions of symmetri spetra. Often, espeially in onsidering presheaves

of spetra on the �etale site of shemes, it will beome neessary to assume that their

presheaves of homotopy groups are all l-primary torsion, for a prime l di�erent from the

residue harateristis. However the ommon operation of smashing with a Moore-spetrum

often does not preserve the ategory of ring spetra. Therefore, it will be neessary to per-

form ompletions in the sense of [B-K℄ or loalizations. The following result shows this is

possible.

Theorem 2.4. (i) Completions (and loalizations) at a set of primes in the sense of

[B-K℄ extend to symmetri spetra and preserve the sub-ategory of ring spetra.

(ii) Moreover, if R is a symmetri ring spetrum and R

l

denotes its ompletion at the

prime l, the funtor of ompletion at l sends the ategory of module spetra over R to the

ategory of module-spetra over R

l

.

(iii) If R is an E

1

ring objet in the ategory of symmetri spetra, its l-ompletion is

also an E

1

-objet in the ategory of symmetri spetra.

Proof. (i) The �rst assertion follows from [Hirsh℄ setion 3. The main observation is

that one may onstrut a new model ategory struture on the same underlying ategory

of symmetri spetra, where weak-equivalenes are replaed by weak-equivalenes on the l-

ompletions. The o�brations will be the same as in the original ategory and the �brations

will be de�ned by lifting property with respet to o�brations that are also weak-equivalenes

on l-ompletions. Sine the underlying ategory is the same as the original one, namely

the ategory of symmetri spetra, it follows that the ompletion funtor sends symmetri

spetra to symmetri spetra.

Now we onsider the seond assertion in (i). For this we need to reall some results in

[SS℄. Aordingly a ring objet in the ategory of symmetri spetra is an algebra over the

monad (or triple) de�ned by:
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T (K) = StK tK

^2

::: tK

^(n)

::

where ^ denotes the smash produt of symmetri spetra and S is the sphere spetrum.

Now the observation that l-ompletion has the property (A ^ B)

l

= A

l

^ B

l

shows that

T (K)

l

= S

l

tK

l

tK

^2

l

::: tK

^(n)

l

::. (The above property of the ompletion may be heked

using the de�nition of the smash produt of symmetri spetra and will ultimately redue to

showing the l-ompletion ommutes with the smash produt of two pointed simpliial sets.)

Therefore, if R is a ring objet, in the ategory of symmetri spetra, so is its l-ompletion.

This proves the seond statement in (i). (ii) may be heked easily in a similar manner.

No we onsider (iii). For this we proeed as above replaing the monad by the monad

T (K) = 1 tK t E�

2

�

�

2

K

^2

t ::: t �

�

n

K

^n

:::

taking into onsideration the ation of the symmetri group �

n

as well. An E

1

-ring objet

may be identi�ed with an algebra over this monad. �

3. Presheaves with values in �-spaes, symmetri spetra

Observe that all our onstrutions in the last two setions were funtorial. Therefore,

they extend to presheaves on any site satisfying the basi hypotheses as in Chapter II. i.e.

we obtain the following theorem.

Theorem 3.1. Let S denote a site as in Chapter I. Let Presh(S) denote the ategory

of presheaves of �-spaes or symmetri spetra on the site S. Then the ategory Presh(S)

satis�es all the axioms of Chapter I.

Remark 3.2. The ategory of spetra in the A

1

-loal ategory of simpliial presheaves

on the big Zariski or Nisnevih site of shemes of �nite type over a Noetherian base sheme

(using a suitable suspension funtor) satis�es many of the axioms of Chapter I. See Chapter

VI for a brief disussion of this.



APPENDIX B

Chain omplexes and simpliial objets

Sine the funtor Sp appearing in De�nition 4.6 of Chapter I is de�ned in terms of a

homotopy inverse limit, one has to �rst replae this (upto weak-equivalene) by a suitable

homotopy diret limit so that it will pull out of the Hom

Sp(�

�

(E))

-funtor above, so that the

axiom (ST9) will be satis�ed. In an abelian ategory, this is learly feasible provided the

above homotopy inverse limit is a homotopy inverse limit of a �nite diagram; nevertheless,

for our purposes it is neessary to obtain the preise relationship between these homotopy

inverse limits and diret limits and relate them to the total-omplex-onstrution. Muh of

the work in the �rst few setions are expended in this diretion. While the results we obtain

are probably well-known and part of the folklore, many of the details do not exist in the

literature. (See [T-1℄ (4.2.32) for a brief disussion.) One may skip the details and only

read the main results, whih are Proposition 0.3, Lemma 0.4, 0.7 and 0.6.3. (See 0.8 for a

tehnique that is used often in this setion.)

0.1. Let A denote an abelian ategory losed under all small limits and olimits and

where �ltered olimits are exat; a hain omplex K

�

(o-hain omplex K

�

) in A will

denote a sequene K

i

"A (K

i

"A) provided with maps d : K

i

! K

i�1

(d : K

i

! K

i+1

)

so that d

2

= 0. Let C

+

(A) (C

+

(A)) denote the ategory of hain omplexes (o-hain

omplexes, respetively) in A that are trivial in negative degrees. One de�nes denor-

malizing funtors: DN

�

: C

+

(A) ! (Simpliial objets in A) and DN

�

: C

+

(A) !

(Cosimpliial objets in A) as in [Ill℄ pp. 8-9. DN

�

will be inverse to the normalizing

funtor:

N : (Simpliial objets in A) ! C

+

(A) de�ned by (NK

�

)

n

= \

i6=0

ker(d

i

: K

n

! K

n�1

)

with Æ : (NK)

n

! (NK)

n�1

being indued by the map d

0

. DN

�

will be inverse to the

funtor N : (Cosimpliial objets in A) ! C

+

(A) de�ned by (NK

�

)

n

= +

i6=0

oker(d

i

:

K

n

! K

n+1

) with Æ : (NK)

n

! (NK)

n+1

indued by d

0

. A map f : K

0

�

! K

�

of simpliial

objets in A will be alled a weak-equivalene if it indues an isomorphism on the assoiated

homology objets. To simplify our disussion, we may assume that A is in fat the ategory

of all abelian groups.

0.2. The de�nition of the normalization and denormalizing funtors work also in more

general settings. If C is a ategory with a zero-objet with �nite limits and olimits one

may de�ne a hain omplex in C to be a sequene of objets fK

i

jig in C provided with

maps K

i

d

!K

i�1

, i � 1 so that d

2

= 0. Co-hain omplexes may be de�ned similarly. For

hain omplexes (o-hain omplexes) that are trivial in negative degrees one may de�ne

denormalizing funtors that produe simpliial (osimpliial, respetively) objets by the

same formulae. There are also normalizing funtors de�ned similarly. For us, the important

ase will be when C is the ategory of spetra. In this ase the results in [Ret℄ show that

the normalizing and denormalizing funtors are weak-inverses.

0.3. In addition we will often view a simpliial objet K

�

(osimpliial objet K

�

)

in A as a hain omplex (o-hain omplex, respetively) with the di�erential given by

135
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Æ = �

i=n

i=0

d

i

: K

n

! K

n�1

(Æ = �

i=n

i=0

d

i

: K

n�1

! K

n

, respetively). (Now N(K

�

) (N(K

�

))

is a sub-omplex of the omplex K

�

(K

�

, respetively) with the above di�erential.)

Let K

��

denote a double hain-omplex in A that is trivial in negative degrees. Let

TOT (K

��

) denote the total omplex de�ned by

(0.3.1) TOT (K

��

)

n

= �

i+j=n

K

i;j

; Æ(k

i;j

) = (Æ

1

(k

i;j

) + (�1)

i

Æ

2

(k

i;j

))

where Æ

l

denotes the di�erential in the l-th index, l = 1; 2.

Let DN

�

Æ DN

�

(K

��

) denote the double simpliial objet in A obtained by applying

the denormalizing funtors in both diretions to K

��

. Let �(DN

�

Æ DN

�

(K

��

)) denote

its diagonal; we view this as a hain omplex as above. Now the theorem of Eilenberg-

Zilber-Cartier (see [Ill℄ p.7) shows there exists a natural map (the Alexander-Whitney map)

�(DN

�

ÆDN

�

(K

��

))! TOT (K

��

) that is a weak-equivalene.

0.4. Relationship between homotopy olimits for double simpliial objets in

an abelian ategory and the total omplex onstrution. Next assume the situation

of Chapter II setion 1. We will apply the above result to a double omplex

�

K

��

of abelian

sheaves on a site S as in Chapter II, setion 1 that is trivial in negative degrees. (An abelian

sheaf will denote a sheaf with values in any abelian ategory satisfying the hypotheses as

above; we will assume one again, for simpliity, that the abelian ategory is in fat the

ategory of all abelian groups.) The above arguments show that if DN

�

(TOT (

�

K

��

)) is the

resulting simpliial objet, one obtains a natural weak-equivalene (of simpliial objets):

hoolim

�

(DN

�

ÆDN

�

(

�

K

��

))

'

!�(DN

�

ÆDN

�

(

�

K

��

))

'

!DN

�

(TOT (

�

K

��

))

(To see that the last map is a map of simpliial objets, observe that there is a natural

map N(�(DN

�

Æ DN

�

(

�

K

��

))) ! �(DN

�

Æ DN

�

(

�

K

��

)) of omplexes (where the latter is

provided with the di�erential as above) The map in the above paragraph maps the omplex

�(DN

�

Æ DN

�

(

�

K

��

)) to the omplex TOT (

�

K

��

). On applying the denormalizing funtor

to this, one obtains the map �(DN

�

Æ DN

�

(

�

K

��

))

�

=

DN Æ N(�(DN

�

Æ DN

�

(

�

K

��

))) !

DN(TOT (

�

K

��

)) of simpliial objets.)

0.5. Relationship between the Tot onstrutions of [B-K℄ and [Br℄ for osim-

pliial simpliial objets in an abelian ategory with the total omplex. (See

Proposition 0.3 and Lemma 0.4 for the �nal result.) Next let

�

K

�

�

�

�

�

�

denote a double omplex

in A that is trivial in negative degrees and where the di�erentials in the �rst (seond) index

are of degree 1 (�1, respetively). We will say

�

K

�

: is bounded if

�

K

i

j

= 0 for all but �nitely

many indies i and j. We will let TOT (

�

K

�

�

) be the total omplex with di�erentials of degree

�1 and de�ned by

(0.5.1) (TOT (

�

K

�

�

))

n

= �

p

�

K

p

p+n

and with di�erentials de�ned by d(k

p

p+n

) = (d

1

(k

p

p+n

) + (�1)

p

d

2

(k

p+1

p+n+1

)). This is a hain

omplex and is trivial in negative degrees if

�

K

i

j

= 0 for all i > j. Let DN

�

ÆDN

�

(

�

K

�

�

) denote

the osimpliial simpliial objet in A obtained by applying the denormalizing funtors to

�

K

�

�

. We may view this as a double omplex with di�erentials:

Æ

1

: (DN

�

ÆDN

�

(

�

K

�

�

))

p

q

! (DN

�

ÆDN

�

(

�

K

�

�

))

p+1

q

given by Æ

1

= �

i=p+1

i=0

(�1)

i

d

i

(Æ

2

: (DN

�

ÆDN

�

(

�

K

�

�

))

p

q

! (DN

�

ÆDN

�

(

�

K

�

�

))

p

q�1

given by Æ

2

= �

i=q

i=0

(�1)

i

d

i

, respe-

tively)
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Let TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

)) denote the hain omplex de�ned by

TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n

= �

p

(DN

�

ÆDN

�

(

�

K

�

�

))

p

p+n

with the di�erential de�ned by Æ(k

p

p+n

) = Æ

1

(k

p

p+n

) + (�1)

p

Æ

2

(k

p+1

p+n+1

). The de�nition of

the denormalizing funtors provides a natural map

� : TOT (

�

K

�

�

)! TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

)) of hain omplexes

One may verify that there are spetral sequenes

(0.5.2) E

s;t

1

(1) = H

t

(

�

K

s

)) H

s+t

(TOT (

�

K

�

�

)) and

(0.5.3) E

s;t

1

(2) = H

t

((DN

�

ÆDN

�

(

�

K

�

�

))

s

)) H

s+t

(TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

)))

whih onverge strongly if

�

K

�

�

is bounded as assumed. The map �, being natural, indues

a map of these spetral sequenes whih is learly an isomorphism at the E

2

-terms sine

E

s;t

2

(1) = E

s;t

2

(2) = H

s

( the o-hain omplex n: ! H

t

(

�

K

n

:)). It follows that � indues a

weak-equivalene if

�

K

�

�

is bounded in the �rst or seond index.

Let Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

)) denote the hain omplex de�ned by

Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n

= f(k

p

p+n

)"�

p

(DN

�

ÆDN

�

(

�

K

�

�

))

p

p+n

j

d

i

(k

p�1

p+n�1

) = d

p�i

(k

p

p+n

); s

i

(k

p+1

p+n+1

) = s

p�i

(k

p

p+n

), 0 � i � pg

and where Æ : Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n

! Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n�1

is given by Æ((k

p

p+n

)) =

�

i=n�1

i=0

(�1)

i

d

i+p+1

(k

p

p+n

). One readily veri�es that the map sending a tuple (k

p

p+n

)"Tot

1

(DN

�

Æ

DN

�

(

�

K

�

�

)) to the same tuple (k

p

p+n

)"TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

)) de�nes a map of hain om-

plexes. We will denote this map by 	. We may view Tot

1

(DN

�

Æ DN

�

(

�

K

�

:)) also as a

presheaf of pointed simpliial objets where the fae maps d

i

: Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

n

!

Tot

1

(DN

�

Æ DN

�

(

�

K

�

�

))

n�1

is given by d

i

((k

p

p+n

)) = (d

i+p+1

(k

p

p+n

)) for all i � n � 1 and

d

n

= � (for non-degenerate simplies). The degeneraies are de�ned similarly. One may

also view Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

)) as a presheaf of simpliial spetra um-objet in the sense

of Kan by letting the higher d

i

and s

i

be the trivial maps. (Reall that a spetrum S:

in the sense of Kan (see [Kan℄) is given by a sequene fS

(q)

jqg of pointed sets along-with

struture maps d

i

: S

(q)

! S

(q�1)

, s

i

: S

(q�1)

! S

(q)

de�ned for all i and satisfying the usual

relations. It is also assumed that for eah s"S

(q)

all but �nitely many d

i

(s) are di�erent

from �. Clearly one may view any pointed simpliial set as a spetrum in the sense of Kan;

this will orrespond to the suspension spetrum of the original simpliial set. Observe that

Kan's de�nitions apply to any pointed ategory; suh an objet in a pointed ategory will

be referred to as a spetrum objet in the sense of [Kan℄.)

One may de�ne a �ltration of Tot

1

by Tot

m

1

whih is de�ned in a manner similar to Tot

1

,

exept that one onsiders only those (k

p

p+n

) with p � m. SineDN

�

ÆDN

�

(K

�

:) is a osimpli-

ial objet of presheaves of simpliial abelian groups, the stalks are �brant osimpliial objets

by [B-K℄ p. 276 and hene the map Tot

m

1

(DN

�

ÆDN

�

(

�

K

�

�

))! Tot

m�1

1

(DN

�

ÆDN

�

(K

�

�

)) is

a �bration at eah stalk (see [Br℄ p. 457). The presheaf of homotopy groups of the �ber of

the map may now be identi�ed with degree-k terms of the normalization of the osimpliial

abelian presheaf p! �

�

(DN

�

ÆDN

�

(

�

K

p

:)). It follows that, one obtains a spetral sequene:

E

s;t

2

= H

s

(the o-hain omplex n! H

t

(

�

K

n

:))

) �

�s+t

(Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

�

=

H

s�t

(DN

�

ÆDN

�

(

�

K

�

�

))
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The map 	 indues a map of the above spetral sequene to the seond spetral sequene

in 4.0.5 and this is an isomorphism at the E

2

-terms. If

�

K

�

: is bounded, both spetral

sequenes onverge strongly and therefore the map 	 indues a weak-equivalene Tot

1

(DN

�

Æ

DN

�

(

�

K

�

�

))! TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

))

Next reall that if A and B are two pointed simpliial sets, one may de�ne their join

A � B (see [K-W℄ p. 242) to be the simpliial set given by: (A � B)

n+1

=

W

i+j=n

A

i

^ B

j

,

d

i

(a ^ b) = d

p�i

(a) ^ b if a"A

p

, 0 � i � p, d

i

(a ^ b) = a ^ d

i�p�1

(y), if a"A

p

, i > p and

s

i

(a ^ b) = s

i�p

(a) ^ b if a"A

p

, 0 � i � p, s

i

(a ^ b) = a ^ s

i�p�1

(y), if a"A

p

, i > p. One

obtains a homeomorphism of jA�Bj with �(jA^Bj), where A^B = (A�B)=(��B[A��)

and suspension is simply smash produt with S

1

: One may now de�ne 
(A �B): denote the

simpliial set given by (
(A � B))

n

= fx"(A � B)

n+1

jd

n

(x) = �g and where the fae maps

d

i

: (
(A � B))

n

(
(A � B))

n�1

and the degeneraies s

i

: (
(A � B))

n�1

! (
(A � B))

n

,

0 � i � n� 1, are the restritions of the orresponding maps of A �B. It follows that if one

views A �B and A^B as the assoiated simpliial spetra in the sense of Kan, one obtains

a natural weak-equivalene

: A ^B with 
(A �B).

(To see this more learly one needs to use a di�erent suspension S for a simpliial set T

whih performs an upward shift. Now jST j

�

=

�(jT j) - we skip the remaining details.)

Let

�

L

�

�

denote a osimpliial simpliial objet of abelian sheaves on S. We will view

this as a osimpliial objet of presheaves of abelian spetra in the sense of Kan on the site

S. For eah integer m, let �[m℄ denote the onstant presheaf with stalks isomorphi to the

simpliial set �[m℄; we will view this also as a presheaf of spetra in the sense of Kan in the

obvious manner. Now we let

Tot

2

(

�

L

�

�

)

n

= Hom(
(�[�℄

+

��[n℄

+

), G

�

L

�

�

)

where

�

L

�

�

is viewed as a osimpliial objet of presheaves of spetra in the sense of Kan and

the Hom is in the ategory of osimpliial objets. Let Tot

m

2

(

�

L

�

�

)

n

= Hom(
(sk

k

(�[�℄)

+

�

�[n℄

+

), G

�

L

�

�

). Sine

�

L

�

: is a osimpliial objet of simpliial abelian groups, the stalks are

�brant as osimpliial spaes (see [B-K℄ p. 276) and therefore the obvious maps Tot

m

2

(

�

L

�

�

)!

Tot

m�1

2

(

�

L

�

�

) are �brations. Tot

2

(

�

L

�

�

) is the inverse limit of this tower of �brations. To see

the relationship of this with the stable Tot of Bouse�eld-Kan, one may proeed as follows.

Reall Tot(

�

L

�

�

)

n

= Hom(�[:℄+^�[n℄, G

�

L

�

�

) and Tot

m

(

�

L

�

�

)

n

= Hom(sk

m

(�[�℄

+

)^ (�[n℄

+

),

G

�

L

�

�

). Now Tot(

�

L

�

�

) is the homotopy inverse limit of the tower Tot

m

(

�

L

�

�

) ! Tot

m�1

(

�

L

�

�

).

One uses the natural weak-equivalenes 
(sk

m

(�[p℄)

+

��[n℄

+

) ' sk

m

(�[p℄)

+

^�[n℄

+

, for

allm, to obtain a map of the orresponding homotopy inverse limit spetral sequenes. As in

[B-K℄ pp. 281-283, one may identify the E

1

-terms of both the above spetral sequenes with

the normalization of the osimpliial abelian presheaf p! �

�

(

�

L

p

�

). If

�

L

�

�

= DN

�

ÆDN

�

(

�

K

�

�

)

where

�

K

�

�

denotes a bounded double omplex of abelian sheaves onS, both spetral sequenes

onverge strongly; sine we learly obtain an isomorphism at the E

1

-terms, it follows that

one now obtains a weak-equivalene

Tot

2

(DN

�

ÆDN

�

(

�

K

�

�

)) ' Tot(DN

�

ÆDN

�

(

�

K

�

�

)

Let

�

K

�

�

denote a bounded double omplex of abelian sheaves on S. Now one obtains a

natural map

Tot

2

(DN

�

ÆDN

�

(

�

K

�

�

))! Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))
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of presheaves of spetra by sending a map: 
(�[p℄

+

��[n℄

+

) ! DN

�

ÆDN

�

(

�

K

�

�

)

p

to the

p + n simplex whih is the image of the p + n simplex i

p

^ i

n

"(�[p℄

+

)

p

^ (�[n℄

+

)

n

where

i

p

(i

n

) generates �[p℄ (�[n℄, respetively). We have de�ned Tot

1

in suh a manner so that

the image of the p + n-simplex i

p

^ i

n

satis�es the onditions in 0.5 de�ning Tot

1

. Reall

from 4.0.5 the Bouse�eld-Kan type spetral sequene for Tot

1

whose E � 2-terms are given

by E

s;t

2

= H

s

( the o-hain omplex n! H

t

(

�

K

n

:)). If the double omplex

�

K

�

�

is bounded as

in 0.5, it is lear that the above spetral sequene will onverge strongly. The onstrution

of the usual Bouse�eld-Kan spetral sequene readily applies to provide a spetral sequene

that onverges to the homotopy groups of Tot

2

; the E

2

-terms of this spetral sequene will

be also given by the same desription as above. The map in 0.5 indues a map of these

spetral sequenes thereby showing that it is a weak-equivalene provided

�

K

�

�

is bounded.

Now we summarize our results in the following proposition.

Proposition 0.3. Let

�

K

�

�

denote a double omplex of abelian sheaves on S that is

trivial in negative degrees and where the di�erentials in the �rst (seond) index are of degree

1 (�1, respetively). Assume further that

�

K

i

j

= 0 if i > j and that

�

K

�

�

is bounded i.e.

�

K

i

j

= 0 for all but �nitely many indies i and j.

Now one obtains the following weak-equivalenes of presheaves of simpliial abelian

groups (natural in

�

K

�

�

):

DN

�

(TOT (

�

K

�

�

)) ' DN

�

(TOT

1

(DN

�

ÆDN

�

(

�

K

�

�

))) ' Tot

1

(DN

�

ÆDN

�

(

�

K

�

�

))

' Tot

2

(DN

�

ÆDN

�

(

�

K

�

�

)) ' Tot(DN

�

ÆDN

�

(

�

K

�

:))

where the last Tot is the stable Bouse�eld-Kan Tot-funtor and the others are the ones

de�ned above.

Proof. The arguments above learly prove the assertion. �

0.5.4. Let

�

K

��

denote a double omplex of abelian sheaves on S so that the following

onditions are satis�ed. There exists a large positive integer m so that

�

K

i;j

= 0 if j < m� i

or i < 0 or j < 0. Let f

�

K

i

j

ji; jg denote the double omplex so that

�

K

i

j

=

�

K

m�i;j

. The

di�erentials in the �rst index are now of degree +1 while those in the seond index are

of degree �1. Let TOT (

�

K

��

) (TOT (

~

K

�

�

))) denote the hain omplex de�ned as in 0.3.1

( 0.5.1, respetively). (The assumptions on

�

K

��

ensure that TOT (

�

K

��

)

n

= 0 if n < m and

TOT (

~

K

�

�

)

n

= 0 if n < 0. Now DN

�

Æ DN

�

(

~

K

��

) is a osimpliial simpliial objet and

DN

�

ÆDN

�

(

�

K

��

)) is a double simpliial objet of abelian sheaves on the given site.

Lemma 0.4. Assume the above situation. Now one obtains a natural weak-equivalene:

�

m

Tot(DN

�

ÆDN

�

(

~

K

�

�

)) ' hoolim

�

DN

�

ÆDN

�

(

�

K

��

)

Proof. Let DN

�

(TOT (

�

K

��

)) and DN

�

(TOT (

~

K

�

�

)) denote the obvious simpliial ob-

jets. Now the left-hand side is weakly-equivalent to �

m

DN

�

(TOT (

~

K

�

�

)) (see 4.0.5) while

the right-hand side is weakly equivalent to DN

�

TOT (

�

K

��

). (See 0.5.1.) It is lear that

the omplex TOT (

�

K

��

) is the omplex TOT (

~

K

�

�

) shifted up m-times. Now 0.7 shows

�

m

DN

�

(TOT (

~

K

�

�

)) ' DN

�

(TOT (

�

K

��

)). �

0.6. The funtor Sp for presheaves of spetra. In the rest of this setion, we

will show that one may de�ne a funtor Sp on bounded below omplexes of sheaves of

abelian groups taking values in the ategory of presheaves of spetra and satisfying the

hypotheses as in Chapter I. Aordingly Presh will denote the ategory of presheaves of
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spetra (i.e. simpliial spetra as in [B-F℄) on a site S satisfying the hypotheses of Chapter

I, setion 1. We may identify the ohomologial funtor H

�

as in Chapter I with the

funtor P 7! �

��

(P ), where the latter is the presheaf of stable homotopy groups. Let

�

M

�

denote a o-hain omplex of abelian sheaves on S and let m >> 0 be an integer so

that

�

M

i

= 0 if i < 0 or if i > m. Let l denote an integer > m. For eah integer n � 0,

let K(

�

M

n

; l) denote the presheaf of Eilenberg-Malane spaes so that �

i

(K(

�

M

n

; l))

e

�

=

�

M

n

if i = l and

�

=

0 otherwise. Now

~

K

�

�

= fN

�

(K(

�

M

n

, l))jng is a double omplex with

di�erentials in the �rst (seond) index of degree +1 (�1, respetively). Let

�

K

��

denote the

double hain-omplex de�ned by

�

K

i;j

=

~

K

m�i

j

. Now

~

K

�

�

and

�

K

��

are omplexes that satisfy

the hypotheses of 0.3 (sine N(K(

�

M

n

, l))

i

= 0 if i < l and for all n). Moreover observe that

DN

�

(

~

K

�

�

) = DN

�

ÆN(K(

�

M

�

; l))

�

=

K(

�

M

�

; l). Therefore one obtains the weak-equivalene:

�

m

Tot(DN

�

K(

�

M

�

; l)) ' hoolim

�

DN

�

ÆDN

�

(

�

K

��

)

Next observe the following. Let

�

M denote an abelian sheaf on the site S and let i

denote an integer. Let l denote any �xed integer. One may de�ne the presheaf of Eilenberg-

Malane spetra



Sp(K(M; i)) be given by the sequene of presheaves of Eilenberg-Malane

spaes de�ned by

(



Sp(K(

�

M; i)))

j

:= �; j < l � i(0.6.1)

:= K(M; j + i); j � l � i(0.6.2)

One may observe readily that



Sp(K(M; i)) = EM

i

(M), where EM

i

is the funtor

de�ned in Appendix B for presheaves of symmetri spetra. Therefore, the present disussion

applies equally well to presheaves of symmetri spetra.

Let E denote a ring objet in the ategory of symmetri spetra; we will also denote by

E the obvious onstant presheaf assoiated to E. Let

�

M

�

= �

i

�

M

�

(i)"D

b

(Mod

r

(S;�

�

(E))).

Assume that

�

M

n

= 0 if n > m or if n < 0 and that l > m. We let



Sp(

�

M

�

)) =

�

i



Sp(K(

�

M

�

(i); i)). Now observe that for eah �xed n, eah presheaf of spaes forming

the presheaf of spetra



Sp(K(

�

M

n

(i); i))

j

is given by K(

�

M

n

(i); j + i), if j � l � i and = �

otherwise. Therefore the hypotheses of 0.6 are satis�ed with l replaed by j + i and one

obtains:

�

m

TotDN

�

(K(

�

M

�

(i); j + i)) ' hoolim

�

DN

�

ÆDN

�

(

�

K

��

(j))

where

�

K

��

(j) is the double hain omplex de�ned by (

�

K

��

(j))

s;t

= N

�

(K(

�

M

�

(i); j+i))

m�s

t

=

N

�

(K(

�

M

m�s

(i); j + i))

t

. Observe that inner denormalizing funtor DN

�

is inverse to

the funtor N

�

that produes N

�

(K(

�

M

m�s

(i); j + i)) from the simpliial abelian sheaf

K(

�

M

m�s

(i); j + i). (We will use the seond subsript of

�

K

��

(j) to denote this diretion.)

Therefore, if K(

�

M

�

(i); j + i)[m

h

℄ is the hain-omplex of presheaves of Eilenberg-Malane

spaes de�ned by

(K(

�

M

�

(i); j + i)[m

h

℄)

s

= K(

�

M

m�s

(i); j + i)

and with the obvious di�erential indued by that of

�

M

�

(i) and DN

�

denotes denormalizing

along the seond diretion, one obtains:

DN

�

(

�

K

��

(j)) = K(

�

M

�

(i); j + i)[m

h

℄
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Thus, for all j, we obtain the weak-equivalenes:

�

m

TotDN

�

(K(

�

M

�

(i); j + i)) ' hoolim

�

DN

�

(K(

�

M

�

(i); j + i)[m

h

℄)

Reall that



Sp(K(

�

M

�

(i); i)) = fK(

�

M

�

(i); j + i)jj � l � ig and



Sp(K(

�

M

�

(i); i)[m

h

℄)

= fK(

�

M

�

(i); j + i)[m

h

℄jj � l � ig. Sine the seond equality of 0.6 holds for all j � l � i,

we obtain:

�

m

TotDN

�

(



SpK(

�

M

�

(i); i)) ' hoolim

�

DN

�

(



SpK(

�

M

�

(i); i)[m

h

℄)

for all i. (The hain-omplex K(

�

M(i); i)[m

h

℄ is de�ned as above.) Now

�

m

TotDN

�



Sp(

�

M

�

) ' �

i

�

m

TotDN

�

(



Sp(K(

�

M

�

(i); i)))

' �

i

hoolim

�

DN

�



Sp(K(

�

M

�

(i); i)[m

h

℄)

Now one observes that for eah �xed integer k there are only �nitely many terms in the

above produt with nontrivial homotopy groups in degree k. (To see this, �rst observe that

by the hypotheses,

�

M

�

has bounded ohomology; therefore if one onsiders the spetral

sequene:

E

2

s;t

= H

s

(�

t

(DN

�



Sp(K(

�

M

�

(i); i)[m

h

℄))

e

)

) �

s+t

(hoolim

�

DN

�



Sp(K(

�

M

�

(i); i)[m

h

℄))

e

there exists a uniform bound m (independent of i) so that E

2

s;t

= 0 if s > m, s < 0

or if t 6= i. It follows that �

k

(hoolim

�

DN

�



Sp(K(

�

M

�

(i); i)[m

h

℄))

e

= 0 unless i � k �

i +m.) Therefore the produt in the last term above may be replaed by a

W

i

; now suh

a

W

i

ommutes with homotopy olimits and with the denormalizing funtor for simpliial

objets (whih also involve only sums). Therefore the last term above may be replaed by

hoolim

�

DN

�

�

i



Sp(K(

�

M

�

(i); i)[m

h

℄) ' hoolim

�

DN

�



Sp(

�

M

�

[m

h

℄). (Here

�

M

�

[m

h

℄ is the hain

omplex in Mod

r

(S; �

�

(E)) given by (

�

M

�

[m

h

℄)

s

=

�

M

m�s

and



Sp is applied degree-wise to

this omplex to produe a hain omplex in Mod(S;

b

Sp(�

�

(E))).) Realling the de�nition

of the funtor Sp from Chapter I, we now obtain a weak-equivalene:

(0.6.3) �

m

Sp(

�

M

�

) = �

m

TotDN

�

(



SpK(

�

M

�

)) ' hoolim

�

DN

�



Sp(

�

M [m

h

℄)

for any

�

M

�

"D

b

(Mod

r

(S;�

�

(E))) so that M

n

= 0 if n < 0 or if n > m.

Shifts of omplexes and suspension. We onlude the paper with a disussion on

shifts of omplexes and how they relate to suspensions (loopings) of the assoiated simpliial

and osimpliial objets. For this, we will assume the ontext of Chapter III, 1.2.

If S and T are both pointed simpliial sets (or simpliial presheaves), one de�nes S 
T

to be the pointed simpliial objet de�ned by (S
T )

n

=

W

S

n

��

T

n

with the base points of all

T

n

identi�ed with the ommon base point and with the obvious struture maps indued from
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those of S and T . If S is a pointed simpliial set and T is a simpliial objet in an abelian

ategory A, S 
 T will denote the simpliial objet in A de�ned by (S 
 T )

n

= �

S

n

��

T

n

with the base points of all T

n

identi�ed with the ommon base point and with the obvious

struture maps indued from those of S and T . If S and T are both simpliial objets in A,

S 
 T will denote the simpliial objet in A that is the diagonal of the bisimpliial objet

fS

n


 T

m

jn;m � 0g of A, where 
 has the usual meaning. Given a pointed simpliial set

S and a pointed simpliial presheaf P , S ^ P denotes the simpliial presheaf de�ned by

�(U; S ^ P ) = S ^ �(U; P ), U in the given site.

0.7. Shifts for hain omplexes. If S

1

denotes the simpliial sphere as above, one

�rst observes the isomorphism Z(S

1

)

�

=

DN

�

(Z[1℄

�

), where Z(S

1

) is the free abelian group

funtor applied to the pointed simpliial set S

1

, Z[1℄

�

denotes the hain-omplex that is

trivial in all degrees exept 1 and where it is Z and DN

�

is the denormalizing funtor

applied to this hain omplex. Next let K

�

denote a hain omplex of abelian sheaves on

the site S that is trivial in negative degrees. Now one obtains the isomorphisms:

DN

�

(K

�

[1℄)

�

=

DN

�

(Z[1℄) 
DN

�

(K

�

)

�

=

Z(S

1

)
DN

�

(K

�

)

�

=

S

1


DN

�

(K

�

)

Moreover there is a natural map S

1

^DN

�

(K

�

)! S

1


DN

�

(K

�

) of simpliial objets. This

is a weak-equivalene.

Let A denote an algebra in Presh and let Let

�

M: = �

i

�

M:(i)"Mod

r

(S;H

�

(A)); now



Sp(

�

M:) = �

i

Sp(

�

M:(i), i) is a hain-omplex in Mod(S; Sp(H

�

(E))). In this ase the map

above indues a map S

1

^ DN

�

(Sp(

�

M:)) ! S

1


 DN

�

(Sp(

�

M:)) of simpliial objets in

Mod(S; Sp(H

�

(A))). One may readily show this indues a weak-equivalene on taking the

homotopy olimits of the orresponding simpliial objets inMod(S; Sp(H

�

(A))) Combining

this with the earlier isomorphisms, we obtain a weak-equivalene :

hoolim

�

DN

�

(Sp(

�

M

�

[1℄)) ' S

1

^ hoolim

�

DN

�

(Sp(

�

M

�

))

Shifts for o-hain omplexes. Let �[n℄

+

denote the obvious onstant presheaf on the

site S as before. If S is a pointed simpliial set, reall that S
�[n℄

+

is the pointed simpliial

set given by:

(S 
�[n℄

+

)

p

=

W

S

p

��

(�[n℄

+

)

p

and with the obvious struture maps. Let P denote a presheaf of pointed simpliial sets on

the siteS. Now we will letMap(S, P ) denote the presheaf of pointed simpliial sets denoted

P

S

in Chapter I, (M4.1). If S is a pointed set viewed as a onstant pointed simpliial set,

one may observe the natural isomorphisms:

Map(S, P ) = �

S

(P ).

Next let S denote a pointed simpliial set. Let P

�

denote a osimpliial objet of

presheaves of pointed simpliial sets. Let (P

�

)

S

denote the osimpliial presheaf given in

osimpliial degree n by (P

n

)

S

n

where the last term has the meaning as above when S

n

is viewed as a onstant simpliial set. The struture maps are the obvious indued maps.

This is the diagonal of a double osimpliial objet given in degrees m and n byMap(S

m

,

P

n

) when eah S

m

is viewed as a onstant simpliial objet. Thus holim

�

�(Map(S, P

�

)) =

holim

�

(P

�

S

) whereMap(S, P

�

) denotes the double osimpliial objet onsidered above. Let

the �rst (seond) osimpliial indies for this double osimpliial objet be in the diretion
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of S (the osimpliial diretion of P

�

, respetively). If

i

holim

�

denotes the holim

�

in the �rst

(seond) diretion if i = 1 (i = 2, respetively). Now one obtains the following hain of

natural maps that are weak-equivalenes:

Map(S, holim

�

(P

�

))

'

!

2

holim

�

Map(�(S), P

�

)

'

!

2

holim

�

Æ

1

holim

�

Map(S, P

�

)

Moreover the latter maps naturally to holim

�

((P

�

)

S

) by a weak-equivalene.

Examples 0.5. (i) Let S = �[1℄

+

. Now we obtain the natural weak-equivalene:

Tot((P

�

)

S

)

'

 Map(�[1℄

+

, Tot(P

�

))

(ii) Let S = (�[1℄=

Æ

�[1℄) = the 1-dimensional simpliial sphere S

1

. Now we obtain the

natural weak-equivalene: Tot((P

�

)

S

1

)

'

 Map(S

1

; T ot(P

�

)).

LetA denote an algebra in Presh and letK

�

denote a hain omplex either inMod

r

(S;H

�

(A))

or in �

n

Mod

r

(S;A)

�n�

f

(the latter as in Chapter I, (ST4)) that is trivial in negative degrees

as above. LetDN

�

(K

�

) denote the assoiated simpliial objet. We will view this as a osim-

pliial simpliial objet onstant in the osimpliial diretion. LetK

�

�

[�1

v

℄ denote the double

omplex (K[�1

v

℄)

1

j

= K

j

and (K[1

v

℄)

i

j

= 0 for all j and all i 6= 1. One may now readily ob-

serve the isomorphism of osimpliial objets : DN

�

ÆDN

�

(K[�1

v

℄)

�

=

(DN

�

ÆDN

�

(K

�

))

S

1

where the term DN

�

Æ DN(K

�

)) is the simpliial objet DN

�

(K

�

) viewed as a onstant

osimpliial simpliial objet in the obvious manner.

Now we onsider the more general ase where

~

K

�

�

is a double hain omplex inMod

r

(S;H

�

(A))

that is trivial in negative degrees and where the di�erentials in the �rst (seond) index are of

degree +1 (�1, respetively). We may view the omplex

~

K

�

�

as sitting in the �rst quadrant

with the osimpliial (simpliial) diretion along the x (y-axis, respetively). For eah �xed

n, let

~

K

n

[�1

z

℄ denote the hain omplex K

n

shifted up one-step in the diretion of the pos-

itive z-axis. (As n varies, we now obtain a triple omplex, trivial everywhere exept in the

plane z = 1.) Now observe the isomorphism (from the previous paragraph), for eah �xed

n: DN

�

Æ DN

�

(

~

K

n

�

)

S

1

�

=

DN

�

Æ DN

�

(

~

K

n

�

[�1

z

℄). (Here the osimpliial-denormalization

is along the z-axis.) Now we denormalize in the x-diretion to get a double osimpliial

simpliial objet: DN

�

ÆDN

�

ÆDN

�

(

~

K

�

)

S

1

.

Let

~

K[�1

v

℄ denote the double omplex given by (

~

K[�1

v

℄)

i

j

=

~

K

i�1

j

if i � 1 and

(

~

K[�1

v

℄)

0

j

= 0 for all j. Let DN

�

Æ DN

�

(

~

K[�1

v

℄) denote the orresponding osimpli-

ial simpliial objet. Now one may show readily that there is natural map �DN

�

ÆDN

�

Æ

DN

�

(

~

K

�

�

)

S

1

! DN

�

ÆDN

�

(

~

K[�1

v

℄) of osimpliial simpliial objets that indues a weak-

equivalene on applying holim

�

s. (To see this simply observe that the total omplex in the

x; z-diretions of the triple omplex f

~

K

n

[�1

z

℄

�

jngmaps into the double omplex

~

K

�

bullet

[�1

v

℄

and that this is a weak-equivalene on taking the total omplexes.) Therefore one obtains

the following natural maps that are weak-equivalenes:

holim

�

(DN

�

ÆDN

�

(

~

K[�1

v

℄))

'

 holim

�

(�DN

�

ÆDN

�

DN

�

(

~

K

�

)

S

1

)

'

 Map(S

1

, holim

�

(DN

�

ÆDN

�

(

~

K

�

�

))).

the last ' follows from the seond example above.
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Next observe from Chapter I, Remark 3.2 that Map(S

1

, holim

�

(DN

�

Æ DN

�

(

~

K

�

�

))) '


holim

�

(DN

�

ÆDN

�

(

~

K

�

�

)) where 
 is used in the sense of Chapter I, De�nition 2.3.

Convention. In view of the above, shifting a hain-omplex K

�

to the right k times

will be denoted K

�

[k℄; for a o-hain omplex K

�

, the orresponding shift will be denoted

K

�

[�k℄.

Finally we return to the setting of presheaves of spetra as in 0.6.3. Let

�

M

�

= �

i

�

M

�

(i)

denote a bounded o-hain omplex in Mod

r

(S; �

�

(E)) that is trivial in negative degrees.

Let l > 0 be suh that

�

M

k

= 0 if k � l. Now, as in the disussion preeding 0.6,

b

Sp(K(

�

M

n

(i); i)) is the presheaf of spetra given by

b

Sp(K(

�

M

n

(i); i))

j

= K(

�

M

n

(i), j + i), if

j � l � i and = � otherwise. For eah j,

~

K

�

�

(j;

�

M

�

) = N

�

K(

�

M

�

(i); j + i) is now a double

omplex satisfying the hypotheses on

~

K

�

�

as above. Moreover if

�

M

�

[�1℄ is the o-hain

omplex given by (

�

M

�

[�1℄)

i

=

�

M

i�1

, one may observe the isomorphism (using the notation

from above):

~

K

�

�

(j;

�

M

�

[�1℄) =

~

K

�

�

(j;

�

M

�

)[�1

v

℄, for eah j.

Therefore, 0.7 provides the weak-equivalene:

Tot(DN

�



Sp(K(

�

M

�

[�1℄(i); i))

j

) 'Map(S

1

; T ot(DN

�

(K(



Sp(

�

M

�

(i); i))

j

))), for all j.

It follows that

Sp(

�

M

�

[�1℄)) = �

i

Tot(DN

�

K(



Sp(

�

M

�

[�1℄(i); i)))

' �

i


Tot(DN

�

K(



Sp(

�

M

�

(i); i))) = 
Sp(

�

M

�

).

0.8. Co-hain omplexes to hain omplexes and vie-versa by shifts. A devie

that we have frequently used is the following tehnique for onverting a bounded o-hain

omplex that is trivial in negative degrees to a hain omplex that is also trivial in negative

degrees and bounded. Let K

�

denote a bounded o-hain omplex in an ategory C with

a zero objet and with �nite limits and olimits. Assume that m > 0 is an integer so that

K

i

= 0 for all i < 0 and all i > m. Now we let K[m℄ denote the hain-omplex de�ned

by (K[m℄)

i

= K

m�i

and with the di�erentials indued from those of K. One may apply

the same tehnique (in reverse) to produe a o-hain omplex from a hain-omplex that

is trivial in negative degrees and that is bounded.
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stable simpliial model ategory, 37

strit homotopy ategory, 41

strong t-struture, 14

strong triangles, 6

strongly triangulated, 17

super-varieties, 120

symmetri spetra, 130

The sheaf of di�erential operators

D

X

, 120

Todd homomorphism, 115

trae map, 91, 105


