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Introduction

The notion of quasi-category was introduced by Boardman and Vogt in their work
on homotopy invariant algebraic structures [BV]. A Kan complex and the nerve
of a category are basic examples. The following notes are a collection of assertions
on quasi-categories, many of which have not yet been formally proved. Our goal
is to show that category theory has a natural extension to quasi-categories, The
extended theory has applications to homotopy theory, homotopical algebra, higher
category theory and higher topos theory.

A first draft of the notes was written in 2004 in view of its publication in the
Proceedings of the Conference on higher categories held at the IMA in Minneapolis.
An expanded version was used in a course given at the Fields Institute in January
2007. The latest version was used in a course at the CRM in Barcelona in February
2008.

Remarks on terminology: a quasi-category is sometime called a weak Kan com-
plex in the literature [KP]. The term ”quasi-category” was introduced to suggest a
similarity with categories. We shall use the term quategory as an abreviation.

Quategories abound. The coherent nerve of a category enriched over Kan com-
plexes is a quategory. The quasi-localisation of a model category is a quategory. A
quategory can be large. For example, the coherent nerve of the category of Kan
complexes is a large quategory K. The coherent nerve of the category of (small)
quategories is a large quategory Q1.
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Quategories are examples of (∞, 1)-categories in the sense of Baez and Dolan.
Other examples are simplicial categories, Segal categories and complete Segal spaces
(here called Rezk categories). Simplicial categories were introduced by Dwyer and
Kan in their work on simplicial localisation. Segal categories by Schwnzel and
Vogt under the name of ∆-categories [ScVo] and rediscovered by Hirschowitz and
Simpson in their work on higher stacks. Complete Segal spaces (Rezk categories)
were introduced by Rezk in his work on homotopy theories. To each of these
examples is associated a model category and the four model categories are Quillen
equivalent. The equivalence between simplicial categories, Segal categories and
Rezk categories was established by Bergner [B2]. The equivalence between Rezk
categories and quategories was established by Tierney and the author [JT2]. The
equivalence between simplicial categories and quategories was established by Lurie
[Lu1] and independantly by the author [J4]. Many aspects of category theory were
extended to simplicial categories by Bousfield, Dwyer and Kan. The theory of
homotopical categories of Dwyer, Hirschhorn, Kan and Smith is closely related
to that of quategories [DHKS]. Many aspects of category theory were extended
to Segal categories by Hirschowitz, Simpson, Toen and Vezzosi. Jacob Lurie has
recently formulated his work on homotopoi in the language of quategories. In doing
so, he has developped a formidable amount of quategory theory and our notes may
serve as an introduction to his work. Many notions introduced here are due to
Charles Rezk. The notion of homotopoi is an example. The notion of reduced
category object is another.

Remark: the list (∞, 1)-categories given above is not exhaustive and our account
of the history of the subject is incomplete. The notion of A∞-space introduced
by Stasheff is a seminal idea in the whole subject. A theory of A∞-categories
was developped by Batanin [Bat1]. A theory of homotopy coherent diagrams was
developped by Cordier and Porter[CP2].

The theory of quategories depends on homotopical algebra. A basic result states
that the category of simplicial sets S admits a Quillen model structure in which the
fibrant objects are the quategories (and the cofibration are the monomorphisms).
This defines the model structure for quategories. The classical model structure on
the category S is a Bousfield localisation of this model structure.

Many aspects of category theory can be formulated in the language of homo-
topical algebra. The category of small categories Cat admits a model structure
in which the weak equivalences are the equivalence of categories; it is the natu-
ral model structure on Cat. Homotopy limits in the natural model structure are
closely related to the pseudo-limits introduced by category theorists.

Many aspects of homotopical algebra can be formulated in the language of quat-
egories. This is true for example of the theory of homotopy limits and colimits.
Many results of homotopical algebra becomes simpler when formulated in the lan-
guage of quategories. We hope a similar simplification of the proofs. But this is
not be entirely clear at present, since the theory of quategories is presently in its
infancy. A mathematical theory is a kind of social construction, and the complexity
of a proof depends on the degree of maturity of the subject. What is considered to
be ”obvious” is the result of an implicit agreement between the experts based on
their knowledge and experience.
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The quategory K has many properties in common with the category of sets. It
is the archetype of a homotopos. A prestack on a simplicial set A is defined to be
a map Ao → K. A general homotopos is a left exact reflection of a quategory of
prestacks. Homotopoi can be described abstractly by a system of axioms similar
to the those of Giraud for a Grothendieck topos [Lu1]. They also admit an elegant
characterization (due to Lurie) in terms of a strong descent property discovered by
Rezk.

All the machinery of universal algebra can be extended to quategories. An al-
gebraic theory is defined to be a small quategory with finite products T , and a
model of T to be a map T → K which preserves finite products. The models of T
form a large quategory Model(T ) which is complete an cocomplete. A variety of
homotopy algebras, or an homotopy variety is defined to be a quategory equivalent
to a quategory Mod(T ) for some algebraic theory T . Homotopy varieties can be
characterized by system of axioms closely related to those of Rosicky [Ros]. The
notion of algebraic structure was extended by Ehresman to include the essentially
algebraic structures defined by a limit sketch. For example, the notions of groupoid
object and of category object in a category are essentially algebraic. The classical
theory of limit sketches and of essentially algebraic structures is easily extended to
quategories. A category object in a quategory X is defined to be a simplicial object
C : ∆o → X satisfying the Segal condition. The theory of limit sketches is a natu-
ral framework for studying homotopy coherent algebraic structures in general and
higher weak categories in particular. The quategory of models of a limit sketch is
locally presentable and conversely, every locally presentable quategory is equivalent
to the quategory of models of a limit sketch. The theory of accessible categories
and of locally presentable categories was extended to quategories by Lurie.

A para-variety is defined to be a left exact reflection of a variety of homotopy
algebras. For example, a homotopos is a para-variety. The quategories of spectra
and of ring spectra are also examples. Para-varieties can be characterized by a
system of axioms closely related to those of Vitale [Vi].

Factorisation systems are playing an important role in the theory of quategories.
We introduce a general notion of homotopy factorisation system in a model category
with examples in category theory, in classical homotopy theory and in the theory of
quategories. A basic example is provided by the theory of Dwyer-Kan localisations.
This is true also of the theory of prestacks.

The theory of quategories can analyse phenomena which belong properly to
homotopy theory. The notion of stable quategory is an example. The notion
of meta-stable quategory introduced in the notes is another. We give a proof
that the quategory of parametrized spectra is a homotopos (joint work with Georg
Biedermann). We sketch a new proof of the stabilisation hypothesis of Breen-Baez-
Dolan [Si2]. We give a characterisation of homotopy varieties which improves a
result of Rosicky.

There are important differences between category theory and the theory of quat-
egories. An important difference lies in the fact that in a quategory a section of
a morphism is not necessarly monic. For example, the diagonal of an object in a
quategory is not necessarly monic. The notion of equivalence relation is affected
accordingly and it becomes less restrictive. For example, in the quategory K every
groupoid is effective. This is true in particular if the groupoid is a group. The
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quotient of the terminal object 1 by the action of a group G is the classyfying space
of G,

BG = 1/G.

Of course, this sounds like a familiar idea in homotopy theory, since BG = E/G,
where E is a contractible space on which G is acting freely. The fact that every
groupoid in K is an equivalence groupoid has important consequences. In algebra,
important mental simplications are obtained by quotienting a structure by a con-
gruence relation. For example, we may wish to identify two objects of a category
when these objects are isomorphic. But the quotient category does not exist un-
less we can identify isomorphic objects coherently. However, the quotient category
always exists in K: if J(C) denotes the groupoid of isomorphisms of C, then the
quotient C ′ can be constructed by a pushout square of category objects in K:

J(C)

��

// C

��
BJ(C) // C ′,

where BJ(C) is the quotient of C0 by the groupoid J(C). The category C ′ satisfies
the Rezk condition: every isomorphism of C ′ is a unit; we shall say that it is
reduced. Moreover, the canonical functor C → C ′ is an equivalence of categories!
An important simplification is obtained by working with reduced categories, since
a functor between reduced categories f : C → D is an equivalence iff it is an
isomorphism! The notion of reduced category object is essentially algebraic. It
turns out that the quategory of reduced category objects in K is equivalent to
Q1. This follows from the Quillen equivalence between the model category for
quategories and the model category for Rezk categories [JT2]. Hence a quategory
is essentially the same thing as a reduced category object in K.

In the last sections we venture a few steps in the theory of (∞, n)-categories for
every n ≥ 1. There is a notion of n-fold category object for every n ≥ 1. The
quategory of n-fold category objects in K is denoted by Catn(K). By definition, we
have

Catn+1(K) = Cat(Catn(K)).
There is also a notion of n-category object for every n ≥ 1. The quategory Catn(K)
of n-category objects in K is a full sub-quategory of Catn(K). A n-category C is
reduced if every invertible cell of C is a unit. The notion of reduced n-category
object is essentially algebraic. The quategory of reduced n-category objects in K
is denoted by Qn. The quategory Qn is locally presentable, since the notion of re-
duced n-category object is essentially algebraic. It follows that Qn is the homotopy
localisation of a combinatorial model category. For example, it can be represented
by a regular Cisinski model (Â,W ). Such a representation is determined by a map
r : A→ Qn whose left Kan extension r! : Â→ Qn induces an equivalence between
the homotopy localisation of (Â,W ) and Qn. The class W is also determined by r,
since a map f : X → Y in Â belongs to W iff the morphism r!(f) : r!X → r!Y is
invertible in Qn. The notion of n-quategory is obtained by taking A to be a certain
full subcategory Θn of the category of strict n-categories and by taking r to be
the inclusion Θn ⊂ Qn. In this case W the class of weak categorical n-equivalences
Wcatn. The model category (Θ̂n,Wcatn) is cartesian closed and its subcategory of
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fibrant objects QCatn has the structure of a simplicial category enriched over Kan
complexes. The coherent nerve of QCatn is equivalent to Qn.

Note: The category Θn was first defined by the author as the opposite of the
category of finite n-disks Dn. It follows from this definition that the topos Θ̂n is
classifying n-disks and that the geometric realisation functor Θ̂n → Top introduced
by the author preserves finite limits (where Top is the category of compactly gen-
erated topological spaces). See [Ber] for a proof of these results. It was conjectured
(jointly by Batanin, Street and the author) that Θn is isomorphic to a category T ∗

n

introduced by Batanin in his theory of higher operads [Bat3]. The conjecture was
proved by Makkai and Zawadowski in [MZ] and by Berger in [Ber]. It shows that
Θn is a full subcategory of the category of strict n-categories.

Note: It is conjectured by Cisinski and the author that the localiser Wcatn is
generated by a certain set of spine inclusions S[t] ⊆ Θ[t].

We close this introduction with a few general remarks on the notion of weak
higher category. There are essentially three approaches for defining this notion:
operadic, Segalian and Kanian. In the first approach, a weak higher category is
viewed as an algebraic structure defined by a system of operations satisfying certain
coherence conditions which are themselve expressed by higher operations, possibly
at infinitum. The first algebraic definition of a weak higher groupoid is due to
Grothendieck in his ”Pursuing Stacks” [Gro] [?]. The first general definition of
a weak higher category by Baez and Dolan is using operads. The definition by
Batanin is using the higher operads introduced for this purpose. The Segalian
approach has its origin in the work of Graeme Segal on infinite loop spaces [S1].
A homotopy coherent algebraic structure is defined to be a commutative diagram
of spaces satisfying certain exactness conditions, called the Segal conditions. The
spaces can be simplicial sets, and more generally the objects of a Quillen model
category. The approach has the immense advantage of pushing the coherence con-
ditions out of the way. The notions of Segal category, of Segal space and of Rezk
category (ie complete Segal space) are explicitly Segalian. The Kanian approach
has its origin in the work of Kan and in the work of Boardman and Vogt. The
notion of quategory is Kanian, since it is defined by a cell filling condition (the
Boardman condition). In the Kanian approach, a weak higher groupoid is the same
thing as a Kan complex. We are thus liberated from the need to represent a homo-
topy type by an algebraic structure, since the homotopy type can now represents
itself! Of course, it is always instructive to model homotopy types algebraically,
since it is the purpose of algebraic topology to study spaces from an algebraic point
of view. For example, a 2-type can be modeled by a categorical group and a simply-
connected 3-type by a braided categorical group. In these examples, the homotopy
type is fully described by the algebraic model, Partial models are also important as
in rational homotopy theory. The different approaches to higher categories are not
in conflict but complementary. The Kanian approach is heuristically stronger and
more effective at the foundational level. It suggests that a weak higher category is
the combinatorial representation of a space of a new kind, possibly a higher moduli
stack. The nature of these spaces is presently unclear, but like categories, they
should admit irreversible paths. Grothendieck topoi are not general enough, even
in their higher incarnations, the homotopoi. For example, I do not know how to
associate a higher topos to a 2-category. For this we need a notion of 2-prestack.
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But this notion depends on what we choose to be the archetype of an (∞, 2)-topos.
The idea that there is a connection between the notion of weak category and that
of space is very potent. It was a guiding principle, a fil d’Ariane, in the Pursuing
Stacks of Grothendieck. It has inspired the notion of braided monoidal category
and many conjectures by Baez and Dolan. It suggests that the category of weak
categories has properties similar to that of spaces, for example, that it should be
cartesian closed. It suggests the existence of classifying higher categories, in analogy
with classifying spaces. Classifying spaces are often equipped with a natural alge-
braic structure. Operads were originally introduced for studying these structures
and the corresponding algebra of operations in (co)homology. Many new invariants
of topology, like the Jones polynomial, have not yet been explained within the clas-
sical setting of algebraic topology. Topological quantum field theory is pushing for
an extension of algebraic topology and the operadic approach to higher categories
may find its full meaning in the extension.

Notes: A notion of higher category based on the notion of complicial set was
introduced by Street and Verity. The Segalian approach to universal algebra was
developed by Badzioch [Bad2]. There many approaches to higher operads. A
theory based on cartesian monads was developed by Leinster. A theory based on
parametric right adjoints was developed by Batanin and Weber. A notion of quasi-
operads (or multi-quategories) was recently introduced by Moerdijk and Weiss.

The support and encouragement of Peter May were essential in completing the
notes. I thank the organisers of the IMA conference for their invitation. I thank
Rick Jardine for the semester spent at the Fields Institute in Toronto. I thank Carles
Casacuberta and Joachim Kock for the semester spent at the CRM in Barcelona.

I thank Joachim Kock, Nicola Gambino, Moritz Groth and Michael Schulman for
correcting various drafts of the notes. I would like to thank also the following peo-
ples for stimulating discussions on quasi-categories, higher categories and homotopy
theory during the last ten years: Jiri Adamek, Mathieu Anel, John Baez, Michael
Batanin, Alexander Berglund, Julia Bergner, Clemens Berger, Georg Biedermann,
Pilar Carrasco, Carles Casacuberta, Eugenia Cheng, Denis-Charles Cisinski, James
Dolan, Nicola Gambino, David Gepner, Ezra Getzler, Beatriz Rodriguez Gonza-
les, Moritz Groth, Michael Johnson, Panagis Karazeris, Jonas Kiessling, Joachim
Kock, Steve Lack, Yves Lafont, Tom Leinster, Jacob Lurie, Georges Maltsiniotis,
Peter May, Ieke Moerdijk, Jack Morava, Josh Nichols-Barrer, Simona Paoli, Charles
Rezk, Jiri Rosicky, Michael Schulman, Alexandru Stanculescu, Ross Street, Myles
Tierney, Bertrand Toen, Gabriele Vezzosi, Enrico Vitale, Michael Warren, Mark
Weber and Krzysztof Worytkiewicz.

I am indebted to Jon Beck for guiding my first steps in homotopy theory more
than thirty years ago. Jon was deeply aware of the unity between homotopy theory
and category theory and he contributed to both fields. He had the dream of using
simplicial sets for the foundation of mathematics (including computer science and
calculus!). I began to read Boardmann and Vogt after attending the beautiful talk
that Jon gave on their work at the University of Durham in July 1977. I dedicate
these notes to his memory.

Montréal, December 2006,
Toronto, January 2007,
Barcelona, June 2008
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1. Elementary aspects

In this section we formally introduce the notion of quategory and describe a few
basic properties. We introduce the notion of equivalence between quategories.

1.1. For terminology and notation about categories and simplicial sets, see appen-
dix 46 and 48. We denote the category of simplicial sets by S and the category of
small categories by Cat.

1.2. The category ∆ is a full subcategory of Cat. Recall that the nerve of a small
category C is the simplicial set NC obtained by putting

(NC)n = Cat([n], C)

for every n ≥ 0. The nerve functor N : Cat→ S is fully faithful. We shall regard
it as an inclusion N : Cat ⊂ S by adopting the same notation for a category and
its nerve. The nerve functor has a left adjoint

τ1 : S→ Cat

which associates to a simplicial set X its fundamental category τ1X. The classical
fundamental groupoid π1X is obtained by formally inverting the arrows of τ1X. If
X is a simplicial set, the canonical map X → Nτ1X is denoted as a map X → τ1X.

1.3. Recall that a simplicial set X is said to be a Kan complex if it satisfies the
Kan condition: every horn Λk[n]→ X has a filler ∆[n]→ X,

Λk[n]� _

��

∀ // X

∆[n].
∃

=={{{{{{{{

The singular complex of a space and the nerve of a groupoid are examples. We
shall denote by Kan the full subcategory of S spanned by the Kan complexes. If
X is a Kan complex, then so is the simplicial set XA for any simplicial set A. It
follows that the category Kan is cartesian closed. A simplicial set X is (isomorphic
to the nerve of) a groupoid iff every horn Λk[n]→ X has a unique filler.

1.4. Let us say that a horn Λk[n] is inner if 0 < k < n. A simplicial set X is
(isomorphic to the nerve of) a category iff every inner horn Λk[n] → X has a
unique filler. We shall say that a simplicial set X is a quasi-category, in short a
quategory, if it satisfies the Boardman condition: every inner horn Λk[n]→ X has a
filler ∆[n]→ X. A Kan complex and the nerve of a category are examples. We shall
say that a quategory with a single object is a quasi-monoid. If X is a quategory,
we shall say that an element of X0 is an object of X and that an element of X1 is
a morphism. A map of quategories f : X → Y is just a map of simplicial sets; we
may say that it is a functor. We shall denote by QCat the full subcategory of S
spanned by the quategories. If X is a quategory then so is the simplicial set XA

for any simplicial set A. Hence the category QCat is cartesian closed.
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1.5. A quategory can be large. We say that quategory X is locally small if the
simplicial set X is locally small (this means that the vertex map Xn → Xn+1

0 has
small fibers for every n ≥ 0). Most quategories considered in these notes are small
or locally small.

1.6. [J2] The notion of quategory has many equivalent descriptions. Recall that
a map of simplicial sets is a called a trivial fibration if it has the right lifting
property with respect to the inclusion ∂∆[n] ⊂ ∆[n] for every n ≥ 0. Let us
denote by I[n] the simplicial subset of ∆[n] generated by the edges (i, i + 1) for
0 ≤ i ≤ n − 1 (by convention, I[0] = ∆[0]). The simplicial set I[n] is a chain of n
arrows and we shall say that it is the spine of ∆[n]. Notice that I[2] = Λ1[2] and
that XI[2] = XI ×s=t XI . A simplicial set X is a quategory iff the projection

X∆[2] → XI[2]

defined from the inclusion I[2] ⊂ ∆[2] is a trivial fibration iff the projection X∆[n] →
XI[n] defined from the inclusion I[n] ⊂ ∆[n] is a trivial fibration for every n ≥ 0.

1.7. If X is a simplicial set, we shall denote by X(a, b) the fiber at (a, b) ∈ X0×X0

of the projection
(s, t) : XI → X{0,1} = X ×X

defined by the inclusion {0, 1} ⊂ I. A vertex of X(a, b) is an arrow a→ b in X. If
X is a quategory, then the simplicial set X(a, b) is a Kan complex for every pair
(a, b). Moreover, the projection X∆[2] → XI ×s=t XI defined from the inclusion
I[2] ⊂ ∆[2] has a section, since it is a trivial fibration by 1.6. If we compose this
section with the map Xd1 : X∆[2] → XI , we obtain a ”composition law”

XI ×s=t XI → XI

well defined up to homotopy. It induces a ”composition law”

X(b, c)×X(a, b)→ X(a, c)

for each triple (a, b, c) ∈ X0 ×X0 ×X0.

1.8. The fundamental category τ1X of a simplicial set X has a simple construction
when X is a quategory. In this case we have

τ1X = hoX,

where hoX is the homotopy category of X introduced by Boardman and Vogt in
[BV]. By construction, (hoX)(a, b) = π0X(a, b) and the composition law

hoX(b, c)× hoX(a, b)→ hoX(a, c)

is induced by the ”composition law” of 1.7. If f, g : a→ b are two arrows in X, we
shall say that a 2-simplex u : ∆[2]→ X with boundary ∂u = (1b, g, f),

b
1b

��=
==

==
==

a

f

@@��������
g

// b,
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is a right homotopy between f and g and we shall write u : f ⇒R g. Dually, we
shall say that a 2-simplex v : ∆[2]→ X with boundary ∂v = (g, f, 1a),

a
g

��@
@@

@@
@@

a

1a

??��������
f

// b.

is a left homotopy between f and g and we shall write v : f ⇒L g. Two arrows
f, g : a → b in a quategory X are homotopic in X(a, b) iff there exists a right
homotopy u : f ⇒R g iff there exists a left homotopy v : f ⇒L g. Let us denote
by [f ] : a → b the homotopy class of an arrow f : a → b. The composite of a
class [f ] : a → b with a class [g] : b → c is the class [wd1] : a → c, where w is any
2-simplex ∆[2]→ X filling the horn (g, ?, f) : Λ1[2]→ X,

b
g

��?
??

??
??

?

a

f
??��������
wd1

// c.

1.9. There is an analogy between Kan complexes and groupoids. The nerve of)
a category is a Kan complex iff the category is a groupoid. Hence the following
commutative square is a pullback,

Gpd

in

��

in // Kan

in

��
Cat

in // QCat,

where Gpd denotes the category of small groupoids and where the horizontal in-
clusions are induced by the nerve functor. The inclusion Gpd ⊂ Kan has a left
adjoint π1 : Kan → Gpd and the inclusion Cat ⊂ QCat has a left adjoint
τ1 : QCat → Cat. Moreover, the following square commutes up to a natural
isomorphism,

Gpd

in

��

Kan
π1oo

in

��
Cat QCat

τ1oo

1.10. We say that two vertices of a simplicial set X are isomorphic if they are
isomorphic in the category τ1X. We shall say that an arrow in X is invertible, or
that it is an isomorphism, if its image by the canonical map X → τ1X is invertible
in the category τ1X. When X is a quategory, two objects a, b ∈ X are isomorphic
iff there exists an isomorphism f : a → b. In this case, there exists an arrow
g : b → a together with two homotopies gf ⇒ 1a and fg ⇒ 1b. A quategory X
is a Kan complex iff the category hoX is a groupoid [J1]. Let J be the groupoid
generated by one isomorphism 0 → 1. Then an arrow f : a → b in a quategory X
is invertible iff the map f : I → X can be extended along the inclusion I ⊂ J . The
inclusion functor Gpd ⊂ Cat has a right adjoint J : Cat → Gpd, where J(C)
is the groupoid of isomorphisms of a category C. Similarly, the inclusion functor
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Kan ⊂ QCat has a right adjoint J : QCat → Kan by [J1]. The simplicial set
J(X) is the largest Kan subcomplex of a quategory X. It is constructed by the
following pullback square

J(X)� _

��

// J(hoX)� _

��
X

h // hoX,

where h is the canonical map. Moreover, the following square commutes up to a
natural isomorphism,

Gpd Kan
π1oo

Cat

J

OO

QCat.
τ1oo

J

OO

1.11. The functor τ1 : S → Cat preserves finite products by a result of Gabriel
and Zisman. For any pair (X, Y ) of simplicial sets, let us put

τ1(X, Y ) = τ1(Y X).

If we apply the functor τ1 to the composition map ZY × Y X → ZX we obtain a
composition law

τ1(Y, Z)× τ1(X, Y )→ τ1(X, Z)

for a 2-category Sτ1 , where we put Sτ1(X, Y ) = τ1(X, Y ). By definition, a 1-cell
of Sτ1 is a map of simplicial sets f : X → Y , and a 2-cell f → g : X → Y is a
morphism of the category τ1(X, Y ); we shall say that it is a natural transformation
f → g. Recall that a homotopy between two maps f, g : X → Y is an arrow
α : f → g in the simplicial set Y X ; it can be represented as a map X× I → Y or as
a map X → Y I . To a homotopy α : f → g is associated a natural transformation
[α] : f → g. When Y is a quategory, a natural transformation [α] : f → g is
invertible in τ1(X, Y ) iff the arrow α(a) : f(a) → g(a) is invertible in Y for every
vertex a ∈ X.

1.12. We call a map of simplicial sets X → Y a categorical equivalence if it is an
equivalence in the 2-category Sτ1 . For example, a trivial fibration (as defined in
48.4) is a categorical equivalence. The functor τ1 : S → Cat takes a categorical
equivalence to an equivalence of categories. If X and Y are quategories, we shall
say that a categorical equivalence X → Y is an equivalence of quategories, or just
an equivalence if the context is clear. A map between quategories f : X → Y is
an equivalence iff there exists a map g : Y → X together with two isomorphisms
gf → 1X and fg → 1Y .

1.13. We say that a map of simplicial sets u : A → B is essentially surjective
if the functor τ1A → τ1B is essentially surjective. We say that a map between
quategories f : X → Y is fully faithful if the map X(a, b)→ Y (fa, fb) induced by
f is a homotopy equivalence for every pair a, b ∈ X0. A map between quategories
is an equivalence iff it is fully faithful and essentially surjective.
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2. The model structure for quategories

The category of simplicial sets admits a model structure in which the fibrant ob-
jects are the quategories. The classical model structure on the category of simplicial
sets is a Bousfield localisation of this model structure.

2.1. Recall that a map of simplicial sets f : X → Y is said to be a Kan fibration if
it has the right lifting property with respect to the inclusion Λk[n] ⊂ ∆[n] for every
n > 0 and k ∈ [n]. Recall that a map of simplicial sets is said to be anodyne if it
belongs to the saturated class generated by the inclusions Λk[n] ⊂ ∆[n] (n > 0, k ∈
[n]) [GZ]. The category S admits a weak factorisation system (A,B) in which A is
the class of anodyne maps and B is the class of Kan fibrations.

2.2. Let Top be the category of compactly generated topological spaces. We recall
that the singular complex functor r! : Top→ S has a left adjoint r! which associates
to a simplicial set its geometric realisation. A map of simplicial sets u : A → B is
said to be a weak homotopy equivalence if the map r!(u) : r!A→ r!B is a homotopy
equivalence of topological spaces. The notion of weak homotopy equivalence in
S can be defined combinatorially by using Kan complexes instead of geometric
realisation. To see this, we recall the construction of the homotopy category Sπ0

by Gabriel and Zisman [GZ]. The functor π0 : S → Set preserves finite products.
For any pair (A,B) of simplicial sets, let us put

π0(A,B) = π0(BA).

If we apply the functor π0 to the composition map CB × BA → CA we obtain
a composition law π0(B,C) × π0(A,B) → π0(A,C) for a category Sπ0 , where we
put Sπ0(A,B) = π0(A,B). A map of simplicial sets is called a simplicial homotopy
equivalence if it is invertible in the category Sπ0 . A map of simplicial sets u : A→ B
is a weak homotopy equivalence iff the map

π0(u, X) : π0(B,X)→ π0(A,X)

is bijective for every Kan complex X. Every simplicial homotopy equivalence is a
weak homotopy equivalence and the converse holds for a map between Kan com-
plexes.

2.3. Recall that the category S admits a Quillen model structure in which a weak
equivalence is a weak homotopy equivalence and a cofibration is a monomorphism
[Q]. The fibrant objects are the Kan complexes. The model structure is cartesian
closed and proper. We shall say that it is the classical model structure on S and we
shall denote it shortly by (S,Who), where Who denotes the class of weak homotopy
equivalences. The fibrations are the Kan fibrations. A map is an acyclic cofibration
iff it is anodyne.

2.4. We shall say that a functor p : X → Y between two categories is an iso-
fibration if for every object x ∈ X and every isomorphism g ∈ Y with target
p(x), there exists an isomorphism f ∈ X with target x such that p(f) = g. This
notion is self dual:a functor p : X → Y is an iso-fibration iff the opposite functor
po : Xo → Y o is. The category Cat admits a model structure in which a weak
equivalence is an equivalence of categories and a fibration is an iso-fibration [JT1].
The model structure is cartesian closed and proper. We shall say that it is the
natural model structure on Cat and we shall denote it shortly by (Cat, Eq), where
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Eq denotes the class of equivalences between categories. A functor u : A→ B is a
cofibration iff the map Ob(u) : ObA → ObB is monic. Every object is fibrant and
cofibrant. A functor is an acyclic fibration iff it is fully faithful and surjective on
objects.

2.5. For any simplicial set A, let us denote by τ0A the set of isomorphism classes
of objects of the category τ1A. The functor τ0 : S→ Set preserves finite products,
since the functor τ1 preserves finite products. For any pair (A,B) of simplicial sets,
let us put

τ0(A,B) = τ0(BA).

If we apply the functor τ0 to the the composition map CB × BA → CA we obtain
the composition law τ0(B,C) × τ0(A,B) → τ0(A,C) of a category Sτ0 , where we
put Sτ0(A,B) = τ0(A,B). A map of simplicial sets is a categorical equivalence
iff it is invertible in the category Sτ0 . We shall say that a map of simplicial sets
u : A→ B is a weak categorical equivalence if the map

τ0(u, X) : τ0(B,X)→ τ0(A,X)

is bijective for every quategory X. A map u : A → B is a weak categorical
equivalence iff the functor

τ1(u, X) : τ1(B,X)→ τ1(A,X)

is an equivalence of categories for every quategory X.

2.6. The category S admits a model structure in which a weak equivalence is a
weak categorical equivalence and a cofibration is a monomorphism [J2]. The fibrant
objects are the quategories. The model structure is cartesian closed and left proper.
We shall say that it is the model structure for quategories and we denote it shortly
by (S,Wcat), where Who denotes the class of weak categorical equivalences. A
fibration is called a pseudo-fibration The functor X 7→ Xo is an automorphism of
the model structure (S,Wcat). . .

2.7. The cofibrations of the model structure (S/B,Wcat) are the monomorphisms.
Hence the model structure is determined by its fibrant objects, that is, by the
quategories, by 50.10.

2.8. The pair of adjoint functors

τ1 : S↔ Cat : N

is a Quillen adjunction between the model categories (S,Wcat) and (Cat, Eq). A
functor u : A → B in Cat is an equivalence (resp. an iso-fibration) iff the map
Nu : NA→ NB is a (weak) categorical equivalence (resp. a pseudo-fibration).

2.9. The classical model structure on S is a Bousfield localisation of the model
structure for quategories. Hence a weak categorical equivalence is a weak homo-
topy equivalence and the converse holds for a map between Kan complexes. A
Kan fibration is a pseudo-fibration and the converse holds for a map between Kan
complexes. A simplicial set A is weakly categorically equivalent to a Kan complex
iff its fundamental category τ1A is a groupoid.
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2.10. We say that a map of simplicial sets is mid anodyne if it belongs to the
saturated class generated by the inclusions Λk[n] ⊂ ∆[n] with 0 < k < n. Every
mid anodyne map is a weak categorical equivalence, monic and biunivoque (ie
bijective on vertices). We do not have an example of a monic biunivoque weak
categorical equivalence which is not mid anodyne.

2.11. We shall say that a map of simplicial sets is a mid fibration if it has the right
lifting propery with respect to the inclusion Λk[n] ⊂ ∆[n] for every 0 < k < n.
A simplicial set X is a quategory iff the map X → 1 is a mid fibration. If X is
a quategory and C is a category, then every map X → C is a mid fibration. In
particular, every functor in Cat is a mid fibration. The category S admits a weak
factorisation system (A,B) in which A is the class of mid anodyne maps and B is
the class of mid fibrations.

2.12. Recall that a reflexive graph is a 1-truncated simplicial set. If G is a reflexive
graph, then the canonical map G → τ1G is mid anodyne. It is thus a weak cate-
gorical equivalence. Hence the category τ1G is a fibrant replacement of the graph
G in the model category (S,Wcat).

2.13. A pseudo-fibration is a mid fibration. Conversely, a mid fibration between
quategories p : X → Y is a pseudo-fibration iff the following equivalent conditions
are satisfied:

• the functor ho(p) : hoX → hoY is an isofibration;
• for every object x ∈ X and every isomorphism g ∈ Y with target p(x),

there exists an isomorphism f ∈ X with target x such that p(f) = g;
• p has the right lifting property with respect to the inclusion {1} ⊂ J

2.14. Let J be the groupoid generated by one isomorphism 0 → 1. Then a map
between quategories p : X → Y is a pseudo-fibration iff the map

〈j0, p〉 : XJ → Y J ×Y X

obtained from the square

XJ
Xj0 //

pI

��

X

p

��
Y I

Y j0 // Y,

is a trivial fibration, where j0 denotes the inclusion {0} ⊂ J .

2.15. Consider the functor k : ∆ → S defined by putting k[n] = ∆′[n] for every
n ≥ 0, where ∆′[n] denotes the (nerve of) the groupoid freely generated by the
category [n]. If X ∈ S, let us put

k!(X)n = S(∆′[n], X).

The functor k! : S→ S has a left adjoint k!. The pair of adjoint functors

k! : (S,Who)↔ (S,Wcat) : k!

is a Quillen adjunction and a homotopy coreflection (this means that the left derived
functor of k! is fully faithful). If X is a quategory, then the canonical map k!(X)→
X factors through the inclusion J(X) ⊆ X and the induced map k!(X)→ J(X) is
a trivial fibration.
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2.16. Recall that a simplicial set is said to be finite if it has a finite number of non-
degenerate simplices. A presentation of a quategory X by a simplicial set A is a weak
categorical equivalence A → X. The presentation is finite if A is finite. We shall
say that a quategory X is finitely presentable if it admits a finite presentation. A
Kan complex X is finitely presentable iff there exists a weak homotopy equivalence
A → X with A a finite simplicial set iff X has finite homotopy type. The nerve
of the monoid freely generated by one idempotent is not finitely presentable. The
nerve of a finite group is finitely presentable iff it is the trivial group.

2.17. Recall that a reflexive graph is a simplicial set of dimension ≤ 1. If A is
a reflexive graph, then the canonical map A → τ1A is mid anodyne; it is thus a
presentation of the quategory τ1A.

2.18. Let Split be the category with two objects 0 and 1 and two arrows s : 0→ 1
and r : 1 → 0 such that rs = id. If K is the simplicial set defined by the pushout
square

∆[1]

��

d1 // ∆[2]

��
1 // K

then the obvious map K → Split is mid anodyne. Hence the category Split is
finitely presentable as a quategory. Observe that Split contains the monoid freely
generated by one idempotent as a full subcategory. Hence a full subcategory of a
finitely presentable quategory is not necessarly finitely presentable.

3. Equivalence with simplicial categories

Simplicial categories were introduced by Dwyer and Kan in their work on sim-
plicial localisation. The category of simplicial categories admits a Quillen model
structure, called the Bergner-Dwyer-Kan model structure. The coherent nerve of
a fibrant simplicial category is a quategory. The coherent nerve functor induces a
Quillen equivalence between simplicial categories and quategories .

3.1. Recall that a simplicial category is a category enriched over simplicial sets
and that a simplicial functor is a functor enriched over simplicial sets. We denote
by SCat the category of small simplicial categories and simplicial functors. The
category SCat of small simplicial categories and simplicial functors admits a Quillen
model structure in which the weak equivalences are the Dwyer-Kan equivalences
and the fibrations are the Dwyer-Kan fibrations [B1], see 51.5. The model structure
is left proper and the fibrant objects are the categories enriched over Kan complexes.
We say that it is the Bergner model structure or the model structure for simplicial
categories. We shall denote it by (SCat, DK), where DK denotes the class of
Dwyer-Kan equivalences.

3.2. Recall that a reflexive graph is a 1-truncated simplicial set. Let Grph be the
category of reflexive graphs. The obvious forgetful functor U : Cat→ Grph has a
left adjoint F . The composite C = FU is a comonad on Cat. It follows that for
any small category A, the sequence of categories CnA = Cn+1(A) (n ≥ 0) has the
structure of a simplicial object C∗(A) in Cat. The simplicial set n 7→ Ob(CnA)
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is constant with value Ob(A). It follows that C∗(A) can be viewed as a simplicial
category instead of a simplicial object in Cat. This defines a functor

C∗ : Cat→ SCat.

If A is a category then the augmentation C∗(A) → A is a cofibrant replacement
of A in the model category SCat. If X is a simplicial category, then a simplicial
functor C∗(A)→ X is said to be a homotopy coherent diagram A→ X. This notion
was introduced by Vogt in [V].

3.3. The simplicial category C?[n] has the following description. The objects of
C?[n] are the elements of [n]. If i, j ∈ [n] and i > j, then C?[n](i, j) = ∅; if i ≤ j,
then the simplicial set C?[n](i, j) is (the nerve of) the poset of subsets S ⊆ [i.j]
such that {i, j} ⊆ S. If i ≤ j ≤ k, the composition operation

C?[n](j, k)× C?[n](i, j)→ C?[n](i, k)

is the union (T, S) 7→ T ∪ S.

3.4. The coherent nerve of a simplicial category X is the simplicial set C !X ob-
tained by putting

(C !X)n = SCat(C?[n], X)
for every n ≥ 0. This notion was introduced by Cordier in [C]. The simplicial set
C !(X) is a quategory when X is enriched over Kan complexes [?]. The functor
C ! : SCat→ S has a left adjoint C! and we have C!A = C?A when A is a category
[J4]. Thus, a homotopy coherent diagram A → X with values in a simplicial
category X is the same thing as a map of simplicial sets A→ C !X.

3.5. The pair of adjoint functors

C! : S↔ SCat : C !

is a Quillen equivalence between the model category (S,Wcat) and the model cat-
egory (SCat, DK) [Lu1][J4].

3.6. A simplicial category can be large. For example, the quategory of Kan com-
plexes U is defined to be the coherent nerve of the simplicial category Kan. The
quategory U is large but locally small. It plays an important role in the theory of
quategories, where it is the analog of the category of sets. It is the archetype of a
homotopos, also called an ∞-topos.

3.7. The category QCat becomes enriched over Kan complexes if we put

Hom(X, Y ) = J(Y X)

for X, Y ∈ QCat. For example, the quategory of small quategories U1 is defined to
be the coherent nerve of the simplicial category QCat. The quategory U1 is large
but locally small. It plays an important role in the theory of quategories where it
is the analog of the category of small categories.

4. Equivalence with Rezk categories

Rezk categories were introduced by Charles Rezk under the name of complete
Segal spaces. They are the fibrant objects of a model structure on the category of
simplicial spaces. The first row of a Rezk category is a quategory. The first row
functor induces a Quillen equivalence between Rezk categories and quategories.
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4.1. Recal that a bisimplicial set is defined to be a contravariant functor ∆×∆→
Set and that a simplicial space to be a contravariant functor ∆ → S. We can
regard a simplicial space X as a bisimplicial set by putting Xmn = (Xm)n for every
m,n ≥ 0. Conversely, we can regard a bisimplicial set X as a simplicial space by
putting Xm = Xm? for every m ≥ 0. We denote the category of bisimplicial sets
by S(2). The box product A�B of two simplicial sets A and B is the bisimplicial
set A�B obtained by putting

(A�B)mn = Am ×Bn

for every m,n ≥ 0. This defines a functor of two variables � : S × S → S(2). The
box product funtor � : S × S → S(2) is divisible on each side. This means that
the functor A�(−) : S → S(2) admits a right adjoint A\(−) : S(2) → S for every
simplicial set A, and that the functor (−)�B : S → S(2) admits a right adjoint
(−)/B : S(2) → S for every simplicial set B. For any pair of simplicial spaces X
and Y , let us put

Hom(X, Y ) = (Y X)0
This defines an enrichment of the category S(2) over the category S. For any
simplicial set A we have A\X = Hom(A�1, X).

4.2. We recall that the category of simplicial spaces [∆o,S] admits a Reedy model
structure in which the weak equivalences are the term-wise weak homotopy equiv-
alences and the cofibrations are the monomorphisms. The model structure is sim-
plicial if we put Hom(X, Y ) = (Y X)0. It is cartesian closed and proper.

4.3. Let I[n] ⊆ ∆[n] be the n-chain. For any simplicial space X we have a canonical
bijection

I[n]\X = X1 ×∂0=∂1 X1 × · · · ×∂0=∂1 X1,

where the successive fiber products are calculated by using the face maps ∂0, ∂1 :
X1 → X0. We say that a simplicial space X satisfies the Segal condition if the map

∆[n]\X −→ I[n]\X

obtained from the inclusion I[n] ⊆ ∆[n] is a weak homotopy equivalence for every
n ≥ 2 (the condition is trivially satisfied if n < 2). A Segal space is a Reedy fibrant
simplicial space which satisfies the Segal condition.

4.4. The Reedy model structure on the category [∆o,S] admits a Bousfield local-
isation with respect to the set of maps I[n]�1 → ∆[n]�1 for n ≥ 0. The fibrant
objects of the local model structure are the Segal spaces. The local model structure
is simplicial, cartesian closed and left proper. We say that it is the model structure
for Segal spaces.

4.5. Let J be the groupoid generated by one isomorphism 0→ 1. We regard J as
a simplicial set via the nerve functor. A Segal space X is said to be complete, if it
satisfies the Rezk condition: the map

1\X −→ J\X

obtained from the map J → 1 is a weak homotopy equivalence. We shall say that
a complete Segal space is a Rezk category.
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4.6. The model structure for Segal spaces admits a Bousfield localisation with
respect to the map J�1 → 1�1. The fibrant objects of the local model structure
are the Rezk categories. The local model structure is simplicial, cartesian closed
and left proper. We say that it is the model structure for Rezk categories.

4.7. The first row of a simplicial space X is the simplicial set r(X) obtained by
putting rw(X)n = Xn0 for every n ≥ 0. The functor rw : S(2) → S has a left
adjoint c obtained by putting c(A) = A�1 for every simplicial set A. The pair of
adjoint functors

c : S↔ S(2) : rw

is a Quillen equivalence between the model category for quategories and the model
category for Rezk categories [JT2].

4.8. Consider the functor t! : S→ S(2) defined by putting

t!(X)mn = S(∆[m]×∆′[n], X)

for every X ∈ S and every m,n ≥ 0, where ∆′[n] denotes the (nerve of the) groupoid
freely generated by the category [n]. The functor t! has a left adjoint t! and the
pair

t! : S(2) ↔ S : t!

is a Quillen equivalence between the model category for Rezk categories and the
model category for quategories [JT2].

5. Equivalence with Segal categories

Segal categories and precategories were introduced by Hirschowitz and Simpson
in their work on higher stacks. The category of precategories admits a model
structure in which the fibrant objects are the Reedy fibrant Segal categories. The
first row of a fibrant Segal category is a quategory. The first row functor induces a
Quillen equivalence between Segal categories and quategories.

5.1. A simplicial space X : ∆o → S is called a precategory if the simplicial set X0

is discrete. We shall denote by PCat the full subcategory of S(2) spanned by the
precategories. The category PCat is a presheaf category and the inclusion functor
p∗ : PCat ⊂ S(2) has a left adjoint p! and a right adjoint p∗.

5.2. If X is a precategory and n ≥ 1, then the vertex map vn : Xn → Xn+1
0 takes

its values in a discrete simplicial set. We thus have a decomposition

Xn =
⊔

a∈X
[n]0
0

X(a),

where X(a) = X(a0, . . . , an) denotes the fiber of vn at a = (a0, · · · , an). A precat-
egory X satisfies the Segal condition iff he canonical map

X(a0, a1, . . . , an)→ X(a0, a1)× · · · ×X(an−1, an)

is a weak homotopy equivalence for every a ∈ X
[n]0
0 and n ≥ 2. A precategory

which satisfies the Segal condition is called a Segal category.
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5.3. If C is a small category, then the bisimplicial set N(C) = C�1 is a Segal
category. The functor N : Cat→ PCat has a left adjoint

τ1 : PCat→ Cat

which associates to a precategory X its fundamental category τ1X. A map of
precategories f : X → Y is said to be essentially surjective if the functor τ1(f) :
τ1X → τ1Y is essentially surjective. A map of precategories f : X → Y is said to
be fully faithful if the map

X(a, b)→ Y (fa, fb)

is a weak homotopy equivalence for every pair a, b ∈ X0. We say that f : X → Y is
a categorical equivalence if it is fully faithful and essentially surjective.

5.4. In [HS], Hirschowitz and Simpson construct a completion functor

S : PCat→ PCat

which associates to a precategory X a Segal category S(X) “generated” by X. A
map of precategories f : X → Y is called a weak categorical equivalence if the map
S(f) : S(X) → S(Y ) is a categorical equivalence. The category PCat admits a
left proper model structure in which a a weak equivalence is a weak categorical
equivalence and a cofibration is a monomorphism. It is the Hirschowitz-Simpson
model structure or the model structure for Segal categories. The model structure is
cartesian closed [P].

5.5. We recall that the category of simplicial spaces [∆o,S] admits a Reedy model
structure in which the weak equivalences are the term-wise weak homotopy equiva-
lences and the cofibrations are the monomorphisms. A precategory is fibrant in the
Hirschowitz-Simpson model structure iff it is a Reedy fibrant Segal category [B3].

5.6. The first row of a precategory X is the simplicial set r(X) obtained by putting
r(X)n = Xn0 for every n ≥ 0. The functor r : PCat → S has a left adjoint h
obtained by putting h(A) = A�1 for every simplicial set A. It was conjectured in
[T1] (and proved in [JT2]) that the pair of adjoint functors

h : S↔ PCat : r

is a Quillen equivalence between the model category for quategories and the model
category for Segal categories.

5.7. The diagonal d∗(X) of a precategory X is defined to be the diagonal of the
bisimplicial set X. The functor d∗ : PCat → S admits a right adjoint d∗ and the
pair of adjoint functors

d∗ : PCat↔ S : d∗

is a Quillen equivalence between the model category for Segal categories and the
model category for quategories [JT2].

6. Minimal quategories

The theory of minimal Kan complexes can be extended to quategories. Every
quategory has a minimal model which is unique up to isomorphism. A category is
minimal iff it is skeletal.
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6.1. Recall that a sub-Kan complex S of a Kan complex X is said to be a (sub)model
of X if the inclusion S ⊆ X is a homotopy equivalence. Recall that a Kan complex
is said to be minimal if it has no proper (sub)model. Every Kan complex has
a minimal model and that any two minimal models are isomorphic. Two Kan
complexes are homotopy equivalent iff their minimal models are isomorphic.

6.2. We shall say that a subcategory S of a category C is a model of C if the
inclusion S ⊆ C is an equivalence. We say that a category C is skeletal iff it has no
proper model.

6.3. A subcategory S of a category C is a model of C iff it is full and

∀a ∈ ObC ∃b ∈ ObS a ' b,

where a ' b means that a and b are isomorphic objects. A category C is skeletal iff

∀a, b ∈ ObC a ' b ⇒ a = b

6.4. Let f : C → D be an equivalence of categories. If C is skeletal, then f is
monic on objects and morphisms. If D is skeletal, then f is surjective on objects
and morphisms. If C and D are skeletal, then f is an isomorphism.

6.5. Every category has a skeletal model and any two skeletal models are isomor-
phic. Two categories are equivalent iff their skeletal models are isomorphic.

6.6. (Definition) If X is a quategory, we shall say that a sub-quategory S ⊆ X is a
(sub)model of X if the inclusion S ⊆ X is an equivalence. We say that a quategory
is minimal or skeletal if it has no proper (sub)model.

6.7. (Lemma) Let S ⊆ X be model of a quategory X. Then the inclusion u : S ⊆ X
admits a retraction r : X → S and there exists an isomorphism α : ur ' 1X such
that α ◦ u = 1u.

6.8. (Notationj) If X be a simplicial set and n ≥ 0, consider the projection

∂ : X∆[n] → X∂∆[n]

defined by the inclusion ∂∆[n] ⊂ ∆[n]. Its fiber at a vertex x ∈ X∂∆[n] is a
simplicial set X〈x〉. If n = 1 we have x = (a, b) ∈ X0 × X0 and X〈x〉 = X(a, b).
The simplicial set X〈x〉 is a Kan complex when X is a quategory and n > 0. If
n > 0, we say that two simplices a, b : ∆[n]→ X are homotopic with fixed boundary,
and we write a ' b, if we have ∂a = ∂b and a and b are homotopic in the simplicial
set X(∂a) = X(∂b). If a, b ∈ X0, we shall write a ' b to indicate that the vertices
a and b are isomorphic.

6.9. (Proposition) If S is a simplicial subset of a simplicial set X, then for every
simplex x ∈ Xn we shall write ∂x ∈ S to indicate that the map ∂x : ∂∆[n] → X
factors through the inclusion S ⊆ X. If X is a quat, then the simplicial subset S
is a model of X iff

∀n ≥ 0 ∀a ∈ Xn

(
∂a ∈ S ⇒ ∃b ∈ S a ' b

)
.

A quategory X is a minimal iff

∀n ≥ 0 ∀a, b ∈ Xn

(
a ' b ⇒ a = b

)
.
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6.10. Let f : X → Y be an equivalence of quategories. If X is minimal, then f is
monic. If Y is minimal, then f is a trivial fibration. If X and Y are minimal, then
f is an isomorphism.

6.11. Every quat has a minimal model and any two minimal models are isomorphic.
Two quategories are equivalent iff their minimal models are isomorphic.

7. Discrete fibrations and covering maps

We introduce a notion of discrete fibration between simplicial sets. It extends the
notion of covering space map and the notion of discrete fibration between categories.
The results of this section are taken from [J2].

7.1. Recall that a functor p : E → C between small categories is said to be a
discrete fibration, but we shall say a discrete right fibration, if for every object
x ∈ E and every arrow g ∈ C with target p(x), there exists a unique arrow f ∈ E
with target x such that p(f) = g. For example, if el(F ) denotes the category of
elements of a presheaf F ∈ Ĉ, then the natural projection el(F )→ C is a discrete
right fibration. The functor F 7→ el(F ) induces an equivalence between the category
of presheaves Ĉ and the full subcategory of Cat/C spanned by the discrete right
fibrations E → C. Recall that a functor u : A→ B is said to be final, but we shall
say 0-final, if the category b\A defined by the pullback square

b\A

��

// A

u

��
b\B // B

is connected for every object b ∈ B. The category Cat admits a factorisation system
(A,B) in which A is the class of 0-final functors and B is the class of discrete right
fibrations.

7.2. A functor p : E → C is a discrete right fibration iff it is right orthogonal to
the inclusion {n} ⊆ ∆[n] for every n ≥ 0. We shall say that a map of simplicial
sets a discrete right fibration if it is right orthogonal to the inclusion {n} ⊆ ∆[n]
for every n ≥ 0. We shall say that a map of simplicial sets u : A → B is 0-final
if the functor τ1(u) : τ1A → τ1B is 0-final. The category S admits a factorisation
system (A,B) in which A is the class of 0-final maps and B is the class of discrete
right fibrations.

7.3. For any simplicial set B, the functor τ1 : S → Cat induces an equivalence
between the full subcategory of S/B spanned by the discrete right fibrations with
target B and the full subcategory of Cat/B spanned by the discrete right fibrations
with target τ1B. The inverse equivalence associates to a discrete right fibration with
target τ1B its base change along the canonical map B → τ1B.

7.4. Dually, a functor p : E → C is said to be a discrete opfibration, but we shall
say a discrete left fibration, if for every object x ∈ E and every arrow g ∈ C with
source p(x), there exists a unique arrow f ∈ E with source x such that p(f) = g. A
functor p : E → C is a discrete left fibration iff the opposite functor po : Eo → Bo
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is a discrete right fibration. Recall that a functor u : A → B is said to be initial,
but we shall say 0-initial, if the category A/b defined by the pullback square

A/b

��

// A

u

��
B/b // B

is connected for every object b ∈ B. The category Cat admits a factorisation
system (A,B) in which A is the class of 0-initial functors and B is the class of
discrete left fibrations.

7.5. A functor p : E → C is a discrete left fibration iff it is right orthogonal to the
inclusion {0} ⊆ ∆[n] for every n ≥ 0. We say that a map of simplicial sets is a
discrete left fibration if it is right orthogonal to the inclusion {0} ⊆ ∆[n] for every
n ≥ 0. We say that a map of simplicial sets u : A → B is 0-initial if the functor
τ1(u) : τ1A→ τ1B is 0-initial. The category S admits a factorisation system (A,B)
in which A is the class of 0-initial maps and B is the class of discrete left fibrations.

7.6. For any simplicial set B, the functor τ1 : S → Cat induces an equivalence
between the full subcategory of S/B spanned by the discrete left fibrations with
target B and the full subcategory of Cat/B spanned by the discrete left fibrations
with target τ1B. The inverse equivalence associates to a discrete left fibration with
target τ1B its base change along the canonical map B → τ1B.

7.7. We say that functor p : E → C is a 0-covering if it is both a discrete fibration
and a discrete opfibration. For example, if F is a presheaf on C, then the natural
projection el(F ) → C is a 0-covering iff the functor F takes every arrow in C to
a bijection. If c : C → π1C is the canonical functor, then the functor F 7→ el(Fc)
induces an equivalence between the category of presheaves on π1C and the full
subcategory of Cat/C spanned by the 0-coverings E → C. We say that a functor
u : A→ B is 0-connected if the functor π1(u) : π1A→ π1B is essentially surjective
and full. The category Cat admits a factorisation system (A,B) in which A is the
class of 0-connected functors and B is the class of 0-coverings.

7.8. We say that a map of simplicial sets E → B is a 0-covering if it is a discrete
left fibration and a discrete right fibration. A map is a 0-covering if it is right
orthogonal to every map ∆[m] → ∆[n] in ∆. Recall that a map of simplicial sets
is said to be 0-connected if its homotopy fibers are connected. A map u : A → B
is 0-connected iff the functor π1(u) : π1A → π1B is 0-connected. The category S
admits a factorisation system (A,B) in which A is the class of 0-connected maps
and B is the class of 0-coverings.

7.9. If B is a simplicial set, then the functor π1 : S→ Gpd induces an equivalence
between the category of 0-coverings of B and the category of 0-coverings of π1B.
The inverse equivalence associates to a 0-covering with target π1B its base change
along the canonical map B → π1B.



QUASI-CATEGORIES 23

8. Left and right fibrations

We introduce the notions of left fibration and of right fibration. We also introduce
the notions of initial map and of final map. The right fibrations with a fixed
codomain B are the prestacks over B. The results of the section are taken from
[J2].

8.1. Recall [GZ] that a map of simplicial sets is said to be a Kan fibration if it has
the right lifting property with respect to every horn inclusion hk

n : Λk[n] ⊂ ∆[n]
(n > 0 and k ∈ [n]). Recall that a map of simplicial sets is said to be anodyne if it
belongs to the saturated class generated by the inclusions hk

n. A map is anodyne iff
it is an acyclic cofibration in the model category (S,Who). Hence the category S
admits a weak factorisation system (A,B) in which A is the class of anodyne maps
and B is the class of Kan fibrations.

8.2. We say that a map of simplicial sets is a right fibration if it has the right lifting
property with respect to the horn inclusions hk

n : Λk[n] ⊂ ∆[n] with 0 < k ≤ n.
Dually, we say that a map is a left fibration if it has the right lifting property with
respect to the inclusions hk

n with 0 ≤ k < n. A map p : X → Y is a left fibration
iff the opposite map po : Xo → Y o is a right fibration. A map is a Kan fibration iff
it is both a left and a right fibration.

8.3. Our terminology is consistent with 7.2: every discrete right (resp. left) fibra-
tion is a right (resp. left) fibration.

8.4. The fibers of a right (resp. left) fibration are Kan complexes. Every right
(resp. left) fibration is a pseudo-fibration.

8.5. A functor p : E → B is a right fibration iff it is 1-fibration.

8.6. A map of simplicial sets f : X → Y is a right fibration iff the map

〈i1, f〉 : XI → Y I ×Y X

obtained from the square

XI
Xi1 //

fI

��

X

f

��
Y I

Y i1 // Y

is a trivial fibration, where i1 denotes the inclusion {1} ⊂ I. Dually, a map f :
X → Y is a left fibration iff the map 〈i0, f〉 is a trivial fibration, where i0 denotes
the inclusion {0} ⊂ I.

8.7. A right fibration is discrete iff it is right orthogonal the inclusion hk
n : Λk[n] ⊂

∆[n] for every 0 < k ≤ n. A functor A → B in Cat is a right fibration iff it is a
Grothendieck fibration whose fibers are groupoids.
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8.8. We say that a map of simplicial sets is right anodyne if it belongs to the sat-
urated class generated by the inclusions hk

n : Λk[n] ⊂ ∆[n] with 0 < k ≤ n. Dually,
we say that a map is left anodyne if it belongs to the saturated class generated by
the inclusions hk

n with 0 ≤ k < n. A map of simplicial sets u : A → B is left
anodyne iff the opposite map uo : Ao → Bo is right anodyne. The category S
admits a weak factorisation system (A,B) in which A is the class of right (resp.
left) anodyne maps and B is the class of right (resp. left) fibrations.

8.9. If the composite of two monomorphisms u : A → B and v : B → C. is left
(resp. right) anodyne and u is left (resp. right) anodyne, then v is left (resp. right)
anodyne.

8.10. Let E be a category equipped with a classW of ”weak equivalences” satisfying
”three-for-two”. We say that a class of maps M ⊆ E is invariant under weak
equivalences if for every commutative square

A

u

��

// A′

u′

��
B // B′

in which the horizontal maps are weak equivalences, u ∈M⇔ u′ ∈M.

8.11. We say that a map of simplicial sets u : A → B is final if it admits a
factorisation u = wi : A → B′ → B with i a right anodyne map and w a weak
categorical equivalence. The class of final maps is invariant under weak categorical
equivalences. A monomorphism is final iff it is right anodyne. The base change
of a final map along a left fibration is final. A map u : A → B is final iff the
simplicial set L ×B A is weakly contractible for every left fibration L → B. For
each vertex b ∈ B, let us choose a factorisation 1→ Lb→ B of the map b : 1→ B
as a left anodyne map 1 → Lb followed by a left fibration Lb → B. Then a map
u : A → B is final iff the simplicial set Lb ×B A is weakly contractible for every
vertex b : 1 → B. When B is a quategory, we can take Lb = b\B (see ??) and a
map u : A→ B is final iff the simplicial set b\A defined by the pullback square

b\A //

��

A

u

��
b\B // B

is weakly contractible for every object b ∈ B.

8.12. Dually, we say that a map of simplicial sets u : A → B is initial if the
opposite map uo : Ao → Bo is final. A map u : A → B is initial iff it admits
a factorisation u = wi : A → B′ → B with i a left anodyne map and w a weak
categorical equivalence. The class of initial maps is invariant under weak categorical
equivalences. A monomorphism is initial iff it is left anodyne. The base change of
an initial map along a right fibration is initial. A map u : A → B is initial iff the
simplicial set R ×B A is weakly contractible for every right fibration R → B. For
each vertex b ∈ B, let us choose a factorisation 1→ Rb→ B of the map b : 1→ B
as a right anodyne map 1→ Rb followed by a right fibration Rb→ B. Then a map
u : A → B is initial iff the simplicial set Rb ×B A is weakly contractible for every
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vertex b : 1 → B. When B is a quategory, we can take Rb = B/b (see 9.7) and a
map u : A→ B is initial iff the simplicial set b\A defined by the pullback square

A/b //

��

A

u

��
B/b // B

is weakly contractible for every object b ∈ B.

8.13. The base change of a weak categorical equivalence along a left or a right
fibration is a weak categorical equivalence.

8.14. If f : X → Y is a right fibration, then so is the map

〈u, f〉 : XB → Y B ×Y A XA

obtained from the square

XB //

��

XA

��
Y B // Y A,

for any monomorphism of simplicial sets u : A→ B. Moreover, the map 〈u, f〉 is a
trivial fibration if u is right anodyne. There are dual results for left fibrations and
left anodyne maps.

8.15. To every left fibration X → B we can associate a functor

D(X) : τ1B → Ho(S,Who)

called the homotopy diagram of X. To see, we first observe that the category S/B is
enriched over S; let us denote by [X, Y ] the simplicial set of maps X → Y between
two objects of S/B. The simplicial set [X, Y ] is a Kan complex when the structure
map Y → B is a left or a right fibration. For every vertex b ∈ B0, the map b : 1→ B
is an object of S/B and the simplicial set [b, X] is the fiber X(b) of X at b. Let us
put D(X)(b) = [b, X]. let us see that this defines a functor

D(X) : τ1B → Ho(S,Who)

called the homotopy diagram of X. If f : a → b is an arrow in B, then the map
f : I → B is an object of S/B. From the inclusion i0 : {0} → I we obtain a map
i0 : a→ f and the inclusion i1 : {1} → I a map i1 : b→ f . We thus have a diagram
of simplicial sets

[a,X] [f,X]
p0oo p1 // [b, X],

where p0 = [i0, X] and p1 = [i1, X]. The map p0 is a trivial fibration by 8.14, since
the structure map X → B is a left fibration and i0 is left anodyne. It thus admits
a section s0. By composing p1 with s0 we obtain a map

f! : X(a)→ X(b)

well defined up to homotopy. The homotopy class of f only depends on the ho-
motopy class of f . Moreover, if g : b → c, then the map g!f! is homotopic to the
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map (gf)!. This defines the functor D(X) if we put D(X)(a) = X(a) = [a,X] and
D(X)(f) = f!. Dually, to a right fibration X → B we associate a functor

D(X) : τ1B
o → Ho(S,Who)

called the (contravariant) homotopy diagram of X. If f : a → b is an arrow in B,
then the inclusion i1 : a → f is right anodyne. It follows that the map p1 in the
diagram

[a,X] [f,X]
p0oo p1 // [b, X],

is a trivial fibration. It thus admits a section s1. By composing p0 with s1 we
obtain a map

f∗ : X(b)→ X(a)

well defined up to homotopy. This defines the functor D(X) if we put D(X)(a) =
X(a) = [a,X] and D(X)(f) = f∗.

9. Join and slice

For any object b of a category C there is a category C/b of objects of C over
b. Similarly, for any vertex b of a simplicial set X there is a simplicial set X/b.
More generally, we construct a simplicial set X/b for any map of simplicial sets
b : B → X. The construction uses the join of simplicial sets. The results of this
section are taken from [J1] and [J2].

9.1. Recall that the join of two categories A and B is the category C = A ? B
obtained as follows: Ob(C) = Ob(A) t Ob(B) and for any pair of objects x, y ∈
Ob(A) tOb(B) we have

C(x, y) =


A(x, y) if x ∈ A and y ∈ A
B(x, y) if x ∈ B and y ∈ B

1 if x ∈ A and y ∈ B
∅ if x ∈ B and y ∈ A.

Composition of arrows is obvious. Notice that the category A ? B is a poset if A
and B are posets: it is the ordinal sum of the posets A and B. The operation
(A,B) 7→ A ? B is functorial and coherently associative. It defines a monoidal
structure on Cat, with the empty category as the unit object. The monoidal
category (Cat, ?) is not symmetric but there is a natural isomorphism

(A ? B)o = Bo ? Ao.

The category 1 ? A is called the projective cone with base A and the category
A ? 1 the inductive cone with cobase A. The object 1 is terminal in A ? 1 and
initial in 1 ? A. The category A ? B is equipped with a natural augmentation
A ? B → I obtained by joining the functors A → 1 and B → 1. The resulting
functor ? : Cat×Cat→ Cat/I is right adjoint to the functor

i∗ : Cat/I → Cat×Cat,

where i denotes the inclusion {0, 1} = ∂I ⊂ I.
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9.2. The monoidal category (Cat, ?) is not closed. But for every category B ∈ Cat,
the functor

(−) ? B : Cat→ B\Cat
which associates to a category A the inclusion A ⊆ A ? B has a right adjoint which
takes a functor b : B → X to a category that we shall denote by X/b. We shall
say that X/b is the lower slice of X by b. For any category A, there is a bijection
between the functors A→ X/b and the functors A ? B → X which extend b along
the inclusion B ⊆ A ? B,

B

��

b

##G
GG

GG
GG

GG

A ? B // X.

In particular, an object of X/b is a functor c : 1 ? B → X which extends b; it is
a projective cone with base b. Dually, the functor A ? (−) : Cat → A\Cat which
associates to a category B the inclusion B ⊆ A ? B has a right adjoint which takes
a functor a : A → X to a category that we shall denote a\X. We shall say that
a\X is the upper slice of X by a. An object of a\X is a functor c : A?1→ C which
extends a; it is an inductive cone with cobase a.

9.3. We shall denote by ∆+ the category of all finite ordinals and order preserving
maps, including the empty ordinal 0. We shall denote the ordinal n by n, so that
we have n = [n− 1] for n ≥ 1. We may occasionally denote the ordinal 0 by [−1].
Notice the isomorphism of categories 1?∆ = ∆+. The ordinal sum (m,n) 7→ m+n is
functorial with respect to order preserving maps. This defines a monoidal structure
on ∆+,

+ : ∆+ ×∆+ → ∆+,

with 0 as the unit object.

9.4. Recall that an augmented simplicial set is defined to be a contravariant functor
∆+ → Set. We shall denote by S+ the category of augmented simplicial sets. By
a general procedure due to Brian Day [Da], the monoidal structure of ∆+ can be
extended to S+ as a closed monoidal structure

? : S+ × S+ → S+

with 0 = y(0) as the unit object. We call X ?Y the join of the augmented simplicial
sets X and Y . We have

(X ? Y )(n) =
⊔

i+j=n

X(i)× Y (j)

for every n ≥ 0.

9.5. From the inclusion t : ∆ ⊂ ∆+ we obtain a pair of adjoint functors

t∗ : S+ ↔ S : t∗.

The functor t∗ removes the augmentation of an augmented simplicial set. The
functor t∗ gives a simplicial set A the trivial augmentation A0 → 1. Notice that
t∗(∅) = 0 = y(0), where y is the Yoneda map ∆+ → S+. The functor t∗ is fully
faithful and we shall regard it as an inclusion t∗ : S ⊂ S+. The operation ? on S+

induces a monoidal structure on S,

? : S× S→ S.
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By definition, t∗(A ? B) = t∗(A) ? t∗(B) for any pair A,B ∈ S. We call A ? B the
join of the simplicial sets A and B. It follows from the formula above, that we have

(A ? B)n = An tBn t
⊔

i+1+j=n

Ai ×Aj .

for every n ≥ 0. Notice that we have

A ? ∅ = A = ∅ ? A

for any simplicial set A, since t∗(∅) = 0 is the unit object for the operation ? on
S+. Hence the empty simplicial set is the unit object for the join operation on S.
The monoidal category (S, ?) is not symmetric but there is a natural isomorphism

(A ? B)o = Bo ? Ao.

For every pair m,n ≥ 0 we have

∆[m] ? ∆[n] = ∆[m + 1 + n]

since we have [m] + [n] = [m + n + 1]. In particular,

1 ? 1 = ∆[0] ? ∆[0] = ∆[1] = I.

The simplicial set 1 ? A is the projective cone with base A A and the simplicial set
A ? 1 the inductive cone with cobase A.

9.6. If i denotes the inclusion {0, 1} = ∂I ⊂ I, then the functor i∗ : S/I → S/∂I =
S× S has a right adjoint i∗ which associates to a pair of simplicial sets (A,B) the
simplicial set A?B equipped with the map A?B → I obtained by joining the maps
A→ 1 and B → 1. It follows that we have

A ? B = (A ? 1)×I (1 ? B)

since we have (A,B) = (A, 1)× (1, B) in S× S.

9.7. The monoidal category (S, ?) is not closed. But for any simplicial set B, the
functor

(−) ? B : S→ B\S
which associates to a simplicial set A the inclusion B ⊆ A ? B has a right adjoint
which takes a map of simplicial set b : B → X to a simplicial set X/b called the
lower slice of X by b. For any simplicial set A, there is a bijection between the maps
A→ X/b and the maps A ? B → X which extend b along the inclusion B ⊆ A ? B,

B

��

b

##G
GG

GG
GG

GG

A ? B // X.

In particular, a vertex 1 → X/b is a map c : 1 ? B → X which extends b; it is
a projective cone with base b in X. The simplicial set X/b is a quategory when
X is a quategory. If B = 1 and b ∈ X0, then a simplex ∆[n] → X/b is a map
x : ∆[n + 1] → X such that x(n + 1) = b. Dually, for any simplicial set A, the
functor A ? (−) : S → A\S has a right adjoint which takes a map a : A → X to a
simplicial set a\X called the upper slice of X by a. A vertex 1 → a\X is a map
c : A ? 1 → X which extends a; it is an inductive cone with cobase a in X. The
simplicial set a\X is a quategory when X is a quategory. If A = 1 and a ∈ X0,
then a simplex ∆[n]→ a\X is a map x : ∆[n + 1]→ X such that x(0) = a.
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9.8. If A and B are simplicial sets, consider the functor

A ? (−) ? B : S→ (A ? B)\S

which associates to X the inclusion A?B ⊆ A?X ?B obtained by joining the maps
1A : A→ A, ∅ → X and 1B : B → B. The functor A ? (−) ? B has a right adjoint
which takes a map f : A?B → Y to a simplicial set that we shall denote Fact(f, Y ).
By construction, a vertex 1→ Fact(f, Y ) is a map g : A?1?B → Y which extends
f . When A = B = 1, a vertex 1 → Fact(f, Y ) it is a factorisation of the arrow
f : I → X. If f is an arrow a→ b then Fact(f,X) = f\(X/b) = (a\X)/f .

9.9. Recall that a model structure on a category E induces a model structure on the
slice category E/B for each object B ∈ E . In particular, we have a model category
(B\S,Wcat) for each simplicial set B. The pair of adjoint functors X 7→ X ? B
and (X, b) 7→ X/b is a Quillen pair between the model categories (S,Wcat) and
(B\S,Wcat).

9.10. If u : A→ B and v : S → T are two maps in S, we shall denote by u ?′ v the
map

(A ? T ) tA?S (B ? S)→ B ? T

obtained from the commutative square

A ? S

A?v

��

u?S // B ? S

B?v

��
A ? T

u?T // B ? T.

If u is an inclusion A ⊆ B and v an inclusion S ⊆ T , then the map u ?′ v is the
inclusion

(A ? T ) ∪ (B ? S) ⊆ B ? T.

If u : A→ B and v : S → T are monomorphisms of simplicial sets, then

• u ?′ v is mid anodyne if u is right anodyne or v left anodyne;
• u ?′ v is left anodyne if u is anodyne;
• u ?′ v is right anodyne if v is anodyne.

9.11. [J1] [J2] (Lemma) Suppose that we have a commutative square

({0} ? T ) ∪ (I ? S)

��

u // X

p

��
I ? T

v // Y,

where p is a mid fibration between quategories. If the arrow u(I) ∈ X is invertible,
then the square has a diagonal filler.
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9.12. [J1] [J2] Suppose that we have a commutative square

Λ0[n]

��

x // X

p

��
∆[n] // Y,

in which p is a mid fibration between quategories. If n > 1 and the arrow x(0, 1) ∈ X
is invertible, then the square has a diagonal filler. This follows from the lemma
above if we use the decompositions ∆[n] = I ? ∆[n − 2] and Λ0[n] = ({0} ? ∆[n −
2]) ∪ (I ? ∂∆[n− 2]).

9.13. [J1] [J2] A quategory X is a Kan complex iff the category hoX is a groupoid.
This follows from the result above.

9.14. The simplicial set X/b depends functorially on the map b : B → X. More
precisely, to every commutative diagram

B

b

��

A
uoo

a

��
X

f // Y

we can associate a map
f/u : X/b→ Y/a.

By definition. if x : ∆[n] → X/b, then the simplex (f/u)(x) : ∆[n] → Y/a is
obtained by composing the maps

∆[n] ? A
∆[n]?u // ∆[n] ? B

x // X
f // Y.

9.15. A map u : (M,p)→ (N, q) in the category S/B is a contravariant equivalence
iff the map 1X/u : dq\X → dp\X is an equivalence of quategories for any map
d : B → X with values in a quategory X. In particular, a map u : A → B is
final iff the map 1X/u : d\X → du\X is an equivalence of quategories for any map
d : B → X with values in a quategory X.

9.16. For any chain of three maps

S
s // T

t // X
f // Y

we shall denote by 〈s, t, f〉 the map

X/t→ Y/ft×Y/fts X/ts

obtained from the commutative square

X/t

��

// X/ts

��
Y/ft // Y/fts,

Let us suppose that s is monic. Then the map 〈s, t, f〉 is a right fibration when
f is a mid fibration, a Kan fibration when f is a left fibration, and it is a trivial
fibration in each of the following cases:
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• f is a trivial fibration;
• f is a right fibration and s is anodyne:
• f is a mid fibration and s is left anodyne.

9.17. The fat join of two simplicial sets A and B is the simplicial set A�B defined
by the pushout square

(A× 0×B) t (A× 1×B) //

��

A tB

��
A× I ×B // A �B.

We have A t B ⊆ A � B and there is a canonical map A � B → I. This defines a
continuous functor � : S× S→ S/I and we have

X � Y = (X � 1)×I (1 � Y ).

For a fixed B ∈ S, the functor (−) � B : S → B\S which takes a simplicial set A
to the inclusion B ⊆ A � B has a right adjoint which takes a map b : B → X to
a simplicial set X//b called the fat lower slice of X by b. If B = 1 and b ∈ X0,
then X//b is the fiber at b of the target map XI → X. The simplicial set X//b is
a quategory when X is a quategory. Dually, there is also a fat upper slice a\\X for
any map a : A→ X. The simplicial set a\\X is a quategory when X is a quategory.

9.18. For any pair of simplicial sets A and B, the square

A tB

��

// A ? B

��
A �B // I.

has a unique diagonal filler

θAB : A �B → A ? B.

and θAB is weak categorical equivalence. By adjointness, we obtain a map

ρ(b) : X/b→ X//b

for any simplicial set X and any map b : B → X. The map ρ(b) is an equivalence
of quategories when X is a quategory.

9.19. The pair of adjoint functors X 7→ X � B and (X, b) 7→ X//b is a Quillen
adjoint pair between the model categories (S,Wcat) and (B\S,Wcat).

10. Initial and terminal objects

We introduce the notions of inital, terminal and null objects. We also introduce
a strict version of these notions and a corresponding model category..

10.1. If A is a simplicial set, we shall say that a vertex a ∈ A is terminal if the
map a : 1→ A is final (or equivalently right anodyne). Dually, we shall say that a
vertex a ∈ A is initial iff the map a : 1→ A is initial (or equivalently left anodyne).
A vertex a ∈ A is initial if the opposite vertex ao ∈ Ao is terminal.
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10.2. The notion of terminal vertex is invariant under weak categorical equivalence.
More precisely, if u : A→ B is a weak categorical equivalence, then a vertex a ∈ A
is terminal in A iff the vertex u(a) is terminal in B. If A is a simplicial set, then the
vertex 1a ∈ A/a is terminal in A/a for any vertex a ∈ A. Similarly for the vertex
1a ∈ A//a.

10.3. If X is a quategory, then an object a ∈ X is terminal iff the following
equivalent conditions are satisfied:

• the simplicial set X(x, a) is contractible for every object x ∈ X;
• every simplical sphere x : ∂∆[n]→ X with x(n) = a can be filled;
• the projection X/a → X(resp. X//a → X) is a weak categorical equiva-

lence.
Moreover, the projection X/a → X (resp. X//a → X) is a trivial fibration in this
case. Dually, an object a ∈ X is initial iff the following equivalent conditions are
satisfied:

• the simplicial set X(a, x) is contractible for every object x ∈ X;
• every simplical sphere x : ∂∆[n]→ X with x(0) = a can be filled;
• the projection a\X → X (resp. a\\X → X) is a weak categorical equiva-

lence (resp. a trivial fibration).
Moreover, the projection a\X → X (resp. a\\X → X) is a weak categorical
equivalence (resp. a trivial fibration) in this case.

10.4. The full simplicial subset spanned by the terminal (resp. initial) objects of
a quategory is a contractible Kan complex when non-empty.

10.5. If A is a simplicial set, then a vertex a ∈ A which is terminal in A is also
terminal in the category τ1A. The converse is true when A admits a terminal vertex.

10.6. Let B be a simplicial set. Then a vertex b ∈ B is terminal iff the inclusion
E(b) ⊆ E is a weak homotopy equivalence for every left fibration p : E → B, where
E(b) = p−1(b). Recall from 12.1 that the category S/B is enriched over S. For any
object E of S/B, let us denote by ΓB(E) the simplicial set [B,E] of global sections
of E. Then a vertex b ∈ B is terminal iff the canonical projection ΓB(E) → E(b)
is a homotopy equivalence for every right fibration E → B.

10.7. If b is a terminal object of a quategory X, then the projection X/b → X
admits a section s : X → X/b such that s(1b) = b. The section is homotopy unique
and we shall say that it is a terminal flow on X. A terminal flow on (X, b) can
be defined to be a map r : X ? 1 → X which extends the identity X → X along
the inclusion X ⊂ X ? 1 and such that r(b ? 1) = 1b. More generally, if (A, a) is a
pointed simplicial set we shall say that a map r : A ? 1→ A is a terminal flow if it
extends the identity A→ A along the inclusion A ⊂ A?1 and we have r(a?1) = 1a.
The vertex a is then terminal in A. If A is a category with terminal object a ∈ A,
then there is a unique terminal flow r : A?1→ A such that r(1) = a. In particular,
the simplex ∆[n] is equipped with a unique erminal flow, since the category [n] has
a unique terminal object n ∈ [n]. The map 1 ? 1→ 1 gives the simplicial set 1 the
structure of a monoid in the monoidal category (S, ?). We shall say that a terminal
flow r : A ? 1 → A is strict if it is associative as a right action of the monoid 1 on
A. A morphism of strict terminal flows (A, r)→ (B, s) is a map u : A→ B which
respects the right actions. This defines a category S(t) whose objects are the strict
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terminal flows. The functor U : S(t) → 1\S which associates to a terminal flow
(A, r) the pointed simplicial set (A, r(1)) has a left adjoint F which associates to
a pointed simplicial set (A, a) the simplicial set A ?a 1 described by the pushout
square

1 ? 1

a?1

��

// 1

��
A ? 1 // A ?a 1

The flow on A?a 1 is induced by the canonical flow on A? 1. Let us denote by ∆(t)
the subcategory of ∆ whose morphisms are the maps f : [m]→ [n] which preserves
the top elements. A strict terminal flow A = (A, r) has a nerve N(A) : ∆(t)o → Set
defined by putting

N(A)n = S(t)(∆[n], A)
for every n ≥ 0. The nerve functor

N : S(t)→ [∆(t)o,Set]

is fully faithful and its image is the full subcategory of [∆(t)o,Set] spanned by
the presheaves X with X0 = 1. We shall say that a map of strict terminal flows
f : (A, r) → (B, s) is a weak categorical equivalence if the map f : A → B is
a weak categorical equivalence. The category S(t) admits a model structure in
which a weak equivalence is a weak categorical equivalence and a cofibration is a
monomorphism. A strict terminal flow (A, r) is fibrant for this model structure iff
the simplicial set A is a quategory. We shall denote this model structure shortly
by (S(t),Wcat). The pair of adjoint functors

F : 1\S↔ S(t) : U

is a Quillen adjunction between the model categories (1\S,Wcat) and (S(t),Wcat).
The functor F is a homotopy reflection since the right derived functor UR is fully
faithful. A pointed simplicial set (A, a) belongs to the essential image of UR iff the
vertex a is terminal in A. Dually, an initial flow on a pointed simplicial set (A, a)
is defined to be a map l : 1 ? A → A which extends the identity map A → A and
such that l(a ? 1) = 1a. An initial flow l : 1 ? A → A is strict if it is associative as
a left action of the monoid 1 on A. There is then a category S(i) of strict initial
flows and a model category (S(i),Wcat). . . .

10.8. We shall say that a vertex in a simplicial set A is null if it is both initial and
terminal in A. We shall say that a simplicial set A is null-pointed if it admits a null
vertex 0 ∈ A. If a quategory X is null-pointed, then the projection XI → X ×X
admits a section which associates to a pair of objects x, y ∈ X a null morphism
0 : x→ y obtained by composing the morphisms x→ 0→ y. Moreover, the section
is homotopy unique. Similarly, the codiagonal X t X → X admits an extension
m : X ? X → X which associates to a pair of objects x, y ∈ X a null morphism
m(x ? y) = 0 : x → y. Moreover, the map m is homotopy unique. More generally,
if (A, a) is a pointed simplicial set, we shall say that a map m : A ? A → A is
a null flow if it extends the codiagonal A t A → A and we have m(a ? a) = 1a.
The vertex a is then null in A. If A is a category with null object a ∈ A, then
there is a unique null flow m : A ? A → A such that m(a, a) = 1a. We shall say
that a null flow m : A ? A → A is strict if it is associative. A morphism of null
flows (A,m) → (B,n) is a map u : A → B which respects m and n This defines a
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category S(n) whose objects are the strict null flows. Let us say that a map of null
flows f : (A,m)→ (B,n) is a weak categorical equivalence (resp. a pseudo-fibration)
if the map f : A → B is a weak categorical equivalence (resp. a pseudo-fibration).
Then the category S(n) admits a model structure in which a weak equivalence is a
weak categorical equivalence and a fibration is a pseudo-fibration. We shall denote
this model structure shortly by (S(n),Wcat). The forgeful functor U : S(n)→ 1\S
which associates to a null flow (A,m, 0) the pointed simplicial set (A, 0) has a left
adjoint F and the pair of adjoint functors

F : 1\S↔ S(n) : U

is a Quillen adjunction between the model category (1\S,Wcat) and the model
category (S(n),Wcat). The functor F is a homotopy reflection and a pointed
simplicial set (A, a) belongs to the essential image of the right derived functor UR

iff the vertex a is null in A. . .

11. Homotopy factorisation systems

The notion of homotopy factorisation system was introduced by Bousfield in his
work on localisation. We introduce a more general notion and give examples. Most
results of the section are taken from [J2].

11.1. Let E be a category equipped with a class of maps W satisfying ”three-for-
two”. We shall say that a class of mapsM⊆ E is invariant under weak equivalences
if for every commutative square

A

u

��

// A′

u′

��
B // B′

in which the horizontal maps are in W, we have u ∈M⇔ u′ ∈M.

11.2. We shall say that a class of mapsM in a category E has the right cancellation
property if the implication

vu ∈M and u ∈M ⇒ v ∈M

is true for any pair of maps u : A → B and v : B → C. Dually, we shall say that
M has the left cancellation property if the implication

vu ∈M and v ∈M ⇒ u ∈M

is true for any pair of maps u : A→ B and v : B → C.

11.3. If E is a Quillen model category, we shall denote by Ef (resp. Ec) the full
subcategory of fibrant (resp. cofibrant) objects of E and we shall put Efc = Ef ∩Ec.
For any class of maps M⊆ E we shall put

Mf =M∩ Ef , Mc =M∩ Ec and Mfc =M∩ Efc.
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11.4. Let E be a model category with model structure (C,W,F). We say that a
pair (A,B) of classes of maps in E is a homotopy factorisation system if the following
conditions are satisfied:

• the classes A and B are invariant under weak equivalences;
• the pair (Afc ∩ C,Bfc ∩ F) is a weak factorisation system in Efc;
• the class A has the right cancellation property;
• the class B has the left cancellation property.

The last two conditions are equivalent in the presence of the others. The class A
is said to be the left class of the system and B to be the right class. We say that a
system (A,B) is uniform if the pair (A∩C,B∩F) is a weak factorisation system.

11.5. The notions of homotopy factorisation systems and of factorisation systems
coincide if the model structure is discrete (ie whenW is the class of isomorphisms).
The pairs (E ,W) and (W, E) are trivial examples of homotopy factorisation systems.

11.6. A homotopy factorisation system (A,B) is determined by each of the follow-
ing 24 classes,

A Ac Af Afc

A ∩ C Ac ∩ C Af ∩ C Afc ∩ C

A ∩ F Ac ∩ F Af ∩ F Afc ∩ F

B Bc Bf Bfc

B ∩ C Bc ∩ C Bf ∩ C Bfc ∩ C

B ∩ F Bc ∩ F Bf ∩ F Bfc ∩ F .

This property is useful in specifying a homotopy factorisation system.

11.7. Every homotopy factorisation system in a proper model category is uniform.
This is true in particular for the homotopy factorisations systems in the model
categories (S,Who) and (Cat, Eq).

11.8. If E is a model category we shall denote by Ho(M) the image of a class
of maps M ⊆ E by the canonical functor E → Ho(E). If (A,B) is a homotopy
factorisation system E , then the pair (Ho(A),Ho(B)) is a weak factorisation system
in Ho(E). Notice that the pair (Ho(A),Ho(B)) is not a factorisation system in
general. The class Ho(A) has the right cancellation property and the class Ho(B)
the left cancellation property. The system (A,B) is determined by the system
(Ho(A),Ho(B)).
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11.9. The intersection of the classes of a homotopy factorisation system is the class
of weak equivalences. Each class of a homotopy factorisation system is closed under
composition and retracts. The left class is closed under homotopy cobase change
and the right class is closed under homotopy base change.

11.10. Let (A,B) be a homotopy factorisation system in a model category E . Then
we have u t p for every u ∈ Ac ∩ C and p ∈ Bf ∩ F . If A ∈ Ec and X ∈ Ef , then
every map f : A→ X admits a factorisation f = pu with u ∈ Ac∩C and p ∈ Bc∩F .

11.11. If E is a model category, then so is the category E/C for any object C ∈ E .
IfM is a class of maps in E , let us denote byMC the class of maps in E/C whose
underlying map belongs to M. If (A,B) is a homotopy factorisation system in E
and C is fibrant, then the pair (AC ,BC) is a homotopy factorisation system in E/C.
This true without restriction on C when the system (A,B) is uniform.

11.12. Dually, if E is a model category, then so is the category C\E for any object
C ∈ E . IfM is a class of maps in E , let us denote by CM the class of maps in C\E
whose underlying map belongs toM. If (A,B) is a homotopy factorisation system
in E and C is cofibrant, then the pair (CA, CB) is a homotopy factorisation system
in C\E . This is true without restriction C when the system (A,B) is uniform.

11.13. The model category (Cat, Eq) admits a (uniform) homotopy factorisation
system (A,B) in which A is the class of essentially surjective functors and B the
class of fully faithful functors.

11.14. We call a functor u : A→ B a localisation (resp. iterated localisation) iff it
admits a factorisation u = wu′ : A → B′ → B with u′ a strict localisation (resp.
iterated strict localisation) and w an equivalence of categories. The model category
(Cat, Eq) admits a homotopy factorisation system (A,B) in which A is the the
class of iterated localisations and B is the class of conservative functors.

11.15. The model category (Cat, Eq) admits a homotopy factorisation system
(A,B) in which A the class of 0-final functors. A functor u : A → B belongs to B
iff it admits a factorisation u = pw : A → E → B with w an equivalence and p a
discrete right fibration. Dually, the model category (Cat, Eq) admits a homotopy
factorisation system (A′,B′) in which A′ is the class of 0-initial functors. A functor
u : A → B belongs to B iff it admits a factorisation u = pw : A → E → B with w
an equivalence and p a discrete left fibration.

11.16. The model category (Cat, Eq) admits a homotopy factorisation system
(A,B) in which A the class of 1-final functors. A functor u : A → B belongs to B
iff it admits a factorisation u = pw : A → E → B with w an equivalence and p a
1-fibration.

11.17. Recall that a functor u : A → B is said to be 0-connected if the functor
π1(u) : π1A → π1B is essentially surjective and full . The category Cat admits
a homotopy factorisation system (A,B) in which A is the class of 0-connected
functors. A functor u : A → B belongs to B iff it admits a factorisation u = pw :
A→ E → B with w an equivalence and p a 0-covering,
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11.18. We say that a map of simplicial sets
is homotopy monic if its homotopy fibers are empty or contractible. We say

that a map of simplicial sets is homotopy surjective if its homotopy fibers are non-
empty. A map u : A→ B is homotopy surjective iff the map π0(u) : π0A→ π0B is
surjective. The model category (S,Who) admits a uniform homotopy factorisation
system (A,B) in which A is the class of homotopy surjections and B the class of
homotopy monomorphisms.

11.19. Recall from 1.13 that a map of simplicial sets u : A → B is said to be
essentially surjective if the map τ0(u) : τ0(A) → τ0(B) is surjective. The model
category (S,Wcat) admits a (non-uniform) homotopy factorisation system (A,B)
in which A is the class of essentially surjective maps. A map in the class B is said
to be fully faithful. A map between quategories f : X → Y is fully faithful iff the
map X(a, b) → Y (fa, fb) induced by f is a weak homotopy equivalence for every
pair of objects a, b ∈ X0.

11.20. We say that a map of simplicial sets u : A → B is conservative if the
functor τ1(u) : τ1A → τ1B is conservative. The model category (S,Wcat) admits
a (non-uniform) homotopy factorisation system (A,B) in which B is the class of
conservative maps. A map in the class A is an iterated homotopy localisation. See
18.2 for this notion.

11.21. The model category (S,Wcat) admits a uniform homotopy factorisation
system (A,B) in which A is the class of final maps. A map p : X → Y belongs
to B iff it admits a factorisation p′w : X → X ′ → Y with p′ a right fibration
and w a weak categorical equivalence. The intersection B ∩ F is the class of right
fibrations and the intersection A ∩ C the class of right anodyne maps. Dually, the
model category (S,Wcat) admits a uniform homotopy factorisation system (A,B)
in which A is the class of initial maps.

11.22. The model category (S,Wcat) admits a uniform homotopy factorisation
system (A,B) in which A is the class of weak homotopy equivalences. A map
p : X → Y belongs to B iff it admits a factorisation p′w : X → X ′ → Y with p′ a
Kan fibration and w a weak categorical equivalence. The intersection B ∩ F is the
class of Kan fibrations and the intersection A ∩ C the class of anodyne maps.

11.23. Let (A,B) be a homotopy factorisation system in a model category E . Sup-
pose that we have a commutative cube

A0
//

��

  B
BB

BB
BB

B C0

!!C
CC

CC
CC

C

��

B0

��

// D0

��

A1

  B
BB

BB
BB

B
// C1

!!C
CC

CC
CC

C

B1
// D1.
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in which the top and the bottom faces are homotopy cocartesian. If the arrows
A0 → A1, B0 → B1 and C0 → C1 belong to A, then so does the arrow D0 → D1.

11.24. [JT3] If n ≥ −1, we shall say that a simplicial set X is a n-object if we have
πi(X, x) = 1 for every x ∈ X and every i > n. If n = −1, this means that X is
contractible or empty. If n = 0, this means that X is is homotopically equivalent to
a discrete simplicial set. A Kan complex X is a n-object iff every simplicial sphere
∂∆[m] → X with m > n + 1 has a filler. We say that a map of simplicial sets
f : X → Y is a n-cover if its homotopy fibers are n-objects. If n = −1, this means
that f is homotopy monic. A Kan fibration is a n-cover iff it has the right lifting
property with respect to the inclusion ∂∆[m] ⊂ ∆[m] for every m > n + 1. We
shall say that a simplicial set X is n-connected if X 6= ∅ and we have πi(X, x) = 1
for every x ∈ X and every i ≤ n. If n = −1, this means that X 6= ∅. If n = 0, this
means that X is connected. We shall say that a map f : X → Y is n-connected
if its homotopy fibers are n-connected. If n = −1, this means that f is homotopy
surjective. A map f : X → Y is n-connected iff the map πi(X, x) → πi(Y, fx)
induced by f is bijective for every 0 ≤ i ≤ n and x ∈ X and a surjection for
i = n + 1. If An is the class of n-connected maps and Bn the class of n-covers,
then the pair (An,Bn) is a uniform homotopy factorisation system on the model
category (S,Who). We say that it is the n-factorisation system on (S,Who).

11.25. A simplicial set X is a n-object iff the diagonal map X → X×X is (n−1)-
cover (if n = 0 this means that the diagonal is homotopy monic). A simplicial
set X is a n-connected iff it is non-empty and the diagonal X → X × X is a
(n− 1)-connected. (if n = 0 this means that the diagonal is homotopy surjective).

11.26. The model category (S,Wcat) admits a uniform homotopy factorisation
system (A,B) in which A is the class of n-connected maps. The intersection B ∩F
is the class of Kan n-covers.

11.27. If n ≥ −1, we shall say that a right fibration f : X → Y is a right n-fibration
if its fibers are n-objects. If n = −1, this means that f is fully faithful. If n = 0,
this means that f is fiberwise homotopy equivalent to a right covering. A right
fibration is a right n-fibration iff it has the right lifting property with respect to the
inclusion ∂∆[m] ⊂ ∆[m] for every m > n+1. The model category (S,Wcat) admits
a uniform homotopy factorisation system (A,B) in which the intersection B ∩F is
the class of right n-fibrations. We say that a map in the class A is n-final. A map
between quategories u : A → B is n-final iff the simplicial set b\A is n-connected
for every object b ∈ B. indexAfibration!right n-fibration—textbf

11.28. Let F : E ↔ E ′ : G be a Quillen pair between two model categories. If
(A,B) is a homotopy factorisation system in E and (A′,B′) a homotopy factorisation
system in E ′, then the conditions F (Ac) ⊆ A′c and G(B′f ) ⊆ Bf are equivalent. If
the pair (F,G) is a Quillen equivalence, then the conditions Ac = F−1(A)c and
B′f = G−1(B)f are equivalent. In this case we shall say that (A′,B′) is obtained by
transporting (A,B) across the Quillen equivalence. Every homotopy factorisation
system can be transported across a Quillen equivalence.
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11.29. We shall say that a simplicial functor f : X → Y in SCat is conservative if
the functor ho(f) : hoX → hoY is conservative. The Bergner model category SCat
admits a (non-uniform) homotopy factorisation system in which the right class is
the class of conservative functors. A map in the left class is an iterated Dwyer-Kan
localisation. We saw in 3.5 that the adjoint pair of functors

C! : S↔ SCat : C !

is a Quillen equivalence between the model category for quategories and the model
category for simplicial categories. A map of simplicial sets X → Y is a homotopy
localisation iff the functor C!(f) : C!(X)→ C!(Y ) is a Dwyer-Kan localisation.

12. The covariant and contravariant model structures

In this section we introduce the covariant and the contravariant model structures
on the category S/B for any simplicial set B. In the covariant structure, the fibrant
objects are the left fibrations X → B, and in the contravariant structure they are
the right fibrations X → B. The results of this section are taken from [J2].

12.1. The category S/B is enriched over S for any simplicial set B. We shall
denote by [X, Y ] the simplicial set of maps X → Y between two objects of S/B. If
we apply the functor π0 to the composition map [Y, Z]× [X, Y ]→ [X, Z] we obtain
a composition law

π0[Y, Z]× π0[X, Y ]→ π0[X, Z]
for a category (S/B)π0 if we put

(S/B)π0(X, Y ) = π0[X, Y ].

We shall say that a map in S/B is a fibrewise homotopy equivalence if the map is
invertible in the category (S/B)π0 .

12.2. Let R(B) be the full subcategory of S/B spanned by the right fibrations
X → B. If X ∈ R(B), then the simplicial set [A,X] is a Kan complex for every
object A ∈ S/B. In particular, the fiber [b, X] = X(b) is a Kan complex for every
vertex b : 1→ B. A map u : X → Y in R(B) is a fibrewise homotopy equivalence
iff the induced map between the fibers X(b)→ Y (b) is a homotopy equivalence for
every vertex b ∈ B.

12.3. We shall say that a map u : M → N in S/B is a contravariant equivalence if
the map

π0[u, X] : π0[N,X]→ π0[N,X]
is bijective for every object X ∈ R(B). A fibrewise homotopy equivalence in
S/B is a contravariant equivalence and the converse holds for a map in R(B). A
final map M → N in S/B is a contravariant equivalence and the converse holds
if N ∈ R(B). A map u : X → Y in S/B is a contravariant equivalence iff its
base change L ×B u : L ×B X → L ×B Y along any left fibration L → B is a
weak homotopy equivalence. For each vertex b ∈ B, let us choose a factorisation
1→ Lb→ B of the map b : 1→ B as a left anodyne map 1→ Lb followed by a left
fibration Lb → B. Then a map u : M → N in S/B is a contravariant equivalence
iff the map Lb ×B u : Lb ×B M → Lb ×B N is a weak homotopy equivalence for
every vertex b ∈ B. When B is a quategory, we can take Lb = b\B. In which case
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a map u : M → N is a contravariant equivalence iff the map b\u = b\M → b\N is
a weak homotopy equivalence for every object b ∈ B.

12.4. For any simplicial set B, the category S/B admits a model structure in which
the weak equivalences are the contravariant equivalences and the cofibrations are
the monomorphisms, We shall say that it is the contravariant model structure in
S/B. The fibrations are called contravariant fibrations and the fibrant objects are
the right fibrations X → B. The model structure is simplicial and we shall denote
it shortly by (S/B,Wcont(B)), or more simply by (S/B,Wcont), where Wcont(B)
denotes the class of contravariant equivalences in S/B.

Every contravariant fibration in S/B is a right fibration and the converse holds
for a map in R(B).

12.5. The cofibrations of the model structure (S/B,Wcont) are the monomor-
phisms. Hence the model structure is determined by its fibrant objects, that is, by
the right fibrations X → B, by 50.10.

12.6. Recall that the category [Ao,S] of simplicial presheaves on simplicial category
A admits a model structure, called the projective model structure, in which a weak
equivalence is a term-wise weak homotopy equivalence and a fibration is a term-wise
Kan fibrations [Hi]. It then follows from 51.13 that if B = C!A, then the projective
model category [Ao,S] is equivalent to the model category (S/B,Wcat).

12.7. The contravariant model structure (S/B,Wcont) is a Bousfield localisation
of the model structure (S/B,Wcat) induced by the model structure (S,Wcat) on
S/B. It follows that a weak categorical equivalence in S/B is a contravariant
equivalence and that the converse holds for a map in R(B). Every contravariant
fibration in S/B is a pseudo-fibration and the converse holds for a map in R(B).

12.8. A map u : (M,p)→ (N, q) in S/B is a contravariant equivalence iff the map
bq\X → bp\X induced by u is an equivalence of quategories of any map b : B → X
with values in a quategory X.

12.9. Dually, we say that a map u : M → N in S/B is a covariant equivalence if
the opposite map uo : Mo → No in S/Bo is a contravariant equivalence. Let L(B)
be the full subcategory of S/B spanned by the left fibrations X → B. Then a map
u : M → N in S/B is a covariant equivalence iff the map

π0[u, X] : π0[N,X]→ π0[N,X]

is bijective for every object X ∈ L(B). A fibrewise homotopy equivalence in S/B
is a covariant equivalence and the converse holds for a map in L(B). An initial
map M → N in S/B is a covariant equivalence and the converse holds if N ∈
N(B). A map u : M → N in S/B is a covariant equivalence iff its base change
R×B u : R×B M → R×B N along any right fibration R→ B is a weak homotopy
equivalence. For each vertex b ∈ B, let us choose a factorisation 1 → Lb → B of
the map b : 1 → B as a right anodyne map 1 → Rb followed by a right fibration
Rb → B. Then a map u : M → N in S/B is a covariant equivalence iff the
map Rb ×B u : Rb ×B X → Rb ×B Y is a weak homotopy equivalence for every
vertex b ∈ B. When B is a quategory, we can take Rb = B/b. In this case a map
u : M → N is a covariant equivalence iff the map u/b = M/b → N/b is a weak
homotopy equivalence for every object b ∈ B.
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12.10. The category S/B admits a model structure in which the weak equivalences
are the covariant equivalences and the cofibrations are the monomorphisms, We
shall say that it is the covariant model structure in S/B. The fibrations are called
covariant fibrations and fibrant objects are the left fibrations X → B. The model
structure is simplicial and we shall denote it shortly by (S/B,Wcov(B)), or more
simply by (S/B,Wcov), where Wcov(B) denotes the class of covariant equivalences
in S/B.

12.11. Every covariant fibration in S/B is a left fibration and the converse holds
for a map in L(B).

12.12. For any simplicial set B, we shall put

R(B) = Ho(S/B,Wcont) and L(B) = Ho(S/B,Wcov).

The functor X 7→ Xo induces an isomorphism of model categories

(S/B,Wcont) ' (S/Bo,Wcov),

hence also of categories R(B) ' L(Bo).

12.13. The base change of a contravariant equivalence in S/B along a left fibration
A→ B is a contravariant equivalence in S/A. Dually, the base change of a covariant
equivalence in S/B along a right fibration A→ B is a covariant equivalence in S/B.

12.14. When the category τ1B is a groupoid, the two classes Wcont(B) and
Wcov(B) coincide with the class of weak homotopy equivalences in S/B. In par-
ticular, the model categories (S,Wcont), (S,Wcov) and (S,Who), coincide. Thus,

L(1) = R(1) = Ho(S,Who).

12.15. If X, Y ∈ S/B, let us put

〈X | Y 〉 = X ×B Y.

This defines a functor of two variables

〈− | −〉 : S/B × S/B → S.

If X ∈ L(B), then the functor 〈X | −〉 is a left Quillen functor between the model
categories (S/B,Wcont) and (S,Who). Dually, if Y ∈ R(B), then the functor
〈− | Y 〉 is a left Quillen functor between the model categories (S/B,Wcov) and
(S,Who). It follows that the functor 〈− | −〉 induces a functor of two variables,

〈− | −〉 : L(B)×R(B)→ Ho(S,Who).

A morphism v : Y → Y ′ in R(B) is invertible iff the morphism

〈X|v〉 : 〈X | Y 〉 → 〈X | Y ′〉

is invertible for every X ∈ L(B). Dually, a morphism u : X → X ′ in L(B) is
invertible iff the morphism

〈u|Y 〉 : 〈X | Y 〉 → 〈X ′ | Y 〉

is invertible for every Y ∈ R(B).
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12.16. We say that an object X → B in S/B is finite if X is a finite simplicial set.
We shall say that a right fibration X → B is finitely generated if it is isomorphic to
a finite object in the homotopy category R(B). A right fibration X → B is finitely
generated iff there exists a final map F → X with codomain a finite object of S/B.
The base change u∗(X)→ A of a finitely generated right fibration X → B along a
weak categorical equivalence is finitely generated.

12.17. We shall say that a map f : A→ B in SI is a contravariant equivalence

A0

a

��

f0 // B0

b

��
A1

f1 // B1

if f1 is a weak categorical equivalence and the map (f1)!(A0)→ B1 induced by f0

is a contravariant equivalence in S/B1. The category SI admits a cartesian closed
model structure in which the weak equivalences are contravariant equivalences and
the cofibrations are the monomorphisms. We shall denote it shortly by (SI ,Wcont).
The fibrant objects are the right fibrations between quategories. The target functor

t : SI → S

is a Grothendieck bifibration and both a left and a right Quillen functor between
the model categories (SI ,Wcont) and (S,Wcat). It gives the model category
(SI ,Wcont) the structure of a bifibered model category over the model category
(S,Wcat). We shall say that it is the fibered model category for right fibrations.
It induces the contravariant model structure on each fiber S/B. See 50.32 for the
notion of bifibered model category. There is a dual fibered model category for left
fibrations (SI ,Wcov)

12.18. The model category (S/B,Wcont) admits a uniform homotopy factorisation
system (A,B) in which A is the class of weak homotopy equivalences in S/B. A
contravariant fibration belongs to B iff it is a Kan fibration. It follows from 18.12
that a map X → Y in R(B) belongs to B iff the following square of fibers

X(b) u∗ //

��

X(a)

��
Y (b) u∗ // Y (a)

is homotopy cartesian in (S,Who) for every arrow u : a → b in B. We shall say
that a map in B is term-wise cartesian.

13. Base changes

In this section, we study base changes between contravariant model structures.
We introduce the notion of dominant map. The results of the section are taken
from [J2].
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13.1. A functor u : A→ B between two small categories induces a pair of adjoint
functors between the presheaf categories,

u! : Â→ B̂ : u∗.

The functor u! is fully faithful iff the functor u is fully faithful. A functor u is said
to be a Morita equivalence if the adjoint pair (u!, u

∗) is an equivalence of categories.
By a classical result, a functor u is a Morita equivalence iff it is fully faithful and
every object b ∈ B is a retract of an object in the image of u. A functor u : A→ B
is said to be dominant, but we shall say 0-dominant, if the functor u∗ is fully
faithful. A functor u : A→ B is 0-dominant iff the category Fact(f,A) defined by
the pullback square

Fact(f,A) //

��

A

u

��
Fact(f,B) // B

is connected for every arrow f ∈ B, where Fact(f,B) = f\(B/b) = (a\B)/f is the
category of factorisations of the arrow f : a → b. We notice that the functor u is
0-final iff we have u!(1) = 1, where 1 denotes terminal objects.

13.2. For any map of simplicial sets u : A→ B, the adjoint pair

u! : S/A→ S/B : u∗

is a Quillen adjunction with respect to the contravariant model structures on these
categories. It induces an adjoint pair of derived functors

R!(u) : R(A)↔ R(B) : R∗(u),

The adjunction is a Quillen equivalence when u is a weak categorical equivalence.
We shall see in 21.5 that the functor R∗(u) has a right adjoint R∗(u).

13.3. If u : A → B is a map of simplicial sets, then the functor u! : S/A → S/B
takes a covariant equivalence to a covariant equivalence. Hence we have a strictly
commutative square of functors

S/A //

��

S/B

u!

��
R(A)

R!(u) // R(B).

It follows that we have R!(vu) = R!(v)R!(u) for any pair of maps u : A → B and
v : B → C. This defines a functor

R! : S→ CAT,

where CAT is the category of large categories. It follows by adjointness that R∗
has the structure of a contravariant (pseudo-) functor,

R∗ : S→ CAT.
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13.4. Dually, for any map of simplicial sets u : A→ B, the adjoint pair

u! : S/A→ S/B : u∗

is a Quillen adjunction with respect to the covariant model structures on these
categories, (and it is a Quillen equivalence when u is a weak categorical equivalence).
It induces an adjoint pair of derived functors

L!(u) : L(A)↔ L(B) : L∗(u).

The functor L∗(u) has a right adjoint L∗(u) by 21.5. If u : A→ B and v : B → C,
then we have L!(vu) = L!(v)L!(u). This defines a functor

L! : S→ CAT,

where CAT is the category of large categories. It follows by adjointness that L∗
has the structure of a contravariant (pseudo-) functor,

L∗ : S→ CAT.

13.5. A map of simplicial sets u : A → B is final iff the functor R!(u) preserves
terminal objects. A map u : A → B is fully faithful iff the functor R!(u) is fully
faithful.

13.6. We say that a map of simplicial sets u : A → B is dominant if the functor
R∗(u) is fully faithful.

13.7. A map u : A→ B is dominant iff the opposite map uo : Ao → Bo is dominant
iff the map Xu : XB → XA is fully faithful for every quategory X.

13.8. The functor τ1 : S→ Cat takes a fully faithful map to a fully faithful functor,
and a dominant map to a 0-dominant functor.

13.9. If B is a quategory, then a map of simplicial sets u : A→ B is dominant iff
the simplicial set Fact(f,A) defined by the pullback square

Fact(f,A) //

��

A

u

��
Fact(f,B) // B

is weakly contractible for every arrow f ∈ B, where Fact(f,B) = f\(B/b) =
(a\B)/f is the simplicial set of factorisations of the arrow f : a→ b.

13.10. A dominant map is both final and initial. A map of simplicial set u : A→ B
is dominant iff its base change any right fibration is final iff its base change any
left fibration is initial. The base change of a dominant map along a left or a right
fibration is dominant. A (weak) reflection and a (weak) coreflection are dominant.
An iterated homotopy localisation is dominant.
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13.11. The functor

R! : S→ CAT

has the structure of a 2-functor covariant on 2-cells. In particular, we have a functor

R!(−) : τ1(A,B)→ CAT(R(A)→ R(B)).

for every pair of simplicial sets A and B. It associates a natural transformation

R!(α) : R!(u)→ R!(v) : R(A)→ R(B)

to every morphism α : u → v : A → B in the category τ1(A,B). Let us describe
R!(α) in the case where α is the mprphism [h] : i0 → i1 defined by the canonical
homotopy h : i0 → i1 : A→ A× I. For any X ∈ S/A we have (i0)!(X) = X × {0}
and (i1)!(X) = X × {1}. The inclusion X × {1} ⊆ X × I is a contravariant
equivalence in S/(A × I), since it is right anodyne; it is thus invertible in the
category R(A × I). The morphism R!([h]) : R!(i0)(X) → R!(i1)(X) is obtained
by composing the inclusion X × {0} ⊆ X × I with the inverse morphism X × I →
X × {1}.

13.12. It follows from the above that the (pseudo-) functor R∗ has the structure
of a contravariant (pseudo-) 2-functor,

R∗ : S→ CAT,

contravariant on 2-cells.

13.13. If (α, β) is an adjunction between two maps u : A↔ B : v in the 2-category
Sτ1 , then the pair (R!(α),R!(β)) is an adjunction R!(u) ` R!(v) in the 2-category
CAT and the pair (R∗(β),R∗(α)) is an adjunction R∗(u) ` R∗(v). We thus have
a canonical isomorphism R!(v) ' R∗(u),

R!(u) ` R!(v) ' R∗(u) ` R∗(v).

13.14. Dually, the functor

L! : S→ CAT

has the structure of a covariant 2-functor, contravariant on 2-cells. The (pseudo-)
functor

L∗ : Sτ1 → CAT

has the structure of a contravariant (pseudo-) 2-functor, covariant on 2-cells. If
(α, β) is an adjunction between two maps u : A↔ B : v in the 2-category Sτ1 , then
the pair (L!(β),L!(α)) is an adjunction L!(v) ` L!(u) in the 2-category CAT, and
the pair (L∗(α),L∗(β)) is an adjunction L∗(v) ` L∗(u). We thus have a canonical
isomorphism L!u) ' L∗(v),

L!(v) ` L!!(u) ' L∗! (v) ` L∗! (u).
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13.15. The (pseudo-) 2-functor L∗ induces a functor

L∗ : τ1(A,B)→ CAT
(
L(B),L(A)

)
for each pair of simplicial sets A and B. In particular, it induces a functor

L∗ : τ1(B)→ CAT
(
L(B),L(1)

)
for each simplicial set B. If X ∈ L(B) and b ∈ B0, let us put D(X)(b) = L∗(b)(X).
This defines a functor

D(X) : τ1(B)→ L(1) = Ho(S,Who).

We shall say that D(X) is the homotopy diagram of X. This extends the notion
introduced in 8.15. Dually, every object X ∈ R(B) has a contravariant homotopy
diagram

D(X) : τ1(B)o → R(1) = Ho(S,Who).

14. Cylinders, correspondances, distributors and spans

In this section we introduce the notions of cylinder, correspondance, distributor
and span between simplicial sets. To each notion is associated a Quillen model
structure and the three model structures are Quillen equivalent. The homotopy
bicategory of spans is symmetric monoidal and compact closed. There is an equiv-
alent symmetric monoidal compact closed structure on the homotopy bicategory of
distributors.

14.1. Recall that if C is a category, then a set S of objects of C is said to be a
sieve if the implication

target(f) ∈ S ⇒ source(f) ∈ S

is true for every arrow f ∈ C. We shall often identify a sieve S with the full
subcategory of C spanned by the object of C. A cosieve in C is defined dually.
The opposite of a sieve S ⊆ C is a cosieve So ⊆ Co. For any sieve S ⊆ C
(resp. cosieve), there exists a unique functor p : A → I such that S = p−1(0)
(resp. S = p−1(1)). We shall say that the sieve p−1(0) and the cosieve p−1(1) are
complementary. Complementation is a bijection between the sieves and the cosieves
of C.

14.2. We shall say that an object of the category Cat/I is a 0-cylinder, or just
a cylinder if the context is clear. The cobase of a cylinder p : C → I is the sieve
C(0) = p−1(0) and its base is the cosieve C(1) = p−1(1). The category Cat/I is
cartesian closed. If i denotes the inclusion ∂I ⊂ I, then the functor

i∗ : Cat/I → Cat×Cat

is a Grothendieck bifibration; its fiber at (A,B) is the category Cyl0(A,B) of 0-
cylinders with cobase A and base B. The functor i∗ has a left adjoint i! and a
right adjoint i!. The cylinder i!(A,B) = A tB is the initial object of the category
Cyl0(A,B) and the cylinder i∗(A,B) = A ? B is the terminal object.

14.3. The model structure (Cat, Eq) induces a cartesian closed model structure
on the category Cat/I.
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14.4. If A and B are small categories, we shall say that a functor F : Ao×B → Set
is a 0-distributor (or just a distributor if the context is clear), and we shall write
F : A ⇒ B. The distributors A ⇒ B are the objects of a category Dist0(A,B) =
[Ao × B,Set]. To every cylinder C ∈ Cyl0(A,B) we can associate a distributor
D(C) ∈ Dist0(A,B) by putting D(C)(a, b) = C(a, b) for every pair of objects a ∈ A
and b ∈ B. The resulting functor

D : Cyl0(A,B)→ Dist0(B,A)

is an equivalence of categories. The inverse equivalence associate to a distributor
F : Ao × B the collage cylinder C = col(F ) = A ?F B constructed as follows:
Ob(C) = Ob(A) tOb(B) and for every x, y ∈ Ob(A) tOb(B),

C(x, y) =


A(x, y) if x ∈ A and y ∈ A
B(x, y) if x ∈ B and y ∈ B
F (x, y) if x ∈ A and y ∈ B
∅ if x ∈ B and y ∈ A.

Composition of arrows is obvious. The obvious functor p : C → I gives the cate-
gory C the structure of a cylinder with base B and cobase A. The collage of the
distributor hom : Ao × A → Set is the cylinder A × I; the collage of the terminal
distributor 1 : Ao×B → Set is the join A ? B; the collage of the empty distributor
∅ : Ao ×A→ Set is the coproduct A tA.

14.5. We shall say that a full simplicial subset S ⊆ X of a simplicial set X is
a sieve if the implication target(f) ∈ S ⇒ source(f) ∈ S is true for every arrow
f ∈ X. If h : X → τ1X is the canonical map, then the map S 7→ h−1(S) induces a
bijection between the sieves in the category τ1X and the sieves in X. For any sieve
S ⊆ X there exists a unique map g : X → I such that S = g−1(0). This defines
a bijection between the sieves in X and the maps X → I. Dually, we shall say
that a full simplicial subset S ⊆ X is a cosieve if the implication source(f) ∈ S ⇒
target(f) ∈ S is true for every arrow f ∈ X. A simplicial subset S ⊆ X is a cosieve
iff the opposite subset So ⊆ Xo is a sieve. For any cosieve S ⊆ X there exists a
unique map g : X → I such that S = g−1(1). The cosieve g−1(1) and the sieve
g−1(0) are said to be complementary. Complementation is a bijection between the
sieves and the cosieves of X.

14.6. We shall say that an object p : C → I of the category S/I is a (simplicial)
cylinder. The base of the cylinder is the cosieve C(1) = p−1(1) and its cobase is the
sieve C(0) = p−1(0). If C(0) = 1 we say that C is a projective cone, and if C(1) = 1
we say that it is an inductive cone. If C(0) = C(1) = 1, we say that C is a spindle.
If i denotes the inclusion ∂I ⊂ I, then the functor

i∗ : S/I → S× S

has left adjoint i! and a right adjoint i∗. The functor i∗ is a Grothendieck bifibration
and its fiber at (A,B) is the category Cyl(A,B) of cylinders with cobase A and base
B. The initial object of this category is the cylinder AtB and its terminal object
is the cylinder A ? B. An object q : X → A ? B of the category S/A ? B belongs
to Cyl(A,B) iff the map q−1(A t B) → A t B induces by q is an isomorphism. It
follows that following forgetful functors

Cyl(A,B)→ S/A ? B, Cyl(A,B)→ A tB\S, Cyl(A,B)→ A tB\S/A ? B
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are fully faithful. To each pair of maps of simplicial sets u : A→ A′ and v : B → B′

is associated a pair of adjoint functors

(u, v)! : Span(A,B)↔ Span(A′, B′) : (u, v)∗,

since i∗ is a bifibration. If X ∈ Cyl(A,B), then (u, v)!(X) is calculated by the
following pushout square of simplicial sets,

A tB
utv //

��

A′ tB′

��
X // (u, v)!(X).

If Y ∈ Cyl(A′, B′), then (u, v)∗(Y ) is calculated by the following pullback square
of simplicial sets,

(u, v)∗(Y ) //

��

Y

��
A ? B

u?v // A′ ? B′.

The model category S,Wcat) induces a model structure on the category Cyl(A,B).
By definition, a map in Cyl(A,B) is a cofibration (resp. a weak equivalence, resp.
a fibration) iff the underlying map in S is a cofibration (resp. a weak equiva-
lence, resp. a fibration) in (S,Wcat). We shall denote this model structure by
(Cyl(A,B),Wcat). We conjecture that a cylinder X ∈ Cyl(A,B) is fibrant iff the
map X → A ? B is a mid fibration, and that a map between fibrant cylinders is a
fibration iff it is a mid fibration. The model structure (S,Wcat) induces a carte-
sian closed model structure (S/I,Wcat) on the category S/I. The pair of adjoint
functors

(u, v)! : Span(A,B)↔ Span(A′, B′) : (u, v)∗.

is a Quillen adjunction for every pair of maps u : A → A′ and v : B → B′, and
it is a Quillen equivalence if u and v are weak categorical equivalences. Hence the
model category (S/I,Wcat) is bifibered by the functor i∗ over the model category

(S,Wcat)× (S,Wcat) = (S× S,Wcat×Wcat).

It induces the model structure (Cyl(A,B),Wcat) on each fiber Cyl(A,B).

14.7. The opposite of a cylinder C ∈ Cyl(A,B) is a cylinder Co ∈ Cyl(Bo, Ao).
The functor

(−)o : Cyl(A,B)→ Cyl(Bo, Ao)

is isomorphism between the model categories (Cyl(A,B),Wcat) and (Cyl(Bo, Ao),Wcat).

14.8. The inductive mapping cone of a map of simplicial sets u : A → B is the
simplicial set C(u) defined by the following pushout square,

A
u //

��

B

��
A � 1 // C(u).
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The simplicial set C(u) is equipped with a map C(u) → I obtained from the
canonical map A � 1→ I. The resulting functor

C : S/B → Cyl(B, 1)

is the left adjoint in a Quillen equivalence between the model categories (S/B,Wcont)
and (Cyl(B, 1),Wcat). Dually, the projective mapping cone of a map of simplicial
sets u : A → B is the simplicial set Co(u) = C(uo)o constructed by the folllowing
pushout square,

A
u //

��

B

��
1 �A // Co(u).

The resulting functor
Co : S/B → Cyl(1, B)

is the left adjoint in a Quillen equivalence between the model categories (S/B,Wcov)
and (Cyl(1, B),Wcat). The (unreduced) suspension of a simplicial set A is the sim-
plicial set Σu(A) defined by the following pushout square,

A tA //

��

1 t 1

��
A× I // Σu(A).

The simplicial set Σu(A) is equipped with a map Σu(A) → I obtained from the
projection A× I → I. The resulting functor

Σu : S→ Cyl(1, 1)

is the left adjoint in a Quillen equivalence between the model category (S,Who)
and the model category (Cyl(1, 1),Wcat).

14.9. Let S(2) = [∆o ×∆o,Set] be the category of bisimplicial sets. If A,B ∈ S,
let us put

(A�B)mn = Am ×Bn

for m,n ≥ 0. If X is a bisimplicial set, a map X → A�1 is called a column
augmentation of X and a map X → 1�B is called a row augmentation. We shall
say that a map X → A�B is a biaugmentation of X or that it is a (simplicial)
correspondence X : A⇒ B. The correspondences A→ B form a category

Cor(A,B) = S(2)/A�B.

The simplicial set ∆[m]?∆[n] has the structure of a cylinder for every m,n ≥ 0. To
every cylinder C ∈ S/I we can associate a correspondance cor(C) → C(0)�C(1)
by by putting

cor(C)mn = Hom(∆[m] ? ∆[n], C)

for every m,n ≥ 0. The structure map cor(C) → C(0)�C(1) is defined from the
inclusions ∆[m] t∆[n] ⊆ ∆[m] ? ∆[n]. The induced functor

cor : Cyl(A,B)→ Cor(A,B).



50 ANDRÉ JOYAL

is an equivalence of categories. See[Gon]. A map between a correspondance X ∈
Cor(A,B) and a correspondance Y ∈ Cor(A′, B′) is defined to be a triple of maps
u : A→ A′, v : B → B′ and f : X → Y fitting in a commutative square

X
f //

��

Y

��
A�B

u�v // A′�B′.

The correspondances form a category Cor with these maps. The obvious projection
functor

p : Cor→ S× S
is a Grothendieck bifibration whose fiber at (A,B) is the category Cor(A,B). The
equivalence cor : Cyl(A,B) → Cor(A,B) can be extended as an equivalence of
bifibered categories

cor : Cyl→ Cor.
The category Cor has then a model structure (Cor,Wcor) obtained by transport-
ing the model structure (Cyl,Wcat) along this equivalence. The model structure
(Cor,Wcor) is bifibered by the projection functor p over the model category

(S,Wcat)× (S,Wcat) = (S× S,Wcat×Wcat).

It induces a model structure (Cor(A,B),Wcor) on each fiber Cor(A,B) and the
functor cor : Cyl(A,B)→ Cor(A,B) is an equivalence of model categories.

14.10. A distributor X : A⇒ B between two simplicial sets A and B is defined to
be a pair of maps

X
s

~~||
||

||
|| t

  B
BB

BB
BB

B

Ao B.

Equivalently, a distributor A⇒ B is an object of the category

Dist(A,B) = S/(Ao×B).

We give the category Dist(A,B) the model structure (S/(Ao×B),Wcov) and we
shall denote it shortly by (Dist(A,B),Wbiv). A distributor X ∈ Dist(A,B) is
fibrant for this model structure iff the map X → Ao × B is a left fibration. We
shall put

hDist(A,B) = Ho(Dist(A,B),Wcat).
A map between a distributor X ∈ Dist(A,B) and a distributor Y ∈ Dist(A′, B′) is
defined to be a triple of maps u : A → A′, v : B → B′ and f : X → Y fitting in a
commutative square

X
f //

��

Y

��
Ao ×B

uo×v // A′o ×B′.

The distributors form a category Dist with these maps. The obvious projection
functor

p : Dist→ S× S
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is a Grothendieck bifibration whose fiber at (A,B) is the category Dist(A,B). If
u : A → A′ and v : B → B′ is a pair of maps of simplicial sets, then the pair of
adjoint functor

(u, v)! : Dist(A,B)↔ Dist(A′, B′) : (u, v)∗

is a Quillen adjunction, and it is a Quillen equivalence if u and v are weak cate-
gorical equivalences. We shall say that a map of distributors (f, u, v) : X → Y as
above is a distributor equivalence if u and v are weak categorical equivalences and
the map (u, v)!(X) → Y induces by f is a covariant equivalence in Dist(A′, B′).
The category Dist admits a model structure in which a cofibration is a monomor-
phism and a weak equivalence is a distributor equivalence. We shall denote the
resulting model category by (Dist,Wdist), where Wdist denotes the class of dis-
tributor equivalences. The model category (Dist,Wdist) is left proper and cartesian
closed. It is bifibered by the projection functor Dist→ S× S over the model cate-
gory (S,Wcat)× (S,Wcat). It induces the model structure (Dist(A,B),Wcov) on
each fiber Dist(A,B). The tensor product of a distributor X ∈ Dist(A,B) with a
distributor Y ∈ Dist(C,D) is defined to be the distributor X ⊗ Y = X × Y ∈
Dist(A× C,B ×D). The tensor product functor

⊗ : Dist(A,B)×Dist(C,D)→ Dist(A× C,B ×D)

is a left Quillen functor of two variables.

14.11. The transpose tX of a distributor (s, t) : X → Ao × B is the distributor
(t, s) : X → B × Ao. The transposition functor induces an isomorphism of model
categories

t(−) : (Dist(A,B),Wcov)→ (Dist(Bo, Ao),Wcov).
There are canonical isomorphisms of model categories

(Dist(1, B),Wcov) = (S/B,Wcov)
(Dist(A, 1),Wcov) = (S/Ao,Wcov) ' (S/A, Wcont)

where the last isomorphism is induced by the functor X 7→ Xo. The model category
(Dist(1, 1),Wcov) is isomorphic to the model category (S,Who).

14.12. A span S : A⇒ B between two simplicial sets is a pair of maps

S
s

����
��

��
�

t

  A
AA

AA
AA

A

A B.

Equivalently, a span A⇒ B is an object of the category

Span(A,B) = S/(A×B).

The terminal object of this category is the span A ×s B defined by the pair of
projections

A×B
pA

||xx
xx
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xx

x
pB
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We shall say that a map u : S → T in Span(A,B) is a bivariant equivalence if the
map

X ×A u×B Y : X ×A S ×B Y → X ×A T ×B Y
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is a weak homotopy equivalence for every X ∈ L(A) and Y ∈ R(B). For each
vertex a ∈ A, let us choose a factorisation 1 → La → A of the map a : 1 → A as
a left anodyne map 1 → La followed by a left fibration La → A. Dually, for each
vertex b ∈ B, let us choose a factorisation 1 → Rb → B of the map b : 1 → B as
a right anodyne map 1 → Rb followed by a right fibration Rb → B. Then a map
u : S → T in Span(A,B) is a bivariant equivalence iff the map

La×A u×B Rb : La×A S ×B Rb→ La×A T ×B Rb

is a weak homotopy equivalence for every pair of vertices (a, b) ∈ A×B. If A and
B are quategories, we can take La = a\A and Rb = B/b. In this case, a map
u : S → T in Span(A,B) is a bivariant equivalence iff the map

a\u/b : a\S/b→ a\T/b

is a weak homotopy equivalence for every pair of objects (a, b) ∈ A×B, where the
simplicial set a\S/b is defined by the pullback square

a\S/b

��

// S

��
a\A×B/b // A×B.

The category Span(A,B) admits a model structure in which a weak equivalence is
a bivariant equivalence and a cofibration is a monomorphism. We shall say that
a fibrant object S ∈ Span(A,B) is bifibrant. We shall denote this model category
shortly by Span(A,B),Wbiv) and put

hSpan(A,B) = Ho(Span(A,B),Wbiv).

A span can be defined to be a simplicial presheaf X : P o → S on the poset P of
non-empty subsets of {0, 1},

X(01)
s
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A map between a span X ∈ Span(A,B) and a span Y ∈ Span(A′, B′) is a triple of
maps u : A→ A′, v : B → B′ and f : X → Y fitting in a commutative square

X
f //

��

Y

��
A×B

u×v // A′ ×B′.

We shall denote the category of spans [P o,S] by Span. The obvious projection

Span→ S× S

is a Grothendieck bifibration whose fiber at (A,B) is the category Span(A,B). For
any pair of maps of simplicial sets u : A→ A′ and v : B → B′, the pair of adjoint
functors

(u, v)! : Span(A,B)↔ Span(A′, B′) : (u, v)∗
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is a Quillen adjunction, and it is a Quillen equivalence if u and v are weak categorical
equivalences. We shall say that a map (f, u, v) : X → Y in the category Span
is a span equivalence if u and v are weak categorical equivalences and the map
(u, v)!(X) → Y induced by f is a bivariant equivalence in Span(A′, B′). The
category Span admits a model structure in which a cofibration is a monomorphism
and a weak equivalence is a span equivalence. We shall denote the resulting model
category by (Span,Wspan), where Wspan denotes the class of span equivalences.
The model category is left proper and cartesian closed. It is bifibered by the
projection functor Span → S × S over the model category (S,Wcat) × (S,Wcat).
It induces the model structure (Span(A,B),Wbiv) on each fiber Span(A,B).

14.13. For any span (s, t) : S → A×B, the composite

L(A)
L∗(s) // L(S)

L!(t) // L(B)

is a functor L〈S〉 : L(A)→ L(B). If u : S → T is a map of spans,

S
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then form the counit L!(u)L∗(u)→ id, we obtain a natural transformation

L〈u〉 : L〈S〉 = L!(t)L∗(s) = L!(r)L!(u)L∗(u)L∗(l)→ L!(r)L∗(l) = L〈T 〉.

This defines a functor

L〈−〉 : Span(A,B)→ CAT(L(A),L(B)).

A map u : S → T in Span(A,B) is a bivariant equivalence iff the natural transfor-
mation

L〈u〉 : L〈S〉 → L〈T 〉
is invertible.

14.14. Dually, for any span (s, t) : S → A×B, the composite

R(B)
R∗(t) // R(S)

R!(s) // R(A)

is a functor R〈S〉 : R(B)→ R(A). To every map u : S → T in Span(A,B) we can
associate a natural transformation

R〈u〉 : R〈S〉 → R〈T 〉.

We obtain a functor

R〈−〉 : Span(A,B)→ CAT(R(B),R(A)).

A map u : S → T in Span(A,B) is a bivariant equivalence iff the natural transfor-
mation R〈u〉 is invertible.
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14.15. If A and B are quategories, then a span (s, t) : S → A × B is bifibrant iff
the following conditions are satisfied:

• the source map s : S → A is a Grothendieck fibration;
• the target map t : S → B is a Grothendieck opfibration;
• an arrow f ∈ S is inverted by t iff f is cartesian with respect to s;
• an arrow f ∈ S is inverted by s iff f is cocartesian with respect to t.

The last two conditions are equivalent in the presence of the first two. Let us
denote by S(a, b) the fiber of the map (s, t)S → A × B at (a, b) ∈ A0 × B0. The
simplicial set S(a, b) is a Kan complex if S is bifibrant. A map between bifibrant
spans u : S → T in Span(A,B) a bivariant equivalence iff the map

S(a, b)→ T (a, b)

induced by u is a homotopy equivalence for every pair (a, b) ∈ A0 ×B0.

14.16. The conjugate S† of a span (s, t) : S → A × B is defined to be the span
(to, so) : So → Bo×Ao. The conjugation functor induces an isomorphism of model
categories

(−)† : Span(A,B)→ Span(Bo, Ao).

There are canonical isomorphisms of model categories

(Span(1, B),Wbiv) = (S/B,Wcov) and (Span(A, 1),Wbiv) = (S/A, Wcont).

The model category (Span(1, 1),Wbiv) is isomorphic to the model category (S,Who).

14.17. If A is a quategory, then a bifibrant replacement of the span (1A, 1A) : A→
A × A is the span δA = (s, t) : AI → A × A. If u : A → B is a map between
quategories then a fibrant replacement of the span (1A, u) : A→ A×B is the span
P (u)→ A×B defined by the pullback diagram,

P (u)
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Dually, a bifibrant replacement of the span (u, 1A) : A → B × A is the span
P ∗(u)→ B ×A defined in the pullback diagram,

P ∗(u)
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14.18. For every n ≥ 0, the simplicial set ρ[n] = ∆[n]o ? ∆[n] has the structure of
a cylinder, The twisted core of a cylinder C is the simplicial set ρ∗(C) defined by
putting

ρ∗(C)n = HomI(ρ[n], C)

for every n ≥ 0. The simplicial set ρ∗(C) has the structure of a distributor, (s, t) :
ρ∗(C)→ C(0)o × C(1), where s is defined from the inclusion ∆[n]o ⊂ ∆[n]o ? ∆[n]
and t from the inclusion ∆[n] ⊂ ∆[n]o?∆[n]. The resulting functor ρ∗ : S/I → Dist
has a right adjoint ρ∗ and the pair of adjoint functors

ρ∗ : S/I ↔ Dist : ρ∗

is a Quillen equivalence between the model categories (Dist,Wdist) and (S/I, Wcat).
The functor ρ∗ is cartesian with respect to the fibered structure on these categories.
The induced pair of adjoint functors

ρ∗ : Cyl(A,B)↔ Dist(A,B) : ρ∗

is a Quillen equivalence between the model category Dist(A,B),Wcov) and the
model category Cyl(A,B),Wcat) for any pair (A,B).

14.19. The path space of a cylinder C → I is defined to be simplicial set [I, C] of
global sections of the map C → I. The simplicial set [I, C] has the structure of a
span

[I, C]
s
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C(0) C(1),

where s is defined from the inclusion {0} ⊂ I and t from the inclusion : {1} ⊂
I. This defines a functor [I,−] : S/I → Span. The realisation of a span S ∈
Span(A,B) is the simplicial set defined by the following pushout square,

S t S
stt //

��

A tB

��
I × S // R(S).

The simplicial set R(S) has the structure of a cylinder. The resulting functor
R : Span → S/I is left adjoint to the functor [I,−]. Moreover, rhe pair of adjoint
functors

R : Span↔ S/I : [I,−]

is a Quillen equivalence between the model category (Span,Wspan) and the model
category S/I, Wcat). The adjoint pair is compatible with the fibered model struc-
ture on these categories. It thus induces a Quillen equivalence

R : Span(A,B)↔ Cyl(A,B) : [I,−]

between the model category (Span(A,B),Wbiv) and the model category Cyl(A,B),Wcat)
for any pair of simplicial sets (A,B).
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14.20. The simplicial set δ[n] = ∆[n]?∆[n] has the structure of a cylinder for every
n ≥ 0. The core of a cylinder C is the simplicial set δ∗(C) obtained by putting

δ∗(C)n = Hom(δ[n], C)

for every n ≥ 0. The simplicial set δ∗(C) has the structure of a span

δ∗(C)
s
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where s and t are defined from the canonical inclusions ∆[n] ⊂ ∆[n] ? ∆[n]. The
resulting functor δ∗ : S/I → Span has a right adjoint δ∗ and the pair

δ∗ : Cyl→ Span : δ∗

is a Quillen equivalence between the model category (S/I,Wcat) and the model
category (Span,Wbiv). The functor δ∗ is cartesian with respect to the fibered
structure on these categories. The induced adjoint pair

δ∗ : Cyl(A,B)↔ Span(A,B) : δ∗

is also a Quillen equivalence between the model category Cyl(A,B),Wcat) and the
model category (Span(A,B),Wbiv) for any pair (A,B).

14.21. For any pair of simplicial sets A and B we have δ∗(A ? B = A ×s B and
R(A ×s B) = A � B. Hence the map θAB : A � B → A ? B of 9.18 is a map
θAB : Rδ∗(A ? B)→ A ? B. There is a unique natural transformation

θC : Rδ∗(C)→ C

which extends the maps θAB to every cylinder C → I. The maps θC is a weak
categorical equivalence for every C ∈ S/I. This shows that the left derived functors
L(R) and L(δ∗) are mutually inverse (up to a natural isomorphism).

14.22. Recall that the composite of a span S : A → B with a span T : B ⇒ C is
the span T ◦ S = S ×B T : A⇒ C, defined by the pullback diagram,

S ×B T
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This defines a functor

− ◦ − : Span(B,C)× Span(A,B)→ Span(A,C).

For any three spans S : A ⇒ B, T : B ⇒ C and U : C ⇒ D, the canonical
isomorphism

(U ◦ T ) ◦ S = S ×B (T ×C U) ' (S ×B T )×C U = U ◦ (T ◦ S)

satisfies the coherence condition of MacLane. The span (1A, 1A) : A → A × A is
a unit A→ A for this composition law. This defines the bicategory of spans Span.
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The cartesian product of a span X ∈ Span(A,B) with a span Y ∈ Span(C,D) is a
span X × Y ∈ Span(A× C,B ×D). The product functor

Span(A,B)× Span(C,D)→ Span(A× C,B ×D)

define a a symmetric monoidal structure on the bicategory Span. If the span S ∈
Span(A,B) is bifibrant, then the functor

(−) ◦ S : Span(B,C)→ Span(A,C)

is a left Quillen functor. Dually, if the span T ∈ Span(A,B) is bifibrant, then the
functor

T ◦ (−) : Span(A,B)→ Span(A,C)

is a left Quillen functor. Let us denote by Span(A,B)f the full subcategory of
Span(A,B) spanned by the bifibrant spans. Then the composition functor

− ◦ − : Span(B,C)f × Span(A,B)f → Span(A,C),

induces a derived composition

− ◦ − : hSpan(B,C)× hSpan(A,B)→ hSpan(A,C).

The derived composition is coherently associative. A unit IA ∈ hSpan(A,A) for
this composition is a fibrant replacement of the span (1A, 1A) : A→ A×A. We thus
obtain a bicategory hSpan called the homotopy bicategory of spans. The product
functor

Span(A,B)× Span(C,D)→ Span(A× C,B ×D)

is a left Quillen functor of two variables with respect to the bivariant model struc-
tures on these categories. The corresponding derived functor

⊗ : hSpan(A,B)× hSpan(C,D)→ hSpan(A× C,B ×D)

defines a symmetric monoidal structure on the bicategory hSpan. . .

14.23. The twisted diagonal Aδ of a simplicial set A is defined to be the twisted
core of the cylinder A× I. By definition, we have

(Aδ)n = S(∆[n]o ? ∆[n], A)

for every n ≥ 0. For example, the twisted diagonal of a category C is the category
of elements of the hom functor Co × C → Set. The functor (−)δ : S→ Dist has a
left adjoint (−)δ, and the adjoint pair

(−)δ : Dist↔ S : (−)δ

is a Quillen adjunction between the model categories (Dist,Wdist) and (S,Wcat).
Hence the canonical map Aδ → Ao ×A is a left fibration when A is a quategory.

14.24. The symmetric monoidal bicategory hSpan is compact closed. The dual of
a simplicial set A is the opposite simplicial set Ao. The duality is defined by a pair
of spans

ηA : 1⇒ Ao ×A and εA : A×Ao ⇒ 1

together with a pair of isomorphisms,

αA : IA ' (εA ⊗A) ◦ (A⊗ ηA) and βA : IAo ' (Ao ⊗ εA) ◦ (ηA ⊗Ao).
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The unit ηA is defined by the left fibration p : Aδ → 1 × (Ao × A) of 14.23 and
the counit εA by the opposite right fibration po : (Aδ)o → (A × Ao) × 1. The
isomorphism αA can be described as follows, It is easy to see that the span

T (A) = (εA ⊗A) ◦ (A⊗ ηA).

can be constructed by the following pullback diagram,

T (A)
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A simplex ∆[n] → T (A) is a pair of simplices x : ∆[n] ? ∆[n]o → A and y :
∆[n]o ? ∆[n] → A such that x | ∆[n]o = y | ∆[n]o. The isomorphism αA of is
obtained by composing in hSpan(A,A) a chain of bivariant equivalences

AI U(A)
qAoo pA // T (A)

in Span(A,A). The simplicial set U(A) is defined by putting

U(A)n = S(∆[n] ? ∆[n]o ? ∆[n], A)

for every n ≥ 0 and the structure map U(A) → A × A is obtained from the
obvious inclusion in : ∆[n] t∆[n] ⊂ ∆[n] ? ∆[n]o ? ∆[n]. Let us describe the map
pA : U(A) → T (A). If z : ∆[n] ? ∆[n]o ? ∆[n] → A is a simplex of U(A), then we
have pA(z) = (x, y), where x = z | ∆[n] ? ∆[n]o and y = z | ∆[n]o ? ∆[n]. Let us
describe the map qA : U(A) → AI . We have qA(x) = xjn for every x ∈ U(A)n,
where

jn : ∆[n]× I → ∆[n] ? ∆[n]o ? ∆[n]
denotes the a unique extension of in along the inclusion ∆[n]t∆[n] = ∆[n]×{0, 1} ⊂
∆[n]× I, The isomorphism βA has a similar description.

14.25. The conjugate S† of a span S ∈ hSpan(A,B) is naturally isomorphic to the
span

(Ao ⊗ εB) ◦ (Ao ⊗ S ⊗Bo) ◦ (ηA ⊗Bo)
The scalar product of a span S ∈ hSpan(A,B) with a span T ∈ hSpan(B,A) is the
object 〈S|T 〉 ∈ hSpan(1, 1) = Ho(S,Who) defined by putting

〈S|T 〉 = εB ◦ (S ⊗ T †) ◦ ηAo ,

where T † ∈ hSpan(Ao, Bo) is the conjugate of T . A map u : S → S′ in hSpan(A,B)
is invertible iff the map

〈u|T 〉 : 〈S|T 〉 → 〈S′|T 〉
is invertible for every T ∈ hSpan(B,A). The trace Tr(X) of a span X ∈ Span(A,A)
is defined by putting

Tr(X) = 〈X|IA〉
where IA ∈ Span(A,A) is a unit span. There is a natural isomorphism

Tr(X) ' εA ◦ (X ⊗Ao) ◦ ηAo
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in the category Ho(S,Who) = hSpan(1, 1). The scalar product of S ∈ hSpan(A,B)
and T ∈ hSpan(B,A) is naturally isomorphic to the trace of T ◦S and to the trace
of S ◦ T . Hence there is a natural isomorphism,

Tr(T ◦ S) ' Tr(S ◦ T ).

The C-trace of a span X ∈ hSpan(A×C,B×C) is the span TrC(X) ∈ hSpan(A,B)
defined by putting

TrC(X) = (B ⊗ εC) ◦ (X ⊗ Co) ◦ (A⊗ ηCo).

The composite of a span S ∈ hSpan(A,B) with a span T ∈ hSpan(B,C) is canon-
ically isomorphic to the B-trace of the span S ⊗ T ∈ hSpan(A × B,B × C).

14.26. If we compose the equivalence between spans and cylinders

R : Span(A,B)↔ Cyl(A,B) : [I,−]

of 14.19 with the equivalence between cylinders and distributors

ρ∗ : Cyl(A,B)↔ Dist(A,B) : ρ∗

of 14.18, we obtain an equivalence between spans and distributors

Span(A,B)↔ Dist(A,B).

The derived equivalence

hSpan(A,B)↔ hDist(A,B)

can be obtained more simply by using the isomorphism

hSpan(1, Ao ×B) = L(Ao ×B) = hDist(A,B)

and the duality

hSpan(A,B)→ hSpan(1, Ao ×B).

The equivalence associates to a bifibrant span S → A × B the distributor S′ →
Ao ×B calculated by following diagram with a pullback square,

X ′
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The inverse equivalence associates to a fibrant distributor X → Ao × B the span
X ′ → A×B calculated by following diagram with a pullback square,
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14.27. The scalar product of two distributors S ∈ Dist(A,B) and T ∈ Dist(B,A)
is defined by putting

〈S|T 〉 = p!(S ×Ao×B T †)

where T † denotes and (t, s) : T → A × Bo ( the adjoint of T ), and where p is the
map Ao ×B → 1. The functor S 7→ 〈S|T 〉 is a left Quillen functor

(Dist(A,B),Wcov)→ (S,Who)

when T is fibrant. Similarly, the functor T 7→ 〈S|T 〉 is a left Quillen functor

(Dist(B,A),Wcov)→ (S,Who)

when S is fibrant. There is a resulting derived scalar product

〈−|−〉 : hDist(A,B)× hDist(B,A)→ hDist(1, 1).

The trace Tr(X) of a distributor X ∈ Dist(A,A) is defined by putting

Tr(X) = 〈X|Aδ〉,

where Aδ is the distributor defined in 14.23. The trace functor is a left Quillen
functor

Tr : Dist(A,A)→ Dist(1, 1)

when A is a quategory. The B-trace of a distributor X ∈ Dist(A × B,B × C) is
the distributor TrB(X) ∈ Dist(A,C) defined by putting TrB(X) = p!q

∗(X), where
q = Bo × (s, t)× C and p is the projection

Ao × C Ao ×Bδ × C
poo q // Ao ×Bo ×B × C.

The B-trace functor is a left Quillen functor

TrB : Dist(A×B,B × C)→ Dist(A,C)

when B is a quategory. It thus induces a functor

TrB : hDist(A×B,B × C)→ hDist(A,C).

The composite of a distributor S ∈ hDist(A,B) with a distributor T ∈ hDist(B,C)
is defined to be the B-trace of their tensor product S ⊗ T ∈ hDist(A×B,B × C).
The resulting composition functor

◦ : hDist(B,C)× hDist(A,B)→ hDist(A,C)

is coherently associative and the distributor Aδ ∈ hDist(A,B) is a unit for this
composition. We thus obtain a bicategory hDist called the homotopy bicategory of
distributors. The bicategory hDist is symmetric monoidal and compact closed. The
equivalence hSpan(A,B)→ hDist(A,B) of 14.26 can be extended as an equivalence
symmetric monoidal bicategories,

hSpan ' hDist.

14.28. There are simplicially enriched versions of the notions of cylinder and dis-
tributor. See 51.13 and 51.15. for a comparaison with the notions presented in this
section.
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15. Yoneda lemmas

Te extension of Yoneda lemma to quategories has many incarnations. We de-
scribe five forms of the extension. We use the lemma to strictify a quategory.

15.1. (Yoneda lemma 1) Recall that the category S/B is enriched over simplicial
sets for any simplicial set B. Let us denote by [X, Y ] the simplicial set of maps
X → Y between two objects of S/B. A vertex b ∈ B defines a map b : 1→ B and
for every object p : X → B of S/B we have [b, X] = X(b), where X(b) = p−1(b).
We shall say an object E of S/B is represented by a vertex a ∈ E(b) if the resulting
morphism a : b → E is a contravariant equivalence in S/B. Equivalently, E is a
represented by a ∈ E(b) if the evaluation map

a∗ : [E,X]→ X(b)

is an homotopy equivalence for every X ∈ R(B). An object E ∈ R(B) is repre-
sented by a vertex a ∈ E iff a is a terminal vertex of the simplicial set E. For
example, if B is a quategory, then the right fibration B/b → B is represented by
the unit 1b ∈ B/b. Hence the evalutation map

1∗b : [B/b,X]→ X(b)

is a homotopy equivalence for every X ∈ R(B).

15.2. Dually, we shall say an object E of S/B is corepresented by a vertex a ∈ E(b)
if the resulting morphism a : b→ E is a covariant equivalence in S/B. Equivalently,
E is a represented by a ∈ E(b) if the evaluation map

a∗ : [E,X]→ X(b)

is an homotopy equivalence for every X ∈ L(B). An object E ∈ L(B) is represented
by a vertex a ∈ E iff a is an initial vertex of the simplicial set E. For example, if B
is a quategory, then the left fibration b\B → B is represented by the unit 1b ∈ b\B.
Hence the evalutation map

1∗b : [b\B,X]→ X(b)

is a homotopy equivalence for every X ∈ L(B).

15.3. If B is a quategory, then the right fibration B//b→ B is represented by the
unit 1b ∈ B//b. Hence the evalutation map

i∗b : [B//b, X]→ X(b)

is a homotopy equivalence for every X ∈ R(B). In particular, the evalutation map

[B//b, B//c]→ B(b, c)

is a homotopy equivalence for every object c ∈ B. Consider the simplicial category
B having the same objects as B and defined by putting

B(a, b) = [B//a,B//b].

The category B is enriched over Kan complexes and its coherent nerve is equivalent
to B.

15.4. Let f : a→ b be an arrow in a quategory X. Then by Yoneda lemma, there
is a map f! : B/a → B/b in S/B such that f!(1a) = b and f is homotopy unique.
We shall say that f! is the pushforward map along f .
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15.5. Recall that the quategory K is the coherent nerve of the category Kan of
Kan complexes. Let us put K′ = 1\K, where 1 denotes the terminal object of the
quategory K. Then the canonical map p : K′ → K is a universal left fibration. The
universality means that for any left fibration f : E → A there exists a homotopy
pullback square in (S,Wcat),

E

f

��

g′ // K′

p

��
A

g // K,

and moreover that the pair (g, g′) is homotopy unique. We shall say that g is the
classifying map of the left fibration E → A.

15.6. The simplicial set of elements el(f) of a map f : B → K is defined by the
pullback square

el(f)
q //

��

K′

p

��
B

f // K.

The map q is a left fibration, since p is a left fibration. Moreover, f is classifying q.
The simplicial set el(f) is a quategory if B is a quategory. We shall say that a map
f : B → K is represented by an element a : 1→ f(b) if the left fibration el(f)→ B
is corepresentes by the vertex a ∈ el(f)(b).

15.7. A prestack on a simplicial set A is defined to be a map Bo → K. The
prestacks on B form a quategory

P(B) = KBo

= [Bo,K].

The simplicial set of elements El(g) of a prestack g : Bo → K is defined by putting
El(g) = el(g)o. The canonical map El(g) → B is a right fibration. We shall say
that a prestack g : Bo → K is represented by an element a : 1 → g(b) if the right
fibration El(g)→ B is represented by the vertex a ∈ El(g)(b).

15.8. Recall that the twisted diagonal Cδ of a category C is the category of elements
of the hom functor Co × C → Set. Similarly, the twisted diagonal of a quategory
A is the domain of a left fibration (s, t) : Aδ → Ao ×A by 14.23. The hom map

homA : Ao ×A→ K
is defined to be the classifying map of this left fibration, The Yoneda map,

yA : A→ P(A)

is obtained by transposing the map homA.

15.9. (Yoneda lemma 2) The vertices of the simplicial set Bδ are the arrows of
B. In particular, to every vertex b ∈ B corresponds an arrow 1b ∈ Bδ with
s(1b) = t(1b) = b. This defines a morphism 1b : 1 → homB(b, b), hence also a
morphism 1b : 1→ y(b)(b). If B is a quategory, then the evaluation map

evb : P(B)→ K
is represented by the element 1b : 1→ y(b)(b).
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15.10. The left fibration LA → A×KA defined by the pullback square

LA

��

// K′

��
A×KA ev // K

is universal, where ev denotes the evaluation map. The universality means that for
any simplicial set B and any left fibration E → A × B, there exists a homotopy
pullback square in (S,Wcat),

E

��

g′ // LA

��
A×B

A×g // A×KA

and that the pair (g, g′) is homotopy unique.

15.11. Dually, the left fibration MA defined by the pullback square

MA

��

// K′

��
Ao × P(A) ev // K

is a universal distributor A ⇒ P(A). More precisely, for any simplicial set B and
any fibrant distributor E : A⇒ B, there exists a homotopy pullback square in the
model category (S,Wcat),

E
g′ //

��

MA

��
Ao ×B

Ao×g // Ao × P(A),

and the pair (g, g′) is homotopy unique. We shall say that g classifies the distributor
E : A ⇒ B and that MA : A ⇒ P(A) is a Yoneda distributor. A distributor
E : A⇒ B is essentially the same thing as a map B → P(A).

15.12. (Yoneda lemma 3) The twisted diagonal Aδ → Ao × A is classified by the
Yoneda map yA : A→ P(A). We have a diagram of homotopy pullback squares in
(S,Wcat),

Aδ

��

// MA

��

// P(A)δ

��
Ao ×A

Ao×yA // Ao × P(A)
yo

A×P(A) // P(A)o × P(A).

The composite square shows that the map yA is fully faithful.
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15.13. The Quillen equivalence 14.18 between distributors and cylinders implies
the existence of a universal cylinder CA ∈ Cyl(A,P(A)). The cylinder CA turns out
to be a fibrant replacement of the cylinder Cl(yA) defined by the pushout square
of simplicial sets,

A
yA //

i1

��

P(A)

��
A× I // Cl(yA)

The universality of CA means that for any simplicial set B and any cylinder
E ∈ Cyl(A,B), there exists a homotopy pullback square in the model category
(S,Wcat),

E
g′ //

��

CA

��
A ? B

1A?g // A ? P(A),

and the pair (g, g′) is homotopy unique. We shall say that g classifies the cylinder
E ∈ Cyl(A,B) and that CA ∈ Cyl(A,P(A)) is a Yoneda cylinder. A cylinder
C : A⇒ B is essentially the same thing as a map B → P(A).

15.14. (Yoneda lemma 4) The cylinder A × I ∈ Cyl(A,A) is classified by the
Yoneda map yA : A→ P(A). We have a diagram of homotopy pullback squares in
(S,Wcat),

A× I

��

// CA

��

// P(A)× I

��
A ? A

A?yA // A ? P(A)
yA?P(A) // P(A) ? P(A).

15.15. The Quillen equivalence ?? between cylinders and spans implies the exis-
tence of a universal span PA ∈ Span(A,P(A)). The universality of PA means that
for any simplicial set B and any bifibrant span S : A⇒ B, there exists a homotopy
pullback square in the model category (S,Wcat),

S
g′ //

��

PA

��
A×B

A×g // A× P(A),

and the pair (g, g′) is homotopy unique. We shall say that g classifies the span
S : A⇒ B and that PA : A⇒ P(A) is a Yoneda span. A bifibrant span S : A⇒ B
is essentially the same thing as a map B → P(A).
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15.16. (Yoneda lemma 5) The span AI → A× A is classified by the Yoneda map
yA : A→ P(A). We have a diagram of homotopy pullback squares in (S,Wcat),

AI

��

// PA

��

// P(A)I

��
A×A

A×yA // A× P(A)
yA×P(A) // P(A)× P(A).

The composite square shows that the map yA is fully faithful.

15.17. If X is a small simplicial category, let us denote by [X,S]f the full sub-
category of fibrant objects of the model category [X,S]inj . Then the evaluation
functor ev : X× [X,S]→ S induces a functor e : X× [X,S]f → Kan. The coherent
nerve of this functor is a map of simplicial sets

C !X × C ![X,S]f → K.

When X is enriched over Kan complexes, the corresponding map

C ![X,S]f → KC!X

is an equivalence of quategories. It follows by adjointness that for any simplicial
set A we have an equivalence of quategories

C ![C!A,S]f → KA.

16. Morita equivalences

In this section, we introduce the notion of Morita equivalence between simplicial
sets. The category of simplicial sets admits a model structure in which the weak
equivalences are the Morita equivalences and the cofibration are the monomor-
phisms. The fibrant objects are the Karoubi complete quategories. We construct
explicitly the Karoubi envelope of a quategory. The results of the section are taken
from [J2].

16.1. Recall that a functor u : A → B between small categories is said to be a
Morita equivalence if the base change functor

u∗ : [Bo,Set]→ [Ao,Set]

is an equivalence of categories. We shall say that u is u is Morita surjective if the
functor u∗ is conservative. A functor u : A → B is a Morita surjective iff every
object b ∈ B is a retract of an object in the image of u. A functor u : A→ B is a
Morita equivalence iff it is fully faithful and Morita surjective.

16.2. Recall an idempotent e : b→ b in a category is said to split if there exists a
pair of arrows s : a→ b and r : b→ a such that e = sr and rs = 1a. A category C
is said to be Karoubi complete if every idempotent in C splits.
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16.3. The model structure (Cat, Eq) admits a Bousfield localisation with respect
to Morita equivalences. The local model structure is cartesian closed and left
proper. We shall denote it shortly by (Cat,Meq). A category is fibrant iff it
is Karoubi complete. We call a fibration a Morita fibration. A Karoubi enve-
lope Kar(C) of a category C is a fibrant replacement of C in the model structure
(Cat,Meq). The category Kar(C) is well defined up to an equivalence of categories.
The envelope is well defined up to an equivalence of quategories.

16.4. We shall denote by i : C → κ(C) the following explicit construction of the
Karoubi envelope of a category C. An object of the category κ(C) is a pair (c, e),
where c is an object of C and e ∈ C(c, c) is an idempotent. An arrow f : (c, e) →
(c′, e′) of κ(C) is a morphism f ∈ C(c, c′) such that fe = f = e′f . The composite
of f : (c, e) → (c′, e′) and g : (c′, e′) → (c”, e”) is the arrow gf : (c, e) → (c”, e”).
The arrow e : (c, e)→ (c, e) is the unit of (c, e). The functor i : C → κ(C) takes an
object c ∈ C to the object (c, 1c) ∈ κ(C).

16.5. Let Split be the category freely generated by two arrows s : 0 → 1 and
r : 1→ 0 such that rs = 10. The monoid E = Split(1, 1) is freely generated by one
idempotent e = sr and we have κ(E) = Split. A functor is a Morita fibration iff it
has the right lifting property with respect to the inclusion E ⊂ Split.

16.6. We shall say that a map of simplicial sets u : A→ B is a Morita equivalence
if the base change functor

R∗(u) : R(B)↔ R(A)

is an equivalence of categories. We shall say that a map of simplicial sets u : A→ B
is Morita surjective if the base change functor

R∗(u) : R(B)↔ R(A)

is conservative. A map u : A → B is Morita surjective iff the functor τ1(u) :
τ1(A) → τ1(B) is Morita surjective. A map u : A → B is a Morita equivalence
iff it is fully faithful and Morita surjective. Hence a map u : A → B is a Morita
equivalence iff the opposite map uo : Ao → Bo is a Morita equivalence. A weak
categorical equivalence is a Morita equivalence.

16.7. An idempotent in a quategory X is defined to be a map e : E → X, where E
is the monoid freely generated by one idempotent. We shall say that an idempotent
e : E → X split if it can be extended to a map Split → X. We shall say that a
quategory X is Karoubi complete if every idempotent in X splits. If X is Karoubi
complete, then so are the quategories X/b and b\X for every object b ∈ X.

16.8. The model category (S,Wcat) admits a Bousfield localisation with respect to
Morita equivalences. The local model structure is cartesian closed and left proper.
We shall denote it shortly by (S,Meq). A fibration is called a Morita fibration. A
quategory is fibrant iff it is Karoubi complete. The Karoubi envelope Kar(X) of
a quategory X is defined to be a fibrant replacement of X in the model structure
(S,Meq). The envelope is well defined up to an equivalence of quategories.
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16.9. The pair of adjoint functors

τ1 : S↔ Cat : N

is a Quillen adjunction between the model categories (S,Meq) and (Cat,Meq). A
functor u : A→ B in Cat is a Morita equivalence (resp. a Morita fibration) iff the
map Nu : NA→ NB is a Morita equivalence (resp. a Morita fibration).

16.10. A mid fibration between quategories is a Morita fibration iff it has the right
lifting property with respect to the inclusion E ⊂ Split. The base change of a
Morita equivalence along a left or a right fibration is a Morita equivalence. Every
right (resp. left) fibration is a Morita fibration.

16.11. The canonical map X → hoX is a Morita fibration for any quategory X.
It follows that an idempotent u : E → X splits iff its image hu : E → hoX splits in
hoX. Hence a quategory X is Karoubi complete iff every idempotent u : E → X
which splits in hoX splits in X.

16.12. Let E be the monoid freely generated by one idempotent. Then a quategory
X is Karoubi complete iff the projection XSplit → XE defined by the inclusion
E ⊂ Split is a trivial fibration.

16.13. The Karoubi envelope of a quategory X has functorial construction X →
κ(X). Observe that the functor κ : Cat→ Cat has the structure of a monad, with
a left adjoint comonad L. To see this, we need the notion of semi-category. By
definition, a semi-category B is a category without units. More precisely, it is a
graph (s, t) : B1 → B0×B0 equipped with a composition law B1×s,tB1 → B1 which
is associative. There is an obvious notion of semi-functor between semi-categories.
Let us denote by sCat the category of small semi-categories and semi-functors.
The forgetful functor U : Cat → sCat has a left adjoint F and a right adjoint G.
The existence of F is clear by a general result of algebra. If B is a semi-category,
then the category G(B) has the following description. An object of G(B) is a pair
(b, e), where b ∈ B0 and e : b → b is an idempotent; an arrow f : (b, e) → (b′, e′)
of G(B) is a morphism f ∈ B(b, b′) such that fe = f = e′f . Composition of
arrows is obvious. The unit of (b, e) is the morphism e : (b, e) → (b, e). It is easy
to verify that we have U ` G. By construction, we have κ(C) = GU(C) for any
category C. It follows that the functor κ has the structure of a monad. Moreover,
we have L ` κ, where L = FU . The functor L has the structure of a comonad by
adjointness. The category L[n] has the following presentation for each n ≥ 0. It is
generated by a chain of arrows

0
f1 // 1

f2 // 2 // · · · fn // n,

and a sequence of idempotents ei : i → i (0 ≤ i ≤ n). In addition to the relation
eiei = ei for each 0 ≤ i ≤ n, we have the relation fiei−1 = fi = eifi for each
0 < i ≤ n. If A is a simplicial set, let us put

κ(A)n = S(L[n], A)

for every n ≥ 0. This defines a continuous functor κ : S → S having the structure
of a monad. If X is a quategory, then the unit X → κ(X) is a Karoubi envelope
of X. A map between quategories f : X → Y is a Morita equivalence iff the map
κ(f) : κ(X)→ κ(Y ) is an equivalence of quategories.
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16.14. The model category (S,Wcat) admits a uniform homotopy factorisation
system (A,B) in which A is the class of Morita equivalences. A map p : X → Y
belongs to B iff it admits a factorisation p′w : X → X ′ → Y with p′ a Morita
fibration and w a weak categorical equivalence.

17. Adjoint maps

We introduce the notion of adjoint maps between quategories and formulate a
necessary an sufficient condition for the existence of adjoints. We also introduce a
weaker form of the notion of adjoint for maps between simplicial sets.

17.1. Recall from 1.11 that the category S has the structure of a 2-category Sτ1 . If
u : A→ B and v : B → A are maps of simplicial sets, an adjunction (α, β) : u a v
between u and v

u : A↔ B : v

is a pair of natural transformations α : 1A → vu and β : uv → 1B satisfying the
adjunction identities:

(β ◦ u)(u ◦ α) = 1u and (v ◦ β)(α ◦ v) = 1v.

The map u is the left adjoint and the map v the right adjoint. The natural trans-
formation α is the unit of the adjunction and the natural transformation β is the
counit. We shall say that a homotopy α : 1A → vu is an adjunction unit if the nat-
ural transformation [α] : 1A → vu is the unit of an adjunction u a v. Dually, we say
that a homotopy β : uv → 1B is an adjunction counit if the natural transformation
[β] : uv → 1B is the counit of an adjunction u a v.

17.2. The functor τ1 : S→ Cat takes an adjunction to an adjunction. A composite
of left adjoints A → B → C is left adjoint to the composite of the right adjoints
C → B → A.

17.3. An object a in a quategory X is initial iff the map a : 1→ X is left adjoint
to the map X → 1.

17.4. A map between quategories g : Y → X is a right adjoint iff the quategory
a\Y defined by the pullback square

a\Y //

��

Y

g

��
a\X // X

admits an initial object for every object a ∈ X. An object of the quategory a\Y is
a pair (b, u), where b ∈ Y0 and u : a → f(b) is an arrow in X. We shall say that
the arrow u is universal if the object (b, u) is initial in a\Y . If f is a map X → Y ,
then a homotopy α : 1X → gf is an adjunction unit iff the arrow α(a) : a→ gf(a)
is universal for every object a ∈ X. Dually, a map between quategories f : X → Y
is a left adjoint iff the quategory X/b defined by the pullback square

X/b //

��

X

f

��
Y/b // Y
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admits a terminal object for every object b ∈ Y . An object of the quategory X/b is
a pair (a, v), where a ∈ X0 and v : f(a)→ b is an arrow in Y ; we shall say that the
arrow v is couniversal if the object (a, v) is terminal in X/b. If g is a map Y → X,
then a homotopy β : fg → 1Y is an adjunction counit iff the arrow β(b) : fg(b)→ b
is couniversal for every object b ∈ Y .

17.5. The base change of left adjoint between quategories along a right fibration
is a left adjoint.

17.6. If f : X ↔ Y : g is a pair of adjoint maps between quategories, then the right
adjoint g is fully faithful iff the counit of the adjunction β : fg → 1Y is invertible, in
which case the left adjoint f is said to be a reflection and the map g to be reflective.
Dually, the left adjoint f is fully faithful iff the unit of the adjunction α : 1X → gf
is invertible, in which case the right adjoint g is said to be a coreflection and the
map f to be coreflective.

17.7. The base change of a reflective map along a left fibration is reflective. Dually,
the base change of a coreflective map along a right fibration is coreflective.

17.8. We shall say that a map of simplicial sets u : A→ B is a weak left adjoint if
the functor

τ1(u, X) : τ1(B,X)→ τ1(A,X)

is a right adjoint for every quategory X. Dually, we shall say that u : A → B is
a weak right adjoint if the functor τ1(u, X) is a left adjoint for every quategory X.
A map of simplicial sets u : A → B is a weak left adjoint iff the opposite map
uo : Ao → Bo is a weak right adjoint.

17.9. A map between quategories is a weak left adjoint iff it is a left adjoint. The
notion of weak left adjoint is invariant under weak categorical equivalences. The
functor τ1 : S→ Cat takes a weak left adjoint to a left adjoint.

17.10. Weak left adjoints are closed under composition. The base change of weak
left adjoint along a right fibration is a weak left adjoint. A weak left adjoint is an
initial map. A vertex a ∈ A in simplicial set A is initial iff the map a : 1→ A is a
weak left adjoint.

17.11. Let B a simplicial set. For each vertex b ∈ B, let us choose a factorisation
1 → Rb → B of the map b : 1 → B as a right anodyne map 1 → Rb followed by
a right fibration Rb → B. Then a map of simplicial sets u : A → B is a weak
left adjoint iff the simplicial set Rb×B A admits a terminal vertex for each vertex
b ∈ B.

17.12. We say that a map v : B → A is a weak reflection if the functor

τ1(v,X) : τ1(A,X)→ τ1(B,X)

is coreflective for every quategory X. We say that a map of simplicial sets u : A→ B
is weakly reflective if the functor

τ1(u, X) : τ1(B,X)→ τ1(A,X)

is a coreflection for every quategory X. There are dual notions of weak coreflection
and of weakly coreflective maps.
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17.13. If a map of simplicial sets is both a weak left adjoint and a weak right
adjoint, then it is a weak reflection iff it is weak coreflection.

17.14. A weak left adjoint is a weak reflection iff it is dominant iff it is a localisation.
Dually, a weak right adjoint is a weak coreflection iff it is dominant iff it is a
localisation.

18. Quasi-localisations

The notion of simplicial localisation was introduced by Dwyer and Kan. The
corresponding notion for quategories is called quasi-localisation. We formalise the
theory of quasi-localisation with the theory of homotopy factorisation systems.

18.1. We say that a map of simplicial sets u : A → B inverts an arrow f ∈ A if
u(f) is invertible in τ1(B). We say that u inverts a set of arrows S ⊆ A if it inverts
every arrow in S. We shall say that u is a quasi-localisation with respect to S if it
inverts S universally. The universality means that for any quategory X, the map
Xu : XB → XA induces an equivalence between XB and the full simplicial subset
of XA spanned by the maps A → X which invert S. In general, we shall say that
a map of simplicial sets u : A→ B is a quasi-localisation if it is a quasi-localisation
with respect to the set Σ(u) of arrows which are inverted by u.

18.2. Let S → A1 be a family of arrows in a simplicial set A. If J is the groupoid
generated by one arrow 0→ 1, then the map A→ A[S−1] in the pushout square

S × I

��

// A

��
S × J // A[S−1]

is a quasi-localisation with respect to S.

18.3. For any set S of arrows in a category A, there is a functor lS : A → S−1A
which inverts S universally. Such a functor is said to be a strict localisation in 47.4.
There is also a notion of iterated strict localisation. Recall that that the category
Cat admits a factorisation system (A,B) in which B is the class of conservative
functors and A is the class of iterated strict localisations. A functor u : A → B
is said to be a localisation (resp iterated localisation) in 11.14 if it is equivalent
to a strict localisation (resp. an iterated strict localisation). The model category
(Cat, Eq) admits a homotopy factorisation system (A,B) in which B is the class
of conservative functors and A is the class of iterated localisations.

18.4. We shall say that a functor u : C → D inverts an iterated localisation
l : C → L if there exits a functor v : L → D together with an isomorphism
vl ' u. We shall say that a map of simplicial sets u : A → B inverts an iterated
localisation l : τ1A → L if the functor τ1(u) : τ1(A) → τ1(B) inverts L. We
shall say that u : A → B is an iterated quasi-localisation with respect to l if it
inverts l universally. More precisely, this means that for any quategory X, the map
Xu : XB → XA induces an equivalence between XB and the full simplicial subset
of XA spanned by the maps A→ X which coinvert l. In general, we shall say that
a map of simplicial sets u : A → B is an iterated quasi-localisation if the functor
τ1(u) is an iterated localisation and the map u is an iterated quasi-localisation with
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respect to τ1(u). The model category (S,Wcat) admits a homotopy factorisation
system (A,B) in which B is the class of conservative maps and A is the class of
iterated quasi-localisations. A monomorphism of simplicial sets is an iterated quasi-
localisation iff it has the left lifting property with respect to every conservative
pseudo-fibration between quategories.

18.5. The functor τ1 : S→ Cat takes an iterated quasi-localisation to an iterated
localisation. An iterated quasi-localisation u : A→ B is a quasi-localisation iff the
functor τ1(u) : τ1A→ τ1B is a localisation.

18.6. An iterated quasi-localisation is dominant and essentially surjective. A weak
reflection (resp. coreflection) is a quasi-localisation. The base change of a quasi-
localisation along a left or a right fibration is a quasi-localisation. Similarly for the
base change of an iterated quasi-localisation.

18.7. Recall from 47.5 that if C is a category, then the full subcategory of C\Cat
spanned by the iterated strict localisations C → L is equivalent to a complete lattice
Loc(C). The canonical functor C\Cat → Ho(C\Cat,Eq) induces an equivalence
between Loc(C) and the full subcategory of Ho(C\Cat,Eq) spanned by the iterated
localisations C → L. If A is a simplicial set, then the functor τ1 induces an
equivalence between the full subcategory of the homotopy category Ho(A\S,Wcat)
spanned by the iterated quasi-localisations A→ L and the lattice Loc(τ1A).

18.8. Suppose that we have a commutative cube of simplicial sets

A0
//

��

  B
BB

BB
BB

B C0

!!C
CC

CC
CC

C

��

B0

��

// D0

��

A1

  B
BB

BB
BB

B
// C1

!!C
CC

CC
CC

C

B1
// D1.

in which the top and the bottom faces are homotopy cocartesian. If the maps
A0 → A1, B0 → B1 and C0 → C1 are quasi-localisations, then so is the maps
D0 → D1. Similarly for iterated quasi-localisations.

18.9. Every simplicial set X is the quasi-localisation

tX : ∆/X → X

of its category of elements ∆/X. The map tX was introduced by Illusie in [Illu].
Let us first describe tX in the case where X is (the nerve of) a category C. The
functor tC : ∆/CtoC is defined by putting tC(x) = x(n) for a functor x : [n]→ C.
The family of maps tC : C/∆ → C, for C ∈ Cat, can be extended uniquely as a
natural transformation tX : ∆/X → X for X ∈ S. Let us now show that tX is a
quasi-localisation. Let ∆′ be the subcategory of ∆ whose morphisms are the maps
u : [m]→ [n] with u(m) = n. The map tX : X/∆→ X takes every arrow in

∆′/X
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to a unit in X. It thus induces a canonical map

wX : ∆/X[(∆′/X)−1]→ X.

The result will be proved if we show that wX a weak categorical equivalence. We
only sketch of the proof. The domain F (X) of wX is a cocontinuous functor of X.
Moreover, the functor F takes a monomorphism to a monomorphism. The result
is easy to verify in the case where X = ∆[n]. The result then follows from a formal
argument using the the skeleton filtration of X and the cube lemma.

18.10. If u : A → B is quasi-localisation, then the base change functor R∗(u) :
R(B) → R(A) is fully faithful, since a quasi-localisation is dominant. An object
X ∈ R(A) belongs to the essential image of the functor R∗(u) iff its (contravariant)
homotopy diagram D(X) : τ1(A)o → Ho(S,Who) inverts the localisation τ1(A)→
τ1(B).

18.11. If f : a→ b is an arrow in a simplicial set A, then the inclusion i0 : {0} → I
induces a map f ′ : a → f between the objects a : 1 → A and f : I → A of the
category S/A. If S is a set of arrows in A, we shall denote by (S/A, S ∪Wcont).
the Bousfield localisation of the model structure (S/A, Wcont) with respect to the
set of maps {f ′ : f ∈ S}. An object X ∈ R(A) is fibrant in the localised structure
iff the map f∗ : X(b) → X(a) of the contravariant homotopy diagram of X is a
weak homotopy equivalence for every arrow f : a → b in S. If p : A → A[S−1] is
the canonical map, then the pair of adjoint functors

p! : S/A↔ S/A[S−1] : p∗

is a Quillen equivalence between the model category (S/A, Σ ∪ Wcont) and the
model category (S/A[S−1],Wcont).

18.12. It follows from 18.11 that a right fibration X → B is a Kan fibration iff
the map f∗ : X(b)→ X(a) of the contravariant homotopy diagram of X is a weak
homotopy equivalence for every arrow f : a→ b in B.

19. Limits and colimits

In this section we study the notions of limit and colimit in a quategory. We define
the notions of cartesian product, of fiber product, of coproduct and of pushout. The
notion of limit in a quategory subsume the notion of homotopy limits. For example.
the loop space of a pointed object is a pullback and its suspension a pushout. We
consider various notions of complete and cocomplete quategories. Many results of
this section are taken from [J1] and [J2].

19.1. If X is a quategory and A is a simplicial set, we say that a map d : A→ X
is a diagram indexed by A in X The quategory X can be large. The cardinality of
a diagram d : A→ X is the cardinality of A. A diagram d : A→ X is small (resp.
finite) if A is small (resp. finite). .
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19.2. Recall that a projective cone with base d : A→ X in a quategory X is a map
c : 1 ? A→ X which extends d along the inclusion A ⊂ 1 ? A. The projective cones
with base d are the vertices of a quategory X/d by 9.7. We say that a projective
cone c : 1 ? A → X with base d is a limit cone if it is a terminal object of the
quategory X/d; in this case, the vertex l = c(1) ∈ X is said to be the (homotopy)
limit of d and we can write

l = lim
a∈A

d(a) = lim
A

d.

19.3. If d : A → X is a diagram in a quategory X, then the full simplicial subset
of X/d spanned by the limit cones with base d is a contractible Kan complex when
non-empty. It follows that the limit of a diagram is homotopy unique when it exists.

19.4. The notion of limit can also be defined by using fat projective cones 1�A→ X
instead of projective cones 1?A→ X. But the canonical map X/d→ X//d obtained
from the canonical map 1 � A → 1 ? A is an equivalence of quategories by 9.18. It
thus induces an equivalence between the Kan complex spanned by the terminal
vertices of X/d and the Kan complex spanned by the terminal vertices of X//d.

19.5. The colimit of a diagram with values in a quategory X is defined dually. We
recall that an inductive cone with cobase d : A → X in a quategory X is a map
c : A ? 1→ X which extends d along the inclusion A ⊂ A ? 1. The inductive cones
with a fixed cobase d are the objects of a quategory d\X. We say that an inductive
cone c : 1 ? A → X with cobase d is a colimit cone if it is an initial object of the
quategory d\X; in this case the vertex l = c(1) ∈ X is said to be the (homotopy)
colimit of d and we can write

l = colima∈Ad(a) = colimAd.

The notion of colimit can also be defined by using fat inductive cones A � 1 → X,
but the two notions are equivalent.

19.6. If X is a quategory and A is a simplicial set, then the diagonal map X → XA

has a right (resp. left) adjoint iff every diagram A→ X has a limit (resp. colimit).

19.7. We shall say that a (large) quategory X is complete if every (small) diagram
A→ X has a limit. There is a dual notion of a cocomplete quategory. We shall say
that a large quategory is bicomplete if it is complete and cocomplete.

19.8. We say that a quategory X is finitely complete or cartesian if every finite
diagram A → X has a limit. There is dual notion of a finitely cocomplete or
cocartesian quategory. We shall say that a quategory X is finitely bicomplete or
bicartesian if it is finitely complete and cocomplete.

19.9. The homotopy localisation L(E) of a model category E is finitely bicomplete,
and it is (bi)complete when the category E is (bi)complete.

19.10. The coherent nerve of the category of Kan complexes is a bicomplete quat-
egory K = Q0. Similarly for the coherent nerve of the category of small quategories
is a bicomplete quategory Q1
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19.11. We shall say that a map between quategories f : X → Y preserves the limit
of a diagram d : A→ X if it takes a limit cone c : 1 ? A→ X with base d to a limit
cone fc : 1 ? A→ Y . Dually, we shall say f preserves the the colimit of a diagram
d : A→ X if it takes a colimit cone c : A ? 1→ X with cobase d to a colimit cone.
We shall say that a map f : X → Y is continuous if it takes every small limit cone
in X to a limit cone. Dually, we shall say that f is cocontinuous if it takes every
(small) colimit cone in X to a colimit cone. We shall say that f is bicontinuous if
it is both continuous and cocontinuous. We shall say that a map between cartesian
quategories is finitely continuous or left exact if it preserves finite limits. Dually,
we shall say that a map between cocartesian quategories is finitely cocontinuous or
right exact if it preserves finite colimits.

19.12. In a pair of adjoint maps f : X ↔ Y : g, the left adjoint f is cocontinuous
and the right adjoint g is continuous.

19.13. If X is a quategory and S is a discrete simplicial set (ie a set), then a
projective cone c : 1 ? S → X is the same thing as a family of morphisms (pi : y →
xi | i ∈ S) with domain y = c(1). When c is a limit cone, the object y is said to be
the product of the family (xi : i ∈ S), the morphism pi : y → xi to be a projection
and we write

y =
∏
i∈S

xi.

Dually, if S is a discrete simplicial set, then an inductive cone c : S ? 1→ X is the
same thing as a family of morphisms (ui : xi → y | i ∈ S) with codomain y = c(1).
When c is a colimit cone, the object y is said to be the coproduct of the family
(xi : i ∈ S), the arrow ui : xi → y to be an inclusion and we write

y =
∐
i∈S

xi.

19.14. The canonical map X → hoX preserves products and coproducts.

19.15. We say that a quategory X has finite products if every finite family of objects
of X has a product. A quategory with a terminal object and binary products has
finite products. We say that a large quategory X has products if every small family
of objects of X has a product. There are dual notions of a quategory with finite
coproducts and of large quategory with coproducts

19.16. If X is a quategory and b ∈ X0, then an object of the quategory X/b is an
arrow a→ b in X. The fiber product of two arrows f : a→ b and g : c→ b in X is
defined to be their product as objects of the quategory X/b,

a×b c //

��

c

g

��
a

f // b.

The square I × I is a projective cone 1 ? Λ2[2]. We shall say that a commutative
square I× I → X is cartesian, or that it is a pullback if the projective cone 1?Λ2[2]
is a limit cone. A diagram d : Λ2[2] → X is the same thing as a pair of arrows
f : a→ b and g : c→ b in X; the limit of d is the fiber product of f and g. Dually,
an object of the quategory a\X is an arrow a→ b in X. The amalgameted sum of
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two arrows u : a→ b and v : a→ c in X is defined to be their coproduct as objects
of the quategory a\X,

a
v //

u

��

c

��
b // b ta c.

The square I × I is an inductive cone Λ0[2] ? 1. We shall say that a commutative
square I × I → X is cocartesian, or that it is a pushout if the inductive cone
d : Λ0[2] ? 1→ X is a colimit cone. A diagram d : Λ0[2]→ X is the same thing as
a pair of arrows u : a→ b and v : a→ c in X; the colimit of d is the amalgamated
sum of u and v.

19.17. We shall say that a quategory X has pullbacks if every diagram Λ2[2]→ X
has a limit. A quategory X has pullbacks iff the quategory X/b has finite products
for every object b ∈ X. Dually, we say that a quategory X has pushouts) if every
diagram Λ0[2] → X has a colimit. A quategory X has pushouts iff the quategory
a\X has finite coproducts for every object a ∈ X.

19.18. A quategory with terminal objects and pullbacks is cartesian. A map be-
tween cartesian quategories is finitely continuous iff it preserves terminal objects
and pullbacks. Dually, a quategory with initial objects and pushouts is cocarte-
sian. A map between cocartesian quategories is finitely cocontinuous iff it preserves
initial objects and pushouts.

19.19. A quategory with (arbitrary) products and pullbacks is complete. A map
between complete quategories is continuous iff it preserves products and pullbacks.
Dually, a quategory with (arbitrary) coproducts and pushouts is cocomplete. A
map between cocomplete quategories is cocontinuous iff it preserves coproducts
and pushouts.

19.20. We say that a quategory X is cartesian closed if it has finite products and
the product map a × (−) : X → X has a right adjoint [a,−] : X → X, called the
exponential, for every object a ∈ X. We say that a quategory X is locally cartesian
closed if the slice quategory X/a is cartesian closed for every object a ∈ X.

19.21. The quategory K is locally cartesian closed. The quategories Q1 and Q1/I
are cartesian closed, where I = ∆[1].

19.22. The base change of a morphism f : a → b in a quategory along another
morphism u : a′ → a is the morphism f ′ in a pullback square,

a′ //

f ′

��

a

f

��
b′

u // b.
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19.23. To every arrow f : a→ b in a quategory X we can associate a pushforward
map f! : X/a→ X/b by 15.4. The map f! is unique up to a unique invertible 2-cell in
the 2-category QCat. The quategory X has pullbacks iff the map f! : X/a→ X/b
has a right adjoint

f∗ : X/b→ X/a

for every arrow f : a→ b. We shall say that f∗ is the base change map along f . A
cartesian quategory X is locally cartesian closed iff the base change map

f∗ : X/b→ X/a

has a right adjoint f∗ for every arrow f : a→ b.

19.24. Let d : B → X a diagram with values in a quategory X and let u : A→ B
a map of simplicial sets. If the colimit of the diagrams d and du exist, then there
is a canonical morphism

colimAdu→ colimBd

in the category hoX. Let us suppose that the map u : A → B is final. Then the
map d\X → du\X induced by u is an equivalence of quategories by 9.15. It follows
that the colimit of d exists iff the colimit of du exists, in which cases the canonical
morphism above is invertible and the two colimits are isomorphic.

19.25. Let d : B → X a diagram with values in a quategory X. If u : (M,p) →
(N, q) is a contravariant equivalence in the category S/B, then the map dq\X →
dp\X induced by u is an equivalence of quategories. It follows that the colimit of
dp exists iff the colimit of dq exists, in which case the two colimits are naturally
isomorphic in the category hoX.

19.26. Let (Ai | i ∈ S) be a family of simplicial sets and let us put

A =
⊔
i∈S

Ai.

If X is a quategory, then a diagram d : A → X is the same thing as a family of
diagrams di : Ai → X for i ∈ S. If each diagram di has a colimit xi, then the
diagram d has a colimit iff the coproduct of the family (xi : i ∈ I) exists, in which
case we have

colimAd =
∐
i∈S

colimAi
d.

19.27. Suppose we have a pushout square of simplicial sets

A
u //

i

��

C

j

��
B

v // T.

with i monic. Let d : T → X be a diagram with values in a quategory X and
suppose that each diagram dv, dvi and dj has a colimit. Then the diagram d has a
colimit iff the pushout square

colimAdvi //

��

colimCdj

��
colimBdv // Z
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exists, in which case colimT d = Z.

19.28. In a quategory with finite colimit X, the coproduct of n objects can be
computed inductively by taking pushouts starting from the initial object. More
generally, the colimit of any finite diagram d : A→ X can be computed inductively
by taking pushouts and the initial object. To see this, let us put

ln = colimSknAd | SknA

for each n ≥ 0. The object l0 is the coproduct of the family d | A0. If n > 0,
the object ln can be constructed from ln−1 by taking pushouts. To see this, let
us denote by Cn(A) the set of non-degenerate n-simplices of A. We then have a
pushout square

Cn(A)× ∂∆[n] //

��

Skn−1A

��
Cn(A)×∆[n] // SknA

for each n ≥ 1. The colimit of a simplex x : ∆[n]→ X is equal to x(n), since n is a
terminal object of ∆[n]. Let us denote by δ(x) the colimit of the simplicial sphere
x | ∂∆[n]. There is then a canonical morphism δ(x) → x(n), since ∂∆[n] ⊂ ∆[n].
It then follows from 19.27 that we have a pushout square,∐

x∈Cn(A) δ(x) //

��

ln−1

��∐
x∈Cn(A) x(n) // ln.

The construction shows that a quategory with initial object and pushouts is finitely
cocomplete.

19.29. Recall from 16.7 than an idempotent in a quategory X is defined to be a
map e : E → X, where E is the monoid freely generated by one idempotent. An
idempotent e : E → X splits iff the diagram e : E → X has a limit iff it has a
colimit. A complete quategory is Karoubi complete Beware that the simplicial set
E is not quasi-finite. Hence a cartesian quat is not necessarly Karoubi complete.

19.30. The Karoubi envelope of a cartesian quategory is cartesian. The Karoubi
envelope of a quategory with finite products has finite products.

19.31. Every cocartesian quategory X admits a natural action Sf×X → X by the
category of finite simplicial sets. The action associates to a pair (A, x) the colimit
A · x of the constant diagram A → X with value x. The map x 7→ A · x can be
obtained by composing the diagonal X → XA with its left adjoint XA → X. There
is also a canonical homotopy equivalence

X(A · x, y) ' X(x, y)A

for every y ∈ X. For a fixed object x ∈ X, the map A 7→ A ∧ x takes a weak
homotopy equivalence to an isomorphism and a homotopy pushout square to a
pushout square in X. Dually, every cartesian quategory X admits a natural coaction
X × So

f → X by the category of finite simplicial sets. The coaction associates to
a pair (x, A) the limit xA of the constant diagram A→ X with value x. The map
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x 7→ xA can be obtained by composing the diagonal X → XA with its right adjoint
XA → X. There is then a a canonical homotopy equivalence

X(y, xA) ' X(y, x)A

for every object y ∈ X. The coaction by A on X is dual to the action of Ao on Xo,
since (xA)o = Ao · xo. Moreover, when X is bicartesian, the map A · (−) : X → X
is left adjoint to the map (−)A : X → X.

19.32. If X is a null-pointed quategory. then the projection XI → X ×X admits
a section which associates to a pair of objects x, y ∈ X a null morphism 0 : x→ y
by 10.8. If X is cocartesian, then there is a natural action 1\Sf ×X → X by the
category of finite pointed simplicial sets. The action associates to a pair (A, x) the
smash product A ∧ x ∈ X defined by the pushout square,

1 · x //

a·x
��

1 · 0

��
A · x // A ∧ x,

where a : 1 → A is the base point. For example, S1 ∧ x is the suspension Σ(x) of
an object x ∈ X. More generally, Sn∧x is the n-fold suspension Σn(x) of x. There
is also a canonical homotopy equivalence

X(Ax, y) ' [A,X(x, y)]

for every y ∈ X, where [A,X(x, y)] is the simplicial set of pointed maps A →
X(x, y). For a fixed object x ∈ X, the map A 7→ A ∧ x takes a weak homotopy
equivalence to an isomorphism and a homotopy pushout square to a pushout square
in X. Dually, a null-pointed cartesian quategory X admits a natural coaction by
finite pointed simplicial sets. The coaction associates to a pair (x, A) the cotensor
[A, x] ∈ X defined by the pullback square,

[A, x] //

��

0

��
xA

xa
// x1,

where a : 1 → A is the base point. For examp;le, [S1, x] is the loop space Ω(x) of
an object x ∈ X. More generally, [Sn, x] is the n-fold loop space Ωn(x) of x. The
coaction by A on X is dual to the action by Ao on Xo, since [A, x]o ' Ao ∧ xo.
Moreover, when X is bicartesian, the map [A,−] : X → X is right adjoint to the
map A ∧ (−) : X → X

19.33. Unless exception, we only consider small ordinals and cardinals. Recall that
an ordinal α is said to be a cardinal if it is smallest among the ordinals with the
same cardinality. Recall that a cardinal α is said to be regular if the sum of a family
of cardinals < α, indexed by a set of cardinality < α, is < α.
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19.34. Let α be a regular cardinal. We say that a diagram A→ X in a quategory
X is α-small if A is a simplicial set of cardinality < α. We shall say that the limit of
an α-small diagram is an α-limit. An α-product is the product of a family of objects
indexed by a set of cardinality < α. We say that a quategory X is α-complete if
every α-small diagram A → X has a limit. We say that map X → Y between α-
complete quategories is α-continuous if it preserves the limit every α-small diagram
K → X. There are dual notions of α-cocomplete quategory, and of α-cocontinuous
map.

19.35. For any simplicial set A, the map

tA : ∆/A→ A

defined in 19.35 is initial, since a localisation is dominant and a dominant map is
initial. Hence the limit of a diagram d : A→ X in a quategory X is isomorphic to
the limit of the composite dtA : ∆/A→ X. Observe that the projection q : ∆/A→
∆ is a discrete fibration. If d : A → X is a diagram in a quategory with products
X, then the map dtA : ∆/A→ X admits a right Kan extension ΠA(d) = Πq(dtA) :
∆ → X along the projection q. See section 22 for Kan extensions. Moreover, we
have

ΠA(d)(n) =
∏

a∈An

d(a(n))

for every n ≥ 0. The diagram d has a limit iff the diagram ΠA(d) has a limit, in
which case we have

lim
A

d = lim
∆

ΠA(d).

It follows that a quategory with products and ∆-indexed limits is complete.

19.36. Dually, for any simplicial set A, the opposite

sA =: ∆o/A→ A.

of the map tAo : ∆/Ao → Ao is final. Observe that the canonical projection
p : ∆o/A→ ∆o is a discrete opfibration. If d : A→ X is a diagram in a quategory
with coproducts X, then the map dso

A : ∆/Ao → X admits a left Kan extension
ΣA(d) = Σp : ∆o → X along the projection p. We have

ΣA(d)n =
∐

a∈An

d(a(0))

for every n ≥ 0. The diagram d has a colimit iff the diagram ΣA(d) has a colimit,
in which case we have

colimAd = colim∆ΣA(d).

19.37. A quategory is cocomplete iff it has coproducts and ∆o-indexed colimits.
A map between cocomplete quategories is cocontinuous iff it preserves coproducts
and ∆o-indexed colimits.
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20. Grothendieck fibrations

20.1. We first recall the notion of Grothendieck fibration between categories. A
morphism f : a → b in a category E is said to be cartesian with respect a functor
p : E → B if for every morphism g : c → b in E and every factorisation p(g) =
p(f)u : p(c) → p(a) → p(b) in B, there is a unique morphism v : c → a in E such
that g = fv and p(v) = u. A morphism f : a → b is cartesian with respect to the
functor p iff the square of categories

E/a //

��

E/b

��
B/p(a) // B/p(b)

is cartesian, where the functor E/a → E/b (resp. B/p(a) → B/p(b)) is obtained
by composing with f (resp. p(f)). A functor p : E → B is called a Grothendieck
fibration over B if for every object b ∈ E and every morphism g ∈ B with target p(b)
there exists a cartesian morphism f ∈ E with target b such that p(f) = g. There are
dual notions of cocartesian morphism and of Grothendieck opfibration. A functor
p : E → B is a Grothendieck opfibration iff the opposite functor po : Eo → Bo is a
Grothendieck fibration. We shall say that a functor p : E → B is a Grothendieck
bifibration if it is both a fibration and an opfibration.

20.2. If X and Y are two Grothendieck fibrations over B, then a functor X → Y
in Cat/B is said to be cartesian if its takes every cartesian morphism in X to
a cartesian morphism in Y . There is a dual notion of cocartesian functor be-
tween Grothendieck opfibrations over B and a notion of bicartesian functor between
Grothendieck bifibrations.

20.3. Observe that a morphism f : a→ b in a category E is cartesian with respect
a functor p : E → B iff every commutative square

Λ2[2]

��

x // E

p

��
∆[2] // B

with x(1, 2) = f has a unique diagonal filler.

20.4. Let p : E → B be a mid fibration between simplicial sets. We shall say that
an arrow f ∈ E is cartesian if every commutative square

Λn[n]

��

x // E

p

��
∆[n] // B

with n > 1 and x(n− 1, n) = f has a diagonal filler. Equivalently, an arrow f ∈ E
with target b ∈ E is cartesian with respect to p if the map E/f → B/pf ×B/pb E/b
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obtained from the commutative square

E/f //

��

E/b

��
B/pf // B/pb

is a trivial fibration. Every isomorphism in E is cartesian when B is a quategory
by 9.12. We call a map of simplicial sets p : E → B a Grothendieck fibration if it is
a mid fibration and for every vertex b ∈ E and every arrow g ∈ B with target p(b)
there exists a cartesian arrow f ∈ E with target b such that p(f) = g.

20.5. A map X → 1 is a Grothendieck fibration iff X is a quategory. A right fibra-
tion is a Grothendieck fibration whose fibers are Kan complexes. Every Grothendieck
fibration is a pseudo-fibration.

20.6. The class of Grothendieck fibrations is closed under composition and base
changes. The base change of a weak left adjoint along a Grothendieck fibration is
a weak left adjoint [Malt2].

20.7. If X is a quategory, then the source map s : XI → X a Grothendieck
fibration. More generally, if a monomorphism of simplicial sets u : A → B is
(weakly) coreflective, then the map Xu : XB → XA is a Grothendieck fibration.

20.8. If X is a quategory with pullbacks, then the target map t : XI → X a
Grothendieck fibration. More generally, if a monomorphism of simplicial sets u :
A → B is (weakly) reflective, then the map Xu : XB → XA is a Grothendieck
fibration.

20.9. If p : X → T is a Grothendieck fibration, then so is the map

〈u, p〉 : XB → Y B ×Y A XA

obtained from the square

XB //

��

XA

��
Y B // Y A,

for any monomorphism of simplicial sets A → B. Moreover, the map 〈u, f〉 is a
trivial fibration if u is mid anodyne.

20.10. Recall from 12.1 that the category S/B is enriched over S for any simplicial
set B. Let us denote by [X, Y ] the simplicial set of maps X → Y between two
objects of S/B. If E is an object of S/B and b : 1 → B, then the simplicial set
[b, E] is the fiber E(b) of the structure map E → B at b ∈ B. If f : a → b is
an arrow in B, consider the projections p0 : [f,E] → E(a) and p1 : [f,E] → E(b)
respectively defined by the inclusions {0} ⊂ I and {1} ⊂ I. If the structure map
E → B is a Grothendieck fibration, then the projection p1 : [f,E] → E(b) has a
right adjoint i1 : E(b)→ [f,E] and the composite

f∗ = p0i1 : E(b)→ E(a)
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is well defined up to a unique invertible 2-cell. We shall say that f∗ is the base
change along f , or the pullback along f If t : ∆[2]→ B is a simplex with boundary
∂t = (g, h, f),

b
g

��>
>>

>>
>>

>

a

f

@@��������
h

// c,

then we can define a canonical invertible 2-cell

h∗ ' f∗g∗ : E(c)→ E(b)→ E(a).

.

20.11. We shall say that a map g : X → Y between two Grothendieck fibrations
in S/B is cartesian if it takes every cartesian arrow in X to a cartesian arrow in Y .
A cartesian map g : X → Y respects base changes. More precisely, for any arrow
f : a→ b in B, the following square commutes up to a canonical invertible 2-cell,

X(b)

f∗

��

// Y (b)

f∗

��
X(a) // Y (a),

where the horizontal maps are induced by g.

20.12. If X and Y are quategories, then every map u : X → Y admits a factorisa-
tion

u = gi : X → P (u)→ Y

with g a Grothendieck fibration and i a fully faithful right adjoint [Malt2]. The
simplicial set P (u) is constructed by the pullback square

P (u)
q //

p

��

Y I

t

��
X

u // Y,

where t is the target map. If s : Y I → Y is the source map, then the composite
g = sq : P (u)→ Y is a Grothendieck fibration. There is a unique map i : X → P (u)
such that pi = 1X and qi = δu, where δ : Y → Y I is the diagonal. We have g ` i
and the counit of this adjunction is the identity of gi = 1X . Thus, i is fully faithful.
If p : Z → Y is a Grothendieck fibration, then for every map f : X → Z in S/Y
there exists a cartesian map c : P (u)→ Z such that f = ci. Moreover, c is unique
up to a unique invertible 2-cell.

20.13. If p : E → B and q : F → B are two Grothendieck fibrations. We shall say
that a commutative square

E

p

��

g // F

q

��
B

f // C
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is a morphism p → q if the induced map E → B ×C F is cartesian. We shall
denote by Cart the category whose objects are the Grothendieck fibrations between
quategories and whose arrows are the morphisms so defined. The category Cart is
enriched over S. We shall denote by Mor(p, q) the simplicial set of morphisms p→ q
between two Grothendieck fibrations. By definition, a simplex ∆[n] → Hom(p, q)
is a morphism ∆[n]×p→ q. The simplicial set Mor(p, q) is a quategory for any pair
of objects p, q ∈ Cart. Hence the category Cart is actually enriched over QCat.
It is thus enriched over Kan complexes if we put Hom(p.q) = JMor(p, q).

20.14. There are dual notions of cocartesian arrow and of Grothendieck opfibration.
A map p : E → B is a Grothendieck opfibration iff the opposite map po : E → B
is a Grothendieck fibration. We shall say that a map is a Grothendieck bifibration
if it is both a Grothendieck fibration and a Grothendieck opfibration.

20.15. A Kan fibration is a Grothendieck bifibration whose fibers are Kan com-
plexes.

20.16. If X is a bicomplete quategory and u : A→ B is a fully faithful monomor-
phism of simplicial sets, then the map Xu : XB → XA is a Grothendieck bifibration.

20.17. If p : E → B is a Grothendieck opfibration, then the projection p0 : [f,E]→
E(a) has a left adjoint i0 : E(a)→ [f,E] and the composite

f! = p1i0 : E(a)→ E(b)

is well defined up to a unique invertible 2-cell. We shall say that f! is the cobase
change along f , or the pushforward along f . The map f! is well defined of to a
unique invertible 2-cell. If p : E → B is a Grothendieck bifibration, the map f! is
left adjoint to the map f∗.

20.18. The quategory Q1 is the target of a universal opfibration p : Q′1 → Q1. The
universality means that for any opfibration f : E → A there exists a homotopy
pullback square in (S,Wcat),

E

f

��

g′ // Q′1
p

��
A

g // Q1,

and the pair (g, g′) is homotopy unique. We shall say that the map g classifies the
opfibration E → A.

20.19. The Grothendieck construction associates to a map of simplicial sets g :
A→ Q1 its simplicial set of elements el(g) defined by the pullback square,

el(g) //

��

Q′1
p

��
A

g // Q1.

The map el(g) → A is an opfibration. The simplicial set el(g) is a quategory
when A is a quategory. The Grothendieck construction also associates to a map of
simplicial sets g : Ao → Q1 its simplicial set of elements El(g) = el(g)o. The map
El(g)→ A is a Grothendieck fibration.
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21. Proper and smooth maps

The notions of proper and of smooth functors were introduced by Grothendieck
in 51. We extend these notions to maps of simplicial sets. The results of the section
are taken from [J2].

21.1. We shall say that a map of simplicial sets u : A→ B is proper if the pullback
functor u∗ : S/B → S/A takes a right anodyne map to a right anodyne map. A
map of simplicial sets u : A → B is proper iff the inclusion u−1(b(n)) ⊆ b∗(E) is
right anodyne for every simplex b : ∆[n]→ B.

21.2. A Grothendieck opfibration is proper. In particular, a left fibration is proper.
The class of proper maps is closed under composition and base changes. A projec-
tion A×B → B is proper.

21.3. The pullback functor u∗ : S/B → S/A has a right adjoint u∗ for any map of
simplicial sets u : A→ B. When u is proper, the pair of adjoint functors

u∗ : S/B ↔ S/A : u∗.

is a Quillen pair with respect to the contravariant model structures on these cate-
gories. The functor u∗ takes a contravariant equivalence to a contravariant equiv-
alence and we obtain an adjoint pair of derived functors

R∗(u) : R(B)↔ R(A) : R∗(u).

21.4. Dually, we shall say that a map of simplicial sets p : E → B is smooth if the
functor p∗ : S/B → S/E takes a left anodyne map to a left anodyne map. A map
p is smooth iff the opposite map po : Eo → Bo is proper.

21.5. The functor R∗(u) admits a right adjoint R∗(u) for any map of simplicial
sets u : A → B. In order to see this, it suffices by Morita equivalence to consider
the case where A and B are quategories. But in this case we have a factorisation
u = pi : A → C → B, with i a left adjoint and p a Grothendieck opfibration
by 22.10. Hence it suffices to prove that each functor R∗(p) and R∗(i) admit a
right adjoint. But the functor R∗(p) admits a right adjoint R∗(p) by 21.3, since
p is a Grothendieck opfibration and a Grothendieck opfibration is proper by 21.2.
Let v : C → A be a right adjoint to i. Then the functor R∗(v) is right adjoint
to R∗(i) by 13.13. The composite R∗(p)R∗(v) is right adjoint to the composite
R∗(u) = R∗(i)R∗(p).

21.6. Suppose that we have a commutative square of simplicial sets

F
v //

q

��

E

p

��
A

u // B

Then the following square commutes,

R(F )

R!(q)

��

R!(v) // R(E)

R!(p)

��
R(A)

R!(u) // R(B).
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From the adjunctions R!(p) ` R∗(p) and R!(q) ` R∗(q) we can define a canonical
natural transformation

α : R!(v)R∗(q)→ R∗(p)R!(u).

We shall say that the Beck-Chevalley law holds if α is invertible. This means that
the following square commutes up to a canonical isomorphism,

R(F )
R!(v) // R(E)

R(A)

R∗(q)

OO

R!(u) // R(B).

R∗(p)

OO

Equivalently, this means that the following square of right adjoints commutes up
to a canonical isomorphism,

R(F )

R∗(q)
��

R(E)
R∗(v)oo

R∗(p)

��
R(A) R(B).

R∗(u)oo

21.7. (Proper or smooth base change) [J2] Suppose that we have a cartesian square
of simplicial sets,

F
v //

q

��

E

p

��
A

u // B.

Then the Beck-Chevalley law holds if p is proper or if u is smooth.

22. Kan extensions

We introduce the notion of Kan extension for maps between quategories . The
results of the section are taken from [J2].

22.1. Let C be a 2-category. We shall call a 1-cell of C a map. The left Kan
extension of a map f : A → X along a map u : A → B is a pair (g, α), where
g : B → X is a map and α : f → gu is a 2-cell, which reflects the map f along the
functor

C(u, X) : C(B,X)→ C(A,X).

This means that for any map g′ : B → X and any 2-cell α′ : f → g′u, there is
a unique 2-cell β : g → g′ such that (β ◦ u)α = α′. The pair (g, α) is unique up
to a unique invertible 2-cell when it exists, in which case we shall put g = Σu(f).
Dually, the right Kan extension of a map f : A → X along a map u : A → B is a
pair (g, β), where g : B → X is a map and β : gu → f is a 2-cell, which coreflects
the map f along the functor C(X, u). This means that for any map g′ : B → X and
any 2-cell α′ : g′u→ f , there is a unique 2-cell β : g′ → g such that α(β ◦ u) = α′.
The pair (g, β) is unique up to a unique invertible 2-cell when it exists, in which
case we shall put g = Πu(f).
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22.2. If u : A↔ B : v is an adjoint pair in a 2-category C, then we have C(X, v) `
C(X, u) for any object X. Hence we have fv = Σu(f) for every f : A→ X and we
have gu = Πv(g) for every map g : B → X.

22.3. The category S has the structure of a 2-category (= Sτ1). Hence there is
a notion of Kan extension for maps of simplicial sets. We will only consider Kan
extension of maps with values in a quategory . If X is a quategory, we shall denote
by Σu(f) the left Kan extension of a map f : A→ X along a map of simplicial sets
u : A → B. Dually, we shall denote by Πu(f) the right Kan extension of a map
f : A→ X along u : A→ B. By duality we have

Πu(f)o = Σuo(fo).

22.4. If X is a cocomplete quategory and u : A → B is a map between (small)
simplicial sets, then every map f : A→ X has a left Kan extension Σu(f) : B → X
and the map Xu : XB → XA has a left adjoint

Σu : XA → XB .

Dually, if X is a complete quategory, then every map f : A → X has a right Kan
extension Πu(f) : B → X and the map Xu has a right adjoint

Πu : XA → XB .

22.5. If u : A → B is a map of simplicial sets, then the colimit of a diagram
d : A → X is isomorphic to the colimit of its left Kan extension Σu(d) : B → X,
when they exist. Dually, the limit of a diagram d : A → X is isomorphic to the
limit of its right Kan extension Πu(d) : B → X, when they exist.

22.6. If u : A → B and v : B → C are maps of simplicial sets, then we have a
canonical isomorphism

Σv ◦ Σu = Σvu : XA → XC

for any cocomplete quategory X. Dually, we have a canonical isomorphism

Πv ◦Πu = Πvu : XA → XC

for any complete quategory X.

22.7. Let X be a bicomplete quategory. If u : A↔ B : v is an adjunction between
two maps of simplicial sets, then we have three adjunctions and two isomorphisms,

Σv ` Σu = Xv ` Xu = Πv ` Πu.

22.8. Every map between quategories u : A→ B admits a factorisation

u = qi : A→ P → B

with q a Grothendieck opfibration and i a fully faithful left adjoint (a coreflection)
by 22.10. If p : P → A is the righ adjoint of i, then we have Xp = Σi for any
cocomplete quategory X, since we have Xp ` Xi. Thus

Σu = Σq ◦ Σi = Σq ◦Xp.
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22.9. If u : A → B is a map between (small) simplicial sets, we shall denote the
map Kuo

by u∗, the map Σuo by u! and the map Πuo by u∗. We have u! ` u∗ ` u∗,

u! : P(A)↔ P(B) : u∗ : P(B)↔ P(A) : u∗.

Notice the equality (vu)∗ = u∗v∗ and the isomorphisms (vu)! ' v!u! and (vu)∗ '
v∗u∗. for a pair of maps u : A → B and v : B → C. More generally, if X is a
complete quategory anhd u : A → B is a map between (small) simplicial sets, we
may denote the map Xuo

by u∗, the map Σuo by u! and the map Πuo by u∗.

22.10. If u : A↔ B : v is an adjunction between two maps of simplicial sets, then
we have three adjunctions and two isomorphisms,

u! ` v! = u∗ ` v∗ = u∗ ` v∗.

22.11. Suppose that we have commutative square of simplicial sets,

F
v //

q

��

E

p

��
A

u // B.

If X is a cocomplete quategory. then from the commutative square

XF XE
Xv

oo

XA

Xq

OO

XB .
Xu

oo

Xp

OO

then from the adjunctions Σu ` Xu and Σv ` Xv, we can define a natural trans-
formation

α : ΣvXq → XpΣu.

We shall say that the Beck-Chevalley law holds if α is invertible. Dually, if X is
complete, then from the adjunctions Xp ` Πp and Xq ` Πq we obtain natural
transformation

β : XuΠp → ΠqX
v.

We shall say that the Beck-Chevalley law holds if β is invertible. When X is
bicomplete, the transformation β is the right transpose of α. Thus, β is invertible
iff α is invertible. Hence the Beck-Chevalley law holds in the first sense iff it holds
in the second sense. The Beck-Chevalley law holds in the first sense if the square
pv = uq is cartesian and u is a smooth map. The Beck-Chevalley law holds in the
second sense if the square pv = uq is cartesian and p is a proper map.

22.12. Suppose that we have commutative square of simplicial sets,

F
v //

q

��

E

p

��
A

u // B.
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If X is a complete quategory. then from the commutative square

XF o

XEov∗oo

XAo

q∗

OO

XBo

.
u∗oo

p∗

OO

and the adjunctions p∗ ` p∗ and q∗ ` q∗, we obtain natural transformation

α : u∗p∗ → q∗v
∗.

We shall say that the Beck-Chevalley law holds if α is invertible. The Beck-Chevalley
law holds if the square pv = uq is cartesian and p is a proper map. Dually, if X is
a cocomplete quategory, then from the adjunctions u! ` u∗ and v! ` v∗, we obtain
natural transformation

β : v!q
∗ → p∗u!.

We shall say that the Beck-Chevalley law holds if β is invertible. The Beck-Chevalley
law holds if the square pv = uq is cartesian and u is a smooth map. When X is
bicomplete, the transformation β is the left transpose of α. Thus, β is invertible iff
α is invertible. Hence the Beck-Chevalley law holds in the first sense iff it holds in
the second sense.

22.13. If p : E → B is a proper map and E(b) is the fiber of p at b ∈ B0, then the
Beck-Chevalley law holds for the square

E(b) v //

��

E

p

��
1

b // B.

This means that if X is a complete quategory, then we have

p∗(f)(b) = lim
←−

x∈E(b)

f(x)

for any map f : Eo → X. Dually, If p : E → B is a smooth map and X is a
cocomplete quategory, then we have

p!(f)(b) = lim
−→

x∈E(b)

f(x)

for any map f : Eo → X.

22.14. It follows from 22.13 that if p : E → B is a smooth map and X is a complete
quategory, then we have

Πp(f)(b) = lim
←−

x∈E(b)

f(x),

for every map f : E → X and every b ∈ B0. Dually, if p : E → B is a proper map
and X is a cocomplete quategory, then we have

Σp(f)(b) = lim
−→

x∈E(b)

f(x)

for every map f : E → X and every b ∈ B0.
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22.15. If X is a cocomplete quategory and B is a quategory, let us compute the
left Kan extension of a map f : A → X along a map u : A → B. We shall apply
the Beck-Chevalley law to the pullback square

A/b //

��

B/b

p

��
A

u // B

The value of Σu(f) at b : 1→ B is obtained by composing the maps

XA
Σu // XB

Xb
// X.

If t : 1 → B/b is the terminal vertex, then we have Xb = XtXp, since we haved
b = pt. The map t : 1 → B/b is right adjoint to the map r : B/b → 1. It follows
that Xt = Σr. Thus,

XbΣu = XtXpΣu = ΣrX
pΣu.

The projection p is smooth since a right fibration is smooth. Hence the following
square commutes up to a natural isomorphism by 22.12,

XA/b

Σv

��

XA
Xq

oo

Σu

��
XB/b XB .

Xp
oo

Thus,
ΣrX

pΣu ' ΣrΣvXq ' ΣrvXq.

But Σrv is the colimit map
lim
−→

: XA/b → X,

since rv is the map A/b→ 1. Hence the square

XA/b

lim
−→
��

XA
Xq

oo

Σu
��

X XB
Xb

oo

commutes up to a canonical isomorphism. This yields Kan’s formula

Σu(f)(b) = lim
−→

u(a)→b

f(a).

22.16. Dually, if X is a complete quategory and B is a quategory, then the right
Kan extension of a map f : A→ X along a map u : A→ B is computed by Kan’s
formula

Πu(f)(b) = lim
←−

b→u(a)

f(a),

where the limit is taken over the simplicial set b\A defined by the pullback square

b\A //

��

b\B

p

��
A

u // B.
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22.17. A map of simplicial sets u : A→ B is fully faithful iff the map Σu : XA →
XB is fully faithful for every cocomplete quategory X.

22.18. Let X be a cocomplete quategory. For any span (s, t) : S → A × B, the
composite

XA
Xs
// XS

Σt // XB

is a cocontinuous map
X〈S〉 : XA → XB .

If u : S → T is a map in Span(A,B), then from the commutative diagram

S
s

����
��

��
�

u

��

t

��@
@@

@@
@@

A B

T

l

__??????? r

??~~~~~~~

and the counit Σu ◦Xu → id, we can define a 2-cell,

X〈u〉 : X〈S〉 = Σt ◦Xs = Σr ◦ Σu ◦Xu ◦X l → Σr ◦X l = X〈T 〉.

This defines a functor

X〈−〉 : Span(A,B)→ τ1(XA, XB).

A map u : S → T in Span(A,B) is a bivariant equivalence if the 2-cell

X〈u〉 : X〈S〉 → X〈T 〉.

is invertible for any cocomplete quategory X iff the 2-cell

K〈u〉 : K〈S〉 → K〈T 〉.

is invertible. We thus obtain a functor

X〈−〉 : hSpan(A,B)→ τ1(XA, XB).

22.19. If S ∈ Span(A,B) and T ∈ Span(B,C) are bifibrant spans, then we have a
canonical isomorphism

X〈T ◦ S〉 ' X〈T 〉 ◦X〈S〉
for any cocomplete quategory X. To see this, it suffices to consider the case where
A, B and C are quategories . We have a pullback diagram,

T ◦ S
p

||yyyyyyyy
q

""E
EEEEEEE

S
s

����
��

��
�

t

""E
EE

EE
EE

EE T
s

||yy
yy

yy
yy

y
t

  A
AA

AA
AA

A B C.
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The map s : T → B is smooth, since it is Grothendieck fibration by 14.15. It then
follows from 22.12 that the Beck-Chevalley law holds for the square in the following
diagram,

XT◦S

Σq

##F
FFFFFFF

XS

Σt

##F
FFFFFFF

Xp
;;xxxxxxxx

XT

Σt

""E
EE

EE
EE

E

XA

Xs
==zzzzzzzz

XB

Xs
;;xxxxxxxx

XC .

Thus,
X〈T ◦ S〉 = ΣrΣqX

pXs ' ΣtX
pΣtX

s = X〈T 〉 ◦X〈S〉.
We have defined a (pseudo) functor

X〈−〉 : hSpan→ CC,

where CC the category of cocomplete quategories and cocontinuous maps.

22.20. If X and Y are cocomplete quategories, let us denote by CC(X, Y ) the
full simplicial subset of Y X spanned by the cocontinuous maps X → Y . If A is a
(small) simplicial set, then we have a natural equivalence of categories

CC(XAo

, Y ) ' CC(X, Y A).

More precisely, then the endo-functor X 7→ XAo

is left adjoint to the endo-functor
Y 7→ Y A. The unit of the adjunction is the map X〈ηA〉 : X → XAo×A and the
counit is the map X〈εA〉 : XA×Ao → X. It folllows from this adjunction that the
quategory XAo

can be regarded as the tensor product A ⊗ X of X by A. More
precisely, the map

cA : A×X → XAo

which corresponds to the map X〈ηA〉 : X → XAo×A by the exponential adjointness
is cocontinuous in the second variable and universal with respect to that property.
This means that for any cocomplete quategory Y and any map f : A × X → Y
cocontinuous in the second variable, there exists a cocontinuous map g : XAo → Y
together with an isomorphism α : f ' gcA and moreover that the pair (f, α) is
unique up to unique isomorphism. Notice that we have cA(a, x)(bo) = HomA(b, a)·x
for every a, b ∈ A and x ∈ X. The 2-category CC becomes tensored over the
category hSpanrev if we put A⊗X = XAo

and

〈S〉 ⊗X = X〈So〉 : A⊗X → B ⊗X

for S ∈ Span(B,A). In particular, we have A⊗K = P(A).

22.21. The counit of the adjunction (−)Ao ` (−)A described above is the trace
map

TrA = X〈εA〉 : XA×Ao

→ X.

In category theory, the trace of a functor f : A×Ao → Y is called the coend

coendA(f) =
∫ a∈A

f(a, a).

We shall use the same notation for the trace of a map f : A×Ao → Y . Notice that

TrA(f) = TrAo(tf),
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where tf : Ao ×A→ Y is the transpose of f . The inverse of the equivalence

CC(XAo

, Y ) ' CC(X, Y A)

associates to a map cocontinuous in the first variable f : X × A → Y the map
g : XAo → Y obtained by putting

g(z) =
∫ a∈A

f(z(a), a).

for every z ∈ XAo

.

22.22. If X is a complete quategory, the cotrace map

Tro
A : XAo×A → X

is defined to be the opposite of the trace map TrA : (Xo)A×Ao → Xo. In category
theory, the cotrace of a functor f : Ao ×A→ X is the end

endA(f) =
∫

a∈A

f(a, a),

and we shall use the same notation. Notice that

Tro
A(f) = Tro

Ao(tf),

where tf : A×Ao → X is the transpose of f .

22.23. If X is a quategory, then the contravariant functor A 7→ ho(A,X) = ho(XA)
is a kind of cohomology theory with values in Cat. When X is bicomplete, the
map ho(u, X) : ho(B,X)→ ho(A,X) has a left adjoint ho(Σu) and a right adjoint
ho(Πu) for any map u : A → B. If we restrict the functor A 7→ ho(A,X) to the
subcategory Cat ⊂ S, we obtain a homotopy theory in the sense of Heller, also
called a derivateur by Grothendieck [Malt1] Most derivateurs occuring naturally in
mathematics can be represented by bicomplete quategories .

23. The quategory K

The quategory K is cocomplete and freely generated by its terminal object. A
prestack on a simplicial set A is defined to be a map Ao → K. The simplicial set of
prestacks on A is cocomplete and freely generated by A. A cocomplete quategory
is equivalent to a quategory of prestacks iff it is generated by a small set of atoms.

23.1. Recall that the quategory K = Q0 is defined to be the coherent nerve of the
category of Kan complexes. The quategory K is bicomplete and freely generated
by the object 1 ∈ K as a cocomplete quategory. More precisely, the evaluation map

ev : CC(K, X)→ X

defined by putting ev(f) = f(1) is an equivalence for any cocomplete quategory X.
The map ev is actually a trivial fibration. If s is a section of ev, then the map

· : K ×X → X

defined by putting k · x = s(x)(k) is cocontinuous in each variable and we have
1 · x = x for every x ∈ X.
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23.2. The Yoneda map yA : A → P(A) exibits the quategory P(A) as the free
completion of A under colimits. More precisely, for any cocomplete quategory X
the map

y∗A : CC(P(A), X)→ XA

induced by yA is an equivalence. The inverse equivalence associates to a map
f : A → X its left Kan extension f! : P(A) → X along yA. The value of f! on a
prestack k ∈ P(A) is the colimit of the composite fp : El(k) → A → X, where
p : El(k)→ A is the quategory of lements of k In other words, we have

f!(k) = lim
−→

El(k)

f.

Compare with Dugger [Du].

23.3. The left Kan extension of the Yoneda map yA : A→ P(A) along itself is the
identity of P(A). It follows that we have

k = lim
−→

El(k)

yA

for every object k ∈ P(A).

23.4. A map f : A→ B between small quategories induces a map

f∗ : P(B)→ P(A).

If yB : B → P(B) denotes the Yoneda map, The composite f ! = f∗yB : B → P(A)
is the probe map associated to f . By definition, we have f(b)(a) = homB(fa, b)
for every a ∈ A and b ∈ B. The probe map f ! can be defined under the weaker
assumption that B is locally small. If B is locally small and cocomplete, then f ! is
right adjoint to the left Kan extension

f! : P(A)→ B

of f along yA.

23.5. For example, if f is the map ∆ → Q1 obtained by applying the coherent
nerve functor to the inclusion ∆→ QCat, then the probe map

f ! : Q1 → P(∆)

associates to an object C ∈ Q1 its nerve N(C) : ∆o → K. By construction, we
have

N(C)n = J(C∆[n])
for every n ≥ 0.

23.6. For any simplicial set A, the quategory P(A) is the homotopy localisation of
the model category (S/A, Wcont). More precisely, we saw in 19.35 that the map
λA : ∆/A→ A is a homotopy localisation. The left Kan extension of the composite

yAλA : ∆/A→ P(A)

along the inclusion ∆/A→ S/A induces an equivalence of quategories

L(S/A, Wcont)→ P(A).

The inverse equivalence associates to a prestack f : A → K the right fibration
El(f)→ A.
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23.7. If f : A→ B is a map between small quategories, then the map f∗ = Kfo

is
the probe of the composite yBf : A→ B → P(B) and we have

f! : P(A)↔ P(B) : f∗.

23.8. It follows from Yoneda lemma that the quategory of elements El(g) of a
prestack g ∈ P(A), is equivalent to the quategory A/g defined by the pullback
square

A/g

��

q // P(A)/g

��
A

yA // P(A),

The adjoint pair
q! : P(A/g)↔ P(A)/g : q!

obtained from the map q is an equivalence of quategories.

23.9. Let X be a locally small quategory. If A is a small simplicial set, we shall say
that a map f : A → X is dense if the probe map f ! : X → P(A) is fully faithful.
We shall say that a small full simplicial subset A ⊆ X is dense if the inclusion
i : A ⊆ X is dense; we shall say that a set of objects S ⊆ X is dense if the full
simplicial subset spanned by S is dense.

23.10. For example, the Yoneda map yA : A→ P(A) is dense, since the map (yA)!
is the identity. In particular, the map 1 : 1 → K is dense. The map f : ∆ → Q1

defined in ?? is dense; this means that the nerve map

N : Q1 → P(∆)

is fully faithful.

23.11. A map of simplicial sets u : A→ B is dominant iff the map yBu : A→ P(B)
is dense.

23.12. Let X be a locally small quategory. If A is a simplicial set, then a map
f : A→ X is dense iff the counit of the adjunction

f! : P(A)↔ X : f !

is invertible. The value of this counit at x ∈ X is the canonical morphism

lim
−→
A/x

f → x

where the diagram A/x→ A is defined by the pullback square

A/x //

��

A

f

��
X/x // X.

23.13. Let X be a locally small quategory. We shall say that a map f : A → X
with a small domain A is separating if the probe map f ! : X → P(A) is conservative.
A dense map is separating. We shall say that a set of objects S ⊆ X is separating
if the inclusion S ⊆ X is separating.
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23.14. If X is a quategory, we shall say that a simplicial subset S ⊆ X is replete if
every object which is isomorphic to an object in S belongs to S. If X is cocomplete,
we shall say that a set objects S ⊆ X generates X if X is the smallest full replete
simplicial subset of X which contains S and which is closed under colimits. If X
cocomplete and locally small, then every generating subset S ⊆ X separates X.

23.15. Let X be a (locally small) cocomplete quategory. We shall say that an
object x ∈ X is atomic if the map homX(x,−) : X → K is cocontinuous.

23.16. An object K ∈ K is atomic iff K is contractible.

23.17. If A is a simplicial set, then a prestack f ∈ P(A) is atomic iff it is a retract of
a representable. The Yoneda map yA : A→ P(A) induces an equivalence between
the Karoubi envelope of A and the full simplicial subset of P(A) spanned by the
atomic objects.

23.18. An arrow f → g in P(A) is atomic as an object of the quategory P(A)/g
iff the object f is atomic in P(A).

23.19. Let X be a cocomplete quategory and A ⊆ X be a small full sub-quategory
of atomic objects. Then the left Kan extension

i! : P(A)→ X

of the inclusion i : A ⊆ X along YA : A→ P(A) is fully faithful Moreover, i! is an
equivalence if A generates or separates X.

23.20. A cocomplete quategory X is equivalent to a quategory of prestacks iff it
is generated by a small set of atoms.

23.21. If A is a simplicial set, we shall say that a prestack g ∈ P(A) is finitely
presentable, or that it is of finite type, if it is the colimit of a finite diagram of
representable prestacks. Let us denote by Pf (A) the full simplicial subset of P(A)
spanned by the prestacks of finite types. Then the map y : A→ Pf (A) induced by
the Yoneda map A → P(A) exibits the quategory Pf (A) as the free cocompletion
of A under finite colimits. More precisely, for any quategory with finite colimits X
the map

y∗ : fCC(Pf (A), X)→ XA

induced by y is an equivalence, where the domain of y∗ is the quategory of maps
Pf (A)→ X which preserve finite colimits. The inverse equivalence associates to a
map g : A→ X its left Kan extension g! : Pf (A)→ X along y. A quategory A has
finite colimits iff the canonical map y : A→ Pf (A) has a left adjoint.

23.22. An object in P(1) = K is of finite type iff it has a finite homotopy type.
We conjecture that a prestack a ∈ P(A) is representable iff it is atomic and of finite
type. A map of simplicial sets u : A → B can be extended as a map preserving
finite colimits. u! : Pf (A) → Pf (B). The map u! is fully faithful iff u is fully
faithful. Moreover, u! is an equivalence when u is an equivalence; we conjecture
that the converse is true.

23.23. We conjecture that a simplicial set A is essentially finite iff the map hom :
Ao×A→ K (regarded as a prestack) is finitely presentable (the necessity is obvious).
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23.24. If A is a simplicial set, we shall say that a prestack g ∈ P(A) is free (resp.
finitely free) if it is a coproduct ( resp. finite coproduct) of representable prestacks.
Let us denote by fCup(A) the full simplicial subset of P(A) spanned by the finitely
free prestacks. Then the map y : A → fCup(A) induced by the Yoneda map
A → P(A) exibits the quategory fCup(A) as the free cocompletion of A under
finite coproducts. More precisely, for any quategory with finite coproducts X the
map

y∗ : fCoprod(fCup(A), X)→ XA

induced by y is an equivalence, where the domain of y∗ is the quategory of maps
Pf (A)→ X which preserve finite coproducts . The inverse equivalence associates to
a map g : A→ X its left Kan extension g! : fCup(A)→ X along y. The quategory
fCup(A) is (equivalent to) a category when A is a category. For example, fCup(1)
can be taken to be the category N , whose objects are the natural numbers and
whose arrows are the maps m → n, where n = {1, · · · , n}. A quategory A has
finite coproducts iff the map u : A→ fCup(A) has a left adjoint.

23.25. Let α be a regular cardinal (recall that 0 and 1 are the finite regular cardi-
nals). If A is a simplicial set, we shall say that a prestack g ∈ P(A) is α-presentable
if it is the colimit of an α-small diagram of representable prestacks. Let us denote
by Pα(A) the full simplicial subset of P(A) spanned by α-presentable prestacks.
Then the map y : A → Pα(A) induced by the Yoneda map A → P(A) exibits the
quategory Pα(A) as the free cocompletion of A under α-colimits. More precisely,
for any α-cocomplete quategory X the map

y∗ : Cα(Pα(A), X)→ XA

induced by y is an equivalence, where the domain of y∗ is the quategory of maps
Pα(A) → X which preserve α-colimits. The inverse equivalence associates to a
map g : A → X its left Kan extension g! : Pα(A) → X along y. A quategory A is
α-cocomplete iff the map u : A→ Pα(A) has a left adjoint.

24. Factorisation systems in quategories

In this section, we introduce the notion of factorisation system in a quategory. It
is closely related to the notion of homotopy factorisation system in a model category
introduced in section 11.

24.1. We first define the orthogonality relation u⊥f between the arrows of a quate-
gory X. If u : a→ b and f : x→ y are two arrows in X, then an arrow s ∈ XI(u, f)
in the quategory XI is a a commutative square s : I × I → X,

a //

u

��

x

f

��
b // y,

such that s|{0}×I = u and s|{1}×I = f . A diagonal filler for s is a map I ?I → X
which extends s along the inclusion I × I ⊂ I ? I. The projection q : XI?I → XI×I

defined by the inclusion I × I ⊂ I ? I is a Kan fibration. We shall say that u is left
orthogonal to f , or that f is right orthogonal to u, and we shall write u⊥f , if the
fiber of q at s is contractible for every commutative square s ∈ XI(u, f). An arrow
f ∈ X is invertible iff we have f⊥f .
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24.2. When X has a terminal object 1, then an arrow x → 1 is right orthogonal
to an arrow u : a→ b iff the map

X(u, x) : X(b, x)→ X(a, x)

induced by u is a homotopy equivalence. In this case we shall say that x is right
orthogonal to the arrow u, or that x local with respect to u, and we shall write u⊥x.

24.3. If h : X → hoX is the canonical map, then the relation u⊥f between the
arrows of X implies the relation h(u) t h(f) in hoX. However, if h(u) = h(u′) and
h(f) = h(f ′), then the relations u⊥f and u′⊥f ′ are equivalent. Hence the relation
u⊥f only depends on the homotopy classes of u and f . If A and B are two sets of
arrows in X, we shall write A⊥B to indicate the we have u⊥f for every u ∈ A and
f ∈ B. We shall put

A⊥ = {f ∈ X1 : ∀u ∈ A, u⊥f}, ⊥A = {u ∈ X1 : ∀f ∈ A, u⊥f}.

The set A⊥ contains the isomorphisms, it is closed under composition and it has
the left cancellation property. It is closed under retracts in the quategory XI . And
it is closed under base changes when they exist. This means that the implication
f ∈ A⊥ ⇒ f ′ ∈ A⊥ is true for any pullback square

x′ //

f ′

��

x

f

��
y′ // y

in X.

24.4. Let X be a (large or small) quategory. We shall say that a pair (A,B) of
class of arrows in X is a factorisation system if the following two conditions are
satisfied:

• A⊥ = B and A = ⊥B;
• every arrow f ∈ X admits a factorisation f = pu (in hoX) with u ∈ A and

p ∈ B.

We say that A is the left class and that B is the right class of the factorisation
system.

24.5. If X is a quategory, then the image by the canonical map h : X → hoX
of a factorisation system (A,B) is a weak factorisation system (h(A), h(B)) on
the category hoX. Moreover, we have A = h−1h(A) and B = h−1h(B). Con-
versely, if (C,D) is a weak factorisation system on the category ho(X), then the
pair (h−1(C), h−1(D)) is a factorisation system on X iff we have h−1(C)⊥h−1(D).

24.6. The left class A of a factorisation system (A,B) in a quategory has the right
cancellation property and the right class B the left cancellation property. Each
class is closed under composition and retracts. The class A is closed under cobase
changes when they exist. and the class B under base changes when they exist.
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24.7. The intersection A ∩ B of the classes of a factorisation system (A,B) on a
quategory X is the class of isomorphisms in X. Let us denote by A′ the 1-full
simplicial subset of X spanned by A. The simplicial set A′ is a quategory by ??,
since we have A = h−1h(A) and h(A) is a subcategory of hoX. We shall say that it
is the sub-quategory spanned by A. If B′ is the sub-quategory spanned by B, then
we have A′ ∩B′ = J(X), where J(X) is the largest sub Kan complex of X.

24.8. Let (A,B) be a factorisation system in a quategory X. Then the full sub-
quategory of XI spanned by the elements in B is reflective; it is thus closed under
limits. Dually, the full sub-quategory of XI spanned by the elements in A is core-
flective; it is thus closed under colimits.

24.9. Let (A,B) be a factorisation system in a quategory X. If p : E → X is a
left or a right fibration, then the pair (p−1(A), p−1(B)) is a factorisation system in
E; we shall say that the system (p−1(A), p−1(B)) is obtained by lifting the system
(A,B) to E along p. In particular, every factorisation system on X can lifted to
X/b (resp. b\X) for any vertex b ∈ X.

24.10. A factorisation system (A,B) on a quategory X induces a factorisation
system (AS , BS) on the quategory XS for any simplicial set S. By definition, a
natural transformation α : f → g : S → X belongs to AS (resp. BS) iff the arrow
α(s) : f(s)→ g(s) belongs to A (resp. B) for every vertex s ∈ S. We shall say that
the system (AS , BS) is induced by the system (A,B).

24.11. Let p : E → L(E) be the homotopy localisation of a model category. If
(A,B) is a factorisation system in L(E), then the pair (p−1(A), p−1(B) is a homo-
topy factorisation system in E , and this defines a bijection between the factorisation
systems in L(E) and the homotopy factorisation systems in E .

24.12. If A is the class of essentially surjective maps in the quategory Q1 and B
is the class of fully faithful maps, then the pair (A,B) is a factorisation system.
If A is the class of final maps in Q1 and B is the class of right fibrations then
the pair (A,B) is a factorisation system. If B is the class of conservative maps in
Q1 and A is the class of iterated homotopy localisations, then the pair (A,B) is a
factorisation system. If A is the class of weak homotopy equivalences in Q1 and B
is the class of Kan fibrations then the pair (A,B) is a factorisation system.

24.13. Let p : X → Y be a Grothendieck fibration between quategories. If A ⊆ X
is the set of arrows inverted by p and B ⊆ X is the set of cartesian arrows, then
the pair (A,B) is a factorisation system on X.

24.14. If X is a quategory with pullbacks then the target functor t : XI → X is a
Grothendieck fibration. It thus admits a factorisation system (A,B) in which B is
the class of pullback squares. An arrow u : a→ b in XI belongs to A iff the arrow
u1 in the square

a0

��

u0 // b0

��
a1

u1 // b1

is invertible.
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24.15. We say that a factorisation system (A,B) in a quategory with finite prod-
ucts X is stable under finite products if the class A is closed under products in the
category XI . When X has pullbacks, we say that a factorisation system (A,B) is
stable under base changes if the class A is closed under base changes. This means
that the implication f ∈ A⇒ f ′ ∈ A is true for any pullback square

x′ //

f ′

��

x

f

��
y′ // y.

24.16. Every factorisation system in the quategory K is stable under finite prod-
ucts.

24.17. We shall say that an arrow u : a→ b in a quategory X is a monomorphism
or that it is monic if the commutative square

a
1a //

1a

��

a

u

��
a

u // b

is cartesian. Every monomorphism in X is monic in the category hoX but the
converse is not necessarly true. A map between Kan complexes u : A→ B is monic
in K iff it is homotopy monic.

24.18. We shall say that an arrow in a cartesian quategory X is surjective, or that
is a surjection, if it is left orthogonal to every monomorphism of X. We shall say
that a cartesian quategory X admits surjection-mono factorisations if every arrow
f ∈ X admits a factorisation f = up, with u a monomorphism and p a surjection. In
this case X admits a factorisation system (A,B), with A the set of surjections and B
the set of monomorphisms. If a quategory X admits surjection-mono factorisations,
then so do the quategories b\X and X/b for every vertex b ∈ X, and the quategory
XS for every simplicial set S.

24.19. If a quategory X admits surjection-mono factorisations, then so does the
category hoX.

24.20. Recall that a simplicial set A is said to be a 0-object if the canonical map
A→ π0(A) is a weak homotopy equivalence, If X is a quategory, we shall say that
an object a ∈ X is discrete or that it is a 0-object if the simplicial set X(x, a) is a
0-object for every object x ∈ X. When the product a×a exists, the object a ∈ X is
a 0-object iff the diagonal a→ a×a is monic. When the exponential aS1

exists, the
object a ∈ X is a 0-object iff the projection aS1 → a is invertible. We shall say that
an arrow u : a → b in X is a 0-cover if it is a 0-object of the slice quategory X/b.
An arrow u : a→ b is a 0-cover iff the map X(x, u) : X(x, a)→ X(x, b) is a 0-cover
for every node x ∈ X. We shall say that an arrow u : a → b in X is 0-connected
if it is left orthogonal to every 0-cover in X. We shall say that a quategory X
admits 0-factorisations if every arrow f ∈ X admits a factorisation f = pu with u
a 0-connected arrow and p a 0-cover. In this case X admits a factorisation system
(A,B) with A the set of 0-connected maps and B the set of 0-covers. If a quategory
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X admits 0-factorisations, then so do the quategories b\X and X/b for every vertex
b ∈ X, and the quategory XS for every simplicial set S.

24.21. There is a notion of n-cover and of n-connected arrow in every quategory
for every n ≥ −1. If X is a quategory, we shall say that a vertex a ∈ X is a n-object
if the simplicial set X(x, a) is a n-object for every vertex x ∈ X. If n = −1, this
means that X(x, a) is contractible or empty. When the exponential aSn+1

exists,
then a is a n-object iff the projection aSn+1 → a is invertible. We shall say that an
arrow u : a→ b is a n-cover if it is a n-object of the slice quategory X/b. If n ≥ 0
and the product a× a exists, the vertex a is a n-object iff the diagonal a→ a× a
is a (n − 1)-cover. We shall say that an arrow in a quategory X is n-connected
if it is left orthogonal to every n-cover. We shall say that a quategory X admits
n-factorisations if every arrow f ∈ X admits a factorisation f = pu with u a n-
connected map and p a n-cover. In this case X admits a factorisation system (A,B)
with A the set of n-connected morphism and B the class of n-covers. If n = −1,
this is the surjection-mono factorisation system. If X admits k-factorisations for
every −1 ≤ k ≤ n, then we have a sequence of inclusions

A−1 ⊇ A0 ⊇ A1 ⊇ A2 · · · ⊇ An

B−1 ⊆ B0 ⊆ B1 ⊆ B2 · · · ⊆ Bn,

where (Ak, Bk) denotes the k-factorisation system in X.

24.22. The quategory K admits n-factorisations for every n ≥ −1 and the system
is stable under base change.

24.23. If a quategory X admits n-factorisations, then so do the quategories b\X
and X/b for every vertex b ∈ X, and the quategory XS for every simplicial set S.

24.24. Suppose that X admits k-factorisations for every 0 ≤ k ≤ n. If k > 0, we
shall say that a k-cover f : x → y in X is an Eilenberg-MacLane k-gerb and f is
(k − 1)-connected. A Postnikov tower (of height n) for an arrow f : a → b is a
factorisation of length n + 1 of f

a x0
p0oo x1

p1oo · · ·p2oo xn
pnoo b,

qnoo

where p0 is a 0-cover, where pk is an EM k-gerb for every 1 ≤ k ≤ n and where qn

is n-connected. The tower can be augmented by further factoring p0 as a surjection
followed by a monomorphism. Every arrow in X admits a Postnikov tower of height
n and the tower is unique up to a homotopy unique isomorphism in the quategory
X∆[n+1].

24.25. We shall say that a factorisation system (A,B) in a quategory X is generated
by a set Σ of arrows in X if we have B = Σ⊥. Let X be a cartesian closed quategory.
We shall say that a factorisation system (A,B) in X is multiplicatively generated
by a set of arrows Σ if it is generated by the set

Σ′ =
⋃

a∈X0

a× Σ.

A multiplicatively generated system is stable under products. For example, in the
quategory K, the n-factorisations system is multiplicatively generated by the map
Sn+1 → 1. In the quategory Q1, the system of essentially surjective maps and fully
faithful maps is multiplicatively generated by the inclusion ∂I ⊂ I. The system
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of final maps and right fibrations is multiplicatively generated by the inclusion
{1} ⊂ I. The dual system of initial maps and left fibrations is multiplicatively
generated by the inclusion {0} ⊂ I. The system of iterated homotopy localisations
and conservative maps is multiplicatively generated by the map I → 1 (or by the
inclusion I ⊂ J , where J is the groupoid generated by one isomorphism 0 → 1).
The system of weak homotopy equivalences and Kan fibrations is multiplicatively
generated by the pair of inclusions {0} ⊂ I and {1} ⊂ I.

25. n-objects

25.1. Recall that a simplicial set X is said to be a n-object, where n ≥ 0, if we
have πi(X, x) = 1 for every i > n and x ∈ X. A Kan complex X is a n-object
iff every sphere ∂∆[m] → X of dimension m − 1 > n can be filled. We shall say
that a map of simplicial sets u : A → B is a weak homotopy n-equivalence if the
map π0(u) : π0(A) → π0(B) is bijective as well as the maps πi(u, a) : πi(A, a) →
πi(B, u(a)) for every 1 ≤ i ≤ n and a ∈ A. The model category (S,Who) admits
a Bousfield localisation with respect to the class of weak homotopy n-equivalences.
We shall denote the local model structure shortly by (S,Who〈n〉), where Who〈n〉
denotes the class of weak homotopy n-equivalences. Its fibrant objects are the Kan
n-objects.

25.2. Recal that a simplicial set X is said to be a (−1)-object if it is contractible
or empty (ie if the map X → ∃X is a weak homotopy equivalence, where ∃X ⊆ 1
denotes the image of the map X → 1). A Kan complex X is a (−1)-object iff every
sphere ∂∆[m]→ X with m > 0 can be filled. We shall say that a map of simplicial
sets u : A → B is a (−1)-equivalence if it induces a bijection ∃A → ∃B. The
model category (S,Who) admits a Bousfield localisation with respect to the class
of weak homotopy (−1)-equivalences. We shall denote the local model structure
shortly by (S,Who[−1]), where Who[−1] denotes the class of weak homotopy (−1)-
equivalences. Its fibrant objects are the Kan (−1)-objects.

25.3. Recall that a simplicial set X is said to be a (−2)-object if it is contractible.
Every map of simplicial sets is by definition a (−2)-equivalence. The model cat-
egory (S,Who) admits a Bousfield localisation with respect to the class of (−2)-
equivalences (ie of all maps). The local model can be denoted by by (S,Who[−2]),
where Who[−2] denotes the class of all maps. Its fibrant objects are the contractible
Kan complexes.

25.4. The homotopy n-type of a simplicial set A is defined to be a fibrant replace-
ment of A→ π〈n〉(A) of A in the model category (S,Who〈n〉).

25.5. If n ≥ −2, we shall denote by K〈n〉 the coherent nerve of the category of
Kan n-objects. It is the full simplicial subset of K spanned by these objects. We
have an infinite sequence of quategories,

K〈−2〉 // K〈−1〉 // K〈0〉 // K〈1〉 // K〈2〉 // · · · .

The quategory K〈−2〉 is equivalent to the terminal quategory 1. The quategory
K〈−1〉 is equivalent to the poset {0, 1} and the quategory K〈0〉 to the category of
sets. The quategory K〈1〉 is equivalent to the coherent nerve of the category of
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groupoids. Each quategory K〈n〉 is bicomplete and locally cartesian closed. The
inclusion K〈n〉 → K is reflective and its left adjoint is the map

π〈n〉 : K → K〈n〉

which associates to a Kan complex its homotopy n-type. The map π〈n〉 preserves
finite products.

25.6. We shall say that a map f : X → Y in S/B is a fibrewise homotopy n-
equivalence if the map X(b) → Y (b) induced by f between the homotopy fibers
of X and Y is a weak homotopy n-equivalence for every vertex b ∈ B. The
model category (S/B,Who) admits a Bousfield localisation with respect to the
fibrewise homotopy n-equivalences. We shall denotes the local model structure
shortly by (S/B,WhoB〈n〉), where WhoB〈n〉 denotes the class of fibrewise homo-
topy n-equivalences in S/B. Its fibrant objects are the Kan n-covers X → B.

25.7. If u : A→ B is a map of simplicial sets, then the pair of adjoint functors

u! : S/A→ S/B : u∗

is a Quillen adjunction between the model category (S/A, WhoA〈n〉) and the model
category (S/B,WhoB〈n〉). Moreover, it is a Quillen equivalence when u is a weak
homotopy (n + 1)-equivalence. This is true in particular when u is the canonical
map A→ π〈n+1〉A.

26. Truncated quategories

26.1. We shall say that a quategory X is 1-truncated if the canonical map X → τ1X
is a weak categorical equivalence. A quategory X is 1-truncated iff the following
equivalent conditions are satisfied:

• the simplicial set X(a, b) is a 0-object for every pair a, b ∈ X0.
• every simplicial sphere ∂∆[m]→ X with m > 2 can be filled.

A Kan complex is 1-truncated iff it is a 1-object.

26.2. A category C is equivalent to a poset iff the set C(a, b) has at most one
element for every pair of objects a, b ∈ C. We say that a quategory X is 0-truncated
if it is 1-truncated and the category τ1X is equivalent to a poset. A quategory X
is 0-truncated iff the following equivalent conditions are satisfied:

• the simplicial set X(a, b) is empty or contractible for every pair a, b ∈ X0;
• every simplicial sphere ∂∆[m]→ X with m > 1 can be filled.

A Kan complex is 0-truncated iff it is a 0-object.

26.3. For any n ≥ 2, we say that a quategory X is n-truncated if the simplicial set
X(a, b) is a (n−1)-object for every pair a, b ∈ X0. A quategory X is n-truncated iff
every simplicial sphere ∂∆[m]→ X with m > n + 1 can be filled. A Kan complex
is n-truncated iff it is a n-object.

26.4. The quategory K〈n〉 is (n + 1) truncated for every n ≥ −1.
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26.5. We shall say that a map of simplicial sets u : A → B is a weak categorical
n-equivalence if the map

τ0(u, X) : τ0(B,X)→ τ0(A,X)

is bijective for every n-truncated quategory X. The model structure (S,Wcat)
admits a Bousfield localisation with respect to the class Wcat〈n〉 of weak categorical
n-equivalences. The fibrant objects are the n-truncated quategories. The localised
model structure is cartesian closed and left proper. We shall denote it shortly by
(S,Wcat〈n〉).

26.6. If n ≥ 0, then a map between quategories f : X → Y is a categorical n-
equivalence iff it is essentially surjective and the map X(a, b)→ Y (fa, fb) induced
by f is a homotopy (n − 1)-equivalence for every pair of objects a, b ∈ X. A
map of simplicial sets uj : A→ B is a weak categorical 1-equivalence iff the functor
τ1(u) : τ1 → τ1B is an equivalence of categories. A map of simplicial sets u : A→ B
is a weak categorical 0-equivalence iff it induces an isomorphism between the poset
reflections of A and B.

26.7. The categorical n-truncation of a simplicial set A is defined to be a fibrant
replacement of A→ τ〈n〉(A) of A in the model category (S,Wcat〈n〉). The funda-
mental category τ1A is a categorical 1-truncation of A. The poset reflection of A
is a categorical 0-truncation of A.

26.8. If n ≥ 0, we shall denote by Q1〈n〉 the coherent nerve of the (simplicial)
category of n-truncated quategories. It is the full simplicial subset of Q1 spanned
by the n-truncated quategories. We have an infinite sequence of quategories,

Q1〈0〉 // Q1〈1〉 // Q1〈2〉 // Q1〈3〉 // · · ·

The quategory Q1〈0〉 is equivalent to the category of posets and the quategory
Q1〈1〉 to the coherent nerve of Cat. We have Q〈n〉 = Q ∩ Q1〈n〉 for every n ≥ 0.
The inclusion Q1〈n〉 → Q1 is reflective and its left adjoint is the map

τ〈n〉 : Q1 → Q1〈n〉

which associates to a quategory its categorical n-truncation. The map τ〈n〉 preserves
finite products. The quategory Q1〈n〉 is is cartesian closed and (n + 1)-truncated.

26.9. We right fibration X → B is said to be n-truncated if its fibers are n-objects.
The model category (S/B,Wcont) admits a Bousfield localisation in which the
fibrant objects are the right n-fibrations X → B. The weak equivalences of the
localised structure are called contravariant n-equivalences. The localised model
structure is simplicial. We shall denotes it by (S/B,Wcont〈n〉),

26.10. A map u : M → N in S/B is a contravariant n-equivalence if the map

π0[u, X] : π0[M,X]→ π0[N,X]

is bijective for every right n-fibration X → B.
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26.11. For each vertex b ∈ B, let us choose a factorisation 1 → Lb → B of the
map b : 1→ B as a left anodyne map 1→ Lb followed by a left fibration Lb→ B.
Then a map u : M → N in S/B is a contravariant n-equivalence iff the map
Lb×B u : Lb×B M → Lb×B N is a homotopy n-equivalence for every vertex b ∈ B.
When B is a quategory, we can take Lb = b\B. In this case a map u : M → N in
S/B is a contravariant n-equivalence iff the map b\u = b\M → b\N is a homotopy
n-equivalence for every object b ∈ B.

26.12. If u : A→ B is a map of simplicial sets, then the pair of adjoint functors

u! : S/A→ S/B : u∗

is a Quillen adjunction between the model category (S/A, Wcont〈n〉) and the model
category (S/B,Wcont〈n〉). Moreover, it is a Quillen equivalence when u is a cate-
gorical (n + 1)-equivalence. This is true in particular when u is the canonical map
A→ τ〈n+1〉A.

26.13. Dually, we say that a map u : M → N in S/B is a covariant n-equivalence
if the map uo : Mo → No is a contravariant n-equivalence in S/Bo. The model
category (S/B,Wcov) admits a Bousfield localisation with respect to the class of
covariant n-equivalences for any n ≥ 0. A fibrant object of this model category is
a left n-fibration X → B. The localised model structure is simplicial. We shall
denote it by (S/B,Wcov〈n〉),

27. Accessible quategories and directed colimits

27.1. Recall that a quategory is said to be cartesian if it has finite limits. Recall
that a map between cartesian quategories is said to be left exact iff it preserves
finite limits. More generally, let α be a regular cardinal (recall that 0 and 1 are the
finite regular cardinals). We shall say that a quategory X is α-cartesian if it has
α-limits. We shall say that a map between α-cartesian quategories is α-continuous
if it preserves α-limits.

27.2. We shall say that a (small) simplicial set A is directed if the colimit map

lim
−→
A

: KA → K

is left exact. We shall say that A is filtered if the opposite simplicial set Ao is
directed. More generally, if α is a regular cardinal, we shall say that a simplicial
set A is α-directed if the colimit map

lim
−→
A

: KA → K

is α-continuous. We shall say that A is α-filtered if Ao is α-directed.

27.3. Every quategory is 0-cartesian and every map is 0-continuous. A quategory
is 1-cartesian iff it has a terminal object and a map is 1-continuous iff it preserves
terminal objects.
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27.4. The notion of directed simplicial set is invariant under Morita equivalence:
this means that if two simplicial sets A and B are Morita equivalent, then A is
directed iff B is directed. A category is directed iff its nerve is directed. A quategory
with a terminal object is directed. A quategory with finite colimits is directed. A
monoid generated by one idempotent is directed. If a quategory A is directed
then the canonical map d\A → A is final for any finite diagram d : K → A.
More generally, let α be a regular cardinal. The notion of α-directed simplicial
set is invariant under Morita equivalence. A quategory with a terminal object is
α-directed. A quategory with α-colimits is directed. A monoid generated by one
idempotent is α-directed. Every simplicial set is 0-directed. A simplicial set A is
1-directed iff it is weakly contratible (ie iff the map A → 1 is a weak homotopy
equivalence). If a quategory A is α-directed then the canonical map d\A → A is
final for any diagram d : K → A of cardinality < α.

27.5. We say that a diagram d : K → A in a quategory A is bounded above if it
admits an extension K ? 1→ A. Dually, we say that d is bounded below if it admits
an extension 1 ? K → A.

27.6. A quategory A is directed iff every finite diagram K → A is bounded above.
More generally, if α is a regular cardinal ≥ ω, then a quategory A is α-directed iff
every diagram K → A of cardinality < α is bounded above.

27.7. A quategory A is directed iff every simplicial sphere ∂∆[n]→ A is bounded
above.

27.8. Recall that the barycentric subdivision Sd[n] of ∆[n] is defined to be the
nerve of the poset of non-empty subsets of [n] ordered by the inclusion. A map
f : [m] → [n] induces a map Sd(f) : Sd[m] → Sd[n] by putting Sd(f)(S) = f(S)
for every S ∈ Sd[m]. This defines a functor Sd : ∆→ S. Recall that the barycentric
expansion of a simplicial set A is the simplicial set Ex(A) defined by putting

Ex(A)n = S(Sd[n], A)

for every n ≥ 0. A quategory A is directed iff the simplicial set Ex(A) is a con-
tractible Kan complex.

27.9. The notion of α-directed simplicial set is invariant under Morita equivalence:
this means that if two simplicial sets A and B are Morita equivalent, then A is α-
directed iff B is α-directed. A category is α-directed iff its nerve is α-directed.
A monoid generated by one idempotent is α-directed. A quasi-category with a
terminal object is α-directed. A quategory with α-colimits is α-directed.

27.10. A quategory A is α-directed iff there exists an α-directed category C to-
gether with a final map C → A; moreover C can be chosen to be a poset.

27.11. A simplicial set A is α-directed iff the canonical map u : A → Pα(A) is
final, where Pα(A) is the free cocompletion of A under α-colimits in 23.25.
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27.12. We shall say that a diagram d : A→ X in a quategory X is directed if the
indexing simplicial set A is directed, in which case we shall say that the colimit
of d is directed if it exists. We shall say that a quategory X has directed colimits
if every (small) directed diagram A → X has a colimit. We shall say that a map
between two quategories is finitary if it preserves directed colimits. More generally,
if α is a regular cardinal, we shall say that a diagram d : A→ X is α-directed if A is
α-directed, in which case we shall say that the colimit of d is α-directed if it exists.
We shall say that a quategory X has α-directed colimits if every (small) α-directed
diagram A→ X has a colimit. We shall say that a map between two quategories is
α-finitary if it preserves α-directed colimits. A map is ω-finitary iff it is finitary.

27.13. A quategory with directed colimits is Karoubi complete. A quategory with
directed colimits and finite colimits is cocomplete. A finitary map between cocom-
plete quategories is cocontinuous iff it preserves finite colimits. More generally, let
α be a regular cardinal. A quategory with α-directed colimits is Karoubi com-
plete. A quategory with α-directed colimits and α-colimits is cocomplete. A map
between cocomplete quategories is cocontinuous iff it preserves α-directed colimits
and α-colimits.

27.14. A quategory has 0-directed colimits iff it is cocomplete. A diagram d :
K → X is 1-directed iff K is weakly contractible, in which case we shall say that
d is weakly contractible. A quategory X has 1-directed colimits iff every weakly
contractible diagram d : K → X has a colimit. A Kan complex has α-directed
colimits for every regular cardinal α ≥ 1.

27.15. If A is a simplicial set, we shall say that a prestack g ∈ P(A) is inductive
if the simplicial set A/g (or El(g)) is directed. We shall denote by Ind(A) the full
sub-quategory of P(A) spanned by the inductive objects and by y : A→ Ind(A) the
map induced by the Yoneda map A→ P(A). The quategory Ind(A) is closed under
directed colimits and the map y : A→ Ind(A) exibits the quategory Ind(A) as the
free cocompletion of A under directed colimits. More precisely, let us denote by
Fin(X, Y ) the quategory of finitary maps X → Y between two quategories. Then
the map

y∗ : Dir(Ind(A), X)→ XA

induced by y is an equivalence of quategories for any quategory with directed col-
imits X. The inverse equivalence associates to a map g : A → X its left Kan
extension g! : Ind(A) → X along y. More generally, if α is a regular cardinal, we
shall say that a prestack g ∈ P(A) is α-inductive if the simplicial set A/g (or El(g))
is α-directed. We shall denote by Indα(A) the full sub-quategory of P(A) spanned
by the α-inductive objects and by y : A→ Indα(A) the map induced by the Yoneda
map A → P(A). The quategory Indα(A) is closed under α-directed colimits and
the map y : A → Indα(A) exibits the quategory Indα(A) as the free cocompletion
of A under α-directed colimits.

27.16. By definition, we have decreasing sequence of inclusions,

P(A) = Ind0(A) ⊇ Ind1(A) ⊇ Indω(A) ⊇ Indω1(A) ⊇ · · ·

where Indω(A) = Ind(A). A quategory A has α-directed colimits iff the canonical
map y : A→ Indα(A) has a left adjoint.
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27.17. We shall say that a quategory is accessible if it is equivalent to a quategory
Indα(A) for for some regular cardinal α and and some small quategory A. More
precisely, we shall say that a quategory is an α-accessible if it is equivalent to a
quategory Indα(A). We shall say that a quategory is a finitary accessible if it is ω-
accessible, that is, if if it is equivalent to a quategory Ind(A) for a small quategory
A.

27.18. We shall say that a map of between accessible quategories f : X → Y is
α-accessible if X and Y are α-accessible and f is α-finitary. We shall say that f is
accessible if it is α-accessible for some regular cardinal α. We shall say that f is
finitary accessible if it is ω-accessible.

27.19. If α < β are two regular cardinals, we shall write α/β to indicate that every
α-accessible quategory is β-accessible. For any set S of regular cardinals, there is
a regular cardinal β such that α / β for all α ∈ S. See [MP].

27.20. A quategory is 0-accessible iff it is equivalent to a prestack quategory P(A).
Let α > 0 be a regular cardinal. If a quategory X is α-accessible (resp. accessible)
then so are the slice quategories a\X and X/a for any object a ∈ X, and the
quategory XA for any simplicial set A.

27.21. If A is a quategory and K is a simplicial set of cardinality < α, then the
canonical map Indα(AK) → Indα(A)K is an equivalence. If (Ai|i ∈ S) is a family
of quategories and Card(S) < α, then the canonical map

Indα(
∏
i∈S

Ai)→
∏
i∈S

Indα(Ai)

is an equivalence.

27.22. If If A is a small quategory with finite colimits, then the quategory Ind(A)
is cocomplete and the map y : A→ Ind(A) preserves finite colimits; a prestack f :
Ao → K is inductive iff it preserves finite limits. Moreover, the map y : A→ Ind(A)
exibits the quategory Ind(A) as the free cocompletion of A. More precisely, let us
denote the quategory of maps preserving finite colimits between two quategories by
fCC(X, Y ). Then the map

y∗ : CC(Ind(A), X)→ fCC(A,X)

induced by y is an equivalence of quategories for any cocomplete quategory X. The
inverse equivalence associates to a map which preserves finite colimits f : A → X
its left Kan extension f! : Ind(A) → X along y. More generally, if A is a small
quategory with α-colimits, then the quategory Indα(A) is cocomplete and the map
y : A → Indα(A) preserves α-colimits; a prestack f : Ao → K is α-inductive iff
it preserves α-limits. Moreover, the map y : A → Indα(A) exibits the quategory
Indα(A) as the free cocompletion of A.

27.23. The left Kan extension of the inclusion i : Pα(A) ⊆ P(A) is an equivalence
of quategories,

Indα(Pα(A))→ P(A).
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27.24. Let X be a (locally small) quategory with directed colimits. We shall say
that an object a ∈ X is compact if the map

homX(a,−) : X → K

is finitary. More generally, let α be a regular cardinal and X be a quategory with
α-directed colimits. We shall say that an object a ∈ X is α-compact if the map
homX(a,−) is α-finitary.

27.25. An object of a cocomplete quategory is 0-compact iff it is atomic. An inital
object is 1-compact.

27.26. The class of compact objects is closed under finite colimits and retracts.
An object x ∈ K is compact iff it is a retract of a finite homotopy type. Not
every compact object of K has finite hmotopy type. If A is a simplicial set, then a
prestack g ∈ P(A) is compact iff it is a retract of a finitely presented prestack. More
generally, let α be a regular cardinal. Then the class of α-compact objects is closed
under α-colimits and retracts. If A is a simplicial set, then a prestack g ∈ P(A)
is α-compact iff it is a retract of a prestack in Pα(A). If β is a regular cardinal
≥ α, then an object g ∈ Indα(A) is β-compact iff it is β-compact in P(A). Hence
the sub-quategory of β-compact objects of an α-accessible quategory is essentially
small.

27.27. Let X be a quategory with directed colimits. Then X is finitary accessible
iff its subcategory of compact objects is essentially small and every object in X is
a directed colimit of a diagram of compact objects. More precisely, if K ⊆ X is a
small full sub-quategory of compact objects, then the left Kan extension

i! : Ind(K)→ X

of the inclusion i : K ⊆ X is fully faithful. Moreover, i! is an equivalence if every
object of X is a directed colimit of a diagram of objects of K. More generally,
let α be a regular cardinal and X be a quategory with α-directed colimits. Then
X is α-accessible iff its subcategory of α-compact objects is essentially small and
every object in X is an α-directed colimit of a diagram of α-compact objects. More
precisely, if K ⊆ X is a small full sub-quategory of α-compact objects, then the
left Kan extension

i! : Indα(K)→ X

of the inclusion i : K ⊆ X is fully faithful. Moreover, i! is an equivalence if every
object of X is an α-directed colimit of a diagram of objects of K.

27.28. A cocomplete (locally small) quategory X is finitary accessible iff it is gen-
erated by a set of compact objects. More precisely, let K ⊆ X be a small full
sub-quategory of compact objects. If K is closed under finite colimits, then the
quategory Ind(K) is cocomplete and the left Kan extension

i! : Ind(K)→ X

of the inclusion i : K → X along y : K →→ Ind(K) is fully faithful and cocontinu-
ous. Moreover, i! is an equivalence if K generates or separates X. More generally,
if α is a regular cardinal, then a cocomplete quategory X is α-accessible iff it is
generated by a small set of α-compact objects. More precisely, let K ⊆ X be a
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small full sub-quategory of α-compact objects. If K is closed under α-colimits, then
the quategory Indα(K) is cocomplete and the left Kan extension

i! : Indα(K)→ X

of the inclusion i : K → X along y : K →→ Indα(K) is fully faithful and cocontin-
uous. Moreover, i! is an equivalence if K generates or separates X.

27.29. Let f : X ↔ Y ; g be a pair of adjoint maps between cocomplete quategories.
If the map g is finitary, then the map f preserves compact objects, and the converse
is true if X is finitary accessible. More generally, if the map g is α-finitary, then the
map f preserves α-compact objects, and the converse is true if X is α-accessible.

27.30. The category ACC of accessible quategories and accessible maps is closed
under (homotopy) limits and the forgetful functor ACC → QCAT is continuous.
See ??.

28. Limit sketches and arenas

In this section we extend the theory of limit sketches to quategories. The quat-
egory of models of a limit sketch is called an arena. A quategory is an arena iff it
is generated by a set of compact objects.

28.1. Recall that a projective cone in a simplicial set A is a map of simplicial sets
c : 1 ? K → A. A limit sketch is a pair (A,P ), where A is a simplicial set and
P is a set of projective cones in A. If X is a quategory, we shall say that a map
f : A→ X is a model of limit sketch (A,P ) if it takes every cone c : 1 ? K → A in
P to an exact cone fc : 1 ? K → X. We shall write f : A/P → X to indicate that
a map f : A→ X is a model of (A,P ). We shall denote by Model(A/P,X) the full
simplicial subset of XA spanned by the models A/P → X and we shall put

Model(A/P ) = Model(A/P,K).

We shall say that a structure is essentially algebraic if it is a model of a limit sketch.

28.2. The cardinality of a cone c : 1 ? K → A is defined to be the cardinality of
K (ie the cardinality of the set of non-degenerate simplices of K). We shall say
that a limit sketch (A,P ) is finitary if every cone in P is finite. More generally,
if α is a regular cardinal, we shall say that (A,P ) is α-bounded if every cone in P
has cardinality < α. A stack on a fixed topological space X is a model of a certain
limit sketch associated to the space. The sketch is not finitary in general.

28.3. Remark. If α = 0, a limit sketch (A,P ) is α-bounded iff P = ∅. Hence
we have Model(A/P ) = KA in this case. If α = 1, then a cone c : 1 ? K → A
of cardinality < α is just a vertex c(1) ∈ A, since K = ∅ in this case. Hence a
1-bounded limit sketch is the same thing as a pair (A,S) where S is a set of nodes
in A. A map f : A → K is a model of (A,S) iff we have f(s) ' 1 for every s ∈ S.
For example, if A = I and S = {0}, then a model f : A/S → K is a morphism
f : 1→ x in the quategory K. Hence the quategory Model(I/{0}) is equivalent to
the quategory 1\K of pointed Kan complexes.
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28.4. If (A,P ) is a limit sketch then the inclusion Model(A/P ) ⊆ KA has a left
adjoint and the quategory Model(A/P ) is bicomplete. We shall say that a quat-
egory is locally presentable or that it is an arena it is equivalent to a quategory
Model(A/P ) of a limit sketch (A,P ). More generally, we shall say that an arena
is α-presentable if it is equivalent to a quategory Modelα(A/P ) for an α-bounded
limit sketch (A,P ). We shall say that an arena is finitary presentable if it is ω-
presentable.

28.5. Remark. If an arena is α-presentable then it is β-presentable for any regular
cardinal β ≥ α. An arena is 0-presentable iff it is equivalent to a quategory P(A) for
a simplicial set A. The quategory 1\K of pointed Kan complexes is 1-presentable.
The quategory Ko is not an arena.

28.6. If X is an arena then so are the quategories a\X and X/a for any object a ∈
X and the quategory Model(A/P,X) for any limit sketch (A,P ). More precisely,
let α be a regular cardinal ≥ 1. If an arena X is α-presentable, then so are the
arenas a\X and X/a for any object a ∈ X and the arena Model(A/P,X) for any
α-bounded limit sketch (A,P ). If an arena X is 0-presentable, then so is the arena
X/a for any object a ∈ X and the arena XA for any simplicial set A.

28.7. (Example) The loop space of a pointed object a : 1 → x in a cartesian
quategory X is defined by a cartesian square

1
a

��>
>>

>>
>>

>

Ω(x)

=={{{{{{{{

!!C
CC

CC
CC

C
x

1.

a

@@��������

The object Ω(x) is naturally pointed A pre-spectrum in X is defined to be an infinite
sequence of pointed objects 1 → xn together with an infinite sequence of pointed
morphisms

un : xn → Ω(xn+1).
It can thus be defined by an infinite sequence of commutative squares

1

  @
@@

@@
@@

@ 1

  @
@@

@@
@@

@ · · ·

x0

>>~~~~~~~~

  @
@@

@@
@@

@ x1

>>~~~~~~~~

  @
@@

@@
@@

@ x2

=={{{{{{{{

!!C
CC

CC
CC

C

1

>>~~~~~~~~
1

>>~~~~~~~~
· · ·

in the quategory 1\X. It follows that the notion of pre-spectrum is defined by a
1-bounded limit sketch. Hence the quategory of pre-spectra is 1-presentable. We
shall say that a pre-spectrum (un) in X is a spectrum or a stable object if the
morphism un is invertible for every n ≥ 0. Equivalently, a pre-spectrum (un) is
a spectrum iff every square of the sequence above is cartesian. It follows that the
notion of spectrum is defined by a finitary limit sketch (A,P ) and that the quategory
of spectra Sp = Mod(A,P ) is finitary presentable.
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28.8. (Example) A morphism a → b in a cartesian quategory X is monic iff the
square

a
1a //

1a

��

a

u

��
a

u // b
is cartesian. Hence the notion of monomorphism can be described by a finitary
limit sketch. An object a ∈ X is discrete iff the diagonal a→ a× a is monic. This
condition is expressed by two exact cones,

b
p1

����
��

��
�� p2

��?
??

??
??

?

a a,

a
1a //

1a

��

a

d

��
a

d // b.

and two relations pd = qd = 1a. Hence the notion of discrete object can be
described by a finitary limit sketch. Hence the quategory K〈0〉 of discrete objects
in K is finitary presentable. It folllows that the category of sets Set is finitary
presentable. An arrow a→ b in X is a 0-cover iff the diagonal a→ a×b a is monic.
Hence the notion of 0-cover can be described by a finitary limit sketch. An object
a ∈ X is a 1-object iff the diagonal a → a × a is a 0-cover. Hence the notion of
1-object can be described by a finitary limit sketch. It is easy to see by induction
on n ≥ 0 that the notions of n-object and of n-cover can be described by a finitary
limit sketch. Hence the quategory K〈n〉 of n-objects in K is finitary presentable for
every n ≥ 0.

28.9. (Example) The notion of category object in a cartesian quategory X is de-
fined by a finitary limit sketch. More precisely, a simplicial object C : ∆o → X is
said to be a category object if the map C takes every square of the form

[0]

m

��

0 // [n]

��
[m] // [m + n],

to a pullback square in X. In other words, a simplicial object C is a category object
if it satisfies the Segal condition. If C : ∆o → X is a category object, we shall say
that C0 ∈ X is the object of objects of C and that C1 is the object of arrows. The
morphism ∂1 : C1 → C0 is the source morphism the morphism ∂0 : C1 → C0 is
the target morphism, and the morphism σ0 : C0 → C1 is the unit morphism. The
morphism ∂1 : C2 → C1 is the multiplication.

28.10. (Example) The notion of groupoid object in a cartesian quategory X is
defined by a finitary limit sketch. We shall say that a category object C : ∆o → X
is a groupoid if C takes the squares

[0]

d0

��

d0 // [1]

d0

��
[1]

d1 // [2],

[0]

d1

��

d1 // [1]

d2

��
[1]

d1 // [2]
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to pullback squares,

C2

∂0

��

m // C1

t

��
C1

t // C0,

C2

∂2

��

m // C1

s

��
C1

s // C0.

(one is enough).

28.11. (Example) A monoid in a cartesian quategory X is is a category object
C : ∆o → X such that C0 ' 1. A group is a groupoid object C : ∆o → X such
that C0 ' 1.

28.12. Remark. The notions of groupoid and of group can be defined alterna-
tively by using symmetric simplicial objects as in ??. Let us denote by Σ∆ the
category having the same objects as ∆ but where every map of sets [m]→ [n] is a
morphism. A symmetric simplicial object in a quategory X is defined to be a map
(Σ∆)o → X. A groupoid object in X can be defined to be a symmetric simplicial
object G : (Σ∆)o → X. which takes every pushout square

A

i

��

// A′

��
B // B′,

in which i is monic to a pullback square in X. A groupoid object G is a group if
G0 ' 1.

28.13. (Example) The notion of E∞-space in a quategory X can be defined by
using a sketch introduced by Segal in [S2]. Let us denote by Γ the category of finite
pointed sets and pointed maps. Every object of Γ is isomorphic to a set [n] pointed
by 0 ∈ [n]. For each 1 ≤ k ≤ n, let δk be the pointed map [n] → [1] defined by
putting

δk(x) =
{

1 if x = k
0 if x 6= k.

A Γ-object in a quategory X is defined to be a map E : Γ → X. If X has finite
products, then from the morphisms E(δk) : En → E1 we obtain a morphism

pn : En →
n∏

k=1

E1.

We shall say that E is an E∞-space if pn is invertible for every n ≥ 0. The notion
of E∞-space is defined by a finitary limit sketch (Γ, P ) and the quategory of E∞-
spaces E∞ = Mod(Γ, P ) is finitary presentable. Consider the functor i : ∆o → Γ
obtained by putting i[n] = Hom(∆[n], S1) for every n ≥ 0, where S1 = ∆[1]/∂∆[1]
is the pointed circle. If X is a cartesian quategory, then the map Xi : XΓ → X∆o

takes an E∞-space E ∈ Model(Γ/P,X) to a monoid i∗(E) : ∆o → X (the monoid
underlying E). We shall that E is an infinite loop space if the monoid i∗(E) is a
group. The notion of infinite loop space is described by a finitary limit sketch (Γ, P ′)
and the quategory of infnite loop spaces L∞ = Mod(Γ, P ′) is finitary presentable.
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28.14. (Example) We shall say that a category object C : ∆o → X in a cartesian
quategory X is a preorder (on C0) if the vertex map C1 → C0 × C0 is monic. A
preorder C : ∆o → X is an equivalence relation if the quategory C is a groupoid.
Theses notions have the following classical descriptions. A binary relation on an
object a ∈ X0 can be defined to be a monomorphism r → a× a. More generally, if
n ≥ 0, a n-ary relation on a can be defined to be a monomorphism r → an is The
notion of n-ary relation is essentially algebraic and finitary, as well as the following
notions. A binary relation r → a × a is reflexive if the diagonal a → a × a can be
factored through the morphism r → a×a. A binary relation r → a×a is transitive
if the morphism p∗12(r)∩ p∗23(r)→ a× a× a can be factored through the morphism
p∗13(r)→ a× a× a. A binary relation r → a× a is symmetric if it can be factored
through its transpose tr → a × a. A binary relation r → a × a is a preorder if it
is reflexive and transitive. A binary relation r → a × a is an equivalence if it is
reflexive, symmetric and transitive.

28.15. Recall that an inductive cone in a simplicial set A is a map of simplicial
sets K ? 1 → A. The opposite of an inductive cone c : K ? 1 → A is a projective
cone co : 1 ? Ko → Ao. A colimit sketch is defined to be a pair (A,Q), where A is a
simplicial set and Q is a set of inductive cones in A. The opposite of a colimit sketch
(A,Q) is a limit sketch (Ao, Qo), where Qo = {co : c ∈ Q}. Dually, the opposite of
a limit sketch (A,P ) is a colimit sketch (Ao, P o). We shall say that a colimit sketch
(A,Q) is α-bounded if the opposite sketch is α-bounded. A comodel of colimit
sketch (A,Q) with values in a cocomplete quategory X is a map f : A→ X which
takes every cone c : K?1→ A in Q to a coexact cone fc : K?1→ X in X. We shall
write f : Q\A → X to indicate that the map f : A → X is a comodel of (A,Q).
The comodels of (A,Q) with values in X form a quategory CoModel(Q\A,X). By
definition, it is the full simplicial subset of XA spanned by the comodels Q\A→ X.
Every colimit sketch (A,Q) has a universal comodel u : Q\A→ U with values in a
cocomplete quategory U . More precisely, let us denote by CC(X, Y ) the quategory
of cocontinuous maps between two cocomplete quategories. Then the map

u∗ : CC(U,X)→ CoMod(Q\A,X)

induced by u is an equivalence of quategories for any cocomplete quategory X. We
shall say that the comodel u : Q\A → U is a presentation of the U by (A,Q). A
cocomplete quategory X is an arena iff it admits a presentation u : Q\A→ X by a
colimit sketch (A,Q). More precisely, if (A,P ) is a limit sketch, then the inclusion
Model(A/P ) ⊆ KA has a left adjoint r : KA → Model(A/P ). The map

ry : Ao → Model(A/P )

obtained by composing r with the Yoneda map y : Ao → KA is a universal comodel
of the colimit sketch (Ao, P o). More generally, a cocomplete quategory X is α-
presentable iff it admits a presentation u : Q\A → X by an α-bounded colimit
sketch (A,Q).

28.16. The α-directed colimits commute with the α-limits in any α-presentable
quategory (and this is true in any quategory if α = 0, 1).

28.17. A cocomplete quategory X is an arena iff it is accesssible. An arena is
α-presentable iff it is generated by α-compact objects. The full sub-quategory of
α-compact objects of an arena is essentially small.
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28.18. If X is an arena, then every continuous map Xo → K is representable.
Moreover, every cocontinuous map f : X → Y with values in a cocomplete locally
small quategory has a right adjoint g : X → Y .

28.19. Let f : X ↔ Y : g be a pair of adjoint maps between cocomplete quate-
gories. If the right adjoint g : Y → X is α-finitary, then f preserves α-compact
objects, and the converse is true if X is generated by α-compact objects.

28.20. If X, Y and Z are arenas, then a map f : X×Y → Z cocontinuous in each
variable can be divided on both sides. See??. More precisely, for every object x ∈ X
the map f(x,−) : Y → Z has a right adjoint xc− : Z → Y is called the left division
by x. The map l : Xo × Z → Y defined by putting l(xo, z) = xcz is continuous
in each variable. Dually, for every object y ∈ Y the map f(−, y) : X → Z has
a right adjoint −by : Z → Y called the right division by y. Moreover, the map
r : Z × Y o → X defined by putting r(z, yo) = zby is continuous in each variable.

28.21. We denote by AR the category of arenas and cocontinuous maps. If X and
Y are arenas, then so is the quategory CC(X, Y ) of cocontinuous maps X → Y .
The (simplicial) category AR is symmetric monoidal closed. The tensor product
X ⊗ Y of two arenas is the target of a map φ : X × Y → X ⊗ Y cocontinuous in
each variable and universal with respect to that property. More precisely, for any
cocomplete quategory Z, let us denote by CC(X, Y ;Z) the full simplicial subset of
ZX×Y spanned by the maps X × Y → Z cocontinuous in each variable. Then the
map

φ∗ : CC(X ⊗ Y, X)→ CC(X, Y ;Z)

induced by φ is an equivalence of quategories. By combining this equivalence with
the natural isomorphism

CC(X, Y ;Z) = CC(X, CC(Y, Z)

we obtain an equivalence of quategories

CC(X ⊗ Y, Z) ' CC(X, CC(Y, Z)).

The unit object for the tensor product is the quategory K. The equivalence

K ⊗X ' X

is induced by a product map (A, x) 7→ A · x described in 23.1 in the case of a finite
simplicial set A. The quategory K is cartesian closed and every arena X is enriched
and cocomplete over K. The enrichement hom : Xo ×X → K can be obtained by
dividing the canonical (right) action X ×K → X. on the right.

28.22. The terminal object 1 of the category AR. is also the initial, since the
quategory CC(1, X) is equivalent to the quategory 1 for every X ∈ AR. More
generally, the product X =

∏
i∈I Xi of a (small) family of arenas is also their

coproduct. More precisely, if 0i denotes the initial object of Xi, then the map
ui : Xi → X defined by putting

ui(x)k =
{

x if k = i
0k if k 6= i,
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is cocontinuous (it is left adjoint to the projection pi : X → Xi). The family of
maps (ui) turns the object X into the coproduct of the family of objects (Xi) since
the map

(u∗i ) : CC(
∏
i∈I

Xi, Y )→
∏
i∈I

CC(Xi, Y )

induced by the family (ui) is an equivalence of quategories for every Y ∈ AR.

28.23. (A duality). The (simplicial) category AR is closed under (homotopy)
limits and the forgetful functor AR→ QCAT is continuous. The right adjoint of
a map X → Y in AR is continuous and accessible. Conversely, every accessible
continuous map Y → X has a left adjoint X → Y . .Let us denote by AR∗ the
(simplicial) category having the same objects as AR but whose morphisms are
the accessible continuous maps. The (simplicial) category AR∗ is closed under
(homotopy) limits and the forgetful functor AR∗ → QCAT is continuous. The
(simplicial) category AR∗ and AR are mutually opposite. Hence the homotopy
colimit of a diagram in AR can be constructed as the homotopy limit of a dual
diagram in AR∗. For example, the homotopy colimit of an infinite sequence of
maps in AR,

X0
f0 // X1

f1 // X2
f2 // · · ·

can be constructed as the homotopy limit X in QCAT of the corresponding se-
quence of right adjoints

X0 X1
g0oo X2

g1oo · · · .g2oo

An object of X is a pair (x, k), where x = (xn) is a sequence of objects xn ∈ Xn

and k = (kn) is a sequence of isomorphisms kn : xn ' gn(xn+1). Each projection
pn : X → Xn has a left adjoint un : Xn → X and each isomorphism kn : pn '
gnpn+1 has a left transpose in : un+1fn ' un. The dual diagram

X0
f0 //

u0

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR X1
f1 //

u1

&&NNNNNNNNNNNNNNNNNNNNNNNNN X2
f2 //

u2

""E
EE

EE
EE

EE
EE

EE
EE

EE
E · · ·

X

is a (homotopy) colimit diagram in AR.

28.24. Let α : f → g : X → Y be a natural transformation between two maps
in AR. Let us say that a map q : Y → Z in AR inverts α if the morphism
q ◦ α : qf → qg is invertible. There is then a map p : Y → Y [α] which inverts α

universally. More precisely, if Z is an arena, let us denote by CC[α](Y, Z) the full
simplicial subset of CC(Y, Z) spanned by the maps Y → Z which invert α. Then
the map

p∗ : CC(Y [α], Z)→ CC[α](Y,Z).
induced by p is an equivalence of quategories. The map f : X → Y has a right
adjoint f∗ : Y → X in AR∗. Let α∗ : g∗ → f∗ : Y → X be the right transpose of
the natural transformation α. We shall say that an object y ∈ Y coinverts α∗ if the



116 ANDRÉ JOYAL

morphism α∗(y) : g∗(y) → f∗(y) is invertible in X. Let us denote by Coinv(α∗)
the full simplicial subset of Y spannned by the objects which coinvert α∗. Then
the inclusion Coinv(α∗) ⊆ Y has a left adjoint p : Y → Coinv(α∗) and we have
Y [α] = Coinv(α∗).

28.25. If X is a quategory then the map homX : Xo × X → K is continuous in
each variable; hence the opposite map homo

X : X × Xo → Ko is cocontinuous in
each variable. If X is an arena, then the resulting map

Xo → CC(X,Ko)

is an equivalence of quategories. More generally, if X and Y are arenas, then we
have two equivalences of quategories,

(X ⊗ Y )o ' CC(X, Y o)
' CC(Y, Xo).

28.26. The tensor product of two limit sketches (A,P ) and (B,Q) is defined to be
the limit sketch

(A×B,P ×′ Q) = (A×B,P ×B0 tA0 ×Q),

where

P ×B0 = {c× b : c ∈ P, b ∈ B0} and A0 ×Q = {a× c : a ∈ A0, c ∈ Q}.
If X is a complete quategory, then a map f : A×B → X is a model of the sketch
(A×B,P ×′ Q) iff the map f(−, b) : A→ X is a model of (A,P ) for every vertex
b ∈ B0 and the map f(a,−) : B → X is a model of (B,Q) for every vertex a ∈ A0.
By definition, we have two equivalences of quategories:

Model(A×B/P ×′ Q,X) ' Model(A/P,Model(B/Q, X))
' Model(B/Q, Model(A/P,X)).

The external tensor product of a model f ∈ Model(A/P ) with a model g ∈ Model(B/Q)
is the model f ⊗ g ∈ Model(A×B/P ×′ Q) is obtained by applying the left adjoint
to the inclusion Model(A × B/P ×′ Q) ⊆ KA×B to the map (a, b) 7→ f(a) · g(b).
The map (f, g) 7→ f ⊗ g is cocontinuous in each variable and the induced map

Model(A/P )⊗Model(A/Q)→ Model(A×B/P ×′ Q)

is an equivalence of quategories.

28.27. Recall that the smash product of two pointed simplicial sets A = (A, a) and
B = (B, b) is a pointed simplicial set A ∧B defined by the pushout square

(A× b) ∪ (a×B)

��

// A×B

��
1 // A ∧B.

A pointed simplicial set (A, a) can be regarded as a limit sketch (A,P ), where P
contains only the cone a : 1 ? ∅ → A. The sketch is 1-bounded and a model of
(A,P ) is a pointed map f : A → 1\K If B = (B, b) is another pointed simplicial
set, then the external tensor product of a model f ∈ Model(A, a) with a model
g ∈ Model(B, b) is their smash product f ∧g : A∧B → 1\K, where (f ∧g)(x∧y) =
f(x) ∧ g(y).
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28.28. Let (A,P ) is a limit sketch and X be an arena. The external tensor product
of a model f ∈ Model(A/P ) with an object x ∈ X is defined the map f⊗x : A/P →
X obtained by applying the left adjoint to the inclusion Model(A/P,X) ⊆ XA to
the map a 7→ f(a) ·x. The map (f, x) 7→ f ⊗x is cocontinuous in each variable and
the induced map

Model(A/P )⊗X ' Model(A/P,X)

is an equivalence of quategories.

28.29. We shall say that a pair (A,B) of classes of maps in AR is a homotopy
factorisation system if the following conditions are satisfied:

• the classes A and B are invariant under categorical equivalences;
• the pair (A ∩ C,B ∩ F) is a weak factorisation system in AR, where C is

the class of monomorphisms and F is the class of pseudo-fibrations;
• the class A has the right cancellation property;
• the class B has the left cancellation property.

The last two conditions are equivalent in the presence of the others. We shall say
that A is the left class of the system and that B is the right class.

28.30. The category AR admits a homotopy factorisation system (A,B) in which
B is the class of fully faithful maps. A map f : X → Y belongs to A iff its right
adjoint Y → X is conservative iff f(X0) generates Y .

28.31. The category AR admits a homotopy factorisation system (A,B) in which
B is the class of conservative maps and A is the class of reflections. We shall say
that a map in A is a Bousfield localisation. Every Bousfield localisation l : X → Y
is equivalent to a reflection r : X → X [Σ] where Σ is a (small) set of arrows in X.

28.32. Let Σ be a (small) set of arrows in an arena X. Then the pair (⊥(Σ⊥),Σ⊥)
is a factorisation system. We say that an object a ∈ X is Σ-local if it is right
orthogonal to every arrow in Σ (see 24.2). Let us denote by X [Σ] the full simplicial
subset of X spanned by the Σ-local objects. Then the quategory X [Σ] is an arena
and the inclusion i : X [Σ] ⊆ X has a left adjoint r : X → X [Σ]. Hence the quategory
X [Σ] is a Bousfield localisation of X. Conversely, every Bousfield localisation of X
is equivalent to to a sub-quategory X [Σ] for a set Σ of arrows in X. If Y is an
arena, let us denote by CC[Σ](X, Y ) the full simplicial subset of CC(X, Y ) spanned
by the maps X → Y which invert every arrows in Σ. Then the map

r∗ : CC(X [Σ], Y )→ CC[Σ](X, Y )

induced by r is an equivalence of quategories. Every arena is equivalent to a quat-
egory P(A)[Σ] for a small category A and a a (small) set Σ of arrows in P(A).

28.33. We shall say that a map in AR is coterminal if it preserves terminal objects.
Every map f : X → Y in AR admits a factorisation f = pf ′ = X → Y/f(1)→ Y ,
where f ′ is a coterminal map and where p is the projection Y/f(1) → Y . The
category AR admits a homotopy factorisation system (A,B) in which A is the class
of coterminal maps. A map belongs to B iff it is equivalent to a right fibration.
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28.34. We recall that if X is a quategory with finite coproducts and a is an object
of X then the projection pa : a\X → X has a left adjoint ia : X → a\X called the
cobase change along a. We shall say that a map in AR is coinitial if its right adjoint
preserves initial objects. The category AR admits a homotopy factorisation system
(A,B) in which A is the class of cobase changes and B is the class of coinitial maps.
Let us see that every map f : X → Y in AR admits a factorisation f = f ′ia : X →
a\X → Y where ia is a cobase change and f ′ a coinitial map. For this it suffices to
construct the dual factorisation of the right adjoints g = pag′ = Y → a\X → X.
By construction a = g(0) and g′ is induced by g.

28.35. Let (A,P ) be a limit sketch. For every cone c : 1 ? K → A in P , let us
denote by i(c) the inclusion K ⊂ 1 ? K regarded as a morphism of the category
S/A. Then the model category (S/A, Wcov) admits a Bousfield localisation with
respect to the set of morphisms i(P ) = {i(c)|c ∈ P}. We shall say that fibrant local
object is a vertical model of (A,P ). A left fibration p : E → A is a vertical model
iff the map

[i(c), E] : [1 ? K, E]→ [K, E]
is a trivial fibration for every cone c : 1 ? K → A in P . A map f : A → K is
a model of A iff the left fibration el(f) → A is a vertical model of (A,P ). The
coherent nerve of the simplicial category of vertical models of (A,P ) is equivalent
to the quategory Model(A/P ).

29. Duality for prestacks and null-pointed prestacks

29.1. If X and Y are two arenas, we shall say that a map ε : X ⊗ Y → K is a
pairing between X and Y . We shall say that the pairing is exact if the map

ε] : CC(U, V ⊗X)→ CC(U ⊗ Y, V )

defined by putting ε](f) = (V ⊗ ε)(f ⊗ Y ) is an equivalence of quategories for any
arenas U and V . A pairing ε is exact iff it is the counit of an adjunction X ` Y .
The unit is a map η : K → Y ⊗X together with a pair of isomorphisms,

IX ' (ε⊗X) ◦ (X ⊗ η) and IY ' (Y ⊗ ε) ◦ (η ⊗ Y ).

When the pairing ε : X ⊗ Y → K is exact, the map

Y → CC(X,K)

induced by ε is an equivalence of quategories. We shall say that Y is the dual of X
and put Y = X∗. An arena X is dualisable iff the canonical pairing

X ⊗ CC(X,K)→ K

is exact.

29.2. An arena is dualisable iff it is a retract of an arena P(A) for some simplicial
set A. The external cartesian product of a prestack f ∈ P(A) with a prestack
g ∈ P(B) is the prestack f×̂g ∈ P(A×B) obtained by putting

(f×̂g)(a, b) = f(a)× g(b)

for every pair of objects (a, b) ∈ A×B. The map (f, g) 7→ f×̂g is cocontinuous in
each variable and the induced map

P(A)⊗ P(B)→ P(A×B).
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is an equivalence of quategories. The cocontinuous extension of the map homA :
Ao ×A→ K is an exact pairing

P(Ao)⊗ P(A)→ K.

Hence the arena P(Ao) is dual to the arena P(A). The unit map η : K → P(A)⊗
P(Ao) is determined by η(1) = HomA : (A⊗Ao)o → K. It follows from the duality
that for any arena X we have an equivalence of quategories,

P(A)⊗X ' XAo

.

Hence the functor X 7→ XAo

is left adjoint to the functor X 7→ XA as in 22.20.

29.3. A map Ao ×B → K is essentially the same thing as a distributor A⇒ B by
15.5. The quategory of distributors A⇒ B is defined to be the quategory

D(A,B) = KAo×B = P(A×Bo) ' CC(P(B),P(A)).

The composition law for distributors

D(B,C)×D(A,B)→ D(A,C)

is equivalent to the composition law of cocontinuous maps

CC(P(B),P(A))× CC(P(C),P(B))→ CC(P(C),P(A)).

The distributors form a bicategory D enriched over the (simplicial) monoidal cate-
gory AR.

29.4. The trace map
TrA : P(Ao ×A)→ K

defined in 22.21 is a cocontinuous extension of the map homA : Ao ×A→ K. It is
equivalent to the counit of the duality

ε : P(Ao)⊗ P(A)→ K.

The scalar product of f ∈ P(A) and g ∈ P(Ao) is defined by putting

〈f |g〉 = TrA(g�f).

The map 〈f |−〉 : P(Ao) → K is a cocontinuous extension of the map f : Ao → K
and the map 〈−|g〉 : P(A)→ K a cocontinuous extension of the map g : A→ K.

29.5. Recall that a quategory is null-pointed if it admits a null object, and that
a map between null-pointed quategories is pointed if it preserves null objects. The
quategory of pointed Kan complexes 1\K is null-pointed and symmetric monoidal
closed, where the tensor product is taken to be the smash product. Moreover, every
null-pointed arena is enriched over 1\K and bicomplete as an enriched quategory.
More precisely, If X and Y are two arenas and if X or Y is null-pointed then the
quategories X ⊗ Y and CC(X, Y ) are null-pointed. We shall denote by AR(1\K)
the full sub-category of AR spanned by the null-pointed arenas. The inclusion
AR(1\K) ⊂ AR has both a left and a right adjoint. The left adjoint is the functor
X 7→ >\X, where > denotes the terminal object of X, and the right adjoint is
the functor X 7→ X/⊥, where ⊥ denotes the initial object of X. The (simplicial)
category AR(1\K) is symmetric monoidal closed if the unit object is taken to be
the quategory 1\K. If X is a null-pointed arena, then the equivalence 1\K⊗X ' X
is induced by the smash product

∧ : 1\K ×X → X.
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29.6. If X and Y are null-pointed arenas, we shall say that a map ε : X⊗Y → 1\K
is a (pointed) pairing between X and Y . We shall say that the pairing is exact if
the map

ε] : CC(U, V ⊗X)→ CC(U ⊗ Y, V )
defined by putting ε](f) = (V ⊗ ε)(f ⊗ Y ) is an equivalence of quategories for any
null-pointed arenas U and V . A pairing ε is exact iff it is the counit of an adjunction
X ` Y in the monoidal category AR•. When the pairing ε : X⊗Y → 1\K is exact,
the map

Y → CC(X, 1\K) ' CC(X,K)
induced by ε is an equivalence of quategories; we shall say that Y is the pointed
dual of X and put Y = X∗.

29.7. If A is a simplicial set with null object 0 ∈ A, we shall say that a prestack
f : Ao → K is pointed if f(0) ' 1. We shall denote by P0(A) the full sub-quategory
of P(A) spanned by the pointed prestacks Ao → K. If B is a simplicial set with null
object 0 ∈ B, the external smash product of a null-pointed prestack f ∈ P0(A) with
a null-pointed prestack g ∈ P0(B) is the null-pointed prestack f ∧̄g ∈ P0(A ∧ B)
obtained by putting

(f ∧̄g)(a ∧ b) = f(a) ∧ g(b)
for every pair of objects (a, b) ∈ A× B. The map (f, g) 7→ f ∧̄g is cocontinuous in
each variable and the induced map

P0(A)⊗ P0(B)→ P0(A×B).

is an equivalence of quategories. If A is a null-pointed quategory, the cocontinuous
extension of the map homA : Ao ×A→ 1\K is an exact pairing

P0(Ao)⊗ P0(A)→ 1\K.

Hence the arena P0(Ao) is the pointed dual to the arena P0(A). It follows from the
duality that for any null-pointed arena X we have an equivalence of quategories,

P(A)⊗X ' [Ao, X]

where [Ao, X] denotes the quategory of pointed maps Ao → X. Hence the functor
X 7→ [Ao, X] is left adjoint to the functor X 7→ [A,X].

30. Cartesian theories

A cartesian theory is a small quategory with finite limits. We show that the (sim-
plicial) category of cartesian theories is symmetric monoidal closed. We introduce
the notion of α-cartesian theory for any regular cardinal α ≥ 0.

30.1. A cartesian theory is a small cartesian quategory T . If X is a cartesian
quategory (possibly large), we shall say that a left exact map T → X is a model or
an interpretation of T in X. We shall denote by Model(T,X), or by T (X), the full
simplicial subset of XT spanned by the models T → X. We shall say that a model
T → K is a homotopy model and we shall write

Model(T ) = Model(T,K).

A morphism S → T of cartesian theories is a model S → T . The identity morphism
T → T is the generic or tautological model of T . We shall denote by CT the category
of cartesian theories and morphisms. More generally, if α is a regular cardinal, we
shall say that a small α-cartesian quategory T is an α-cartesian theory. If X is
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an α-cartesian quategory (possibly large), we shall say that an α-continuous map
T → X is a model or an interpretation of T in X. We shall denote by Modelα(T,X),
or by T (X), the full simplicial subset of XT spanned by the models T → X. We
shall say that a model T → K is a homotopy model and we shall write

Modelα(T ) = Modelα(T,K).

A morphism S → T of α-cartesian theories is a model S → T . The identity
morphism T → T is the generic or tautological model of T . We shall denote by
CTα the category of α-cartesian theories and morphisms.

30.2. Remark A 0-cartesian theory is just a small quategory A; and a model of A
in a quategory X is just a map A→ X. Thus,

Model0(A,X) = XA.

A 1-cartesian theory is just a small quategory with terminal object A; and a model
of A in a quategory with terminal object X is a map A → X which preserves
terminal objects.

30.3. If T is a cartesian theory, then the inclusion Model(T ) ⊆ KT has a left
adjoint and the quategory Model(T ) is a finitary presentable arena. If u : S → T
is a morphism of cartesian theories, then the map

u∗ : Model(T )→ Model(S)

induced by u has a left adjoint u!. More generally, if α is a regular cardinal and T
is an α-cartesian theory, then the inclusion Modelα(T ) ⊆ KT has a left adjoint and
the quategory Modelα(T ) is an α-presentable arena. If u : S → T is a morphism of
α-algebraic theories, then the map

u∗ : Modelα(T )→ Modelα(S)

induced by u has a left adjoint u!.

30.4. If T is a cartesian theory, then the map y(a) = homT (a,−) : T → K is model
for every object a ∈ T . We shall say that a model f ∈ Model(T ) is representable if
it is isomorphic to a model y(a) for some object a ∈ T . The map

y : T o → Model(T )

induced by the Yoneda map T o → KT is fully faithful and it induces an equivalence
between T o and the full sub-quategory of Model(T ) spanned by the representable
models. A model of T is a retract of a representable iff it is compact. The full sub-
quategory of compact models of T is equivalent to the Karoubi envelope Kar(T o) =
Kar(T )o. The quategory Kar(T ) is cartesian and the map

i∗ : Model(Kar(T ))→: Model(T )

induced by the inclusion i : T → Kar(T ) is an equivalence of quategories. More
generally, a morphism of cartesian theories u : S → T is a Morita equivalence iff
the map u∗ : Model(T )→ Model(S) induced by u is an equivalence of quategories.
More generally, if α is a regular cardinal and T is an α-cartesian theory, then the
map y(a) = homT (a,−) : T → K is model for every object a ∈ T . We shall say
that a model f ∈ Modelα(T ) is representable if it is isomorphic to a model y(a) for
some object a ∈ T . The map

y : T o → Modelα(T )
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induced by the Yoneda map T o → KT is fully faithful and it induces an equivalence
between T o and the full sub-quategory of Modelα(T ) spanned by the representable
models. A model of T is a retract of a representable iff it is is α-compact. It follows
that the full sub-quategory of α-compact models of T is equivalent to Kar(T o) =
Kar(T )o. Notice that we have Kar(T ) = T if α > ω. The quategory Kar(T ) is
α-cartesian and the map

i∗ : Modelα(Kar(T ))→: Modelα(T )

induced by the inclusion i : T → Kar(T ) is an equivalence of quategories. More gen-
erally, a morphism of α-cartesian theories u : S → T is a Morita equivalence iff the
map u∗ : Modelα(T )→ Modelα(S) induced by u is an equivalence of quategories.

30.5. It T is a cartesian theory, then the Yoneda map y : T o → Model(T ) preserves
finite colimits and it exibits the quategory Model(T ) as the free cocompletion of
T o. More precisely, let us denote by fCC(X, Y ) the quategory of maps preserving
finite colimits between two quategories X and Y . Then the map

y∗ : CC(Model(T ), X)→ fCC(T o, X)

induced by y is an equivalence of quategories for any cocomplete quategory X.
The inverse equivalence associates to a finitely cocontinuous map f : T o → X
its left Kan extension f! : Model(T ) → X along y. More generally, let α be a
regular cardinal and T be an α-cartesian theory. Then the Yoneda map y : T o →
Modelα(T ) preserves α-colimits and it exibits the quategory Modelα(T ) as the free
cocompletion of T o.

30.6. Remark. : It T is a (finitary) cartesian theory, then we have

Model(T ) = Ind(T o)

since a map f : T → K preserves finite limits iff its quategory of elements is directed.
More generally, if α is a regular cardinal, then we have Modelα(T ) = Indα(T o) for
any α-cartesian theory T .

30.7. The forgetful functor CT → S admits a left adjoint which associates to a
simplicial set A a cartesian theory C[A] equipped with a map u : A → C[A]. By
definition, for every cartesian quategory X, the map u∗ : Model(C[A], X) → XA

induced by u is an equivalence of quategories. The quategory C[A] is the opposite
of the quategory Pf (Ao) described in 23.25. The cartesian theory C = C[1] is freely
generated by one object u ∈ C. The quategory C is equivalent to the opposite of
the quategory Kf of finite homotopy types. The equivalence Ko

f → C is induced
by the map x 7→ ux. More generally, if α is a regular cardinal, then the forgetful
functor CTα → S admits a left adjoint which associates to a simplicial set A an α
cartesian theory Cα[A] equipped with a map u : A → Cα[A]. The quategory Cα[A]
is the opposite of the quategory Pα(Ao) described in 23.25. The cartesian theory
Cα = Cα[1] is freely generated by one object u ∈ Cα.

30.8. Notice that C0[A] = A and C1[A] = A ? 1 for any small quategory A. In
particular, C0 = 1 and C1 = I.
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30.9. Every finitary limit sketch (A,P ) has a universal model u : A/P → C[A/P ]
with values in a cartesian theory called the envelopping theory of (A,P ). The
universality means that the map

u∗ : Model(T,X)→ Model(A/P,X)

induced by u is an equivalence for any cartesian quategory X. In particular, the
map

u∗ : Model(C[A/P ])→ Model(A/P )

induced by u is an equivalence of quategories. More generally, if α is a regular
cardinal, then every α-bounded limit sketch (A,P ) has a universal model u : A/P →
Cα[A/P ] with values in an α-cartesian theory called the envelopping theory of (A,P ).

30.10. If (A,P ) is a limit sketch, then by composing the Yoneda map y : Ao → KA

with the left adjoint r to the inclusion Model(A/P ) ⊆ KA we obtain a map

ry : Ao → Model(A/P ).

We shall say that a model f ∈ Model(A/P ) is representable if it belongs to the
essential image of ry. If the sketch (A,P ) is finitary, we shall say that f is finitely
presentable if it is the colimit of a finite diagram of representable models. We
shall denote by Model(A/P )f the full sub-quategory of Model(A/P ) spanned by
the finitely presentable models. Then the quategory C[A/P ] is the opposite of the
quategory Model(A/P )f and the canonical map u : A → C[A/P ] is the opposite
of the map Ao → Model(A/P )f induced by ry. More generally, if α is a regular
cardinal and (A,P ) is an α-bounded limit sketch, we shall say that a model f ∈
Model(A/P ) is α-presentable if it is the colimit of a diagram of cardinality < α
of representable models. We shall denote by Model(A/P )α the full sub-quategory
of Model(A/P ) spanned by the α-presentable models. The quategory Cα[A/P ] is
the opposite of the quategory Model(A/P )α and the map u : A → Cα[A/P ] is the
opposite of the map Ao → Model(A/P )α induced by ry.

30.11. (Example) We saw in 28.8 that the notion of n-object is essentially algebraic
and finitary for any n ≥ 0. We shall denote the cartesian theory of n-objects by
C〈n〉. By definition, it is freely generated by a n-object u ∈ C〈n〉. Hence the map

u∗ : Model(C〈n〉) = K〈n〉

defined by putting u∗(f) = f(u) is an equivalence, where K〈n〉 is the quategory
of n-objects in K. Let us say that an object of K〈n〉 is truncated finite if it is the
n-truncation of a finite homotopy type. It then follows from ?? that the quategory
C〈n〉 is the oppposite of the quategory K〈n〉f of truncated finite n-objects. In
particular, the quategory C〈0〉 is equivalent to the opposite of the category of finite
sets, and the quategory C〈1〉 to the opposite of the quategory of finitely presentable
groupoids.

30.12. If S and T are two cartesian theories, then so is the quategory Model(S, T )
of models S → T . The category of cartesian theories CT is simplicial and symmet-
ric monoidal closed. The tensor product of two cartesian theories S and T is defined
to be the target of a map S × T → S � T left exact in each variable and universal
with respect to that property. More precisely, if X is a cartesian quategory, let us
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denote by Model(S, T ;X) the full simplicial subset of XS×T spanned by the maps
S × T → X left exact in each variable. Then the map

φ∗ : Model(S � T,X)→ Model(S, T ;X)

induced by φ is an equivalence for any cartesian quategory X. It follows that we
have two canonical equivalences of quategories

Model(S � T,X) ' Model(S, Model(T,X)) ' Model(T,Model(S, X)).

In particular, we have two canonical equivalences

Model(S � T ) ' Model(S, Model(T )) ' Model(T,Model(S)).

The unit for the tensor product is the cartesian theory C described in 30.7. More
generally, if α is a regular cardinal and S and T are two α-cartesian theories, then so
is the quategory Modelα(S, T ) of models S → T . The category CTα is simplicial
and symmetric monoidal closed. The tensor product of two α-cartesian theories
S and T is defined to be the target of a map S × T → S �α T α-continuous in
each variable and universal with respect to that property. The unit for the tensor
product is the theory Cα described in 30.7.

30.13. Recall that a 1-cartesian theory T is a quasi-category with terminal object
1. The tensor product S �1 T of two 1-cartesian theories S and T is a equivalent
to the smash product S ∧ T of the pointed simplicial sets (S, 1) and (T, 1).

30.14. If A and B are simplicial sets, then the morphism

φ : C[A]� C[B]→ C[A×B]

defined by putting φ(a � b) = (a, b) for every pair of objects (a, b) ∈ A × B is an
equivalence of quategories. Hence the functor

C[−] : S→ CT

preserves tensor products (where the tensor product on S is the cartesian product).
If T is a cartesian theory, we shall put

T [A] = C[A]� T

Then for any cartesian quategory X we have two equivalences of quategories

Model(T [A], X) ' Model(T,XA) ' Model(T,X)A.

This shows that T [A] is the cartesian theory of A-diagrams of models of T . In
particular, T [I] is the cartesian theory of maps between two models of T . More
generally, if α is a regular cardinal, then the functor

Cα[−] : S→ CTα

preserves tensor products. If T is an α-cartesian theory, we shall put

T [A] = Cα[A]�α T
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30.15. The cartesian product of a (small) family of cartesian quategories is carte-
sian. Hence the category CT has cartesian products. The cartesian product of
a finite family of cartesian theories is also their coproduct. This means that the
(simplicial) category CT is semi-additive. For example, the terminal quategory 1
is also the initial object of CT, since the quategory Model(1, T ) is equivalent to
the quategory 1 for every T . Moreover, if S and T are cartesian theories, consider
the maps

iS : S → S × T and iT : S → S × T

defined by putting iS(x) = (x, 1) and iT (y) = (1, y) for every x ∈ S and y ∈ T .
Then the map

(i∗S , i∗T ) : Model(S × T,X)→ Model(S, X)×Model(T,X)

induced by the pair (iS , iT ) is an equivalence for any cartesian quategory X. More
generally, the category CTα has cartesian products for any regular cardinal α. The
cartesian product of a family of α-cartesian theories indexed by a set of cardinality
< α is also their coproduct.

30.16. If T is a cartesian theory and X is an arena, then the external tensor product
of a model f ∈ Model(T ) with an object x ∈ X is defined to be the map f⊗x : T →
X obtained by applying the left adjoint to the inclusion Model(T,X) ⊆ XT to the
map a 7→ f(a) · x. See for the action of K on X. This defines a map (f, x) 7→ f ⊗ x
cocontinuous in each variable and the induced map

Model(T )⊗X ' Model(T,X)

is an equivalence of quategories. In particular, the external tensor product of a
model f ∈ Model(S) with a model g ∈ Model(T ) is the model f⊗g ∈ Model(S�T )
defined in 28.28. The map (f, g) 7→ f ⊗ g is cocontinuous in each variable and the
induced map

Model(S)⊗Model(T ) ' Model(S � T )
is an equivalence of quategories. More generally, if α be a regular cardinal, then
the external tensor induces an equivalence of quategories

Modelα(T )⊗X ' Modelα(T,X)

for any α-cartesian theory T and any arena X. In particular it induces the equiv-
alence of quategories

Modelα(S)⊗Modelα(T ) ' Modelα(S �α T )

of 28.28.

30.17. (Example) Recall that a stable object or of spectrum in a cartesian quategory
X is a model of a finitary limit sketch (A,P ) by 28.7. Hence the notion of stable
object is essentially algebraic and finitary. We shall denote the cartesian theory of
spectra by Spec and the quategory of spectra in X by Spec(X). The quategory
Spec(X) is the (homotopy) projective limit of the infinite sequence of quategories

1\X 1\XΩoo 1\XΩoo · · · .Ωoo

The quategory Model(Spec) is the quategory of spectra Sp. If C′ denotes the carte-
sian theory of pointed objects, consider the interpretation i : C′ → Spec defined by
the pointed object x0 of the generic spectrum (xn). Then the adjoint adjoint pair

i! : Model(C′)↔ Model(Spec) : i∗
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is the classical adjoint pair

Σ∞ : 1\K ↔ Sp : Ω∞

between pointed spaces and spectra.

30.18. (Example) Recall that a category object in a cartesian quategory X is a
model of a finitary limit sketch by 28.9. Hence the notion of category object is
essentially algebraic and finitary. We shall denote the cartesian theory of categories
by Cat and the quategory of category objects in X by Cat(X). We shall say that
a morphism f : C → D in Cat(X) is a functor.

30.19. (Example) Recall that a groupoid object in a cartesian quategory X is a
model of a finitary limit sketch by 28.10. Hence the notion of groupoid object is
essentially algebraic and finitary. We shall denote the cartesian theory of groupoids
by Gpd and the quategory of groupoid objects in X by Gpd(X). If i denotes the
canonical morphism i : Cat→ Gpd, then the map

i! : Model(Cat)↔ Model(Gpd) : i∗

associates to a category C the groupoid freely generated by it.

30.20. (Example) If X is a cartesian quategory, then the forgetful map Ob :
Gpd(X) → X has both a left and a right adjoint. The left adjoint Sk0 : X →
Gpd(X) associate to an object b ∈ X the constant simplicial object Sk0(b) : ∆o →
X with value b. The right adjoint Cosk0 : X → Gpd(X) associates to b a simplicial
object obtained by putting Cosk0(b)n = b[n] for each n ≥ 0. We say that Cosk0(b)
is the Cech groupoid of b. More generally, the Cech groupoid Cech(f) of an arrow
f : a → b in X is defined to be the image by the canonical map X/b → X of the
the Cech groupoid of the object f ∈ X/b. Let C[I] be the cartesian theory of maps
and consider the interpretation j : Gpd→ C[I] defined by the Cech groupoid of the
generic map. Then the map

j! : Model(Gpd)→ Model(C[I]) = KI

takes a groupoid C to its classifying space BC equipped with the canonical map
C0 → BC. It induces an equivalence between Model(Gpd) and the full sub-
quategory of KI spanned by the surjections. It follows that the map j : Gpd→ C[I]
is fully faithful since j! is fully faithful

30.21. (Example) If X is a cartesian quategory, then the inclusion Gpd(X) ⊆
Cat(X) has a right adjoint which associates to a category C ∈ Cat(X) its groupoid
of isomorphisms J(C). We have J(C) = i∗(C), where i : Gpd → Cat is the
interpretation defined by the groupoid of isomorphisms of the generic category
object in Cat. If A is a simplicial set, we call a map f : A→ X essentially constant
if it belongs to the essential image of the diagonal X → XA. A category object
C : ∆o → X is essentially constant iff the unit map C0 → C1 is invertible. We
shall say that a quategory C satisfies the Rezk condition, or that it is reduced,
if the groupoid J(C) is essentially constant. The notion of a reduced category
object is essentially algebraic and finitary. We shall denote the cartesian theory of
reduced categories by RCat and the quategory of reduced category objects in X by
RCat(X).
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30.22. We observe that the nerve functor N : Q1 → [∆o,K] defined in 23.5. in-
duces an equivalence of quategories

N : Q1 ' Model(RCat).

30.23. (Example) We say that a category object C in a cartesian quategory X is
n-truncated if the map C1 → C0 × C0 is a (n− 1)-cover. If n = 0, this means that
C is a preorder. The notion of n-truncated category is essentially algebraic and
finitary. We shall denote the cartesian theory of n-truncated categories by Cat〈n〉.
If a reduced category object C ∈ Cat(X) is n-truncated, then Ck is a n-object for
every k ≥ 0. The notion of n-truncated reduced category is essentially algebraic.
We shall denote the cartesian theory of n-truncated reduced categories by RCat〈n〉.

30.24. (Example) A double category object in cartesian quategory X is a double
simplicial object C : ∆o × ∆o → X which is a category object in each variable.
If Cat denotes the cartesian theory of categories then Cat2 = Cat � Cat is the
cartesian theory of double categories. If Cat2(X) denotes the quategory of double
category objects in X, then we have

Cat2(X) = Cat(Cat(X)).

More generally, a n-fold category object in X is a n-fold simplicial object C :
(∆n)o → X which is a category object in each variable. We shall denote the
cartesian theory of n-fold categories by Catn and the quategory of n-fold category
objects in X by Catn(X). We shall say that a n-fold category C : (∆n)o → X is
reduced if it is reduced in each variable. If RCat denotes the cartesian theory of
reduced categories, then RCatn = RCat�n is the cartesian theory of reduced n-fold
categories.

30.25. (Exemple) A 2-category object in cartesian quategory X is a double category
C : ∆o → Cat(X) such that the map C0 : ∆o → X is essentially constant. The
notion of 2-category object is essentially algebraic and finitary. We shall denote the
cartesian theory of 2-categories by Cat2 and the quategory of 2-category objects
in X by Cat2(X). A morphism f : C → D in Cat2(X) is a 2-functor. More
generally, the quategory Catn(X) of n-category objects in X is defined by induction
on n ≥ 2: a category object C : ∆o → Catn−1(X) is a n-category if C0 is essentially
constant. The notion of n-category object is essentially algebraic and finitary. We
shall denote the cartesian theory of n-categories by Catn and the quategory of n-
category objects in X by Catn(X). We say that a n-category C ∈ Catn(X) is
reduced if it is reduced as a n-fold category. A n-category C : ∆o → Catn−1(X) is
reduced iff the quategory C : ∆o → Catn−1(X) is reduced and the (n−1)-category
C1 is reduced. We denote the cartesian theory of reduced n-categories by RCatn
and the quategory of reduced n-category objects in X by RCatn(X).

30.26. A quategory X is equivalent to a quategory of models of a cartesian theory
iff it is finitary presentable arena iff it is generated by a small set of compact objects.
More precisely, let K ⊆ X be a small full sub-quategory of compact objects. If K
is closed under finite colimits, then the left Kan extension

i! : Model(Ko)→ X

of the inclusion i : K → X along y : K →→ Model(Ko) is fully faithful and co-
continuous. Moreover, i! is an equivalence if K generates or separates X. More
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generally, if α is a regular cardinal, then a quategory X is equivalent to the quat-
egory of models of an α-cartesian theory iff X is an α-presentable arena iff it is
generated by a small set of α-compact objects. More precisely, let K ⊆ X be a
small full sub-quategory of α-compact objects. If K is closed under α-colimits, then
the left Kan extension

i! : Modelα(Ko)→ X

of the inclusion i : K → X along y : K →→ Modelα(Ko) is fully faithful and
cocontinuous. Moreover, i! is an equivalence if K generates or separates X.

30.27. Recall from 32.23 that a cocontinuous map betwen finitary presentable
arenas f : X → Y preserves compact objects iff its right adjoint g : Y → X is
finitary accessible. Let us denote by ARω the category whose objects are the arenas
and whose morphisms are the cocontinuous maps preserving compact objects. If
u : S → T is a morphism of cartesian theories, then the map

u! : Model(S)→ Model(T )

preserves compact objects. The resulting functor

Model : CT→ ARω.

has a right adjoint ko which associates to X the opposite of its sub-quategory k(X)
of compact objects (or a small quategory equivalent to it). The quategory k(X)
is Karoubi complete and the counit of the adjunction εX : Model(ko(X)) → X is
fully faithful; and it is an equivalence iff X is finitary presentable. The unit of the
adjunction ηT : T → ko(Model(T )) is a Morita equivalence; and it is an equivalence
iff T is Karoubi complete. Hence the adjoint pair Model ` ko induces an equivalence
between the full subcategory of CT spanned by the Karoubi complete theories and
the full sub category of ARω spanned by the finitary presentable quategories. More
generally, if α is a regular cardinal, then a cocontinuous map betwen α-presentable
quategories f : X → Y preserves α-compact objects iff its right adjoint g : Y → X
is α-accessible. Let us denote by ARα the category whose objects are the arenas
and whose morphisms are the cocontinuous maps preserving α-compact objects. If
u : S → T is a morphism of α-cartesian theories, then the map

u! : Modelα(S)→ Modelα(T )

preserves α-compact objects. The resulting functor

Modelα : CTα → ARα

has a right adjoint ko
α which associates to X the opposite of its sub-quategory kα(X)

of α-compact objects (or a small quategory equivalent to it). The quategory kα(X)
is Karoubi complete and the counit of the adjunction εX : Modelα(ko

α(X))→ X is
fully faithful; and it is an equivalence iff X is α-presentable. The unit of the adjunc-
tion ηT : T → ko

α(Modelα(T )) is a Morita equivalence; and it is an equivalence iff T
is Karoubi complete. Hence the adjoint pair Modelα ` ko

α induces an equivalence
between the full subcategory of CTα spanned by the Karoubi complete theories
and the full sub category of ARα spanned by the α-presentable quategories.
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30.28. The notion of homotopy factorisation system in the category CT is defined
as in 28.29. The category CT admits a homotopy factorisation system (A,B) in
which A is the class of essentially surjective morphisms and B the class of fully
faithful morphisms. More generally, if α is a regular cardinal, then the category
CTα admits a homotopy factorisation system (A,B) in which A is the class of
essentially surjective morphisms and B the class of fully faithful morphisms. A
morphism u : S → T in CTα is fully faithful, iff the map u! : Modelα(S) →
Modelα(T ) is fully faithful. The map u∗ : Modelα(T )→ Modelα(S) is conservative
iff u is Morita surjective.

30.29. Let Σ be a set of morphisms in a cartesian theory T . If Σ is closed under
base changes then the quategory L(T,Σ) is cartesian and the canonical map T →
L(T,Σ) is left exact. We shall say that a morphism of cartesian theories is a
quasi-localisation (resp. iterated quasi-localisation) if it is a quasi-localisation (resp.
an iterated quasi-localisation) as a map of quategories. The category CT admits
a homotopy factorisation system (A,B) in which B is the class of conservative
morphisms and A is the class of iterated quasi-localisations. This is true also of the
category CTα.

30.30. The cartesian theories Gpd and RCat are cartesian localisations of Cat.
The cartesian theory RCatn is a a cartesian of Catn for every n ≥ 0. The cartesian
theory C〈n〉 is a cartesian localisation of C for every n ≥ 0.

30.31. The initial model of a cartesian theory T is representable by its terminal
object 1 ∈ T . We shall say that a morphism of cartesian theories u : S → T is
coinitial if the map

u∗ : Model(T )→ Model(S)

preserves initial models, that is, if u∗(⊥) = ⊥. A morphism u : S → T is coinitial
iff the map S(1, x) → T (1, ux) induced by u is a homotopy equivalence for every
object x ∈ S. The category CT admits a homotopy factorisation system (A,B)
in which B is the class of coinitial morphisms. We shall say that a morphism in
the class A is elementary. For every model f of a cartesian theory T there is an
elementary morphism i : T → T [f ] with an isomorphism i∗(⊥) = f . We shall say
that T [f ] is the envelopping theory of the model f . The map

ĩ∗ : Model(T [f ])→ f\Model(T )

induced by the map i∗ : Model(T [f ])→ Model(T ) is an equivalence of quategories.
When f is representable by an object a ∈ T , we haveT [f ] = T/a and i : T → T/a
is the base change map. More generally, if α is a regular cardinal > 0, then the
category CTα admits a homotopy factorisation system (A,B) in which B is the class
of coinitial morphisms. A morphism in the class A is said to be elementary. For any
model f of an α-cartesian theory T there is an elementary morphism i : T → T [f ]
such that i∗(⊥) = f . The map

ĩ∗ : Modelα(T [f ])→ f\Modelα(T )

induced by i∗ is an equivalence of quategories. We shall say that T [f ] is the en-
velopping theory of the model f .
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30.32. We say that a morphism of cartesian theories u : S → T is coterminal if
the map

u! : Model(S)→ Model(T )

takes a terminal model >S of S to a terminal model of T . The category CT
admits a homotopy factorisation system (A,B) in which A is the class of coterminal
morphisms. A morphism u : S → T belongs to B iff it is equivalent to a left fibration
E → T . For any model f ∈ Model(T ), the left fibration p : el(f) → T belongs to
B. Moreover, we have p!(>) ' f and the map p̃! : Model(el(f)) → Model(T )/f
induced by the map p! : Model(el(f))→ Model(T ) is an equivalence of quategories.
More generally, if α is a regular cardinal, we say that a morphism of α-cartesian
theories u : S → T is coterminal if the map

u! : Modelα(S)→ Modelα(T )

preserves terminal objects. The category CTα admits a homotopy factorisation
system (A,B) in which A is the class of coterminal morphisms. A morphism u :
S → T belongs to B iff it is equivalent to a left fibration E → T . For any model
f ∈ Modelα(T ), the left fibration p : el(f) → T belongs to B. Moreover, we have
p!(>) ' f and the map

p̃! : Modelα(el(f))→ Modelα(T )/f

induced by p! is an equivalence of quategories.

30.33. A morphism of cartesian theories u : S → T is coterminal iff the map
u! : Model(S) →: Model(T ) is coterminal in AR. A morphism u : S → T is
equivalent to a left fibration iff the map u! is equivalent to a right fibration. There
is a similar result for a morphism of α-cartesian theories u : S → T .

30.34. A map of simplicial sets u : A → B is initial iff the morphism of cartesian
theories C[u] : C[A]→ C[B] is coterminal. A map u : A→ B is equivalent to a left
fibration iff the morphism C[u] : C[A]→ C[B] is equivalent to a left fibration. There
is a similar result for the morphism Cα[u].

30.35. Let us denote by FP the (simplicial) category whose objects are the finitary
presentable quategories and whose morphisms are the finitary maps. The cartesian
product of two finitary presentable quategories X and Y is finitary presentable and
we have k(X×Y ) ' k(X)×k(Y ), where k(X) denotes the quategory of α-compact
objects of X. The quategory FP is cartesian closed. More precisely, the map

i∗ : Fin(X, Y )→ Y k(X)

induced by the inclusion i : k(X) ⊆ X is an equivalence, where the domain of i∗ is
the simplicial set of finitary maps X → Y .

30.36. Let us say that a quategory A is finite if it is finitely presented and the
simplicial set HomA(a, b) is homotpy finite for every pair of objects a, b ∈ A. In this
case the cartesian theories Cω[A] and Cω[Ao] are mutually dual in the symmetric
monoidal category CT. The counit of this duality is the map

ε : C[A]� C[Ao]→ C
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induced by the opposite of the map HomA : Ao×A→ Kf = Co. Moreover, we have
an equivalence of quategories T [Ao] ' TA for any cartesian theory T . It follows
that we have an equivalence of quategories,

Model(SAo

, T ) ' Model(S, TA)

for any S, T ∈ CT.

30.37. If T is a cartesian theory, we shall say that a left fibration E → T is a
vertical model of T if the quategory E is cartesian and the map E → T is left exact.
A map f : T → K is a model of T iff the left fibration el(f) → T is a vertical
model. The model category (S/T,Wcov) admits a Bousfield localisation whose
fibrant objects are the vertical models over T . The coherent nerve of the simplicial
category of vertical models of T is equivalent to the quategory Model(T ). More
generally, if α is a regular cardinal and T is an α-cartesian theory, we shall say that
a left fibration E → T is a vertical model of T if the quategory E is α-cartesian
and the map E → T is α-continuous. A map f : T → K is a model of T iff the left
fibration el(f) → T is a vertical model. The model category (S/T,Wcov) admits
a Bousfield localisation whose fibrant objects are the vertical models of T . The
coherent nerve of the simplicial category of vertical models of T is equivalent to the
quategory Modelα(T ).

31. Sifted colimits

31.1. This notion of sifted category was introduced by C. Lair in [La] under the
name of categorie tamisante. We shall say that a simplicial set A is weakly directed
or sifted if the colimit map

lim
−→

: KA → K

preserves finite products. More generally, if α is a regular cardinal, we shall say
that a simplicial set A is is weakly α-directed is α-sifted if the colimit map

lim
−→

: KA → K

preserves α-products.

31.2. The notion of sifted simplicial set is invariant under Morita equivalence. A
directed simplicial set is sifted. A quategory with finite coproducts is sifted. A
sifted simplicial set is weakly contractible. A non-empty simplicial set A is sifted
iff the diagonal A → A × A is final. A non-empty quategory A is sifted iff the
simplicial set a\A×A b\A defined by the pullback square

a\A×A b\A

��

// b\A

��
a\A // A

is weakly contractible for any pair of objects a, b ∈ A. The category ∆o is sifted.
More generally, let α be a regular cardinal. The notion of α-sifted simplicial set
is invariant under Morita equivalence. An α-directed simplicial set is α-sifted.
A quategory with α-coproducts is α-sifted. A simplicial set A is α-sifted iff the
diagonal A → AS is final for every set S of cardinality < α. A quategory A is
sifted iff for every set S of cardinality < α and every family of objects (ai) ∈ AS
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the (fiber) product over A of the left fibration ai\A → A has a total space which
is contractible.

31.3. A simplicial set A is sifted iff the canonical map A→ Cup(A) is final, where
Cup(A) is the free cocompletion of A under finite coproducts 23.24. More generally,
if α is a regular cardinal, then a simplicial set A is α-sifted iff the canonical map
A → Cupα(A) is final, where Cupα(A) is the free cocompletion of A under finite
coproducts 23.24.

31.4. We shall say that a diagram d : A → X in a quategory X is sifted if the
indexing simplicial set A is sifted, in which case we shall say that the colimit of d
is sifted if it exists. We shall say that a quategory X has sifted colimits if every
(small) sifted diagram A→ X has a colimit. We shall say that a map between two
quategories is fair if it preserves sifted colimits. More generally, if α is a regular
cardinal, we shall say that a diagram d : A→ X in a quategory X is α-sifted if A is
α-sifted, in which case we shall say that the colimit of d is α-sifted if it exists. We
shall say that a quategory X has α-sifted colimits if every (small) α-sifted diagram
A → X has a colimit. We shall say that a map between two quategories is α-fair
if it preserves α-sifted colimits.

31.5. A quategory with sifted colimits and finite coproducts is cocomplete. See
19.37. A fair map between cocomplete quategories is cocontinuous iff it preserves
finite coproducts. More generally, let α be a regular cardinal. A quategory with
α-directed colimits and α-coproducts is cocomplete. An α-fair map between co-
complete quategories is cocontinuous iff it preserves α-coproducts.

31.6. A finitary map between cocomplete quategories is fair iff it preserves ∆o-
indexed colimits. See [] for a proof.

31.7. We say that a prestack g ∈ P(A) is weakly inductive, if the simplicial set
A/g (or El(g)) is sifted. We shall denote by Wind(A) the full sub-quategory of
P(A) spanned by the weakly inductive objects and by y : A → Wind(A) the map
induced by the Yoneda map A → P(A). The quategory Wind(A) is closed under
sifted colimits and the map y : A → Wind(A) exibits the quategory Wind(A) as
the free cocompletion of A under sifted colimits. More precisely, let us denote by
Fair(X, Y ) the quategory of fair maps X → Y between two quategories. Then the
map

y∗ : Fair(Wind(A), X)→ XA

induced by y is an equivalence of quategories for any quategory with sifted colimits
X. The inverse equivalence associates to a map g : A → X its left Kan extension
g! : Wind(A)→ X along u. More generally, if α is a regular cardinal, we shall say
that a prestack g ∈ P(A) is weakly α-inductive if the simplicial set A/g (or El(g))
is α-sifted. We shall denote by Windα(A) the full sub-quategory of P(A) spanned
by the weakly α-inductive objects and by y : A →Windα(A) the map induced by
the Yoneda map A → P(A). The quategory Windα(A) is closed under α-sifted
colimits and the map y : A → Windα(A) exibits the quategory Windα(A) as the
free cocompletion of A under α-sifted colimits.

31.8. A quategory A has α-sifted colimits iff the map y : A → Windα(A) has a
left adjoint.
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31.9. We shall say that a quategory is weakly accessible if it is equivalent to a
quategory Windα(A) for for some regular cardinal α and and some small quategory
A. More precisely, we shall say that a quategory is an weakly α-accessible if it
is equivalent to Windα(A). We shall say that a quategory is a weakly finitary
accessible if it is weakly ω-accessible, that is, if if it is equivalent to a quategory
Wind(A) for a small quategory A.

31.10. If A is a small quategory with finite coproducts, then the quategory Wind(A)
is cocomplete and the map y : A→Wind(A) preserves finite coproducts; a prestack
f : Ao → K is weakly inductive iff it preserves finite products. Moreover, the map
y : A → Wind(A) exibits the quategory Wind(A) as the free cocompletion of A.
More precisely, let us denote the quategory of maps preserving finite coproducts
between two quategories by fCprod(X, Y ). Then the map

y∗ : CC(Wind(A), X)→ fCprod(A,X)

induced by y is an equivalence of quategories for any quategory with finite co-
products X. The inverse equivalence associates to a map which preserves finite
coproducts f : A→ X its left Kan extension f! : Wind(A)→ X along y. More gen-
erally, if A is a small quategory with α-coproducts, then the quategory Windα(A)
is cocomplete and the map y : A → Windα(A) preserves α-coproducts; a prestack
f : Ao → K is weakly α-inductive iff it preserves α-products. Moreover, the map
y : A→Windα(A) exibits the quategory Windα(A) as the free cocompletion of A.

31.11. If A is a small simplicial set, let us denote by Cup(A) the free cocompletion
of A under finite coproducts. Then the left Kan extension of the inclusion i :
Cup(A) ⊆ P(A) is an equivalence of quategories,

Wind(Cup(A))→ P(A).

More generally, if α is a regular cardinal, let us denote by Cupα(A) the free co-
completion of A under α-coproducts. The left Kan extension of the inclusion
i : Cupα(A) ⊆ P(A) is an equivalence of quategories,

Windα(Cupα(A))→ P(A).

31.12. Let X be a (locally small) quategory with sifted colimits. We shall say that
an object a ∈ X is perfect if the map

hom(a,−) : X → K
is fair. More generally, let α be a regular cardinal and X be a quategory with
α-siftted colimits. We shall say that an object a ∈ X is α-perfect if the map
homX(a,−) is α-fair.

31.13. An object is 0-perfect iff it is 0-compact iff it is atomic. An object is 1-
perfect iff it is 1-compact.

31.14. A perfect object is compact. The class of perfect objects is closed under
finite coproducts and retracts. An object x ∈ K is perfect iff it is discrete and
finite. If A is a simplicial set, then a prestack g ∈ P(A) is perfect iff it is a finite
coproduct of atomic prestacks. A prestack g ∈ Wind(A) is perfect iff it is atomic.
More generally, let α be a regular cardinal. The class of α-perfect objects is closed
under α-coproducts and retracts. An object x ∈ K is 0-perfect iff it is contractibe,
and it is 1-perfect iff it is contractible or empty. If A is a simplicial set, then
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a prestack g ∈ P(A) is perfect iff it is an α-coproduct of atomic prestacks. A
prestack g ∈ Windα(A) is perfect iff it is atomic. Hence the quategory α-perfect
objects of a weakly α-accessible quategory is essentially small.

31.15. A compact object of a cocomplete quategory X is perfect iff the map

hom(a,−) : X → K

preserves ∆o-indexed colimits.

31.16. Let X be a (locally small) quategory with sifted colimits. Then X is weakly
finitary accessible iff its subcategory of perfect objects is essentially small and every
object in X is a sifted colimit of a diagram of perfect objects. More precisely, if
K ⊆ X is a small full sub-quategory of perfect objects, then the left Kan extension

i! : Wind(K)→ X

of the inclusion i : K ⊆ X is fully faithful. Moreover, i! is an equivalence if every
object of X is a sifted colimit of a diagram of objects of K. More generally, let α
be a regular cardinal and X be a quategory with α-directed colimits. Then X is
weakly α-accessible iff its subcategory of α-perfect objects is essentially small and
every object in X is an α-sifted colimit of a diagram of α-perfect objects. More
precisely, if K ⊆ X is a small full sub-quategory of α-perfect objects, then the left
Kan extension

i! : Windα(K)→ X

of the inclusion i : K ⊆ X is fully faithful. Moreover, i! is an equivalence if every
object of X is an α-sifted colimit of a diagram of objects of K.

31.17. A cocomplete (locally small) quategory X is weakly finitary accessible iff
it is generated by a set of perfect objects. More precisely, let K be a small full
sub-quategory of perfect objects of X. If K is closed under finite coproducts, then
the left Kan extension

i! : Wind(K)→ X

of the inclusion i : K ⊆ X along y : K →: Wind(K) is fully faithful and cocon-
tinuous. Moreover, i! is an equivalence if in addition K generates or separates X.
More generally, if α is a regular cardinal, then a cocomplete quategory X is weakly
α-accessible iff it is generated by a small set of α-perfect objects. More precisely,
let K ⊆ X be a small full sub-quategory of α-perfect objects. If K is closed under
α-colimits, then the quategory Indα(K) is cocomplete and the left Kan extension

i! : Windα(K)→ X

of the inclusion i : K → X along y : K →→ Windα(K) is fully faithful and
cocontinuous. Moreover, i! is an equivalence if K generates or separates X.

31.18. Let f : X ↔ Y ; g be a pair of adjoint maps between cocomplete quategories.
If g is fair, then f preserves perfect objects, and the converse is true if X is weakly
finitary accessible.. More generally, if g is α-fair, then f preserves α-perfect objects,
and the converse is true if X is weakly α-accessible.
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32. Algebraic theories and theaters

Universal algebra was formulated in categorical terms by Lawvere [La]. It was
extended to homotopy invariant algebraic structures by Boardman and Vogt [BV]
and more recently by Badzioch [?] and Bergner [B4]. Here we further extends this
theory to quategories. The quategory of models of an algebraic theory is called a
theater. A quategory is a theater iff it is generated by a set of perfect objects.

32.1. There is a classical theory of simplicialy enriched algebraic theories and their
models. See [?] See 51.16 and 51.17 for a comparaison with the theory presented
in this section.

32.2. We shall say that a small quategory with finite products T is a (finitary)
algebraic theory. A model of T in a quategory X (possibly large) is a map T → X
which preserves finite products. We also say that a model T → X is an algebra of
T in X. We shall denote by Alg(T,X), or by T (X), the full simplicial subset of
XT spanned by the algebras T → X and we shall write

Alg(T ) = Alg(T,K).

A morphism of algebraic theories S → T is a model S → T . The identity morphism
T → T is the generic or tautological model of T . We shall denote by ALG the
category of algebraic theories and morphisms. More generally, if α is a regular
cardinal, we shall say that a small quategory T is α-algebraic if it has α-products.
A model of T in a quategory X (possibly large) is a map T → X which preserves
α-products. We shall say that a model T → X is an algebra of T in X. We shall
denote by Algα(T,X), or by T (X), the full simplicial subset of XT spanned by the
models T → X and we shall write

Algα(T ) = Algα(T,K).

A morphism of α-algebraic theories S → T is a model S → T . We shall denote by
ALGα the category of α-algebraic theories and morphisms.

32.3. We shall say that a quategory X is a theater if it is equivalent to a quategory
Algα(T ) for some α-algebraic theory T (and some regular cardinal α). More pre-
cisely, we shall say that X is an α-theater if it is equivalent to a quategory Algα(T ).
We shall say that X is a finitary theater if it is an ω-theater.

32.4. Every small quategory is a 0-algebraic theory. A small quategory with ter-
minal object is a 1-algebraic theory. For example, the category Split generated by
two objects a and b and by two morphisms i : a→ b and r : b→ a such that ri = 1a

has a terminal object a. A model of Split → X is a pointed object in X. Thus
Alg1(Split,X) ' 1\X. An α-theater is also a β-theater for every regular cardinal
β ≥ α. A quategory X is a 0-theater iff it is equivalent to a quategory P(A) for a
small simplicial set A. The quategory 1\K of pointed Kan complexes is a 1-theater.

32.5. If T is an α-algebraic theory, then so is the category hoT and the map
T → hoT preserves α-products. We shall say that a model f : T → K is discrete
if the object f(x) is discrete for every object x ∈ T . The quategory Algα(T,K〈0〈)
of discrete models of T is equivalent to the category Algα(hoT,Set) of set valued
models of hoT . We shall say that T is discrete if the map T → hoT is an equivalence
of quategories. In other words, T is discrete iff the quategory T is 1-truncated.
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32.6. If T is a finitary algebraic theory , then the inclusion Alg(T ) ⊆ KT has a
left adjoint and the quategory Alg(T ) is finitary presentable. If u : S → T is a
morphism of algebraic theories, then the map

u∗ : Alg(T )→ Alg(S)

induced by u has a left adjoint u!. More generally, if α is a regular cardinal and T
is an α-algebraic theory, then the inclusion Algα(T ) ⊆ KT has a left adjoint and
the quategory Algα(T ) is α-presentable. If u : S → T is a morphism of α-algebraic
theories, then the map

u∗ : Algα(T )→ Algα(S)

induced by u has a left adjoint u!.

32.7. If T is an algebraic theory, then the map y(a) = homT (a,−) : T → K
is model for every object a ∈ T . We shall say that an algebra f ∈ Alg(T ) is
representable if it is isomorphic to a model y(a) for some object a ∈ T . The map

y : T o → Alg(T )

induced by the Yoneda map T o → KT is fully faithful and it induces an equivalence
between T o and the full sub-quategory of Alg(T ) spanned by the representable
algebras. A model of T is a retract of a representable iff it is perfect. The full sub-
quategory of perfect models of T is equivalent to the Karoubi envelope Kar(T o) =
Kar(T )o. The quategory Kar(T ) has finite products and the map

i∗ : Alg(Kar(T ))→: Alg(T )

induced by the inclusion i : T → Kar(T ) is an equivalence of quategories More
generally, a morphism of algebraic theories u : S → T is a Morita equivalence iff
the map u∗ : Alg(T )→ Alg(S) induced by u is an equivalence of quategories. More
generally, if α is a regular cardinal and T is an α-algebraic theory, then the map
y(a) = homT (a,−) : T → K is model for every object a ∈ T . We shall say that an
algebra f ∈ Algα(T ) is representable if it is isomorphic to a model y(a) for some
object a ∈ T . The map

y : T o → Algα(T )

induced by the Yoneda map T o → KT is fully faithful and it induces an equivalence
between T o and the full sub-quategory of Algα(T ) spanned by the representable
algebras. A model of T is a retract of a representable iff it is α-perfect. The full sub-
quategory of Alg(T ) spanned by the α-perfect models is equivalent to Kar(T o) =
Kar(T )o. The quategory Kar(T ) has α-products and the map

i∗ : Algα(Kar(T ))→: Algα(T )

induced by the inclusion i : T → Kar(T ) is an equivalence of quategories. More
generally, a morphism of algebraic theories u : S → T is a Morita equivalence iff
the map u∗ : Alg(T )→ Alg(S) induced by u is an equivalence of quategories.

32.8. If T is a finitary algebraic theory, then the Yoneda map y : T o → Alg(T )
preserves finite coproducts and it exibits the quategory Alg(T ) as the free cocom-
pletion of T o. More precisely, let us denote by fCprod(X, Y ) the quategory of maps
preserving finite coproducts between two quategories X and Y . Then the map

y∗ : CC(Alg(T ), X)→ fCprod(T o, X)
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induced by y is an equivalence for any cocomplete quategory X. The inverse equiv-
alence associates to a map preserving finite coproducts f : T o → X its left Kan
extension f! : Mod(T ) → X along y. More generally, let α be a regular cardinal
and T be an α-algebraic theory. Then the Yoneda map y : T o → Algα(T ) preserves
α-coproducts and it exibits the quategory Algα(T ) as the free cocompletion of T o.

32.9. Remark. : It T is a finitary algebraic theory, then we have

Alg(T ) = Wind(T o)

since a map f : T → K preserves finite products iff its quategory of elements
is sifted. More generally, if α is a regular cardinal, then we have Algα(T ) =
Windα(T o) for any α-algebraic theory T .

32.10. The forgetful functor ALG → S admits a left adjoint which associates
to a simplicial set A a finitary algebraic theory O[A] equipped with a map u :
A → O[A]. By definition, for any quategory with finite products X, the map
u∗ : Alg(O[A], X) → XA induced by u is an equivalence. This means that O[A]
is the algebraic theory of A-diagrams. In particular, O[I] is the algebraic theory
of maps. The algebraic theory O = O[1] is freely generated by one object u ∈ O.
The quategory O[A] is the opposite of the quategory Cup(Ao) described in 23.24.
The quategory O is equivalent to the opposite of the category of finite cardinals
N . The equivalence No → O takes a natural number n ≥ 0 to the object un ∈ O.
More generally, if α is a regular cardinal, then the forgetful functor ALGα → S
admits a left adjoint which associates to a simplicial set A an α-algebraic theory
Oα[A] equipped with a map u : A → Oα[A]. The algebraic theory Oα = Oα[1] is
freely generated by one object u ∈ Oα.

32.11. Notice that O0[A] = C0[A] = A and that O1[A] = C1[A] = A ? 1 for any
small quategory A. In particular, O0 = 1 and O1 = I.

32.12. We shall say that an object a of a finitary algebraic theory T is a power
generator if every object of T is isomorphic to a power an for some n ≥ 0. Then
the forgetful map

a∗ : Alg(T )→ K
defined by putting a∗(f) = f(a) is conservative. We shall say that a finitary
algebraic theory is unisorted if it is equipped with a a power generator. For any
object a of a finitary algebraic theory T there is a morphism f : O → T such that
f(u) = a; the object a is a power generator iff the map f is essentially surjective.
If S is a set, we shall say that a finitary algebraic theory T is S-multisorted if it is
equipped with an essentially surjective morphism s : O[S]→ T . in which case the
corresponding forgetful map

s∗ : Alg(T )→ KS

is conservative. More generally, if α is a regular cardinal, we shall say that an object
a of an α-algebraic theory T is a power generator if every object of T is isomorphic
to a power aE for some set E of cardinality < α. We shall say that an α-algebraic
theory is uni-sorted if it is equipped with a a power generator. More generally, if S
is a set, we shall say that an α-algebraic theory T is S-multisorted if it is equipped
with an essentially surjective morphism s : Oα[S]→ T .
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32.13. We shall say that a projective cone c : 1 ? K → A in a simplicial set A is
discrete if K is a discrete simplicial set. In this case c is the same thing as a family
of arrows (c(1)→ c(k)|k ∈ A) in A. We shall say that a discrete cone c : 1?K → X
with values in a quategory X is a product cone if it is exact. A product sketch is
a limit sketch (A,P ) in which P is a set of discrete projective cones. A product
sketch (A,P ) is finitary if every cone in P is finite. Every finitary product sketch
(A,P ) has a universal model u : A → O[A/P ] with values in a finitary algebraic
theory called the envelopping theory of (A,P ). The universality means that the
map

u∗ : Alg(T,X)→ Model(A/P,X)
induced by u is an equivalence for any quategory with finite products X. In par-
ticular, the map

u∗ : Alg(O[A/P ])→ Model(A/P )
induced by u is an equivalence of quategories. More generally, if α is a regular
cardinal, then every α-bounded product sketch (A,P ) has a universal model u :
A/P → Oα[A/P ] with values in an α-cartesian theory called the envelopping theory
of (A,P ).

32.14. If (A,P ) is a product sketch, then by composing the Yoneda map y : Ao →
KA with the left adjoint r to the inclusion Model(A/P ) ⊆ KA we obtain a map

ry : Ao → Model(A/P ).

We shall say that a model of (A,P ) is representable if it belongs to the essential
image of ry. We shall say that f is free if it is a coproduct of representables.
If (A,P ) is finitary we shall say that f is finitely free if it is a finite coproduct
of representables. In this case we shall denote by Model(A/P )(f) the full sub-
quategory of Model(A/P ) spanned by the finitely free models; More generally,
if (A,P ) is α-bounded we shall say that f is α-free if it is an α-coproduct of
representables and we shall denote by Model(A/P )(α) the full sub-quategory of
Model(A/P ) spanned by the α-free models. The quategory Oα[A/P ] is the opposite
of the quategory Model(A/P )(α) and the map u : A→ Oα[A/P ] is the opposite of
the map Ao → Model(A/P )(α) induced by ry.

32.15. If S and T are two finitary algebraic theories then so is the quategory
Alg(S, T ) of morphisms S → T . The category of finitary algebraic theories ALG
is simplicial and symmetric monoidal closed. The tensor product of two finitary
algebraic theories S and T is defined to be the target of a map φ : S × T → S � T
which preserves finite products in each variable and which is universal with respect
to that property [BV]. More precisely, if X is a quategory with finite products, let
us denote by Alg(S, T ;X) the full simplicial subset of XS×T spanned by the maps
S × T → X which preserves finite products in each variable. Then the map

φ∗ : Alg(S � T,X)→ Alg(S, T ;X)

induced by φ is an equivalence for every quategory with finite products X. It follows
that we have two canonical equivalence of quategories

Alg(S � T,X) ' Alg(S, Alg(T,X)) ' Alg(T,Alg(S, X)).

In particular, we have two equivalences of quategories ,

Alg(S � T ) ' Alg(S, Alg(T )) ' Alg(T,Alg(S)).
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The unit for the tensor product is the algebraic theory O described above. More
generally, if α is a regular cardinal and S and T are two α-algebraic theories, then
so is the quategory Algα(S, T ) of models S → T . The category ALGα is simplicial
and symmetric monoidal closed. The tensor product of two α-algebraic theories S
and T is defined to be the target of a map S×T → S�α T preserving α-products in
each variable and universal with respect to that property. The unit for the tensor
product is the theory Oα described in 30.7.

32.16. If A and B are simplicial sets, then the morphism

φ : O[A]�O[B]→ O[A×B]

defined by putting φ(a � b) = (a, b) for every pair of objects (a, b) ∈ A × B is an
equivalence of quategories. Hence the functor

O[−] : S→ ALG

preserves tensor products (where the tensor product on S is the cartesian product).
If T is a finitary algebraic theory, we shall put

T [A] = O[A]� T

Then for any quategory with finite product X we have two equivalences of quate-
gories

Alg(T [A], X) ' Alg(T,XA) ' Alg(T,X)A.

This shows that T [A] is the algebraic theory of A-diagrams of models of T . In
particular, T [I] is the algebraic theory of maps between two models of T . More
generally, if α is a regular cardinal, then the functor

Oα[−] : S→ CTα

preserves tensor products. If T is an α-cartesian theory, we shall put

T [A] = Oα[A]�α T

32.17. The cartesian product of a (small) family of finitary algebraic theories is a
finitary algebraic theory. Hence the category ALG has cartesian products. The
terminal quategory 1 is also the initial object of ALG, since the quategory Alg(1, T )
is equivalent to the quategory 1 for every algebraic theory T . Moreover, the carte-
sian product S×T of two algebraic theories is also their coproduct. More precisely,
consider the maps

iS : S → S × T and iT : S → S × T

defined by putting iS(x) = (x, 1) and iT (y) = (1, y) for every x ∈ S and y ∈ T .
Then the map

(i∗S , i∗T ) : Alg(S × T,X)→ Alg(S, X)×Alg(T,X)

induced by the pair (iS , iT ) is an equivalence for any quategory with finite products
X. This shows that the (simplicial) category ALG is semi-additive. More generally,
the category ALGα has cartesian products for any regular cardinal α. The cartesian
product of a family of α-algebraic theories indexed by a set of cardinality < α is
also their coproduct.
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32.18. Let T be a cartesian theory and X be a locally presentable quategory.
Then the external tensor product of an algebra f ∈ Alg(T ) with an object x ∈ X
is defined to be the model f ⊗ x : T → X obtained by applying the left adjoint to
the inclusion Alg(T,X) ⊆ XT to the map a 7→ f(a) · x. The map (f, x) 7→ f ⊗ x is
cocontinuous in each variable and the induced map

Alg(T )⊗X ' Alg(T,X)

is an equivalence of quategories. If S and T are two finitary algebraic theories, then
the external tensor product of an algebra f ∈ Alg(S) with an algebra g ∈ Alg(T )
is the algebra f ⊗ g ∈ Alg(S � T ) defined in 28.28. The map (f, g) 7→ f ⊗ g is
cocontinuous in each variable and the induced map

Alg(S)⊗Alg(T ) ' Alg(S � T )

is an equivalence of quategories. More generally, if α be a regular cardinal, then
the external tensor induces an equivalence of quategories

Algα(T )⊗X ' Algα(T,X).

for any α-algebraic theory T and α-cartesian quategory X. In particular it induces
the equivalence of quategories

Algα(S)⊗Algα(T ) ' Algα(S �α T )

of ??.

32.19. The forgetful functor CT → ALG has a left adjoint which associates to
an algebraic theory T the cartesian theory cT freely generated by T . The freeness
means that the map

u∗ : Model(cT, X)→ Alg(T,X)

induced by the canonical morphism u;T → cT is an equivalence for any cartesian
quategory X. The map u;T → cT is the opposite of the canonical map T o →
Alg(T )f , where Alg(T )f is the quategory of finitely presented models of T . The
functor c(−) preserves the tensor product �. This means that the canonical map
cS�cT → c(S�T ) is an equivalence of quategories for any pair of finitary algebraic
theories S and T . More generally, if α is a regular cardinal, then the forgetful functor
CTα → ALGα has a left adjoint which associates to an α-algebraic theory T the
α-cartesian theory cT freely generated by T . The functor c(−) preserves the tensor
product �α.

32.20. If a quategory X is a theater then so are the slice quategories a\X and
X/a for any object a ∈ X, and the quategory Alg(T,X) for any finitary algebraic
theory T . More precisely let α be a regular cardinal ≥ 1. If a quategory X is an
α-theater then so are the quategories a\X and X/a for any object a ∈ X and the
quategory Algα(T,X) for any α-cartesian theory T . If a quategory X is 0-theater
then so is the quategory X/a for any object a ∈ X and the quategory XA for any
simplicial set A.

32.21. Finite coproducts and sifted colimits commute in any finitary theater. More
generally, α-coproducts and α-sifted colimits commute in any α-theater.
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32.22. A cocomplete quategory X is a finitary theater iff it is generated by a small
set of perfect objects. More precisely, let K ⊆ X be a small full sub-quategory
of perfect objects of X. If K is closed under finite coproducts, then the left Kan
extension

i! : Alg(Ko)→ X

of the inclusion i : K → X along y : K → Alg(Ko) is fully faithful and cocontinuous.
Moreover, i! is an equivalence if K generates or separates X, More generally, if α
is a regular cardinal, then a locally presentable quategory X is an α-theater iff it is
generated by a small set of α-perfect objects. More precisely, let K ⊆ X be a small
full sub-quategory of α-perfect objects. If K is closed under α-coproducts then the
left Kan extension

i! : Algα(Ko)→ X

of the inclusion i : K → X along y : K →→ Algα(Ko) is fully faithful and
cocontinuous. Moreover, i! is an equivalence if K generates or separates X.

32.23. A cocontinuous map between finitary theaters f : X → Y preserve perfect
objects iff its right adjoint Y → X is fair. Let us denote by AR[ω] the category
whose objects are locally presentable quategories and whose morphisms are cocon-
tinuous maps preserving perfect objects. If u : S → T is a morphism of finitary
algebraic theories, then the map

u! : Alg(S)→ Alg(T )

preserve perfect objects (ie takes a perfect objects to a perfect object). The resulting
functor

Alg : ALG→ AR[ω]

has a right adjoint pfo which associates to X the opposite of its sub quategory of
perfect objects pf(X) (or a small quategory equivalent to it). The quategory pf(X)
is Karoubi complete and the counit of the adjunction εX : Alg(pfo(X)) → X is
fully faithful; and it is an equivalence iff X is a finitary theater. The unit of the
adjunction ηT : T → pfo(Alg(T )) is a Morita equivalence; and it is an equivalence iff
T is Karoubi complete. Hence the adjoint pair Model ` pfo induces an equivalence
between the full subcategory of ALG spanned by the Karoubi complete theories
and the full sub category of AR[ω] spanned by the finitary theaters. More generally,
if α is a regular cardinal, then a cocontinuous map betwen α-theaters f : X → Y
preserves α-perfect objects iff its right adjoint g : Y → X is α-fair. Let us denote by
AR[α] the category whose objects are the locally presentable quategories and whose
morphisms are the cocontinuous maps preserving α-perfect objects. If u : S → T
is a morphism of α-algebraic theories, then the map

u! : Algα(S)→ Algα(T )

preserves α-perfect objects. The resulting functor

Algα : ALGα → AR[α]

has a right adjoint pfo
α which associates to X the opposite of its sub-quategory

pfo
α(X) of α-perfect objects (or a small quategory equivalent to it). The quategory

pfα(X) is Karoubi complete and the counit of the adjunction εX : Algα(pfo
α(X))→

X is fully faithful; and it is an equivalence iff X is an α-theater. The unit of the
adjunction ηT : T → pfo

α(Algα(T )) is a Morita equivalence; and it is an equivalence
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iff T is Karoubi complete. Hence the adjoint pair Modelα ` pfo
α induces an equiv-

alence between the full subcategory of ALGα spanned by the Karoubi complete
theories and the full sub category of AR[α] spanned by the α-theaters.

32.24. A monoid in a quategory with finite products X is defined to be a simplicial
object M : ∆o → X which satisfies the following Segal condition:

• M0 ' 1;
• the ”edge morphism” Mn →Mn

1 defined from the inclusions (i− 1, i) ⊆ [n]
(1 ≤ i ≤ n) is invertible for every n ≥ 2.

The notion of monoid is algebraic and finitary. We shall denote the algebraic theory
of monoids by Mon. The theory Mon is discrete and the opposite quategory Mono

is equivalent to the category of finitely generated free monoids in Set. A n-fold
monoid is defined to be a model of the tensor power Monn = Mon�n, where n ≥ 1,
In topology, a n-fold monoid is called an En-space. See [BFV]. A 2-fold monoid
is called a braided monoid. The theory Mon is unisorted and from the canonical
morphism u : O → Mon we obtain a morphism un = u�Mn : Monn → Monn+1

for every n ≥ 0. The (homotopy) colimit of the infinite sequence ot theories,

O
u0 // Mon

u1 // Mon2
u2 // Mon3

u3 // · · · ,

is the theory of coherently commutative monoid CMon. A model of this theory is
called an E∞-space. We shall denote the quategory Alg(CMon) of E∞-spaces by
E∞.

32.25. The theory of coherently commutative monoids CMon is 2-truncated. This
is because the free models of CMon are K(π, 1)-spaces. In other words, the quat-
egory CMon is equivalent to a category enriched over groupoids. More precisely,
let us denote by N the category of finite cardinals and maps. If a ∈ CMon denotes
the generating object, then CMon(am, an) is the groupoid of isomorphisms of the
category of functors Nm → Nn which preserve finite coproducts. Notice the equiv-
alence of categories Nn ' N/n where n = {1, ·, n}. The groupoid CMon(am, an)
is equivalent to the groupoid of isomorphisms of the category N/m×n. The equiv-
alence associates to a span

S
s

��~~
~~

~~
~

t

��?
??

??
??

m n

the functor S! : N/m→ N/n obtained by putting S!(X) = X ×m S.

32.26. The notion of coherently commutative monoid can be defined by a product
sketch (Γ, C) introduced by Segal in [S2], where Γ denotes the category of finite
pointed sets and basepoint preserving maps. For every n ≥ 0, let us put n = {1, ·, n}
and n+ = nt{?}. The set n+ is pointed with base point ?. For each k ∈ n let δk be
the map : n+ → 1+ which takes the value 1 at k and ? elsewere. The family of maps
(δk : k ∈ n) defines a discrete cone cn : 1?n→ Γ. The sketch (Γ, C) is then defined
by putting C = {cn : n ≥ 0}. Consider the functor i : ∆o → Γ obtained by putting
i[n] = Hom(∆[n], S1) for every n ≥ 0, where S1 = ∆[1]/∂∆[1] is the pointed
circle. If X is a quategory with finite products, then the map Xi :: XΓ → X∆o

takes a model of (Γ, C) to a monoid i∗(E) : ∆o → X (the monoid underlying E).
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More generally, for every n ≥ 1, consider the functor in : (∆n)o → Γ obtained by
composiing

(∆n)o in
// Γn ∧n

// Γ,

where ∧n denotes the n-fold smash product functor. Then the map Xin takes a
model of (Γ, C) to a n-fold monoid i∗n(E) : (∆n)o → X. We saw above in that the
quategory CMon is equivalent to a 2-category enriched over groupoids M . Hence
the sketch (Γ, C) admits a universal model u : Γ/C → M . The pseudo-functor u
associates to a pointed map f : m+ → n+, the functor f! : Nm → Nn defined by
putting

f!(X)(j) =
⊔

f(i)=j

X(i)

for every j ∈ n.

32.27. A monoidal quategory is a simplicial object M : ∆o → QCat satisfying the
following Segal condition:

• the canonical map M0 → 1 is a categorical equivalence;
• the edge map Mn →Mn

1 is a categorical equivalence for every n ≥ 2.

The category S∆o

admits a Quillen model structure in which the fibrant objects are
the Reedy fibrant monoidal quategory (where the Reedy model structure is defined
from the model structure (S,Wcat). The coherent nerve of the category of fibrant
objects is equivalent to the quategory Mon(Q1).

32.28. A braided monoidal quategory is a bisimplicial object M : (∆×∆)o → QCat
satisfying the Segal condition in each variable:

• the edge maps Mnm →Mn
1m and Mnm →Mm

n1 are categorical equivalences
for every m,n ≥ 1.
• the canonical maps M0n → 1 and Mn0 → 1 are categorical equivalences for

every n ≥ 0.

More generally, a n-fold monoidal quategory is a n-fold simplicial object M :
(∆n)o → QCat satisfying the Segal condition in each variable.

32.29. A symmetric monoidal quategory is a functor M : Γ→ QCat satisfying the
following Segal condition:

• the canonical map M(n+)→M(1+)n is a categorical equivalence for every
n ≥ 2;
• the canonical map M(0+) ' 1 is a categorical equivalence.

32.30. The tensor product of an n-fold monoid N ∈ Alg(Monn) with an m-fold
monoid M ∈ Alg(Monm) is an (n +m)-fold monoid N ⊗M ∈ Alg(Monn+m). The
tensor product is symmetric and it gives the disjoint union⊔

n≥0

Alg(Monn)

the structure of a symmetric monoidal quategory.
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32.31. We shall say that a monoid M : ∆o → X is a group iff the morphism

(σ1, ∂0) : M2 →M1 ×M1

is invertible. The notion of group is algebraic and finitary. We shall denote the
algebraic theory of groups by Grp. The theory Grp is discrete and the opposite
category Grpo is equivalent to the category of finitely free groups (in Set). The
theory Grp is a multiplicative localisation of the theory of monoids Mon. We say
that a n-fold monoid M : Monn → X is a n-fold group if its underlying monoid
is a group. In topology, a n-fold group is called an n-fold loop space. The notion
of n-fold group is algebraic and finitary. The algebraic theory of n-fold groups is
the tensor power Grpn = Grp�n. The theory Grpn is a multiplicative localisation
of the theory Monn. A coherently commutative group or coherently abelian group
is a coherently commutative monoid whose underlying monoid is a group. The
notion of coherently abelian group is algebraic and finitary. W e shall denote the
algebraic theory of coherently abelian groups by CGrp. The algebraic theory CGrp
is a multiplicative localisation of the algebraic theory CMon. In topology, a model
of CGrp is called an infinite loop space. We shall denote the quategory of infinite
loop spaces by L∞. Recall that the theory of groups Grp is unisorted; from the
canonical morphism u : O → Grp we can define a morphism un : Grpn → Grpn+1

for every n ≥ 0. The algebraic theory CGrp is the (homotopy) colimit of the infinite
sequence of theories,

O
u0 // Grp

u1 // Grp2 u2 // Grp3 u3 // · · · .

32.32. Recall that a rig is a ring without negative inverse (ie in which the additive
structure is a commutative monoid). We now describe the algebraic theory CRig
of coherently commutative rig. In topology, a model of CRig is an E∞-rig space.
The quategory CRig is 2-truncated and equivalent to a 2-category enriched over
groupoids. More precisely, let us denote by N the category of finite cardinals and
maps. If m,n ≥ 0, we shall say that a functor f : Nm → Nn is polynomial if we
have

f(X)(j) =
⊔

i∈B(j)

∏
k∈E(i)

X(l(k))

, where B(j) and E(i) are respectively the fibers of the maps r and p in a diagram
of finite sets

E
l

~~~~
~~

~~
~~

p // B
r

��?
??

??
??

m n

.

Notice that f = r!p∗l
∗, where l∗ is the pullback functor along l, where p∗ is

the right adjoint to p∗ and r! is the left adjoint to r∗. If a ∈ CRig denotes
the generating object, then CRig(am, an) is the groupoid of isomorphisms of the
category of polynomial functors Nm → Nn. Let us denote by Pol(m,n) the
groupoid whose objects are the diagrams (l, E, p,B, r) as above and whose arrows
(l, E, p,B, r) → (l′, E′, p′, B′, r′) are the pair of bijections (α, β) in a commutative
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diagram

E
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β
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t
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s
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p′ // B′.

t

>>}}}}}}}}

Then the functor Pol(m,n)→ CRig(am, an) which associates to a diagram (l, E, p,B, r)
the polynomial functor f = r!p∗l

∗ is an equivalence of groupoids. The algebraic
theory CMon admits two interpretations in the theory CRig. The additive in-
terpretation u : CMon → CRig is induced by the functor which takes a span
(s, t) : S → m× n to the polynomial

S
s

��~~
~~

~~
~

1S // S
t

  @
@@

@@
@@

m n.

The resulting map u∗ : Alg(CRig) → Alg(CMon) takes a coherently commu-
tative rig to its underlying additive structure. The multiplicative interpretation
v : CMon→ CRig is induced by the functor which takes a span (s, t) : S → m×n
to the polynomial

S
s

��~~
~~

~~
~

t // m
1m

  B
BB

BB
BB

B

m m.

The resulting map v∗ : Alg(CRig)→ Alg(CMon) takes a coherently commutative
rig to its underlying mutiplicative structure. A (coherently commutative) ring is
defined to be is a coherently commutative rig whose underlying additive structure is
a group. We shall denote by CRing the algebraic theory of coherently commutative
rings.

32.33. The notion of homotopy factorisation system in the category ALG is de-
fined as in 28.29. The category ALG admits a homotopy factorisation system
(A,B) in which A is the class of essentially surjective morphisms and B the class of
fully faithful morphisms. More generally, if α is a regular cardinal, then the cate-
gory ALGα admits a homotopy factorisation system (A,B) in which A is the class
of essentially surjective morphisms and B the class of fully faithful morphisms. A
morphism u : S → T in ALGα is fully faithful, iff the map u! : Algα(S)→ Algα(T )
is fully faithful. The map u∗ : α(T ) → Algα(S) is conservative iff u is Morita
surjective.

32.34. Let Σ be a set of morphisms in a finitary algebraic theory T . We shall say
that Σ is multiplicatively closed if it is closed under finite products. In this case
the quategory L(T,Σ) has finite products and the canonical map X → L(T,Σ)
preserves finite products. We shall say that a morphism of algebraic theories is a
quasi-localisation (resp. iterated quasi-localisation) if it is a quasi-localisation (resp.
an iterated quasi-localisation) as a map of quategories. The category ALG admits
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a homotopy factorisation system (A,B) in which B is the class of conservative
morphisms and A is the class of iterated quasi-localisations. This is true also of the
category ALGα.

32.35. The algebraic theory Grp is a quasi-localisation of Mon. The algebraic
theory CGrp is a quasi-localisation of CMon. The algebraic theory CRing is a
quasi-localisation of CRig.

32.36. Every algebraic theory T is the quasi-localisation of a free theory O[C],
where C is a category.

32.37. The initial model of an algebraic theory T is representable by its terminal
object 1 ∈ T . We shall say that a morphism of (finitary) algebraic theories u : S →
T is coinitial if the map

u∗ : Alg(T )→ Alg(S)
preserves initial algebras, that is, if u∗(⊥) = ⊥. A morphism u : S → T is coinitial
iff the map S(1, x) → T (1, ux) induced by u is a homotopy equivalence for every
object x ∈ S. The category ALG admits a homotopy factorisation system (A,B)
in which B is the class of coinitial morphisms. We shall say that a morphism in the
class A is elementary. For any model f of a finitary algebraic theory T there is an
elementary morphism i : T → T [f ] with an isomorphism i∗(⊥) = f . The map

ĩ∗ : Alg(T [f ])→ f\Alg(T )

induced by the map i∗ : Alg(T [f ]) → Alg(T ) is an equivalence of quategories. We
shall say that T [f ] is the envelopping theory of the model f . More generally, if α is
a regular cardinal > 0, then the category ALGα admits a homotopy factorisation
system (A,B) in which B is the class of coinitial morphisms. A morphism in the
class A is said to be elementary. For any model f of an α-cartesian theory T there
is an elementary morphism i : T → T [f ] such that i∗(⊥) = f . The map

ĩ∗ : Algα(T [f ])→ f\Algα(T )

induced by i∗ is an equivalence of quategories. We shall say that T [f ] is the en-
velopping theory of the model f .

32.38. We say that a morphism of finitary algebraic theories u : S → T is coter-
minal if the map

u! : Alg(S)→ Alg(T )
preserves terminal algebras, that is, if u!(>) = >. The category ALG admits a
homotopy factorisation system (A,B) in which A is the class of coterminal mor-
phisms. A morphism u : S → T belongs to B iff it is equivalent to a left fibration
E → T . For any algebra f ∈ Alg(T ), the left fibration p : el(f) → T belongs to
B. Moreover, we have p!(>) ' f and the map p̃! : Alg(el(f))→ Alg(T )/f induced
by the map p! : Alg(el(f)) → Alg(T ) is an equivalence of quategories. See [BJP].
More generally, if α is a regular cardinal, we say that a morphism of α-algebraic
theories u : S → T is coterminal if the map

u! : Algα(S)→ Algα(T )

preserves terminal objects. The category ALGα admits a homotopy factorisation
system (A,B) in which A is the class of coterminal morphisms. A morphism u :
S → T belongs to B iff it is equivalent to a left fibration E → T . For any algebra f ∈
Algα(T ), the left fibration p : el(f)→ T belongs to B. Moreover, we have p!(>) ' f
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and the map p̃! : Algα(elf(f)) → Algα(T )/f induced by p! is an equivalence of
quategories.

32.39. A morphism of finitary algebraic theories u : S → T is coterminal iff the
map u! : Alg(S) →: Alg(T ) is coterminal in AR. A morphism u : S → T is
equivalent to a left fibration iff the map u! is equivalent to a right fibration. There
is a similar result for a morphism of α-algebraic theories u : S → T .

32.40. A map of simplicial sets u : A → B is initial iff the morphism O[u] :
O[A] → O[B] is coterminal. A map u : A → B is equivalent to a left fibration
iff the morphism O[u] : O[A] → O[B] is equivalent to a left fibration. There is a
similar result for the morphism Oα[u].

32.41. Some algebraic theories can be defined semantically. If X is a quategory
with finite products, then the algebraic theory of operations on an object z ∈ X
is defined to be the full sub-quategory Op(z) of X spanned by the objects zn for
n ≥ 0. The theory Op(z) is unisorted and generated by the object z ∈ Op(z). If Y
is a quategory with finite products, then so is the quategory Y A for any simplicial
set A. There is thus a (finitary) algebraic theory Op(z) for any map z : A → Y .
The quategory Op(z) can be small even when A and Y are large simplicial sets.
This is true for example, when A is a locally small quategory and z is representable
by an object a ∈ A. in this case the quategory Op(z) is equivalent to the opposite
of the full sub-quategory of A spanned by the objects n · a = tna for (n ≥ 0).

32.42. Let X be a locally small quategory and z be a map X → K. Let us assume
that the quategory of operations Op(z) is small. Then the map X → KOp(z) induced
by the inclusion Op(z) → KX factors through the inclusion Alg(Op(z)) ⊆ KOp(z);
it induces a map z′ which fits in a commutative diagram

Alg(Op(z))

u

��
X

z′
::tttttttttt

z
// K,

where u is the forgetful map. We shall say that the map z is monadic if z′ is an
equivalence of quategories. In this case z admits a left adjoint, since u admits a left
adjoint; moreover, z is representable, since u is representable.

32.43. The quategory of pointed Kan complexes is equivalent to the quategory
1\K. Let us compute the operations on the loop space map Ω : 1\K → K. The
map Ω is representable by the pointed circle s1 in1\K. Hence the space of n-
ary operations Ωn → Ω is homotopy equjivalent to the space of pointed maps
s1 → ∨ns1. The fundamental group of ∨ns1 is the free group on n-generators
F (n) by Van Kampen theorem. A wedge of circles is a K(π, 1)-space by a classical
theorem. Hence the space of pointed maps s1 → ∨ns1 is homotopy equivalent to
the set of group homomorphisms F (1)→ F (n) equipped with the discrete topology.
It follows that the algebraic theory Op(Ω) is discrete and equivalent to the usual
theory of groups Grp.
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32.44. Let K(1) be the quategory of pointed connected Kan complexes. The alge-
braic theory of operations on the loop space map Ω : K(1)→ K is equivalent to the
theory of groups Grp. The map Ω is monadic by a theorem of Jon Beck. Hence
the map Ω′ in the following diagram is an equivalence of quategories,

Alg(Grp)

u

��
K(1)

Ω
//

Ω′
::ttttttttt
K.

It follows that the quategory K(1) is a finitary theater.
subsection If n > 0, let us denote by K(n) the quategory of pointed (n − 1)-

connected objects in K. The n-fold loop space functor Ωn induces an equivalence
of quategories

Ωn : K(n) ' Alg(Grpn).

It follows that the quategory K(n) is a finitary theater. The tensor product of an
m-fold group G ∈ Alg(Grpn) with an m-fold group H ∈ Alg(Grpm) is an (n + m)-
fold group G ⊗H ∈ Alg(Grpn+m). The tensor product is symmetric and it gives
the disjoint union ⊔

n≥0

Alg(Grpn)

the structure of a symmetric monoidal quategory. The smash product of an object
x ∈ K(n) with an object y ∈ K(m) is an object x∧ y ∈ K(n+m) and the canonical
map Ωn(x) × Ωm(y) → Ωn+m(x ∧ y) induces an isomorphism The smash product
functor ∧ : K(n)×K(m)→ K(n+m) is cocontinuous in each variable and it induces
an equivalence of quategories,

K(n)⊗K(m) ' K(n + m).

It follows that the n-fold smash product functor induces an equivalence of quate-
gories,

K(1)⊗n ' K(n)

for every n > 0.

32.45. The quategory of pointed quategories is equivalent to the quategory 1\Q1.
If (X, x0) is a pointed quategory, let us put End(X, x0) = X(x0, x0). This defines
a functor

End : 1\Q1 → K.

Let us compute the operations on the functor End. By construction we have
End(X) = Map(S1, X) for any pointed quategory X = (X, x0), where S1 is the
(pointed) circle ∆[1]/∂∆[1] and where Map is the simplicial set of pointed maps
between pointed simplicial sets. This shows that the functor End is representable
by a fibrant replacement of S1 in the model category for pointed quategories. This
fibrant replacement is the free monoid on one generator by 2.12. More generally, the
free monoid on n-generators M(n) is a fibrant replacement of ∨nS1. Hence the space
of operations Endn → End is homotopy equivalent to the set of homomorphisms
M(1) → M(n) equipped with the discrete topology. It follows that the algebraic
theory Op(End) is discrete and equivalent to the usual theory of monoids Mon.
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32.46. Let us say that a quategory X is strongly connected if τ0X = 1. A quategory
is strongly connected iff it is equivalent to a quasi-monoid. Let us denote by Q1(1)
the quategory of pointed strongly connected quategories. It is easy to see, by using
the same argument as above, that the algebraic theory of operations on the functor
End : Q1(1)→ K is the theory of monoids Mon. The functor End is monadic and
the functor End′ in the folllowing diagram is an equivalence of quategories,

Alg(Mon)

u

��
Q1(1)

End
//

End′
99ssssssssss
K.

32.47. Let us say that a finite category is absolutely finite if it is finitely generated
as a quategory. For example, a finite poset is absolutely finite. When a category C
is absolutely finite, the theories O[C] and O[Co] are mutually dual in the symmetric
monoidal category ALG. The counit of this duality is the map

ε : O[C]�O[Co]→ O
induced by the opposite of the map HomC : Co×C → N = Oo. Moreover, we have
an equivalence of quategories T [Co] ' TC for any algebraic theory T . It follows
that we have an equivalence of quategories,

Alg(SCo

, T ) ' Alg(S, TC)

for any S, T ∈ ALG.

32.48. If X and Y are finitary theaters then the map

i∗ : Fair(X, Y )→ Y pf(X)

induced by the inclusion i : pf(X) ⊆ X is an equivalence. It follows that the
simplicial sets Fair(X, Y ) is a finitary theater. Let us denote by FT the category
whose objects are the finitary theaters and whose morphisms are the fair maps.
If X, Y ∈ FT then X × Y ∈ FT and pf(X × Y ) = pf(X) × pf(Y ). Thus, If
X, Y, Z ∈ FT then

Fair(X × Y, Z) ' Y pf(X×Y ) ' Y pf(X)×pf(Y )) ' Fair(X, Fair(Y, Z))

and this shows that the category FT is cartesian closed.

32.49. If T is a finitary algebraic theory, we shall say that a left fibration E → T
is a vertical algebra over T if the quategory E has finite products and the map
E → T preserves finite products. A map f : T → K is a model of T iff the left
fibration el(f)→ T is a vertical algebra. The model category (S/T,Wcov) admits
a Bousfield localisation whose fibrant objects are the vertical algebras over T . The
coherent nerve of the simplicial category of vertical algebras over T is equivalent
to the quategory Alg(T ). More generally, if α is a regular cardinal, and T is an
α-algebraic theory, we shall say that a left fibration E → T is a vertical algebra over
T if the quategory E is has α-products and the map E → T preserves α-products.
A map f : T → K is a model of T iff the left fibration el(f) → T is a vertical
algebra. The model category (S/T,Wcov) admits a Bousfield localisation whose
fibrant objects are the vertical algebras over T . The coherent nerve of the simplicial
category of vertical algebras over T is equivalent to the quategory Algα(T ).
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32.50. See 51.16 and 51.17 for some aspects of the theory of simplicialy enriched
algebraic theories.

33. Fiber sequences

33.1. Let X be a null-pointed quategory. Recall from 10.8 that X admits a null flow
which associates to a pair of objects x, y ∈ X a null morphism m(x?y) = 0 : x→ y.
We shall say that a 2-simplex t ∈ X2

a
f //

0 ��@
@@

@@
@@

@ b

g

��
c.

with boundary ∂t = (g, 0, f) is a null sequence and we shall write ∂t = (g, 0, f) :
a → b → c. Let us denote by Nul(X/g) the full simplicial subset of X/g spanned
by the null sequences t ∈ X with ∂0t = g. We shall say that a null sequence
t ∈ Nul(X/g) is a fiber sequence if it is a terminal object of the quategory X/g.
We shall say that the arrow f of a fiber sequence ∂t = (g, 0, f) : a → b → c is the
fiber of the arrow g and we shall put a = fib(g),

fib(g)
f //

0
""E

EEEEEEE b

g

��
c

The loop space Ω(x) of an object x ∈ X is defined to be the fiber of the morphism
0→ x,

Ω(x) 0 //

0
""D

DD
DD

DD
D 0

0

��
x.

Dually, let us denote by Nul(f\X) the full simplicial subset of f\X spanned by the
null sequences t ∈ X with ∂2t = f . We shall say that a null sequence t ∈ Nul(f\X)
is a cofiber sequence if it is an initial object of the quategory X/g. We shall say
that the arrow g of a cofiber sequence ∂t = (g, 0, f) : a → b → c is the cofiber of
the arrow g and we shall write c = cofib(f),

a

f

��

0

$$H
HHHHHHHH

b
q // cofib(f).

The suspension Σ(x) of an object x ∈ X is defined to be the cofiber of the morphism
x→ 0,

x
0 //

0 !!D
DD

DD
DD

D 0

0

��
Σ(x).
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33.2. Let X be a cartesian quategory. We shall say that a functor p : E → C in
Cat(X) is a left fibration if the naturality square

E1
s //

p1

��

E0

p0

��
C1

s // C0

is cartesian, where s is the source map. The notion of right fibration is defined
dually with the target map. The two notions are equivalent when the category C is
a groupoid. We shall denote by XC the full simplicial subset of Cat(X)/C spanned
by the left fibrations E → C. The pullback of a left fibration E → C along a
functor u : D → C is a left fibration u∗(E)→ D.

33.3. Let X be a cartesian quategory. Recall from 37.1 that the Cech groupoid
Cech(u) of an arrow u : a→ b in X is the image by the canonical map X/b→ X of
the the Cech groupoid of the object u ∈ X/b. The map u : a→ b induces a functor
ũ : Cech(u)→ Sk0(b). The lifted base change map

ũ∗ : X/b→ XCech(u).

associates to an arrow e→ b the arrow a×b e→ a

a×b e //

��

e

��
a

u // b

equipped with a natural action of the groupoid Cech(u).

33.4. Let X be a cartesian quategory. The loop group Ω(b) = Ωu(b) of a pointed
object u : 1→ b in X is the Cech groupoid of the arrow u : 1→ b. The lifted base
change map

ũ∗ : X/b→ XΩu(b)

associates to an arrow e→ b its fiber e(u) = u∗(e) equipped with the natural action
(say on the right) of the group Ωu(b). In the special case where p = u : 1→ b, this
gives the natural right action of Ωu(b) on itself. If l : e′ → e is an arrow in X/b,
then the arrow u∗(l) : u∗(e′) → u∗(e) respects the right action by Ωu(b). Suppose
that we have a base point v : 1→ e over the base point u : 1→ b. Then the arrow
∂ = u∗(v) : Ωu(b) → e(u) respects the right action by Ωu(b). The top square of
the following commutative diagram is cartesian, since the bottom square and the
boundary rectangle are cartesians,

Ωu(b)

∂

��

// 1

v

��
u∗(e)

��

i // e

p

��
1

u // b.

Hence the arrow ∂ : Ωu(b) → e(u) is the fiber at v of the arrow u∗(e) → e. The
base point v : 1→ e lifts naturally as a base point w : 1→ u∗(e). Let us show that
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the arrow Ω(p) : Ωv(e)→ Ωu(b) is the fiber at w of the arrow ∂. For this, it suffices
to show that we have a cartesian square

Ωv(e)

��

Ω(p) // Ωu(b)

∂

��
1

w // u∗(e)

By working in the quategory Y = X/b, we can suppose that b = 1, since the
canonical map X/b→ X preserves pullbacks. For clarity, we shall use a magnifying
glass by denoting the objects of Y = X/b by capital letters. The base point u : 1→ b
defines an object T ∈ Y and the arrow p : e→ b an object E ∈ Y . The base point
v : 1→ e defines a morphism v : T → E. Observe that the image of the projection
p2 : T ×E → E by the canonical map Y → X is the arrow i : u∗(u)→ e. Similarly,
the image of the canonical morphism j : T ×E T → T × T by the map Y → X
is the arrow Ω(p) : Ω(e) → Ω(b). The square in the NE corner of the following
commutative diagram is cartesian,

T ×E T
j //

p1

��

T × T
p2 //

T×v

��

T

v

��
T

(1T ,v) // T × E
p2 //

p1

��

E

��
T // 1.

It follows that the square in the NW corner is cartesian, since the composite of the
top squares is cartesian. This shows that the square above is cartesian and hence
that the arrow Ω(p) : Ωv(e) → Ωu(b) is the fiber at w of the arrow ∂. We thus
obtain a fiber sequence of length four,

Ω(e)
Ω(p) // Ω(b) ∂ // f

i // e
p // b .

By iterating, we obtain the long fiber sequence

· · · // Ω2(e) ∂ // Ω(f)
Ω(i) // Ω(e)

Ω(p) // Ω(b) ∂ // f
i // e

p // b .

33.5. The considerations above can be dualised. Let X be a pointed cocartesian
quategory with nul object 0 ∈ X. The cofiber of an arrow u : x → y is the arrow
v : x→ y defined by a pushout square

x

u

��

// 0

��
y v // z.

The suspension Σ(x) is the cofiber of the nul arrow x → 0. It follows from the
duality that Σ(x) has the structure of a cogroup object in X. We obtain the Puppe
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cofiber sequence

x
u // y v // z ∂ // Σ(x)

Σ(u) // Σ(y)
Σ(v) // Σ(z) ∂ // Σ2(z) // · · · .

34. Additive quategories

We extend the theory of additive categories to quategories.

34.1. If X is a pointed quategory, we shall say that an object c ∈ X equipped with
four morphisms

a

i1 ��?
??

??
??

a

c

p1

??�������

p2

��>
>>

>>
>>

>

b

i2

??��������
b

is the direct sum of the objects a, b ∈ X if the following 3 conditions are satisfied:

• p1i1 = 1a, p2i2 = 1b, p2i1 = 0 and p1i2 = 0 in hoX;
• the pair (p1, p2) is a product diagram,

a

a⊕ b

p1

<<zzzzzzzz

p2

!!D
DDDDDDD

b

• the pair (i1, i2) is a coproduct diagram,

a

i1 ""E
EEEEEEE

a⊕ b,

b

i2
==zzzzzzzzz

We shall write c = a⊕b to indicate that c is the direct sum of a and b. The cartesian
product of two objects a, b ∈ X is a direct sum iff the pair of morphisms

a

(1a,0) ""E
EE

EE
EE

E

a× b

b

(0,1b)
==zzzzzzzz
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is a coproduct diagram. Dually, the coproduct of two objects a, b ∈ X is a direct
sum iff the pair of morphisms

a

a t b

(1a,0)

<<zzzzzzzz

(0,1b)

!!D
DDDDDDD

b

is a product diagram. We shall say that a pointed quategory X is semi-additive
if every pair of objects in X has a direct sum. The opposite of a semi-additive
quategory is semi-additive. The homotopy category of a semi-additive quategory
is semi-additive. In a semi-additive quategory, the coproduct of a finite family
of objects is also their product; the coproduct of an arbitrary family of objects
(ai : i ∈ I) is denoted as a direct sum⊕

i∈I

ai =
⊔
i∈I

ai.

Similarly, the coproduct of an arbitrary family of morphisms fi : ai → bi is denoted
as a direct sum ⊕

i∈I

fi :
⊕
i∈I

ai →
⊕
i∈I

bi.

We shall say that a map X → Y between semi-additive quategories is additive if
it preserves finite direct sums. A map f : X → Y is additive iff the opposite map
fo : Xo → Y o is additive. The canonical map X → hoX is additive for any semi-
additive quategory X. We shall denote by Add(X, Y ) the full simplicial subset of
Y X spanned by the additive maps X → Y between two semi-additive quategories.
We shall say that a semi-additive quategory X is additive if the category hoX is
additive. We shall say that an algebraic theory T is additive (resp. semi-additive)
if the quategory T is additive (resp. semi-additive). A morphism of additive (resp.
semi-additive) theories is an additive map.

34.2. An algebraic theory T is additive (resp. semi-additive) iff the quategory
Alg(T ) is additive. We shall say that a quategory is an additive theater (resp.
semi-additive theater) if it is equivalent to a quategory Alg(T ) for some additive
(resp. semi-additive) theory T .

34.3. If T is a semi-additive theory, we shall say that a power generator a ∈ T is
an additive generator. An object a ∈ T is an additive generator iff every object
of T is isomorphic to a sum ⊕na for some n ≥ 0. An object a ∈ T is an additive
generator iff the opposite object ao ∈ T is an additive generator. An additive
map f : CMon → T is essentially surjective iff the object f(1) ∈ T is an additive
generator. A ring (resp. rig) is essentially the same thing as a unisorted additive
theory (resp. semi-additive theory).

34.4. An algebraic theory T is additive (resp. semi-additive), iff the quategory
Alg(T ) is additive (resp. semi-additive), The theory of E∞-spaces CMon is semi-
additive hence also the quategory of E∞-spaces CM = Alg(CMon). The theory
CMon is freely generated by the object 1 ∈ CMon. More precisely, the evalutation
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map e : Add(CMon, X)→ X defined by putting e(f) = f(1) is an equivalence for
any semi-additive quategory X. Similarly, the theory of infinite loop-spaces CGrp
is additive hence also the quategory of infinite loop spaces CG = Alg(CGrp).

and freely generated by the object 1 ∈ CGrp. Hence the evalutation map e :
Add(CGrp,X) → X defined by putting e(f) = f(1) is an equivalence for any
additive quategory X.

The theory of E∞-spaces CMon is semi-additive and the theory of infinite loop-
spaces CGrp is additive. Hence the quategory L∞ = Alg(CGrp) is additive. and
the quategory E∞ = Alg(CMon) is semi-additive.

34.5. The theory of E∞-spaces CMon is semi-additive and freely generated by the
object 1 ∈ CMon. More precisely, the evalutation map e : Add(CMon, X) → X
defined by putting e(f) = f(1) is an equivalence for any semi-additive quategory X.
Similarly, the theory of infinite loop-spaces CGrp is additive and freely generated
by the object 1 ∈ CGrp.

34.6. A quategory with finite product X is semi-additive iff one (and then both)
of the following forgetful maps

CMon(X)→ X and Mon(X)→ X

is an equivalence. Thus, if X is semi-additive then every object a ∈ X has the
structure of a monoid, where the multiplication and unit are given by

(1a, 1a) : a⊕ a→ a 0→ a.

Similarly, a quategory with finite product X is additive iff one (and then both) of
the following forgetful maps

CGrp(X)→ X and Grp(X)→ X

is an equivalence. Thus, if X is additive, then every object a ∈ X has the structure
of a group; the inverse operation a → a is −1a, the additive inverse of 1a in the
group hoX(a, a).

34.7. The quategory of E∞-spaces E∞ = Alg(CMon) is semi-additive and sym-
metric monoidal closed. Moreover every semi-additive arena is enriched over E∞
and bicomplete as an enriched quategory. More precisely, if X and Y are two arenas
and if X or Y is semi-additive, then the arenas X ⊗ Y and CC(X, Y ) are semi-
additive. Let us denote by AR(E∞) the full sub-category of AR spanned by the
semi-additive arenas. Then the inclusion functor AR(E∞) ⊂ AR has both a left
and a right adjoint. The left adjoint is the functor X 7→ E∞ ⊗X = CMon(X) and
the right adjoint is the functor X 7→ CC(E∞, X) = CMon(Xo)o. The (simplicial)
category AR(E∞) is symmetric monoidal closed if the unit object is taken to be
the quategory E∞. If X ∈ AR(E∞), then the equivalence E∞ ⊗X ' X is induced
by a map

⊗ : E∞ ×X → X

called the tensor product. Similarly, the quategory L∞ = Alg(CGrp) is additive
and symmetric monoidal closed. And every additive arena is enriched over L∞ and
bicomplete as an enriched quategory. More precisely, if X and Y are two arenas
and if X or Y is additive, then the arenas X ⊗ Y and CC(X, Y ) are additive. Let
us denote by AR(L∞) the full sub-category of AR spanned by the additive arenas.
Then the inclusion functor AR(L∞) ⊂ AR has both a left and a right adjoint.
The left adjoint is the functor X 7→ L∞ ⊗X = CGrp(X) and the right adjoint is
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the functor X 7→ CC(L∞, X) = CGrp(Xo)o. The (simplicial) category AR(L∞)
is symmetric monoidal closed if the unit object is taken to be the quategory L∞.
If X ∈ AR(L∞), then the equivalence L∞ ⊗X ' X is induced by a map

⊗ : L∞ ×X → X

called the tensor product.

34.8. If X is an additive arena, then the opposite of the map HomX : Xo ×X →
L∞ is cocontinuous in each variable and the resulting map

Xo → CC(X,Lo
∞)

is an equivalence of quategories as in 28.25. Similarly, if X is a semi-additive arena
then the opposite of the map HomX : Xo × X → E∞ is cocontinuous in each
variable and the resulting map

Xo → CC(X, Eo
∞)

is an equivalence of quategories.

34.9. Recall that the (simplicial) category of algebraic theories is denoted by ALG.
We shall denote by ADD the full sub-category of ALG spanned by the additive
theories. If S, T ∈ ALG and one of the theories S or T is additive, then the
quategories S � T and Alg(S, T ) is additive. When S and T are both additive, we
shall put

S ⊗ T := S � T and Add(S, T ) := Alg(S, T ).

The (simplicial) category ADD is symmetric monoidal closed if the unit object is
taken to be the theory CGrp. The opposite of an additive theory is additive and
the functor T 7→ T o respects the symmetric monoidal structure. In particular the
quategory CGrp is equivalent to its opposite. The inclusion

ADD ⊂ ALG

has both a left and a right adjoint. The left adjoint is the functor T 7→ CGrp� T
and its right adjoint is the functor T 7→ CGrp(T ). An algebraic theory T is additive
iff the quategory Alg(T ) is additive iff one (and then all) of the following canonical
maps

T → T � CGrp CGrp(T )→ T

T → T �Grp Grp(T )→ T

is an equivalence of quategories. Similarly, we shall denote by SAD the full sub-
category of ALG spanned by the semi-additive theories. If S, T ∈ ALG and one of
the theories S or T is semi-additive, then the quategories S � T and Alg(S, T ) are
semi-additive. When S and T are both semi-additive, we shall put S ⊗ T := S � T
and Add(S, T ) = Alg(S, T ). The (simplicial) category SAD is symmetric monoidal
closed if the unit object is taken to be the theory CMon. The opposite of a semi-
additive theory is semi-additive, and the functor T 7→ T o respects the symmetric
monoidal structure. In particular the quategory CMon is equivalent to its opposite.
The inclusion

SAD ⊂ ALG

has both a left and a right adjoint. The left adjoint is the functor T 7→ CMon� T
and its right adjoint is the functor T 7→ CMon(T ). An algebraic theory T is
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semi-additive iff the quategory Alg(T ) is semi-additive iff one (and then all) of the
following canonical maps

T → T � CMon CMon(T )→ T

T → T �Mon Mon(T )→ T

is an equivalence of quategories.

34.10. If T ∈ ADD and X ∈ AR then the map

Add(T,CGrp(X)) = Alg(T,CGrp(X))→ Alg(T,X)

induced by the forgetful map CGrp(X) → X is an equivalence of quategories. In
particular, the map

Add(T,L∞) = Alg(T,L∞)→ Alg(T,K)

induced by the forgetful map L∞ → K is an equivalence of quategories. We shall
say that an additive map f : T → L∞ is a left T -module and put

Mod(T ) = Add(T,L∞).

Dually, we shall say that an additive map f : T o → L∞ is a right T -module. If S
and T are additive theories, we shall say that an additive map f : So ⊗ T → L∞ is
a (T, S)-bimodule and put

Mod(S, T ) = Mod(So ⊗ T ).

34.11. If u : S → T is a morphism of additive theories, then the map

u∗ : Mod(T )→ Mod(S)

induced by u has a left adjoint u! and a right adjoint u∗.

34.12. If T is an additive theory, then the map hom : T o×T → K preserves finite
direct sum in each variable. It thus induces an additive map HomT : T o⊗T → L∞
by 38.7. The resulting Yoneda map

y : T o → Mod(T )

is fully faithful and additive. We say that a left module T → L∞ is representable if
it is isomorphic to a module y(a) for some object a ∈ T . Then the map y induces
an equivalence between T o and the full sub-quategory of Mod(T ) spanned by the
representable left modules. There is a dual Yoneda map

y : T → Mod(T o)

and a notion of representable right module.
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34.13. To every commutative square in an additive quategory

a

u

��

v // c

f

��
b

g // d

we can associate a null sequence,

a
(u,v)//

0 !!C
CC

CC
CC

CC b⊕ c

(−g,f)

��
d.

The square is a pullback iff the null sequence is a fiber sequence. Dually, the square
is a pushout iff the null sequence is a cofiber sequence. An additive quategory
is cartesian iff every morphism has a fiber. An additive map between additive
quategories is left exact iff it preserves fibers. An additive quategory is cocomplete
iff it has arbitrary coproducts and cofibers. An additive map between cocomplete
additive quategories is cocontinuous iff it preserves coproducts.

34.14. If an additive quategory X is cartesian, then to each arrow f : x→ y with
fiber i : z → x in X we can associate a long fiber sequence

· · · // Ω2(y) ∂ // Ω(z)
Ω(i) // Ω(x)

Ω(f) // Ω(y) ∂ // z i // x
f // y .

Dually, if X is cocartesian, then to each arrow f : x→ y with cofiber p : y → z in
X we can associate a long cofiber sequence

x
u // y

p // z ∂ // Σ(x)
Σ(u) // Σ(y)

Σ(p) // Σ(z) ∂ // Σ2(z) // · · · . .

34.15. To every idempotent e : x→ x of an additive quategory we can associate a
complementary idempotent 1− e : x→ x. The idempotent e splits iff the morphism
1−e has a fiber. When the idempotents e and 1−e split, we obtain a decomposition

x ' Fib(e)⊕ Fib(1− e).

The Karoubi envelope of an additive theory T is additive. A cartesian additive
quategory is Karoubi complete.

34.16. If T is an additive theory, then the Yoneda map y : T → Mod(T o) ex-
ibits the quategory Mod(T o) as the free cocompletion of T under colimits. More
precisely, if X is a cocomplete additive quategory, then the map

y∗ : CC(Mod(T o), X)→ Add(T,X)

induced by y is an equivalence of quategories. The inverse equivalence associates
to an additive map f : T → X its left Kan extension f! : Mod(T o) → X along y.
In particular, if S and T are additive theories, then the map

CC(Mod(T o),Mod(So))→ Add(T,Mod(So))

induced by the Yoneda map y : T → Mod(T o) is an equivalence of quategories,

CC(Mod(T o),Mod(So))→ Mod(So ⊗ T ) = Mod(S, T ).
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The inverse equivalence associates to a bimodule f ∈ Mod(S, T ) a cocontinuous
map R(f) : Mod(T o) → Mod(So) such that R(f)(y(b))(a) = f(ao ⊗ b) for every
pair of objects a ∈ S and b ∈ T . There is also an equivalence

L : Mod(S, T )→ CC(Mod(S),Mod(T ))

such that L(f)(y(a))(b) = f(ao ⊗ b) for every pair of objects a ∈ S and b ∈ T . The
composite of a bimodule f ∈ Mod(So ⊗ T ) with a bimodule g ∈ Mod(T o ⊗ U) is
defined to be the bimodule g ◦T f ∈ Mod(So ⊗ T ) such that

L(g ◦T f) ' L(g)L(f).

34.17. If X is a cocomplete additive quategory, then a map X → L∞ is cocontin-
uous iff the composite X → L∞ → K preserves sifted colimits. An object a ∈ X is
perfect iff the map Hom(a,−) : X → L∞ is cocontinuous.

34.18. If T is an additive theory, then a (left or right) T -module is perfect iff it
is a retract of a representable. The full sub-quategory of Mod(T o) spanned by the
perfect modules is equivalent to the Karoubi envelope Kar(T ). A morphism of
additive theories u : S → T is a Morita equivalence iff the map u∗ : Mod(T ) →
Mod(S) induced by u is an equivalence of quategories.

34.19. An additive quategory X is a theater iff it is generated by a set of perfect
objects. More precisely, let K ⊆ X be a (small) full sub-quategory of perfect objects
of X. If K is closed under finite direct sum then the left Kan extension

i! : Mod(Ko)→ X

of the inclusion i : K → X along y : K → Mod(Ko) is fully faithful and cocontinu-
ous. Moreover, i! is an equivalence if K generates or separates X,

34.20. We shall denote by MOD the full subcategory of AR(L∞) spanned by
the additive varieties. If S and T are additive theories, then the exterior tensor
product of a module f ∈ Mod(S) with a module g ∈ Mod(T ) is the module f ⊗ g ∈
Mod(S⊗T ) defined by putting (f ⊗g)(a⊗ b) = f(a)⊗g(b) for every pair of objects
a ∈ S and b ∈ T . The map (f, g) 7→ f ⊗ g is cocontinuous in each variable and the
induced map

Mod(S)⊗Mod(T )→ Mod(S ⊗ T )

is an equivalence of quategories. Hence the (simplicial) category MOD is symmetric
monoidal and the functor

Mod : ADD→MOD

preserves tensor products. If S and T are additive theories, then the map

CC(Mod(S),Mod(T )) // Mod(So ⊗ T )

induced by the Yoneda map y : So → Mod(S) is an equivalence of quategories
by 34.16. It follows that the monoidal category MOD is compact closed. The
dual of a quategory X = Mod(T ) is the quategory X∗ = Mod(T o) and the counit
εX : X ⊗X∗ → L∞ is the cocontinuous extension of the map

HomT : T o ⊗ T → L∞.
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The value of the unit ηX : L∞ → X∗ ⊗X at the unit object 1 ∈ L∞ is the module
HomT : T o ⊗ T → L∞. It follows from the duality that if X ∈MOD and Y is an
additive arena, then the map

i : X∗ ⊗ Y → CC(X, Y )

defined by putting i(x∗ ⊗ y)(x) = x∗(x)⊗ y is an equivalence of quategories. More
precisely, the external tensor product of a module f ∈ Mod(T ) with an object y ∈ Y
is the additive map f ⊗ y : T → Y defined by putting (f ⊗ y)(a) = f(a) ⊗ y for
every object a ∈ T . The map (f, y) 7→ f ⊗ y is cocontinuous in each variable and
the induced map

Mod(T )⊗ Y → Add(T, Y ) ' CC(Mod(T o), Y )

is an equivalence of quategories. Hence the functor Y 7→ Add(T, Y ) is left adjoint
to the functor Y 7→ Add(T o, Y ) as in 29.2. We thus have an equivalence

CC(Add(T,X), Y ) ' CC(X, Add(T o, Y ))

for any pair of additive arenas X and Y .

34.21. The trace of an endomorphism f : X → X in MOD is the object of
Tr(f) ∈ L∞ obtained by putting

Tr(f) = εX ◦ (f ⊗X∗) ◦ ηX∗ .

If f : X → Y and g : Y → X are two maps in MOD, then there is a canonical
isomorphism Tr(fg) ' Tr(gf). The scalar product of f and g is defined by putting

〈f | g〉 = Tr(fg).

For example the scalar product of an object x∗ ∈ X∗ with an object x ∈ X is the
object 〈x∗ | x〉 = x∗(x). For any endomorphism f : X → X we have Tr(f) '
〈f |1X〉. The transpose of a map f : X → Y in MOD is the map tf : Y ∗ → X∗

obtained by putting

tf = (X∗ ⊗ εY ) ◦ (X∗ ⊗ f ⊗ Y ∗) ◦ (ηX∗ ⊗ Y ∗).

There is then a canonical isomorphism,

〈y∗|f(x)〉 ' 〈tf(y∗)|x〉

for x ∈ X and y∗ ∈ Y ∗. If f : X → Y and g : Y → X, then there is then a
canonical isomorphism,

〈tf | tg〉 ' 〈f | g〉.

In particular, if f : X → X, then Tr(f∗) ' Tr(f). If Z ∈MOD, then the Z-trace
of a map f : X⊗Z → Y ⊗Z in AR(L∞) is defined to be the map TrZ(f) : X → Y
obtained by putting

TrZ(f) = (Y ⊗ εZ) ◦ (f ⊗ Z∗) ◦ (X ⊗ ηZ∗).

The composite of a map f ∈ CC(X, Z) with a map g ∈ CC(Z, Y ) is the Z-trace of
the map f ⊗ g ∈ CC(X ⊗ Z,Z ⊗ Y ).
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34.22. The considerations above can be formulated for bimodules instead of maps.
The transpose of a bimodule f ∈ Mod(So ⊗ T ) = Mod(S, T ) is a bimodule tf ∈
Mod(T o ⊗ S) = Mod(T o, So). The scalar product 〈f, g〉 of a module f ∈ Mod(T o)
with a module g ∈ Mod(T ) is isomorphic to f!(g), where f! : Mod(T )→ L∞ is the
cocontinuous extension of f along the Yoneda map, and also isomorphic to g!(f),
where g! : Mod(T o) → L∞ is the cocontinuous extension of g along the Yoneda
map. The scalar product 〈f, g〉 of a bimodule f ∈ Mod(S, T ) with a bimodule
g ∈ Mod(T, S) ' Mod(So, T o) is defined similarly. This defines a map

Mod(S, T )⊗Mod(T, S)→ L∞.

The trace of a bimodule f ∈ Mod(T, T ) can be defined by putting Tr(f) = 〈f |hT 〉
where hT is the bimodule HomT : T o ⊗ T → L∞. This defines a map

Tr : Mod(T, T )→ L∞.

More generally, the T -trace of a bimodule f ∈ Mod(S ⊗ T, T ⊗ U) is a bimodule
TrT (f) ∈ Mod(S, U). The composite of a bimodule f ∈ Mod(S, T ) with a bimodule
g ∈ Mod(T,U) is the T -trace of bimodule f ⊗ g ∈ Mod(S ⊗ T, T ⊗ U)

34.23. To every morphism of additive theories u : S → T we associate two bimod-
ules γ!(u) ∈ Mod(S, T ) and γ∗(u) ∈ Mod(T, S) by putting

γ!(u)(a, b) = HomT (u(a), b) and γ∗(u)(b, a) = HomT (b, u(a))

for every pair of objects a ∈ S and b ∈ T . Then we have

L(γ!(u)) = u! : Mod(S)→ Mod(T ) : u∗ = L(γ∗(u)).

It shows that the map u∗ is cocontinuous and that it has a right adjoint u∗.

34.24. The notion of homotopy factorisation system in the category ADD is de-
fined as in 28.29. The category ADD admits a homotopy factorisation system
(A,B) in which A is the class of essentially surjective maps and B the class of fully
faithful maps. There is a similar homotopy factorisation system on SAD.

34.25. If T → L is a quasi-localisation of algebraic theories and the theory T is
additive then L is additive. The same result is true for an iterated quasi-licalisation
T → L. It follows that the category ADD admits a homotopy factorisation system
(A,B) in which B is the class of conservative maps and A is the class of iterated
quasi-localisations. There is a similar homotopy factorisation system on the cate-
gory SAD.

34.26. The category AR(L∞) admits a homotopy factorisation system (A,B) in
which B is the class of fully faithful maps. A map f : X → Y belongs to A iff its
right adjoint Y → X is conservative iff f(X0) generates Y .

34.27. A Bousfield localisation an additive arena is additive. The category AR(L∞)
admits a homotopy factorisation system (A,B) in which B is the class of conserva-
tive maps and A is the class of Bousfield localisations.
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35. Dold-Kan correspondance and finite differences calculus

35.1. Let Ch be the pointed category whose objects are the natural numbers and
whose arrows are given by

Ch(m,n) =

 {∂, 0} if m = n + 1
{id, 0} if m = n.
{0} otherwise

By definition, ∂∂ = 0. A chain complex in an additive quategory X is defined to
be a pointed map Ch→ X. We shall denote by Ch(X) the full simplicial subset of
XCh spanned by the chain complexes in X. The quasi-category Ch(X) is additive.

35.2. Let X be an additive quasi-category which is Karoubi complete. Then the
quategory [∆o, X] of simplicial object in X is equivalent to the quategory [∆o

+, X] of
augmented simplicial objects in X. The equivalence is given by the first difference
functor

δ+ : [∆o, X]→ [∆o
+, X]

defined as follow. We first need the successor functor s : ∆→ ∆ defined by putting
s([n]) = [n] ? [0] = [n + 1] for every n ≥ 0. The shift EC of simplicial object
C : ∆o → X is then defined by putting EC = s∗(C). The maps dn+1 : [n]→ [n+1]
define a natural transformation Id→ s, hence also a morphism ε(C) : EC → C for
every C : ∆o → X. The morphism ε(C)n : ECn → Cn admits a section C(sn) for
every n ≥ 0. We thus obtain a decomposition EC ' C ⊕ δC, where δC is the fiber
of ε(C). The simplicial object δC is naturally augmented, with an augmentation
∂ : δC0 → C0 obtained by composing the canonical morphism δC0 → C1 with
∂0 : C1 → C0 The resulting augmented simplicial object is denoted δ+C, and the
resulting map

δ+ : [∆o, X]→ [∆o
+, X]

is an equivalence of quasi-categories. The inverse equivalence associates to an aug-
mented simplicial object D : ∆o

+ → X a simplicial object ΣD and we have

(ΣD)n =
n⊕

i=0

D(i)

for every n ≥ 0. Let us describe ΣD more explicitly. If u denotes the inclusion
∆ ⊂ ∆+, then we have u∗(D)n = D(n+1). Let σ : ∆+ → ∆ be the functor defined
by putting σ(n) = n + 1 = [n]. If σ!(D) denotes the left Kan extension of D along
σ, then we have

σ!(D)n =
n+1⊕
i=0

D(i).

The simplicial object ΣD is the cofiber of a canonical morphism αD : u∗(D) →
σ!(D) which can be described as follows. From the obvious natural transformation
Id→ σu, we obtain a natural transformation β : Id→ σ!u!. If ε : u!u

∗ → Id is the
counit of the adjunction u! ` u∗, then

αD = σ!(εD)βu∗(D) : u∗(D)→ σ!u!u
∗(D)→ σ!(D).
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35.3. The first difference C 7→ δC can be iterated. If C : ∆o → X, then the
simplicial object δ(C) is equipped with an augmentation ∂ : δC0 → C0. The
second difference δ2C = δ(δ(C)) is equipped with an augmentation ∂ : δ2C0 → δC0

and we have ∂∂ = 0. By iterating, we obtain a chain complex δ∗C0,

C0 δC0
∂oo δ2C0

∂oo · · ·∂oo .

It follows from the construction that δnC0 is the fiber of the map

(∂1, . . . , ∂n) : Cn →
n⊕

i=1

Cn−1

for every n ≥ 1. The boundary morphism ∂ : δn+1C0 → δnC0 is induced by the
morphism ∂0 : Cn+1 → Cn and d = (0, ∂0p2, · · · , ∂0pn+1) in the following diagram,

δn+1C0
∂ //

��

δnC0

��
Cn+1

∂0 //

��

Cn

��⊕n+1
i=1 Cn+1

d //⊕n
i=1 Cn.

,

The Dold-Kan correspondance is the map

ch : [∆o, X]→ Ch(X)

obtained by putting ch(C) = δ∗C0 for every simplicial object C : ∆o → X, where
Ch(X) denotes the quategory of chain complexes in X, The correspondance is an
equivalence of quategories. The inverse equivalence associates to a chain complex
D ∈ Ch(X) a simplicial object S(D) obtained by putting

S(D)n =
n⊕

k=0

(
n

k

)
Dk

for every n ≥ 0. Let us describe the simplicial object S(D) more explictly. Observe
that the binomial coefficient

(
n
k

)
is the number of surjections [n]→ [k]. Let ∆mono ⊂

∆ be the subcategory of monomorphisms. Consider the functor G : ∆mono → Ch
which takes a monomorphism f : [m]→ [n] to the morphism G(f) : m→ n defined
by putting

G(f) =

 ∂ if n = m + 1 and f = d0

id if m = n.
0 otherwise

Then the map S(D) : ∆o → X is the left Kan extension of the composite D ◦ G :
∆o

mono → X along the inclusion ∆mono ⊂ ∆. The equivalence

Cn ' S(δ∗C0)n =
n⊕

k=0

(
n

k

)
δkC0

is Newton’s formula of finite differences calculus.
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35.4. Let X be an additive cartesian quategory. Then a simplicial object C : ∆o →
X is a groupoid iff we have δnC = 0 for every n > 1. The Dold-Kan correspondance
associates to a groupoid C : ∆o → X the morphism ∂(C) = ∂ : δC0 → C0. It
induces an equivalence

∂ : Gpd(X) ' XI

between the quasi-category Gpd(X) of groupoids in X and the quategory XI of
morphisms in X. If C is the equivalence groupoid of an arrow u : x → y, then
the morphism ∂(C) is the fiber Ker(u) → x. A functor p : E → C is a left (or
right) fibration iff the morphism δp0 : δE0 → δC0 is invertible. Hence the Dold-
Kan correspondance induces an equivalence between the quategory XC and the
quategory Fact(∂(C), X) of factorisations of the arrow ∂(C).

36. Stabilisation

36.1. Consider the category End(Q) whose objects are the pairs (X, f), where
f : X → X is an endomorphism of a quasi-category, and whose morphisms (X, f)→
(Y, g) are the pairs (u, α), where u : X → Y is a map and α is an invertible 2-cell
α : uf → gu in the square

X
u //

f

��

Y

g

��
X

u // Y.

The category End(Q) has the structure of a 2-category induced by that of QCat.
We shall say that an endomorphism f : X → X is a self-equivalence if f is an
equivalence of quasi-categories. Let us denote by SEq(Q) the full sub-2-category
of End(Q) whose objects are the self equivalences. Then the inclusion functor

SEq(Q) ⊂ End(Q)

has a left adjoint which associates to an object (X, f) ∈ End(Q) an object (X ′, f ′) ∈
SEq(Q) equipped with a morphism (u, α) : (X, f)→ (X ′, f ′) The quategory X ′ is
the (homotopy) colimit of the infinite sequence of quategories

X
f // X

f // X
f // · · · .

By construction, we have an infinite sequence of maps un : X → X ′ together with
an infinite sequence of isomorphisms in : un+1f ' un,

X
f //

u0

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR X
f //

u1

&&MMMMMMMMMMMMMMMMMMMMMMMMM X
f //

u2

""E
EE

EE
EE

EE
EE

EE
EE

EE
E · · ·

X ′
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The canonical map u : X → X ′ is the map u0 : X → X ′. The self-equivalence
f ′ : X ′ → X ′ is the (homotopy) colimit of the sequence of maps

X
f //

f

��

X
f //

f

��

X
f //

f

��

· · ·

X
f // X

f // X
f // · · ·

and its (pseudo) inverse g′ is the (homotopy) colimit of the positive shift

X
f //

1X

  A
AA

AA
AA

X
1X

  A
AA

AA
AA

f // X
f //

1X

##G
GG

GG
GG

GG
· · ·

X
f // X

f // X
f // X · · · .

By construction, there is a canonical isomorphism αn : unf ' f ′un for every
n ≥ 0. We have (u, α) = (u0, α0) : (X, f) → (X ′, f ′). Notice that we have
un(x) ' (g′)nu(x).

36.2. Consider the category End(AR) whose objects are the pairs (X, f), where
X is an arena and f : X → X is a cocontinuous map, and whose morphisms
(X, f)→ (Y, g) are the pairs (u, α), where u : X → Y is a map in AR and α is an
invertible 2-cell α : uf ' gu in the square

X
u //

f

��

Y

g

��
X

u // Y.

The category End(AR) has the structure of a 2-category induced by that of AR.
Let us denote by SEq(AR) the full sub-2-category of End(AR) whose objects are
the self equivalences. Then the inclusion functor

SEq(AR) ⊂ End(AR)

has a left adjoint which associates to an object (X, f) ∈ End(AR) its stabilisation
(X ′, f ′) ∈ SEq(AR) equipped with a morphism (u, α) : (X, f) → (X ′, f ′). By
construction, X ′ is the (homotopy) colimit in AR of the infinite sequence

X
f // X

f // X
f // · · · .

We thus have an infinite sequence of maps un : X → X ′ and an infinite sequence of
isomorphisms in : un+1f ' un. The quategory X ′ can be computed by using the
duality between AR and AR∗ as in ?? (A duality). If g : X → X is right adjoint
to f : X → X, then the quategory Spec(X, g) of g-spectra in X is defined to be the
(homotopy) limit of the sequence of quategories

X X
goo X

goo · · · .goo

Hence a g-spectrum is a pair (x, k), where x = (xn) is a sequence of objects xn ∈ X
and k = (kn) is a sequence of isomorphisms kn : xn ' g(xn+1). We have X ′ =
Spec(X, g), the canonical map un : X → Spec(X, g) is left adjoint to the projection
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pn : X ′ → X and the canonical isomorphism in : un+1f ' un is the left transpose
of the isomorphism kn : pn ' gpn+1,

X
f //

u0

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS X
f //

u1

''OOOOOOOOOOOOOOOOOOOOOOOOOO X
f //

u2

$$I
IIIIIIIIIIIIIIIIIII · · ·

Spec(X, g)

The map f ′ : Spec(X, g) → Spec(X, g) is the homotopy limit of the negative shift
map

X X
goo

1X

~~}}
}}

}}
}

X
goo

1X

~~}}
}}

}}
}

X · · ·
goo

1X

||yyyyyyyy

X X
goo X

goo . · · ·goo

Thus, f ′(x, k)n = (xn+1, kn+1) for every n ≥ 0. The inverse g′ : Spec(X, g) →
Spec(X, g) of f ′ is the homotopy limit g′ : X ′ → X ′ of the sequence of maps

X

g

��

X
goo

g

��

X
goo

g

��

· · ·goo

X X
goo X

goo · · · .goo

Thus, g′(x, k)n = (g(xn), g(kn)) for every n ≥ 0.

36.3. Let X be an arena and f : X → X be a cocontinuous map with right adjoint
g : X → X. A prefixed object for g is a pair (x, a), where x ∈ X and a : x → g(x)
is a morphism; a prefixed object (x, a) is fixed if a is invertible. Let us denote the
quategory of prefixed objects for g by PFix(X, g) and the quategory of fixed objects
for g by Fix(X, g). Then the inclusion Fix(X, g) ⊂ PFix(X, g) has a left adjoint

ρ : PFix(X, g)→ Fix(X, g).

Let us now suppose that the map g is finitary. Then we have ρ(x, a) = (y, i), where
y is the colimit the sequence

x
a // g(x)

g(a) // g2(x)
g2(a) // · · · .

and i is the canonical isomorphism y ' g(y). Moreover, the map ρ is finitary in
this case. Let us suppose that directed colimits and finite limits commute in X,
and that g is left exact and finitary. Then the map ρ is left exact and finitary.

36.4. Let X be an arena and f : X → X be a cocontinuous map with right
adjoint g : X → X. A pre-g-spectrum in X is defined to be a pair (x, a), where
x = (xn) is a sequence of objects of X and a = (an) is a sequence of morphisms
an : xn → g(xn+1). A pre-g-spectrum (x, a) is a g-spectrum iff the morphism an

is invertible for every n ≥ 0. Let us denote the quategory of pre-g-spectra in X by
PSpec(X, g) and the quategory of g-spectra in X by Spec(X, g). Then the inclusion
Spec(X, g) ⊆ PSpec(X, g) has a left adjoint ρ : PSpec(X, g)→ Spec(X, g). Let us
put Y = XN and let ω : Y → Y be the map obtained by putting ω(x)n = g(xn+1)
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for every x = (xn) ∈ Y . The map ω : Y → Y has a left adjoint σ : Y → Y obtained
by putting σ(x)0 = ⊥ and σ(x)n = f(xn−1) for n > 0. By definition, we have
PSpec(X, g) = PFix(Y, ω) and Spec(X, g) = Fix(Y, ω). Let us now suppose that
g is finitary. It then follows from 36.3 that we have ρ(x, a) = (y, i) where y is the
colimit in Y of the sequence

x
a // ω(x)

ω(a) // ω2(x)
ω2(a) // · · · .

and i is the canonical isomorphism y ' ω(y). It folllows that the reflection ρ :
PSpec(X, g) → Spec(X, g) is finitary. Let us now suppose that directed colimits
and finite limits commute in X. In this case ρ is left exact and finitary when g is
finitary.

36.5. Let X be a null-pointed arena. Then the suspension Σ : X → X has a
right adjoint Ω : X → X. A spectrum in X is an infinite sequence of objects
xn ∈ X together with an infinite sequence of isomorphisms in : xn ' Ω(xn+1). It
follows from 36.4 that Spec(X) = Spec(X, Ω). Hence the quategory Spec(X) is the
(homotopy) colimit in AR of the infinite sequence of quategories,

X
Σ // X

Σ // X
Σ // · · · .

The suspension map Σ : Spec(X) → Spec(X) is invertible. A pre-spectrum in
X is an infinite sequence of objects xn ∈ X together with an infinite sequence
of morphisms an : Σ(xn) → xn+1. The quategory PSpec(X) of prespectra in X
is equivalent to the quategory PSpec(X, Ω). If directed colimits and finite limits
commmute in X, then the reflection

ρ : PSpec(X)→ Spec(X)

is left exact and finitary.

36.6. Let f : X → X be an endomorphism in AR and α : f → 1X be a natural
transformation. Then the map p : X → X [α] which inverts α universally can be
constructed as follows by 36.6. Let g : X → X be the right adjoint of f and
β : 1→ g : X → X be the right transpose of α. An object x ∈ X is said to coinvert
β if the morphism β(x) : x→ g(x) is invertible. Let us denote by Coinv(β) the full
simplicial subset of X spannned by the objects which coinvert β. Then the inclusion
Coinv(β) ⊆ X has a left adjoint p : Y → Coinv(β) and we have Y [α] = Coinv(β).
Let us now suppose that the natural transformations f ◦ α, α ◦ f : f2 → f are
homotopic (ie that f ◦ [α] = [α] ◦ f in the 2-category S). If g is finitary then p is
finitary and p(x) is the colimit of the sequence

x
β // g(x)

β // g2(x)
β // · · · ,

for every object x ∈ X, where β : gn(x) → gn+1(x) is β(gn(x)). The morphism
β : p(x)→ g(p(x)) is the colimit of the sequence of morphisms

x
β //

β

��

g(x)
β //

β

��

g2(x)
β //

β

��

· · ·

g(x)
β // g2(x)

β // g3(x)
β // · · ·
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since g ◦ β ' β ◦ g. Its inverse g(p(x))→ p(x) is the colimit of the positive shift

g(x)
β //

id

""E
EEEEEEE g2(x)

id

##G
GGGGGGG

β // g3(x)
β //

id

&&LLLLLLLLLL
· · ·

x
β // g(x)

β // g2(x)
β // g3(x)→ · · · .

Moreover, p is left exact if directed colimits and finite limits commute in X
EEEE

36.7. Let PSpec be the cartesian theory of parametrised spectra described in ??. If
X is a para-variety (resp. an∞-topos), let us show that PSpec(X) is a para-variety
(resp. an ∞-topos). Let PPreSpec be the cartesian theory of parametrized pre-
spectra. An object of PPreSpec(X) is a pre-spectrum in X/b for some object b ∈ X.
A pointed object of X/b is an arrow p : x→ b equipped with a section s : b→ x. A
pre-spectrum in X/b is an infinite sequence of pointed objects (xn, pn, sn) together
with an infinite sequence of commutative squares

xn
pn //

pn

��

b

sn+1

��
b

sn+1 // xn+1.

Clearly, a parametrised pre-spectrum in X is a map B → X, where B is a certain
simplicial set. Hence the quasi-category PPreSpec(X) of parametrized pre-spectra
in X is of the form XB for some simplicial set B. It is thus a para-variety (resp.
an ∞-topos), since X is a para-variety (resp. an ∞-topos). But the quasi-category
PSpec(X) is a left exact reflection of PPreSpec(X) by 36.2, since directed colimits
commute with finite limits in X by ??. It is thus a para-variety (resp. an∞-topos).

37. Perfect quategories and descent

We introduce the notions of regular and of perfect quategories. The general
notion of descent diagram is due to Charles Rezk.

37.1. The map Eq : KI → Gpd(K) which associates to an arrow f : a → b its
equivalence groupoid Eq(f) has a left adjoint B which associates to a groupoid
G its classifying space BG equipped with the canonical morphism G0 → BG. If
Surj(K) denotes the full sub-quategory of KI spanned by the surjections, then the
adjoint pair B ` Eq induces an equivalence of quategories

B : Gpd(K)↔ Surj(K) : Eq.

Similarly, the map Ω : 1\K → Grp(K) which associates to a pointed object 1 → b
its loop group Ω(b) has a left adjoint B which associates to a group object G to its
pointed classifying space BG. If K(1) denotes the full sub-quategory of connected
objects of 1\K, then the adjoint pair B ` Eq induces an equivalence of quategories

B : Grp(K)↔ K(0) : Ω.
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37.2. Let X be a cartesian quategory. Consider the map Eq : XI → Gpd(X)
which associates to an arrow u : a → b its equivalence groupoid Eq(u). We shall
say that a groupoid object C : ∆o → X is effective if it has a colimit p : C0 → BC
and the canonical functor C → Eq(p) is invertible.

37.3. We say that a cartesian quategory X is regular if it admits surjection-mono
factorisations and the following conditions are satisfied:

• the base change of a surjection is a surjection;
• every surjection is the colimit of its equivalence groupoid.

We say that a regular quategory X is perfect if every groupoid is effective.

37.4. The quategory K is perfect. An α-variety is perfect for any regular ordinal α.
If X is a perfect quategory, then so are the quategories b\X and X/b for any object
b ∈ X, the quategory XA for any simplicial set A and the quategory Alg(T,X)
for any (finitary) algebraic theory T . A variety of modules is perfect. A left exact
reflection of a perfect quategory is perfect.

37.5. We say that a left exact map between regular quategories is exact if it pre-
serves surjections. If X is a regular quategory, we say that an object a ∈ X is
projective if the map hom(a,−) : X → K is exact.

37.6. If X is a regular quategory, then the base change map u∗ : X/b → X/a is
exact for any morphism u : a→ b. An object a ∈ X is projective iff every surjection
b→ a has a section.

37.7. In a variety of homotopy algebras X, an object a ∈ X is perfect iff it is
compact and projective.

37.8. Let X be a perfect quategory. Then the map Eq : XI → Gpd(X) which
associates to an arrow f : a → b its equivalence groupoid Eq(f) has left adjoint
B which associates to a groupoid C its classifying space BC equipped with the
canonical morphism C0 → BC. If Surj(X) denotes the full sub-quategory of XI

spanned by the surjections, then the adjoint pair B ` Eq induces an equivalence of
quategories

B : Gpd(X)↔ Surj(X) : Eq.

The canonical map Ob : Gpd(X) → X is a Grothendieck fibration and its fiber
at a ∈ X is a quategory Gpd(X, a). By definition, an object of Gpd(X, a) is a
groupoid C ∈ Gpd(X) with C0 = a. If Surj(a,X) denotes the full simplicial subset
of a\X spanned by the surjection a→ x, then the adjoint pair B ` Eq induces an
equivalence of quategories

B : Gpd(X, a)↔ Surj(a,X) : Eq.

37.9. A perfect quategory X admits n-factorisations for every n ≥ −1. A mor-
phism a → b in X is −1-connected iff it is surjective. If n ≥ 0, a morphism a → b
is n-connected iff it is surjective and the diagonal a→ a×b a is (n− 1)-connected.
If a→ e→ b is the n-factorisation of a morphism a→ b, then a→ a×e a→ a×b a
is the (n − 1)-factorisation of the diagonal a → a ×b a. An exact map f : X → Y
between perfect quategories preserves the n-factorisations for every n ≥ 0.
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37.10. Let X be an perfect pointed quategory. Then the map Ω : X → Grp(X)
which associates to a pointed object 0 : 1→ b its loop group Ω(b) has a left adjoint
B which associates to a group object G to its (pointed) classifying space BG. If
n ≥ 0, then an object x ∈ X is n-connected iff the morphism 0 → x is (n − 1)-
connected. Let us denote by X(n) the full sub-quategory of X spanned by the
pointed (n − 1)-connected object of X. Then the adjoint pair B ` Eq induces an
equivalence of quategories

B : Grp(X)↔ X(1) : Ω.

Hence the quategory X(1) is perfect, since the quasi-category Grp(X) is perfect.
A morphism in X(1) is n-connected iff it is (n + 1) connected in X. Similarly,
a morphism in X(1) is a n-cover iff it is a (n + 1) cover in X. By ierating the
equivalence above we obtain an equivalence of quategories

Bn : Grpn(X)↔ X(n) : Ωn

for every n ≥ 1.

37.11. An additive quategory X is perfect iff the following five conditions are
satisfied:

• X admits surjection-mono factorisations;
• the base change of a surjection is a surjection;
• every morphism has a fiber and a cofiber;
• every morphism is the fiber of its cofiber;
• every surjection is the cofiber of its fiber.

37.12. If a quategory X is additive and perfect, then so is the quategory XA for
any simplicial set A and the quategory Mod×(T,X) for any algebraic theory T .

37.13. Let X be a perfect additive quategory. If f : x→ y is a surjection, then a
null sequence 0 = fi : z → x→ y is a fiber sequence iff it is a cofiber sequence.

37.14. Let X be a perfect additive quategory. An object a ∈ X is discrete iff
Ω(a) = 0. A morphism u : a→ b in X is a 0-cover iff its fiber Ker(u) is discrete. An
object a ∈ X is connected iff the morphism 0→ a is surjective. A morphism a→ b
is 0-connected iff it is surjective and the fiber Ker(u) is connected. The suspension
Σ : X → X induces an equivalence between X and the full sub-quategory of
connected objects of X.

37.15. Let X be a perfect additive quategory. Then an object a ∈ X is a n-object
iff Ωn(a) = 0. An arrow u : a → b in X is a n-cover iff its fiber Ker(u) is a
n-object. An object a ∈ X is n-connected iff it is connected and Ω(a) is (n − 1)-
connected. A morphism a→ b is n-connected iff it is surjective and its fiber Ker(u)
is n-connected.

37.16. Let X be a cartesian quategory. We say that a a functor f : C → D in
Cat(X) is fully faithful if the commutative square

C1
f1 //

(s,t)

��

D1

(s,t)

��
C0 × C0

f0×f0 // D0 ×D0
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is cartesian. For example, the canonical functor Eq(u)→ Sk0(b) is fully faithful for
every arrow u : a→ b in X. If X is regular, we shall say that a functor f : C → D is
essentially surjective if the morphism q : P → D0 defined in the following pullback
square

P
f1 //

(p,q)

��

J(D)1

(s,t)

��
C0 ×D0

f0×D0// D0 ×D0

is surjective, where J(D)1 is the object of isomorphisms of D; we say that f : C → D
is a weak equivalence if it is fully faithful and essentially surjective. For example,
the canonical functor Eq(u) → Sk0(b) is a weak equivalence for every surjection
u : a→ b in X.

37.17. Let X be a cartesian quategory. We shall say that a functor f : C → D
in Cat(X) is a Morita equivalence if the base change map f∗ : XD → XC is an
equivalence of quategories. We shall say that an arrow f : a→ b in X is a descent
morphism if the canonical functor Eq(f) → Sk0(b) is a Morita equivalence. An
arrow u : a → b is a descent morphism iff the lifted base change map ũ∗ : X/b →
XEq(u) is an equivalence of quategories. If X is perfect, then every weak equivalence
f : C → D is Morita equivalence. In particular, every surjection u : a → b is a
descent morphism.

37.18. Let X be a perfect quategory. If RCat(X) denotes the quategory of reduced
category objects in X, then the inclusion RCat(X) ⊆ Cat(X) has a left adjoint
which associates to a category C ∈ Cat(X) a reduced category RC. The canonical
functor C → RC is a weak equivalence for every C ∈ Cat(X).

37.19. Let X be a cartesian quasi-category. If A is a simplicial set, recall that the
appex of a projective cone c : A ? 1 → X is defined to be the object c(1) ∈ X.
The appex map a : XA?1 → X defined by putting a(c) = c(1) is a Grothendieck
fibration. The base change of a cone c : A ? 1 → X along an arrow u : e → c(1) is
a cone u∗(c) : A ? 1→ X obtained by putting

u∗(c)(a) = e×c(1) c(a)

for every a ∈ A. We shall say that a colimit cone c and its colimit c(1) are stable if
the cone u∗(c) is a colimit cone for every arrow u : e→ c(1) in X.

37.20. Let X be a cartesian quasi-category and A be a simplicial set. We say that
a natural transformation α : f → g : A→ X is cartesian if the naturality square

f(a)
f(u) //

��

f(b)

��
g(a)

g(u) // g(b)

is cartesian for every arrow u : a → b in A. This notion only depends on the
homotopy class of of the natural transformation α. It is thus a property of the 2-cell
[α] : f → g defined by α. The set of cartesian natural transformations is invariant
under isomorphism in XA. Moreover, it is closed under composition, base changes
and it has the left cancellation property. We shall say that a cartesian natural
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transformation α : f → g a gluing datum over g : A → X. We shall denote by
Glue(g) the full simplicial subset of XA/g spanned by the gluing data over g. When
the category τ1A is a groupoid, every natural transformation α : f → g : A→ X is
cartesian. Hence we have Glue(g) = XA/g in this case.

37.21. A functor f : C → D in Cat(X) is a natural transformation f : C → D :
∆o → X. The natural transformation is cartesian iff the funhctor f is both a left
and a right fibration.

37.22. Let X be a cartesian quasi-category. If u : A → B is a map of simplicial
sets, then the map Xu : XB → XA takes a cartesian natural transformation to a
cartesian natural transformation. It thus induces a map

u∗ : Glue(g)→ Glue(gu)

for any diagram g : B → X. We shall say that u∗ is the restriction along u. The
restriction along a final map is an equivalence of quategories. In particular, for any
cone c : A ? 1 → X, the restriction along the inclusion 1 ⊆ A ? 1 is an equivalence
of quategories, Glue(c)→ X/c(1). The spread map:

X/c(1)→ Glue(ci).

is obtained by composing the inverse equivalence with the restriction

i∗ : Glue(c)→ Glue(ci)

along the inclusion i : A ⊆ A ? 1. We say that a diagram d : A → X is a descent
diagram if it has a colimit b and the spread map

σ : X/b→ Glue(d)

associated to the colimit cone c : A ? 1 → X is an equivalence of quategories. In
which case, the inverse equivalence associates to a cartesian morphism f → g its
colimit

lim
−→

a∈A

f(a)→ lim
−→

a∈A

g(a) = b.

The colimit of a descent diagram is stable under base change.

37.23. (Rezk) In the quategory K, every diagram is a descent diagram (and every
colimit is stable under base change). Let us sketch a proof using the correspondance
f 7→ El(f) of 15.5. If B is a simplicial set, let us denote by K(B) the full sub-
category of S/B whose objects are the Kan fibrations X → B. The category K(B)
is enriched over Kan complexes. Moreover, if i : A → B is a weak homotopy
equivalence, then the map i∗ : K(B) → K(A) is a Dwyer-Kan equivalence. If
g : A→ K is a diagram and G = El(g), let us choose a weak homotopy equivalence
i : G ⊆ Y with Y a Kan complex. Then the object Y ∈ K is the colimit of g.
A natural transformation α : f → g : A → K is cartesian iff the map El(α) :
El(f) → El(g) = G is a homotopy covering in the sense of 11.22. It follows that
the quasi-category Glue(g) is equivalent to the coherent nerve of the simplicial
category K(G). Moreover, the spread map K/Y → Glue(g) is induced by the
functor i∗ : K(Y ) → K(G). It is thus an equivalence of quategories, since i is a
weak homotopy equivalence.
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37.24. In a finitary presentable quategory, every directed diagram is a descent
diagram (and every directed colimit is stable under base changes). In a variety
of homotopy algebras, every sifted diagram is a descent diagram (and every sifted
colimit is stable under base changes).

38. Stable quategories

38.1. Let X be a null-pointed quategory. Recall that the loop space Ω(x) of an
object x ∈ X is defined to be the fiber of the arrow 0→ x. By definition, we have
a pullback square

Ω(x) //

��

0

��
0 // x.

We shall say that X is stable if if every object x ∈ X has a loop space, and the
map Ω : X → X is an equivalence of quategories. We shall say that a pointed
map between stable quategories f : X → Y is stable if the canonical morphism
f ◦ Ω→ Ω ◦ f is invertible. A stable quategory with finite products is additive.

38.2. If X is a stable quategory, then the inverse of the map Ω : X → X is the
suspension Σ : X → X. We shall put

Ω−n = Σn and Σ−n = Ωn

for every n ≥ 0. A null sequence

x
0 //

0 ��>
>>

>>
>>

> 0

0

��
y

is a fiber sequence iff it is a cofiber sequence. The opposite of a stable quategory is
stable and we have Ω(xo) = Σ(x)o for every object x ∈ X. The opposite of stable
map f : X → Y between stable quategories is stable.

38.3. In a stable cartesian quategory, a null sequence

x //

��?
??

??
??

? y

��
z

is a fiber sequence iff it is a cofiber sequence; a commutative square

x //

��

y

��
u // z

is cartesian iff it is cocartesian. If a stable quategory is cartesian iff it is cocartesian.
A map between stable cartesian quategories is finitely continuous iff it is finitely
cocontinuous.
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38.4. A locally presentable quategory X is stable iff it is null-pointed and the
suspension Σ : X → X is an equivalence of quategories. If X, Y ∈ LP and one
of the quategories X or Y is stable then the quategories X ⊗ Y and CC(X, Y )
are stable. We shall denote by SLP the full sub-category of LP spanned by the
stable quategories. The inclusion SLP ⊂ LP has both a left and a right adjoint;
the left adjoint is the functor X 7→ S∞ ⊗ X = Spec(X) and the right adjoint
is the functor X 7→ CC(S∞, X) = Spec(Xo)o. The (simplicial) category SLP is
symmetric monoidal closed if the unit object is taken to be the quategory S∞ =
ModSpec. If X ∈ SLP, then the equivalence S∞ ⊗X ' X is induced by a map

⊗ : S∞ ×X → X

called the tensor product. The tensor product is the basic ingredient of a symmetric
monoidal closed structure on the quategory S∞. Every quategory X ∈ SLP is
enriched and cocomplete over the monoidal quategory S∞.

38.5. If X is a locally presentable stable quategory, then the opposite of the map
HomX : Xo ×X → S∞ is cocontinuous in each variable and the resulting map

Xo → CC(X,So
∞)

is an equivalence of quategories as in 28.25.

38.6. Recall that the category of cartesian theories and left exact maps is denoted
by CT. We shall denote by SCT the full subcategory of CT spanned by the stable
cartesian theories. If S, T ∈ SCT and one of the theories S or T is stable then so
are the quategories S � T and Model(S, T ). When S and T are both additive, we
shall put

S ⊗ T := S � T.

The (simplicial) category SCT is symmetric monoidal closed if the unit object is
taken to be the theory Spec. The opposite of a stable theory is a stable theory and
the functor T 7→ T o respects the symmetric monoidal structure. In particular the
quategory Spec is equivalent to its opposite. The inclusion functor

SCT→ CT

admits both a left and a right adjoint. The left adjoint is the functor T 7→ Spec�T
and its right adjoint is the functor T 7→ Spec(T ). If T is null-pointed, then the
quategory Spec� T is the (homotopy) colimit of the sequence of quategories

T
Ω // T

Ω // T
Ω // · · · .

38.7. If T ∈ SCT and X ∈ LP then the map

Model(T, Spec(X))→ Model(T,X)

induced by the forgetful map Spec(X) → X is an equivalence of quategories. In
particular, the map

Model(T,L∞)→ Model(T,K)
induced by the forgetful map S∞ → K is an equivalence of quategories. We shall
say that a model f : T → L∞ is a stable left T -module and put

SMod(T ) = Model(T,S∞).
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Dually, we shall say that model f : T o → S∞ is a stable right T -module. If S and T
are stable theories, we say that a model f : So⊗T → S∞ is a stable (T, S)-bimodule
and put

SMod(S, T ) = SMod(So ⊗ T ).

38.8. We shall say that a quategory is a stable variety if it is equivalent to a
quategory SMod(T ) for a stable cartesian theory T . For example, the quategory
S∞ = SMod(Spec) is a stable variety.

38.9. If u : S → T is a morphism of stable cartesian theories, then the map

u∗ : SMod(T )→ SMod(S)

induced by u has a left adjoint u! and a right adjoint u∗.

38.10. If T is a stable cartesian theory, then the map hom : T o × T → K is left
exact in each variable. It thus induces a left exact map HomT : T o ⊗ T → E∞ by
38.7. The resulting Yoneda map

y : T o → SMod(T )

is fully faithful and left exact. We say that a stable module T → L∞ is representable
if it is isomorphic to a module y(a) for some object a ∈ T . Then the map y induces
an equivalence between T o and the full sub-quategory of SMod(T ) spanned by the
representable sable left modules. There is a dual Yoneda map

y : T → SMod(T o)

and a notion of representable stable right module.

38.11. We say that a quategory is a para-variety of stable modules if it is equivalent
to a quategory SMod(T ) for some stable additive theory T .

38.12. If u : S → T is a morphism of stable theories, then the map

u∗ : SMod(T )→ SMod(S)

induced by u has a left adjoint u! and a right adjoint u∗.

38.13. If T is stable cartesian theory, then the map hom : T o × T → K is finitely
bicontinuous in each variable. It thus induces a cartesian map HomT : T o ⊗s T →
S∞. The resulting Yoneda map

y : T o → SMod(T )

is fully faithful and finitely bicontinuous.
We say that a stable left module T → S∞ is representable if it is isomorphic to

a module y(a). Then the map y induces an equivalence between T o and the full
sub-quategory of SMod(T ) spanned by the representable stable left modules. There
is a dual Yoneda map

y : T → SMod(T o)
and a notion of representable stable right module.

38.14. If X is a cocomplete stable additive quategory, we shall say that an object
a ∈ X is perfect iff the map Hom(a,−) : X → L∞ is cocontinuous. If X is a stable
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38.15. We denote by SAdd the stable algebraic theory freely generated by one
object u ∈ SAdd. Every object f ∈ SAdd is a finite direct sum

f =
⊕
i∈F

Σni(u)

where ni is an integer. We say that a stable algebraic theory T is unisorted if it
is equipped with an essentially surjective map SAdd → T . A ”ring spectrum” is
essentially the same thing as a unisorted stable theory. In other words, a stable
algebraic theory T is a ”ring spectrum with many objects”. A stable model f :
T → Spec is a left T -module.

38.16. The opposite of a stable algebraic theory is a stable algebraic theory. The
stable theory SAddo is freely generated by the object uo ∈ SAdd. Hence the stable
morphism SAdd→ SAddo which takes u to uo is an equivalence. The duality takes
the object Σn(u) to the object Σ−n(u) for every integer n.

38.17. Every stable algebraic theory T generates freely a cartesian theory u : T →
Tc. By definition, Tc is a pointed cartesian theory and u : T → Tc is a stable
morphism which induces an equivalence of quasi-categories

Mod(Tc, X) ' SProd(T,X)

for any pointed cartesian quasi-category X. The cartesian theory Tc is stable. For
example, we have SAddc = Spec.

38.18. The quasi-category of spectra Spec is exact. More generally, if T is a stable
algebraic theory, then the quasi-category SProd(T ) is stable and exact.

38.19. Let us sketch a proof of 38.18. The quasi-category Spec is a para-variety by
39.7. It is thus exact by ??. Let us show that the quasi-category SProd(T,Spec)
is stable and exact. It is easy to see that it is stable. Let us show that it is a
para-variety. The quasi-category Prod(T,Spec) is a para-variety by 39.4. Hence
it suffices to show that the quasi-category SProd(T,Spec) is a left exact reflection
of the quasi-category Prod(T,Spec). A model f : T → Spec is stable iff the the
canonical natural transformation α : f → ΩfΣ is invertible. By iterating, we obtain
an infinite sequence

f
α // ΩfΣ ΩαΣ // Ω2fΣ2 // · · ·

The colimit R(f) of this sequence is a stable map T → Spec. This defines a left
exact reflection

R : Prod(T,Spec)→ SProd(T,Spec).

Thus, SProd(T,Spec) is a para-variety. Hence it is exact by ??.

38.20. An additive quasi-category X is stable and exact iff the following two con-
ditions are satisfied:

• Every morphism has a fiber and a cofiber;
• A null sequence z → x→ y is a fiber sequence iff it is a cofiber sequence.
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38.21. Let us sketch a proof of 37.11. (⇒) Every morphism in X has a fiber and
a cofiber by 37.11, since X is exact and additive. Let us show that every arrow
is surjective. For this it suffices to show that every monomorphism is invertible,
since every arrow is right orthogonal to every quasi-isomorphism. If u : a→ b is a
monomorphism, then we have a fiber sequence

Ω(a)
Ω(u) // Ω(b) // 0 // a u // b .

by 34.14. Thus, Ω(u) invertible, since it is the fiber of a nul morphism, It follows that
u is invertible, since the map Ω : X → X is an equivalence. We have proved that
every arrow is surjective. It then follows from 37.13 that a nul sequence z → x→ y
is a fiber sequence iff it is a cofiber sequence. (⇐) Let us show that X is stable. If
x ∈ X, then we have ΣΩ(x) ' x, since the fiber sequence Ω(x)→ 0→ x is a cofiber
sequence. Moreover, we have x ' ΩΣ(x), since the cofiber sequence x→ 0→ Σ(x)
is a fiber sequence. This shows that X is stable. It remains to show that X is
exact. For this, it suffices to show that the conditions of 37.11 are satisfied. Let
us first show that X admits surjection-mono factorisations. For this, it suffices to
show that every monomorphism is invertible. If x→ y is monic, then the sequence
0 → x → y is a cofiber sequence, since it is a fiber sequence. It follows that the
arrow x → y is invertible. This proves that every monomorphism is invertible.
Thus, every morphism is surjective. Hence the base change of a surjection is a
surjection.

38.22. The opposite of an exact stable quasi-category is exact and stable.

38.23. An additive map X → Y between two exact stable quasi-categories is exact
iff it is left exact iff it is right exact.

38.24. Let X be an exact stable quasi-category. Then to each arrow f : x→ y in
X we can associate by 34.14 a two-sided long fiber sequence,

· · ·Ω(x)
Ω(f) // Ω(y) ∂ // z i // x

f // y ∂ // Σ(z)
Σ(i) // Σ(x) · · · .

where i : z → x is the fiber of f . The sequence is entirely described by a triangle

x
f // y

∂����
��

��
�

z
i

__????????

.

where ∂ is now regarded as a morphism of degree -1 (ie as a morphism y → Σ(x)).

38.25. If A and B are two stable algebraic theories then so is the quasi-category
SProd(A,B) of stable models A→ B. The 2-category SAT is symmetric monoidal
closed. The tensor product A�S B of two stable algebraic theories is the target of
a map A × B → A �S B which is a stable morphism in each variable (and which
is universal with respect to that property). There is a canonical equivalence of
quasi-categories

SProd(A�S B,X) ' SProd(A,SProd(B,X))
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for any cartesian quasi-category X. In particular, we have two equivalences of
quasi-categories,

SProd(A�S B) ' SProd(A,SProd(B)) ' SProd(B,Prod(A)).

The unit for the tensor product is the theory SAdd described in ??. The opposite
of the canonical map S × T → S � T can be extended along the Yoneda maps as a
map cocontinuous in each variable.

SProd(A)× SProd(B)→ SProd(A�S B).

38.26. Let CT be the (2-)category of cartesian theories. Then the full sub(2-
)category SCT of CT spanned by the stable cartesian theories is (pseudo) reflec-
tive and coreflective. The left adjoint to the inclusion SCT ⊂ CT is the func-
tor T 7→ T �c Spec and its right adjoint is the functor T 7→ Mod(Spec, T ) '
SProd(SAdd, T ).

38.27. Let LP be the (2-)category of locally representable quasi-categories. Then
the full sub(2-)category SLP of LP spanned by the stable locally presentable quasi-
categories is (pseudo) reflective and coreflective. The left adjoint to the inclusion
SLP ⊂ LP is the functor X 7→ Mod(Spec, X) ' SProd(SAdd,X) ' X ⊗ Spec
and its right adjoint is the functor X 7→Map(Spec, X).

38.28. If A is a stable quasi-category, then the map homA : Ao × A → U admits
a factorisation

Spec

U

��
Ao ×A

homA //

hom′A

66mmmmmmmmmmmmm
U,

where the map hom′
A is stable in each variable, and where U is the forgetful map.

The factorisation is unique up to a unique invertible 2-cell. This defines an ”en-
richement” of the quasi-category A over the quasi-category of spectra Spec. The
Yoneda map

y : Ao → SpecA

is obtained from hom′
A by exponential adjointness.

38.29. If T is a stable algebraic theory, then the Yoneda map y : T o → SpecT

induces a map y : T o → SProd(T ). We say that a model f : T → Spec is
representable if it belongs to the essential image of the Yoneda map.

39. Para-varieties

39.1. Recall that a map between two quategories r : Y → X is said to be a
reflection if it has a fully faithful right adjoint. A reflection r : Y → X is left
exact if it preserves finite limits. If X and Y are locally presentables, a reflection
r : Y → X is called a Bousfield localisation. We shall say that a locally presentable
quategory X is a para-variety if it is a left exact Bousfield localisation Y → X of a
a variety of homotopy algebras Y .

39.2. A locally presentable quategory X is a left exact Bousfield localisation of a
finitary presentable quategory iff directed colimits and finite limits commute in X.
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39.3. Sifted colimits and finite products commute in any para-variety. A locally
presentable quategory X is a para-variety iff the following conditions are satisfied:

• X is exact;
• directed colimits and finite limits commute in X;
• ∆o-indexed colimits commute with finite products in X.

39.4. A left exact Bousfield localisation of a para-variety is a para-variety. If X is
a para-variety, then so are the slice quategories a\X and X/a for any object a ∈ X
and the quategory XA for any simplicial set A. More generally, the quategory
Alg(T,X) is a para-variety for any algebraic theory T .

39.5. Let X ⊆ Y be a left exact reflection of a cartesian quategory Y . Then a
diagram g : A → X which is a descent diagram in Y is also a descent diagram in
X. Let us sketch a proof. Let i be the inclusion X ⊆ Y . The composite ig : A→ Y
is a descent diagram by assumption. If b is the colimit of the ig, then r(b) is the
colimit of g in X. Consider the diagram

X/r(b)

i0

��

σ′ // Glue(g)

i1

��
Y/r(b)

p∗ // Y/b
σ // Glue(ig),

where i0 and i1 are induced by i : X ⊆ Y , where σ and σ′ are the spread maps, and
where p∗ is base change along the canonical arrow p : b→ r(b). It is easy to see that
the diagram commutes up to a canonical isomorphism. The map q : Y/b→ X/r(b)
induced by r is left adjoint to the composite p∗i0 : X/r(b) → Y/r(b) → Y/b.
Moreover, the counit of the adjunction q ` p∗i0 is invertible by the left exactness of
r. Thus. p∗i0 is fully faithful. It follows that i1σ

′ = σp∗i0 is fully faithful, since σ
is an equivalence by assumption. Thus, σ′ is fully faithful, since i1 is fully faithful.
It remains to show that σ′ is essentially surjective. Let α : f → g be an object of
Glue(g) and u : a→ b be the colimit of α in Y . Then the canonical square

f(a)

α(a)

��

// a

u

��
g(a) // b

is a pullback for every a ∈ A, since g is a descent diagram in Y . Hence the square

f(a)

α(a)

��

// r(a)

r(u)

��
g(a) // r(b),

is also a pullback in X, since r is left exact. This proves that σ′ is essentially
surjective.

39.6. In a para-variety, every sifted diagram is a descent diagram (and every sifted
colimit is stable under base changes).
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39.7. If X is a para-variety, then so is the quasi-category Spec(X) of spectra in
X. Let us sketch a proof. We can suppose that X is pointed. We then have
Spec(X) = S(X, Σ), where Σ : X → X is the suspension map. Let us show that
S(X, Σ) is a para-variety if X is a para-variety A pre-spectrum in X is an infinite
sequence of pointed objects (xn) together with an infinite sequence of commutative
squares

xn //

��

1

��
1 // xn+1,

The notion of pre-spectrum is essentially algebraic and finitary. Let us denote by
PS the algebraic theory of pre-spectra. The quasi-category PS(X) = Alg(PS, X)
is a para-variety by 39.4, since X is a para-variety. But the quasi-category Spec(X)
is a left exact reflection of PS(X) by 36.1, since directed colimits commute with
finite limits in X by ??. It is thus a para-variety.

40. Homotopoi (∞-topoi)

The notion of homotopos (∞-topos) presented here is due to Carlos Simpson
and Charles Rezk.

EEE

40.1. Every diagram in an ∞-topos is a descent diagram (and every colimit is
stable under base changes).

EEE

40.2. Recall that a category E is said to be a Grothendieck topos, but we shall say
a 1-topos, if it is a left exact reflection of a presheaf category [Co,Set]. This means
that E is equivalent to a reflective category of [Co,Set], with a reflection functor
[Co,Set]→ E which is left exact.

40.3. We call a locally presentable quasi-category X an∞-topos if it is a left exact
reflection of a quasi-category of pre-stacks P(A) for some simplicial set A. If n ≥ 0
we call a locally presentable quasi-category X a n-topos if it is a left exact reflection
of a quasi-category of n-pre-stacks P(A)(n) for some simplicial set A.

EEE

40.4. Recall from 40.2 that a category E is said to be a Grothendieck topos if it is
a left exact reflection of a presheaf category [Co,Set]. A homomorphism E → F
between Grothendieck topoi is a cocontinuous functor f : E → F which preserves
finite limits. The 2-category of Grothendieck topoi and homomorphism is has
the structure of a 2-category, where a 2-cell is a natural transformation. Every
homomorphism has a right adjoint. A geometric morphism E → F is an adjoint
pair

g∗ : F ↔ E : g∗

with g∗ a homomorphism. The map g∗ is called the inverse image part of g
and the map g∗ its direct image part. . We shall denote by Gtop the category
of Grothendieck topoi and geometric morphisms. The category Gtop has the
structure of a 2-category, where a 2-cell α : f → g is a natural transformation
α : g∗ → f∗. The 2-category Gtop is equivalent to the opposite of the 2-category
of Grothendieck topoi and homomophism.
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40.5. Recall from 40.3 that a locally presentable quasi-category X is said to be
a homotopos, or an ∞-topos, if it is a left exact reflection of a quasi-category of
prestacks. P(A) for some simplicial set A. The quasi-category of homotopy types
Tp is the archtype of a homotopos. If X is a homotopos, then so is the quasi-
category X/a for any object a ∈ X and the quasi-category XA for any simplicial
set A.

40.6. Recall that a cartesian quasi-category X is said to be locally cartesian closed
if the quasi-category X/a is cartesian closed for every object a ∈ X. A cartesian
quasi-category X is locally cartesian closed iff the base change map f∗ : X/b→ X/a
has a right adjoint f∗ : X/a→ X/b for any morphism f : a→ b in X.

40.7. A locally presentable quasi-category X is locally cartesian closed iff the base
change map f∗ : X/b→ X/a is cocontinuous for any morphism f : a→ b in X.

40.8. (Giraud’s theorem)[Lu1] A locally presentable quasi-category X is a homo-
topos iff the following conditions are satisfied:

• X is locally cartesian closed;
• X is exact;
• the canonical map

X/ t ai →
∏

i

X/ai

is an equivalence for any family of objects (ai : i ∈ I) in X.

40.9. A homomorphism X → Y between utopoi is a cocontinuous map f : X → Y
which preserves finite limits. Every homomorphism has a right adjoint. A geometric
morphism X → Y between utopoi is an adjoint pair

g∗ : Y ↔ X : g∗

with g∗ a homomorphism. The map g∗ is called the inverse image part of g and the
map g∗ the direct image part. . We shall denote by Utop the category of utopoi
and geometric morphisms. The category Utop has the structure of a 2-category,
where a 2-cell α : f → g between geometric morphisms is a natural transformation
α : g∗ → f∗. The opposite 2-category Utopo is equivalent to the sub (2-)category
of LP whose objects are utopoi, whose morphisms (1-cells) are the homomorphisms,
and whose 2-cells are the natural transformations.

40.10. If u : A → B is a map of simplicial sets, then the pair of adjoint maps
u∗ : P(B) → P(A) : u∗ is a geometric morphism P(A) → P(B). If X is a
homotopos, then the adjoint pair f∗ : X/b → X/a : f∗ is a geometric morphism
X/a→ X/b for any arrow f : a→ b in X.

40.11. Recall that if X is a bicomplete quasi-category and A is a simplicial set,
then every map f : A → X has a left Kan extension f! : P(A) → X. A locally
presentable quasi-category X is a homotopos iff the map f! : P(T ) → X is left
exact for any cartesian theory T and any cartesian map f : T → X.
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40.12. If X is a homotopos, we shall say that a reflexive sub quasi-category S ⊆ X
is a sub-homotopos if it is locally presentable and the reflection functor r : X → S
preserves finite limits. If i : S ⊆ X is a sub-homotopos and r : X → S is the
reflection, then the pair (r, i) is a geometric morphism S → X. In general, we say
that a geometric morphism g : X → Y is an embedding if the map g∗ : X → Y is
fully faithful. We say that a geometric morphism g : X → Y is surjective if the
map g∗ : Y → X is conservative. The (2-) category Utop admits a homotopy
factorisation system (A,B) in which A is the class if surjections and B the class of
embeddings.

40.13. If X is a homotopos, then the quasi-category Dis(X) spanned by the 0-
objects of X is (equivalent to) a Grothendieck topos. The inverse image part of a
geometric morphism X → Y induces a homorphism Dis(Y )→ Dis(X), hence also
a geometric morphism Dis(X)→ Dis(Y ). The 2-functor

Dis : Utop→ Gtop

has a right adjoint constructed as follows. If E is a Grothendieck topos, then the
category [∆o, E ] of simplicial sheaves on E has a simplicial model structure. The
coherent nerve of the category of fibrant objects of [∆o, E ] is a homotopos Ê and
there is a canonical equivalence of categories Dis(Ê) ' E . The 2-functor

ˆ(−) : Gtop(1)→ Utop

is fully faithful and left adjoint to the functor Dis. Hence the (2-)-category Gtop
is a reflective sub-(2)-category of Utop.

40.14. A set Σ of arrows in a homotopos X is called a Grothendieck topology if
the quasi-category of Σ-local objects XΣ ⊆ X is a sub-homotopos. Every sub-
homotopos of X is of the form XΣ for a Grothendieck topology Σ. In particular,
if A is a simplicial set, every sub-homotopos of P(A) is of the form P(A)Σ for a
Grothendieck topology Σ on A. The pair (A,Σ) is called a site and a Σ-local object
f ∈ P(A) is called a stack.

40.15. For every set Σ of arrows in a homotopos X, the sub-quasi-category XΣ

contains a largest sub-homotopos L(XΣ). We shall say that a Grothendieck topol-
ogy Σ′ is generated by Σ if we have XΣ′ = L(XΣ).

is contained in a Grothendieck topology Σ′ with the property that a subtopos
then we have f∗(X) ⊆ Y Σ iff f∗ take every arrow in Σ to a quasi-isomorphism

in X.

40.16. If Σ is Grothendieck topology on Y , then we have f∗(X) ⊆ Y Σ iff f∗ take
every arrow in Σ to a quasi-isomorphism in X.

40.17. Every simplicial set A generates freely a cartesian quasi-category A →
C(A). Similarly, every simplicial set A generates freely an homotopos i : A →
UT (A). The universality means that every map f : A → X with values in a
homotopos has an homomorphic extension f ′ : UT (A)→ X which is unique up to
a unique invertible 2-cell. By construction, UT (A) = P(C(A)). The map i : A →
UT (A) is obtained by composing the canonical map A → C(A) with the Yoneda
map C(A)→ P(C(A)).
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40.18. A geometric sketch is a pair (A,Σ), where Σ is a set of arrows in UT (A).
A geometric model of (A,Σ) with values in a homotopos X is a map f : A → X
whose homomorphic extension f ′ : UT (A) → X takes every arrow in Σ to an
equimorphism in X. We shall denote by Mod(A/Σ, X) the full simplicial subset of
XA spanned by the models A→ X.

40.19. Every geometric sktech has a universal geometric model u : A→ UT (A/Σ).
The universality means that for every homotopos X and every geometric model
f : A → X there exists a homomorphism f ′ : UT (A/Σ) → X such that f ′u = f ,
and moreover that f ′ is unique up to a unique invertible 2-cell. We shall say that
UT (A/Σ) is the classifying homotopos of (A,Σ). The homotopos UT (A/Σ) is a
sub-homotopos of the homotopos UT (A). We have UT (A/Σ) = UT (A)Σ

′
, where

Σ′ ⊂ UT (A) is the Grothendieck topology generated by Σ.

41. Meta-stable quasi-categories

41.1. We say that an exact quasi-category X is meta-stable if every object in X
is ∞-connected. A cartesian quasi-category X is meta-stable iff if it satisfies the
following two conditions:

• Every morphism is a descent morphism;
• Every groupoid is effective.

41.2. The sub-quasi-category of ∞-connected objects in an exact quasi-category
is meta-stable. We shall see in 51 that the quasi-category of spectra is meta-
stable. In a meta-stable quasi-category, every monomorphism is invertible and
every morphism is surjective.

41.3. If a quasi-category X is meta-stable then so are the quasi-categories b\X
and X/b for any vertex b ∈ X, the quasi-category XA for any simplicial set A, and
the quasi-category Prod(T,X) for any algebraic theory T . A left exact reflection
of a meta-stable quasi-category is meta-stable.

41.4. Let u : a→ b be an arrow in a meta-stable quasi-category X. Then the lifted
base change map

ũ∗ : X/b→ XEq(u)

of ?? is an equivalence of quasi-categories. In particular, if u : 1 → b is a pointed
object, then the map

ũ∗ : X/b→ XΩu(b)

defined in 33.4 is an equivalence of quasi-categories.

41.5. Let X be a meta-stable quasi-category. Then the map Eq : XI → Gpd(X)
which associates to an arrow u : a→ b the equivalence groupoid Eq(u) is invertible.
We thus have an equivalence of quasi-categories

B : Gpd(X)↔ XI : Eq.

The equivalence can be iterated as in ??. It yields an equivalence of quasi-categories

Bn : Gpdn(X)↔ XIn

: Eqn

for each n ≥ 1.
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41.6. Let X be a meta-stable quasi-category. Then the equivalence

B : Gpd(X)↔ XI : Eq.

induces an equivalence
B : Gpd(X, a)↔ a\X : Eq

for each object a ∈ A, where Gpd(X, a) is the quasi-category of groupoids C ∈
Gpd(X) with C0 = a. In particular, it induces an equivalence

B : Grp(X)↔ 1\X : Ω,

where Grp(X) is the quasi-category of groups in X. By iterating, we obtain an
equivalence

Bn : Grpn(X)↔ 1\X : Ωn,

for each n ≥ 1.

41.7. Let Ex be the category of exact categories and exact maps. If MEx is the
full sub-quasi-category of Ex spanned by the meta stable quasi-categories, then the
inclusion MEx ⊂ Ex has a right adjoint which associates to an exact quasi-category
X its full sub-quasi-category of meta-stable objects.

42. Higher categories

We introduce the notions of n-fold category object and of n-category object in
a quasi-category. We finally introduced the notion of truncated n-category object.

42.1. Let X be a quasi-category. If A is a simplicial set, we say that a map
f : A→ X is essentially constant if it belongs to the essential image of the diagonal
X → XA. If A is weakly contractible, then a map f : A → X is essentially
constant iff it takes every arrow in A to an isomorphism in X. A simplicial object
C : ∆o → X in a quasi-category X is essentially constant iff the canonical morphism
sk0(C0) → C is invertible. A category object C : ∆o → X is essentially constant
iff it inverts the arrow [1] → [0]. A n-fold category C : (∆n)o → X is essentially
constant iff C inverts the arrow [ε] → [0n] for every ε = (ε1, · · · , εn) ∈ {0, 1}n,
where [0n] = [0, . . . , 0].

42.2. Let X be a cartesian quasi-category. We call a double category C : ∆o →
Cat(X) a 2-category if the simplicial object C0 : ∆o → X is essentially constant. A
double category C ∈ Cat2(X) is a 2-category iff it inverts every arrow in [0] ×∆.
Let us denote by Id the set of identity arrows in ∆. Then the set of arrows

Σn =
⊔

i+1+j=n

Idi × [0]×∆j

is a subcategory of ∆n. We say that a n-fold category object C ∈ Catn(X) is a
n-category if it inverts every arrow in Σn. The notion of n-category object in X
can be defined by induction on n ≥ 0. A category object C : ∆o → Catn−1(X)
is a n-category iff the (n − 1)-category C0 is essentially constant. We denote by
Catn the cartesian theory of n-categories and by Catn(X) the quasi-category of
n-category objects in X.
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42.3. The object of k-cells C(k) of a n-category C : (∆o)n → X is the image by C
of the object [1k0n−k]. The source map s : C(k)→ C(k−1) is the image of the map
[1k−1]×d1× [0n−k] and the target map t : C(k)→ C(k−1) is the image of the map
[1k−1] × d0 × [0n−k]. From the pair of arrows (s, t) : C(k) → C(k − 1) × C(k − 1)
we obtain an arrow ∂ : C(k) → C(∂k), where C(∂k) is defined by the following
pullback square

C(∂k) //

��

C(k − 1)

(s,t)

��
C(k − 1)

(s,t) // C(k − 2)× C(k − 2).

If n = 1, ∂ = (s, t) : C(1)→ C(0)× C(0).

42.4. There is a notion of n-fold reduced category for every n ≥ 0. If RCat
denotes the cartesian theory of reduced categories, then RCatn is the theory of
n-fold reduced categories. If X is a cartesian quasi-category, then we have

RCatn+1(X) = RCat(RCatn(X))

for every n ≥ 0.

42.5. We say that a n-category C ∈ Catn(X) is reduced if it is reduced as a n-fold
category. We denote by RCatn the cartesian theory of reduced n-categories. A
n-category C : ∆o → Catn−1(X) is reduced iff it is reduced as a category object
and the (n − 1)-category C1 is reduced. If X is an exact quasi-category, then the
inclusion RCatn(X) ⊆ Catn(X) has a left adjoint

R : Catn(X)→ RCatn(X)

which associates to a n-category C ∈ Catn(X) its reduction R(C) . We call a map
f : C → D in Catn(X) an equivalence if the map R(f) : R(C)→ R(D) is invertible
in RCatn(X). The quasi-category

Typn = Mod(RCatn)

is cartesian closed.

42.6. The object [0] is terminal in ∆. Hence the functor [0] : 1→ ∆ is right adjoint
to the functor ∆ → 1. It follows that the inclusion in : ∆n = ∆n × [0] ⊆ ∆n+1

is right adjoint to the projection pn : ∆n+1 = ∆n × ∆ → ∆n. For any cartesian
quasi-category X, the pair of adjoint maps

p∗n : [(∆o)n, X]↔ [(∆o)n+1, X] : i∗n

induces a pair of adjoint maps

inc : Catn(X)↔ Catn+1(X) : res.

The ”inclusion” inc is fully faithful and we can regard it as an inclusion by adopting
the same notation for C ∈ Catn(X) and inc(C) ∈ Catn+1(X). The map res
associates to C ∈ Catn+1(X) its restriction res(C) ∈ Catn(X). The adjoint pair
pn ` i∗n also induces an adjoint pair

inc : RCatn(X)↔ RCatn+1(X) : res.

In particular, it induces an adjoint pair

inc : Typn ↔ Typn+1 : res.
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When n = 0, the map inc is induced by the inclusion Kan ⊂ QCat and the map
res by the functor J : QCat → Kan. The inclusion Typn ⊂ Typn+1 has also a
left adjoint which associates to a reduced (n+1)-category C the reduced n-category
obtained by inverting the (n + 1)-cells of C.

42.7. Recall from ?? that a quasi-category X is said to be n-truncated if the sim-
plicial set X(a, b) is a (n − 1)-object for every pair a, b ∈ X0. A quasi-category X
has a nerve NX : ∆o → Typ which is a (reduced) category object in Typ by 30.22.
By construction we have (NX)p = J(X∆[p]) for every p ≥ 0. A quasi-category X
is n-truncated iff the morphism (NX)1 → (NX)0 × (NX)0 is a (n− 1)-cover.

42.8. Let X be a cartesian quasi-category. We say that a category object C in X
is n-truncated if the morphism C1 → C0×C0 is a (n−1)-cover. If C is n-truncated
and reduced, then Ck is a n-object for every k ≥ 0.

42.9. The notion of n-truncated category is essentially algebraic and finitary. We
denotes the cartesian theory of n-truncated categories by Cat[n]. The notion of n-
truncated reduced category is also essentially algebraic. We denotes the cartesian
theory of n-truncated reduced categories by RCat[n]. The equivalence N : Typ1 '
Mod(RCat) of 30.22 induces an equivalence

Typ1[n] 'Mod(RCat[n])

for every n ≥ 0. In particular, an ordinary category is essentially the same thing as
a 1-truncated reduced category in Typ. Recall from ?? that if X is an exact quasi-
category, then the inclusion RCat(X) ⊆ Cat(X) has a left adjoint R : Cat(X) →
RCat(X) which associates to a category C ∈ Cat(X) its reduction R(C). If C ∈
Cat[n](X), then R(C) ∈ RCat[n](X).

42.10. Let C be a n-category object in a cartesian quasi-category X. If 1 ≤ k ≤ n
and C(k) is the object of k-cells of C, then from the pair of arrows (s, t) : C(k)→
C(k − 1) × C(k − 1) we obtain an arrow ∂ : C(k) → C(∂k) by 42.3. If m ≥ n,
we say that C is m-truncated if the map C(n) → C(∂n) is a (m − n)-cover. If
n = 1, this means that the category C is m-truncated in the sense of 30.23. We
shall denote by Catn[m] the cartesian theory of m-truncated n-categories. We shall
denote by RCatn[m] the cartesian theory of m-truncated reduced n-categories. If
X is an exact quasi-category, then a n-category C ∈ Catn(X) is m-truncated iff
its reduction R(C) ∈ RCatn(X) is m-truncated. Hence the notion of m-truncated
n-category in X is invariant under equivalence of n-categories. If C ∈ Catn[m](X)
and n < m, then inc(C) ∈ Catn+1[m](X). Moreover, if C ∈ RCatn[m](X), then
res(C) ∈ RCatn−1[m](X) and Cp is a m-object for every p ∈ ∆n. Hence the
canonical morphism

RCatn[m]→ RCatn[m]�c OB(m)

is an equivalence of quasi-categories for every m ≥ n.

43. Higher monoidal categories

The stabilisation hypothesis of Breen-Baez-Dolan was proved by Simpson in
[Si2]. We show that it is equivalent to a result of classical homotopy theory 43.1.

EEE
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43.1. The suspension theorem of Freudenthal implies that a pointed n-connected
space with vanishing homotopy groups in dimension > 2n is naturally a loop space
[May2]. The (n + 1)-fold loop space functor induces an equivalence between the
homotopy category of pointed n-connected spaces and the homotopy category of
(n + 1)-fold loop spaces by a classical result [?]. The (n + 1)-fold loop space of
a 2n-object is a (n − 1) object. It then follows from Freudenthal theorem that a
(n + 1)-fold loop space with vanishing homotopy groups in dimension > n − 1 is
naturally a (n + 2)-fold loop space. This means that the forgetful map

Grpn+2(U[n− 1])→ Grpn+1(U[n− 1])

is an equivalence of quategories for every n ≥ 1. It follows that the quategory

Grpn+1(U[n− 1]) = Mod(OB[n− 1]�Grpn+1)

is additive for every n ≥ 1, hence also the cartesian theory OB[n − 1] � Grpn+1.
Equivalently, the cartesian theory

OB[n]�Grpn+2

is additive for every n ≥ 0.

43.2. (Generalised Suspension Theorem) The cartesian theory

OB[n]�Monn+2

is semi-additive for every n ≥ 0.
EEE

43.3. If Mon denotes the theory of monoids, then Monk is the theory of k-monoids
and Monk � Catn the theory of k-monoidal n-categories. For any cartesian quasi-
category X we have

Mod(Monk � Catn, X) = Catn(Monk(X)).

If X is an exact quasi-category, then inclusion RCatn(Monk(X)) ⊆ Catn(Monk(X))
has a left adjoint

R : Catn(Monk(X))→ RCatn(Monk(X)),

since the quasi-category Monk(X) is exact. We call a map f : C → D between
k-monoidal n-categories in X an equivalence if the map R(f) : R(C) → R(D) is
invertible in RCatn(Monk(X)).

43.4. An object of the quasi-category Modk(Catn[n](X)) is a k-fold monoidal n-
truncated n-category. The stabilisation hypothesis of Baez and Dolan in [BD] can
be formulated by saying that the forgetful map

Monk+1(Catn[n](X))→Monk(Catn[n](X))

is an equivalence if k ≥ n + 2 and X = Typ. But this formulation cannot be
totally correct, since it it does use the correct notion of equivalence between n-
categories. In order to take this notion into account, it suffices to replace Catn(X)
by RCatn(X). If correctly formulated, the hypothesis asserts the forgetful map

Monk+1(RCatn[n](X))→Monk(RCatn[n](X))
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is an equivalence of quasi-categories if k ≥ n + 2 and X = Typ. A stronger
statement is that it is an equivalence for any X. In other words, that the canonical
map

Monk �c RCatn[n]→Monk+1 �c RCatn[n]

is an equivalence if k ≥ n + 2.

43.5. Let us show that the stabilisation hypothesis of Breen-Baez-Dolan is equiv-
alent to the Generalised Suspension Conjecture in 43.1. We first prove the the
implication GSC⇒BBD. For this it suffices to show by ?? that the cartesian theory
Monk �c RCatn[n] is semi-additive for k ≥ n + 2. But for this, it suffices to show
that the cartesian theory Monn+2�c RCatn[n] is semi-additive. Let us show more
generally that the the cartesian theory RCatn[m] �Monm+2 is semi-additive for
every m ≥ n. But we have an equivalence RCatn[m] ' RCatn[m] �c OB(m) by
42.10. Hence it suffices to show that the cartesian theory

RCatn[m]�c OB(m)�Monm+2

is semi-additive. But this is true of the cartesian theory OB(m)�Monm+2 by the
GSC in 43.1. Hence the canonical map

RCatn[m]�c OB(m)�Monm+2 → RCatn[m]�c OB(m)�Monm+3

is an equivalence. The implication GSC⇒BBD is proved. Conversely, let us prove
the implication BBD⇒GSC. The cartesian theory RCat0[m] �Monm+2 is semi-
additive if we put n = 0. But we have RCat0[m] = OB(m). Hence the cartesian
theory OB(m)�Monm+2 is semi-additive.

44. Disks and duality

44.1. We begin by recalling the duality between the category ∆ and the category
of intervals. An interval I is a linearly ordered set with a first and last elements
respectively denoted ⊥ and > or 0 and 1. If 0 = 1 the interval is degenerate,
otherwise we say that is strict. A morphism I → J between two intervals is defined
to be an order preserving map f : I → J such that f(0) = 0 and f(1) = 1. We
shall denote by D(1) the category of finite strict intervals (it is the category of finite
1-disk). The category D(1) is the opposite of the category ∆. The duality functor
(−)∗ : ∆o → D(1) associates to [n] the set [n]∗ = ∆([n], [1]) = [n + 1] equipped
with the pointwise ordering. The inverse functor D(1)o → ∆ associates to an
interval I ∈ D(1) the set I∗ = D(1)(I, [1]) equipped with the pointwise ordering.
A morphism f : I → J in D(1) is surjective (resp. injective) iff the dual morphism
f∗ : J∗ → I” is injective (resp. surjective). A simplicial set is usually defined to
be a contravarint functors ∆o → Set; it can be defined to be a covariant functor
D(1)→ Set.

44.2. If I is a strict interval, we shall put ∂I = {0, 1} and int(I) = I \ ∂I. We say
that a morphism of strict intervals f : I → J is proper if f(∂I) ⊆ ∂J . We shall say
that f : I → J is a contraction if it induces a bijection f−1(int(J)) → int(J). A
morphism f : I → J is a contraction iff it has a unique section. If A is the class
of contractions and B is the class of proper morphisms then the pair (A,B) is a
factorisation system in D(1).
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44.3. The euclidian-ball of dimension n ≥ 0 Bn = {x ∈ Rn :|| x ||≤ 1} is the
main geometric example of an n-disk. The boundary of the ball is a sphere ∂Bn

of dimension n− 1. The sphere ∂Bn is the union of two disks, the lower an upper
hemispheres. In order to describe this structrure, it is convenient to use the projec-
tion q : Bn → Bn−1 which forget the last coordinate. Each fiber q−1(x) is a strict
interval except when x ∈ ∂Bn−1 in which case it is reduced to a point. There are
two canonical sections s0, s1 : Bn−1 → Bn obtained by selecting the bottom and
the top elements in each fiber. The image of s0 is the lower hemisphere of ∂Bn and
the image of s1 the upper hemisphere; observe that s0(x) = s1(x) iff x ∈ ∂Bn−1.

44.4. A bundle of intervals over a set B is an interval object in the category Set/B.
More explicitly, it is a map p : E → B whose fibers E(b) = p−1(b) have the
structure on an interval. The map p has two canonical sections s0, s1 : B → E
obtained by selecting the bottom and the top elements in each fiber. The interval
E(b) is degenerated iff s0(b) = s1(b). If s0(b) = s1(b), we shall say that b is in
the singular set indexAsingular set—textbf. The projection q : Bn → Bn−1 is an
example of bundle of intervals. Its singular set is the boundary ∂Bn−1. If we order
the coordinates in Rn we obtain a sequence of bundles of intervals:

1← B1 ← B2 ← · · ·Bn−1 ← Bn.

44.5. A n-disk D is defined to be a sequence of length n of bundles of intervals

1 = D0 ← D1 ← D2 ← · · ·Dn−1 ← Dn

such that the singular set of the projection p : Dk+1 → Dk is equal to the boundary
∂Dk := s0(Dk−1)∪s1(Dk−1) for every 0 ≤ k < n. By convention ∂D0 = ∅. If k = 0,
the condition means that the interval D1 is strict. It follows from the definition
that we have s0s0 = s1s0 and s0s1 = s1s1. The interior of Dk is defined to be
int(Dk) = Dk\∂Dk. There is then a decomposition

∂Dn '
n−1⊔
k=0

2 · int(Dk).

We shall denote by Bn the n-disks defined by the sequence of projections

1← B1 ← B2 ← · · ·Bn−1 ← Bn.

44.6. A morphism between two bundles of intervals E → B and E′ → B′ is a pair
of maps (f, g) in a commutative square

B

f

��

Eoo

g

��
B′ E′oo

such that the map E(b)→ E′(f(b)) induced by g is a morphism of intervals for every
b ∈ B. A morphism f : D → D′ between n-disks is defined to be a commutative
diagram

1

��

D1
oo

f1

��

D2
oo

f2

��

· · ·oo Dn−1

fn−1

��

Dn
oo

fn

��
1 D′

1
oo D′

2
oo · · ·oo D′

n−1 D′
n

oo
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and which the squares are morphisms of bundles of intervals. Every morphism
f : D → D′ can be factored as a surjection D → f(D) followed by an inclusion
f(D) ⊆ D′.

44.7. A planar tree T of height ≤ n, or a n-tree, is defined to be a sequence of maps

1 = T0 ← T1 ← T2 ← · · · ← Tn−1 ← Tn

with linearly ordered fibers. If D is a n-disk, then we have p(int(Dk)) ⊆ int(Dk−1)
for every 1 ≤ k ≤ n, where p is the projection Dk → Dk−1. The sequence of maps

1← int(D1)← int(D2)← · · · int(Dn−1)← int(Dn)

has the structure of a planar tree called the interior of D and denoted int(D).
Every n-tree T is the interior of a n-disk T̄ . By construction, we have T̄k = Tkt∂T̄k

for every 1 ≤ k ≤ n, where

∂T̄k =
k−1⊔
i=0

2 · Ti.

We shall say that T̄ is the closure of T . We have int(D) = D for every disk D.
A morphism of disks f : D → D′ is completely determined by its values on the
sub-tree int(D) ⊆ D. More precisely, a morphism of trees g : S → T is defined to
be a commutative diagram

1

��

S1
oo

g1

��

S2
oo

g2

��

· · ·oo Sn−1

gn−1

��

Sn
oo

gn

��
1 T1
oo T2

oo · · ·oo Tn−1 Tn
oo

in which fk preserves the linear order on the fibers of the projections for each
1 ≤ k ≤ n. If Disk(n) denotes the category of n-disks and Tree(n) the category
of n-trees, then the forgetful functor Disk(n)→ Tree(n) has a left adjoint T 7→ T̄ .
If D ∈ Disk(n), then a morphism of trees T → D can be extended uniquely to a
morphism of disks T̄ → D. It follows that there a bijection between the morphisms
of disks D → D′ and the morphisms of trees int(D)→ D′.

44.8. We shall say that a morphism of disks f : D → D′ is proper if we have
f(int(Dk)) ⊆ int(D′

k) for every 1 ≤ k ≤ n. An proper morphism f : D →
D′ induces a morphism of trees int(f) : int(D) → int(D′). The functor T 7→
T̄ induces an equivalence between the category Tree(n) and the sub-category of
proper morphisms of Disk(n). We shall say that a morphism of disks f : D → D′

is a contraction if it induces a bijection f−1(int(D))→ int(D′). Every contraction
f : D → D′ has a section and this section is unique. If A is the class of contractions
and B is the class of proper morphisms then the pair (A,B) is a factorisation system
in D(n). Every surjection f : D → D′ admits a factorisation f = up with p a
contraction and u a proper surjection and this factorisation is essentially unique.

44.9. A sub-tree of a n-tree T is a sequence of subsets Sk ⊆ Tk closed under the
projection Tk → Tk−1 for 1 ≤ k ≤ n and with S0 = 1. If T = int(D) then the
map C 7→ C ∩ T induces a bijection between the sub-disks of D and the sub-trees
of T . The set of sub-disks of D is closed under non-empty unions and arbitrary
intersections.
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44.10. We shall say that a n-disk D is finite if Dn is a finite set. The degree | D |
of a finite disk D, is defined to be the number of edges of the tree int(D). By
definition,

| D |=
n∑

k=1

Card(int(Dk)).

We have
2(1+ | D |) = Card(Dn) + Card(int(Dn)).

The set
D∨= hom(D,Bn)

has the structure of a topological ball of dimension | D |. The space D∨ has
the following description. Let us transport the order relation on the fibers of the
planar tree T = int(D) to its edges. Then D∨ is homeomorphic to the space of
maps f : edges(T )→ [−1, 1] which satisfy the following conditions

• f(e) ≤ f(e′) for any two edges e ≤ e′ with the same target;
•

∑
e∈C f(e)2 ≤ 1 for every maximal chain C connecting the root to a leaf.

We can associate to f a map of n-disks f ′ : D → Bn by putting

f ′(x) = (f(e1), · · · , f(ek))

where (e1, · · · , ek) is the chain of edges which connects the root to the vertex x ∈ Tk.
The map f ′ : D → Bn is monic iff f belongs to the interior of the ball D∨. Every
finite n-disk D admits an embedding D → Bn.

44.11. We shall denote by Θ(n) the category opposite to D(n). We call an object
of Θ(n) a cell of height ≤ n. To every disk D ∈ D(n) corresponds a dual cell
D∗ ∈ Θ(n) and to every cell C ∈ Θ(n) corresponds a dual disk C∗ ∈ D(n). The
dimension of C is the degree of C∗. A Θ(n)-set is defined to be a functor

X : Θ(n)o → Set,

or equivalently a functor X : D(n)→ Set. We shall denote by Θ̂(n) the category of
Θ(n)-sets. If t is a finite n-tree we shall denote by [t] the cell dual to the disk t. The
dimension of [t] is the number of edges of t. We shall denote by Θ[t] the image of
[t] by the Yoneda functor Θ(n)→ Θ̂(n). The realisation of a cell C is defined to be
the topological ball R(C) = (C∗)∨, This defines a functor R : Θ(n)→ Top, where
Top denotes the category of compactly generated spaces. Its left Kan extension

R! : Θ̂(n)→ Top

preserves finite limits. We call R!(X) the geometric realisation of X.

44.12. We shall say that a map f : C → E in Θ(n) is surjective (resp. injective) if
the dual map f∗ : E∗ → C∗ is injective (resp. surjective). Every surjection admits
a section and every injection admits a retraction. If A is the class of surjections and
B is the class of injections, then the pair (A,B) is a factorisation system in Θ(n).
If D′ and D” are sub-disks of a disk D ∈ D(n), then the intersection diagram

D′ ∩D” //

��

D”

��
D′ // D
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is absolute, ie it is preserved by any functor with codomain D(n). Dually, for every
pair of surjections f : C → C ′ and g : C → C” in the category Θ(n), we have an
absolute pushout square (Eilenberg-Zilber lemma). square

C
g //

f

��

C”

��
C ′ // C ′”.

If X is a Θ(n)-set, we shall say that a cell x : Θ[t] → X of dimension n > 0 is
degenerate if it admits a factorisation Θ[t] → Θ[s] → X via a cell of dimension
< n, otherwise we shall say that x is non-degenerate. Every cell x : Θ[t] → X
admits a unique factorisation x = ypΘ[t]→ Θ[s]→ X with p a surjection and y a
non-degenerate cell.

44.13. For each 0 ≤ k ≤ n, let put bk = Θ[tk], where tk is the tree which consists of
a unique chain of k-edges. There is a unique surjection bk → bk−1 and the sequence
of surjections

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk βn in the topos Θ̂n. It is the generic n-disk in the
sense of classifying topos. The geometric realisation of βn is the euclidian n-disk
Bn.

44.14. We shall say that a map f : C → E in Θ(n) is open (resp. is an inflation)
if the dual map f∗ : E∗ → C∗ is proper (resp. is a contraction). Every inflation
admits a unique retraction. If A is the class of open maps in Θ(n) and B is the class
of inflations then the pair (A,B) is a factorisation system. Every monomorphism
of cells i : D → D′ admits a factorisation i = qu with u an open monomorphism
and q an inflation.

44.15. Recall that a globular set X is defined to be a sequence of pairs of maps
sn, tn : Xn+1 → Xn (n ≥ 0) such that we have

snsn+1 = sntn+1 and tnsn+1 = tntn+1

for every n ≥ 0. An element x ∈ Xn is called an n-cell; if n > 0 the element sn−1(x)
is said to be the source and the element tn−1(x) to be the target of x. A globular set
X can be defined to be a presheaf X : Go → Set on a category G of globes which can
be defined by generators and relations. By definition ObG = {G0, G1, . . .}; there
are two generating maps in0 , in1 : Gn → Gn+1 for each n ≥ 0; the relations

in+1
0 in0 = in+1

1 in0 and in+1
0 in1 = in+1

1 in1 .

is a presentation. The relations imply that there is exactly two maps i0, i1 : Gm →
Gn for each m < n. A globular set X is thus equipped with two maps s, t : Xn →
Xm for each m < n. A reflexive globular set is defined to be a globular set X
equipped with a sequence of maps un : Xn → Xn+1 such that snun = tnun = id.
By composing we obtain a map u : Xm → Xn for each m < n. There is also a
notion of globular set of height ≤ n for each n ≥ 0. It can be defined to be a
presheaf Go

n → Set, where Gn is the full sub-category of G spanned by the globes
Gk with k ≤ n. Notice that a globular set of of height ≤ 0 is the same thing as a
set and that globular set of of height ≤ 1 is a graph.
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44.16. Recall that a (strict) category is a graph s, t : X1 → X0, equipped with an
associative composition operation

◦ : X1 ×s,t X1 → X1

and a unit map u : X0 → X1. A functor between two categories is a map of graphs
f : X → Y which preserves composition and units. A (strict) ω-category is defined
to be a reflexive globular set X equipped with a category structure

◦k : Xn ×k Xn → Xn

for each 0 ≤ k < n, where Xn ×k Xn is defined by the pullback square

Xn ×k Xn

��

// Xn

t

��
Xn

s // Xk.

The unit map u : Xk → Xn is given by the reflexive graph structure. The operations
should obey the interchange law

(x ◦k y) ◦m (u ◦k v) = (x ◦m u) ◦k (y ◦m v)

for each k < m < n. A functor f : X → Y between ω-categories is a map of
globular sets which preserves composition and units. We shall denote by Catω the
category of ω-categories. The notion of (strict) n-category is defined similarly but
by using a globular set of height ≤ n. We shall denote by Catn the category of
n-categories.

44.17. We saw in 44.12 that the sequence of cells

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk in the category Θn. The lower and upper sections
s0, s1 : bk → b(k + 1) give the sequence the structure of a co-globular set of height
≤ n. This defines a functor b : Gn → Θn from which we obtain a functor

b! : Θn → Ĝn.

Let us see that the functor b! can be lifted to Catn,

Catn

U

��
Θn

b̃!
<<zzzzzzzzz b! // Ĝn

EEEE
We shall denote by Θ(n) the category opposite toD(n) and by Θ(∞) the category

opposite to D(∞). We call an object of Θ(∞) a cell. To every disk D ∈ D(∞)
corresponds a dual cell D∗ ∈ Θ(∞) and to every cell C ∈ Θ(∞) corresponds a dual
disk C∗ ∈ D(∞). The dimension of C is defined to be the degree of C∗ and the
height of C to be the height of C∗. If t is a finite planar tree, we shall denote by
[t] the cell opposite to the disk t. The dimension of [t] is the number of edges of t
and the height of [t] is the height of t.
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44.18. The height of a n-tree T is defined to be the largest integer k ≥ 0 such that
Tk 6= ∅. The height of a n-disk D is defined to be the height of its interior int(D).
If m < n, the obvious restriction functor Disk(n) → Disk(m) has a left adjoint
Exn : Disk(m) → Disk(n). The extension functor Exn is fully faithful and its
essential image is the full subcategory of Disk(n) spanned by the disks of height
≤ n. We shall identify the category Disk(m) with a full subcategory of Disk(n) by
adoptiong the same notation for a disk D ∈ Disk(m) and its extension Exn(D) ∈
Disk(n). We thus obtain an increasing sequence of coreflexive subcategories,

Disk(1) ⊂ Disk(2) ⊂ · · · ⊂ Disk(n).

Hence also an increasing sequence of coreflexive subcategories,

D(1) ⊂ D(2) ⊂ · · · ⊂ D(n).

The coreflection functor ρk : D(n)→ D(k) takes a disk T to the sub-disk T k ⊂ T ,
where T k is the k-truncation of T . We shall denote by D(∞) the union of the
categories D(n),

D(∞) =
⋃
n

D(n)

An object of D(∞) is an infinite sequence of bundles of finite intervals

1 = D0 ← D1 ← D2 ←

such that

• the singular set of the projection Dn+1 → Dn is the set ∂Dn := s0(Dn−1)∪
s1(Dn−1) for every n ≥ 0;
• the projection Dn+1 → Dn is bijective for n large enough.

We have increasing sequence of reflexive subcategories,

Θ(1) ⊂ Θ(2) ⊂ · · · ⊂ Θ(∞),

where Θ(k) is the full subcategory of Θ(∞) spanned by the cells of height ≤ k. By
44.1, we have Θ1 = ∆ A cell [t] belongs to ∆ iff the height of t is ≤ 1. If n ≥ 0 we
shall denote by n the unique planar tree height ≤ 1 with n edges. A cell [t] belongs
to ∆ iff we have t = n for some n ≥ 0. The reflection functor ρk : Θ(∞) → Θ(k)
takes a cell [t] to the cell [tk], where tk is the k-truncation of t.

44.19. A Θ-set of height ≤ n is defined to be a functor

X : Θ(n)o → Set,

or equivalently a functor X : D(n)→ Set. We shall denote by Θ̂(n) the category of
Θ-sets of height ≤ n. If t is a finite tree of height ≤ n, we shall denote by Θ[t] the
image of [t] by the Yoneda functor Θ(n)→ Θ̂(n). Consider the functor R : Θ(n)→
Top defined by putting R(C) = (C∗)∨ = Hom(C∗,Bn), where Top denotes the
category of compactly generated spaces. Its left Kan extension R : Θ̂(n) → Top
preserves finite limits. We call R(X) the geometric realisation of the Θ-set X.

The left Kan extension of the inclusion

Θ1 ⊂ Θm
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44.20. For each 0 ≤ k ≤ n, let us denote by Ek the n-disk whose interior is a
chain of k edges. The geometric realisation of dual cell bk = (Ek)∗ is the euclidian
k-ball Bk. There is a unique open map of disks Ek−1 → Ek, hence a map of cells
bk → bk−1. The sequence

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk βn in the topos Θ̂n. It is the generic n-disk in the
sense of classifying topos.

44.21. Recall that a globular set X is defined a sequence of sets (Xn : n ≥ 0)
equipped with a sequence of pair of maps sn, tn : Xn+1 → Xn such that we have

snsn+1 = sntn+1 and tnsn+1 = tntn+1

for every n ≥ 0. An element x ∈ Xn is called an n-cell; if n > 0 the element sn−1(x)
is said to be the source and the element tn−1(x) to be the target of x. A globular set
X can be defined to be a presheaf X : Go → Set on a category G of globes which can
be defined by generators and relations. By definition ObG = {G0, G1, . . .}; there
are two generating maps in0 , in1 : Gn → Gn+1 for each n ≥ 0; the relations

in+1
0 in0 = in+1

1 in0 and in+1
0 in1 = in+1

1 in1 .

is a presentation. The relations imply that there is exactly two maps i0, i1 : Gm →
Gn for each m < n. A globular set X is thus equipped with two maps s, t : Xn →
Xm for each m < n. A reflexive globular set is defined to be a globular set X
equipped with a sequence of maps un : Xn → Xn+1 such that snun = tnun = id.
By composing we obtain a map u : Xm → Xn for each m < n. There is also a
notion of globular set of height ≤ n for each n ≥ 0. It can be defined to be a
presheaf Go

n → Set, where Gn is the full sub-category of G spanned by the globes
Gk with k ≤ n. Notice that a globular set of of height ≤ 0 is the same thing as a
set and that globular set of of height ≤ 1 is a graph.

44.22. Recall that a (strict) category is a graph s, t : X1 → X0, equipped with an
associative composition operation

◦ : X1 ×s,t X1 → X1

and a unit map u : X0 → X1. A functor between two categories is a map of graphs
f : X → Y which preserves composition and units. A (strict) ω-category is defined
to be a reflexive globular set X equipped with a category structure

◦k : Xn ×k Xn → Xn

for each 0 ≤ k < n, where Xn ×k Xn is defined by the pullback square

Xn ×k Xn

��

// Xn

t

��
Xn

s // Xk.

The unit map u : Xk → Xn is given by the reflexive graph structure. The operations
should obey the interchange law

(x ◦k y) ◦m (u ◦k v) = (x ◦m u) ◦k (y ◦m v)

for each k < m < n. A functor f : X → Y between ω-categories is a map of
globular sets which preserves composition and units. We shall denote by Catω the
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category of ω-categories. The notion of (strict) n-category is defined similarly but
by using a globular set of height ≤ n. We shall denote by Catn the category of
n-categories.

44.23. We saw in 44.20 that the sequence of cells

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk in the category Θn. The lower and upper sections
s0, s1 : bk → b(k + 1) give the sequence the structure of a co-globular set of height
≤ n. This defines a functor b : Gn → Θn from which we obtain a functor

b! : Θn → Ĝn.

Let us see that the functor b! can be lifted to Catn,

Catn

U

��
Θn

b̃!
<<zzzzzzzzz b! // Ĝn

if 0 ≤ k ≤ n, let us denote by Ek the n-disk whose interior is a chain of k edges.
There is a unique element ek ∈ int(Ek)k. The interval over ek has exactly two
points. There are two map of disks p0, p1 : Ek → Ek−1. The first takes ek ∈ Ek

to the top element of the interval over ek−1 ∈ Ek−1, and the second to the top
element of the interval over ek−1 ∈ Ek−1.

There is a unique map of disks ek−1 → ek and two maps of disks
let us denote by ek the n-disk whose interior is a chain of k edges. The geometric

realisation of the cell bk = ∗ek is the euclidian n-ball. There is a unique map of
disks ek−1 → ek, hence also a unique map of cells bk → bk−1. The sequence

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk b in the topos Θ̂n. It is the generic n-disk in the sense
of classifying topos.

44.24. The composite D ◦ E of a n-disk D with a m-disk E is the m + n disk

1 = D0 ← D1 ← · · · ← Dn ← (Dn, ∂Dn)× E1 ← · · · ← (Dn, ∂Dn)× Em,

where (Dn, ∂Dn)× Ek is defined by the pushout square

∂Dn × Ek
//

��

Dn × Ek

��
Ek

// (Dn, ∂Dn)× Ek.

This composition operation is associative.

44.25. The category S(n) = [(∆n)o,Set], contains n intervals

Ik = 1�1� · · · 1�I�1 · · · 1�1,

one for each 0 ≤ k ≤ n. It thus contain a n-disk I(n) : I1 ◦ I2 ◦ · · · ◦ In. Hence there
is a geometric morphism

(ρ∗, ρ∗) : S(n) → Θ̂,

such that ρ∗(b) = I(n). We shall say that a map of Θn-sets f : X → Y is a weak
categorical equivalence if the map ρ∗(f) : ρ∗(X) → ρ∗(Y ) is a weak equivalence in
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the model structure for reduced Segal n-spaces. The category Θ̂n admits a model
structure in which the weak equivalences are the weak categorical equivalences and
the cofibrations are the monomorphisms. We shall say that a fibrant object is
a Θn-category. The model structure is cartesian closed and left proper. We call
it the model structure for Θn-categories. We denote by ΘnCat the category of
Θn-categories. The pair of adjoint functors

ρ∗ : Θ̂n → S(n) : ρ∗

is a Quillen equivalence between the model structure for Θn-categories and the
model structure for reduced Segal n-spaces.

45. Higher quasi-categories

EEE
A n-quasi-category can be defined to be a fibrant object with respect to a certain

model structure structure on the category of presheaves on certain category Θn.
The category Θn was introduced for this purpose by the author in 1998. It was first
defined as the opposite of the category of finite n-disks. It was later conjectured
(jointly by Batanin, Street and the author) to be isomorphic to a category T ∗

n

introduced by Batanin in his theory of higher operads [?]. The category T ∗
n is a full

subcategory of the category of strict n-categories. The conjecture was proved by
Makkai and Zawadowski in [MZ] and by Berger in [Ber]. The model structure for n-
quasi-categories can be described in various ways. In principle, the model structure
for n-quasi-categories can be described by specifying the fibrant objects, since the
cofibrations are supposed to be the monomorphisms. But a complete list of the
filling conditions defining the n-quasi-categories is still missing (a partial list was
proposed by the author in 1998). An alternative approach is find a way of specifying
the class Wcatn of weak equivalences (the weak categorical n-equivalences). Let
us observe that the class Wcat in S can be extracted from the canonical map
i : ∆ → U1, since a map of simplicial sets u : A → B is a weak categorical
equivalence if the arrow i!(u) : i!A → i!B is invertible in U1, where i! : ∆̂ → U1

denotes the left Kan extension of i along the Yoneda functor. In general, it should
suffices to exibit a map i : Θn → Un with values in a cocomplete quasi-category
chosen appropriately. The quasi-category U1 is equivalent to the quasi-category of
reduced category object in U. It seems reasonable to suppose that Un is the quasi-
category of reduced n-category object in U. A n-category object in U is defined
to be a map C : Θo

n → U satisfying a certain Segal condition. A n-category C
is reduced if every invertible cell of C is a unit. The notion of reduced n-category
object is essentially algebraic. Hence the quasi-category Un is cocomplete, since it is
locally presentable. The canonical map i : Θn → Un is obtained from the inclusion
of Θn in the category of reduced strict n-categories. A map u : A → B in Θ̂n is
then defined to be a weak categorical n-equivalence if the arrow i!(u) : i!A → i!B

is invertible in Un, where i! : Θ̂n → Un denotes the left Kan extension of i along
the Yoneda functor. The model category (Θ̂n,Wcatn) is cartesian closed and its
full subcategory of fibrant objects QCatn has the structure of a simplicial category
enriched over Kan complexes. We conjecture that the coherent nerve of QCatn is
equivalent to Un. There is another description of Wcatn which is conjectured by
Cisinski and the author. It is easy to show that the localizer Wcat is generated by
inclusions I[n] ⊆ ∆[n] (n ≥ 0), where I[n] is the union of the edges (i − 1, i) for
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1 ≤ i ≤ n. The simplicial set I[n] is said to be the spine of ∆[n]. The objects of
Θn are indexed by finite planar trees of height ≤ n. For each tree t, let us denote
by Θ[t] the representable presheaf generated by the object [t] of Θn. The spine
S[t] ⊆ Θ[t] is the union of the generators of the n-category [t] (it is the globular
diagram associted to t by Batanin). It is conjectured that Wcatn is the localizer
generated by the inclusions S[t] ⊆ Θ[t].

EEEE

45.1. There is a notion of n-fold Segal space for every n ≥ 1. Recall that the cate-
gory [(∆o)n,S] = S(n)S of n-fold simplicial spaces admits a Reedy model structure
in which the weak equivalences are the level wise weak homotopy equivalences and
the cofibrations are the monomorphisms. A n-fold Segal space is defined to be a
Reedy fibrant n-fold simplicial space C : (∆o)n → S which satisfies the Segal condi-
tion ?? in each variable. The Reedy model structure admits a Bousfield localisation
in which the fibrant objects are the n-fold Segal spaces. The model structure is
simplicial. It is the model structure for n-fold Segal spaces. The coherent nerve
of the simplicial category of n-fold Segal spaces is equivalent to the quasi-category
Catn(Typ).

45.2. There is a notion of n-fold Rezk space for every n ≥ 1. It is a n-fold Segal
space which satisfies the Rezk condition ?? in each variable. The Reedy model
structure admits a Bousfield localisation in which the fibrant objects are the n-fold
Rezk spaces. The model structure is simplicial. It is the model structure for n-fold
Rezk spaces. The coherent nerve of the simplicial category of n-fold Rezk spaces is
equivalent to the quasi-category RCatn(Typ).

45.3. There is a notion of Segal n-space for every n ≥ 1. It is defined by induction
on n ≥ 1. If n = 1, it is a Segal space C : ∆o → S. If n > 1, it is a n-fold Segal
space C : ∆o → S(n−1)S such that

• Ck is a Segal n-space for every k ≥ 0,
• C0 : (∆o)n−1 → S is homotopically constant.

The model structure for n-fold Segal spaces admits a Bousfield localisation in which
the fibrant objects are the Segal n-spaces. The model structure is simplicial. It is
the model structure for Segal n-spaces. The coherent nerve of the simplicial category
of Segal n-spaces is equivalent to the quasi-category Catn(Typ).

45.4. There is a notion of Rezk n-space for every n ≥ 1. By definition, it is a Segal
n-space which satisfies the Rezk condition ?? in each variable. The model structure
for Segal n-spaces admits a Bousfield localisation for which the fibrant objects are
the Rezk n-spaces. It is the model structure for Rezk n-spaces. The coherent
nerve of the simplicial category of Rezk n-spaces is equivalent to the quasi-category
RCatn(Typ).

45.5. There is a notion of n-fold quasi-category for every n ≥ 1. If n = 1, this is
a quasi-category. The projection p : ∆n × ∆ → ∆n is left adjoint to the functor
i : ∆n → ∆n×∆ defined by putting i(a) = (0, [0]) for every n ≥ 0. We thus obtain
a pair of adjoint functors

p∗ : S(n) ↔ S(n+1) : i∗.

Let us say that a map f : X → Y in S(n) is a weak equivalence if the map p∗(f) is a
weak equivalence in the model structure for n-fold Rezk spaces. Then the category
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S(n) admits a unique Cisinski model structure with these weak equivalences. We
call it the model structure for n-fold quasi-categories, A fibrant object for this model
structure is a n-fold quasi-category. The pair of adjoint functors (p∗, i∗) is a Quillen
equivalence between the model structure for n-fold quasi-categories and the model
structure for n-fold Rezk spaces.

45.6. There is box product functor

� : S(m) × S(n) → S(m+n)

for every m,n ≥ 0. The functor is a left Quillen functor of two variables with respect
to the model structures for p-fold quasi-categories, where p ∈ {m,n,m + n}.

45.7. There is a notion of quasi-n-category for every n ≥ 1. Let p∗ : S(n) ↔
S(n+1) : i∗ be the pair of adjoint functors of 45.5. Let us say that a map f : X → Y
in S(n) is a weak equivalence if the map p∗(f) is a weak equivalence in the model
structure for Rezk n-spaces. Then the category S(n) admits a unique Cisinski model
structure with these weak equivalences. We call it the model structure for quasi-n-
categories. A fibrant object for this model structure is a quasi-n-category. The pair
of adjoint functors (p∗, i∗) is a Quillen equivalence between the model structure for
quasi-n-categories and the model structure for Rezk n-spaces.

45.8. The composite D ◦ E of a n-disk D with a m-disk E is the m + n disk

1 = D0 ← D1 ← · · · ← Dn ← (Dn, ∂Dn)× E1 ← · · · ← (Dn, ∂Dn)× Em,

where (Dn, ∂Dn)× Ek is defined by the pushout square

∂Dn × Ek
//

��

Dn × Ek

��
Ek

// (Dn, ∂Dn)× Ek.

This composition operation is associative.

45.9. The category S(n) = [(∆n)o,Set], contains n intervals

Ik = 1�1� · · · 1�I�1 · · · 1�1,

one for each 0 ≤ k ≤ n. It thus contain a n-disk I(n) : I1 ◦ I2 ◦ · · · ◦ In. Hence there
is a geometric morphism

(ρ∗, ρ∗) : S(n) → Θ̂,

such that ρ∗(b) = I(n). We shall say that a map of n-cellular sets f : X → Y is a
weak categorical equivalence if the map ρ∗(f) : ρ∗(X)→ ρ∗(Y ) is a weak equivalence
in the model structure for quasi-n-categories. The category Θ̂n admits a model
structure in which the weak equivalences are the weak categorical equivalences and
the cofibrations are the monomorphisms. We say that a fibrant object is a n-quasi-
category The model structure is cartesian closed and left proper. We call it the model
structure for n-quasi-categories. We denote the category of n-quasi-categories by
QCatn. The pair of adjoint functors

ρ∗ : Θ̂n → S(n) : ρ∗

is a Quillen equivalence between the model structure for n-quasi-categories and the
model structure for quasi-n-categories.
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46. Appendix on category theory

46.1. We fix three arbitrary Grothendieck universes U1 ∈ U2 ∈ U3. Sets in U1

are said to be small, sets in U2 are said to be large and sets in U3 are said to be
extra-large. Beware that a small set is large and that a large set is extra-large. We
denote by Set the category of small sets and by SET the category of large sets. A
category is said to be small (resp. large, extra-large) if its set of arrows belongs to
U1 (resp. U2, U3). The category Set is large and the category SET extra-large.
We denote by Cat the category of small categories and by CAT the category of
large categories. The category Cat is large and the category CAT is extra-large. A
large category is locally small if its hom sets are small. We shall often denote small
categories by ordinary capital letters and large categories by curly capital letters.

46.2. We shall denote by Ao the opposite of a category A. It can be useful to
distinguish between the objects of A and Ao by writing ao ∈ Ao for each object
a ∈ A, with the convention that aoo = a. If f : a → b is a morphism in A, then
fo : bo → ao is a morphism in Ao. Beware that the opposite of a functor F : A→ B
is a functor F o : Ao → Bo. A contravariant functor F : A → B between two
categories is defined to be a (covariant) functor F : Ao → B; but we shall often
denote the value of F at a ∈ A by F (a) instead of F (ao). .

46.3. We shall say that a functor u : A → B is biunivoque if the map Ob(u) :
ObA → ObB is bijective. Every functor u : A → B admits a factorisation u = pq
with q a biunivoque functor and p a fully faithful functor. The factorisation is
unique up to unique isomorphism. It is called the Gabriel factorisation of the
functor u.

46.4. The categories Cat and CAT are cartesian closed. We shall denote the
category of functors A→ B between two categories by BA or [A,B] If E is a locally
small category, then so is the category EA = [A, E ] for any small category A. Recall
that a presheaf on a small category A is defined to be a functor X : Ao → Set. A
map of presheaves X → Y is a natural transformation. The presheaves on A form
a locally small category

Â = SetAo

= [Ao,Set].

The category Â is cartesian closed; if X, Y ∈ Â we shall denote the presheaf of
maps X → Y by Y X .

46.5. If A is a small category, then the Yoneda functor yA : A → Â associates
to an object a ∈ A the presheaf A(−, a). The Yoneda lemma asserts that for any
object a ∈ A and any presheaf X ∈ Â, the evaluation x 7→ x(1a) induces a bijection
between the set of natural transformation A(−, a) → X and the set X(a). The
lemma implies that the Yoneda functor is fully faithful. We shall often regard the
functor as an inclusion A ⊂ Â by adopting the same notation for an object a ∈ A
and the presheaf A(−, a). Moreover, we shall identify a natural transformation
x : a → X with the element x(1a) ∈ X(a). If u : a → b is a morphism in A, then
the image of an element x ∈ X(b) by the map X(u) : X(b) → X(a) is denoted as
the composite of x : b→ X by u : a→ b. We say that a presheaf X is represented
by an element x ∈ X(a) if the natural transformation x : a → X is invertible. A
presheaf X is representable if it can be represented by a pair (a, x). Recall that the
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category of elements El(X) of a presheaf X : A→ Set is the category whose objects
are the pairs (a, x), where a ∈ A and x ∈ X(a), and whose arrows (a, x) → (b, y)
are the morphism f : a → b in A such that X(f)(y) = x. It follows from Yoneda
lemma that we have El(X) = A/X, where A/X is the full subcategory of Â/X
whose objects are the maps a → X with a ∈ A. A presheaf X is represented by
an element x ∈ X(a) iff the object (a, x) of El(X) is terminal. Thus, a presheaf X
representable iff its category of elements El(X) has a terminal object.

46.6. The dual Yoneda functor yo
A : Ao → [A,Set] associates to an object a ∈ A

the set valued functor A(a,−). The Yoneda lemma asserts that for any object
a ∈ A and any functor F : A→ Set, the evaluation x 7→ x(1a) induces a bijection
between the set of natural transformations x : A(a,−) → F and F (a). We shall
identify these two sets by adopting the same notation for a natural transformation
x : A(a,−) → F and the element x(1a) ∈ F (a). The dual Yoneda functor is fully
faithful. and we shall often regard it as an inclusion Ao ⊂ [A,Set] by adopting the
same notation for an object ao ∈ Ao and the presheaf A(a,−). We say that a functor
F : A → Set is represented by an element x ∈ F (a) if the corresponding natural
transformation x : ao → X is invertible. The functor F is said to be representable if
it can be represented by an element (a, x). The category of elements of a (covariant)
functor F : A→ Set is the category el(F ) whose objects are the pairs (a, x), where
a ∈ A and x ∈ F (a), and whose arrows (a, x)→ (b, y) are the morphisms f : a→ b
in A such that F (f)(x) = y. The functor X is represented by an element x ∈ F (a)
iff (a, x) is an initial object of the category el(X). Thus, F representable iff the
category el(F ) has an initial object.

46.7. Recall that a 2-category is a category enriched over Cat. An object of a 2-
category E is often called a 0-cell. If A and B are 0-cells, an object of the category
E(A,B) is called a 1-cell and an arrow is called a 2-cell. We shall often write
α : f → g : A → B to indicate that α is a 2-cell with source the 1-cell f : A → B
and target the 1-cell g : A → B. The composition law in the category E(A,B) is
said to be vertical and the composition law

E(B,C)× E(A,B)→ E(A,C)

horizontal. The vertical composition of a 2-cell α : f → g with a 2-cell β : g → h
is a 2-cell denoted by βα : f → h. The horizontal composition of a 2-cell α :
f → g : A → B with a 2-cell and β : u → v : B → C is a 2-cell denoted by
β ◦ α : uf → vg : A→ C.

46.8. There is a notion of adjoint in any 2-category. If u : A→ B and v : B → A
are 1-cells in a 2-category, an adjunction (α, β) : u a v is a pair of 2-cells α : 1A → vu
and β : uv → 1B for which the adjunction identities hold:

(β ◦ u)(u ◦ α) = 1u and (v ◦ β)(α ◦ v) = 1v.

The 1-cell u is the left adjoint and the 1-cell v the right adjoint. The 2-cell α is
the unit of the adjunction and the 2-cell β the counit. Each of the 2-cells α and β
determines the other.
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46.9. In any 2-category, there is a notion of left (and right) Kan extension of 1-cell
f : A → X along a 1-cell u : A → B. More precisely, the left Kan extension of f
along u is a pair (g, α) where g : B → X and α : f → gu is a 2-cell which reflects the
object f ∈ Hom(A,X) along the functor Hom(u, X) : Hom(B,X)→ Hom(A,X).
The right Kan extension of f along u is a pair (g, β) where g : B → X and
β : gu→ f is a 2-cell which coreflects the object f ∈ Hom(A,X) along the functor
Hom(u, X) : Hom(B,X)→ Hom(A,X).

46.10. Recall that a full subcategory A ⊆ B is said to be reflective if the inclusion
functor A ⊆ B has a left adjoint called a reflection. In general, the right adjoint
v of an adjunction u : A ↔ B : v is fully faithful iff the counit of the adjunction
β : uv → 1B is invertible, in which case u is said to be a reflection and v to be
reflective. These notions can be defined in any 2-category. If the counit β : uv → 1B

of an adjunction u : A↔ B : v is invertible, the left adjoint is said to be a reflection
and v to be reflective. Dually, a full subcategory A ⊆ B is said to be coreflective if
the inclusion functor A ⊆ B has a right adjoint called a coreflection. These notions
can be defined in any 2-category: if the counit β : uv → 1B of an adjunction
u : A↔ B : v is invertible, then the right adjoint v is said to be a coreflection and
u to be coreflective.

46.11. The notion of 0-distributor (called distributor if the context is clear) between
two categories was defined in 14.4. The composite of two distributors F : A ⇒ B
and G : B ⇒ C) is the distributor G ◦ F = F ⊗B G : A⇒ C defined by putting

(F ⊗B G)(a, c) =
∫ b∈B

F (a, b)×G(b, c).

The composition of distributors

◦ : Dist0(B,C)Dist0(A,B)→ Dist0(A,C)

is coherently associative, and the distributor hom : Ao × A → S is a unit. This
defines a bicategory Dist0 whose objects are the small categories. The bicategory
Dist0 is biclosed. This means that the composition functor ◦ is divisible on each
side. See 50.25 for this notion. For every H ∈ Dist0(A,C), F ∈ Dist0(A,B) and
G ∈ Dist0(B,C) we have

G\H = HomC(G, H) and H/F = HomA(F,H).

Notice that Dist0(1, A) = [A,Set] and that Dist0(A, 1) = [Ao,Set] = Â. To
every distributor F : A ⇒ B we can associate a cocontinuous functor − ◦ F :
B̂ → Â. This defines an equivalence between the category of distributors A ⇒ B
and the category of cocontinuous functors B̂ → Â. Dually, to every distributor
F ∈ Dist0(A,B) we can associate a cocontinuous functor F ◦− : [A,Set]→ [A,Set].
This defines an equivalence between the category of distributors A ⇒ B and the
category of cocontinuous functors [A,Set] → [B,Set]. Notice that we have a
natural isomorphism

G ◦ (F ◦X) ' (G ◦ F ) ◦X

for every X : A→ Set], F : A⇒ B and G : B ⇒ C
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46.12. The bicategory Dist0 is symmetric monoidal. The tensor product of F :
A ⇒ B and G : C ⇒ D is the distributor F ⊗ G : A × C ⇒ B × D) defined by
putting

(F ×G)((a, c), (b, d)) = F (a, b)×G(c, d)
for every quadruple of objects (a, b, c, d) ∈ A×B × C ×D.

46.13. The symmetric monoidal bicategory Dist0 is compact closed. The dual of
a category A is the category Ao and the adjoint of a distributor F : A⇒ B is the
distributor F ∗ : Bo ⇒ Ao obtained by putting F ∗(bo, ao) = F (a, b). The unit of the
adjunction A ` Ao is a distributor ηA ∈ 1⇒ Ao × A) and the counit a distributor
εA : A × Ao ⇒ 1. We have ηA = εA = HomA : Ao × A → Set. The adjunction
A ` Ao is defined by a pair of invertible 2-cells,

αA : IA ' (εA ⊗A) ◦ (A⊗ ηA) and βA : IAo ' (Ao ⊗ εA) ◦ (ηA ⊗Ao).

each of which is defined by using fthe canonical isomorphism∫
b∈A

∫
c∈A

A(a, b)×A(b, c)×A(c, d) ' A(a, d).

46.14. The trace of a distributor F : A⇒ A defined by putting

TrA(F ) = εA ◦ (F ⊗Ao) ◦ ηAo

is isomorphic to the coend

coendA(F ) =
∫ a∈A

F (a, a).

of the functor F : Ao ×A→ Set.

46.15. To every functor u : A→ B in Cat is associated a pair of adjoint functor

u! : [Ao,Set]↔ [Bo,Set] : u∗.

We have u∗(Y ) = Γ(u) ⊗B Y = Y ◦ Γ(u) for every Y ∈ [Bo,Set], where the
distributor Γ(u) ∈ Dist0(A,B) obtained by putting Γ(u)(a, b) = B(ua, b) for every
pair of objects a ∈ A and b ∈ B. We have u!(X) = Γ∗(u) ⊗A X = X ◦ Γ∗(u) for
every X ∈ [Ao,Set], where the distributor Γ(u) ∈ Dist0(B,A) is defined by putting
Γ∗(u)(b, a) = B(b, ua). Notice that the functor u∗ has a right adjoint u∗ and that
we have u∗(X) = X/Γ(u) for every X ∈ [Ao,Set].

46.16. The functor 1 ? 1 → 1 gives the category 1 the structure of a monoid in
the monoidal category (Cat, ?). If C is a category with terminal object t ∈ C then
there is unique functor r : C ? 1→ C which extends the identity 1C : C → C along
the inclusion C ⊂ C ? 1 and such that r(1) = t. This defines a right action of the
monoid 1 on C, and every right action of 1 on C is of this form. Dually, If C is
a category with initial object i ∈ C then there is unique functor l : 1 ? C → C
which extends the identity 1C : C → C along the inclusion C ⊂ 1 ? C and such
that l(1) = i. This defines a left action of the monoid 1 on C, and every left action
of 1 on C is of this form. We shall say that an object of a category is null if it
is both initial and terminal. We shall say that a category C is nullpointed if it
admits a null object 0 ∈ C. A functor between nullpointed categories is pointed if
it takes a null object to a null object. If C is nullpointed, then there is a unique
functor m : C ? C → C which extends the codiagonal C t C → C and such that
m(1 ? 1) = 10. The image by m of the unique arrow in C ?C between a ∈ C ? ∅ and
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b ∈ ∅ ? C the null morphism 0 = 0ba : a→ b obtained by composing the morphism
a → 0 → b. The functor m gives the category C the structure of a monoid object
in the monoidal category (Cat, ?) and the map 0 : 1→ C is an homomorphism.

46.17. nullpointed category. We shall say that an object of a category is null
if it is both initial and terminal. We shall say that a category C is nullpointed if
it admits a null object 0 ∈ C (we could say more generally that C is nullpointed
if its Karoubi envelope admits a null object). The null morphism 0 = 0ba : a → b
between two objects of C is obtained by composing the morphism a → 0 → b. A
functor between nullpointed categories is pointed if it takes a null object to a nul
object.

46.18. If C is a nullpointed category, then the direct sum of two objects a, b ∈ C
is defined to be an object c = a⊕ b equipped with four morphisms

a

i1 ��?
??

??
??

a

c

p1

??�������

p2

��>
>>

>>
>>

>

b

i2

??��������
b

satisfying the following conditions:

• p1i1 = 1a, p2i2 = 1b, p2i1 = 0 and p1i2 = 0 in hoX;
• the pair (p1, p2) is a product diagram,

a

a⊕ b

p1

<<zzzzzzzz

p2

!!D
DDDDDDD

b

• the pair (i1, i2) is a coproduct diagram,

a

i1 ""E
EEEEEEE

a⊕ b,

b

i2
==zzzzzzzzz
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The cartesian product a × b of two objects a, b ∈ C is a direct sum iff the pair of
morphisms

a

(1a,0) ""E
EE

EE
EE

E

a× b

b

(0,1b)
==zzzzzzzz

is a coproduct diagram. Dually, the coproduct a t b of two objects a, b ∈ C is a
direct sum iff the pair of morphisms

a

a t b

(1a,0)

<<zzzzzzzz

(0,1b)

!!D
DDDDDDD

b

is a product diagram. We shall say that a nullpointed category is semi-additive if it
has binary direct sums. In a semi-additive category, the coproduct of an arbitrary
family of objects (ai : i ∈ I) is denoted as a direct sum⊕

i∈I

ai =
⊔
i∈I

ai.

The direct sum is also a product when I is finite. Similarly, the coproduct of an
arbitrary family of morphisms fi : ai → bi is denoted as a direct sum⊕

i∈I

fi :
⊕
i∈I

ai →
⊕
i∈I

bi.

The opposite of a semi-additive category is semi-additive. We shall say that a
functor between semi-additive categories is finitely additive if it preserves finite
direct sums. A functor between semi-additive categories is finitely additive iff it
preserves finite products. A functor f : C → D between semi-additive categories is
finitely additive iff the opposite functor fo : Co → Do is finitely additive. The sum
f + g : a→ b of two morphisms f, g : a→ b of an additive category is defined to be
the composite,

a
(1a,1a) // a⊕ a

f⊕g // b⊕ b
(1b,1b) // b.

This gives the set C(a, b) the structure of a commutative monoid, with the null
morphism 0 : a→ b for the neutral element. The composition

C(b, c)× C(a, b)→ C(a, c)

is distributive with respect to the addition of morphisms for every triple of objects
a, b, c ∈ C. A semi-additive category C is said to be additive if the monoid C(a, b)
is a group for every pair of objects a, b ∈ C. The opposite of an additive category
is additive.
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47. Appendix on factorisation systems

In this appendix we study the notion of factorisation system. We give a few
examples of factorisation systems in Cat.

Definition 47.1. If E is a category, we shall say that a pair (A,B) of classes of
maps in E is a (strict) factorisation system if the following conditions are satisfied:

• each class A and B is closed under composition and contains the isomor-
phisms;
• every map f : A → B admits a factorisation f = pu : A → E → B with

u ∈ A and p ∈ B, and the factorisation is unique up to unique isomorphism.
We say that A is the left class and B the right class of the weak factorisation system.

In this definition, the uniqueness of the factorisation f = pu : A → E → B
means that for any other factorisation f = p′u′ : A → E′ → B with u′ ∈ A and
p′ ∈ B, there exists a unique isomorphism i : E → F such that iu = u′ and p′i = p,

A

u

��

u′ // E′

p′

��
E p

//

i

>>}
}

}
}

B.

Recall that a class of maps M in a category E is said to be invariant under
isomorphisms if for every commutative square

A //

u

��

A′

u′

��
B // B′

in which the horizontal maps are isomorphisms we have u ∈ M ⇔ u′ ∈ M. It
is obvious from the definition that each class of a factorisation system is invariant
under isomorphism.

Definition 47.2. We shall say that a class of maps M in a category E has the
right cancellation property if the implication

vu ∈M and u ∈M ⇒ v ∈M

is true for any pair of maps u : A → B and v : B → C. Dually, we shall say that
M has the left cancellation property if the implication

vu ∈M and v ∈M ⇒ u ∈M

is true.

Proposition 47.3. The intersection of the classes of a factorisation system (A,B)
is the class of isomorphisms. Moreover,

• the class A has the right cancellation property;
• the class B has the left cancellation property.
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Proof: If a map f : A→ B belongs to A ∩ B, consider the factorisations f = f1A

and f = 1Bf . We have 1A ∈ A and f ∈ B in the first, and we have f ∈ A and
1B ∈ B in the second. Hence there exists an isomorphism i : B → A such that
if = 1A and fi = 1B . This shows that f is invertible. If u ∈ A and vu ∈ A, let us
show that v ∈ A. For this, let us choose a factorisation v = ps : B → E → C, with
s ∈ A and p ∈ B, and put w = vu. Then w admits the factorisation w = p(su)
with su ∈ A and p ∈ B and the factorisation w = 1C(vu) with vu ∈ A and 1C ∈ B.
Hence there exists an isomorphism i : E → C such that i(su) = vu and 1Ci = p.
Thus, p ∈ A since p = i and every isomorphism belongs to A. It follows that
v = ps ∈ A, since A is closed under composition.

Definition 47.4. We say that a map u : A→ B in a category E is left orthogonal
to a map f : X → Y , or that f is right orthogonal to u, if every commutative
square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a unique diagonal filler d : B → X (that is, du = x and fd = y). We shall
denote this relation by u⊥f .

Notice that the condition u⊥f means that the square

Hom(B,X)

Hom(B,f)

��

Hom(u,X) // Hom(A,X)

Hom(A,f)

��
Hom(B, Y )

Hom(u,Y )
// Hom(A, Y )

is cartesian. If A and B are two classes of maps in E , we shall write A⊥B to indicate
that we have a⊥b for every a ∈ A and b ∈ B.

If M is a class of maps in a category E , we shall denote by ⊥M (resp. M⊥)
the class of maps which are left (resp. right) orthogonal to every map inM. Each
class ⊥M andM⊥ is closed under composition and contains the isomorphisms. The
class ⊥M has the right cancellation property and the classM⊥ the left cancellation
property. If A and B are two classes of maps in E , then

A ⊆ ⊥B ⇔ A⊥B ⇔ A⊥ ⊇ B.

Proposition 47.5. If (A,B) is a factorisation system then

A = ⊥B and B = A⊥.

Proof Let us first show that we have A⊥B. If a : A → A′ is a map in A and
b : B → B′ is a map in B, let us show that every commutative square

A

a

��

u // B

b

��
A′

u′
// B′
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has a unique diagonal filler. Let us choose a factorisation u = ps : A → E → B
with s ∈ A and p ∈ B and a factorisation u′ = p′s′ : A′ → E′ → B′ with s′ ∈ A
and p′ ∈ B. From the commutative diagram

A

a

��

s // E
p // B

b

��
A′

s′
// E′

p′
// B′,

we can construct a square

A

s′a

��

s // E

bp

��
E′

p′
// B′.

Observe that s ∈ A and bp ∈ B and also that s′a ∈ A and p′ ∈ B. By the uniqueness
of the factorisation of a map, there is a unique isomorphism i : E′ → E such that
is′a = s and bpi = p′:

A

a

��

s // E
p // B

b

��
A′

s′
// E′

p′
//

i

OO

B′.

The composite d = pis′ is then a diagonal filler of the first square

A

a

��

u // B

b

��
A′

u′
//

d

=={
{

{
{

B′.

It remains to prove the uniqueness of d. Let d′ be an arrow A′ → B such that
d′a = u and bd′ = u′. Let us choose a factorisation d′ = qt : A′ → F → B with
t ∈ A and q ∈ B. From the commutative diagram

A

a

��

s // E
p // B

b

��

F

q
=={{{{{{{{

A′
s′
//

t

>>||||||||
E′

p′
// B′.

we can construct two commutative squares

A

ta

��

s // E

p

��
F q

// B,

A′

s′

��

t // F

bq

��
E′

p′
// B′.
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Observe that we have ta ∈ A and q ∈ B. Hence there exists a unique isomorphism j :
F → E such that jta = s and pj = q. Similarly, there exists a unique isomorphism
j′ : E′ → F such that j′s′ = t and bqj′ = p′. The maps fits in the following
commutative diagram,

A

a

��

s // E
p // B

b

��

F

j

OO
q

=={{{{{{{{

A′
s′
//

t

>>||||||||
E′

p′
//

j′

OO

B′.

Hence the diagram

A

s′a

��

s // E

bp

��
E′

p′
//

jj′
=={{{{{{{{
B′.

commutes. It follows that we have jj′ = i by the uniqueness of the isomorphism
between two factorisations. Thus, d′ = qt = (pj)(j′s′) = pis′ = d. The relation
A⊥B is proved. This shows that A ⊆ ⊥B. Let us show that ⊥B ⊆ A. If a map
f : A→ B is in ⊥B. let us choose a factorisation f = pu : A→ C → B with u ∈ A
and p ∈ B. Then the square

A

f

��

u // C

p

��
B

1B

// B

has a diagonal filler s : B → C, since f ∈ ⊥B. We have ps = 1B . Let us show that
sp = 1C . Observe that the maps sp and 1C are both diagonal fillers of the square

A

u

��

u // C

p

��
C p

// B.

This proves that sp = 1C by the uniqueness of a diagonal filler. Thus, p ∈ A, since
every isomorphism is in A. Thus, f = pu ∈ A.

Corollary 47.6. Each class of a factorisation system determines the other.

47.1. We shall say that a class of mapsM in a category E is closed under limits if
the full subcategory of EI spanned by the maps inM is closed under limits. There
is a dual notion of a class of maps closed under colimits.

Proposition 47.7. The classM⊥ is closed under limits for any class of mapsM
in a category E. Hence the right class of a factorisation system is closed under
limits.
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Proof: For any pair of morphisms u : A → B and f : X → Y in E , we have a
commutative square Sq(u, f):

E(B,X)

E(B,f)

��

E(u,X) // E(A,X)

E(A,f)

��
E(B, Y )

E(u,Y )
// E(A, Y ).

The resulting functor

Sq : (Eo)I × EI → SetI×I

continuous in each variable. An arrow f ∈ E belongs toM⊥ iff the square Sq(u, f)
is cartesian for every arrow u ∈M. This proves the result, since the full subcategory
of SetI×I spanned by the cartesian squares is closed under limits. QED

Recall that a map u : A → B in a category E is said to be a retract of another
map v : C → D, if u is a retract of v in the category of arrows EI . A class of maps
M in a category E is said to be closed under retracts if the retract of a map inM
belongs toM.

Corollary 47.8. The class M⊥ is closed under retracts for any class of maps M
in a category E. Each class of a factorisation system is closed under retracts.

47.2. Let (A,B) be a factorisation system in a category E . Then the full subcate-
gory of EI spanned by the elements of B is reflective. Dually, the full subcategory
of EI spanned by the elements of A is coreflective.
Proof: Let us denote by B′ the full subcategory of EI whose objects are the arrows
in B. Every map u : A→ B admits a factorisation u = pi : A→ E → B with i ∈ A
and p ∈ B. The pair (i, 1B) defines an arrow u → p in EI . Let us show that the
arrow reflects u in the subcategory B′. For this, it suffices to show that for every
arrow f : X → Y in B and every commutative square

A

u

��

x // X

f

��
B y

// Y,

there exists a unique arrow z : E → X such that fz = yp and zi = x. But this is
clear, since the square

A

i

��

x // X

f

��
E yp

// Y.

has a unique diagonal filler by 47.5.
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Recall that the projection A×B E → A in a pullback square

A×B E

��

// E

��
A // B

is said to be the base change of the map E → B along the map A→ B. A class of
maps B in a category E is said to be closed under base changes if the base change
of a map in B along any map in E belongs to B when this base change exists. The
classM⊥ is closed under base changes for any class of mapsM⊆ E . In particular,
the right class of a factorisation system is closed under base change. Recall that
the map B → E tA B in a pushout square

A

��

// B

��
E // E tA B

is said to be the cobase change of the map A→ E along the map A→ B. A class
of maps A in category E is said to be closed under cobase changes if the cobase
change of a map in A along any map in E belongs to A when this cobase change
exists. The class ⊥M is closed under cobase changes for any class of mapsM⊆ E .
In particular, the left class of a factorisation system is closed under cobase changes.

47.3. Let us say that an arrow f : X → Y in a category with finite limits is
surjective if it is left orthogonal to every monomorphism. The class of surjections
is closed under cobase change, under colimits and it has the right cancellation
property. Every surjection is an epimorphism, but the converse is not necessarly
true.

We now give some examples of factorisation systems.

Proposition 47.9. Let p : E → C be a Grothendieck fibration. Then the category E
admits a factorisation system (A,B) in which B is the class of cartesian morphisms.
An arrow u ∈ E belongs to A iff the arrow p(u) is invertible.

Dually, if p : E → C is a Grothendieck opfibration, then the category E admits
a factorisation system (A,B) in which A is the class of cocartesian morphisms. A
morphism u ∈ E belongs to B iff the morphism p(u) is invertible.

If E is a category with pullbacks, then the target functor t : EI → E is a
Grothendieck fibration. A morphism f : X → Y of the category EI is a com-
mutative square in E ,

X0

x

��

f0 // Y0

y

��
X1

f1 // Y1.

The morphism f is cartesian iff the square is a pullback (also called a cartesian
square). Hence the category EI admits a factorisation system (A,B) in which B is
the class of cartesian squares. A square f : X → Y belongs to A iff the morphism
f1 : X1 → Y1 is invertible.
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Corollary 47.10. Suppose that we have a commutative diagram

A0
//

��

B0
//

��

C0

��
A1

// B1
// C1

in which the right hand square is cartesian. Then the left hand square is cartesian
iff the composite square is cartesian.

Proof: This follows from the left cancellation property of the right class of a
factorisation system.

Corollary 47.11. Suppose that we have a commutative cube

A0
//

��

  B
BB

BB
BB

B C0

!!C
CC

CC
CC

C

��

B0

��

// D0

��

A1

  B
BB

BB
BB

B
// C1

!!C
CC

CC
CC

C

B1
// D1.

in which the left face, the right face and front face are cartesian. Then the back
face is cartesian.

We now give a few examples of factorisation systems in the category Cat.

Recall that a functor p : E → B is said to be a discrete fibration if for every object
e ∈ E and every arrow g ∈ B with target p(e), there exists a unique arrow f ∈ E
with target e such that p(f) = e. There is a dual notion of discrete opfibration.
Recall that a functor between small categories u : A→ B is said to be final (but we
shall say 0-final) if the category b\A = (b\B)×B A defined by the pullback square

b\A

��

h // A

u

��
b\B // B.

is connected for every object b ∈ B. There is a dual notion of initial functor (but
we shall say 0-initial).

Theorem 47.12. [Street] The category Cat admits a factorisation system (A,B)
in which B is the class of discrete fibrations and A the class of 0-final functors.
Dually, category Cat admits a factorisation system (A′,B′) in which B′ is the class
of discrete opfibrations and A′ is the class of 0-initial functors.
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47.4. Recall that a functor p : C → D is said to be conservative if the implication

p(f) invertible ⇒ f invertible

is true for every arrow f ∈ C. The model category (Cat, Eq) admits a factorisation
system (A,B) in which B is the class of conservative functors. A functor in the class
A is an iterated strict localisation Let us describe the strict localisations explicitly.
We say that a functor g : A → B inverts a set S of arrows in A if every arrow in
g(S) is invertible. When the category A is small. there is a functor lS : A→ S−1A
which inverts S universally. The universality means that for any functor g : A→ B
which inverts S there exists a unique functor h : S−1A→ B such that hlS = g. The
functor lS is a strict localisation. Every functor u : A → B admits a factorisation
u = u1l1 : A→ S−1

0 A→ B, where S0 is the set of arrows inverted by u and where
l1 = lS0 . Let us put A1 = S−1

0 A. The functor u1 is not necessarly conservative
but it admits a factorisation u1 = u2l2 : A1 → S−1

1 A1 → B, where S1 is the set
of arrows inverted by u1. Let us put A2 = S−1

1 A1. By iterating this process, we
obtain an infinite sequence of categories and functors,

A = A0
l1 //

u=u0

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM A1
l2 //

u1

##F
FFFFFFFFFFFFFFFFFFFFFFFFFFF A2

l3 //

u2

��:
::

::
::

::
::

::
::

::
::

::
: A3

l4 //

u4

��-
--

--
--

--
--

--
--

--
--

· · · E

v

����
��
��
��
��
��
��
��
��
�

B.

If the category E is the colimit of the sequence, then the functor v : E → B is
conservative. and the canonical functor l : A→ E is an iterated strict localisation.

47.5. For any category C, the full subcategory of C\Cat spanned by the iterated
strict localisations C → L is equivalent to a complete lattice Loc(C). Its maximum
element is defined by the localisation C → π1C which inverts every arrow in C. A
functor u : C → D induces a pair of adjoint maps

u! : Loc(C)→ Loc(D) : u∗,

where u! is defined by cobase change along u.

48. Appendix on weak factorisation systems

48.1. Recall that an arrow u : A→ B in a category E is said to have the left lifting
property with respect to another arrow f : X → Y , or that f has the right lifting
property with respect to u, if every commutative square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a diagonal filler d : B → X (that is, du = x and fd = y). We shall denote this
relation by u t f . If the diagonal filler is unique we shall write u⊥f and say that
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u is left orthogonal to f , ot that f is right orthogonal to u. For any class of maps
M⊆ E , we shall denote by tM (resp. Mt) the class of maps having the left lifting
property (resp. right lifting property) with respect to every map inM. Each class
tM andMt contains the isomorphisms and is closed under composition. If A and
B are two classes of maps in E , we shall write A t B to indicate that we have u t f
for every u ∈ A and f ∈ B. Then

A ⊆ tB ⇐⇒ A t B ⇐⇒ B ⊆ At.

48.2. We say that a pair (A,B) of classes of maps in a category E is a weak
factorisation system if the following two conditions are satisfied:

• every map f ∈ E admits a factorisation f = pu with u ∈ A and p ∈ B;
• A = tB and At = B.

We say that A is the left class and B the right class of the weak factorisation system.

48.3. Every factorisation system is a weak factorisation system.

48.4. We say that a map in a topos is a trivial fibration if it has the right lifting
property with respect to every monomorphism. This terminology is non-standard
but useful. The trivial fibrations often coincide with the acyclic fibrations (which
can be defined in any model category). An object X in a topos is said to be
injective if the map X → 1 is a trivial fibration. If B is the class of trivial fibrations
in a topos and A is the class monomorphisms, then the pair (A,B) is a weak
factorisation system. A map of simplicial sets is a trivial fibration iff it has the
right lifting property with respect to the inclusion δn : ∂∆[n] ⊂ ∆[n] for every
n ≥ 0.

48.5. We say that a Grothendieck fibration E → B is a 1-fibration if its fibers E(b)
are groupoids. We say that a category C is 1-connected if the functor π1C → 1
is an equivalence. We say that functor u : A → B is is 1-final) if the category
b\A = (b\B)×B A is 1-connected for every object b ∈ B. The category Cat admits
a weak factorisation system (A,B) in which B is the class of 1-fibrations and A the
class of 1-final functors.

48.6. Let E be a cocomplete category. If α = {i : i < α} is a non-zero ordinal, we
shall say that a functor C : α→ E is an α-chain if the canonical map

lim
−→
i<j

C(i)→ C(j)

is an isomorphism for every non-zero limit ordinal j < α. The composite of C is
the canonical map

C(0)→ lim
−→
i<α

C(i).

We shall say that a subcategory A ⊆ E is closed under transfinite composition if
the composite of any α-chain C : α→ E with values in A belongs to A.
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48.7. Let E be a cocomplete category. We shall say that a class of maps A ⊆ E is
saturated if it satisfies the following conditions:

• A contains the isomorphisms and is closed under composition ;
• A is closed under transfinite composition;
• A is closed under cobase change and retract;

Every class of maps Σ ⊆ E is contained in a smallest saturated class Σ called the
saturated class generated by Σ. We shall say that a saturated class A is accessible
if it is generated by a set of maps Σ ⊆ A.

48.8. [Ci1] The classM of monomorphisms in a Grothendieck topos is accessible.

48.9. If Σ is a set of maps in a locally presentable category, then the pair (Σ,Σt)
is a weak factorisation system, where Σ denotes the saturated class generated by
Σ.

49. Appendix on simplicial sets

We fix some notations about simplicial sets. The category of finite non-empty
ordinals and order preserving maps is denoted ∆. It is standard to denote the
ordinal n+1 = {0, . . . , n} by [n]. A map u : [m] → [n] in ∆ can be specified by
listing its values (u(0), . . . , u(m)). The order preserving injection [n − 1] → [n]
which omits i ∈ [n] is denoted di, and the order preserving surjection [n]→ [n− 1]
which repeats i ∈ [n− 1] is denoted si.

49.1. Recall that a (small) simplicial set is a presheaf on the category ∆. We shall
denote the category of simplicial sets by S. If X is a simplicial set and n ≥ 0,
it is standard to denote the set X([n]) by Xn. An element of Xn is said to be a
simplex of dimension n, or a n-simplex of X; a 0-simplex is called a vertex and a
1-simplex an arrow. If n > 0 and i ∈ [n], the map X(di) : Xn → Xn−1 is denoted
by ∂i, and if i ∈ [n−1], the map X(si) : Xn−1 → Xn is denoted by σi. The simplex
∂i(x) ∈ Xn−1 is the i-th face of a simplex x ∈ Xn. The source of an arrow f ∈ X1

is defined to be the vertex ∂1(f) and its target to be the vertex ∂0(f); we shall write
f : a→ b to indicate that a = ∂1(f) and b = ∂0(f).

49.2. The combinatorial simplex ∆[n] of dimension n is defined to be the simplicial
set ∆(−, [n]); the simplex ∆[1] is the combinatorial interval and we shall denote it
by I; the simplex ∆[0] is the terminal object of the category S and we shall denote
it by 1. We shall often identify a morphism u : [m] → [n] in ∆ with its image
y∆(u) : ∆[m] → ∆[n] by the Yoneda functor y∆ : ∆ → S. By the Yoneda lemma,
for every X ∈ S and n ≥ 0 the evaluation map x 7→ x(1[n]) is a bijection between
the maps ∆[n] → X and the elements of Xn; we shall identify these two sets by
adopting the same notation for a map ∆[n] → X and the corresponding simplex
in Xn. If u : [m] → [n] and x ∈ Xn, we shall denote the simplex X(u)(x) ∈ Xm

as a composite xu : ∆[m] → X. For example, ∂i(x) = xdi : ∆[n − 1] → X for
every x ∈ Xn and σi(x) = xsi for every x ∈ Xn−1. A simplex x ∈ Xn is said to be
degenerate if it belongs to the image of σi : Xn−1 → Xn for some i ∈ [n − 1]. To
every vertex a ∈ X0 is associated a degenerate arrow σ0(a) : a → a that we shall
denote as a unit 1a : a→ a.
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49.3. The cardinality of a simplicial set X is defined to be the cardinality of the set
of non-degenerate simplices of X. A simplicial set is finite if it has a finite number
of non-degenerate simplices. A simplicial set can be large. A large simplicial set
is defined to be a functor ∆o → SET, where SET is the category of large sets. We
say that a large simplicial set X is locally small if the vertex map Xn → Xn+1

0 has
small fibers for every n ≥ 0. If X is locally small, then so is the simplicial set XA

for any small simplicial set A.

49.4. Let τ : ∆ → ∆ be the automorphism of the category ∆ which reverses
the order of each ordinal. If u : [m] → [n] is a map in ∆, then τ(u) is the map
uo : [m] → [n] obtained by putting uo(i) = n − f(m − i). The opposite Xo of a
simplicial set X is obtained by composing the (contravariant) functor X : ∆→ Set
with the functor τ . We distinguish between the simplices of X and Xo by writing
xo ∈ Xo for each x ∈ X, with the convention that xoo = x. If f : a→ b is an arrow
in X, then fo : bo → ao is an arrow in Xo. Beware that the opposite of a map of
simplicial sets u : A→ B is a map uo : Ao → Bo. A contravariant map p : A→ B
between two simplicial sets is defined to be a map q : Ao → B; we shall often write
p(a) instead of q(ao) for a ∈ A. .

49.5. If X is a simplicial set, we say that a subfunctor A ⊆ X is a simplicial subset
of X. If n > 0 and i ∈ [n] the image of the map di : ∆[n − 1] → ∆[n] is denoted
∂i∆[n] ⊂ ∆[n]. The simplicial sphere ∂∆[n] ⊂ ∆[n] is the union the faces ∂i∆[n]
for i ∈ [n]; by convention ∂∆[0] = ∅. If n > 0, a map x : ∂∆[n] → X is said to
be a simplicial sphere of dimension n − 1 in X; it is determined by the sequence
of its faces (x0, . . . , xn) = (xd0, . . . , xdn). A simplicial sphere ∂∆[2] → X is called
a triangle. Every n-simplex y : ∆[n] → X has a boundary ∂y = (∂0y, . . . , ∂ny) =
(yd0, . . . , ydn) obtained by restricting y to ∂∆[n]. A simplex y is said to fill a
simplicial sphere x if we have ∂y = x. A simplicial sphere x : ∂∆[n]→ X commutes
if it can be filled.

49.6. If n > 0 and k ∈ [n], the horn Λk[n] ⊂ ∆[n] is defined to be the union of
the faces ∂i∆[n] with i 6= k. A map x : Λk[n] → X is called a horn in X; it is
determined by a lacunary sequence of faces (x0, . . . , xk−1, ∗, xk+1, . . . , xn). A filler
for x is a simplex ∆[n] → X which extends x. Recall that a simplicial set X is
said to be a Kan complex if every horn Λk[n] → X (n > 0, k ∈ [n]) has a filler
∆[n]→ X,

Λk[n]� _

��

∀ // X

∆[n].
∃

=={{{{{{{{

49.7. Let us denote by ∆(n) the full subcategory of ∆ spanned by the objects [k]
for 0 ≤ k ≤ n. We say that a presheaf on ∆(n) is a n-truncated simplicial set and we
put S(n) = [∆(n)o,Set]. If in denotes the inclusion ∆(n) ⊂ ∆, then the restriction
functor i∗n : S→ S(n) has a left adjoint (in)! and a right adjoint (in)∗. The functor
Skn = (in)!(in)∗ : S→ S associates to a simplicial set X its n-skeleton SknX ⊆ X;
it is the simplicial subset of X generated by the simplices x ∈ Xk of dimension
k ≤ n. The functor Coskn = (in)∗(in)∗ : S→ S associates to a simplicial set X its
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n-coskeleton CosknX. A simplex ∆[k] → CosknX is the same thing as a simplex
Skn∆[k]→ X.

49.8. We say that a map of simplicial sets f : X → Y is biunivoque if the map
f0 : X0 → Y0 is bijective. We say that a map of simplicial sets f : X → Y is n-full
if the ollowing square of canonical maps is a pullback,

X

��

f // Y

��
Coskn(X)

Coskn(f) // Coskn(Y ).

The n-full maps are closed under composition and base change. Every map f :
X → Y admits a factorisation f = pq : X → Z → Y with p a 0-full map and q
biunivoque. The factorisation is unique up to unique isomorphism. It is the Gabriel
factorisation of the map. A 0-full map between quasi-categories is fully faithful.
We say that a simplicial subset S of a simplicial set X is n-full if the inclusion of
the subset S ⊆ X is n-full. The inclusion of a subcategory in a category is always
1-full.

49.9. Let Top be the category of (small) topological spaces. Consider the functor
r : ∆[n]→ Top which associates to [n] the geometric simplex

∆n = {(x1, . . . , xn) : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1}.

The singular complex of a topological space Y is the simplicial set r!Y defined by
putting

(r!Y )n = Top(∆n, Y )
for every n ≥ 0. The simplicial set r!Y is a Kan complex. The singular complex
functor r! : Top→ S has a left adjoint r! which associates to a simplicial set X its
geometric realisation r!X. A map of simplicial sets u : A→ B is said to be a weak
homotopy equivalence if the map r!(u) : r!A → r!B is a homotopy equivalence of
topological spaces.

50. Appendix on model categories

50.1. We shall say that a class W of maps in a category E has the “three for two”
property if the following condition is satisfied:

• If two of three maps u : A→ B, v : B → C and vu : A→ C belong to W,
then so does the third.

50.2. Let E be a finitely bicomplete category. We shall say that a triple (C,W,F)
of classes of maps in E is a model structure if the following conditions are satisfied:

• W has the “three for two” property;
• the pairs (C ∩W,F) and (C,F ∩W) are weak factorisation systems.

A map inW is said to be acyclic or to be a weak equivalence. A map in C is called
a cofibration and a map in F a fibration . An object X ∈ E is said to be fibrant
if the map X → > is a fibration, where > is the terminal object of E . Dually, an
object A ∈ E is said to be cofibrant if the map ⊥ → A is a cofibration, where ⊥ is
the initial object of E . A Quillen model category is a category E equipped with a
model structure (C,W,F).
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50.3. We shall say that a model structure (C,W,F) in a cocomplete category E is
accessible or cofibrantly generated if the saturated classes C and C∩W are accessible.

50.4. A model structure is said to be left proper if the cobase change of a weak
equivalence along a cofibration is a weak equivalence. Dually, a model structure is
said to be right proper if the base change of a weak equivalence along a fibration is
a weak equivalence. A model structure is proper if it is both left and right proper.

50.5. If E is a model category, then so is the slice category E/B for each object
B ∈ E . By definition, a map in E/B is a weak equivalence (resp. a cofibration
, resp. a fibration) iff the underlying map in E is a weak equivalence (resp. a
cofibration , resp. a fibration). Dually, each category B\E is a model category.

50.6. Let E be a finitely bicomplete category equipped a class of maps W having
the “three-for-two” property and two factorisation systems (CW ,F) and (C,FW ).
Suppose that the following two conditions are satisfied:

• CW ⊆ C ∩W and FW ⊆ F ∩W;
• C ∩W ⊆ CW or F ∩W ⊆ FW .

Then we have CW = C ∩W, FW = F ∩W and (C,W,F) is a model structure.

50.7. The homotopy category of a model category E is defined to be the category
of fractions Ho(E) = W−1E . We shall denote by [u] the image of a map u ∈ E by
the canonical functor E → Ho(E). A map u : A → B is a weak equivalence iff [u]
invertible in Ho(E) by [Q].

50.8. We shall denote by Ef (resp. Ec) the full sub-category of fibrant (resp. cofi-
brant) objects of a model category E . We shall put Efc = Ef ∩ Ec. A fibrant
replacement of an object X ∈ E is a weak equivalence X → RX with codomain a
fibrant object. Dually, a cofibrant replacement of X is a weak equivalence LX → X
with domain a cofibrant object. Let us put Ho(Ef ) =W−1

f Ef where Wf =W ∩Ef
and similarly for Ho(Ec) and Ho(Efc). Then the diagram of inclusions

Efc

��

// Ef

��
Ec // E

induces a diagram of equivalences of categories

Ho(Efc)

��

// Ho(Ef )

��
Ho(Ec) // Ho(E).

50.9. A path object for an object X in a model category is obtained by factoring
the diagonal map X → X × X as weak equivalence δ : X → PX followed by a
fibration (p0, p1) : PX → X ×X. A right homotopy h : f ∼r g between two maps
u, v : A → X is a map h : A → PX such that u = p0h and v = p1h. Two maps
u, v : A → X are right homotopic if there exists a right homotopy h : f ∼r g
with codomain a path object for X. The right homotopy relation on the set of
maps A → X is an equivalence if X is fibrant. There is a dual notion of cylinder
object for A obtained by factoring the codiagonal A t A → A as a cofibration
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(i0, i1) : A tA→ IA followed by a weak equivalence p : IA→ A. A left homotopy
h : u ∼l v between two maps u, v : A→ X is a map h : IA→ X such that u = hi0
and v = hi1. Two maps u, v : A → X are left homotopic if there exists a left
homotopy h : u ∼l v with domain some cylinder object for A. The left homotopy
relation on the set of maps A → X is an equivalence if A is cofibrant. The left
homotopy relation coincides with the right homotopy relation if A is cofibrant and
X is fibrant; in which case two maps u, v : A→ X are said to be homotopic if they
are left (or right) homotopic; we shall denote this relation by u ∼ v.

Proposition 50.1. [Q]. If A is cofibrant and X is fibrant, let us denote by E(A,X)∼

the quotient of the set E(A,X) by the homotopy relation ∼. Then the canonical map
u 7→ [u] induces a bijection

E(A,X)∼ ' Ho(E)(A,X).

A map X → Y in Ecf is a homotopy equivalence iff it is a weak equivalence.

50.10. A model structure M = (C,W,F) in a category E is determined by its
class C of cofibrations together with its class of fibrant objects Fob(M). If M ′ =
(C,W ′,F ′) is another model structure with the same cofibrations, then the relation
W ⊆W ′ is equivalent to the relation Fob(M ′) ⊆ Fob(M).
Proof: Let us prove the first statement. It suffices to show that the class W is
determined by C and Fob(M). The class F ∩W is determined by C, since the pair
(C,W ∩F) is a weak factorisation system. For any map u : A→ B, there exists a
commutative square

A′

u′

��

// A

u

��
B′ // B

in which the horizontal maps are acyclic fibrations and the objects A′ and B′ are
cofibrants. The map u is acyclic iff the map u′ is acyclic. Hence it suffices to
show that the class W ∩ Ec is is determined by C and Fob(M). If A and B are
two objects of E , let us denote by h(A,B) the set of maps A → B between in
the category Ho(E). A map u : A → B in E is invertible in Ho(E) iff the map
h(u, X) : h(B,X)→ h(A,X) is bijective for every object X ∈ E by Yoneda lemma.
Hence a map u : A→ B in E belongs toW iff the map h(u, X) : h(B,X)→ h(A,X)
is bijective for every object X ∈ Fob(M), since every object in Ho(E) is isomorphic
to a fibrant object. If A is cofibrant and X is fibrant, let us denote by E(A,X)∼

the quotient of the set E(A,X) by the homotopy relation. It follows from 50.1 that
a map u : A → B in Ec belongs to W iff the map E(B,X)∼ → E(A,X)∼ induced
by the map E(u, X) is bijective for every object X ∈ Fob(M). Hence the result
will be proved if we show that the homotopy relation ∼ on the set E(A,X) only
depends on the class C if A is cofibrant and X is fibrant. But two maps A → X
are homotopic iff they are left homotopic, since A is cofibrant and X is fibrant.
A cylinder for A can be constructed by factoring the codiagonal A t A → A as a
cofibration (i0, i1) : AtA→ I(A) followed by an acyclic fibration I(A)→ A. Two
maps f, g : A→ X are left homotopic iff there exists a map h : I(A)→ X such that
hi0 = f and hi1 = g. The construction of I(A) only depends on C, since it only
depends on the factorisation system (C,W ∩F). Hence the left homotopy relation
on the set E(A,X) only depends on C. The first statement of the proposition
follows. The proof of the second statement is left to the reader.
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50.11. Recall from [Ho] that a cocontinuous functor F : U → V between two model
categories is said to be a left Quillen functor if it takes a cofibration to a cofibration
and an acyclic cofibration to an acyclic cofibration. A left Quillen functor takes
a weak equivalence between cofibrant objects to a weak equivalence. Dually, a
continuous functor G : V → U between two model categories is said to be a right
Quillen functor if it takes a fibration to a fibration and an acyclic fibration to an
acyclic fibration. A right Quillen functor takes a weak equivalence between fibrant
objects to a weak equivalence.

50.12. A left Quillen functor F : U → V induces a functor Fc : Uc → Vc hence also
a functor Ho(Fc) : Ho(Uc)→ Ho(Vc). Its left derived functor is a functor

FL : Ho(U)→ Ho(V)

for which the following diagram of functors commutes up to isomorphism,

Ho(Uc)

��

Ho(Fc)// Ho(Vc)

��
Ho(U) F L

// Ho(V),

The functor FL is unique up to a canonical isomorphism. It can be computed as
follows. For each object A ∈ U , we can choose a cofibrant replacement λA : LA→
A, with λA an acyclic fibration. We can then choose for each arrow u : A→ B an
arrow L(u) : LA→ LB such that uλA = λBL(u),

LA

L(u)

��

λA // A

u

��
LB

λB // B.

Then

FL([u]) = [F (L(u))] : FLA→ FLB.

50.13. Dually, a right Quillen functor G : V → U induces a functor Gf : Vf → Uf

hence also a functor Ho(Gf ) : Ho(Vf ) → Ho(Uf ). Its right derived functor is a
functor

GR : Ho(V)→ Ho(U)

for which the following diagram of functors commutes up to a canonical isomor-
phism,

Ho(Vf )

��

Ho(Gf )// Ho(Uf )

��
Ho(V) GR

// Ho(U).

The functor GR is unique up to a canonical isomorphism. It can be computed as
follows. For each object X ∈ V let us choose a fibrant replacement ρX : X → RX,
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with ρX an acyclic cofibration. We can then choose for each arrow u : X → Y an
arrow R(u) : RX → RY such that R(u)ρX = ρY u,

X

u

��

ρX // RX

R(u)

��
Y

ρY // RY.

Then
GR([u]) = [G(R(u))] : GRX → GRY.

50.14. Let F : U ↔ V : G be an adjoint pair of functors between two model
categories. Then the following two conditions are equivalent:

• F is a left Quillen functor;
• G is a right Quillen functor.

When these conditions are satisfied, the pair (F,G) is said to be a Quillen pair. In
this case, we obtain an adjoint pair of functors

FL : Ho(U)↔ Ho(V) : GR.

If A ∈ U is cofibrant, the adjunction unit A→ GRFL(A) is obtained by composing
the maps A→ GFA→ GRFA, where FA→ RFA is a fibrant replacement of FA.
If X ∈ V is fibrant, the adjunction counit FLGR(X)→ X is obtained by composing
the maps FLGX → FGX → X, where LGX → GX is a cofibrant replacement of
GX.

50.15. We shall say that a Quillen pair F : U ↔ V : G a homotopy reflection of
U into V if the right derived functor GR is fully faithful. Dually, we shall say that
(F,G) is a homotopy coreflection of V into U if the left derived functor FL is fully
faithful. We shall say that (F,G) is called a Quillen equivalence if the adjoint pair
(FL, GR) is an equivalence of categories.

50.16. A Quillen pair F : U ↔ V : G is a homotopy reflection iff the map FLGX →
X is a weak equivalence for every fibrant object X ∈ V, where LGX → GX denotes
a cofibrant replacement of GX. A homotopy reflection F : U ↔ V : G is a Quillen
equivalence iff the functor F reflects weak equivalences between cofibrant objects.

50.17. Let F : U ↔ V : G be a homotopy reflection beween two model categories.
We shall say that an object X ∈ U is local (with respect to the the pair (F,G)) if it
belongs to the essential image of the right derived functor GR : Ho(V)→ Ho(U).

50.18. Let Mi = (Ci,Wi,Fi) (i = 1, 2) be two model structures on a category E .
If C1 ⊆ C2 and W1 ⊆ W2, then the identity functor E → E is a homotopy reflection
M1 →M2. The following conditions on an object A are equivalent:

• A is local;
• there exists aM1-equivalence A→ A′ with codomain aM2-fibrant object

A′;
• ( everyM2-fibrant replacement A→ A′ is aM1-fibrant replacement.

In particular, every M2-fibrant object is local. A map between local objects is a
M1-equivalence iff it is aM2-equivalence.
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50.19. Let Mi = (Ci,Wi,Fi) (i = 1, 2) be two model structures on a category E .
If C1 = C2 and W1 ⊆ W2, we shall say that M2 is a Bousfield localisation of M1.
We shall say that M1 is the localised model structure and M2 is the local model
structure.

50.20. Let M2 = (C2,W2,F2) be a Bousfield localisation of a model structure
M1 = (C1,W1,F1) on a category E . A local object is M1-fibrant iff it is M2-
fibrant. An object A is local iff every M1-fibrant replacement i : A → A′ is a
M2-fibrant replacement. A map between M2-fibrant objects is a M2-fibration iff
it is a M1-fibration.

50.21. Let � : E1 × E2 → E3 be a functor of two variables with values in a finitely
cocomplete category E3. If u : A → B is map in E1 and v : S → T is a map in E2,
we shall denote by u�′ v the map

A� T tA�S B � S −→ B � T

obtained from the commutative square

A� S

��

// B � S

��
A� T // B � T.

This defines a functor of two variables

�′ : EI
1 × EI

2 → EI
3 ,

where EI denotes the category of arrows of a category E .

50.22. [Ho] We shall say that a functor of two variables � : E1 × E2 → E3 between
three model categories is a left Quillen functor it is concontinuous in each variable
and the following conditions are satisfied:

• u�′ v is a cofibration if u ∈ E1 and v ∈ E2 are cofibrations;
• u�′ v is an acyclic cofibration if u ∈ E1 and v ∈ E2 are cofibrations and one

of the maps u or v is acyclic.

Dually, we shall say that the functor of two variables � is a right Quillen functor
if the opposite functor �o : Eo

1 × Eo
2 → Eo

3 is a left Quillen functor.

50.23. [Ho] A model structure (C,W,F) on monoidal closed category E = (E ,⊗)
is said to be monoidal if the tensor product ⊗ : E × E → E is a left Quillen functor
of two variables and if the unit object of the tensor product is cofibrant.

50.24. A model structure (C,W,F) on a category E is said to be cartesian if the
cartesian product × : E ×E → E is a left Quillen functor of two variables and if the
terminal object 1 is cofibrant.
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50.25. We say that a functor of two variables � : E1 × E2 → E3 is divisible on the
left if the functor A�(−) : E2 → E3 admits a right adjoint A\(−) : E3 → E2 for every
object A ∈ E1. In this case we obtain a functor of two variables (A,X) 7→ A\X,

Eo
1 × E3 → E2,

called the left division functor. Dually, we say that � is divisible on the right if the
functor (−)�B : E1 → E3 admits a right adjoint (−)/B : E3 → E1 for every object
B ∈ E2. In this case we obtain a functor of two variables (X, B) 7→ X/B,

E3 × Eo
2 → E1,

called the right division functor.

50.26. If a functor of two variables � : E1 × E2 → E3 is divisible on both sides,
then so is the left division functor Eo

1 × E3 → E2 and the right division functor
E3 × Eo

2 → E1. This is called a tensor-hom-cotensor situation by Gray [?]. There is
then a bijection between the following three kinds of maps

A�B → X, B → A\X, A→ X/B.

The contravariant functors A 7→ A\X and B 7→ B\X are mutually right adjoint
for any object X ∈ E3.

50.27. Suppose the category E2 is finitely complete and that the functor � : E1 ×
E2 → E3 is divisible on the left. If u : A→ B is map in E1 and f : X → Y is a map
in E3, we denote by 〈u\ f〉 the map

B\X → B\Y ×A\Y A\X

obtained from the commutative square

B\X //

��

A\X

��
B\Y // A\Y.

The functor f 7→ 〈u\f〉 is right adjoint to the functor v 7→ u �′ v for every map
u ∈ E1. Dually, suppose that the category E1 is finitely complete and that the
functor � is divisible on the right. If v : S → T is map in E2 and f : X → Y is a
map in E3, we denote by 〈f/v〉 the map

X/T → Y/T ×Y/S X/S

obtained from the commutative square

X/T //

��

X/S

��
Y/T // Y/S.

the functor f 7→ 〈f/v〉 is right adjoint to the functor u 7→ u �′ v for every map
v ∈ E2.
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50.28. Let � : E1 × E2 → E3 be a functor of two variables divisible on both sides,
where Ei is a finitely bicomplete category for i = 1, 2, 3. If u ∈ E1, v ∈ E2 and
f ∈ E3, then

(u�′ v) t f ⇐⇒ u t 〈f/v〉 ⇐⇒ v t 〈u\f〉.

50.29. Let � : E1 × E2 → E3 be a functor of two variables divisible on each side
between three model categories. Then the functor � is a left Quillen functor iff the
corresponding left division functor Eo

1 × E3 → E2 is a right Quillen functor iff the
the corresponding right division functor Eo

1 × E3 → E2 is a right Quillen functor.

50.30. Let E be a symmetric monoidal closed category. Then the objects X/A
and A\X are canonicaly isomorphic; we can identify them by adopting a common
notation, for example [A,X]. Similarly, the maps 〈f/u〉 and 〈u\f〉 are canonicaly
isomorphic; we shall identify them by adopting a common notation, for example
〈u, f〉. A model structure on E is monoidal iff the following two conditions are
satisfied:

• if u is a cofibration and f is a fibration, then 〈u, f〉 is a fibration which is
acyclic if in addition u or f is acyclic;
• the unit object is cofibrant.

50.31. Recall that a functor P : E → K is said to be a bifibration if it is both a
Grothendieck fibration and a Grothendieck opfibration. If P is a bifibration, then
every arrow f : A → B in E admits a factorisation f = cfuf with cf a cartesian
arrow and uf a unit arrow (ie P (uf ) = 1P (A))), together with a factorisation
f = ufcf with cf a cocartesian arrow and uf a unit. Let us denote by E(S) the
fiber of the functor P at an object S ∈ K. Then for every arrow g : S → T in K
we can choose pair of adjoint functors

g! : E(S)→ E(T ) : g∗.

The pullback functor g∗ is obtained by choosing for each object B ∈ E(T ) a cartesian
lift g∗(B)→ B of the arrow g. The pushforward functor g! is obtained by choosing
for each object A ∈ E(S) a cocartesian lift A→ g!(A) of the arrow g.

50.32. Let P : E → K be a Grothendieck bifibration where K is a model category.
We shall say that a model structureM = (C,W,F) on E is bifibered by the functor
P if the following conditions are satisfied:

• The intersectionM(S) = (C∩E(S),W∩E(S),F∩E(S)) is a model structure
on E(S) for each object S ∈ K;
• The pair of adjoint functors

g! : E(S)→ E(T ) : g∗

is a Quillen pair for each arrow g : S → T inK and it is a Quillen equivalence
if g is a weak equivalence;
• An arrow f : A → B in E is a cofibration iff the arrows uf ∈ E(B) and

P (f) ∈ K are cofibrations;
• An arrow f : A → B in E is a fibration iff the arrows uf ∈ E(A) and

P (f) ∈ K are fibrations.
It follows from these conditions that the functor P takes a fibration to a fibration,
a cofibration to a cofibration and a weak equivalence to a weak equivalence. For
another notion of bifibered model category, see [Ro].
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50.33. Let P : E → K be a bifibered model category over a model category K.
Then the model structure on E is determined by the model structure on K together
with the model structure on E(S) for each object S ∈ K.

• An arrow f : A→ B in E is an acyclic cofibration iff the arrows uf ∈ E(B)
and P (f) ∈ K are acyclic cofibrations;
• An arrow f : A → B in E is an acyclic fibration iff the arrows uf ∈ E(A)

and P (f) ∈ K are acyclic fibrations.

51. Appendix on simplicial categories

51.1. Recall that a simplicial category is a category enriched over simplicial sets and
that a simplicial functor is a functor enriched over simplicial sets. We shall denote
by SCat the category of small simplicial categories and simplicial functors. The
opposite of a simplicial category A is a simplicial category Ao if we put Ao(ao, bo) =
A(a, b)o for every pair of objects a, b ∈ A. Beware that the opposite of a simplicial
functor F : A→ B is a simplicial functor F o : Ao → Bo. A contravariant simplicial
functor F : A → B between two simplicial categories A and B is defined to be a
simplicial functor F : Ao → B; but we shall often denote the value of F at a ∈ A
by F (a) instead of F (ao). .

51.2. The category SCat is cartesian closed. If A and B are small simplicial
category, we shall denote the simplicial category of simplicial functors A → B by
BA or by [A,B]. If A is a small simplicial category, we shall denote the large
simplicial category of simplicial functors A → S by [A,S]. A simplicial presheaf
on A is defined to be a contravariant simplicial functor A → S. The simplicial
presheaves on A form a locally small simplicial category

SAo

= [Ao,S].

We shall denote by [X, Y ] the simplicial sets of maps X → Y between two simplicial
presheaves. If u : A→ B is a simplicial functor between small simplicial categories,
then the simplicial functor

u∗ = [uo,S] : [Bo,S]→ [Ao,S]

induced by u has a left adjoint u! and a right adjoint u∗.

51.3. If A is a small simplicial category, then the Yoneda functor yA : A→ [Ao,S]
associates to an object a ∈ A the simplicial presheaf A(−, a). The Yoneda lemma
asserts that for any object a ∈ A and any simplicial presheaf X on A the the
evaluation x 7→ x(1a) induces an isomorphism of simplicial sets

[A(−, a), X] ' X(a).

The Yoneda lemma implies that the Yoneda functor is fully faithful; we shall often
regard it as an inclusion A ⊂ [Ao,S] by adopting the same notation for an object
a ∈ A and the simplicial presheaf A(−, a). Moreover, we shall identify a natural
transformation x : a → X with the vertex x(1a) ∈ X(a). We shall say that a
presheaf X is (strictly) representable if there exists an object a ∈ A together with
a vertex x ∈ X(a) such that the corresponding natural transformation x : a → X
is invertible.
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51.4. An ordinary category can be viewed a simplicial category with discrete hom.
We shall say that a simplicial functor f : A → B is homotopy fully faithful if the
map A(a, b) → B(fa, fb) induced by f is a weak homotopy equivalence for every
pair of objects a, b ∈ A. The inclusion functor Cat ⊂ SCat has a left adjoint

ho : SCat→ Cat

which associates to a simplicial category A its homotopy category hoA. By con-
struction, we have (hoA)(a, b) = π0A(a, b) for every pair of objects a, b ∈ A. We
shall say that a simplicial functor f : A → B is homotopy essentially surjective
if the functor ho(f) : hoA → hoB is essentially surjective. We shall say that a
simplicial functor is a Dwyer-Kan equivalence if it is homotopy fully faithful and
homotopy essentially surjective. We shall say that a simplicial functor f : A→ B is
a Dwyer-Kan fibration if the map A(a, b)→ B(fa, fb) is a Kan fibration for every
pair of objects a, b ∈ A and the functor ho(f) : hoA→ hoB is an isofibration. The
category SCat admits a Quillen model structure in which the weak equivalences
are the Dwyer-Kan equivalences and the fibrations are the Dwyer-Kan fibrations
[B1]. A functor f : A→ B is an acyclic fibration iff the map Ob(f) : ObA→ ObA
is surjective and the map A(a, b) → B(fa, fb) is a trivial fibration for every pair
of objects a, b ∈ A. The model structure is left proper and the fibrant objects are
the categories enriched over Kan complexes. We say that it is the Bergner model
structure or the model structure for simplicial categories. We shall denote it by
(SCat, DK), where DK denotes the class of Dwyer-Kan equivalences.

51.5. We shall say the a simplicial functor f : A → B is a Dwyer-Kan-Morita
equivalence if it is homotopy fully faithful and the functor ho(f) : hoA→ hoB is a
Morita equivalence in Cat. Then the Bergner model structure (SCat, DK) admits
a Bousfield localisation with respect to the class of DKM-equivalences.

51.6. Recall that the category [A,S] of simplicial presheaves on simplicial category
A admits a model structure, called the projective model structure, in which a weak
equivalence is a term-wise weak homotopy equivalence and a fibration is a term-
wise Kan fibrations [Hi]. We shall denote this model structure by [A,S]proj . If
u : A→ B is a simplicial functor, then the pair

u! : [A,S]→ [B,S] : u∗

is a Quillen adjunction with respect to the projective model structures on these
categories. The pair is a Quillen equivalence iff u is a Dwyer-Kan-Morita equivalence
[Hi].

51.7. Recall that the category [A,S] of simplicial presheaves on simplicial category
A admits a cartesian close model structure, called the injective model structure, in
which a weak equivalence is a term-wise weak homotopy equivalence and a cofibra-
tion is a monomorphism [Hi]. We shall denote this model structure by [A,S]inj .
The identity functor

[A,S]proj → [A,S]inj .

is the left adjoint in a Quillen equivalence between the projective and the injective
model structures. If u : A→ B is a simplicial functor, then the pair

u∗ : [B,S]→ [A,S] : u∗
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is a Quillen adjunction with respect to the injective model structures on these
categories. The pair is a Quillen equivalence iff u is a Dwyer-Kan-Morita equivalence
[Hi].

51.8. We shall say that a simplicial presheaf X on a small simplicial category A is
is (homotopy) representable if there exists an object a ∈ A together with a vertex
x ∈ X(a) such that the corresponding natural transformation x : a → X is a
term-wise homotopy equivalence.

51.9. We shall say that object t in a simplicial category A is (homotopy) terminal
if the simplicial set X(x, t) is contractible for every object x ∈ X. The (homotopy)
cartesian product of two objects a, b ∈ X is an object a× b equipped with a pair of
morphisms p1 : a× b→ a and p2 : a× b→ c such that the induced map

X(x, a× b)→ X(x, a)×X(x, b)

is a weak homotopy equivalence for every object x ∈ X.

51.10. We shall say that a simplicial functor f : A → B has a (homotopy) right
adjoint g : B → A if for every object b ∈ B, the simplicial presheaf x 7→ B(f(x), b)
is (homotopy) representable by an object g(b) ∈ B with a morphism f(g(b)) → b.
The (homotopy) right adjoint is not a (strict) simplicial functor in general. But
it is when A is cofibrant and B is fibrant in the Bergner model structure. Dually,
we shall say that a simplicial functor g : B → A has a (homotopy) left adjoint
f : A → B if for every object a ∈ A, the simplicial functor x 7→ A(a, g(x)) is
(homotopy) (co)representable by an object f(a) ∈ B with a morphism a→ g(f(a)).
The (homotopy) left adjoint is not a (strict) simplicial functor in general. But it is
when A is cofibrant and B is fibrant in the Bergner model structure.

51.11. ?? If A and B are small simplicial categories, we shall say that a simplicial
functor F : Ao × B → S is a S-distributor, or an S-distributor F : A ⇒ B.
The S-distributors A ⇒ B are the objects of a simplicial category SDist(A,B) =
[Ao ×B,S].

51.12. A S-cylinder, is defined to be an object p : C → I of the category SCat/I,
where the category I = [n] is regarded as a simplicial category. The base of p :
C → I is the cosieve C(1) = p−1(1) and its cobase is the sieve C(0) = p−1(0). If i
denotes the inclusion {0, 1} ⊂ I, then the pullback functor

i∗ : SCat/I → SCat× SCat

has left adjoint i! and a right adjoint i∗. The functor i∗ is a Grothendieck bifibration
and its fiber at (A,B) is the category SCyl(A,B) of simplicial S-cylinders with
cobase A and base B. To every S-cylinder C ∈ SCyl(A,B) we can associate a
S-distributor D(C) ∈ SDist(A,B) by putting D(C)(a, b) = C(a, b) for every pair
of objects a ∈ A and b ∈ B. The resulting functor

D : SCyl(A,B)→ SDist(A,B)

is an equivalence of categories. The inverse equivalence associates to a S-distributor
F : A⇒ B its collage cylinder col(F ) = A ?F B.
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51.13. The Quillen equivalence

C! : S↔ SCat : C !

of 3.5 induces a Quillen equivalence

C! : S/I ↔ SCat/I : C !,

since we have C !(I) = I and C!(I) = I. The pair (C!, C
!) also induces a Quillen

equivalence
C! : Cyl(A,B)↔ SCyl(C!A,C!B) : C !

for any pair pair of simplicial sets A and B. By composing the equivalence with
the Quillen equivalence

ρ! : S/Ao ×B ↔ Cyl(A,B) : ρ∗

of 14.18 and the equivalence of categories

D : SCyl(C!A,C!B)→ SDist(C!A,C!B) : col

of 51.12, we obtain a a Quillen equivalence

S/Ao ×B ↔ SDist(C!A,C!B)

between the model category (S/Ao × B,Wcov) and the projective model category
SDist(C!A,C!B). In particular, this yields a Quillen equivalence

S/B ↔ [C!B,S]

between the model category (S/B,Wcov) and the projective model category [C!B,S].

51.14. Dually, the pair (C!, C
!) induces a Quillen equivalence

C! : Cyl(C !X, C !Y )↔ SCyl(X, Y ) : C !

for any pair of fibrant simplicial categories X and Y . By composing the equivalence
with the Quillen equivalence

ρ! : S/C !Xo × C !Y ↔ Cyl(C !X, C !Y ) : ρ∗

of 14.18 and the equivalence of categories

D : SCyl(X, Y )→ SDist(X, Y ) : col

of 51.12, we obtain a a Quillen equivalence

S/C !Xo × C !Y ↔ SDist(X, Y )

between the model category (S/C !Xo ×C !Y,Wcov) and the projective model cat-
egory SDist(X, Y ). In particular, this yields a Quillen equivalence

S/C !Y ↔ [Y,S]

between the model category (S/C !Y,Wcov) and the projective model category
[Y,S].

51.15. If Y is a small simplicial category, let us denote by [Y,S]f the category of
fibrant objects of the injective model category [Y,S]inj . If Y is enriched over Kan
complexes, then the functor

[Y,S]→ S/C !Y ]
defined in induces a Dwyer-Kan equivalence of simplicial categories

[Y,S]f → L(C !Y ).
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51.16. We shall say that a small simplicial category with finite products T is a
strict simplicial algebraic theory. A strict model of T is a simplicial functor T → S
which preserves finite products strictly. We shall denote by SAlg(T ) the full sub-
category of [T,S] spanned by the strict models of T The category SAlg(T ) admits a
simplicial model structure, called the projective model structure, in which the weak
equivalences and the fibrations are the term-wise weak homotopy equivalences and
the term-wise Kan fibrations [Q][B4]. We shall say that a simplicial functor T → S
is a Segal model if it preserves finite products up to weak homotopy equivalence.
The projective model structure [T,S]proj admits a Bousfield localisation [T,S]bad in
which the (fibrant) local objects are the fibrant Segal models. The inclusion func-
tor SAlg(T )proj → [T,S]bad is the right adjoint in a Quiilen equivalence of model
categories by a result of Badzioch [Bad1] and Bergner [B4].

51.17. We shall say that a small simplicial category with finite homotopy products
T is a simplicial algebraic theory. Its coherent nerve is an algebraic theory C !T when
T is T is DK-fibrant. A homotopy model of T is a simplicial functor F : T → S
which preserves finite homotopy products. The projective model structure [T,S]proj

admits a Bousfield localisation [T,S]bad in which the (fibrant) local objects are the
fibrant homotopy models. Let us denote by Algfc(T ) the full subcategory of fibrant-
cofibrant objects of the localised model structure. Then the coherent nerve of the
functor T ×Algfc(T )→ Kan. induced by the evaluation functor T × [T,S]→ S is
a map of simplicial sets

C !T × C !Algfc(T )→ U.

The corresponding map C !Algfc(T )→ UC!T induces an equivalence of quategories
,

C !Algfc(T )→ Alg(C !T )
when T is DK-fibrant. Dually, if T ∈ QCat is an algebraic theory, then C!T is a
simplicial algebraic theory and we have an equivalence of quategories

C !Algfc(C!T )→ Alg(T ).

52. Appendix on Cisinski theory

We briefly describe Cisinki’s theory of model structures on a Grothendieck topos.
It can be used to generate the model structure for n-quasi-category for every n ≥ 1.

52.1. We shall say that a combinatorial model structure on a Grothendieck topos
E is a Cisinski structure if its cofibrations are the monomorphisms.

52.2. The classical model structure (S,Who) is a Cisinski model structure. Also
the model structure for quasi-categories. The model structure for Segal categories
is a Cisinski model structure on PCat. The model structure for Segal spaces is a
Cisinski structure on S(2), and also the model structure for Rezk categories.

52.3. Let E be a finitely bicomplete category and (C, T ) be a weak factorisation
system in E (C=the cofibrations and T =the trivial fibrations) We shall say that a
class of maps W ⊆ E is a localizer (with respect to C) if the following conditions
are satisfied:

• W has the“three for two” property;
• T ⊆ W;
• C ∩W is the left class of a weak factoriszation system.
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A classW is a localizer iff the triple M(W) = (C,W, (C∩W)t) is a model structure.
The map W 7→ M(W) induces a bijection between the localizers with respect to
C and the model structures on E having C for class of cofibrations. If W and
W ′ are two localizers with respect to C, then the model structure M(W ′) is a
Bousfield localisation of the model structure M(W) iff we have W ⊆ W ′. This
defines a partial order relation on the class of model structures having C for class
of cofibrations.

52.4. [Ci1] We say that a class W of maps in a Grothendieck topos E is a localizer
if it is a localizer with respect to the class C of monomorphisms. We shall say that a
localizerW is accessible if the saturated class C ∩W is accessible (ie generated by a
set of maps). A localizerW ⊆ E is accessible iff the triple M(W) = (C,W, C∩W)t)
is a Cisinski model structure. The map W 7→ M(W) induces a bijection between
the accessible localizers and the Cisinski model structures.

52.5. (Cisinski) In the category S, the localizer Who is generated by the maps
∆[n]→ 1 for n ≥ 0. The localizer Wcat is generated by the inclusions I[n] ⊆ ∆[n]
for n ≥ 0.

52.6. Let us sketch a proof that the localizer Wcat is generated by the spine inclu-
sions I[n] ⊆ ∆[n] for n ≥ 0. We shall first prove that if a localiser W ⊆ S contains
the inclusions I[n] ⊆ ∆[n] for every n ≥ 0, then it contains the mid anodyne maps.
If C ⊂ S is the class of monomorphisms, then the intersection W ∩ C is saturated.
Moreover, the class W ∩ C has the right cancellation property, since W satisfies ”3
for 2”. It follows that every mid anodyne map belongs to W ∩ C by [JT2]. Thus,
every fibrant object of the model structure defined by W is a quategory. The result
then follows from 50.10.

52.7. [Ci1] If E is a Grothendieck topos, then every set of maps S ⊆ E is contained
in a smallest accessible localizer W(S) called the localizer generated by S In par-
ticular, there is a smallest localizer W0 = W(∅). We say that the model structure
M(W0) is minimal. The minimal Cisinski model structure M(W0) is cartesian
closed and proper. Every Cisinski model structure is a Bousfield localisation of
M(W0). .

52.8. [Ci2] Let L be the Lawvere object in a topos E and let t0, t1 : 1 → L be
the canonical elements (the first is classifying the subobject ∅ ⊆ 1 and the second
the subobject 1 ⊆ 1). Then an object X ∈ Ĉ is fibrant with respect to minimal
Cisinski model structure (C,W0,F0) iff the projection Xti : XL → X is a trivial
fibration for i = 0, 1. A monomorphism A→ B is acyclic iff the map XB → XA is
a trivial fibration for every fibrant object X.
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Index of terminology

(−1)-object, 102
(−2)-object, 102
0-dominant functor, 44
E∞-space, 113, 142
En-space, 142
Σ-local, 117
α-cartesian

quategory, 105
α-cartesian theory, 121
α-complete, α-cocomplete, 79
α-limit, α-colimit, 79
α-product, α-coproduct, 79
α-sifted simplicial set, 131
∞-topos, 180, 181
g-spectrum, 165
i-face, 215
k-cells, 185
m-truncated n-category, 186
n-category, 127
n-category object, 184
n-connected, 101
n-cover, 39
n-disk, 189
n-factorisation, 101
n-fold Rezk space, 198
n-fold Segal space, 198
n-fold category, 127
n-fold group object, 144
n-fold loop space, 144
n-fold monoid, 142
n-fold monoidal quategory, 143
n-fold quasi-category, 198
n-object, 39, 102
n-quasi-category, 199
n-simplex, 215
n-topos, 180
n-tree, 190
n-truncated, 104
n-truncated category object, 186
n-truncated quategory, 103
0-connected, 22
0-cover, 101
0-covering, 22
0-final, 22
0-final functor, 212
0-initial functor, 212

0-object, 101
1-disk, 188
1-topos, 180
2-category object, 184

cancellation property
left, right, 206

equivalence
simplicial homotopy, 12

absolutely finite category, 149
accessible map

finitary accessible, α-accessible, 108
accessible quategory

finitary accessible, α-accessible, 108
accessible saturated class, 215
additive

category, functor, 205
map, 154
quategory, 154
theory, 154

adjoint maps, left, right, 68
adjunction

unit, counit, 201
adjunction between maps of simpli-

cial sets, 68
adjunction identities, 68, 201
adjunction identity, 201
adjunction unit, 68
algebra

homotopy, 135
representable, 136

algebraic theory
additive, semi-additive, 154
unisorted, multisorted, 137

algebraic theory of maps, 139
algebraic theory of operations, 147
amalgameted coproduct, 75
anodyne, 12, 23

mid, 14
arrow, 215
atomic objectt, 96
augmented simplicial set, 27

barycentric expansion, 106
barycentric subdivision, 106
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base change, 76, 82, 211
base change map, 76, 150
base of a cylinder, 47, 49
Beck-Chevalley law, 85, 88
Bergner model structure, 15
biaugmentation, 50
bifibrant span, 53
bimodule, 156, 173
bisimplicial set, 17
Boardman condition, 8
bounded diagram, 106
Bousfield localisation, 120
braided monoid, 142
braided monoidal quategory, 143
bundle of intervals, 189

cardinal, 79
regular, 79

cardinality of a simplicial set, 216
cartesian

natural transformation, 170
quategory, 105
square, 211

cartesian arrow, 81
cartesian morphism, 80
cartesian theory, 121

of A-diagrams, 124
of n-categories, 127
of n-objects, 123
of n-truncated categories, 127
of n-truncated reduced categories,

127
of categories, 126
of double categories, 127
of groupoids, 126
of reduced n-categories, 127
of reduced categories, 126
of spectra, 126

categorical n-truncation, 104
categorical equivalence, 11
category

n-fold, 127
n-truncated, 127
1-connected, 214
Karoubi complete, 66
locally small, 200
null pointed, 204
nullpointed, 204
opposite, 200

small, large, extra-large, 200
tamisante, 131

category object, 112
category of elements

of a covariant functor, 201
of a presheaf, 201

cell, 0-cell, 1-cell, 2-cell, 201
chain complex, 161
class of maps

closed under base changes, 211
closed under cobase changes, 211
closed under retracts, 210

class of morphisms
multiplicatively closed, 145

class, left, right, 206, 214
classifying homotopos, 183
classifying map, 62, 84
classifying space, 167
classifying space of a groupoid, 168
closure of a tree, 190
coarse groupoid, 126
cobase change, 84, 120, 211
cobase of a cylinder, 49
cobase of cylinder, 47
cocartesian arrow, 83
cocartesian morphism, 80
coend, 92, 203
coherent nerve, 16
coherently abelian group, 144
coherently commutative group, 144
coherently commutative monoid, 142
coherently commutative rig, 145
coherently commutative ring, 145
coinitial map, 120
coinitial morphism, 129, 130, 146
coinvert, 116
colimit

α-sifted, 132
directed, α-directed, 107
sifted, 132

colimit cone, 74
colimit sketch, 114
colimit, homotopy colimit, 74
collage cylinder, 47
column augmentation, 50
combinatorial interval, 215
combinatorial simplex, 215
commutative square, 75
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comodel
of a colimit sketch, 114

compact, α-compact, 109
complementary idempotent, 157
complementary sieve, 47
complementary sieve and cosieve, 48
complete flow, 34
complete Segal space, 17
composite

of bimodules, 158
composite of distributors, 61
composition of spans, 58
composition, vertical, horizontal, 201
cone

projective, inductive, 26–28
connected

n-cover, 101
conservative functor, 39, 213
conservative map, 38
contravariant n-equivalence, 104, 105
coreflection, 202
coreflective, 202
correspondence, 50
cosieve, 47, 48
coterminal map, 120
cotrace map, 93
counit of an adjunction, 68, 201
couniversal arrow, 69
cover

n-cover, 101
cylinder

0-cylinder, 47
simplicial, 49
opposite, 49

degenerate simplex, 215
dense

map, simplicial subset, set of ob-
jects, 95

derivateur, 93
derived composition functor, 58
derived composition of spans, 58
descent diagram, 171
descent morphism, 170
diagram

α-sifted, 132
α-small, 79
bounded above, 106
bounded below, 106

directed, α-directed, 107
sifted, 132

diagram in a quategory, 73
direct image of a geometric morphism,

181
direct image part, 180
direct sum, 154, 205
directed

simplicial set, quategory, 105
discrete cone, 138
discrete fibration, 21, 212
discrete left fibration, 21
discrete model, 135
discrete object in a quategory, 101
discrete opfibration, 21, 212
discrete right fibration, 21
discrete theory, 135
distributor, 51

0-distributor, 47
division

left, right, 115
Dold-Kan correspondance, 162
dominant map, 45
double category, 127
dual Yoneda functor, 201
Dwyer-Kan equivalence, 15
Dwyer-Kan fibration, 15

edge map, 142
effective groupoid, 167
Eilenberg-MacLane n-gerb, 101
elementary morphism, 129, 146
end, 93
envelopping

cartesian theory, 129
algebraic theory, 146

envelopping theory
of a limit sketch, 123
of a product sketch, 138

equivalence
of distributors, 51
contravariant, 40, 43
covariant, 41, 43
Dwyer-Kan, 15
fibrewise homotopy , 40
of k-monoidal n-categories, 187
of n-categories, 185
of quategories, 11
weak categorical, 13
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weak homotopy, 12
equivalence groupoid, 126
essentially algebraic structure, 110
essentially constant, 127, 184
essentially surjective functor, 170
euclidian n-ball, 189
exact map, 168
external product

of prestacks, 119
external tensor product

of algebras, 140
of models, 125
of models of limit sketches, 118

factorisation
n-factorisation, 101

factorisation of an arrow, 29
factorisation system

homotopy, 36, 119
strict, 206
uniform homotopy, 36

factorisation system in a quategory,
98

factorisation system stable under base
changes, 100

factorisation system stable under fi-
nite products, 100

fair
fair map

α-fair map, 132
fair map, 132
fat join, 31
fiber product, 75
fibered model category

for left fibrations, 43
for right fibrations, 43

fibration
1-fibration, 214
contravariant, 40
covariant, 41
discrete, 212
discrete left, 22
discrete right, 21
Dwyer-Kan, 15
finitely generated, 42
Grothendieck bifibration, 80, 83
Grothendieck fibration, 80, 81
Grothendieck opfibration, 80, 83
iso, 13

Kan, 23
left, right, 23
mid, 14
pseudo, 13
trivial, 214

filtered
simplicial set, quategory, 105

finite diagram, 73
finite quategory, 131
finite simplicial set, 216
finitely presentable, 15
fixed object, prefixed object, 165
flow

complete, 34
initial, terminal, 33
null, 35

forgetful map, 137
fully faithful functor, 170
functor, 126

0-connected, 22
0-final, 21
0-initial, 22
1-final, 214
between quategories, 8
bicartesian, 80
biunivoque , 200
cartesian, 80
cocartesian, 80
contravariant, 200
opposite, 200
pointed, 204

fundamental category, 8

Gabriel factorisation
of a functor, 200

generating set of objects, 96
geometric model, 183
geometric morphism, 180, 181
geometric realisation, 12
geometric sketch, 183
gluing datum, 170
Grothendieck bifibration, 80, 83
Grothendieck construction, 84
Grothendieck fibration, 81
Grothendieck opfibration, 83
Grothendieck topology, 182
group object, 144
groupoid object, 113
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Hirschowitz-Simpson model structure,
19

hom map, 63
homomorphism of topoi, 180, 181
homotopos, 181
homotopy n-type, 102
homotopy bicategory of spans, 58, 58
homotopy category

of a quategory, 10
homotopy coherent diagram, 16
homotopy fibrewise n-equivalence, 103
homotpy diagram, 25

inductive cone, 49
inductive mapping cone, 50
inductive object, 107
infinite loop space, 113, 144
initial flow, 33
initial object, 32
injective object, 214
inner horn, 8
interior of a disk, 190
interpretation

of a cartesian theory, 121
of an α-cartesian theory, 121
of an algebraic theory, 135

interval, degenerate, strict, 188
invariant

under isomorphisms, 206
under weak equivalences, 24

invariant under weak equivalences, 35
inverse image of a geometric morphism,

181
inverse image part, 180
invertible arrow, 10
isomorphism, 10
iterated quasi-localisation, 71

join of categories, 26
join of simplicial sets, 28

Kan
complex, condition, 8

Kan complex
minimal, 20

Kan extension, 202
Kan fibration, 12, 23
Karoubi envelope

of a category, 66

of a quategory, 67

large simplicial set, 216
left anodyne, 24
left cancellation property, 35
left exact Bousfield localisation, 178
left fibration, 150
left homotopy, 10
left Kan extension, 86
left Kan extension of a map, 86
lifted base change map, 150
limit cone, 73
limit sketch

finitary, α-bounded, 110
limit, homotopy limit, 73
local object, 98
localisation, 37

strict, iterated strict, 213
Dwyer-Kan , 39
iterated, 37
iterated Dwyer-Kan, 39

locally small quategory, 9
locally small simplicial set, 216
long fiber sequence, 151
loop space, n-fold loop space, 79

map
α-continuous, α-cocontinuous, 79
α-fair, 132
n-connected, 39
n-cover, 39
n-final, 39
0-connected, 22
0-final, 21, 22
0-initial, 22
accessible, 108
additive, 154
bicartesian, 82
cartesian, 82
cocartesian, 82
cocontinuous, bicontinuous, 74
coinitial, 120
conservative, 38
continuous, 74
coterminal, 120
essentially surjective, 11, 38
fair, 132
final, 24
finitary, α-finitary, 107
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fully faithful, 11, 38
homotopy monic, 37
homotopy surjective, 37
initial, 25
left exact, 74
left exact, α-continuous, 105
of quategories, 8
pushforward, 62

meta-stable quasi-categories, 183
model

finitely presentable, α-presentable,
123

free, finitely free, α-free, 138
generic, tautological, 121, 135
minimal, 20
of a cartesian theory, 121
of a limit sketch, 110
of an α-cartesian theory, 121
of an algebraic theory

of an α-algebraic theory, 135
representable, 122, 123, 138

model of a category, 20
model of a Kan complex, 20
model structure

classical, 12
contravariant, 40
covariant, 41
for quategories, 13
for Rezk categories, 18
for Segal categories, 19
for Segal spaces, 17
for simplicial categories, 15
natural, 13
Reedy, 17, 19

module
left, right, 156, 173
representable, 157

monadic map, 147
monoid object, 142
monoidal quategory, 143
monomorphism in a quategory, 100
Morita equivalence, 44, 66, 170
Morita fibration, 66, 67
Morita surjection, 66
morphism

of Grothendieck fibrations, 83
cartesian, 80, 81
cocartesian, 80, 83

coinitial , 130, 146
in a quategory, 8
nullt, 204
of α-cartesian theories, 121
of additive theories, 154
of algebraic theories, of α-algebraic

theories, 135
of cartesian theories, 121
of semi-additive theories, 154

morphism of disks, 189
morphism of intervals, 188
morphism of trees, 190
multiplicatively generated, 101
multisorted algebraic theory, 137

natural transformation, 11
nerve, 8
Newton’s formula, 162
null flow, 35
null morphismt, 204
nullpointed category, 204

object
n-object, 101
inductive, α-inductive, 107
initial, 32
of a quategory, 8
terminal, 32

opfibration
universal, 84

opposite of a map, 216
opposite of a simplicial set, 216
ordinal sum, 26
orthogonal

left, right, 97, 207

para-variety, 178
path space

of a cylinder, 56
perfect quategory, 167
perfect, α-perfect, 133
pointed functor, 204
Postnikov tower, 101
pre-g-spectrum, 165
pre-spectrum, 111, 166
precategory, 18
preorder, order, 114
presentation

of a quategory, 15
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presheaf, 200
representable, 201

prestack, 62
α-presentable, 97
finitely presentable, 96
of finite type, 96
representable, 62

prestack quategory, 119
probe map, 94
product cone, 138
product sketch, 138
projection, coprojection, 75
projective cone, 49
projective mapping cone, 50
projective object, 168
pullback, 82
pushforward, 84

quasi-n-category, 199
quasi-category, 8
quasi-localisation, 70

cartesian, iterated, 129
quasi-monoid, 8
quategory, 8

α-cocomplete, 79
α-complete, 79
α-presentable, 111
n-fold monoidal, 143
with αsifted colimits, 132
with sifted colimits, 132
accessible, 108
additive, semi-additive, 154
bicomplete, 74
braided monoidal, 143
cartesian closed, 76
cartesian, α-cartesian, 105
cartesian, cocartesian, 74
complete, cocomplete, 74
directed, α-directed, 105
finitary presentable, 111
finitely bicomplete, 74
finitely complete, cocomplete, 74
Karoubi complete, 67
locally cartesian closed, 76
locally presentable, 111
locally small , 9
minimal, skeletal, 20
of Kan complexes, 16
of small quategories , 16

reachable, 133
strongly connected, 148
symmetric monoidal, 143
with α-directed colimits, 107
with coproducts, 75
with directed colimits, 107
with finite coproducts, 75
with pullbacks, 75

reachable quategory
finitary reachable, α-reachable, 133

realisation
of a span, 56

reduced n-category, 127, 185
reduced n-fold category, 127
reduced category, 126
reduction of a n-category, 185
reflection, 202
reflective, 202
reflexive graph, 14–16
regular quategory, 167
relation

binary, n-ary, 114
equivalence, 114
reflexive, symmetric, transitive,

114
replete, 96
restriction, 185
retract of a map, 210
Rezk n-space, 198
Rezk category, 17
Rezk condition, 17, 126
right n-fibration, 39
right anodyne, 24
right cancellation property, 35
right fibration, 23, 150
right homotopy, 10
right Kan extension, 86
right Kan extension of a map, 86
ring, rig, 154
row augmentation, 50

saturated class, 215
saturated class generated, 215
scalar product

of maps, 159
of modules, 160
of prestacks, 119

scalar product of distributors, 61
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scalar product of spans, 59
Segal n-space, 198
Segal category, 18
Segal condition, 17, 112
semi-additive

category, 205
quategory, 154
theory, 154

semi-category, 68
semi-functor, 68
separating

map, set of objects, 95
set

small, large, extra-large, 200
sieve, 48
sieve. cosieve, 47
sifted simplicial set, 131
simplicial set, 215

n-connected, 39
directed, α-directed, 105
finite, 15

simplicial set of elements, 62
of a prestack, 62

simplicial space, 17
site, 182
skeletal category, 20
sketch

limit, 110
slice

fat upper, fat lower, 31
lower, upper, 27, 28

small diagram, 73
smash product, 79
smooth map, 85
source, target, 215
span, 53
spectrum, 111, 166
spindle, 49
spine, 9
spread map, 171
square

cartesian, pullback, 75
cocartesian, pushout, 75

stable colimit, 170
stable colimit cone, 170
stable map, 172
stable model, 172, 175
stable object, 111, 165

stable quategory, 172
stack, 182
strict initial object, 33
strict terminal object, 33
structured map, 147
sub-homotopos, 182
surjection in a quategory, 100
surjection-mono factorisations, 100
surjective arrow in a quategoryegory,

100
suspension, 50
suspension, n-fold suspension, 79
symmetric monoidal quategory, 143

tensor product
of algebraic theories, 138
of cartesian theories, 124
of limit sketches, 118
of locally presentable quategories,

115
tensor product (external)

of modules, 159
tensor product of distributors, 51
term-wise cartesian, 43
terminal flow, 33
terminal object, 32
terminal vertex, 31
theory

α-cartesian, 121
algebraic, α-algebraic, 135
cartesian, 121
discrete, 135

trace
T -trace, 160
Z-trace, 159
of a bimodule, 160
of a map, 159

trace map, 92, 119
trace of a distributor, 61
trace of a span, 59
transpose

of a bimodule, 160
of a map, 159

transpose distributor, 52
truncated category object, 186
truncated quategory, 103
twisted diagonal, 58
two-sided long fiber sequence, 177
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uniform, 36
unisorted

additive theory, 154
algebraic theory, 137
semi-additive theory, 154

unit arrow, 215
unit of an adjunction, 68, 201
universal arrow, 69
universal geometric model, 183
universal model

of a limit sketch, 123
of a product sketch, 138

variety of (homotopy) algebras
α-variety

finitary variety, 135
vertex, 215

initial, 31
terminal, 31

vertical algebratextbf, 149
vertical mode, 131
vertical model, 120

weak adjoint, left, right, 69
weak categorical n-equivalence, 104
weak categorical equivalence, 19
weak equivalence, 170
weak factorisation system, 214
weak homotopy n-equivalence, 102
weak reflection, 70
weakly α-inductive object, 132
weakly inductive object, 132
weakly reflective, 70

Yoneda functor, 201
Yoneda lemma, 201
Yoneda map, 63, 157
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