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2 ANDRÉ JOYAL

35. Stabilisation 137
36. Descent theory 140
37. Exact quasi-categories 144
38. Meta-stable quasi-categories 150
39. Fiber sequences 151
40. Additive quasi-categories 153
41. Stable quasi-categories 163
42. Homotopoi (∞-topoi) 167
43. Higher categories 170
44. Higher monoidal categories 172
45. Disks and duality 173
46. Higher quasi-categories 182
47. Appendix on category theory 185
48. Appendix on factorisation systems 189
49. Appendix on weak factorisation systems 197
50. Appendix on simplicial sets 199
51. Appendix on model categories 201
52. Appendix on Cisinski theory 209
References 210
Index of terminology 214
Index of notation 215

Introduction

The notion of logos was introduced by Boardman and Vogt in their work on
homotopy invariant algebraic structures [BV]. The following notes are a collection
of assertions on logoi, many of which have not yet been formally proved. The
unproven statements can be regarded as open problems or conjectures. Our goal
is to show that category theory can be extended to logoi, and that the extension
is natural. The extended theory has applications to homotopy theory, homotopical
algebra, higher category theory and higher topos theory. Part of the material is
taken from a book under preparation [J2], other parts from the talks I gave on the
subject during the last decade, and the rest is taken from the literature. A first
draft of the notes was written in 2004 in view of its publication in the Proceedings of
the Conference on higher categories held at the IMA in Minneapolis. An expanded
version was used in a course given at the Fields Institute in January 2007. The
latest version was used in a course given at the CRM in Barcelona in February
2008.

A Kan complex and the nerve of a category are basic examples of logoi. A logos
is sometime called a weak Kan complex in the literature [KP]. We have introduced
the term quasi-categories to stress the analogy with categories. We now prefer using
the term logos because it is shorter.

Logoi abound. The coherent nerve of a category enriched over Kan complexes
is a logos. The left (and right) barycentric localisations of a model category is a
logos. A logos can be large. For example, the coherent nerve of the category of
Kan complexes is a large logos U. The fact that category theory can be extended
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to logoi is not obvious a priori, but can discovered by working on the subject. It is
essentially an experimental fact.

Logoi are examples of (∞, 1)-categories in the sense of Baez and Dolan. Other
examples are simplicial categories, Segal categories and complete Segal spaces
(here called Rezk categories). Simplicial categories were introduced by Dwyer and
Kan in their work on simplicial localisation. Segal categories were introduced by
Schwnzel and Vogt under the name of ∆-categories [ScVo] and were rediscovered
by Hirschowitz and Simpson in their work on higher stacks. Complete Segal spaces
were introduced by Rezk in his work on homotopy theories. To each of these ex-
amples is associated a model category and the four model categories are Quillen
equivalent. The equivalence between simplicial categories, Segal categories and
complete Segal spaces was established by Bergner [B2]. The equivalence between
logoi, Segal categories and complete Segal spaces was established by Tierney and
the author [JT2]. The equivalence between simplicial categories and logoi was es-
tablished by Lurie [Lu1] and independantly by the author [J4]. Many aspects of
category theory were extended to Segal categories by Hirschowitz, Simpson, Toen
and Vezzosi. For examples, a notion of Segal topos was introduced by Simpson
and a notion of homotopy topos by Toen and Vezzosi along ideas of Rezk. The
development of derived algebraic geometry by Toen and Vezzosi [TV1] and inde-
pendantly by Lurie [Lu1] is one of the main incentive for developing the theory of
logoi. A notion of stable Segal category was introduced by Hirschowitz, Simpson
and Toen. Lurie has recently formulated his work on ∞-topoi (here called homo-
topoi) in the language of logoi [Lu1]. In doing so, he has extended a considerable
amount of category theory to logoi. Our notes may serve as an introduction to his
work [Lu2][Lu3] [Lu4] [Lu5]. Many ideas introduced in the notes are due to Charles
Rezk. The notion of reduced category is inspired by his notion of complete Segal
space, and the notion of homotopos is a reformulation of his notion of homotopy
topos. The observation that every diagram in a homotopos is a descent diagram is
due to him.

Remark: the list (∞, 1)-categories given above is not exhaustive and our account
of the history of the subject is incomplete. The notion of A∞-space introduced by
Stasheff is a seminal idea in the whole subject. A theory of A∞-categories was
developped by Batanin [Bat1]. Many aspects of category theory were extended to
simpicial categories by Bousfield, Dwyer and Kan, and also by Cordier and Porter
[CP2]. The theory of homotopical categories by Dwyer, Hirschhorn, Kan and Smith
is closely related to that of logoi [DHKS].

The theory of logoi depends on homotopical algebra for its formulation. A basic
result states that the category of simplicial sets S admits a Quillen model structure
in which the fibrant objects are the logoi (and the cofibration are the monomor-
phisms). This defines the model structure for logoi. The classical model structure
on S is a Bousfield localisation of this model structure. Many aspects of category
theory can be formulated in the language of homotopical algebra. For example,
the category of small categories Cat admits a natural model structure in which the
weak equivalences are the equivalence of categories. The corresponding notion of
homotopy limit is closely related to the notion of pseudo-limit defined by category
theorists.



4 ANDRÉ JOYAL

Many aspects of homotopical algebra become simpler and more conceptual when
formulated in the language of logoi. This is true for example of the theory of
homotopy limits and colimits which is equivalent to the theory of limits and colimits
in a logos. We hope that this reformulation of homotopical algebra will greatly
simplify and clarify the proofs in this subject. This may not be entirely clear at
present because the theory of logoi is presently in its infancy. A mathematical
theory is a kind of social construction, and the complexity of a proof depends on
the degree of maturity of the subject. What is considered to be ”obvious” is the
result of an implicit agreement between the experts based on their knowledge and
experience.

The logos U has many properties in common with the category of sets. For
example, it is cocomplete and freely generated by one object (its terminal object).
It is the archetype of a homotopos, A prestack on a simplicial set A is defined to be a
map Ao → U. A general homotopos is a left exact reflection of a logos of prestacks.
Homotopoi can be characterized abstractly by a system of axioms similar to those
of Giraud for a Grothendieck topos. They also admit an elegant characterization
due to Lurie in terms of a descent property discovered by Rezk.

All the machinery of universal algebra can be extended to homotopy theory via
the theory of logoi. An algebraic theory is defined to be a small logos with finite
products T , and a model of T to be a map T → U which preserves finite products.
The models T → U form a large logos Mod(T ) which is complete an cocomplete.
A variety of homotopy algebras is a logos equivalent to a logos Mod(T ) for some
algebraic theory T . The homotopy varieties can be characterized by system of ax-
ioms closely related to those of Rosicky [Ros]. The notion of algebraic structure was
extended by Ehresman to include essentially algebraic structures defined by a limit
sketch. The classical theory of limit sketches and of essentially algebraic structures
are easily extended to logoi. For example, the notions of groupoid and of category
are essentially algebraic. A category object in a finitely complete logos X is defined
to be a simplicial object C : ∆o → X satisfying the Segal condition. The theory
of limit sketches is a natural framework for studying homotopy coherent algebraic
structures in general and higher weak categories in particular. The logos of models
of a limit sketch is locally presentable and conversely, every locally presentable lo-
gos is equivalent to the logos of models of a limit sketch. The theory of accessible
categories and of locally presentable categories was extended to logoi by Lurie.

A para-variety is defined to be a left exact reflection of a variety of homotopy
algebras. For example, a homotopos is a para-variety. The logoi of spectra and of
ring spectra are also examples. Para-varieties can be characterized by a system of
axioms closely related to those of Vitale [Vi].

Factorisation systems are playing an important role in the theory of logoi. We
introduce a general notion of homotopy factorisation system in a model category
with examples in Cat and in the model category for logoi. The theory of Dwyer-Kan
localisations can be described in the language of homotopy factorisation systems.
This is true also on the theory of prestacks.

The theory of logoi can analyse phenomena which belong properly to homotopy
theory. The notion of stable logos is an example. The notion of meta-stable logos
introduced in the notes is another. We give a proof that the logos of parametrized
spectra is a homotopos (joint work with Georg Biedermann). We sketch a new proof
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of the stabilisation hypothesis of Breen-Baez-Dolan [Si2]. We give a characterisation
of homotopy varieties which improves a result of Rosicky.

There are important differences between category theory and the theory of logoi.
One difference lies in the fact that the diagonal of an object in a logos is not
necessarly monic. The notion of equivalence relation is affected accordingly. Every
groupoid in the logos U is an equivalence groupoid. This is true in particular if
the groupoid is a group. The classyfying space of a group G is the quotient of the
terminal object 1 by G,

BG = 1/G.
Of course, this sounds like a familiar idea in homotopy theory, since BG = E/G,
where E is a contractible space on which G is acting freely. The fact that every
groupoid in U is an equivalence groupoid has interesting consequences. In alge-
bra, important mental simplications can be obtained by taking a quotient by a
congruence. For example, we may wish to identify two objects of a category when
these objects are isomorphic. But the quotient does not exist as a category, unless
there is a way to identify the objects coherently. However, the quotient category
always exists when C is a category object in U: if J(C) denotes the groupoid of
isomorphisms of C, then the quotient C ′ is constructed by a pushout square of
categories,

J(C)

��

// C

��
BJ(C) // C ′,

where BJ(C) is the quotient of C0 by the groupoid J(C). The quotient category C ′

satisfies the Rezk condition: every isomorphism of C ′ is a unit; we shall say that it
is reduced. Moreover, the canonical functor C → C ′ is an equivalence of categories!
An important simplification is obtained by working with reduced categories, since
a functor between reduced categories f : C → D is an equivalence iff it is an
isomorphism! The notion of reduced category object is essentially algebraic. It
turns out that the logos of reduced category objects in U is equivalent to U1, the
coherent nerve of QCat. This follows from the Quillen equivalence between the
model category for logoi and the model category for Rezk categories citeJT2. Hence
a logos is essentially the same thing as a reduced category object in U.

In the last sections we venture a few steps in the theory of (∞, n)-categories for
every n ≥ 1. There is a notion of n-fold category object for every n ≥ 1. The logos
of n-fold category objects in U is denoted by Catn(U). By definition, we have

Catn+1(U) = Cat(Catn(U)).

There is also a notion of n-category object for every n ≥ 1. The logos Catn(U) of
n-category objects in U is a full sub-logos of Catn(U). A n-category C is reduced
if every invertible cell of C is a unit. The notion of reduced n-category object is
essentially algebraic. The logos of reduced n-category objects in U is denoted by
Un. The logos Un is locally presentable, since the notion of reduced n-category
object is essentially algebraic. It follows that Un is the homotopy localisation of
a combinatorial model category. For example, it can be represented by a regular
Cisinski model (Â,W ). Such a representation is determined by a map r : A→ Un

whose left Kan extension r! : Â→ Un induces an equivalence between the homotopy



6 ANDRÉ JOYAL

localisation of (Â,W ) and Un. The class W is also determined by r, since a map
f : X → Y in Â belongs toW iff the morphism r!(f) : r!X → r!Y is invertible in Un.
The notion of n-logos is obtained by taking A to be a certain full subcategory Θn of
the category of strict n-categories and by taking r to be the inclusion Θn ⊂ Un. In
this case W the class of weak categorical n-equivalences Wcatn. The model category
(Θ̂n,Wcatn) is cartesian closed and its subcategory of fibrant objects QCatn has
the structure of a simplicial category enriched over Kan complexes. The coherent
nerve of QCatn is equivalent to Un.

Note: The category Θn was first defined by the author as the opposite of the
category of finite n-disks Dn. It follows from this definition that the topos Θ̂n is
classifying n-disks and that the geometric realisation functor Θ̂n → Top introduced
by the author preserves finite limits (where Top is the category of compactly gen-
erated topological spaces). See [Ber] for a proof of these results. It was conjectured
(jointly by Batanin, Street and the author) that Θn is isomorphic to a category T ∗n
introduced by Batanin in his theory of higher operads [Bat3]. The conjecture was
proved by Makkai and Zawadowski in [MZ] and by Berger in [Ber]. It shows that
Θn is a full subcategory of the category of strict n-categories.

Note: It is conjectured by Cisinski and the author that the localiser Wcatn is
generated by a certain set of spine inclusions S[t] ⊆ Θ[t].

We close this introduction with a few general remarks on the notion of weak
higher category. There are essentially three approaches for defining this notion:
operadic, Segalian and Kanian. In the first approach, a weak higher category is
viewed as an algebraic structure defined by a system of operations satisfying certain
coherence conditions which are themselve expressed by higher operations, possibly
at infinitum. The first algebraic definition of a weak higher groupoid is due to
Grothendieck in his ”Pursuing Stacks” [Gro] [?]. The first general definition of
a weak higher category by Baez and Dolan is using operads. The definition by
Batanin is using the higher operads introduced for this purpose. The Segalian
approach has its origin in the work of Graeme Segal on infinite loop spaces [S1].
A homotopy coherent algebraic structure is defined to be a commutative diagram
of spaces satisfying certain exactness conditions, called the Segal conditions. The
spaces can be simplicial sets, and more generally the objects of a Quillen model
category. The approach has the immense advantage of pushing the coherence con-
ditions out of the way. The notions of Segal category, of Segal space and of Rezk
category (ie complete Segal space) are explicitly Segalian. The Kanian approach
has its origin in the work of Boardman and Vogt after the work of Kan on simplicial
homotopy theory. The notion of logos is Kanian, since it is defined by cell filling
conditions (the Boardman conditions). In the Kanian approach, a weak higher
groupoid is the same thing as a Kan complex. We are liberated from the need to
represent a homotopy type by an algebraic structure, since it can be represented
by itself! Of course, it is instructive to model homotopy types algebraically, and
it is the purpose of algebraic topology to study spaces from an algebraic point of
view. For example, a 2-type can be modeled by a categorical group and a simply-
connected 3-type by a braided categorical group. In these examples, the homotopy
type is fully described by the algebraic model, Partial models are also important as
in rational homotopy theory. The different approaches to higher categories are not
in conflict but complementary. The Kanian approach is heuristically stronger and
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more effective at the foundational level. It suggests that a weak higher category is
the combinatorial representation of a space of a new kind, possibly a higher moduli
stack. The nature of these spaces is presently unclear, but like categories, they
should admit irreversible paths. Grothendieck topoi are not general enough, even
in their higher incarnations, the homotopoi. For example, I do not know how to
associate a higher topos to a 2-category. For this we need a notion of 2-prestack.
But this notion depends on what we choose to be the archetype of an (∞, 2)-topos.
The idea that there is a connection between the notion of weak category and that
of space is very potent. It was a guiding principle, a fil d’Ariane, in the Pursuing
Stacks of Grothendieck. It has inspired the notion of braided monoidal category
and many conjectures by Baez and Dolan. It suggests that the category of weak
categories has properties similar to that of spaces, for example, that it should be
cartesian closed. It suggests the existence of classifying higher categories, in analogy
with classifying spaces. Classifying spaces are often equipped with a natural alge-
braic structure. Operads were originally introduced for studying these structures
and the corresponding algebra of operations in (co)homology. Many new invariants
of topology, like the Jones polynomial, have not yet been explained within the clas-
sical setting of algebraic topology. Topological quantum field theory is pushing for
an extension of algebraic topology and the operadic approach to higher categories
may find its full meaning in the extension.

Note: A theory of higher operads based on cartesian monads was developed
by Leinster. A more general theory is been developed by Batanin and Weber.
The Segalian approach in homotopy universal algebra was developed by Badzioch
[Bad2]. A notion of higher category based on the notion of complicial set is been
developed by Street and Verity. A notion of multi-logoi (or colored quasi-operads)
is been developed by Moerdijk and Weiss.

The support and encouragement of Peter May were essential in completing the
notes. I thank the organisers of the IMA conference for their invitation. I thank
Rick Jardine for the semester spent at the Fields Institute in Toronto. I thank Carles
Casacuberta and Joachim Kock for the semester spent at the CRM in Barcelona.

I thank Joachim Kock, Nicola Gambino, Moritz Groth and Michael Schulman for
correcting various drafts of the notes. I would like to thank also the following peo-
ples for stimulating discussions on logoi, higher categories and homotopy theory
during the last ten years: Mathieu Anel, John Baez, Michael Batanin, Alexan-
der Berglund, Julia Bergner, Clemens Berger, Georg Biedermann, Pilar Carrasco,
Carles Casacuberta, Eugenia Cheng, Denis-Charles Cisinski, James Dolan, Nicola
Gambino, David Gepner, Ezra Getzler, Beatriz Rodriguez Gonzales, Moritz Groth,
Michael Johnson, Panagis Karazeris, Jonas Kiessling, Joachim Kock, Steve Lack,
Yves Lafont, Tom Leinster, Jacob Lurie, Georges Maltsiniotis, Peter May, Ieke Mo-
erdijk, Josh Nichols-Barrer, Simona Paoli, Jiri Rosicky, Michael Schulman, Alexan-
dru Stanculescu, Ross Street, Myles Tierney, Bertrand Toen, Gabriele Vezzosi,
Enrico Vitale, Michael Warren, Mark Weber and Krzysztof Worytkiewicz.

I am indebted to Jon Beck for guiding my first steps in homotopy theory more
than thirty years ago. Jon was deeply aware of the unity between homotopy theory
and category theory and he contributed to both fields. He had the dream of using
simplicial sets for the foundation of mathematics (including computer science and
calculus!). I began to read Boardmann and Vogt after attending the beautiful talk
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that Jon gave on their work at the University of Durham in July 1977. I dedicate
these notes to his memory.

Montréal, December 2006,
Toronto, January 2007,
Barcelona, June 2008

1. Elementary aspects

In this section we define the notion of logos and describe some of its basic prop-
erties. We introduce the notion of equivalence between logoi.

1.1. For terminology and notation about categories and simplicial sets, see appen-
dix 47 and 49. We denote the category of simplicial sets by S and the category of
small categories by Cat.

1.2. The category ∆ is a full subcategory of Cat. Recall that the nerve of a small
category C is the simplicial set NC obtained by putting

(NC)n = Cat([n], C)

for every n ≥ 0. The nerve functor N : Cat→ S is fully faithful. We shall regard
it as an inclusion N : Cat ⊂ S by adopting the same notation for a category and
its nerve. The nerve functor has a left adjoint

τ1 : S→ Cat

which associates to a simplicial set X its fundamental category τ1X. The classical
fundamental groupoid π1X is obtained by formally inverting the arrows of τ1X. If
X is a simplicial set, the canonical map X → Nτ1X is denoted as a map X → τ1X.

1.3. Recall that a simplicial set X is said to be a Kan complex if it satisfies the
Kan condition: every horn Λk[n]→ X has a filler ∆[n]→ X,

Λk[n]� _

��

∀ // X

∆[n].
∃

=={{{{{{{{

The singular complex of a space and the nerve of a groupoid are examples. We
shall denote by Kan the full subcategory of S spanned by the Kan complexes. If
X is a Kan complex, then so is the simplicial set XA for any simplicial set A. It
follows that the category Kan is cartesian closed. A simplicial set X is (isomorphic
to the nerve of) a groupoid iff every horn Λk[n]→ X has a unique filler.

1.4. Let us say that a horn Λk[n] is inner if 0 < k < n. We shall say that a
simplicial set X is a logos if it satisfies the Boardman condition: every inner horn
Λk[n]→ X has a filler ∆[n]→ X. A Kan complex and the nerve of a category are
examples. We may say that a vertex of a logos is an object of this logos and that
an arrow is a morphism. We shall denote by Log the full subcategory of S spanned
by the logoi. We may say that a map between logoi f : X → Y is a functor. If
X is a logos then so is the simplicial set XA for any simplicial set A. Hence the
category Log is cartesian closed. A simplicial set X is (isomorphic to the nerve of)
a category iff every inner horn Λk[n]→ X has a unique filler.
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1.5. A logos can be large. A logos X is locally small if the simplicial set X is
locally small (this means that the vertex map Xn → Xn+1

0 has small fibers for
every n ≥ 0). Most logoi considered in these notes are small or locally small.

1.6. [J2] The notion of logos has many equivalent descriptions. Recall that a map
of simplicial sets is a called a trivial fibration if it has the right lifting property
with respect to the inclusion ∂∆[n] ⊂ ∆[n] for every n ≥ 0. Let us denote by I[n]
the simplicial subset of ∆[n] generated by the edges (i, i + 1) for 0 ≤ i ≤ n − 1
(by convention, I[0] = ∆[0]). The simplicial set I[n] is a chain of n arrows and we
shall say that it is the spine of ∆[n]. Notice that I[2] = Λ1[2] and that XI[2] =
XI ×s=t XI . A simplicial set X is a logos iff the projection

X∆[2] → XI[2]

defined from the inclusion I[2] ⊂ ∆[2] is a trivial fibration iff the projectionX∆[n] →
XI[n] defined from the inclusion I[n] ⊂ ∆[n] is a trivial fibration for every n ≥ 0.

1.7. If X is a simplicial set, we shall denote by X(a, b) the fiber at (a, b) ∈ X0×X0

of the projection

(s, t) : XI → X{0,1} = X ×X

defined by the inclusion {0, 1} ⊂ I. A vertex of X(a, b) is an arrow a → b in X.
If X is a logos, then the simplicial set X(a, b) is a Kan complex for every pair
(a, b). Moreover, the projection X∆[2] → XI ×s=t XI defined from the inclusion
I[2] ⊂ ∆[2] has a section, since it is a trivial fibration by 1.6. If we compose this
section with the map Xd1 : X∆[2] → XI , we obtain a ”composition law”

XI ×s=t XI → XI

well defined up to homotopy. It induces a ”composition law”

X(b, c)×X(a, b)→ X(a, c)

for each triple (a, b, c) ∈ X0 ×X0 ×X0.

1.8. The fundamental category τ1X of a simplicial set X has a simple construction
when X is a logos. In this case we have

τ1X = hoX,

where hoX is the homotopy category of X introduced by Boardman and Vogt in
[BV]. By construction, (hoX)(a, b) = π0X(a, b) and the composition law

hoX(b, c)× hoX(a, b)→ hoX(a, c)

is induced by the ”composition law” of 1.7. If f, g : a→ b are two arrows in X, we
shall say that a 2-simplex u : ∆[2]→ X with boundary ∂u = (1b, g, f),

b
1b

��=
==

==
==

a

f

@@��������
g

// b,
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is a right homotopy between f and g and we shall write u : f ⇒R g. Dually, we
shall say that a 2-simplex v : ∆[2]→ X with boundary ∂v = (g, f, 1a),

a
g

��@
@@

@@
@@

a

1a

??��������
f

// b.

is a left homotopy between f and g and we shall write v : f ⇒L g. Two arrows
f, g : a→ b in a logos X are homotopic in X(a, b) iff there exists a right homotopy
u : f ⇒R g iff there exists a left homotopy v : f ⇒L g. Let us denote by [f ] : a→ b
the homotopy class of an arrow f : a→ b. The composite of a class [f ] : a→ b with
a class [g] : b → c is the class [wd1] : a → c, where w is any 2-simplex ∆[2] → X
filling the horn (g, ?, f) : Λ1[2]→ X,

b
g

��?
??

??
??

?

a

f
??��������
wd1

// c.

1.9. There is an analogy between Kan complexes and groupoids. The nerve of)
a category is a Kan complex iff the category is a groupoid. Hence the following
commutative square is a pullback,

Gpd

in

��

in // Kan

in

��
Cat

in // Log,

where Gpd denotes the category of small groupoids and where the horizontal inclu-
sions are induced by the nerve functor. The inclusion Gpd ⊂ Kan has a left adjoint
π1 : Kan→ Gpd and the inclusion Cat ⊂ Log has a left adjoint τ1 : Log→ Cat.
Moreover, the following square commutes up to a natural isomorphism,

Gpd

in

��

Kan
π1oo

in

��
Cat Log

τ1oo

1.10. We say that two vertices of a simplicial set X are isomorphic if they are
isomorphic in the category τ1X. We shall say that an arrow in X is invertible, or
that it is an isomorphism, if its image by the canonical map X → τ1X is invertible
in the category τ1X. When X is a logos, two objects a, b ∈ X are isomorphic iff
there exists an isomorphism f : a→ b. In this case, there exists an arrow g : b→ a
together with two homotopies gf ⇒ 1a and fg ⇒ 1b. A logos X is a Kan complex
iff the category hoX is a groupoid [J1]. Let J be the groupoid generated by one
isomorphism 0 → 1. Then an arrow f : a → b in a logos X is invertible iff the
map f : I → X can be extended along the inclusion I ⊂ J . The inclusion functor
Gpd ⊂ Cat has a right adjoint J : Cat → Gpd, where J(C) is the groupoid of
isomorphisms of a category C. Similarly, the inclusion functor Kan ⊂ Log has a
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right adjoint J : Log → Kan by [J1]. The simplicial set J(X) is the largest Kan
subcomplex of a logos X. It is constructed by the following pullback square

J(X)� _

��

// J(hoX)� _

��
X

h // hoX,

where h is the canonical map. Moreover, the following square commutes up to a
natural isomorphism,

Gpd Kan
π1oo

Cat

J

OO

Log.
τ1oo

J

OO

1.11. The functor τ1 : S → Cat preserves finite products by a result of Gabriel
and Zisman. For any pair (X,Y ) of simplicial sets, let us put

τ1(X,Y ) = τ1(Y X).

If we apply the functor τ1 to the composition map ZY × Y X → ZX we obtain a
composition law

τ1(Y, Z)× τ1(X,Y )→ τ1(X,Z)
for a 2-category Sτ1 , where we put Sτ1(X,Y ) = τ1(X,Y ). By definition, a 1-cell
of Sτ1 is a map of simplicial sets f : X → Y , and a 2-cell f → g : X → Y is a
morphism of the category τ1(X,Y ); we shall say that it is a natural transformation
f → g. Recall that a homotopy between two maps f, g : X → Y is an arrow
α : f → g in the simplicial set Y X ; it can be represented as a map X× I → Y or as
a map X → Y I . To a homotopy α : f → g is associated a natural transformation
[α] : f → g. When Y is a logos, a natural transformation [α] : f → g is invertible in
τ1(X,Y ) iff the arrow α(a) : f(a)→ g(a) is invertible in Y for every vertex a ∈ X.

1.12. We call a map of simplicial sets X → Y a categorical equivalence if it is an
equivalence in the 2-category Sτ1 . For example, a trivial fibration (as defined in
49.4) is a categorical equivalence. The functor τ1 : S → Cat takes a categorical
equivalence to an equivalence of categories. If X and Y are logoi, we say that a
categorical equivalence X → Y is an equivalence of logoi, or just an equivalence if
the context is clear. A map between logoi f : X → Y is an equivalence iff there
exists a map g : Y → X and two isomorphisms gf → 1X and fg → 1Y .

1.13. We say that a map of simplicial sets u : A → B is essentially surjective if
the functor τ1A → τ1B is essentially surjective. We say that a map between logoi
f : X → Y is fully faithful if the map X(a, b) → Y (fa, fb) induced by f is a
weak homotopy equivalence for every pair a, b ∈ X0. A map between logoi is an
equivalence iff it is fully faithful and essentially surjective.

2. The model structure for logoi

The category of simplicial sets admits a model structure in which the fibrant
objects are the logoi. We compare it with the classical model structure the cate-
gory of simplicial sets and with natural model structure on the category of small
categories.
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2.1. Recall that a map of simplicial sets f : X → Y is said to be a Kan fibration if
it has the right lifting property with respect to the inclusion Λk[n] ⊂ ∆[n] for every
n > 0 and k ∈ [n]. Recall that a map of simplicial sets is said to be anodyne if it
belongs to the saturated class generated by the inclusions Λk[n] ⊂ ∆[n] (n > 0, k ∈
[n]) [GZ]. The category S admits a weak factorisation system (A,B) in which A is
the class of anodyne maps and B is the class of Kan fibrations.

2.2. Let Top be the category of compactly generated topological spaces. We recall
that the singular complex functor r! : Top→ S has a left adjoint r! which associates
to a simplicial set its geometric realisation. A map of simplicial sets u : A → B is
said to be a weak homotopy equivalence if the map r!(u) : r!A→ r!B is a homotopy
equivalence of topological spaces. The notion of weak homotopy equivalence in
S can be defined combinatorially by using Kan complexes instead of geometric
realisation. To see this, we recall the construction of the homotopy category Sπ0

by Gabriel and Zisman [GZ]. The functor π0 : S → Set preserves finite products.
For any pair (A,B) of simplicial sets, let us put

π0(A,B) = π0(BA).

If we apply the functor π0 to the composition map CB × BA → CA we obtain
a composition law π0(B,C) × π0(A,B) → π0(A,C) for a category Sπ0 , where we
put Sπ0(A,B) = π0(A,B). A map of simplicial sets is called a simplicial homotopy
equivalence if it is invertible in the category Sπ0 . A map of simplicial sets u : A→ B
is a weak homotopy equivalence iff the map

π0(u,X) : π0(B,X)→ π0(A,X)

is bijective for every Kan complex X. Every simplicial homotopy equivalence is a
weak homotopy equivalence and the converse holds for a map between Kan com-
plexes.

2.3. The category S admits a Quillen model structure in which a weak equivalence
is a weak homotopy equivalence and a cofibration is a monomorphism [Q]. The
fibrant objects are the Kan complexes. The model structure is cartesian closed
and proper. We shall say that it is the classical model structure on S and we shall
denote it shortly by (S,Who), where Who denotes the class of weak homotopy
equivalences. The fibrations are the Kan fibrations. A map is an acyclic cofibration
iff it is anodyne.

2.4. The model structure (S,Who) is the Cisinski structure on S whose fibrant
objects are the Kan complexes.

2.5. We shall say that a functor p : X → Y between two categories is an iso-
fibration if for every object x ∈ X and every isomorphism g ∈ Y with target
p(x), there exists an isomorphism f ∈ X with target x such that p(f) = g. This
notion is self dual:a functor p : X → Y is an iso-fibration iff the opposite functor
po : Xo → Y o is. The category Cat admits a model structure in which a weak
equivalence is an equivalence of categories and a fibration is an iso-fibration [JT1].
The model structure is cartesian closed and proper. We shall say that it is the
natural model structure on Cat and we shall denote it shortly by (Cat, Eq), where
Eq denotes the class of equivalences between categories. A functor u : A→ B is a
cofibration iff the map Ob(u) : ObA → ObB is monic. Every object is fibrant and
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cofibrant. A functor is an acyclic fibration iff it is fully faithful and surjective on
objects.

2.6. For any simplicial set A, let us denote by τ0A the set of isomorphism classes
of objects of the category τ1A. The functor τ0 : S→ Set preserves finite products,
since the functor τ1 preserves finite products. For any pair (A,B) of simplicial sets,
let us put

τ0(A,B) = τ0(BA).

If we apply the functor τ0 to the the composition map CB × BA → CA we obtain
the composition law τ0(B,C) × τ0(A,B) → τ0(A,C) of a category Sτ0 , where we
put Sτ0(A,B) = τ0(A,B). A map of simplicial sets is a categorical equivalence
iff it is invertible in the category Sτ0 . We shall say that a map of simplicial sets
u : A→ B is a weak categorical equivalence if the map

τ0(u,X) : τ0(B,X)→ τ0(A,X)

is bijective for every logos X. A map u : A→ B is a weak categorical equivalence
iff the functor

τ1(u,X) : τ1(B,X)→ τ1(A,X)

is an equivalence of categories for every logos X.

2.7. The category S admits a model structure in which a weak equivalence is a
weak categorical equivalence and a cofibration is a monomorphism [J2]. The fibrant
objects are the logoi. The model structure is cartesian closed and left proper. We
shall say that it is the model structure for logoi and we denote it shortly by (S,Wcat),
where Who denotes the class of weak categorical equivalences. A fibration is called
a pseudo-fibration The functor X 7→ Xo is an automorphism of the model structure
(S,Wcat). . .

2.8. The model structure (S,Wcat) is the Cisinski structure on S whose fibrant
objects are the logoi.

2.9. The pair of adjoint functors

τ1 : S↔ Cat : N

is a Quillen adjunction between the model categories (S,Wcat) and (Cat, Eq). A
functor u : A → B in Cat is an equivalence (resp. an iso-fibration) iff the map
Nu : NA→ NB is a (weak) categorical equivalence (resp. a pseudo-fibration).

2.10. The classical model structure on S is a Bousfield localisation of the model
structure for logoi. Hence a weak categorical equivalence is a weak homotopy equiv-
alence and the converse holds for a map between Kan complexes. A Kan fibration
is a pseudo-fibration and the converse holds for a map between Kan complexes. A
simplicial set A is weakly categorically equivalent to a Kan complex iff its funda-
mental category τ1A is a groupoid.

2.11. We say that a map of simplicial sets is mid anodyne if it belongs to the
saturated class generated by the inclusions Λk[n] ⊂ ∆[n] with 0 < k < n. Every
mid anodyne map is a weak categorical equivalence, monic and biunivoque (ie
bijective on vertices). We do not have an example of a monic biunivoque weak
categorical equivalence which is not mid anodyne.
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2.12. We shall say that a map of simplicial sets is a mid fibration if it has the right
lifting propery with respect to the inclusion Λk[n] ⊂ ∆[n] for every 0 < k < n. A
simplicial set X is a logos iff the map X → 1 is a mid fibration. If X is a logos and
C is a category, then every map X → C is a mid fibration. In particular, every
functor in Cat is a mid fibration. The category S admits a weak factorisation
system (A,B) in which A is the class of mid anodyne maps and B is the class of
mid fibrations.

2.13. Recall that a reflexive graph is a 1-truncated simplicial set. If G is a reflex-
ive graph, then the canonical map G → τ1G is mid anodyne. It is thus a weak
categorical equivalence.

2.14. A pseudo-fibration is a mid fibration. Conversely, a mid fibration between
logoi p : X → Y is a pseudo-fibration iff the following equivalent conditions are
satisfied:

• the functor ho(p) : hoX → hoY is an isofibration;
• for every object x ∈ X and every isomorphism g ∈ Y with target p(x),

there exists an isomorphism f ∈ X with target x such that p(f) = g;
• p has the right lifting property with respect to the inclusion {1} ⊂ J

2.15. Let J be the groupoid generated by one isomorphism 0 → 1. Then a map
between logoi p : X → Y is a pseudo-fibration iff the map

〈j0, p〉 : XJ → Y J ×Y X
obtained from the square

XJ
Xj0 //

pI

��

X

p

��
Y I

Y j0 // Y,

is a trivial fibration, where j0 denotes the inclusion {0} ⊂ J .

2.16. Consider the functor k : ∆ → S defined by putting k[n] = ∆′[n] for every
n ≥ 0, where ∆′[n] denotes the (nerve of) the groupoid freely generated by the
category [n]. If X ∈ S, let us put

k!(X)n = S(∆′[n], X).

The functor k! : S→ S has a left adjoint k!. The pair of adjoint functors

k! : (S,Who)↔ (S,Wcat) : k!

is a Quillen adjunction and a homotopy coreflection (this means that the left derived
functor of k! is fully faithful). If X is a logos, then the canonical map k!(X)→ X
factors through the inclusion J(X) ⊆ X and the induced map k!(X) → J(X) is a
trivial fibration.

2.17. Recall that a simplicial set is said to be finite if it has a finite number of non-
degenerate cells. We say that a Kan complex X is homotopy finite if there exists
a finite simplicial set K together with a weak homotopy equivalence K → X. We
say that a simplicial set A is homotopy finite if there exists a homotopy finite Kan
complex X together with a weak homotopy equivalence A → X. A finite group is
homotopy finite iff it is the trivial group.
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2.18. If X is a logos and A is a simplicial set, we shall say that a weak categorical
equivalence A→ X is a strong presentation of X. The strong presentation is finite
if A is finite. We say that a logos which admits a finite strong presentation is
essentially finite. Recall that a reflexive graph is a simplicial set of dimension ≤ 1.
If A is a reflexive graph, then the canonical map A → τ1A is mid anodyne; hence
the free category τ1A is strongly presented by A.

2.19. We say that a simplicial set A is essentially finite if there exists an essentially
finite logos X together with a weak categorical equivalence A→ X. A finite simpli-
cial set is essentially finite and an essentially finite simplicial set is homotopy finite,
but the converse is not necessarly true. For example, the monoid freely generated
by one idempotent is homotopy finite (it is contractible) but not essentially finite.

2.20. Let Split be the category with two objects 0 and 1 and two arrows s : 0→ 1
and r : 1 → 0 such that rs = id. If K is the simplicial set defined by the pushout
square

∆[1]

��

d1 // ∆[2]

��
1 // K

then the obvious map K → Split is mid anodyne. Hence the category Split is
essentially finite. Observe that Split contains the monoid freely generated by one
idempotent as a full subcategory. Hence a full subcategory of an essentially finite
category is not always essentially finite.

2.21. Let us say that a class of monomorphisms A ⊆ S has the right cancellation
property if the implication

vu ∈ A and u ∈ A ⇒ v ∈ A
is true for any pair of monomorphisms u : A → B and v : B → C. Let A ⊆ S
be a saturated class of monomorphisms having the right cancellation property. Let
I[n] ⊆ ∆[n] be the spine of ∆[n]. If the inclusion I[n] ⊆ ∆[n] belongs to A for
every n ≥ 0, then every mid anodyne map belongs to A [JT2].

2.22. (Cisinski) The localizer Wcat in the category S is generated by the set of
spine inclusions I[n] ⊆ ∆[n] (n ≥ 0). Let us give a proof. Let W ⊆ S be a localizer
which contains the inclusions I[n] ⊆ ∆[n] for n ≥ 0. We shall denote by Fib(W )
the class of fibrant objects of the model structure defined by W . The result will be
proved by 51.10 if we show that every object of Fib(W ) is a logos. If C is the class
of monomorphisms, then the class W ∩ C is saturated, since W is a localizer. But
W ∩C has the right cancellation property, since W satisfies ”3 for 2”. Thus, W ∩C
contains the mid anodyne maps by 2.21. It thus contains the inclusion Λk[n] ⊂ ∆[n]
for every 0 < k < n. This shows that every object of Fib(W ) is a logos.

3. Equivalence with simplicial categories

Simplicial categories were introduced by Dwyer and Kan in their work on sim-
plicial localisation. The category of simplicial categories admits a Quillen model
structure, called the Bergner-Dwyer-Kan model structure. The coherent nerve of a
fibrant simplicial category to a logos. The coherent nerve functor induces a Quillen
equivalence between simplicial categories and logoi.
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3.1. Recall that a simplicial category is a category enriched over simplicial sets.
A simplicial functor between simplicial categories is a strong functor, that is, an
enriched functor. We denote by SCat the category of simplicial categories and
simplicial functors. An ordinary category can be viewed a simplicial category with
discrete hom. The inclusion functor Cat ⊂ SCat has a left adjoint

ho : SCat→ Cat

which associates to a simplicial category X its homotopy category hoX. By con-
struction, we have (hoX)(a, b) = π0X(a, b) for every pair of objects a, b ∈ X. A
simplicial functor f : X → Y is said to be homotopy fully faithful if the map
X(a, b) → Y (fa, fb) is a weak homotopy equivalence for every pair of objects
a, b ∈ X. A simplicial functor f : X → Y is said to be homotopy essentially
surjective if the functor ho(f) : hoX → hoY is essentially surjective. A simpli-
cial functor f : X → Y is called a Dwyer-Kan equivalence if it is homotopy fully
faithful and homotopy essentially surjective. We shall say that a simplicial functor
f : X → Y is trivial fibration iff the map Ob(f) : ObX → ObY is surjective and the
map X(a, b) → Y (fa, fb) is a trivial fibration for every pair of objects a, b ∈ X.
It was proved by Bergner in [B1] that the category SCat admits a Quillen model
structure in which the weak equivalences are the Dwyer-Kan equivalences and the
acyclic fibrations are the trivial fibrations. The model structure is left proper and
the fibrant objects are the categories enriched over Kan complexes. A simplicial
functor f : X → Y is fibration iff it is a Dwyer-Kan fibration, that is, the map
X(a, b) → Y (fa, fb) is a Kan fibration for every pair of objects a, b ∈ X, and the
functor ho(f) is an iso-fibration. We say that it is the Bergner model structure
or the model structure for simplicial categories We shall denote it by (SCat, DK),
where DK denotes the class of Dwyer-Kan equivalences.

3.2. Recall that a reflexive graph is a 1-truncated simplicial set. Let Grph be the
category of reflexive graphs. The obvious forgetful functor U : Cat→ Grph has a
left adjoint F . The composite C = FU is a comonad on Cat. It follows that for
any small category A, the sequence of categories CnA = Cn+1(A) (n ≥ 0) has the
structure of a simplicial object C∗(A) in Cat. The simplicial set n 7→ Ob(CnA)
is constant with value Ob(A). It follows that C∗(A) can be viewed as a simplicial
category instead of a simplicial object in Cat. This defines a functor

C∗ : Cat→ SCat.

If A is a category then the augmentation C∗(A) → A is a cofibrant replacement
of A in the model category SCat. If X is a simplicial category, then a simplicial
functor C∗(A)→ X is said to be a homotopy coherent diagram A→ X. This notion
was introduced by Vogt in [V].

3.3. The simplicial category C?[n] has the following description. The objects of
C?[n] are the elements of [n]. If i, j ∈ [n] and i > j, then C?[n](i, j) = ∅; if i ≤ j,
then the simplicial set C?[n](i, j) is (the nerve of) the poset of subsets S ⊆ [i.j]
such that {i, j} ⊆ S. If i ≤ j ≤ k, the composition operation

C?[n](j, k)× C?[n](i, j)→ C?[n](i, k)

is the union (T, S) 7→ T ∪ S.
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3.4. The coherent nerve of a simplicial category X is the simplicial set C !X ob-
tained by putting

(C !X)n = SCat(C?[n], X)
for every n ≥ 0. This notion was introduced by Cordier in [C]. The simplicial
set C !(X) is a logos when X is enriched over Kan complexes [?]. The functor
C ! : SCat→ S has a left adjoint C! and we have C!A = C?A when A is a category
[J4]. Thus, a homotopy coherent diagram A → X with values in a simplicial
category X is the same thing as a map of simplicial sets A→ C !X.

3.5. The pair of adjoint functors

C! : S↔ SCat : C !

is a Quillen equivalence between the model category (S,Wcat) and the model cat-
egory (SCat, DK) [Lu1][J4].

3.6. A simplicial category can be large. For example, the logos of Kan complexes
U is defined to be the coherent nerve of the simplicial category Kan. The logos U
is large but locally small. It plays an important role in the theory of logoi, where it
is the analog of the category of sets. It is the archetype of a homotopos, also called
an ∞-topos.

3.7. The category Log becomes enriched over Kan complexes if we put

Hom(X,Y ) = J(Y X)

for X,Y ∈ Log. For example, the logos of small logoi U1 is defined to be the
coherent nerve of the simplicial category Log. The logos U1 is large but locally
small. It plays an important role in the theory of logoi where it is the analog of the
category of small categories.

4. Equivalence with Rezk categories

Rezk categories are the fibrant objects of a model structure on the category
of simplicial spaces. They were introduced by Charles Rezk under the name of
complete Segal spaces. The first row of a Rezk category is a logos. The functor
induces a Quillen equivalence between Rezk categories and logoi.

4.1. Recal that a bisimplicial set is defined to be a contravariant functor ∆×∆→
Set and that a simplicial space to be a contravariant functor ∆ → S. We can
regard a simplicial space X as a bisimplicial set by putting Xmn = (Xm)n for every
m,n ≥ 0. Conversely, we can regard a bisimplicial set X as a simplicial space by
putting Xm = Xm? for every m ≥ 0. We denote the category of bisimplicial sets
by S(2). The box product A�B of two simplicial sets A and B is the bisimplicial
set A�B obtained by putting

(A�B)mn = Am ×Bn
for every m,n ≥ 0. This defines a functor of two variables � : S × S → S(2). The
box product funtor � : S × S → S(2) is divisible on each side. This means that
the functor A�(−) : S → S(2) admits a right adjoint A\(−) : S(2) → S for every
simplicial set A, and that the functor (−)�B : S → S(2) admits a right adjoint
(−)/B : S(2) → S for every simplicial set B. For any pair of simplicial spaces X
and Y , let us put

Hom(X,Y ) = (Y X)0
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This defines an enrichment of the category S(2) over the category S. For any
simplicial set A we have A\X = Hom(A�1, X).

4.2. We recall that the category of simplicial spaces [∆o,S] admits a Reedy model
structure in which the weak equivalences are the term-wise weak homotopy equiv-
alences and the cofibrations are the monomorphisms. The model structure is sim-
plicial if we put Hom(X,Y ) = (Y X)0. It is cartesian closed and proper.

4.3. Let I[n] ⊆ ∆[n] be the n-chain. For any simplicial spaceX we have a canonical
bijection

I[n]\X = X1 ×∂0=∂1 X1 × · · · ×∂0=∂1 X1,

where the successive fiber products are calculated by using the face maps ∂0, ∂1 :
X1 → X0. We say that a simplicial space X satisfies the Segal condition if the map

∆[n]\X −→ I[n]\X

obtained from the inclusion I[n] ⊆ ∆[n] is a weak homotopy equivalence for every
n ≥ 2 (the condition is trivially satisfied if n < 2). A Segal space is a Reedy fibrant
simplicial space which satisfies the Segal condition.

4.4. The Reedy model structure on the category [∆o,S] admits a Bousfield local-
isation with respect to the set of maps I[n]�1 → ∆[n]�1 for n ≥ 0. The fibrant
objects of the local model structure are the Segal spaces. The local model structure
is simplicial, cartesian closed and left proper. We say that it is the model structure
for Segal spaces.

4.5. Let J be the groupoid generated by one isomorphism 0→ 1. We regard J as
a simplicial set via the nerve functor. A Segal space X is said to be complete, if it
satisfies the Rezk condition: the map

1\X −→ J\X

obtained from the map J → 1 is a weak homotopy equivalence. We shall say that
a complete Segal space is a Rezk category.

4.6. The model structure for Segal spaces admits a Bousfield localisation with
respect to the map J�1 → 1�1. The fibrant objects of the local model structure
are the Rezk categories. The local model structure is simplicial, cartesian closed
and left proper. We say that it is the model structure for Rezk categories.

4.7. The first row of a simplicial space X is the simplicial set r(X) obtained by
putting rw(X)n = Xn0 for every n ≥ 0. The functor rw : S(2) → S has a left
adjoint c obtained by putting c(A) = A�1 for every simplicial set A. The pair of
adjoint functors

c : S↔ S(2) : rw

is a Quillen equivalence between the model category for logoi and the model cate-
gory for Rezk categories [JT2].
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4.8. Consider the functor t! : S→ S(2) defined by putting

t!(X)mn = S(∆[m]×∆′[n], X)

for everyX ∈ S and everym,n ≥ 0, where ∆′[n] denotes the (nerve of the) groupoid
freely generated by the category [n]. The functor t! has a left adjoint t! and the
pair

t! : S(2) ↔ S : t!

is a Quillen equivalence between the model category for Rezk categories and the
model category for logoi [JT2].

5. Equivalence with Segal categories

Segal categories were introduced by Hirschowitz and Simpson in their work on
higher stacks. They are fibrant objects in a model structure on the category of
precategory. The first row of a fibrant Segal category is a logos. The functor
induces a Quillen equivalence between Segal categories and logoi.

5.1. A simplicial space X : ∆o → S is called a precategory if the simplicial set X0

is discrete. We shall denote by PCat the full subcategory of S(2) spanned by the
precategories. The category PCat is a presheaf category and the inclusion functor
p∗ : PCat ⊂ S(2) has a left adjoint p! and a right adjoint p∗.

5.2. If X is a precategory and n ≥ 1, then the vertex map vn : Xn → Xn+1
0 takes

its values in a discrete simplicial set. We thus have a decomposition

Xn =
⊔

a∈X[n]0
0

X(a),

where X(a) = X(a0, . . . , an) denotes the fiber of vn at a = (a0, · · · , an). A precat-
egory X satisfies the Segal condition iff he canonical map

X(a0, a1, . . . , an)→ X(a0, a1)× · · · ×X(an−1, an)

is a weak homotopy equivalence for every a ∈ X
[n]0
0 and n ≥ 2. A precategory

which satisfies the Segal condition is called a Segal category.

5.3. If C is a small category, then the bisimplicial set N(C) = C�1 is a Segal
category. The functor N : Cat→ PCat has a left adjoint

τ1 : PCat→ Cat

which associates to a precategory X its fundamental category τ1X. A map of
precategories f : X → Y is said to be essentially surjective if the functor τ1(f) :
τ1X → τ1Y is essentially surjective. A map of precategories f : X → Y is said to
be fully faithful if the map

X(a, b)→ Y (fa, fb)

is a weak homotopy equivalence for every pair a, b ∈ X0. We say that f : X → Y is
a categorical equivalence if it is fully faithful and essentially surjective.
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5.4. In [HS], Hirschowitz and Simpson construct a completion functor

S : PCat→ PCat

which associates to a precategory X a Segal category S(X) “generated” by X. A
map of precategories f : X → Y is called a weak categorical equivalence if the
map S(f) : S(X)→ S(Y ) is a categorical equivalence. The category PCat admits
a left proper model structure in which a a weak equivalence is a weak categorical
equivalence and a cofibration is a monomorphism. We say that it is the Hirschowitz-
Simpson model structure or the model structure for Segal categories. The model
structure is cartesian closed [P].

5.5. We recall that the category of simplicial spaces [∆o,S] admits a Reedy model
structure in which the weak equivalences are the term-wise weak homotopy equiva-
lences and the cofibrations are the monomorphisms. A precategory is fibrant in the
Hirschowitz-Simpson model structure iff it is a Reedy fibrant Segal category [B3].

5.6. The first row of a precategory X is the simplicial set r(X) obtained by putting
r(X)n = Xn0 for every n ≥ 0. The functor r : PCat → S has a left adjoint h
obtained by putting h(A) = A�1 for every simplicial set A. It was conjectured in
[T1] (and proved in [JT2]) that the pair of adjoint functors

h : S↔ PCat : r

is a Quillen equivalence between the model category for logoi and the model cate-
gory for Segal categories.

5.7. The diagonal d∗(X) of a precategory X is defined to be the diagonal of the
bisimplicial set X. The functor d∗ : PCat → S admits a right adjoint d∗ and the
pair of adjoint functors

d∗ : PCat↔ S : d∗

is a Quillen equivalence between the model category for Segal categories and the
model category for logoi [JT2].

6. Minimal logoi

The theory of minimal Kan complexes can be extended to logoi. Every logos has
a minimal model which is unique up to isomorphism. A category is minimal iff it
is skeletal.

6.1. Recall that a sub-Kan complex S of a Kan complexX is said to be a (sub)model
of X if the inclusion S ⊆ X is a homotopy equivalence. Recall that a Kan complex
is said to be minimal if it has no proper (sub)model. Every Kan complex has
a minimal model and that any two minimal models are isomorphic. Two Kan
complexes are homotopy equivalent iff their minimal models are isomorphic.

6.2. We shall say that a subcategory S of a category C is a model of C if the
inclusion S ⊆ C is an equivalence. We say that a category C is skeletal iff it has no
proper model.
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6.3. A subcategory S of a category C is a model of C iff it is full and

∀a ∈ ObC ∃b ∈ ObS a ' b,
where a ' b means that a and b are isomorphic objects. A category C is skeletal iff

∀a, b ∈ ObC a ' b ⇒ a = b

6.4. Let f : C → D be an equivalence of categories. If C is skeletal, then f is
monic on objects and morphisms. If D is skeletal, then f is surjective on objects
and morphisms. If C and D are skeletal, then f is an isomorphism.

6.5. Every category has a skeletal model and any two skeletal models are isomor-
phic. Two categories are equivalent iff their skeletal models are isomorphic.

6.6. (Definition) If X is a logos, we shall say that a sub-logos S ⊆ X is a (sub)model
of X if the inclusion S ⊆ X is an equivalence. We say that a logos is minimal or
skeletal if it has no proper (sub)model.

6.7. (Lemma) Let S ⊆ X be model of a logos X. Then the inclusion u : S ⊆ X
admits a retraction r : X → S and there exists an isomorphism α : ur ' 1X such
that α ◦ u = 1u.

6.8. (Notationj) If X be a simplicial set and n ≥ 0, consider the projection

∂ : X∆[n] → X∂∆[n]

defined by the inclusion ∂∆[n] ⊂ ∆[n]. Its fiber at a vertex x ∈ X∂∆[n] is a
simplicial set X〈x〉. If n = 1 we have x = (a, b) ∈ X0 × X0 and X〈x〉 = X(a, b).
The simplicial set X〈x〉 is a Kan complex when X is a logos and n > 0. If n > 0,
we say that two simplices a, b : ∆[n] → X are homotopic with fixed boundary, and
we write a ' b, if we have ∂a = ∂b and a and b are homotopic in the simplicial set
X(∂a) = X(∂b). If a, b ∈ X0, we shall write a ' b to indicate that the vertices a
and b are isomorphic.

6.9. (Proposition) If S is a simplicial subset of a simplicial set X, then for every
simplex x ∈ Xn we shall write ∂x ∈ S to indicate that the map ∂x : ∂∆[n] → X
factors through the inclusion S ⊆ X. If X is a logos, then the simplicial subset S
is a model of X iff

∀n ≥ 0 ∀a ∈ Xn

(
∂a ∈ S ⇒ ∃b ∈ S a ' b

)
.

A logos X is a minimal iff

∀n ≥ 0 ∀a, b ∈ Xn

(
a ' b ⇒ a = b

)
.

6.10. Let f : X → Y be an equivalence of logoi. If X is minimal, then f is monic.
If Y is minimal, then f is a trivial fibration. If X and Y are minimal, then f is an
isomorphism.

6.11. Every logos has a minimal model and any two minimal models are isomor-
phic. Two logoi are equivalent iff their minimal models are isomorphic.

7. Discrete fibrations and covering maps

We introduce a notion of discrete fibration between simplicial sets. It extends the
notion of covering space map and the notion of discrete fibration between categories.
The results of this section are taken from [J2].
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7.1. Recall that a functor p : E → C between small categories is said to be a
discrete fibration, but we shall say a discrete right fibration, if for every object
x ∈ E and every arrow g ∈ C with target p(x), there exists a unique arrow f ∈ E
with target x such that p(f) = g. For example, if el(F ) denotes the category of
elements of a presheaf F ∈ Ĉ, then the natural projection el(F )→ C is a discrete
right fibration. The functor F 7→ el(F ) induces an equivalence between the category
of presheaves Ĉ and the full subcategory of Cat/C spanned by the discrete right
fibrations E → C. Recall that a functor u : A→ B is said to be final, but we shall
say 0-final, if the category b\A defined by the pullback square

b\A

��

// A

u

��
b\B // B

is connected for every object b ∈ B. The category Cat admits a factorisation system
(A,B) in which A is the class of 0-final functors and B is the class of discrete right
fibrations.

7.2. A functor p : E → C is a discrete right fibration iff it is right orthogonal to
the inclusion {n} ⊆ ∆[n] for every n ≥ 0. We shall say that a map of simplicial
sets a discrete right fibration if it is right orthogonal to the inclusion {n} ⊆ ∆[n]
for every n ≥ 0. We shall say that a map of simplicial sets u : A → B is 0-final
if the functor τ1(u) : τ1A → τ1B is 0-final. The category S admits a factorisation
system (A,B) in which A is the class of 0-final maps and B is the class of discrete
right fibrations.

7.3. For any simplicial set B, the functor τ1 : S → Cat induces an equivalence
between the full subcategory of S/B spanned by the discrete right fibrations with
target B and the full subcategory of Cat/B spanned by the discrete right fibrations
with target τ1B. The inverse equivalence associates to a discrete right fibration with
target τ1B its base change along the canonical map B → τ1B.

7.4. Dually, a functor p : E → C is said to be a discrete opfibration, but we shall
say a discrete left fibration, if for every object x ∈ E and every arrow g ∈ C with
source p(x), there exists a unique arrow f ∈ E with source x such that p(f) = g. A
functor p : E → C is a discrete left fibration iff the opposite functor po : Eo → Bo

is a discrete right fibration. Recall that a functor u : A → B is said to be initial,
but we shall say 0-initial, if the category A/b defined by the pullback square

A/b

��

// A

u

��
B/b // B

is connected for every object b ∈ B. The category Cat admits a factorisation
system (A,B) in which A is the class of 0-initial functors and B is the class of
discrete left fibrations.
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7.5. A functor p : E → C is a discrete left fibration iff it is right orthogonal to the
inclusion {0} ⊆ ∆[n] for every n ≥ 0. We say that a map of simplicial sets is a
discrete left fibration if it is right orthogonal to the inclusion {0} ⊆ ∆[n] for every
n ≥ 0. We say that a map of simplicial sets u : A → B is 0-initial if the functor
τ1(u) : τ1A→ τ1B is 0-initial. The category S admits a factorisation system (A,B)
in which A is the class of 0-initial maps and B is the class of discrete left fibrations.

7.6. For any simplicial set B, the functor τ1 : S → Cat induces an equivalence
between the full subcategory of S/B spanned by the discrete left fibrations with
target B and the full subcategory of Cat/B spanned by the discrete left fibrations
with target τ1B. The inverse equivalence associates to a discrete left fibration with
target τ1B its base change along the canonical map B → τ1B.

7.7. We say that functor p : E → C is a 0-covering if it is both a discrete fibration
and a discrete opfibration. For example, if F is a presheaf on C, then the natural
projection el(F ) → C is a 0-covering iff the functor F takes every arrow in C to
a bijection. If c : C → π1C is the canonical functor, then the functor F 7→ el(Fc)
induces an equivalence between the category of presheaves on π1C and the full
subcategory of Cat/C spanned by the 0-coverings E → C. We say that a functor
u : A→ B is 0-connected if the functor π1(u) : π1A→ π1B is essentially surjective
and full. The category Cat admits a factorisation system (A,B) in which A is the
class of 0-connected functors and B is the class of 0-coverings.

7.8. We say that a map of simplicial sets E → B is a 0-covering if it is a discrete
left fibration and a discrete right fibration. A map is a 0-covering if it is right
orthogonal to every map ∆[m] → ∆[n] in ∆. Recall that a map of simplicial sets
is said to be 0-connected if its homotopy fibers are connected. A map u : A → B
is 0-connected iff the functor π1(u) : π1A → π1B is 0-connected. The category S
admits a factorisation system (A,B) in which A is the class of 0-connected maps
and B is the class of 0-coverings.

7.9. If B is a simplicial set, then the functor π1 : S→ Gpd induces an equivalence
between the category of 0-coverings of B and the category of 0-coverings of π1B.
The inverse equivalence associates to a 0-covering with target π1B its base change
along the canonical map B → π1B.

8. Left and right fibrations

We introduce the notions of left fibration and of right fibration. We also introduce
the notions of initial map and of final map. The right fibrations with a fixed
codomain B are the prestacks over B. The results of the section are taken from
[J2].

8.1. Recall [GZ] that a map of simplicial sets is said to be a Kan fibration if it has
the right lifting property with respect to every horn inclusion hkn : Λk[n] ⊂ ∆[n]
(n > 0 and k ∈ [n]). Recall that a map of simplicial sets is said to be anodyne if it
belongs to the saturated class generated by the inclusions hkn. A map is anodyne iff
it is an acyclic cofibration in the model category (S,Who). Hence the category S
admits a weak factorisation system (A,B) in which A is the class of anodyne maps
and B is the class of Kan fibrations.
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8.2. We say that a map of simplicial sets is a right fibration if it has the right lifting
property with respect to the horn inclusions hkn : Λk[n] ⊂ ∆[n] with 0 < k ≤ n.
Dually, we say that a map is a left fibration if it has the right lifting property with
respect to the inclusions hkn with 0 ≤ k < n. A map p : X → Y is a left fibration
iff the opposite map po : Xo → Y o is a right fibration. A map is a Kan fibration iff
it is both a left and a right fibration.

8.3. Our terminology is consistent with 7.2: every discrete right (resp. left) fibra-
tion is a right (resp. left) fibration.

8.4. The fibers of a right (resp. left) fibration are Kan complexes. Every right
(resp. left) fibration is a pseudo-fibration.

8.5. A functor p : E → B is a right fibration iff it is 1-fibration.

8.6. A map of simplicial sets f : X → Y is a right fibration iff the map

〈i1, f〉 : XI → Y I ×Y X
obtained from the square

XI
Xi1 //

fI

��

X

f

��
Y I

Y i1 // Y

is a trivial fibration, where i1 denotes the inclusion {1} ⊂ I. Dually, a map f :
X → Y is a left fibration iff the map 〈i0, f〉 is a trivial fibration, where i0 denotes
the inclusion {0} ⊂ I.

8.7. A right fibration is discrete iff it is right orthogonal the inclusion hkn : Λk[n] ⊂
∆[n] for every 0 < k ≤ n. A functor A → B in Cat is a right fibration iff it is a
Grothendieck fibration whose fibers are groupoids.

8.8. We say that a map of simplicial sets is right anodyne if it belongs to the sat-
urated class generated by the inclusions hkn : Λk[n] ⊂ ∆[n] with 0 < k ≤ n. Dually,
we say that a map is left anodyne if it belongs to the saturated class generated by
the inclusions hkn with 0 ≤ k < n. A map of simplicial sets u : A → B is left
anodyne iff the opposite map uo : Ao → Bo is right anodyne. The category S
admits a weak factorisation system (A,B) in which A is the class of right (resp.
left) anodyne maps and B is the class of right (resp. left) fibrations.

8.9. If the composite of two monomorphisms u : A → B and v : B → C. is left
(resp. right) anodyne and u is left (resp. right) anodyne, then v is left (resp. right)
anodyne.

8.10. Let E be a category equipped with a classW of ”weak equivalences” satisfying
”three-for-two”. We say that a class of maps M ⊆ E is invariant under weak
equivalences if for every commutative square

A

u

��

// A′

u′

��
B // B′

in which the horizontal maps are weak equivalences, u ∈M⇔ u′ ∈M.



QUASI-CATEGORIES 25

8.11. We say that a map of simplicial sets u : A→ B is final
if it admits a factorisation u = wi : A → B′ → B with i a right anodyne map

and w a weak categorical equivalence. The class of final maps is invariant under
weak categorical equivalences. A monomorphism is final iff it is right anodyne. The
base change of a final map along a left fibration is final. A map u : A→ B is final iff
the simplicial set L×B A is weakly contractible for every left fibration L→ B. For
each vertex b ∈ B, let us choose a factorisation 1→ Lb→ B of the map b : 1→ B
as a left anodyne map 1 → Lb followed by a left fibration Lb → B. Then a map
u : A → B is final iff the simplicial set Lb ×B A is weakly contractible for every
vertex b : 1 → B. When B is a logos, we can take Lb = b\B (see 9.9) and a map
u : A→ B is final iff the simplicial set b\A defined by the pullback square

b\A //

��

A

u

��
b\B // B

is weakly contractible for every object b ∈ B.

8.12. Dually, we say that a map of simplicial sets u : A → B is initial if the
opposite map uo : Ao → Bo is final. A map u : A → B is initial iff it admits
a factorisation u = wi : A → B′ → B with i a left anodyne map and w a weak
categorical equivalence. The class of initial maps is invariant under weak categorical
equivalences. A monomorphism is initial iff it is left anodyne. The base change of
an initial map along a right fibration is initial. A map u : A → B is initial iff the
simplicial set R ×B A is weakly contractible for every right fibration R → B. For
each vertex b ∈ B, let us choose a factorisation 1→ Rb→ B of the map b : 1→ B
as a right anodyne map 1→ Rb followed by a right fibration Rb→ B. Then a map
u : A → B is initial iff the simplicial set Rb ×B A is weakly contractible for every
vertex b : 1 → B. When B is a logos, we can take Rb = B/b (see 9.8) and a map
u : A→ B is initial iff the simplicial set b\A defined by the pullback square

A/b //

��

A

u

��
B/b // B

is weakly contractible for every object b ∈ B.

8.13. The base change of a weak categorical equivalence along a left or a right
fibration is a weak categorical equivalence.

8.14. If f : X → Y is a right fibration, then so is the map

〈u, f〉 : XB → Y B ×Y A XA

obtained from the square

XB //

��

XA

��
Y B // Y A,
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for any monomorphism of simplicial sets u : A→ B. Moreover, the map 〈u, f〉 is a
trivial fibration if u is right anodyne. There are dual results for left fibrations and
left anodyne maps.

8.15. To every left fibration X → B we can associate a functor

D(X) : τ1B → Ho(S,Who)

called the homotopy diagram of X. To see, we first observe that the category S/B is
enriched over S; let us denote by [X,Y ] the simplicial set of maps X → Y between
two objects of S/B. The simplicial set [X,Y ] is a Kan complex when the structure
map Y → B is a left or a right fibration. For every vertex b ∈ B0, the map b : 1→ B
is an object of S/B and the simplicial set [b,X] is the fiber X(b) of X at b. Let us
put D(X)(b) = [b,X]. let us see that this defines a functor

D(X) : τ1B → Ho(S,Who)

called the homotopy diagram of X. If f : a → b is an arrow in B, then the map
f : I → B is an object of S/B. From the inclusion i0 : {0} → I we obtain a map
i0 : a→ f and the inclusion i1 : {1} → I a map i1 : b→ f . We thus have a diagram
of simplicial sets

[a,X] [f,X]
p0oo p1 // [b,X],

where p0 = [i0, X] and p1 = [i1, X]. The map p0 is a trivial fibration by 8.14, since
the structure map X → B is a left fibration and i0 is left anodyne. It thus admits
a section s0. By composing p1 with s0 we obtain a map

f! : X(a)→ X(b)

well defined up to homotopy. The homotopy class of f only depends on the ho-
motopy class of f . Moreover, if g : b → c, then the map g!f! is homotopic to the
map (gf)!. This defines the functor D(X) if we put D(X)(a) = X(a) = [a,X] and
D(X)(f) = f!. Dually, to a right fibration X → B we associate a functor

D(X) : τ1Bo → Ho(S,Who)

called the (contravariant) homotopy diagram of X. If f : a → b is an arrow in B,
then the inclusion i1 : a → f is right anodyne. It follows that the map p1 in the
diagram

[a,X] [f,X]
p0oo p1 // [b,X],

is a trivial fibration. It thus admits a section s1. By composing p0 with s1 we
obtain a map

f∗ : X(b)→ X(a)

well defined up to homotopy. This defines the functor D(X) if we put D(X)(a) =
X(a) = [a,X] and D(X)(f) = f∗.

9. Join and slice

For any object b of a category C there is a category C/b of objects of C over
b. Similarly, for any vertex b of a simplicial set X there is a simplicial set X/b.
More generally, we construct a simplicial set X/b for any map of simplicial sets
b : B → X. The construction uses the join of simplicial sets. The results of this
section are taken from [J1] and [J2].
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9.1. The join of two categories A and B is the category C = A ? B obtained as
follows: Ob(C) = Ob(A)tOb(B) and for any pair of objects x, y ∈ Ob(A)tOb(B)
we have

C(x, y) =


A(x, y) if x ∈ A and y ∈ A
B(x, y) if x ∈ B and y ∈ B

1 if x ∈ A and y ∈ B
∅ if x ∈ B and y ∈ A.

Composition of arrows is obvious. Notice that the category A ? B is a poset if A
and B are posets: it is the ordinal sum of the posets A and B. The operation
(A,B) 7→ A ? B is functorial and coherently associative. It defines a monoidal
structure on Cat, with the empty category as the unit object. The monoidal
category (Cat, ?) is not symmetric but there is a natural isomorphism

(A ? B)o = Bo ? Ao.

The category 1 ? A is called the projective cone with base A and the category
A ? 1 the inductive cone with cobase A. The object 1 is terminal in A ? 1 and
initial in 1 ? A. The category A ? B is equipped with a natural augmentation
A ? B → I obtained by joining the functors A → 1 and B → 1. The resulting
functor ? : Cat×Cat→ Cat/I is right adjoint to the functor

i∗ : Cat/I → Cat×Cat,

where i denotes the inclusion {0, 1} = ∂I ⊂ I,.

9.2. The monoidal category (Cat, ?) is not closed. But for any category B ∈ Cat,
the functor

(−) ? B : Cat→ B\Cat
which associates to A ∈ Cat the inclusion B ⊆ A ? B has a right adjoint. The
right adjoint takes a functor b : B → X to a category that we shall denote by X/b.
We shall say that X/b is the lower slice of X by b. For any category A, there is a
bijection between the functors A→ X/b and the functors A?B → X which extend
b along the inclusion B ⊆ A ? B,

B

��

b

##G
GG

GG
GG

GG

A ? B // X.

In particular, an object 1 → X/b is a functor c : 1 ? B → X which extends b; it is
a projective cone with base b in X.

9.3. Dually, the functor A ? (−) : Cat→ A\Cat has a right adjoint which takes a
functor a : A→ X to a category that we shall denote a\X. We shall say that a\X
is the upper slice of X by a. An object 1→ a\X is a functor c : A ? 1→ C which
extends a; it is an inductive cone with cobase a.

9.4. We shall denote by ∆+ the category of all finite ordinals and order preserving
maps, including the empty ordinal 0. We shall denote the ordinal n by n, so that
we have n = [n− 1] for n ≥ 1. We may occasionally denote the ordinal 0 by [−1].
Notice the isomorphism of categories 1?∆ = ∆+. The ordinal sum (m,n) 7→ m+n is
functorial with respect to order preserving maps. This defines a monoidal structure
on ∆+,

+ : ∆+ ×∆+ → ∆+,
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with 0 as the unit object.

9.5. Recall that an augmented simplicial set is defined to be a contravariant functor
∆+ → Set. We shall denote by S+ the category of augmented simplicial sets. By
a general procedure due to Brian Day [Da], the monoidal structure of ∆+ can be
extended to S+ as a closed monoidal structure

? : S+ × S+ → S+

with 0 = y(0) as the unit object. We call X?Y the join of the augmented simplicial
sets X and Y . We have

(X ? Y )(n) =
⊔

i+j=n

X(i)× Y (j)

for every n ≥ 0.

9.6. From the inclusion t : ∆ ⊂ ∆+ we obtain a pair of adjoint functors

t∗ : S+ ↔ S : t∗.

The functor t∗ removes the augmentation of an augmented simplicial set. The
functor t∗ gives a simplicial set A the trivial augmentation A0 → 1. Notice that
t∗(∅) = 0 = y(0), where y is the Yoneda map ∆+ → S+. The functor t∗ is fully
faithful and we shall regard it as an inclusion t∗ : S ⊂ S+. The operation ? on S+

induces a monoidal structure on S,

? : S× S→ S.

By definition, t∗(A ? B) = t∗(A) ? t∗(B) for any pair A,B ∈ S. We call A ? B the
join of the simplicial sets A and B. It follows from the formula above, that we have

(A ? B)n = An tBn t
⊔

i+1+j=n

Ai ×Aj .

for every n ≥ 0. Notice that we have

A ? ∅ = A = ∅ ? A

for any simplicial set A, since t∗(∅) = 0 is the unit object for the operation ? on
S+. Hence the empty simplicial set is the unit object for the join operation on S.
The monoidal category (S, ?) is not symmetric but there is a natural isomorphism

(A ? B)o = Bo ? Ao.

For every pair m,n ≥ 0 we have

∆[m] ?∆[n] = ∆[m+ 1 + n]

since we have [m] + [n] = [m+ n+ 1]. In particular,

1 ? 1 = ∆[0] ?∆[0] = ∆[1] = I.

The simplicial set 1 ? A is the projective cone with base A A and the simplicial set
A ? 1 the inductive cone with cobase A.
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9.7. If A and B are simplicial sets, then the join of the maps A→ 1 and B → 1 is
a canonical map A ? B → I. The resulting functor

? : S× S→ S/I

is right adjoint to the functor i∗ : S/I → S × S = S/∂I, where i denotes the
inclusion {0, 1} = ∂I ⊂ I. This gives another description of the join operation for
simplicial sets. It follows from this description that we have

A ? B = (A ? 1)×I (1 ? B).

9.8. The monoidal category (S, ?) is not closed. But for any simplicial set B, the
functor

(−) ? B : S→ B\S
which associates to a simplicial set A the inclusion B ⊆ A ? B has a right adjoint.
The right adjoint takes a map of simplicial set b : B → X to a simplicial set that
we shall denote by X/b. We shall say that it is the lower slice of X by b. For any
simplicial set A, there is a bijection between the maps A → X/b and the maps
A ? B → X which extend b along the inclusion B ⊆ A ? B,

B

��

b

##G
GG

GG
GG

GG

A ? B // X.

In particular, a vertex 1→ X/b is a map c : 1 ? B → X which extends the map b;
it a projective cone with base b in X. The simplicial set X/b is a logos when X is a
logos. If B = 1 and b ∈ X0, then a simplex ∆[n]→ X/b is a map x : ∆[n+ 1]→ X
such that x(n+ 1) = b.

9.9. Dually, for any simplicial set A, the functor A ? (−) : S → A\S has a right
adjoint which takes a map a : A→ X to a simplicial set that we shall denote a\X.
We shall say that it is the upper slice of X by a. A vertex 1 → a\X is a map
c : A ? 1→ X which extends the map a; it is an inductive cone with cobase a in X.
The simplicial set a\X is a logos when X is a logos. If A = 1 and a ∈ X0, then a
simplex ∆[n]→ a\X is a map x : ∆[n+ 1]→ X such that x(0) = a.

9.10. If A, B and X are simplicial sets, we obtain a natural inclusion A ? B ⊆
A ? X ? B by joining the maps 1A : A→ A, ∅ → X and 1B : B → B. The functor

A ? (−) ? B : S→ (A ? B)\S
which associates to X the inclusion A ? B ⊆ A ? X ? B has a right adjoint for any
pair A and B. The right adjoint takes a map of simplicial sets f : A ? B → X
to a simplicial set that we shall denote Fact(f,X). . By construction, a vertex
1→ Fact(f,X) is a map g : A ? 1 ? B → X which extends f . When A = B = 1, it
is a factorisation of the arrow f : I → X. If f is an arrow a→ b then Fact(f,X) =
f\(X/b) = (a\X)/f .

9.11. Recall that a model structure on a category E induces a model structure
on the slice category E/B for each object B ∈ E . In particular, we have a model
category (B\S,Wcat) for each simplicial set B. The pair of adjoint functors X 7→
X ? B and (X, b) 7→ X/b is a Quillen pair between the model categories (S,Wcat)
and (B\S,Wcat).
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9.12. If u : A→ B and v : S → T are two maps in S, we shall denote by u ?′ v the
map

(A ? T ) tA?S (B ? S)→ B ? T

obtained from the commutative square

A ? S

A?v

��

u?S // B ? S

B?v

��
A ? T

u?T // B ? T.

If u is an inclusion A ⊆ B and v an inclusion S ⊆ T , then the map u ?′ v is the
inclusion

(A ? T ) ∪ (B ? S) ⊆ B ? T.

If u : A→ B and v : S → T are monomorphisms of simplicial sets, then
• u ?′ v is mid anodyne if u is right anodyne or v left anodyne;
• u ?′ v is left anodyne if u is anodyne;
• u ?′ v is right anodyne if v is anodyne.

9.13. [J1] [J2] (Lemma) Suppose that we have a commutative square

({0} ? T ) ∪ (I ? S)

��

u // X

p

��
I ? T

v // Y,

where p is a mid fibration between logoi. If the arrow u(I) ∈ X is invertible, then
the square has a diagonal filler.

9.14. [J1] [J2] Suppose that we have a commutative square

Λ0[n]

��

x // X

p

��
∆[n] // Y,

in which p is a mid fibration between logoi. If n > 1 and the arrow x(0, 1) ∈ X is
invertible, then the square has a diagonal filler. This follows from the lemma above
if we use the decompositions ∆[n] = I ?∆[n− 2] and Λ0[n] = ({0} ?∆[n− 2])∪ (I ?
∂∆[n− 2]).

9.15. [J1] [J2] A logos X is a Kan complex iff the category hoX is a groupoid.
This follows from the result above.

9.16. The simplicial set X/b depends functorially on the map b : B → X. More
precisely, to every commutative diagram

B

b

��

A
uoo

a

��
X

f // Y

we can associate a map
f/u : X/b→ Y/a.



QUASI-CATEGORIES 31

By definition. if x : ∆[n] → X/b, then the simplex (f/u)(x) : ∆[n] → Y/a is
obtained by composing the maps

∆[n] ? A
∆[n]?u // ∆[n] ? B x // X

f // Y.

9.17. A map u : (M,p)→ (N, q) in the category S/B is a contravariant equivalence
iff the map 1X/u : dq\X → dp\X is an equivalence of logoi for any map d : B → X
with values in a logos X. In particular, a map u : A → B is final iff the map
1X/u : d\X → du\X is an equivalence of logoi for any map d : B → X with values
in a logos X.

9.18. For any chain of three maps

S
s // T

t // X
f // Y

we shall denote by 〈s, t, f〉 the map

X/t→ Y/ft×Y/fts X/ts

obtained from the commutative square

X/t

��

// X/ts

��
Y/ft // Y/fts,

Let us suppose that s is monic. Then the map 〈s, t, f〉 is a right fibration when
f is a mid fibration, a Kan fibration when f is a left fibration, and it is a trivial
fibration in each of the following cases:

• f is a trivial fibration;
• f is a right fibration and s is anodyne:
• f is a mid fibration and s is left anodyne.

9.19. We now consider another notion of join. The fat join of two simplicial sets
A and B is the simplicial set A �B defined by the pushout square

(A× 0×B) t (A× 1×B) //

��

A tB

��
A× I ×B // A �B.

We have A t B ⊆ A � B and there is a canonical map A � B → I. This defines a
continuous functor � : S× S→ S/I and we have

X � Y = (X � 1)×I (1 � Y ).

For a fixed B ∈ S, the functor (−) � B : S → B\S which takes a simplicial set
A to the inclusion B ⊆ A � B has a right adjoint. The right adjoint takes a map
b : B → X to a simplicial set that we shall denote by X//b; it is the fat lower slice
of X by b. If b ∈ X0, it is the fiber of the target map XI → X at b. The simplicial
set X//b is a logos when X is a logos. Dually, there is also a fat upper slice a\\X
for any map of simplicial sets a : A → X. The simplicial set a\\X is a logos when
X is a logos.
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9.20. For any pair of simplicial sets A and B, there is a unique map

θAB : A �B → A ? B

which fills diagonally the square

A tB

��

// A ? B

��
A �B // I.

It is weak categorical equivalence. By adjointness, we obtain a map

ρ(b) : X/b→ X//b

for any simplicial set X and any map b : B → X. The map ρ(b) is an equivalence
of logoi when X is a logos.

9.21. The pair of adjoint functors X 7→ X � B and (X, b) 7→ X//b is a Quillen
adjoint pair between the model categories (S,Wcat) and (B\S,Wcat).

10. Initial and terminal objects

In this section, we introduce inital and terminal objects. The results of the
section are taken from [J1] and [J2].

10.1. We say that an object a in a logos X is terminal if it satisfies the following
equivalent conditions:

• the simplicial set X(x, a) is contractible for every x ∈ X0;
• every simplical sphere x : ∂∆[n]→ X with target x(n) = a can be filled;
• the projection X/a → X(resp. X//a → X) is a weak categorical equiva-

lence;
• the projection X/a→ X (resp. X//a→ X) is a trivial fibration.

10.2. Dually, we say that an object a in a logos X is initial if it satisfies the
following equivalent conditions:

• the simplicial set X(a, x) is contractible for every x ∈ X0;
• every simplical sphere x : ∂∆[n]→ X with source x(0) = a can be filled;
• the projection a\X → X is a weak categorical equivalence (resp. a trivial

fibration);
• the projection a\\X → X is a weak categorical equivalence (resp. a trivial

fibration).

10.3. The full simplicial subset spanned by the terminal (resp. initial) objects of
a logos is a contractible Kan complex when non-empty.

10.4. More generally, we say that a vertex a ∈ A in a simplicial set A is terminal if
the map a : 1→ A is final (or equivalently right anodyne). The notion of terminal
vertex is invariant under weak categorical equivalence. More precisely, if u : A→ B
is a weak categorical equivalence, then a vertex a ∈ A is terminal in A iff the vertex
u(a) is terminal in B. Dually, we say that a vertex a ∈ A in a simplicial set A is
initial if the opposite vertex ao ∈ Ao is terminal. A vertex a ∈ A in a simplicial set
A is initial iff the map a : 1→ A is initial (or equivalently left anodyne).
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10.5. If A is a simplicial set, then a vertex a ∈ A which is terminal in A is also
terminal in the category τ1A. The converse is true when A admits a terminal vertex.

10.6. If A is a simplicial set, then the vertex 1a ∈ A/a is terminal in A/a for any
vertex a ∈ A. Similarly for the vertex 1a ∈ A//a.

10.7. If B is a simplicial set, then a vertex b ∈ B is terminal iff the inclusion
E(b) ⊆ E is a weak homotopy equivalence for every left fibration p : E → B, where
E(b) = p−1(b). Recall from 12.1 that the category S/B is enriched over S. For any
object E of S/B, let us denote by ΓB(E) the simplicial set [B,E] of global sections
of E. Then a vertex b ∈ B is terminal iff the canonical projection ΓB(E) → E(b)
is a homotopy equivalence for every right fibration E → B,

10.8. Recall that a pointed category is a category enriched over the category of
pointed sets. A category C is pointed iff the projection CI → C × C admits a
section z : C × C → CI . The section is unique when it exists. In this case it
associates to a pair of objects a, b ∈ C the null arrow 0 : a → b. In a pointed
category, an object is initial iff it is terminal. Recall that a null object in a category
C is an object 0 ∈ C which is both initial and final. A category C with a null object
0 ∈ C is pointed; the null arrow 0 = a → b between two objects of C is obtained
by composing the arrows a→ 0→ b.

10.9. We say that a logos X is pointed if the projection XI → X × X admits a
section X ×X → XI . The section is homotopy unique when it exists. In this case
it associates to a pair of objects a, b ∈ X a null arrow 0 : a → b. The homotopy
category of a pointed logos X is pointed. In a pointed logos, an object is initial
iff it is terminal. A null object in a logos X is defined to be an object 0 ∈ X
which is both initial and terminal. A logos with null objects is pointed; the null
arrow 0 = a → b between two objects of X is obtained by composing the arrows
a→ 0→ b.

11. Homotopy factorisation systems

The notion of homotopy factorisation system was introduced by Bousfield in his
work on localisation. We introduce a more general notion and give examples. Most
results of the section are taken from [J2].

11.1. Let E be a category equipped with a class of maps W satisfying ”three-for-
two”. We shall say that a class of mapsM⊆ E is invariant under weak equivalences
if for every commutative square

A

u

��

// A′

u′

��
B // B′

in which the horizontal maps are in W, we have u ∈M⇔ u′ ∈M.
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11.2. We shall say that a class of mapsM in a category E has the right cancellation
property if the implication

vu ∈M and u ∈M ⇒ v ∈M

is true for any pair of maps u : A → B and v : B → C. Dually, we shall say that
M has the left cancellation property if the implication

vu ∈M and v ∈M ⇒ u ∈M

is true for any pair of maps u : A→ B and v : B → C.

11.3. If E is a Quillen model category, we shall denote by Ef (resp. Ec) the full
subcategory of fibrant (resp. cofibrant) objects of E and we shall put Efc = Ef ∩Ec.
For any class of maps M⊆ E we shall put

Mf =M∩ Ef , Mc =M∩ Ec and Mfc =M∩ Efc.

11.4. Let E be a model category with model structure (C,W,F). We say that a
pair (A,B) of classes of maps in E is a homotopy factorisation system if the following
conditions are satisfied:

• the classes A and B are invariant under weak equivalences;
• the pair (Afc ∩ C,Bfc ∩ F) is a weak factorisation system in Efc;
• the class A has the right cancellation property;
• the class B has the left cancellation property.

The last two conditions are equivalent in the presence of the others. The class A
is said to be the left class of the system and B to be the right class. We say that a
system (A,B) is uniform if the pair (A∩C,B∩F) is a weak factorisation system.

11.5. The notions of homotopy factorisation systems and of factorisation systems
coincide if the model structure is discrete (ie whenW is the class of isomorphisms).
The pairs (E ,W) and (W, E) are trivial examples of homotopy factorisation systems.
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11.6. A homotopy factorisation system (A,B) is determined by each of the follow-
ing 24 classes,

A Ac Af Afc

A ∩ C Ac ∩ C Af ∩ C Afc ∩ C

A ∩ F Ac ∩ F Af ∩ F Afc ∩ F

B Bc Bf Bfc

B ∩ C Bc ∩ C Bf ∩ C Bfc ∩ C

B ∩ F Bc ∩ F Bf ∩ F Bfc ∩ F .

This property is useful in specifying a homotopy factorisation system.

11.7. Every homotopy factorisation system in a proper model category is uniform.
This is true in particular for the homotopy factorisations systems in the model
categories (S,Who) and (Cat, Eq).

11.8. If E is a model category we shall denote by Ho(M) the image of a class
of maps M ⊆ E by the canonical functor E → Ho(E). If (A,B) is a homotopy
factorisation system E , then the pair (Ho(A),Ho(B)) is a weak factorisation system
in Ho(E). Notice that the pair (Ho(A),Ho(B)) is not a factorisation system in
general. The class Ho(A) has the right cancellation property and the class Ho(B)
the left cancellation property. The system (A,B) is determined by the system
(Ho(A),Ho(B)).

11.9. The intersection of the classes of a homotopy factorisation system is the class
of weak equivalences. Each class of a homotopy factorisation system is closed under
composition and retracts. The left class is closed under homotopy cobase change
and the right class is closed under homotopy base change.

11.10. Let (A,B) be a homotopy factorisation system in a model category E . Then
we have u t p for every u ∈ Ac ∩ C and p ∈ Bf ∩ F . If A ∈ Ec and X ∈ Ef , then
every map f : A→ X admits a factorisation f = pu with u ∈ Ac∩C and p ∈ Bc∩F .

11.11. If E is a model category, then so is the category E/C for any object C ∈ E .
IfM is a class of maps in E , let us denote byMC the class of maps in E/C whose
underlying map belongs to M. If (A,B) is a homotopy factorisation system in E
and C is fibrant, then the pair (AC ,BC) is a homotopy factorisation system in E/C.
This true without restriction on C when the system (A,B) is uniform.
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11.12. Dually, if E is a model category, then so is the category C\E for any object
C ∈ E . IfM is a class of maps in E , let us denote by CM the class of maps in C\E
whose underlying map belongs toM. If (A,B) is a homotopy factorisation system
in E and C is cofibrant, then the pair (CA,CB) is a homotopy factorisation system
in C\E . This is true without restriction C when the system (A,B) is uniform.

11.13. The model category (Cat, Eq) admits a (uniform) homotopy factorisation
system (A,B) in which A is the class of essentially surjective functors and B the
class of fully faithful functors.

11.14. We call a functor u : A→ B a localisation (resp. iterated localisation) iff it
admits a factorisation u = wu′ : A → B′ → B with u′ a strict localisation (resp.
iterated strict localisation) and w an equivalence of categories. The model category
(Cat, Eq) admits a homotopy factorisation system (A,B) in which A is the the
class of iterated localisations and B is the class of conservative functors.

11.15. The model category (Cat, Eq) admits a homotopy factorisation system
(A,B) in which A the class of 0-final functors. A functor u : A → B belongs to B
iff it admits a factorisation u = pw : A → E → B with w an equivalence and p a
discrete right fibration. Dually, the model category (Cat, Eq) admits a homotopy
factorisation system (A′,B′) in which A′ is the class of 0-initial functors. A functor
u : A → B belongs to B iff it admits a factorisation u = pw : A → E → B with w
an equivalence and p a discrete left fibration.

11.16. The model category (Cat, Eq) admits a homotopy factorisation system
(A,B) in which A the class of 1-final functors. A functor u : A → B belongs to B
iff it admits a factorisation u = pw : A → E → B with w an equivalence and p a
1-fibration.

11.17. Recall that a functor u : A → B is said to be 0-connected if the functor
π1(u) : π1A → π1B is essentially surjective and full . The category Cat admits
a homotopy factorisation system (A,B) in which A is the class of 0-connected
functors. A functor u : A → B belongs to B iff it admits a factorisation u = pw :
A→ E → B with w an equivalence and p a 0-covering,

11.18. We say that a map of simplicial sets
is homotopy monic if its homotopy fibers are empty or contractible. We say

that a map of simplicial sets is homotopy surjective if its homotopy fibers are non-
empty. A map u : A→ B is homotopy surjective iff the map π0(u) : π0A→ π0B is
surjective. The model category (S,Who) admits a uniform homotopy factorisation
system (A,B) in which A is the class of homotopy surjections and B the class of
homotopy monomorphisms.

11.19. Recall from 1.13 that a map of simplicial sets u : A → B is said to be
essentially surjective if the map τ0(u) : τ0(A) → τ0(B) is surjective. The model
category (S,Wcat) admits a (non-uniform) homotopy factorisation system (A,B)
in which A is the class of essentially surjective maps. A map in the class B is said
to be fully faithful. A map between logoi f : X → Y is fully faithful iff the map
X(a, b) → Y (fa, fb) induced by f is a weak homotopy equivalence for every pair
a, b ∈ X0.
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11.20. We say that a map of simplicial sets u : A → B is conservative if the
functor τ1(u) : τ1A → τ1B is conservative. The model category (S,Wcat) admits
a (non-uniform) homotopy factorisation system (A,B) in which B is the class of
conservative maps. A map in the class A is an iterated homotopy localisation. See
19.3 for this notion.

11.21. The model category (S,Wcat) admits a uniform homotopy factorisation
system (A,B) in which A is the class of final maps. A map p : X → Y belongs
to B iff it admits a factorisation p′w : X → X ′ → Y with p′ a right fibration
and w a weak categorical equivalence. The intersection B ∩ F is the class of right
fibrations and the intersection A ∩ C the class of right anodyne maps. Dually, the
model category (S,Wcat) admits a uniform homotopy factorisation system (A,B)
in which A is the class of initial maps.

11.22. The model category (S,Wcat) admits a uniform homotopy factorisation
system (A,B) in which A is the class of weak homotopy equivalences. A map
p : X → Y belongs to B iff it admits a factorisation p′w : X → X ′ → Y with p′ a
Kan fibration and w a weak categorical equivalence. The intersection B ∩ F is the
class of Kan fibrations and the intersection A ∩ C the class of anodyne maps.

11.23. Let (A,B) be a homotopy factorisation system in a model category E . Sup-
pose that we have a commutative cube

A0
//

��

  B
BB

BB
BB

B C0

!!C
CC

CC
CC

C

��

B0

��

// D0

��

A1

  B
BB

BB
BB

B
// C1

!!C
CC

CC
CC

C

B1
// D1.

in which the top and the bottom faces are homotopy cocartesian. If the arrows
A0 → A1, B0 → B1 and C0 → C1 belong to A, then so does the arrow D0 → D1.

11.24. [JT3] If n ≥ −1, we shall say that a simplicial set X is a n-object if we have
πi(X,x) = 1 for every x ∈ X and every i > n. If n = −1, this means that X is
contractible or empty. If n = 0, this means that X is is homotopically equivalent to
a discrete simplicial set. A Kan complex X is a n-object iff every simplicial sphere
∂∆[m] → X with m > n + 1 has a filler. We say that a map of simplicial sets
f : X → Y is a n-cover if its homotopy fibers are n-objects. If n = −1, this means
that f is homotopy monic. A Kan fibration is a n-cover iff it has the right lifting
property with respect to the inclusion ∂∆[m] ⊂ ∆[m] for every m > n + 1. We
shall say that a simplicial set X is n-connected if X 6= ∅ and we have πi(X,x) = 1
for every x ∈ X and every i ≤ n. If n = −1, this means that X 6= ∅. If n = 0, this
means that X is connected. We shall say that a map f : X → Y is n-connected
if its homotopy fibers are n-connected. If n = −1, this means that f is homotopy
surjective. A map f : X → Y is n-connected iff the map πi(X,x) → πi(Y, fx)
induced by f is bijective for every 0 ≤ i ≤ n and x ∈ X and a surjection for
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i = n + 1. If An is the class of n-connected maps and Bn the class of n-covers,
then the pair (An,Bn) is a uniform homotopy factorisation system on the model
category (S,Who). We say that it is the n-factorisation system on (S,Who).

11.25. A simplicial set X is a n-object iff the diagonal map X → X×X is (n−1)-
cover (if n = 0 this means that the diagonal is homotopy monic). A simplicial
set X is a n-connected iff it is non-empty and the diagonal X → X × X is a
(n− 1)-connected. (if n = 0 this means that the diagonal is homotopy surjective).

11.26. The model category (S,Wcat) admits a uniform homotopy factorisation
system (A,B) in which A is the class of n-connected maps. The intersection B ∩F
is the class of Kan n-covers.

11.27. If n ≥ −1, we shall say that a right fibration f : X → Y is a right n-
fibration if its fibers are n-objects. If n = −1, this means that f is fully faithful. If
n = 0, this means that f is fiberwise homotopy equivalent to a right covering. A
right fibration is a right n-fibration iff it has the right lifting property with respect
to the inclusion ∂∆[m] ⊂ ∆[m] for every m > n+1. The model category (S,Wcat)
admits a uniform homotopy factorisation system (A,B) in which the intersection
B ∩F is the class of right n-fibrations. We say that a map in the class A is n-final.
A map between logoi u : A→ B is n-final iff the simplicial set b\A is n-connected
for every object b ∈ B. indexAfibration!right n-fibration—textbf

11.28. Let F : E ↔ E ′ : G be a Quillen pair between two model categories. If
(A,B) is a homotopy factorisation system in E and (A′,B′) a homotopy factorisation
system in E ′, then the conditions F (Ac) ⊆ A′c and G(B′f ) ⊆ Bf are equivalent. If
the pair (F,G) is a Quillen equivalence, then the conditions Ac = F−1(A)c and
B′f = G−1(B)f are equivalent. In this case we shall say that (A′,B′) is obtained by
transporting (A,B) across the Quillen equivalence. Every homotopy factorisation
system can be transported across a Quillen equivalence.

11.29. We shall say that a simplicial functor f : X → Y in SCat is conservative if
the functor ho(f) : hoX → hoY is conservative. The Bergner model category SCat
admits a (non-uniform) homotopy factorisation system in which the right class is
the class of conservative functors. A map in the left class is an iterated Dwyer-Kan
localisation. We saw in 3.5 that the adjoint pair of functors

C! : S↔ SCat : C !

is a Quillen equivalence between the model category for logoi and the model cat-
egory for simplicial categories. A map of simplicial sets X → Y is a homotopy
localisation iff the functor C!(f) : C!(X)→ C!(Y ) is a Dwyer-Kan localisation.

12. The contravariant model structure

In this section we introduce the covariant and the contravariant model structures
on the category S/B for any simplicial set B. In the covariant structure, the fibrant
objects are the left fibrations X → B, and in the contravariant structure they are
the right fibrations X → B. The results of this section are taken from [J2].
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12.1. The category S/B is enriched over S for any simplicial set B. We shall
denote by [X,Y ] the simplicial set of maps X → Y between two objects of S/B. If
we apply the functor π0 to the composition map [Y, Z]× [X,Y ]→ [X,Z] we obtain
a composition law

π0[Y, Z]× π0[X,Y ]→ π0[X,Z]
for a category (S/B)π0 if we put

(S/B)π0(X,Y ) = π0[X,Y ].

We shall say that a map in S/B is a fibrewise homotopy equivalence if the map is
invertible in the category (S/B)π0 .

12.2. Let R(B) be the full subcategory of S/B spanned by the right fibrations
X → B. If X ∈ R(B), then the simplicial set [A,X] is a Kan complex for every
object A ∈ S/B. In particular, the fiber [b,X] = X(b) is a Kan complex for every
vertex b : 1→ B. A map u : X → Y in R(B) is a fibrewise homotopy equivalence
iff the induced map between the fibers X(b)→ Y (b) is a homotopy equivalence for
every vertex b ∈ B.

12.3. We shall say that a map u : M → N in S/B is a contravariant equivalence if
the map

π0[u,X] : π0[N,X]→ π0[N,X]
is bijective for every object X ∈ R(B). A fibrewise homotopy equivalence in
S/B is a contravariant equivalence and the converse holds for a map in R(B). A
final map M → N in S/B is a contravariant equivalence and the converse holds
if N ∈ R(B). A map u : X → Y in S/B is a contravariant equivalence iff its
base change L ×B u : L ×B X → L ×B Y along any left fibration L → B is a
weak homotopy equivalence. For each vertex b ∈ B, let us choose a factorisation
1→ Lb→ B of the map b : 1→ B as a left anodyne map 1→ Lb followed by a left
fibration Lb → B. Then a map u : M → N in S/B is a contravariant equivalence
iff the map Lb ×B u : Lb ×B M → Lb ×B N is a weak homotopy equivalence for
every vertex b ∈ B. When B is a logos, we can take Lb = b\B. In which case a
map u : M → N is a contravariant equivalence iff the map b\u = b\M → b\N is a
weak homotopy equivalence for every object b ∈ B.

12.4. For any simplicial set B, the category S/B admits a model structure in which
the weak equivalences are the contravariant equivalences and the cofibrations are
the monomorphisms, We shall say that it is the contravariant model structure in
S/B. The fibrations are called contravariant fibrations and the fibrant objects are
the right fibrations X → B. The model structure is simplicial and we shall denote
it shortly by (S/B,Wcont(B)), or more simply by (S/B,Wcont), where Wcont(B)
denotes the class of contravariant equivalences in S/B.

12.5. Every contravariant fibration in S/B is a right fibration and the converse
holds for a map in R(B).

12.6. The contravariant model structure (S/B,Wcont) is a Bousfield localisation of
the model structure (S/B,Wcat) induced by the model structure (S,Wcat) on S/B.
It follows that a weak categorical equivalence in S/B is a contravariant equivalence
and that the converse holds for a map in R(B). Every contravariant fibration in
S/B is a pseudo-fibration and the converse holds for a map in R(B).
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12.7. A map u : (M,p)→ (N, q) in S/B is a contravariant equivalence iff the map
bq\X → bp\X induced by u is an equivalence of logoi of any map b : B → X with
values in a logos X.

12.8. Dually, we say that a map u : M → N in S/B is a covariant equivalence if
the opposite map uo : Mo → No in S/Bo is a contravariant equivalence. Let L(B)
be the full subcategory of S/B spanned by the left fibrations X → B. Then a map
u : M → N in S/B is a covariant equivalence iff the map

π0[u,X] : π0[N,X]→ π0[N,X]

is bijective for every object X ∈ L(B). A fibrewise homotopy equivalence in S/B
is a covariant equivalence and the converse holds for a map in L(B). An initial
map M → N in S/B is a covariant equivalence and the converse holds if N ∈
N(B). A map u : M → N in S/B is a covariant equivalence iff its base change
R×B u : R×BM → R×B N along any right fibration R→ B is a weak homotopy
equivalence. For each vertex b ∈ B, let us choose a factorisation 1 → Lb → B of
the map b : 1 → B as a right anodyne map 1 → Rb followed by a right fibration
Rb → B. Then a map u : M → N in S/B is a covariant equivalence iff the map
Rb ×B u : Rb ×B X → Rb ×B Y is a weak homotopy equivalence for every vertex
b ∈ B. When B is a logos, we can take Rb = B/b. In this case a map u : M → N
is a covariant equivalence iff the map u/b = M/b → N/b is a weak homotopy
equivalence for every object b ∈ B.

12.9. Dually, for any simplicial set B, the category S/B admits a model structure
in which the weak equivalences are the covariant equivalences and the cofibrations
are the monomorphisms, We shall say that it is the covariant model structure in
S/B. The fibrations are called covariant fibrations and fibrant objects are the left
fibrations X → B. The model structure is simplicial and we shall denote it shortly
by (S/B,Wcov(B)), or more simply by (S/B,Wcov), where Wcov(B) denotes the
class of covariant equivalences in S/B.

12.10. Every covariant fibration in S/B is a left fibration and the converse holds
for a map in L(B).

12.11. The covariant and the contravariant model structures on S/B are Cisinski
structures. The covariant structure is determined by the left fibrations X → B and
the contravariant structure by the right fibrations X → B.

12.12. For any simplicial set B, we shall put

P(B) = Ho(S/B,Wcont) and Q(B) = Ho(S/B,Wcov).

The functor X 7→ Xo induces an isomorphism of model categories

(S/B,Wcont) ' (S/Bo,Wcov),

hence also of categories P(B) ' Q(Bo).

12.13. The base change of a contravariant equivalence in S/B along a left fibration
A→ B is a contravariant equivalence in S/A. Dually, the base change of a covariant
equivalence in S/B along a right fibration A→ B is a covariant equivalence in S/B.
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12.14. When the category τ1B is a groupoid, the two classesWcont(B) andWcov(B)
coincide with the class of weak homotopy equivalences in S/B. In particular, the
model categories (S,Wcont), (S,Wcov) and (S,Who), coincide. Thus,

Q(1) = P(1) = Ho(S,Who).

12.15. If X,Y ∈ S/B, let us put

〈X | Y 〉 = X ×B Y.
This defines a functor of two variables

〈− | −〉 : S/B × S/B → S.

If X ∈ L(B), then the functor 〈X | −〉 is a left Quillen functor between the model
categories (S/B,Wcont) and (S,Who). Dually, if Y ∈ R(B), then the functor
〈− | Y 〉 is a left Quillen functor between the model categories (S/B,Wcov) and
(S,Who). It follows that the functor 〈− | −〉 induces a functor of two variables,

〈− | −〉 : Q(B)× P(B)→ Ho(S,Who).

A morphism v : Y → Y ′ in P(B) is invertible iff the morphism

〈X|v〉 : 〈X | Y 〉 → 〈X | Y ′〉
is invertible for every X ∈ Q(B). Dually, a morphism u : X → X ′ in Q(B) is
invertible iff the morphism

〈u|Y 〉 : 〈X | Y 〉 → 〈X ′ | Y 〉
is invertible for every Y ∈ P(B).

12.16. We say that an object X → B in S/B is finite if X is a finite simplicial set.
We shall say that a right fibration X → B is finitely generated if it is isomorphic to
a finite object in the homotopy category P(B). A right fibration X → B is finitely
generated iff there exists a final map F → X with codomain a finite object of S/B.
The base change u∗(X)→ A of a finitely generated right fibration X → B along a
weak categorical equivalence is finitely generated.

12.17. We shall say that a map f : A→ B in SI is a contravariant equivalence

A0

a

��

f0 // B0

b

��
A1

f1 // B1

if f1 is a weak categorical equivalence and the map (f1)!(A0)→ B1 induced by f0
is a contravariant equivalence in S/B1. The category SI admits a cartesian closed
model structure in which the weak equivalences are contravariant equivalences and
the cofibrations are the monomorphisms. We shall denote it shortly by (SI ,Wcont).
The fibrant objects are the right fibrations between logoi. The target functor

t : SI → S

is a Grothendieck bifibration and both a left and a right Quillen functor between
the model categories (SI ,Wcont) and (S,Wcat). It gives the model category
(SI ,Wcont) the structure of a bifibered model category over the model category
(S,Wcat). We shall say that it is the fibered model category for right fibrations.
It induces the contravariant model structure on each fiber S/B. See 51.32 for the
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notion of bifibered model category. There is a dual fibered model category for left
fibrations (SI ,Wcov)

12.18. The model category (S/B,Wcont) admits a uniform homotopy factorisation
system (A,B) in which A is the class of weak homotopy equivalences in S/B. A
contravariant fibration belongs to B iff it is a Kan fibration. It follows from 19.13
that a map X → Y in R(B) belongs to B iff the following square of fibers

X(b) u∗ //

��

X(a)

��
Y (b) u∗ // Y (a)

is homotopy cartesian in (S,Who) for every arrow u : a → b in B. We shall say
that a map in B is term-wise cartesian.

13. Distributors, cylinders, correspondances and mediators

In this section we introduce the five notions in the title. We show that these
notions are Quillen equivalent. It follows that the simplicial presheaves on a fibrant
simplicial category are Quillen equivalent to the right fibrations on the coherent
nerve of this category.

13.1. Recall that the category SCat of small simplicial categories and simplicial
functors is cartesian closed. If A and B are small simplicial category, we shall
denote by [A,B] the simplicial category of simplicial functors A → B. If A is a
small simplicial category, we shall denote by [A,S] the large simplicial category of
simplicial functors A→ S. A simplicial functor u : A→ B induces a functor

u∗ = [u,S] : [B,S]→ [A,S]

with a left adjoint u! and a right adjoint u∗.

13.2. Recall that the category [A,S] admits a model structure, called the projective
model structure, in which the weak equivalences are the term-wise weak homotopy
equivalences and the fibrations are the term-wise Kan fibrations [Hi]. We shall
denote this model structure by [A,S]proj . If u : A→ B is a simplicial functor, then
the pair

u! : [A,S]→ [B,S] : u∗

is a Quillen adjunction with respect to the projective model structures on these
categories. And the pair is a Quillen equivalence when u is a Dwyer-Kan equivalence
[Hi].

13.3. Recall that the category [A,S] admits a model structure, called the injective
model structure in which the weak equivalences are the term-wise weak homotopy
equivalences and the cofibrations are the term-wise cofibrations [Hi]. We shall
denote this model structure by [A,S]inj . The identity functor

[A,S]proj → [A,S]inj .

is the left adjoint in a Quillen equivalence between the projective and the inductive
model structures. If u : A→ B is a simplicial functor, then the pair

u∗ : [B,S]→ [A,S] : u∗
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is a Quillen adjunction with respect to the injective model structures on these
categories. And the pair is a Quillen equivalence when u is a Dwyer-Kan equivalence
[Hi].

13.4. If A and B are small simplicial categories, we shall say that a simplicial
functor F : Ao ×B → S is a simplicial distributor , or an S-distributor, from A to
B and we shall write F : A ⇒ B. The S-distributors A ⇒ B are the objects of a
simplicial category SDist(A,B) = [Ao ×B,S].

13.5. A simplicial distributor, or S-distributor, is defined to be an object C → I
of the category SCat/I, where the category I = [n] is regarded as a simplicial
category. The base of a distributor p : C → I is the cosieve C(1) = p−1(1) and its
cobase is the sieve C(0) = p−1(0). If i denotes the inclusion {0, 1} ⊂ I, then the
pullback functor

i∗ : SCat/I → SCat× SCat

has left adjoint i! and a right adjoint i∗. The functor i∗ is a Grothendieck bifibration,
since it is an isofibration and the functor i! is fully faithful. It s fiber at (A,B) is the
category SCyl(A,B) of simplicial distributors with cobase A and base B. To every
distributor C ∈ SCyl(A,B) we can associate a distributor D(C) ∈ SDist(A,B)
by putting D(C)(a, b) = C(a, b) for every pair of objects a ∈ A and b ∈ B. The
resulting functor

D : SCyl(A,B)→ SDist(A,B)

is an equivalence of categories. The inverse equivalence associates to a S-distributor
F : A⇒ B its collage cylinder col(F ) = A ?F B.

13.6. We shall say that a full simplicial subset S ⊆ X of a simplicial set X is
a sieve if the implication target(f) ∈ S ⇒ source(f) ∈ S is true for every arrow
f ∈ X. If h : X → τ1X is the canonical map, then the map S 7→ h−1(S) induces
a bijection between the sieves in the category τ1X and the sieves in X. For any
sieve S ⊆ X there exists a unique map g : X → I such that S = g−1(0). This
defines a bijection between the sieves in X and the maps X → I. Dually, we shall
say that a full simplicial subset S ⊆ X is a cosieve if the implication source(f) ∈
S ⇒ target(f) ∈ S is true for every arrow f ∈ X. A simplicial subset S ⊆ X is
a cosieve iff the opposite subset So ⊆ Xo is a sieve. For any cosieve S ⊆ X there
exists a unique map g : X → I such that S = g−1(1). The cosieve g−1(1) and the
sieve g−1(0) are said to be complementary. Complementation defines a bijection
between the sieves and the cosieves of X.

13.7. We shall say that an object p : C → I of the category S/I is a cylinder.
The base of the cylinder is the cosieve C(1) = p−1(1) and its cobase is the sieve
C(0) = p−1(0). If C(0) = 1 we say that C is a projective cone, and if C(1) = 1 we
say that it is an inductive cone. If C(0) = C(1) = 1, we say that C is a spindle.
If i denotes the inclusion ∂I ⊂ I, then the functor

i∗ : S/I → S× S

has left adjoint i! and a right adjoint i∗. The functor i∗ is a Grothendieck bifibration,
since the functor i! is fully faithful (hence also the functor i∗). Its fiber at (A,B) is
the category Cyl(A,B) of cylinders with cobase A and base B. The initial object
of this category is the cylinder AtB and its terminal object is the cylinder A ?B.



44 ANDRÉ JOYAL

An object q : X → A?B of the category S/A ?B belongs to Cyl(A,B) iff the map
q−1(AtB)→ AtB induces by q is an isomorphism. Hence the canonical functors

Cyl(A,B) ⊂ S/A ? B, Cyl(A,B) ⊂ A tB\S, Cyl(A,B) ⊂ A tB\S/A ? B

are fully faithful. The cobase change (u, v)!(X) of a cylinder X ∈ Cyl(A,B) along
a pair of maps u : A → C and v : B → D is calculated by the following pushout
square of simplicial sets,

A tB utv //

��

C tD
p

��
X // (u, v)!(X).

The base change (u, v)∗(Y ) of a cylinder Y ∈ Cyl(C,D) along (u, v) is calculated
by the following pullback square of simplicial sets,

(u, v)∗(Y ) //

��

Y

��
A ? B

u?v // C ? D.

13.8. Let S(2) = [∆o ×∆o,Set] be the category of bisimplicial sets. If A,B ∈ S,
let us put

(A�B)mn = Am ×Bn
for m,n ≥ 0. If X is a bisimplicial set, a map X → A�1 is called a column
augmentation of X and a map X → 1�B is called a row augmentation. We shall
say that a map X → A�B is a biaugmentation of X or that it is a correspondence
A⇒ B. The correspondences A→ B form a category

Cor(A,B) = S(2)/A�B.

The simplicial set ∆[m]?∆[n] has the structure of a cylinder for every m,n ≥ 0. To
every cylinder C ∈ S/I we can associate a correspondance cor(C) → C(0)�C(1)
by by putting

cor(C)mn = Hom(∆[m] ?∆[n], C)
for every m,n ≥ 0. The structure map cor(C) → C(0)�C(1) is defined from the
inclusions ∆[m] t∆[n] ⊆ ∆[m] ?∆[n]. The induced functor

cor : Cyl(A,B)→ Cor(A,B).

is an equivalence of categories. See[Gon].

13.9. The model structure (S,Wcat) induces a cartesian closed model structure
(S/I,Wcat) on the category S/I. The resulting model category is bifibered by the
functor i∗ : S/I → S× S over the model category

(S,Wcat)× (S,Wcat) = (S× S,Wcat×Wcat).

It thus induces a model structure (Cyl(A,B),Wcat) on the category Cyl(A,B)
for each pair (A,B). We conjecture that a cylinder X ∈ Cyl(A,B) is fibrant in
the model category (Cyl(A,B),Wcat) iff its structure map X → A ? B is a mid
fibration. We conjecture that a map between fibrant cylinders in Cyl(A,B) is a
fibration iff it is a mid fibration.
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13.10. The opposite of a cylinder C ∈ Cyl(A,B) is a cylinder Co ∈ Cyl(Bo, Ao).
The functor

(−)o : Cyl(A,B)→ Cyl(Bo, Ao)
is isomorphism between the model categories (Cyl(A,B),Wcat) and (Cyl(Bo, Ao),Wcat).

13.11. The cobase change (u, v)!(X) of a cylinder X ∈ Cyl(A,B) along a pair of
maps u : A → C and v : B → D is calculated by the following pushout square of
simplicial sets,

A tB utv //

��

C tD
p

��
X // (u, v)!(X).

The base change (u, v)∗(Y ) of a cylinder Y ∈ Cyl(C,D) along (u, v) is calculated
by the following pullback square of simplicial sets,

(u, v)∗(Y ) //

��

Y

��
A ? B

u?v // C ? D.

The adjoint pair
(u, v)! : Cyl(A,B)↔ Cyl(C,D) : (u, v)∗

is a Quillen adjunction with respect to the model structures (Cyl(A,B),Wcat) and
(Cyl(C,D),Wcat). And it is a Quillen equivalence if u and v are weak categorical
equivalences.

13.12. If A and B are simplicial sets, we shall say that a map X → Bo × A is a
mediator and we shall write X : A⇒ B. The mediators A⇒ B form a category

Med(A,B) = S/(Ao×B).

A map X → Y between two mediators X ∈ Med(A,B) and Y ∈ Med(C,D) is a
triple of maps u : A → C, v : B → D and f : X → Y fitting in a commutative
square

X
f //

��

Y

��
Ao ×B

uo×v // Co ×D.
The mediators form a category Med. The functor

p : Med→ S× S

defined by putting p(X,A,B) = (A,B) is a Grothendieck bifibration and its fiber
at (A,B) is the category Med(A,B). We shall say that the map (f, u, v) : X →
Y in Med is an mediator equivalence if the maps u and v are weak categorical
equivalences and the map f : X → Y is a covariant equivalence in Med(C,D).
The category Med admits a model structure in which the weak equivalences are
the mediator equivalences and the cofibrations are the monomorphisms. The model
structure is left proper and cartesian closed. We shall denote the resulting model
category by (Med,Wmed). The model category is bifibered by the functor p :



46 ANDRÉ JOYAL

Med→ S×S over the model category (S,Wcat)× (S,Wcat). It induces the model
structure (S/(Bo×A),Wcov) on the fiber Med(A,B). A mediator X ∈Med(A,B)
is fibrant with respect to this model structure iff its structure map X → Ao ×B is
a left fibration.

13.13. The simplicial set ρ[n] = ∆[n]o ? ∆[n] has the structure of a cylinder for
every n ≥ 0. The twisted section of a cylinder C is the simplicial set ρ∗(C) defined
by putting

ρ∗(C)n = HomI(ρ[n], C)
for every n ≥ 0. The simplicial set ρ∗(C) has the structure of a mediator with a
structure map ρ∗(C)→ C(0)o×C(1) obtained from the the inclusion ∆[n]ot∆[n] ⊂
∆[n]o ? ∆[n]. The resulting functor ρ∗ : S/I → Med has a left adjoint ρ! and a
right adjoint ρ∗. The pair of adjoint functors

ρ! : Med↔: S/Iρ∗

is a Quillen equivalence between the model categories (S/I,Wcat) and (Med,Wmed).
The induced pair of adjoint functors

ρ∗ : Cyl(A,B)↔Med(A,B) : ρ∗

is a Quillen equivalence between the model categories (Cyl(A,B),Wcat) and (S/(Ao×
B),Wcov) for any pair of simplicial sets (A,B). In particular, the pair

ρ! : S/B ↔ Cyl(1, B) : ρ∗

is a Quillen equivalence between the model categories (Cyl(1, B),Wcat) and (S/B,Wcov)
Hence a map f : X → Y in S/B is a covariant equivalence iff the map ρ!(f) :
ρ!(X)→ ρ!(Y ) is a weak categorical equivalence.

13.14. The Quillen equivalence

C! : S↔ SCat : C !

of 3.5 induces a Quillen equivalence

C! : S/I ↔ SCat/I : C !,

since we have C !(I) = I and C!(I) = I. The pair (C!, C
!) also induces a Quillen

equivalence
C! : Cyl(A,B)↔ SCyl(C!A,C!B) : C !

for any pair pair of simplicial sets A and B. By composing the equivalence with
the Quillen equivalence

ρ! : S/Ao ×B ↔ Cyl(A,B) : ρ∗

of 13.13 and the equivalence of categories

D : SCyl(C!A,C!B)→ SDist(C!A,C!B) : col

of 13.5, we obtain a a Quillen equivalence

S/Ao ×B ↔ SDist(C!A,C!B)

between the model category (S/Ao ×B,Wcov) and the projective model category
SDist(C!A,C!B). In particular, this yields a Quillen equivalence

S/B ↔ [C!B,S]

between the model category (S/B,Wcov) and the projective model category [C!B,S].
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13.15. Dually, the pair (C!, C
!) induces a Quillen equivalence

C! : Cyl(C !X,C !Y )↔ SCyl(X,Y ) : C !

for any pair of fibrant simplicial categories X and Y . By composing the equivalence
with the Quillen equivalence

ρ! : S/C !Xo × C !Y ↔ Cyl(C !X,C !Y ) : ρ∗

of 13.13 and the equivalence of categories

D : SCyl(X,Y )→ SDist(X,Y ) : col

of 13.5, we obtain a a Quillen equivalence

S/C !Xo × C !Y ↔ SDist(X,Y )

between the model category (S/C !Xo ×C !Y,Wcov) and the projective model cat-
egory SDist(X,Y ). In particular, this yields a Quillen equivalence

S/C !Y ↔ [Y,S]

between the model category (S/C !Y,Wcov) and the projective model category
[Y,S].

13.16. If Y is a small simplicial category, let us denote by [Y,S]f the category of
fibrant objects of the injective model category [Y,S]inj . If Y is enriched over Kan
complexes, then the functor

[Y,S]→ S/C !Y ]

defined in induces a Dwyer-Kan equivalence of simplicial categories

[Y,S]f → L(C !Y ).

14. Base changes

In this section, we study the base change functors between the contravariant
model structures. We introduce the notion of dominant map. The results of the
section are taken from [J2].

14.1. A functor u : A→ B between two small categories induces a pair of adjoint
functors between the presheaf categories,

u! : Â→ B̂ : u∗.

A functor u is called a Morita equivalence if the adjoint pair (u!, u
∗) is an equivalence

of categories. By a classical result, u is a Morita equivalence iff it is fully faithful
and every object b ∈ B is a retract of an object in the image of u. The notion
of Morita equivalence can be decomposed, since the pair (u!, u

∗) is an equivalence
iff the functors u! and u∗ are fully faithful. The functor u! is fully faithful iff the
functor u is fully faithful. A functor u : A → B is said to be dominant, but we



48 ANDRÉ JOYAL

shall say 0-dominant, if the functor u∗ is fully faithful. A functor u : A → B is
0-dominant iff the category Fact(f,A) defined by the pullback square

Fact(f,A) //

��

A

u

��
Fact(f,B) // B

is connected for every arrow f ∈ B, where Fact(f,B) = f\(B/b) = (a\B)/f is the
category of factorisations of the arrow f : a → b. We notice that the functor u is
0-final iff we have u!(1) = 1, where 1 denotes terminal objects.

14.2. For any map of simplicial sets u : A→ B, the adjoint pair

u! : S/A→ S/B : u∗

is a Quillen adjunction with respect to the contravariant model structures on these
categories. The adjunction is a Quillen equivalence when u is a weak categorical
equivalence. It induces an adjoint pair of derived functors

P!(u) : P(A)↔ P(B) : P∗(u),
The functor P!(u) is directly induced by the functor u!, since u! takes a covariant

equivalence to a covariant equivalence. Hence we have P!(vu) = P!(v)P!(u) for any
pair of maps u : A→ B and v : B → C. This defines a functor

P! : S→ CAT,

where CAT is the category of large categories. We shall see in 23.5 that the functor
P∗(u) has a right adjoint P∗(u).

14.3. Dually, for any map of simplicial sets u : A→ B, the adjoint pair

u! : S/A→ S/B : u∗

is a Quillen adjunction with respect to the covariant model structures on these
categories, (and it is a Quillen equivalence when u is a weak categorical equivalence).
It induces an adjoint pair of derived functors

Q!(u) : Q(A)↔ Q(B) : Q∗(u).
The functor Q∗(u) has a right adjoint Q∗(u) by 23.5. If u : A→ B and v : B → C,
then we have Q!(vu) = Q!(v)Q!(u). This defines a functor

Q! : S→ CAT,

where CAT is the category of large categories.

14.4. A map of simplicial sets u : A → B is final iff the functor P!(u) preserves
terminal objects. A map u : A → B is fully faithful iff the functor P!(u) is fully
faithful.

14.5. We shall say that a map of simplicial sets u : A → B is dominant if the
functor P∗(u) is fully faithful.

14.6. A map u : A→ B is dominant iff the opposite map uo : Ao → Bo is dominant
iff the map Xu : XB → XA is fully faithful for every logos X.

14.7. The functor τ1 : S→ Cat takes a fully faithful map to a fully faithful functor,
and a dominant map to a 0-dominant functor.
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14.8. If B is a logos, then a map of simplicial sets u : A → B is dominant iff the
simplicial set Fact(f,A) defined by the pullback square

Fact(f,A) //

��

A

u

��
Fact(f,B) // B

is weakly contractible for every arrow f ∈ B, where Fact(f,B) = f\(B/b) =
(a\B)/f is the simplicial set of factorisations of the arrow f : a→ b.

14.9. A dominant map is both final and initial. A map of simplicial set u : A→ B
is dominant iff its base change any right fibration is final iff its base change any
left fibration is initial. The base change of a dominant map along a left or a right
fibration is dominant. A (weak) reflection and a (weak) coreflection are dominant.
An iterated homotopy localisation is dominant.

14.10. The functor
P! : S→ CAT

has the structure of a 2-functor covariant on 2-cells. It follows by adjointness that
P∗ has the structure of a contravariant (pseudo) 2-functor,

P∗ : S→ CAT,

contravariant on 2-cells. In order to define the natural transformation

P!(α) : P!(u)→ P!(v)

associated to a 2-cell α : u → v : A → B in the category Sτ1 we can suppose
that α = [h], where h is the homotopy between the inclusions i0, i1 : A → A × I.
If X ∈ S/A, then (i0)!(X) = X × {0} and (i1)!(X) = X × {1}. The inclusion
X ×{1} ⊆ X × I is a covariant equivalence in S/(A× I), since it is right anodyne;
it is thus invertible in the category P(A× I). The morphism P!([h]) : P!(i0)(X)→
P!(i1)(X) is obtained by composing the inclusion X×{0} ⊆ X× I with the inverse
morphism X × I → X × {1}.

14.11. If (α, β) is an adjunction between two maps u : A ↔ B : v in the 2-
category Sτ1 , then the pair (P!(α),P!(β)) is an adjunction P!(u) ` P!(v), and the
pair (P∗(β),P∗(α)) is an adjunction P∗(u) ` P∗(v). We thus have a canonical
isomorphism P!(v) ' P∗(u),

P!(u) ` P!(v) ' P∗(u) ` P∗(v).

14.12. Dually,
Q! : S→ CAT

is a covariant 2-functor contravariant on 2-cells, and

Q∗ : Sτ1 → CAT

is a contravariant (pseudo-) 2-functor covariant on 2-cells. If (α, β) is an ad-
junction between two maps u : A ↔ B : v in the 2-category Sτ1 , then the pair
(Q!(β),Q!(α)) is an adjunction Q!(v) ` Q!(u), and the pair (Q∗(α),Q∗(β)) is an
adjunction Q∗(v) ` Q∗(u). We thus have a canonical isomorphism Q!(u) ' Q∗(v),

Q!(v) ` Q!(u) ' Q∗(v) ` Q∗(u).
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14.13. The pseudo-2-functor Q∗ induces a functor

Q∗ : τ1(A,B)→ CAT
(
Q(B),Q(A)

)
for each pair of simplicial sets A and B. In particular, it induces a functor

Q∗ : τ1(B)→ CAT
(
Q(B),Q(1)

)
for each simplicial set B. If X ∈ Q(B) and b ∈ B0, let us put D(X)(b) = Q∗(b)(X).
This defines a functor

D(X) : τ1(B)→ Q(1) = Ho(S,Who).

We shall say that D(X) is the homotopy diagram of X. This extends the notion
introduced in 8.15. Dually, every object X ∈ P(B) has a contravariant homotopy
diagram

D(X) : τ1(B)o → P(1) = Ho(S,Who).

15. Spans and duality

In this section we introduce the notion of span and show that it is Quillen
equivalent to that of cylinder. We also introduce the homotopy bicategory of spans
Λ. We show that it has the structure of a compact closed symmetric monoidal
bicategory.

15.1. A span S : A⇒ B between two simplicial sets is a pair of maps

S
s

����
��

��
�

t

  A
AA

AA
AA

A

A B.

Equivalently, a span A⇒ B is an object of the category

Span(A,B) = S/(A×B).

The terminal object of this category is the span A ×s B defined by the pair of
projections

A×B
pA

||xx
xx

xx
xx

x
pB

##G
GGGGGGG

A B.

The opposite of a span (s, t) : S → A×B is defined to be the span

(to, so) : So → Bo ×Ao.

15.2. Let P be the poset of non-empty subsets of {0, 1}. A functor X : P o → S is
a span,

X(01)
s

{{www
ww

ww
ww t

$$H
HH

HH
HH

HH

X(0) X(1).

If i0 denotes the inclusion {0} ⊂ P and i1 the inclusion {1} ⊂ P , then the functor

(i∗0, i
∗
1) : [P o,S]→ S× S

is a Grothendieck bifibration. Its fiber at (A,B) is the category Span(A,B).
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15.3. Recall that the composite of a span S : A→ B with a span T : B ⇒ C is the
span T ◦ S = S ×B T : A⇒ C, defined by the pullback diagram,

S ×B T

{{wwwwwwwww

##G
GG

GG
GG

GG

S
s

����
��

��
�

t

##G
GG

GG
GG

GG
G T

s

{{www
ww

ww
ww

w
t

  A
AA

AA
AA

A B C.

This defines a functor

− ◦ − : Span(B,C)× Span(A,B)→ Span(A,C).

If S : A⇒ B, T : B ⇒ C and U : C ⇒ D, then the canonical isomorphism

(U ◦ T ) ◦ S = S ×B (T ×C U) ' (S ×B T )×C U = U ◦ (T ◦ S)

satisfies the coherence condition of MacLane. The span (1A, 1A) : A → A × A
is a unit A → A for this composition law. The spans between simplicial sets
form a bicategory Span whose objects are simplicial sets. The bicategory Span is
symmetric monoidal. The tensor product of two spans S : A⇒ B and T : C ⇒ D
is their cartesian product in the category [P o,S],

S ⊗ T = S × T : A× C ⇒ B ×D.

15.4. The image of a map u : [n]→ I in ∆ is a non-empty subset Im(u) ⊆ {0, 1}.
Consider the functor

σ : ∆/I → ∆× P

defined by putting σ(u) = ([n], Im(u)) for a map u : [n]→ I. The functor We have
[(∆× P )o,Set] = [P o,S]. The functor

σ∗ : [(∆× P )o,Set]→ [(∆/I)o,Set]

is a functor σ∗ : [P o,S]→ S/I, since [(∆×P )o,Set] = [P o,S] and [(∆/I)o,Set] =
S/I. The functor σ∗ is cartesian with respect to the fibered model structure on
these categories. It thus induces a functor

σ∗ : Span(A,B)→ Cyl(A,B)

for each pair of simplicial sets (A,B). We shall say that the cylinder σ∗(S) ∈
Cyl(A,B) is the realisation of a span S ∈ Span(A,B). The simplicial set σ∗(S)
can be calculated by the following pushout square of simplicial sets,

S t S stt //

��

A tB

��
I × S // σ∗(S).
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Notice that σ∗(A ×s B) = A � B. The functor σ∗ has a left adjoint σ! and a right
adjoint σ∗. If C ∈ Cyl(A,B), then σ∗(C) is the span

[I, C]
s

}}{{
{{

{{
{{ t
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DD

DD
DD

D

A B,

where [I, C] denotes the simplicial set of global sections of the structure map C → I,
where s is defined by the inclusion {0} ⊂ I and t by the inclusion : {1} ⊂ I. In
particular, σ∗(A ? B) = A×s B.

15.5. We shall say that a map u : S → T in Span(A,B) is bivariant equivalence if
the map

σ∗(u) : σ∗(S)→ σ∗(T )

is a weak categorical equivalence. The category Span(A,B) admits a model struc-
ture in which a weak equivalence is a bivariant equivalence and a cofibration is a
monomorphism. We shall say that a fibrant object is a bifibrant span. We shall
denote it shortly by Span(A,B),Wbiv) and put

Λ(A,B) = Ho(Span(A,B),Wbiv).

15.6. The opposition functor

(−)o : Span(A,B)→ Span(Bo, Ao)

induces an isomorphism between the model categories (Span(A,B),Wbiv) and
(Span(Bo, Ao),Wbiv). It thus induces an isomorphism of categories,

(−)o : Λ(A,B)→ Λ(Bo, Ao).

15.7. For any pair of maps of simplicial sets u : A → C and v : B → D, the pair
of adjoint functor

(u× v)! : Span(A,B)↔ Span(C,D) : (u× v)∗

is a Quillen adjunction with respect to the biviariant model structures on these
categories. And it is a Quillen equivalence if u and v are weak categorical equiva-
lences.

15.8. The pair of adjoint functors

σ∗ : Span(A,B)↔ Cyl(A,B) : σ∗

is a Quillen equivalence between the model category (Span(A,B),Wbiv) and the
model category (Cyl(A,B),Wcat).
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15.9. A map u : S → T in Span(A,B) is a bivariant equivalence iff the map

X ×A u×B Y : X ×A S ×B Y → X ×A T ×B Y

is a weak homotopy equivalence for every X ∈ L(A) and Y ∈ R(B). For each
vertex a ∈ A, let us choose a factorisation 1 → La → A of the map a : 1 → A as
a left anodyne map 1 → La followed by a left fibration La → A. Dually, for each
vertex b ∈ B, let us choose a factorisation 1 → Rb → B of the map b : 1 → B as
a right anodyne map 1 → Rb followed by a right fibration Rb → B. Then a map
u : S → T in Span(A,B) is a bivariant equivalence iff the map

La×A u×B Rb : La×A S ×B Rb→ La×A T ×B Rb

is a weak homotopy equivalence for every pair of vertices (a, b) ∈ A×B. If A and
B are logoi, we can take La = a\A and Rb = B/b. In this case, a map u : S → T
in Span(A,B) is a bivariant equivalence iff the map

a\u/b : a\S/b→ a\T/b

is a weak homotopy equivalence for every pair of objects (a, b) ∈ A×B, where the
simplicial set a\S/b is defined by the pullback square

a\S/b

��

// S

��
a\A×B/b // A×B.

15.10. For any span (s, t) : S → A×B, the composite

Q(A)
Q∗(s) // Q(S)

Q!(t) // Q(B)

is a functor Q〈S〉 : Q(A)→ Q(B). If u : S → T is a map of spans,

S
s
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then form the counit Q!(u)Q∗(u)→ id, we obtain a natural transformation

Q〈u〉 : Q〈S〉 = Q!(t)Q∗(s) = Q!(r)Q!(u)Q∗(u)Q∗(l)→ Q!(r)Q∗(l) = Q〈T 〉.

This defines a functor

Q〈−〉 : Span(A,B)→ CAT(Q(A),Q(B)).

A map u : S → T in Span(A,B) is a bivariant equivalence iff the natural transfor-
mation

Q〈u〉 : Q〈S〉 → Q〈T 〉
is invertible.
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15.11. Dually, for any span (s, t) : S → A×B, the composite

P(B)
P∗(t) // P(S)

P!(s) // P(A)

is a functor P〈S〉 : P(B)→ P(A). To every map u : S → T in Span(A,B) we can
associate a natural transformation

P〈u〉 : P〈S〉 → P〈T 〉.

We obtain a functor

P〈−〉 : Span(A,B)→ CAT(P(B),P(A)).

A map u : S → T in Span(A,B) is a bivariant equivalence iff the natural transfor-
mation P〈u〉 is invertible.

15.12. If S ∈ Span(A,B), let us denote by S(a, b) the fiber of the map (s, t)S →
A × B at (a, b) ∈ A0 × B0. The simplicial set S(a, b) is a Kan complex if S is
bifibrant. A map between bifibrant spans u : S → T in Span(A,B) a bivariant
equivalence iff the map

S(a, b)→ T (a, b)

induced by u is a homotopy equivalence for every pair (a, b) ∈ A0 ×B0.

15.13. If A and B are logoi, then a span (s, t) : S → A × B is bifibrant iff the
following conditions are satisfied:

• the source map s : S → A is a Grothendieck fibration;
• the target map t : S → B is a Grothendieck opfibration;
• an arrow f ∈ S is inverted by t iff f is cartesian with respect to s;
• an arrow f ∈ S is inverted by s iff f is cocartesian with respect to t.

The last two conditions are equivalent in the presence of the first two.

15.14. If A is a logos, then a fibrant replacement of the span (1A, 1A) : A→ A×A
is the span δA = (s, t) : AI → A × A. If u : A → B is a map between logoi then
a fibrant replacement of the span (1A, u) : A → A × B is the span P (u) → A × B
defined by the pullback diagram,

P (u)
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Dually, a fibrant replacement of the span (u, 1A) : A→ B×A is the span P ∗(u)→
B ×A defined in the pullback diagram,

P ∗(u)
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15.15. The category Span(B, 1) is naturally isomorphic to the category S/B and
the model structures (Span(B, 1),Wbiv) and (S/B,Wcont) coincide. The inductive
mapping cone of a map of simplicial sets u : A→ B is the simplicial set C(u) defined
by the following pushout square,

A
u //

��

B

��
A � 1 // C(u).

By construction C(u) = σ∗(u, !), where (u, !) is the span (u, !) : A → B × 1. The
resulting functor

C : S/B → Cyl(B, 1)
is the left adjoint in a Quillen equivalence between the model categories (S/B,Wcont)
and (Cyl(B, 1),Wcat). Dually, the category Span(1, B) is naturally isomorphic to
the category S/B and the model structures (Span(1, B),Wbiv) and (S/B,Wcov)
coincide. The projective mapping cone of a map of simplicial sets u : A→ B is the
simplicial set Co(u) constructed by the folllowing pushout square,

A
u //

��

B

��
1 �A // Co(u).

By construction Co(u) = σ∗(!, u), where (!, u) is the span (!, u) : A → 1 × B. The
resulting functor

Co : S/B → Cyl(1, B)
is the left adjoint in a Quillen equivalence between the model categories (S/B,Wcov)
and (Cyl(1, B),Wcat). The category Span(1, 1) is naturally isomorphic to the cat-
egory S and the model structures (Span(1, 1),Wbiv) and (S,Who) coincide. The
(unreduced) suspension of a simplicial set A is the simplicial set Σ(A) defined by
the following pushout square,

A tA //

��

1 t 1

��
A× I // Σ(A).

The resulting functor
Σ : S→ Cyl(1, 1)
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is the left adjoint in a Quillen equivalence between the model category (S,Who)
and the model category (Cyl(1, 1),Wcat).

15.16. It follows from 15.15 that we have two equivalence of categories,

Λ(B, 1) ' P(B) and Λ(1, B) ' Q(B).

for any simplicial set B.

15.17. The simplicial set δ[n] = ∆[n] ? ∆[n] has the structure of a cylinder for
every n ≥ 0. The diagonal of a cylinder C is the simplicial set δ∗(C) obtained by
putting

δ∗(C)n = Hom(δ[n], C)

for every n ≥ 0. The simplicial set δ∗(C) has the structure of a span C(0) ⇒
C(1) with structure map (s, t) : δ∗(C) → C(0) × C(1) defined by the inclusion
∆[n] t∆[n] ⊂ ∆[n] ?∆[n]. The resulting functor

δ∗ : S/I → [P o,S]

is cartesian with respect to the fibered structure on these categories. It has a right
adjoint δ∗ and the induced pair

δ∗ : Cyl(A,B)→ Span(A,B) : δ∗

is a Quillen equivalence between the model categories (Cyl(A,B),Wcat) and (Span(A,B),Wbiv).

15.18. For any pair of simplicial sets A and B we have δ∗(A ? B) = A ×s B. It
follows that we have σ∗δ∗(A ? B) = A � B. Hence the map θAB : A � B → A ? B
of 9.20 is a map θAB : σ∗δ∗(A ? B) → A ? B. There is then a unique natural
transformation

θC : σ∗δ∗(C)→ C

which extends θAB to every cylinder C → I. The maps θC is a weak categorical
equivalence for every C ∈ S/I.

15.19. If A, B and C are simplicial sets and S ∈ Span(A,B) is a bifibrant span,
then the functor

(−) ◦ S : Span(B,C)→ Span(A,C)

is a left Quillen functor. Dually, T ∈ Span(A,B) is bifibrant, then the functor

T ◦ (−) : Span(A,B)→ Span(A,C)

is a left Quillen functor. Let us denote by Spanf (A,B) the full subcategory of
Span(A,B) spanned by the bifibrant spans. The composition functor

− ◦ − : Span(B,C)f × Span(A,B)f → Span(A,C),

induces a derived composition functor .

− • − : Λ(B,C)× Λ(A,B)→ Λ(A,C).

The derived composition is coherently associative. A unit IA ∈ Λ(A,A) for this
composition is a fibrant replacement of the span (1A, 1A) : A → A × A. We thus
obtain a bicategory Λ called the homotopy bicategory of spans.
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15.20. The tensor product functor (which is really the cartesian product)

Span(A,B)× Span(C,D)→ Span(A× C,B ×D)

is a left Quillen functor of two variables with respect to the bivariant model struc-
tures on these categories. The induced functor

⊗ : Λ(A,B)× Λ(C,D)→ Λ(A× C,B ×D)

defines a symmetric monoidal structure on the bicategory Λ.

15.21. The symmetric monoidal bicategory Λ is compact closed. The dual of a
simplicial set A is the opposite simplicial set Ao. To see this, it suffices to consider
the case where A is a logos. We shall exibit a pair of spans,

ηA ∈ Λ(1, Ao ×A) and εA ∈ Λ(A×Ao, 1),

together with a pair of isomorphisms,

αA : IA ' (εA ⊗A) • (A⊗ ηA) and βA : IAo ' (Ao ⊗ εA) • (ηA ⊗Ao).
The span ηA is constructed below.

15.22. The twisted diagonal Cδ of a category C is defined to be the category
of elements of the hom functor Co × C → Set. A simplex [n] → Cδ is a map
[n]o ? [n] → C. The twisted diagonal Aδ of a simplicial set A is the simplicial set
defined by putting

(Aδ)n = S(∆[n]o ?∆[n], A)
for every n ≥ 0. The simplicial set Aδ is equipped with a canonical map Aδ →
Ao × A obtained from the the inclusion ∆[n]o t ∆[n] ⊂ ∆[n]o ? ∆[n]. This gives
the simplicial set Aδ the structure of a mediator A ⇒ A. Notices that Aδ is the
twisted section of the cylinder A× I,

Aδ = ρ∗(A× I).
It follows from this formula and 13.13 that the functor (−)δ : S → Med has a left
adjoint δ(−) and that the pair

δ(−) : Med↔ S : (−)δ

is a Quillen adjunction between the model categories (Med,Wmed) and (S,Wcat).
Hence the canonical map Aδ → Ao × A is a left fibration when A is a logos. It
defines the span ηA ∈ Span(1, Ao ×A). of the duality 15.21.

15.23. The span εA ∈ Span(A×Ao, 1) of the duality 15.21, is the opposite of the
span ηA ∈ Span(1, Ao ×A). Let us describe the isomorphism αA of the duality. It
is easy to see that the simplicial set

T (A) = (εA ⊗A) ◦ (A⊗ ηA)

is constructed by the following pullback diagram,

T (A)
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A simplex ∆[n] → T (A) is a pair of simplices x : ∆[n] ? ∆[n]o → A and y :
∆[n]o ? ∆[n] → A such that x | ∆[n]o = y | ∆[n]o. The isomorphism αA of is
obtained by composing in Λ(A,A) a chain of bivariant equivalences

AI U(A)
qAoo pA // T (A)

in Span(A,A). The simplicial set U(A) is defined by putting

U(A)n = S(∆[n] ?∆[n]o ?∆[n], A)

for every n ≥ 0 and the structure map U(A)→ A×A is obtained from the inclusion
in : ∆[n]t∆[n] ⊂ ∆[n] ?∆[n]o ?∆[n]. Let us describe the map pA : U(A)→ T (A).
If z : ∆[n] ?∆[n]o ?∆[n]→ A is a simplex of U(A), then pA(z) = (x, y), where x =
z | ∆[n] ?∆[n]o and y = z | ∆[n]o ?∆[n]. Let us describe the map qA : U(A)→ AI .
There is a unique map

ρn : ∆[n]× I → ∆[n] ?∆[n]o ?∆[n]

which extends in. Then we have qA(x) = xρn for every x ∈ U(A)n. The isomor-
phism βA has a similar description.

15.24. It follows from the duality that there is an equivalence of categories

Λ(A,B)→ Λ(1, Ao ×B).

for any pair (A,B). The equivalence associates to a fibrant span S → A × B the
mediator S′ → Ao ×B calculated by following diagram with a pullback square,

X ′

~~||
||

||
||

��

// X

��

// B

Ao Aδ
soo t // A.

The inverse equivalence associates to a fibrant mediator M → Ao × B the span
M ′ → A×B calculated by following diagram with a pullback square,

M ′

}}zz
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��

// M

��

// B

A (Aδ)oso
oo to // Ao.

15.25. The trace of a span S ∈ Λ(A,A) is defined by putting

Tr(S) = εAo • (Ao ⊗ S) ◦ ηA.

By definition, Tr(S) ∈ Λ(1, 1) is a homotopy type. If A is a logos and S is bifibrant,
then the simplicial set Tr(S) is computed by the following pullback square,

Tr(S)

��

// AI

(t,s)

��
S

(s,t) // A×A

.

This construction shows that trace of the identity of a Kan complex X is its free
loop space XS1

.
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15.26. The scalar product of two spans S ∈ Λ(A,B) and T ∈ Λ(B,A) is defined
by putting

〈S | T 〉 = Tr(S • T ) ' Tr(T • S).

If A and B are logoi and the spans S and T are bifibrant, then we have a pullback
square,

〈S | T 〉

��

// T

(t,s)

��
S

(s,t) // A×B

.

Notice that we have TrA(X) = 〈X | IA〉 for X ∈ Λ(A,A). A map u : S → S′ in
Λ(A,B) is invertible iff the map

〈u | T 〉 : 〈S | T 〉 → 〈S′ | T 〉

is invertible in Λ(1, 1) for every T ∈ Λ(B,A).

16. Yoneda lemma

The Yoneda lemma is playing an important role in category theory. Here we
discuss its extension to logoi. As an application, we construct for any logos X a
simplicial category S(X) whose coherent nerve is equivalent to X. We describe
four forms of Yoneda lemma.

16.1. (Yoneda lemma 1) If B is a logos and b ∈ B0, then the right fibration
B/b → B is freely generated by the vertex 1b ∈ B/b. More precisely, for any
right fibration p : X → B and any vertex x ∈ X(b) = p−1(b), there is a map
f : B/b → X in S/B such that f(1b) = x, and f is homotopy unique. The
homotopy uniqueness means that the simplicial set of maps f : B/b→ X such that
f(1b) = x is contractible. More precisely, let us denote by [X,Y ] the simplicial
set of maps X → Y between two objects of S/B. An object b ∈ B defines a map
b : 1 → B and we have [b,X] = X(b) for every object X → B of S/B. The map
b′ : b → B/b in S/B obtained by putting b′(1) = 1b is a contravariant equivalence
by 12.8, since the vertex 1b is terminal in B/b. Hence the map

[b′, X] : [B/b,X]→ [b,X] = X(b)

is a trivial fibration for every X ∈ R(B). It follows that the fiber of [b′, X] at
x ∈ X(b) is contractible. This shows that the simplicial set of maps f : B/b → X
such that f(1b) = x is contractible.

16.2. The hypthesis that B is a logos can be removed in the Yoneda lemma. More
precisely, if B is a simplicial set and b ∈ B0, let us choose a factorisation 1→ Rb→
B of the map b : 1 → B as a right anodyne map b′ : 1 → Rb followed by a right
fibration Rb → B. Then the right fibration Rb → B is freely generated by the
vertex b′ ∈ Rb. More precisely, the map

[b′, X] : [Rb,X]→ [b,X] = X(b)

is a trivial fibration for every X ∈ R(B).
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16.3. We shall say that a right fibration p : E → B is representable if the simplicial
set E admits a terminal vertex v ∈ E, in which case we shall say that E is repre-
sented by v. If b ∈ B0, then a node v ∈ E(b) represents E iff the map v : b→ E is
a contravariant equivalence in S/B. If B is a logos, then the full simplicial subset
of E spanned by the nodes which represents E is a contractible Kan complex when
non-empty. Hence a representing vertex v ∈ E is homotopy unique when it exists.
If B is a logos, then the right fibration B/b → B is represented by the vertex
1b ∈ B/b, and similarly for the right fibration B//b→ B.

16.4. Dually, we shall say that a left fibration p : E → B is corepresentable if the
simplicial set E admits an initial vertex v ∈ E, in which case we shall say E is
corepresented by v. If b ∈ B0, then a node v ∈ E(b) corepresents E iff the map
v : b→ E is a covariant equivalence in S/B. If B is a logos, then the left fibration
b\ → B is corepresented by the vertex 1b ∈ b\B, and similarly for the left fibration
b\\B → B.

16.5. If B is a simplicial set and b ∈ B0, then the fiber at a ∈ B0 of the projection
B//b→ B is equal to B(a, b). If B is a logos; then the canonical map

[B//a,B//b]→ B(a, b)

is a trivial fibration by Yoneda lemma.

16.6. To every logos B we can attach a simplicial category S(B) whose coherent
nerve is equivalent to B. By construction, ObS(B) = B0 and

S(B)(a, b) = [B/a,B/b]

for every pair a, b ∈ B0. The category S(B) is enriched over Kan complexes.

16.7. Let f : a→ b be an arrow in a logos X. Then by Yoneda lemma, there is a
map f! : B/a → B/b in S/B such that f!(1a) = b and f is homotopy unique. We
shall say that f! is the pushforward map along f .

16.8. Recall that the logos of Kan complexes U = U0 is defined to be the coherent
nerve of the category Kan of Kan complexes. Let us put U′ = 1\U, where 1
denotes the terminal object of the logos U. Then the canonical map pU : U′ → U
is a universal left fibration. The universality means that for any left fibration
f : E → A there exists a homotopy pullback square in (S,Wcat),

E

f

��

g′ // U′

pU

��
A

g // U

and the pair (g, g′) is homotopy unique. We shall say that the map g classifies the
left fibration E → A.



QUASI-CATEGORIES 61

16.9. The simplicial set of elements el(g) of a map g : A → U is defined by the
pullback square

el(g) //

��

U′

pU

��
A

g // U.
The map el(g) → A is a left fibration since pU is a left fibration. Moreover, the
simplicial set el(g) is a logos when A is a logos.

16.10. A prestack on a simplicial set A is defined to be a map Ao → U. The
prestacks on A form a logos

P(A) = UAo

= [Ao,U].

The simplicial set of elements El(g) of a prestack g : Ao → U is defined by putting
El(g) = el(g)o. The canonical map El(g) → B is a right fibration. We shall say
that a prestack g : Ao → U is representable if the right fibration El(g) → A is
representable.

16.11. Recall that the twisted diagonal Cδ of a category C is the category of
elements of the hom functor Co × C → Set. A logos A has a twisted diagonal Aδ

by 40.36 and the canonical map (s, t) : Aδ → Ao×A is a left fibration. Hence there
exists a homotopy pullback square,

Aδ

��

hom′A // U′

��
Ao ×A

homA // U.

This defines the map homA : Ao ×A→ U. The Yoneda map,

yA : A→ P(A)

is obtained by transposing the map homA. A prestack g : Ao → U is representable
iff it belongs to the essential image of yA.

16.12. The left fibration LA → A×UA defined by the pullback square

LA

��

// U′

��
A×UA ev // U

is universal, where ev denotes the evaluation map. The universality means that for
any simplicial set B and any left fibration E → A × B, there exists a homotopy
pullback square in (S,Wcat),

E

��

g′ // LA

��
A×B

A×g // A×UA

and that the pair (g, g′) is homotopy unique.
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16.13. Dually, the left fibration MA defined by the pullback square

MA

��

// U′

��
Ao ×P(A) ev // U

is a universal mediator A⇒ P(A). More precisely, for any simplicial set B and any
fibrant mediator E : A⇒ B, there exists a homotopy pullback square in the model
category (S,Wcat),

E
g′ //

��

MA

��
Ao ×B

Ao×g // Ao ×P(A),

and the pair (g, g′) is homotopy unique. We shall say that g classifies the mediator
E : A⇒ B and that MA : A⇒ P(A) is a Yoneda mediator. A mediator E : A⇒ B
is essentially the same thing as a map B → P(A).

16.14. (Yoneda lemma 2) The twisted diagonal Aδ → Ao × A is classified by the
Yoneda map yA : A→ P(A). We have a diagram of homotopy pullback squares in
(S,Wcat),

Aδ

��

// MA

��

// P(A)δ

��
Ao ×A

Ao×yA // Ao ×P(A)
yo

A×P(A) // P(A)o ×P(A).

The composite square shows that the map yA is fully faithful.

16.15. The Quillen equivalence 13.13 between mediators, and cylinders implies the
existence of a universal cylinder CA ∈ Cyl(A,P(A)). The cylinder CA turns out to
be a fibrant replacement of the cylinder Cl(yA) defined by the pushout square of
simplicial sets,

A
yA //

i1

��

P(A)

��
A× I // Cl(yA)

The universality of CA means that for any simplicial set B and any cylinder
E ∈ Cyl(A,B), there exists a homotopy pullback square in the model category
(S,Wcat),

E
g′ //

��

CA

��
A ? B

1A?g // A ?P(A),

and the pair (g, g′) is homotopy unique. We shall say that g classifies the cylinder
E ∈ Cyl(A,B) and that CA ∈ Cyl(A,P(A)) is a Yoneda cylinder. A cylinder
C : A⇒ B is essentially the same thing as a map B → P(A).
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16.16. (Yoneda lemma 3) The cylinder A × I ∈ Cyl(A,A) is classified by the
Yoneda map yA : A→ P(A). We have a diagram of homotopy pullback squares in
(S,Wcat),

A× I

��

// CA

��

// P(A)× I

��
A ? A

A?yA // A ?P(A)
yA?P(A) // P(A) ?P(A).

16.17. The Quillen equivalence 15.8 between cylinders and spans implies the exis-
tence of a universal span PA ∈ Span(A,P(A)). The universality of PA means that
for any simplicial set B and any bifibrant span S : A⇒ B, there exists a homotopy
pullback square in the model category (S,Wcat),

S
g′ //

��

PA

��
A×B

A×g // A×P(A),

and the pair (g, g′) is homotopy unique. We shall say that g classifies the span
S : A⇒ B and that PA : A⇒ P(A) is a Yoneda span. A bifibrant span S : A⇒ B
is essentially the same thing as a map B → P(A).

16.18. (Yoneda lemma 4) The span AI → A× A is classified by the Yoneda map
yA : A→ P(A). We have a diagram of homotopy pullback squares in (S,Wcat),

AI

��

// PA

��

// P(A)I

��
A×A

A×yA // A×P(A)
yA×P(A) // P(A)×P(A).

The composite square shows that the map yA is fully faithful.

16.19. If X is a small simplicial category, let us denote by [X,S]f the full sub-
category of fibrant objects of the model category [X,S]inj . Then the evaluation
functor ev : X× [X,S]→ S induces a functor e : X× [X,S]f → Kan. The coherent
nerve of this functor is a map of simplicial sets

C !X × C ![X,S]f → U.

When X is enriched over Kan complexes, the corresponding map

C ![X,S]f → UC!X

is an equivalence of logoi. It follows by adjointness that for any simplicial set A we
have an equivalence of logoi

C ![C!A,S]f → UA.
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17. Morita equivalence

In this section, we introduce the notion of Morita equivalence between simplicial
sets. The category of simplicial sets admits a model structure in which the weak
equivalences are the Morita equivalences and the cofibration are the monomor-
phisms. The fibrant objects are the Karoubi complete logoi. We give an explicit
construction of the Karoubi envelope of a logos. The results of the section are taken
from [J2].

17.1. Recall that a functor u : A → B between small categories is said to be a
Morita equivalence if the base change functor

u∗ : [Bo,Set]→ [Ao,Set]

is an equivalence of categories. A functor u : A → B is a Morita equivalence iff it
is fully faithful and every object b ∈ B is a retract of an object in the image of u.

17.2. Recall an idempotent e : b→ b in a category is said to split if there exists a
pair of arrows s : a→ b and r : b→ a such that e = sr and rs = 1a. A category C
is said to be Karoubi complete if every idempotent in C splits.

17.3. The model structure (Cat, Eq) admits a Bousfield localisation with respect
to Morita equivalences. The local model structure is cartesian closed and left
proper. We shall denote it shortly by (Cat,Meq). A category is fibrant iff it
is Karoubi complete. We call a fibration a Morita fibration. A Karoubi enve-
lope Kar(C) of a category C is a fibrant replacement of C in the model structure
(Cat,Meq). The category Kar(C) is well defined up to an equivalence of cate-
gories. The envelope is well defined up to an equivalence of logoi.

17.4. We shall denote by i : C → κ(C) the following explicit construction of the
Karoubi envelope of a category C. An object of the category κ(C) is a pair (c, e),
where c is an object of C and e ∈ C(c, c) is an idempotent. An arrow f : (c, e) →
(c′, e′) of κ(C) is a morphism f ∈ C(c, c′) such that fe = f = e′f . The composite
of f : (c, e) → (c′, e′) and g : (c′, e′) → (c”, e”) is the arrow gf : (c, e) → (c”, e”).
The arrow e : (c, e)→ (c, e) is the unit of (c, e). The functor i : C → κ(C) takes an
object c ∈ C to the object (c, 1c) ∈ κ(C).

17.5. Let Split be the category freely generated by two arrows s : 0 → 1 and
r : 1→ 0 such that rs = 10. The monoid E = Split(1, 1) is freely generated by one
idempotent e = sr and we have κ(E) = Split. A functor is a Morita fibration iff it
has the right lifting property with respect to the inclusion E ⊂ Split.

17.6. We shall say that a map of simplicial sets u : A→ B is a Morita equivalence
if the base change functor

P∗(u) : P(B)↔ P(A)

is an equivalence of categories. A map u : A → B is a Morita equivalence iff it is
fully faithful and every object b ∈ τ1B is a retract of an object in the image of u.
Hence a map u : A→ B is a Morita equivalence iff the opposite map uo : Ao → Bo

is a Morita equivalence. A weak categorical equivalence is a Morita equivalence.
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17.7. An idempotent in a logos X is defined to be a map e : E → X, where E is
the monoid freely generated by one idempotent. We shall say that an idempotent
e : E → X split if it can be extended to a map Split→ X. We shall say that a logos
X is Karoubi complete if every idempotent in X splits. If X is Karoubi complete,
then so are the logoi X/b and b\X for every object b ∈ X.

17.8. The model category (S,Wcat) admits a Bousfield localisation with respect to
Morita equivalences. The local model structure is cartesian closed and left proper.
We shall denote it shortly by (S,Wmor). A fibration is called a Morita fibration. A
logos is fibrant iff it is Karoubi complete. The Karoubi envelope Kar(X) of a logos
X is defined to be a fibrant replacement of X in the model structure (S,Wmor).
The envelope is well defined up to an equivalence of logoi.

17.9. The pair of adjoint functors

τ1 : S↔ Cat : N

is a Quillen adjunction between the model categories (S,Wmor) and (Cat,Wmor).
A functor u : A → B in Cat is a Morita equivalence (resp. a Morita fibration) iff
the map Nu : NA→ NB is a Morita equivalence (resp. a Morita fibration).

17.10. A mid fibration between logoi is a Morita fibration iff it has the right lifting
property with respect to the inclusion E ⊂ Split. The base change of a Morita
equivalence along a left or a right fibration is a Morita equivalence. Every right
(resp. left) fibration is a Morita fibration.

17.11. The canonical map X → hoX is a Morita fibration for any logos X. It
follows that an idempotent u : E → X splits iff its image hu : E → hoX splits in
hoX. Hence a logos X is Karoubi complete iff every idempotent u : E → X which
splits in hoX splits in X.

17.12. Let E be the monoid freely generated by one idempotent. Then a logos
X is is Karoubi complete iff the projection XSplit → XE defined by the inclusion
E ⊂ Split is a trivial fibration.

17.13. The Karoubi envelope of a logos X has functorial construction X → κ(X).
Observe that the functor κ : Cat → Cat has the structure of a monad, with a
left adjoint comonad L. To see this, we need the notion of semi-category. By
definition, a semi-category B is a category without units. More precisely, it is a
graph (s, t) : B1 → B0×B0 equipped with a composition law B1×s,tB1 → B1 which
is associative. There is an obvious notion of semi-functor between semi-categories.
Let us denote by sCat the category of small semi-categories and semi-functors.
The forgetful functor U : Cat → sCat has a left adjoint F and a right adjoint G.
The existence of F is clear by a general result of algebra. If B is a semi-category,
then the category G(B) has the following description. An object of G(B) is a pair
(b, e), where b ∈ B0 and e : b → b is an idempotent; an arrow f : (b, e) → (b′, e′)
of G(B) is a morphism f ∈ B(b, b′) such that fe = f = e′f . Composition of
arrows is obvious. The unit of (b, e) is the morphism e : (b, e) → (b, e). It is easy
to verify that we have U ` G. By construction, we have κ(C) = GU(C) for any
category C. It follows that the functor κ has the structure of a monad. Moreover,
we have L ` κ, where L = FU . The functor L has the structure of a comonad by
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adjointness. The category L[n] has the following presentation for each n ≥ 0. It is
generated by a chain of arrows

0
f1 // 1

f2 // 2 // · · · fn // n,

and a sequence of idempotents ei : i → i (0 ≤ i ≤ n). In addition to the relation
eiei = ei for each 0 ≤ i ≤ n, we have the relation fiei−1 = fi = eifi for each
0 < i ≤ n. If A is a simplicial set, let us put

κ(A)n = S(L[n], A)

for every n ≥ 0. This defines a continuous functor κ : S → S having the structure
of a monad. If X is a logos, then the unit X → κ(X) is a Karoubi envelope
of X. A map between logoi f : X → Y is a Morita equivalence iff the map
κ(f) : κ(X)→ κ(Y ) is an equivalence of logoi.

17.14. The model category (S,Wcat) admits a uniform homotopy factorisation
system (A,B) in which A is the class of Morita equivalences. A map p : X → Y
belongs to B iff it admits a factorisation p′w : X → X ′ → Y with p′ a Morita
fibration and w a weak categorical equivalence.

18. Adjoint maps

We introduce the notion of adjoint maps between logoi and formulate a necessary
an sufficient condition for the existence of adjoints. We also introduce a weaker form
of the notion of adjoint for maps between simplicial sets.

18.1. Recall from 1.11 that the category S has the structure of a 2-category Sτ1 . If
u : A→ B and v : B → A are maps of simplicial sets, an adjunction (α, β) : u a v
between u and v

u : A↔ B : v

is a pair of natural transformations α : 1A → vu and β : uv → 1B satisfying the
adjunction identities:

(β ◦ u)(u ◦ α) = 1u and (v ◦ β)(α ◦ v) = 1v.

The map u is the left adjoint and the map v the right adjoint. The natural trans-
formation α is the unit of the adjunction and the natural transformation β is the
counit. We shall say that a homotopy α : 1A → vu is an adjunction unit if the nat-
ural transformation [α] : 1A → vu is the unit of an adjunction u a v. Dually, we say
that a homotopy β : uv → 1B is an adjunction counit if the natural transformation
[β] : uv → 1B is the counit of an adjunction u a v.

18.2. The functor τ1 : S→ Cat takes an adjunction to an adjunction. A composite
of left adjoints A → B → C is left adjoint to the composite of the right adjoints
C → B → A.

18.3. An object a in a logos X is initial iff the map a : 1→ X is left adjoint to the
map X → 1.
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18.4. A map between logoi g : Y → X is a right adjoint iff the logos a\Y defined
by the pullback square

a\Y //

��

Y

g

��
a\X // X

admits an initial object for every object a ∈ X. An object of the logos a\Y is a
pair (b, u), where b ∈ Y0 and u : a→ f(b) is an arrow in X. We shall say that the
arrow u is universal if the object (b, u) is initial in a\Y . If f is a map X → Y , then
a homotopy α : 1X → gf is an adjunction unit iff the arrow α(a) : a → gf(a) is
universal for every object a ∈ X. Dually, a map between logoi f : X → Y is a left
adjoint iff the logos X/b defined by the pullback square

X/b //

��

X

f

��
Y/b // Y

admits a terminal object for every object b ∈ Y . An object of the logos X/b is a
pair (a, v), where a ∈ X0 and v : f(a) → b is an arrow in Y ; we shall say that the
arrow v is couniversal if the object (a, v) is terminal in X/b. If g is a map Y → X,
then a homotopy β : fg → 1Y is an adjunction counit iff the arrow β(b) : fg(b)→ b
is couniversal for every object b ∈ Y .

18.5. The base change of left adjoint between logoi along a right fibration is a left
adjoint.

18.6. If f : X ↔ Y : g is a pair of adjoint maps between logoi, then the right
adjoint g is fully faithful iff the counit of the adjunction β : fg → 1Y is invertible,
in which case the left adjoint f is said to be a reflection and the map g to be
reflective. Dually, the left adjoint f is fully faithful iff the unit of the adjunction
α : 1X → gf is invertible, in which case the right adjoint g is said to be a coreflection
and the map f to be coreflective.

18.7. The base change of a reflective map along a left fibration is reflective. Dually,
the base change of a coreflective map along a right fibration is coreflective.

18.8. We shall say that a map of simplicial sets u : A→ B is a weak left adjoint if
the functor

τ1(u,X) : τ1(B,X)→ τ1(A,X)

is a right adjoint for every logos X. Dually, we shall say that u : A→ B is a weak
right adjoint if the functor τ1(u,X) is a left adjoint for every logos X. A map of
simplicial sets u : A→ B is a weak left adjoint iff the opposite map uo : Ao → Bo

is a weak right adjoint.

18.9. A map between logoi is a weak left adjoint iff it is a left adjoint. The notion
of weak left adjoint is invariant under weak categorical equivalences. The functor
τ1 : S→ Cat takes a weak left adjoint to a left adjoint.
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18.10. Weak left adjoints are closed under composition. The base change of weak
left adjoint along a right fibration is a weak left adjoint. A weak left adjoint is an
initial map. A vertex a ∈ A in simplicial set A is initial iff the map a : 1→ A is a
weak left adjoint.

18.11. Let B a simplicial set. For each vertex b ∈ B, let us choose a factorisation
1 → Rb → B of the map b : 1 → B as a right anodyne map 1 → Rb followed by
a right fibration Rb → B. Then a map of simplicial sets u : A → B is a weak
left adjoint iff the simplicial set Rb×B A admits a terminal vertex for each vertex
b ∈ B.

18.12. We say that a map v : B → A is a weak reflection if the functor

τ1(v,X) : τ1(A,X)→ τ1(B,X)

is coreflective for every logos X. We say that a map of simplicial sets u : A→ B is
weakly reflective if the functor

τ1(u,X) : τ1(B,X)→ τ1(A,X)

is a coreflection for every logos X. There are dual notions of weak coreflection and
of weakly coreflective maps.

18.13. If a map of simplicial sets is both a weak left adjoint and a weak right
adjoint, then it is a weak reflection iff it is weak coreflection.

18.14. A weak left adjoint is a weak reflection iff it is dominant iff it is a localisation.
Dually, a weak right adjoint is a weak coreflection iff it is dominant iff it is a
localisation.

19. Homotopy localisations

In this section we formulate the Dwyer-Kan localisation theory in terms of logoi
instead of simplicial categories.

19.1. Recall that a strict localisation is a functor A → S−1A which inverts a set
S of arrows universally. A functor u : A → B is called a localisation iff it admits
a factorisation u = wu′ : A → B′ → B, with u′ a strict localisation and w an
equivalence of categories. There is also a notion of iterated localisation introduced
in 11.14. Recall that that the model category (Cat, Eq) admits a homotopy fac-
torisation system (A,B) in which A is the class of iterated localisations and B is
the class of conservative functors.

19.2. We say that a map of simplicial sets u : A → B inverts a set of arrows
S ⊆ A if every arrow in u(S) is invertible in the category τ1(B). If u inverts S we
shall say that u is a homotopy localisation with respect to S if for any logos X, the
map Xu : XB → XA induces an equivalence between the logos XB and the full
simplicial subset of XA spanned by the maps A→ X which inverts S.
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19.3. Let S be a set of arrows in a simplicial set A. If J is the groupoid generated
by one arrow 0→ 1, then the map A→ A[S−1] in the pushout square⊔

S I

��

// A

��⊔
S J

// A[S−1]

is a homotopy localisation with respect to S.

19.4. We shall say that a map of simplicial sets u : A → B coinverts an iterated
localisation l : τ1A → C if the functor τ1(u) : τ1(A) → τ1(B) can be factored
through l up to a natural isomorphism. We shall say that a map u : A → B is a
homotopy localisation (resp. iterated homotopy localisation) if the functor τ1(u) :
τ1(A) → τ1(B) is a localisation (resp. an iterated localisation) and for any logos
X, the map Xu : XB → XA induces an equivalence between the logos XB and the
full simplicial subset of XA spanned by the maps A→ X which inverts τ1(u).

19.5. The functor τ1 : S→ Cat takes a homotopy localisation to a localisation and
an iterated homotopy localisation to an iterated localisation. An iterated homotopy
localisation u : A → B is a homotopy localisation iff the iterated localisation
τ1(u) : τ1A→ τ1B is a localisation.

19.6. The model category (S,Wcat) admits a homotopy factorisation system (A,B)
in which B is the class of conservative maps and A is the class of iterated homotopy
localisations. Hence a monomorphism of simplicial sets is an iterated homotopy
localisation iff it has the left lifting property with respect to conservative pseudo-
fibrations between logoi.

19.7. An iterated homotopy localisation is essentially surjective and dominant. A
weak reflection (resp. coreflection) is a homotopy localisation. The base change of
a homotopy localisation along a left or a right fibration is a homotopy localisation.
Similarly for the base change of an iterated homotopy localisation.

19.8. Recall from 48.5 that for any category A, the full subcategory of A\Cat
spanned by the iterated strict localisations A→ C is equivalent to a complete lattice
Loc0(A). Its maximum element is defined by the strict localisation A→ π1A which
inverts every arrow in A. If A is a simplicial set, then the full subcategory of the
homotopy category Ho(A\S,Wcat) spanned by the iterated homotopy localisations
A→ C is equivalent to a complete lattice Loc(A). Moreover, the functor τ1 induces
an isomorphism of lattices Loc(A) ' Loc0(τ1A). The maximum element of Loc(A)
is the fibrant replacement A→ K of A in the model category (S,Who).
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19.9. Suppose that we have a commutative cube of simplicial sets

A0
//

��

  B
BB

BB
BB

B C0

!!C
CC

CC
CC

C

��

B0

��

// D0

��

A1

  B
BB

BB
BB

B
// C1

!!C
CC

CC
CC

C

B1
// D1.

in which the top and the bottom faces are homotopy cocartesian. If the maps
A0 → A1, B0 → B1 and C0 → C1 are homotopy localisations, then so is the maps
D0 → D1. Similarly for iterated homotopy localisations.

19.10. Every simplicial set X is the homotopy localisation

λX : el(X)→ X

of its category of elements el(X) = ∆/X. The map λX was defined by Illusie in
[Illu]. Let us first describe λX in the case where X is (the nerve of) a category
C. Recall that an object of el(C) is a chain of arrows x : [n] → C, and that a
morphism α : y → x from y : [m] → C to x : [n] → C is a map u : [m] → [n] in ∆
such that xu = y. The functor λC : el(C)→ C is defined by putting λC(x) = x(n)
and λC(α) = x(u(m), n), where (u(m), n) denotes the unique arrow u(m) → n in
the category [n]. The family of maps λC : el(C) → C, for C ∈ Cat, is a natural
transformation between two endo-functors of Cat. The natural transformation has
then a unique extension λX : el(X) → X for X ∈ S. Let us now show that ΛX
is a homotopy localisation. Let ∆′ be the subcategory of ∆ whose arrows are the
maps u : [m] → [n] with u(m) = n. We shall denote by el′(X) the subcategory
of el(X) obtained by pulling back ∆′ along the projection el(X) → ∆. The map
λX : el(X) → X takes every arrow in el′(X) to a unit in X. It thus induces a
canonical map

wX : el(X)[el′(X)−1]→ X.

The result will be proved if we show that wX a weak categorical equivalence. We
only sketch of the proof. The domain F (X) of wX is a cocontinuous functor of X.
Moreover, the functor F takes a monomorphism to a monomorphism. The result
is easy to verify in the case where X = ∆[n]. The result then follows from a formal
argument using the the skeleton filtration of X and the cube lemma.

19.11. If u : A→ B is homotopy localisation, then the base change functor P∗(u) :
P(B)→ P(A) is fully faithful, since a homotopy localisation is dominant. An object
X ∈ P(A) belongs to the essential image of the functor P∗(u) iff its (contravariant)
homotopy diagram D(X) : τ1(A)o → Ho(S,Who) inverts the localisation τ1(A)→
τ1(B).
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19.12. If f : a→ b is an arrow in a simplicial set A, then the inclusion i0 : {0} → I
induces a map f ′ : a → f between the objects a : 1 → A and f : I → A of the
category S/A. If S is a set of arrows in A, we shall denote by (S/A, S ∪Wcont).
the Bousfield localisation of the model structure (S/A,Wcont) with respect to the
set of maps {f ′ : f ∈ S}. An object X ∈ R(A) is fibrant in the localised structure
iff the map f∗ : X(b) → X(a) of the contravariant homotopy diagram of X is a
weak homotopy equivalence for every arrow f : a → b in S. If p : A → A[S−1] is
the canonical map, then the pair of adjoint functors

p! : S/A↔ S/A[S−1] : p∗

is a Quillen equivalence between the model category (S/A,Σ ∪ Wcont) and the
model category (S/A[S−1],Wcont).

19.13. It follows from 19.12 that a right fibration X → B is a Kan fibration iff
the map f∗ : X(b)→ X(a) of the contravariant homotopy diagram of X is a weak
homotopy equivalence for every arrow f : a→ b in B.

20. Barycentric localisations

In this section we give an explicit construction of the quasi-localisation of a model
category with respect to weak equivalences.

20.1. For every n ≥ 0, let us denote by P0[n] the (nerve of) the poset of non-empty
subsets of [n] ordered by the inclusion. From a map f : [m] → [n], we obtain a
map P0(f) : P0[m]→ P0[n] by putting P0(f)(S) = f(S) for every S ∈ P0[m. This
defines a functor P0 : ∆→ S. Recall that the Ex functor of Daniel Kan

Ex : S→ S

is defined by putting
Ex(X)n = S(P0[n], X)

for every X ∈ S and n ≥ 0. The functor Ex has a left adjoint

B : S→ S

obtained by taking the left Kan extension of the functor P0 : ∆ → S along the
Yoneda functor ∆→ S. The simplicial setB(X) is called the barycentric subdivision
of a simplicial set X.

TO BE COMPLETED

21. Limits and colimits

In this section we study the notions of limit and colimit in a logos. We define the
notions of cartesian product, of fiber product, of coproduct and of pushout. The
notion of limit in a logos subsume the notion of homotopy limits. For example.
the loop space of a pointed object is a pullback and its suspension a pushout. We
consider various notions of complete and cocomplete logoi. Many results of this
section are taken from [J1] and [J2].

21.1. If X is a logos and A is a simplicial set, we say that a map d : A → X is
a diagram indexed by A in X . The logos X can be large. The cardinality of a
diagram d : A → X is the cardinality of A. A diagram d : A → X is small (resp.
finite) if A is small (resp. finite).
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21.2. Recall that a projective cone with base d : A → X in a logos X is a map
c : 1 ? A→ X which extends d along the inclusion A ⊂ 1 ? A. The projective cones
with base d are the vertices of a logos X/d by 9.8. We say that a projective cone
c : 1 ?A→ X with base d is exact if it is a terminal object of the logos X/d. When
c : 1 ? A → X is exact, the vertex l = c(1) ∈ X is said to be the (homotopy) limit
of the diagram d and we write

l = lim
a∈A

d(a) = lim
A
d.

21.3. If d : A→ X is a diagram in a logos X, then the full simplicial subset of X/d
spanned by the exact projective cones with base d is a contractible Kan complex
when non-empty. It follows that the limit of a diagram is homotopy unique when
it exists.

21.4. The notion of limit can also be defined by using fat projective cones 1�A→ X
instead of projective cones 1?A→ X. But the canonical map X/d→ X//d obtained
from the canonical map 1 � A → 1 ? A is an equivalence of logoi by 9.20. It thus
induces an equivalence between the Kan complex spanned by the terminal vertices
of X/d and the Kan complex spanned by the terminal vertices of X//d.

21.5. The colimit of a diagram with values in a logos X is defined dually. We recall
that an inductive cone with cobase d : A→ X in a logos X is a map c : A ? 1→ X
which extends d along the inclusion A ⊂ A ? 1. The inductive cones with a fixed
cobase d are the objects of a logos d\X. We say that an inductive cone c : 1?A→ X
with cobase d is coexact if it is an initial object of the logos d\X. When c : A?1→ X
is coexact, the vertex l = c(1) ∈ X is said to be the (homotopy) colimit of the
diagram d and we write

l = colima∈Ad(a) = colimAd.

The notion of colimit can also be defined by using fat inductive cones A � 1 → X,
but the two notions are equivalent.

21.6. If X is a logos and A is a simplicial set, then the diagonal map X → XA has
a right (resp. left) adjoint iff every diagram A→ X has a limit (resp. colimit).

21.7. We shall say that a (large) logos X is complete if every (small) diagram
A→ X has a limit. There is a dual notion of a cocomplete logos. We shall say that
a large logos is bicomplete if it is complete and cocomplete.

21.8. We say that a logos X is finitely complete or cartesian if every finite diagram
A → X has a limit. There is dual notion of a finitely cocomplete or cocartesian
logos. We shall say that a logos X is finitely bicomplete if it is finitely complete and
cocomplete.

21.9. The homotopy localisation L(E) of a model category E is finitely bicomplete,
and it is (bi)complete when the category E is (bi)complete.

21.10. The coherent nerve of the category of Kan complexes is a bicomplete logos
U = U0. Similarly for the coherent nerve U1 of the category of small logoi.
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21.11. A map between logoi f : X → Y is said to preserve the limit of a diagram
d : A → X if this limit exists and f takes an exact projective cone c : 1 ? A → X
with base d to an exact cone fc : 1 ? A → Y . The map f : X → Y is said to be
continuous if it takes every (small) exact projective cone in X to an exact cone. A
map between cartesian logoi is said to be left exact if it preserves finite limits.

21.12. Dually, a map f : X → Y is said to preserve the the colimit of a diagram
d : A → X if this colimit exists and f takes a coexact inductive cone with cobase
d to a coexact cone. A map f : X → Y is said to be cocontinuous if it takes
every (small) coexact inductive cone in X to a coexact cone. A map which is both
continuous and cocontinuous is said to be bicontinuous,

21.13. A right adjoint between logoi is continuous and a left adjoint cocontinuous.

21.14. If X is a logos and S is a discrete simplicial set (ie a set), then a map
x : S → X is the same thing as a family (xi | i ∈ S) of objects of X. A projective
cone c : 1 ? S → X with base x : S → X is the same thing as a family of arrows
(pi : y → xi | i ∈ S) with domain y = c(1). When c is exact, the object y is said
to be the product of the family (xi : i ∈ S), the arrow pi : y → xt is said to be a
projection and we write

y =
∏
i∈S

xi.

Dually, an inductive cone c : S ? 1 → X with cobase x is a family of arrows
(ui : xi → y | t ∈ S) with codomain y = c(1). When c is coexact, the object y is
called the coproduct of the family (xi : i ∈ S), the arrow ui : xi → y is said to be a
coprojection and we write

y =
∐
i∈S

xi.

21.15. The canonical map X → hoX preserves products and coproducts.

21.16. We say that a logos X has finite products if every finite family of objects
of X has a product. A logos with a terminal object and binary products has finite
products. We say that a large logos X has products if every small family of objects
of X has a product. There are dual notions of a logos with finite coproducts and of
large logos with coproducts

21.17. If X is a logos and b ∈ X0, then an object of the logos X/b is an arrow
a→ b in X. The fiber product of two arrows a→ b and c→ b in X is defined to be
their product as objects of the logos X/b,

a×b c //

��

c

��
a // b.
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21.18. If X is a logos and a ∈ X0, then an object of the logos a\X is an arrow
a → b in X. The amalgameted coproduct of two arrows a → b and a → c in X is
defined to be their coproduct as objects of the logos a\X,

a //

��

c

��
b // b ta c.

21.19. A commutative square in a logos X is map I×I → X. The square I×I is a
projective cone 1 ?Λ2[2]. A commutative square I × I → X is said to be cartesian,
or to be a pullback if it is exact as a projective cone. We shall say that a logos X
has pullbacks if every diagram Λ2[2]→ X has a limit.

21.20. A diagram d : Λ2[2] → X is the same thing as a pair of arrows f : a → b
and g : c→ b in X. The limit of d is the domain of the fiber product of f and g. A
logos X has pullbacks iff the logos X/b has finite products for every object b ∈ X.

21.21. Dually, a commutative square I × I → X in a logos X is said to be co-
cartesian, or to be a pushout, if it is coexact as an inductive cone. We say that a
logos X has pushouts) if every diagram Λ0[2] → X has a colimit. A logos X has
pushouts iff the logos a\X has finite coproducts for every object a ∈ X.

21.22. A logos with terminal objects and pullbacks is finitely complete. A map
between finitely complete logoi is finitely continuous iff it preserves terminal objects
and pullbacks.

21.23. A logos with products and pullbacks is complete. A map between complete
logoi is continuous iff it preserves products and pullbacks.

21.24. We say that a logos X is cartesian closed if it has finite products and the
product map a × (−) : X → X has a right adjoint [a,−] : X → X, called the
exponential, for every object a ∈ X. We say that a logos X is locally cartesian
closed if the slice logos X/a is cartesian closed for every object a ∈ X.

21.25. The logos U is locally cartesian closed. The logoi U1 and U1/I are cartesian
closed, where I = ∆[1].

21.26. The base change of a morphism f : a→ b in a logos along another morphism
u : a′ → a is the morphism f ′ in a pullback square,

a′ //

f ′

��

a

f

��
b′

u // b.

21.27. To every arrow f : a → b in a logos X we can associate a pushforward
map f! : X/a → X/b by 16.7. The map f! is unique up to a unique invertible
2-cell in the 2-category QCat. The logos X has pullbacks iff the pushforward map
f! : X/a→ X/b has a right adjoint

f∗ : X/b→ X/a

for every arrow f : a→ b. We shall say that f∗ is the base change map along f .
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21.28. A cartesian logos X is locally cartesian closed iff the base change map

f∗ : X/b→ X/a

has a right adjoint f∗ for every arrow f : a→ b.

21.29. Let d : B → X a diagram with values in a logos X and let u : A → B a
map of simplicial sets. If the colimit of the diagrams d and du exist, then there is
a canonical morphism

colimAdu→ colimBd

in the category hoX. When the map u : A → B is final, the map d\X → du\X
induced by u is an equivalence of logoi by 9.17. It follows that the colimit of d
exists iff the colimit of du exists, in which case the canonical morphism above is
invertible and the two colimits are isomorphic.

21.30. Let d : B → X a diagram with values in a logos X. If u : (M,p) → (N, q)
is a contravariant equivalence in the category S/B, then the map dq\X → dp\X
induced by u is an equivalence of logoi. It follows that the colimit of dp exists iff
the colimit of dq exists, in which case the two colimits are naturally isomorphic in
the category hoX.

21.31. Let (Ai | i ∈ S) be a family of simplicial sets and let us put

A =
⊔
i∈S

Ai.

If X is a logos, then a diagram d : A→ X is the same thing as a family of diagrams
di : Ai → X for i ∈ S. If each diagram di has a colimit xi, then the diagram d has
a colimit iff the coproduct of the family (xi : i ∈ I) exists, in which case we have

colimAd =
∐
i∈S

colimAid.

21.32. Suppose we have a pushout square of simplicial sets

A
u //

i

��

C

j

��
B

v // T.

with i monic. Let d : T → X be a diagram with values in a logos X and suppose
that each diagram dv, dvi and dj has a colimit. Then the diagram d has a colimit
iff the pushout square

colimAdvi //

��

colimCdj

��
colimBdv // Z

exists, in which case colimT d = Z.
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21.33. In a logos with finite colimit X, the coproduct of n objects can be computed
inductively by taking pushouts starting from the initial object. More generally, the
colimit of any finite diagram d : A → X can be computed inductively by taking
pushouts and the initial object. To see this, let us put

ln = colimSknAd | SknA
for each n ≥ 0. The object l0 is the coproduct of the family d | A0. If n > 0,
the object ln can be constructed from ln−1 by taking pushouts. To see this, let
us denote by Cn(A) the set of non-degenerate n-simplices of A. We then have a
pushout square

Cn(A)× ∂∆[n] //

��

Skn−1A

��
Cn(A)×∆[n] // SknA

for each n ≥ 1. The colimit of a simplex x : ∆[n]→ X is equal to x(n), since n is a
terminal object of ∆[n]. Let us denote by δ(x) the colimit of the simplicial sphere
x | ∂∆[n]. There is then a canonical morphism δ(x) → x(n), since ∂∆[n] ⊂ ∆[n].
It then follows from 21.32 that we have a pushout square,∐

x∈Cn(A) δ(x) //

��

ln−1

��∐
x∈Cn(A) x(n) // ln.

The construction shows that a logos with initial object and pushouts is finitely
cocomplete.

21.34. Recall from 17.7 than an idempotent in a logos X is defined to be a map
e : E → X, where E is the monoid freely generated by one idempotent. An
idempotent e : E → X splits iff the diagram e : E → X has a limit iff it has a
colimit. A complete logos is Karoubi complete Beware that the simplicial set E is
not quasi-finite. Hence a cartesian logos is not necessarly Karoubi complete.

21.35. The Karoubi envelope of a cartesian logos is cartesian. The Karoubi enve-
lope of a logos with finite products has finite products.

21.36. Every cocartesian logos X admits a natural action (A, x) 7→ A · x by finite
simplicial sets. By definition, the object A ·x is the colimit of the constant diagram
A → X with value x. The map x 7→ A · x is obtained by composing the diagonal
∆A : X → XA with its left adjoint lA : XA → X. Equivalently A · x is the colimit
of x : 1→ X weighted by A→ 1 There is a canonical homotopy equivalence

X(A · x, y) ' X(x, y)A

for every y ∈ X. Dually, every cartesian logos X admits a contravariant action
(x,A) 7→ xA by finite simplicial set A. By definition, the object xA ∈ X is he limit
of the constant diagram A → X with value x. There is a a canonical homotopy
equivalence

X(y, xA) ' X(y, x)A

for every y ∈ X. The covariant and contravariant actions are related by the formula
xA = (Ao · xo)o.
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21.37. In the logos U1, the product map × : U1 ×U1 → U1 coincides with the
action map defined above and the exponential [−,−] : Uo

1 × U1 → U1 with the
coaction map.

21.38. A cocartesian logos X with a null object 0 admits a natural action by finite
pointed simplicial sets. The smash product A ∧ x of an object x ∈ X by a finite
pointed simplicial set A is defined by the pushout square,

1 · x //

a·x
��

1 · 0

��
A · x // A ∧ x,

where a : 1→ A is the base point. This defines a map A ∧ (−) : X → X. There is
a natural isomorphism

A ∧ (B ∧ x) ' (A ∧B) ∧ x
for any pair of finite pointed simplicial sets A and B. There is also a natural
isomorphism S0 ∧ x ' x, where S0 is the pointed 0-sphere. The suspension of
an element x ∈ X, is defined to be the smash product Σ(x) = S1 ∧ x, where S1

is the pointed circle. The n-fold suspension is the smash product Sn ∧ x. For a
fixed object x ∈ X, the map A 7→ A ∧ x takes an homotopy pushout square of
finite pointed simplicial sets to a pushout square in X. For example, it takes the
homotopy pushout square

S0 //

��

0

��
0 // S1

to a pushout square
x //

��

0

��
0 // Σ(x).

Σn(x)

21.39. Dually, let X be a pointed cartesian logos with null object 0 ∈ X. The
cotensor of an element x ∈ X by a finite pointed simplicial set A is the element
[A, x] ∈ X defined by the pullback square,

[A, x] //

��

0

��
xA

xa
// x1,

where a : 1 → A is the base point. This defines a map [A,−] : X → X. For any
pair of pointed simplicial sets A and B, there is a natural isomorphism

[A, [B, x]] ' [A ∧B, x]
and it is homotopy unique. There is also a natural isomorphism [S0, x] ' x. The
loop space of an element x ∈ X is defined to be the cotensor [S1, x]. The n-fold loop
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space is the cotensor [Sn, x]. For a fixed object x ∈ X, the map A 7→ A ∧ x takes
an homotopy pushout square of finite pointed simplicial sets to a pushout square
in X. For example, it takes the homotopy pushout square

S0 //

��

0

��
0 // S1

to a pullback square
Ω(x) //

��

0

��
0 // x.

Ω(x) Ωn(x)

21.40. If the logos X is cocartesian and pointed, then its opposite Xo is cartesian
and pointed. By duality we have

(A ∧ x)o = [Ao, xo] ' [A, xo],

since the simplicial sets A and Ao are weakly homotopy equivalent. In particular,
we have (Σ · x)o ' Ω(xo). When X is bicartesian, the map A∧ (−) : X → X is left
adjoint to the map [A,−] : X → X.

21.41. Unless exception, we only consider small ordinals and cardinals. Recall that
an ordinal α is said to be a cardinal if it is smallest among the ordinals with the
same cardinality. Recall that a cardinal α is said to be regular if the sum of a family
of cardinals < α, indexed by a set of cardinality < α, is < α.

21.42. Let α be a regular cardinal. We say that a diagram A → X in a logos
X is α-small if the simplicial set A has cardinality < α. We say that a logos X
is α-complete if every α-small diagram A → X has a limit. We say that map
X → Y between α-complete logoi is α-continuous if it preserves the limit every
α-small diagram K → X. There are dual notions of α-cocomplete logos, and of
α-cocontinuous map. ogos!α-completetextbf ogos!α-cocompletetextbf

21.43. Let α be an infinite regular cardinal. Then a logos with α-products and
pullbacks. is α-complete. A map between α-complete logoi is α-continuous iff it
preserves α-small products and pullbacks.

21.44. For any simplicial set A, the map

λA : ∆/A→ A

defined in 21.44 is initial, since a localisation is dominant and a dominant map is
initial. Hence the limit of a diagram d : A → X in a logos X is isomorphic to the
limit of the composite dλA : ∆/A→ X. Observe that the projection q : ∆/A→ ∆
is a discrete fibration. If d : A→ X is a diagram in a logos with products X, then
the map dλA admits a right Kan extension ΠA(d) = Πq(dλA) : ∆ → X along the
projection q. See section 24 for Kan extensions. Moreover, we have

ΠA(d)(n) =
∏
a∈An

d(a(n))
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for every n ≥ 0. The diagram d has a limit iff the diagram ΠA(d) has a limit, in
which case we have

lim
A
d = lim

∆
ΠA(d).

It follows that a logos with products and ∆-indexed limits is complete.

21.45. Dually, for any simplicial set A, the opposite of the map λAo : ∆/Ao → Ao

is a final map
λoA =: A/∆o → A.

Observe that the canonical projection p : A/∆o → ∆o is a discrete opfibration. If
d : A→ X is a diagram in a logos with coproducts X, then the map dλoA admits a
left Kan extension ΣA(d) = RKanp : ∆o → X along the projection p. We have

ΣA(d)n =
∐
a∈An

d(a(0))

for every n ≥ 0. The diagram d has a colimit iff the diagram ΣA(d) has a colimit,
in which case we have

colimAd = colim∆ΣA(d).

It follows that a logos with coproducts and ∆o-indexed colimits is cocomplete.

22. Grothendieck fibrations

22.1. We first recall the notion of Grothendieck fibration between categories. A
morphism f : a → b in a category E is said to be cartesian with respect a functor
p : E → B if for every morphism g : c → b in E and every factorisation p(g) =
p(f)u : p(c) → p(a) → p(b) in B, there is a unique morphism v : c → a in E such
that g = fv and p(v) = u. A morphism f : a → b is cartesian with respect to the
functor p iff the square of categories

E/a //

��

E/b

��
B/p(a) // B/p(b)

is cartesian, where the functor E/a → E/b (resp. B/p(a) → B/p(b)) is obtained
by composing with f (resp. p(f)). A functor p : E → B is called a Grothendieck
fibration over B if for every object b ∈ E and every morphism g ∈ B with target p(b)
there exists a cartesian morphism f ∈ E with target b such that p(f) = g. There are
dual notions of cocartesian morphism and of Grothendieck opfibration. A functor
p : E → B is a Grothendieck opfibration iff the opposite functor po : Eo → Bo is a
Grothendieck fibration. We shall say that a functor p : E → B is a Grothendieck
bifibration if it is both a fibration and an opfibration.

22.2. If X and Y are two Grothendieck fibrations over B, then a functor X → Y
in Cat/B is said to be cartesian if its takes every cartesian morphism in X to
a cartesian morphism in Y . There is a dual notion of cocartesian functor be-
tween Grothendieck opfibrations over B and a notion of bicartesian functor between
Grothendieck bifibrations.
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22.3. Observe that a morphism f : a→ b in a category E is cartesian with respect
a functor p : E → B iff every commutative square

Λ2[2]

��

x // E

p

��
∆[2] // B

with x(1, 2) = f has a unique diagonal filler.

22.4. Let p : E → B be a mid fibration between simplicial sets. We shall say that
an arrow f ∈ E is cartesian if every commutative square

Λn[n]

��

x // E

p

��
∆[n] // B

with n > 1 and x(n− 1, n) = f has a diagonal filler. Equivalently, an arrow f ∈ E
with target b ∈ E is cartesian with respect to p if the map E/f → B/pf ×B/pbE/b
obtained from the commutative square

E/f //

��

E/b

��
B/pf // B/pb

is a trivial fibration. Every isomorphism in E is cartesian when B is logos by 9.14.
We call a map of simplicial sets p : E → B a Grothendieck fibration if it is a mid
fibration and for every vertex b ∈ E and every arrow g ∈ B with target p(b) there
exists a cartesian arrow f ∈ E with target b such that p(f) = g.

22.5. A map X → 1 is a Grothendieck fibration iff X is a logos. A right fibration
is a Grothendieck fibration whose fibers are Kan complexes. Every Grothendieck
fibration is a pseudo-fibration.

22.6. The class of Grothendieck fibrations is closed under composition and base
changes. The base change of a weak left adjoint along a Grothendieck fibration is
a weak left adjoint [?].

22.7. If p : E → B is a Grothendieck fibration, then so is the map pA : EA → BA

for any simplicial set A.

22.8. The source map s : XI → X a Grothendieck fibration for any logos X. More
generally, if a monomorphism of simplicial sets u : A → B is fully faithful and a
weak left adjoint then the map Xu : XB → XA is a Grothendieck fibration for any
logos X.

22.9. The target map t : XI → X a Grothendieck fibration for any logos with
pullbacks X. More generally, if a monomorphism of simplicial sets u : A → B
is fully faithful and a weak right adjoint, then the map Xu : XB → XA is a
Grothendieck fibration for any logos with pullbacks X.
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22.10. If E is an object of S/B, then for every simplex u : ∆[n] → B we have a
simplicial set [u,E]. If n = 0 and u = b : 1 → B, then the simplicial set [b, E] is
the fiber E(b) of the structure map E → B at b ∈ B. For any arrow f : a → b in
B consider the projections p0 : [f,E] → E(a) and p1 : [f,E] → E(b) respectively
defined by the inclusions {0} ⊂ I and {1} ⊂ I. If the structure map E → B is a
Grothendieck fibration, then the projection p1 : [f,E] → E(b) has a right adjoint
i1 : E(b)→ [f,E] and the composite

f∗ = p0i1 : E(b)→ E(a)

is well defined up to a unique invertible 2-cell. We shall say that f∗ is the base
change along f , or the pullback along f . If t : ∆[2]→ B is a simplex with boundary
∂t = (g, h, f),

b
g

��>
>>

>>
>>

>

a

f

@@��������
h

// c,

then we can define a canonical invertible 2-cell

h∗ ' f∗g∗ : E(c)→ E(b)→ E(a).

22.11. We shall say that a map g : X → Y between two Grothendieck fibrations
in S/B is cartesian if it takes every cartesian arrow in X to a cartesian arrow in Y .
A cartesian map g : X → Y respects base changes. More precisely, for any arrow
f : a→ b in B, the following square commutes up to a canonical invertible 2-cell,

X(b)

f∗

��

// Y (b)

f∗

��
X(a) // Y (a),

where the horizontal maps are induced by g.

22.12. Recall that the category S/B is enriched over S for any simplicial set B by
12.1. We shall denote by [X,Y ] the simplicial set of maps X → Y between two ob-
jects of S/B. Let G(B) the full sub-category of S/B spanned by the Grothendieck
fibrations X → B. If X ∈ G(B), then the simplicial set [A,X] is a logos for
any object A ∈ S/B. It follows that the category G(B) is enriched over QCat.
By composing this enrichement with the functor τ1 : QCat → Cat we obtain a
2-category structure on G(B).

22.13. Let us denote by Cart(B) the subcategory of G(B) whose morphisms are
the cartesian maps. The category R(B) is a full subcategory of Cart(B), since
every right fibration is a Grothendieck fibration and every map in R(B) is cartesian.
The inclusion functor R(B) ⊆ Cart(B) has a right adjoint

JB : Cart(B)→ R(B).

By construction, we have JB(X) ⊆ X and a simplex x : ∆[n] → X belongs to
JB(X) iff the arrow x(i, j) is cartesian for every 0 ≤ i < j ≤ n. Notice that a map
g : X → Y in G(B) is cartesian iff we have g(JB(X)) ⊆ JB(Y ). The functor JB
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respects base change. More precisely, for any Grothendieck fibration X → B and
any map of simplicial sets u : A→ B we have a canonical isomorphism

u∗JB(X) = JA(u∗X).

In particular, we have JB(X)(b) = J(X(b)) for every vertex b ∈ B.

22.14. Every map between logoi u : A→ B admits a factorisation

u = gi : A→ P (u)→ B

with g a Grothendieck fibration and i a fully faithful right adjoint [?]. The simplicial
set P (u) is constructed by the pullback square

P (u)
q //

p

��

BI

t

��
A

u // B,

where t is the target map. If s : BI → B is the source map, then the composite
g = sq : P (u)→ B is a Grothendieck fibration. There is a unique map i : A→ P (u)
such that pi = 1A and qi = δu, where δ : B → BI is the diagonal. We have g ` i
and the counit of the adjunction is the identity of gi = 1X . Thus, i is fully faithful.
If p : X → B is a Grothendieck fibration, then for every map f : A → X in S/B
there exists a cartesian map c : P (u)→ X such that f = ci. Moreover, c is unique
up to a unique invertible 2-cell in the 2-category G(B).

22.15. There are dual notions of cocartesian arrow and of Grothendieck opfibration.
A map p : E → B is a Grothendieck opfibration iff the opposite map po : E → B
is a Grothendieck fibration. We shall say that a map is a Grothendieck bifibration
if it is both a Grothendieck fibration and a Grothendieck opfibration.

22.16. A Kan fibration is a Grothendieck bifibration whose fibers are Kan com-
plexes.

22.17. If a logos X is bicomplete, then the map Xu : XB → XA is a Grothendieck
bifibration for any fully faithful monomorphism of simplicial sets u : A→ B.

22.18. If p : E → B is a Grothendieck opfibration, then the projection p0 : [f,E]→
E(a) has a left adjoint i0 : E(a)→ [f,E] and the composite

f! = p1i0 : E(a)→ E(b)

is well defined up to a unique invertible 2-cell. We shall say that f! is the cobase
change along f , or the pushforward along f . The map f! is well defined of to a
unique invertible 2-cell. If p : E → B is a Grothendieck bifibration, the map f! is
left adjoint to the map f∗.

23. Proper and smooth maps

The notions of proper and of smooth functors were introduced by Grothendieck
in 31.30. We extend these notions to maps of simplicial sets. The results of the
section are taken from [J2].
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23.1. We shall say that a map of simplicial sets u : A→ B is proper if the pullback
functor u∗ : S/B → S/A takes a right anodyne map to a right anodyne map. A
map of simplicial sets u : A → B is proper iff the inclusion u−1(b(n)) ⊆ b∗(E) is
right anodyne for every simplex b : ∆[n]→ B.

23.2. A Grothendieck opfibration is proper. In particular, a left fibration is proper.
The class of proper maps is closed under composition and base changes. A projec-
tion A×B → B is proper.

23.3. The pullback functor u∗ : S/B → S/A has a right adjoint u∗ for any map of
simplicial sets u : A→ B. When u is proper, the pair of adjoint functors

u∗ : S/B ↔ S/A : u∗.

is a Quillen pair with respect to the contravariant model structures on these cate-
gories. The functor u∗ takes a contravariant equivalence to a contravariant equiv-
alence and we obtain an adjoint pair of derived functors

P∗(u) : P(B)↔ P(A) : P∗(u).

23.4. Dually, we shall say that a map of simplicial sets p : E → B is smooth if the
functor p∗ : S/B → S/E takes a left anodyne map to a left anodyne map. A map
p is smooth iff the opposite map po : Eo → Bo is proper.

23.5. The functor P∗(u) admits a right adjoint P∗(u) for any map of simplicial sets
u : A→ B. To see this, it suffices by Morita equivalence to consider the case where
A and B are logoi. By 24.10, we have a factorisation u = pi : A→ C → B, with i a
left adjoint and p a Grothendieck opfibration. We then have P∗(u) ' P∗(i)P∗(p).
Hence it suffices to prove the result when u is a Grothendieck opfibration and when
u is a left adjoint. The first case is clear by 23.3, since a Grothendieck opfibration
is proper by 23.2. If v : B → A is right adjoint to u, then we have P∗(u) ` P∗(v)
by 14.11.

23.6. Suppose that we have a commutative square of simplicial sets

F
v //

q

��

E

p

��
A

u // B

Then the following square commutes,

P(F )

P!(q)

��

P!(v) // P(E)

P!(p)

��
P(A)

P!(u) // P(B).

From the adjunctions P!(p) ` P∗(p) and P!(q) ` P∗(q) we can define a canonical
natural transformation

α : P!(v)P∗(q)→ P∗(p)P!(u).
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We shall say that the Beck-Chevalley law holds if α is invertible. This means that
the following square commutes up to a canonical isomorphism,

P(F )
P!(v) // P(E)

P(A)

P∗(q)

OO

P!(u) // P(B).

P∗(p)

OO

Equivalently, this means that the following square of right adjoints commutes up
to a canonical isomorphism,

P(F )

P∗(q)
��

P(E)
P∗(v)oo

P∗(p)
��

P(A) P(B).
P∗(u)oo

23.7. (Proper or smooth base change) [J2] Suppose that we have a cartesian square
of simplicial sets,

F
v //

q

��

E

p

��
A

u // B.

Then the Beck-Chevalley law holds if p is proper or if u is smooth.

24. Kan extensions

We introduce the notion of Kan extension for maps between logoi. The results
of the section are taken from [J2].

24.1. Let C be a 2-category. Let us call a 1-cell of C a map. The left Kan extension
of a map f : A→ X along a map u : A→ B is a pair (g, α), where g : B → X is a
map and α : f → gu is a 2-cell, which reflects the map f along the functor

C(u,X) : C(B,X)→ C(A,X).

This means that for any map g′ : B → X and any 2-cell α′ : f → g′u, there is
a unique 2-cell β : g → g′ such that (β ◦ u)α = α′. The pair (g, α) is unique up
to a unique invertible 2-cell when it exists, in which case we shall put g = Σu(f).
Dually, the right Kan extension of a map f : A → X along a map u : A → B is a
pair (g, β), where g : B → X is a map and β : gu → f is a 2-cell, which coreflects
the map f along the functor C(X,u). This means that for any map g′ : B → X and
any 2-cell α′ : g′u→ f , there is a unique 2-cell β : g′ → g such that α(β ◦ u) = α′.
The pair (g, β) is unique up to a unique invertible 2-cell when it exists, in which
case we shall put g = Πu(f).

24.2. If u : A↔ B : v is an adjoint pair in a 2-category C, then we have C(X, v) `
C(X,u) for any object X. Hence we have fv = Σu(f) for every f : A→ X and we
have gu = Πv(g) for every map g : B → X.
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24.3. The category S has the structure of a 2-category (= Sτ1). Hence there is
a notion of Kan extension for maps of simplicial sets. We will only consider Kan
extension of maps with values in a logos. If X is a logos, we shall denote by Σu(f)
the left Kan extension of a map f : A→ X along a map of simplicial sets u : A→ B.
Dually, we shall denote by Πu(f) the right Kan extension of a map f : A → X
along u : A→ B. By duality we have

Πu(f)o = Σuo(fo).

24.4. If X is a cocomplete logos and u : A→ B is a map between (small) simplicial
sets, then every map f : A→ X has a left Kan extension Σu(f) : B → X and the
map Xu : XB → XA has a left adjoint

Σu : XA → XB .

Dually, if X is a complete logos, then every map f : A → X has a right Kan
extension Πu(f) : B → X and the map Xu has a right adjoint

Πu : XA → XB .

24.5. If u : A → B is a map of simplicial sets, then the colimit of a diagram
d : A → X is isomorphic to the colimit of its left Kan extension Σu(d) : B → X,
when they exist. Dually, the limit of a diagram d : A → X is isomorphic to the
limit of its right Kan extension Πu(d) : B → X, when they exist.

24.6. If u : A → B and v : B → C are maps of simplicial sets, then we have a
canonical isomorphism

Σv ◦ Σu = Σvu : XA → XC

for any cocomplete logos X. Dually, we have a canonical isomorphism

Πv ◦Πu = Πvu : XA → XC

for any complete logos X.

24.7. Let X be a bicomplete logos. If u : A↔ B : v is an adjunction between two
maps of simplicial sets, then we have three adjunctions and two isomorphisms,

Σv ` Σu = Xv ` Xu = Πv ` Πu.

24.8. Every map between logoi u : A→ B admits a factorisation

u = qi : A→ P → B

with q a Grothendieck opfibration and i a fully faithful left adjoint (a coreflection)
by 24.10. If p : P → A is the righ adjoint of i, then we have Xp = Σi for any
cocomplete logos X, since we have Xp ` Xi. Thus

Σu = Σq ◦ Σi = Σq ◦Xp.

24.9. If u : A → B is a map between (small) simplicial sets, we shall denote the
map Uuo

by u∗, the map Σuo by u! and the map Πuo by u∗. We have u! ` u∗ ` u∗,
u! : P(A)↔ P(B) : u∗ : P(B)↔ P(A) : u∗.

Notice the equality (vu)∗ = u∗v∗ and the isomorphisms (vu)! ' v!u! and (vu)∗ '
v∗u∗. for a pair of maps u : A → B and v : B → C. More generally, if X is a
complete logos anhd u : A → B is a map between (small) simplicial sets, we may
denote the map Xuo

by u∗, the map Σuo by u! and the map Πuo by u∗.
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24.10. If u : A↔ B : v is an adjunction between two maps of simplicial sets, then
we have three adjunctions and two isomorphisms,

u! ` v! = u∗ ` v∗ = u∗ ` v∗.

24.11. Suppose that we have commutative square of simplicial sets,

F
v //

q

��

E

p

��
A

u // B.

If X is a cocomplete logos. then from the commutative square

XF XE
Xv

oo

XA

Xq

OO

XB .
Xu

oo

Xp

OO

then from the adjunctions Σu ` Xu and Σv ` Xv, we can define a natural trans-
formation

α : ΣvXq → XpΣu.
We shall say that the Beck-Chevalley law holds if α is invertible. Dually, if X is
complete, then from the adjunctions Xp ` Πp and Xq ` Πq we obtain natural
transformation

β : XuΠp → ΠqX
v.

We shall say that the Beck-Chevalley law holds if β is invertible. When X is
bicomplete, the transformation β is the right transpose of α. Thus, β is invertible
iff α is invertible. Hence the Beck-Chevalley law holds in the first sense iff it holds
in the second sense. The Beck-Chevalley law holds in the first sense if the square
pv = uq is cartesian and u is a smooth map. The Beck-Chevalley law holds in the
second sense if the square pv = uq is cartesian and p is a proper map.

24.12. Suppose that we have commutative square of simplicial sets,

F
v //

q

��

E

p

��
A

u // B.

If X is a complete logos. then from the commutative square

XF o

XEov∗oo

XAo

q∗

OO

XBo

.
u∗oo

p∗

OO

and the adjunctions p∗ ` p∗ and q∗ ` q∗, we obtain natural transformation

α : u∗p∗ → q∗v
∗.

We shall say that the Beck-Chevalley law holds if α is invertible. The Beck-Chevalley
law holds if the square pv = uq is cartesian and p is a proper map. Dually, if X is a
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cocomplete logos, then from the adjunctions u! ` u∗ and v! ` v∗, we obtain natural
transformation

β : v!q∗ → p∗u!.

We shall say that the Beck-Chevalley law holds if β is invertible. The Beck-Chevalley
law holds if the square pv = uq is cartesian and u is a smooth map. When X is
bicomplete, the transformation β is the left transpose of α. Thus, β is invertible iff
α is invertible. Hence the Beck-Chevalley law holds in the first sense iff it holds in
the second sense.

24.13. If p : E → B is a proper map and E(b) is the fiber of p at b ∈ B0, then the
Beck-Chevalley law holds for the square

E(b) v //

��

E

p

��
1

b // B.

This means that if X is a complete logos, then we have

p∗(f)(b) = lim
←−

x∈E(b)

f(x)

for any map f : Eo → X. Dually, If p : E → B is a smooth map and X is a
cocomplete logos, then we have

p!(f)(b) = lim
−→

x∈E(b)

f(x)

for any map f : Eo → X.

24.14. It follows from 24.13 that if p : E → B is a smooth map and X is a complete
logos, then we have

Πp(f)(b) = lim
←−

x∈E(b)

f(x),

for every map f : E → X and every b ∈ B0. Dually, if p : E → B is a proper map
and X is a cocomplete logos, then we have

Σp(f)(b) = lim
−→

x∈E(b)

f(x)

for every map f : E → X and every b ∈ B0.

24.15. If X is a cocomplete logos and B is a logos, let us compute the left Kan
extension of a map f : A → X along a map u : A → B. We shall apply the
Beck-Chevalley law to the pullback square

A/b //

��

B/b

p

��
A

u // B

The value of Σu(f) at b : 1→ B is obtained by composing the maps

XA
Σu // XB

Xb
// X.
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If t : 1 → B/b is the terminal vertex, then we have Xb = XtXp, since we haved
b = pt. The map t : 1 → B/b is right adjoint to the map r : B/b → 1. It follows
that Xt = Σr. Thus,

XbΣu = XtXpΣu = ΣrXpΣu.

The projection p is smooth since a right fibration is smooth. Hence the following
square commutes up to a natural isomorphism by 24.12,

XA/b

Σv

��

XA
Xq

oo

Σu

��
XB/b XB .

Xp
oo

Thus,

ΣrXpΣu ' ΣrΣvXq ' ΣrvXq.

But Σrv is the colimit map

lim
−→

: XA/b → X,

since rv is the map A/b→ 1. Hence the square

XA/b

lim
−→
��

XA
Xq

oo

Σu
��

X XB
Xb

oo

commutes up to a canonical isomorphism. This yields Kan’s formula

Σu(f)(b) = lim
−→

u(a)→b

f(a).

24.16. Dually, if X is a complete logos and B is a logos, then the right Kan
extension of a map f : A → X along a map u : A → B is computed by Kan’s
formula

Πu(f)(b) = lim
←−

b→u(a)

f(a),

where the limit is taken over the simplicial set b\A defined by the pullback square

b\A //

��

b\B

p

��
A

u // B.

24.17. A map of simplicial sets u : A→ B is fully faithful iff the map Σu : XA →
XB is fully faithful for every cocomplete logos X.
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24.18. LetX be a cocomplete logos. For any span (s, t) : S → A×B, the composite

XA
Xs
// XS

Σt // XB

is a cocontinuous map
X〈S〉 : XA → XB .

If u : S → T is a map in Span(A,B), then from the commutative diagram

S
s

����
��

��
�

u

��

t

��@
@@

@@
@@

A B

T

l

__??????? r

??~~~~~~~

and the counit Σu ◦Xu → id, we can define a 2-cell,

X〈u〉 : X〈S〉 = Σt ◦Xs = Σr ◦ Σu ◦Xu ◦X l → Σr ◦X l = X〈T 〉.

This defines a functor

X〈−〉 : Span(A,B)→ τ1(XA, XB).

A map u : S → T in Span(A,B) is a bivariant equivalence if the 2-cell

X〈u〉 : X〈S〉 → X〈T 〉.

is invertible for any cocomplete logos X iff the 2-cell

U〈u〉 : U〈S〉 → U〈T 〉.

is invertible. We thus obtain a functor

X〈−〉 : Λ(A,B)→ τ1(XA, XB).

24.19. If S ∈ Span(A,B) and T ∈ Span(B,C) are bifibrant spans, then we have
a canonical isomorphism

X〈T ◦ S〉 ' X〈T 〉 ◦X〈S〉

for any cocomplete logos X. To see this, it suffices to consider the case where A,
B and C are logoi. We have a pullback diagram,

T ◦ S
p

||yyyyyyyy
q

""E
EEEEEEE

S
s

����
��

��
�

t

""E
EE

EE
EE

EE T
s

||yy
yy

yy
yy

y
t

  A
AA

AA
AA

A B C.

The map s : T → B is smooth, since it is Grothendieck fibration by 15.13. It then
follows from 24.12 that the Beck-Chevalley law holds for the square in the following
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diagram,
XT◦S

Σq

##F
FFFFFFF

XS

Σt

##F
FFFFFFF

Xp
;;xxxxxxxx

XT

Σt

""E
EE

EE
EE

E

XA

Xs
==zzzzzzzz

XB

Xs
;;xxxxxxxx

XC .

Thus,
X〈T ◦ S〉 = ΣrΣqXpXs ' ΣtXpΣtXs = X〈T 〉 ◦X〈S〉.

We have defined a (pseudo) functor

X〈−〉 : Λ→ CQ,

where CQ the 2-category of cocomplete logoi and cocontinuous maps.

24.20. If A is a (small) simplicial set, then the endo-functor X 7→ XA of CQ
is right adjoint to the endo-functor X 7→ XAo

. More precisely, for any pair of
cocomplete logoi X and Y , we have a natural equivalence of categories

CQ(XAo

, Y ) ' CQ(X,Y A).

The unit of the adjunction is the map X〈ηA〉 : X → XAo×A and the counit is the
map X〈εA〉 : XA×Ao → X. It folllows from this adjunction that the logos XAo

can
be regarded as the tensor product A⊗X of X by A. More precisely, the map

cA : A×X → XAo

which corresponds to the map X〈ηA〉 : X → XAo×A by the exponential adjointness
is cocontinuous in the second variable and universal with respect to that property.
This means that for any cocomplete logos Y and any map f : A×X → Y cocontin-
uous in the second variable, there exists a cocontinuous map g : XAo → Y together
with an isomorphism α : f ' gcA and moreover that the pair (f, α) is unique up to
unique isomorphism. Notice that we have cA(a, x)(bo) = HomA(b, a) · x for every
a, b ∈ A and x ∈ X. The 2-category CQ becomes tensored over the category Λrev

if we put A⊗X = XAo

and

〈S〉 ⊗X = X〈So〉 : A⊗X → B ⊗X
for S ∈ Span(B,A). In particular, we have A⊗U = P(A).

24.21. The counit of the adjunction (−)A
o ` (−)A described above is the trace

map
TrA = X〈εA〉 : XA×Ao

→ X.

In category theory, the trace of a functor f : A×Ao → Y is called the coend

coendA(f) =
∫ a∈A

f(a, a).

We shall use the same notation for the trace of a map f : A×Ao → Y . Notice that

TrA(f) = TrAo(tf),

where tf : Ao ×A→ Y is the transpose of f . The inverse of the equivalence

CQ(XAo

, Y ) ' CQ(X,Y A)
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associates to a map f : X × A → Y cocontinuous in the first variable the map
g : XAo → Y obtained by putting

g(z) =
∫ a∈A

f(z(a), a).

for every z ∈ XAo

.

24.22. If X is a complete logos, the cotrace map

TroA : XAo×A → X

is defined to be the opposite of the trace map TrA : (Xo)A×A
o → Xo. In category

theory, the cotrace of a functor f : Ao ×A→ X is the end

endA(f) =
∫
a∈A

f(a, a),

and we shall use the same notation. Notice that

TroA(f) = TroAo(tf),

where tf : A×Ao → X is the transpose of f .

24.23. If X is a logos, then the contravariant functor A 7→ ho(A,X) = ho(XA)
is a kind of cohomology theory with values in Cat. When X is bicomplete, the
map ho(u,X) : ho(B,X)→ ho(A,X) has a left adjoint ho(Σu) and a right adjoint
ho(Πu) for any map u : A → B. If we restrict the functor A 7→ ho(A,X) to the
subcategory Cat ⊂ S, we obtain a homotopy theory in the sense of Heller, also
called a derivateur by Grothendieck [Malt1] Most derivateurs occuring naturally in
mathematics can be represented by bicomplete logoi.

25. The logos U

The logos U is cocomplete and freely generated by its terminal objects. More
generally, the logos of prestacks on a simplicial set A is cocomplete and freely
generated by A. A cocomplete logos is equivalent to a logos of prestacks iff it is
cogenerated by a small set of atoms.

25.1. Recall that the logos U = U0 is defined to be the coherent nerve of the
category Kan of Kan complexes. The logos U is bicomplete and freely generated
by the object 1 ∈ U as a cocomplete logos. More precisely, if S and T are cocomplete
logoi, let us denote by CC(S, T ) the full simplicial subset of TS spanned by the
cocontinuous maps S → T . Then the evaluation map

ev : CC(U, X)→ X

defined by putting ev(f) = f(1) is an equivalence for any cocomplete logos X. The
map ev is actually a trivial fibration. If s is a section of ev, then the map

· : U×X → X

defined by putting k · x = s(x)(k) is cocontinuous in each variable and we have
1 · x = x for every x ∈ X.
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25.2. The Yoneda map yA : A→ P(A) exibits the logos P(A) as the free comple-
tion of A under colimits. More precisely, the map

y∗A : CC(P(A), X)→ XA

induced by the map yA : A → P(A) is an equivalence for any cocomplete logos
X. The inverse equivalence associates to a map g : A → X its left Kan extension
g! : P(A)→ X along yA :. The value of g! on a prestack k ∈ P(A) is the colimit of
the map g : A→ X weighted by the diagram El(k)→ A. In other words, we have

g!(k) = lim
−→
El(k)

g.

Compare with Dugger [Du].

25.3. The left Kan extension of the Yoneda map yA : A→ P(A) along itself is the
identity of P(A). It follows that we have

k = lim
−→
El(k)

yA

for every object k ∈ P(A).

25.4. If f : A→ X is a map between small logoi, we shall say that the map

f ! = f∗yX : X → P(A)

is the probe map associated to f . The map f ! can be defined under the weaker
assumption that X is locally small.

25.5. For example, if f is the map ∆ → U1 obtained by applying the coherent
nerve functor to the inclusion ∆→ QCat, then the probe map

f ! : U1 → P(∆)

associates to an object C ∈ U1 its nerve N(C) : ∆o → U. By construction, we
have

N(C)n = J(C∆[n])

for every n ≥ 0.

25.6. If X is locally small and cocomplete, then the left Kan extension of a map
f : A→ X along the Yoneda map yA : A→ P(A) is left adjoint to the probe map
f !,

f! : P(A)↔ X : f !.

25.7. For any simplicial set A, the logos P(A) is the homotopy localisation of
the model category (S/A,Wcont). More precisely, we saw in 21.44 that the map
λA : ∆/A→ A is a homotopy localisation. The left Kan extension of the composite

yAλA : ∆/A→ P(A)

along the inclusion ∆/A→ S/A induces an equivalence of logoi

L(S/A,Wcont)→ P(A).

The inverse equivalence associates to a prestack f : A → U the right fibration
El(f)→ A.
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25.8. If f : A → B is a map between small logoi, then the map f∗ = Ufo

is the
probe of the composite yBf : A→ B → P(B) and we have

f! : P(A)↔ P(B) : f∗.

25.9. It follows from Yoneda lemma that the logos of elements El(g) of a prestack
g ∈ P(A), is equivalent to the logos A/g defined by the pullback square

A/g

��

q // P(A)/g

��
A

yA // P(A),

The adjoint pair
q! : P(A/g)↔ P(A)/g : q!

obtained from the map q is an equivalence of logoi.

25.10. Let X be a locally small logos. If A is a small simplicial set, we shall say
that a map f : A → X is dense if the probe map f ! : X → P(A) is fully faithful.
We shall say that a small full subcategory A ⊆ X is dense if the inclusion i : A ⊆ X
is dense; we shall say that a set of objects S ⊆ X is dense if the full sub logos
spanned by S is dense.

25.11. Let X be a locally small logos. If A is a small simplicial set, we shall say
that a map f : A→ X is separating if the probe map f ! : X → P(A) is conservative;
we shall say that a set of objects S ⊆ X is separating if the inclusion S ⊆ X is
separating. Every dense map is separating.

25.12. For example, the Yoneda map yA : A→ P(A) is dense, since the map (yA)!
is the identity. In particular, the map 1 : 1 → U is dense. The map f : ∆ → U1

defined in ?? is dense; this means that the nerve map

N : U1 → P(∆)

is fully faithful.

25.13. A map of simplicial sets u : A→ B is dominant iff the map yBu : A→ P(B)
is dense.

25.14. LetX be a locally small logos. If A is a simplicial set, then a map f : A→ X
is dense iff the counit of the adjunction

f! : P(A)↔ X : f !

is invertible. The value of this counit at x ∈ X is the canonical morphism

lim
−→
A/x

f → x

where the diagram A/x→ A is defined by the pullback square

A/x //

��

A

f

��
X/x // X.
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25.15. If X is a logos, we shall say that a simplicial subset A ⊆ X is replete if every
object of X isomorphic to an object in A belongs to A. If X is cocomplete, let us
denote by A the smallest full simplicial subset of X which is replete, which is closed
closed under colimits and which contains A. We shall say that A is cogenerating if
we have A = X.

25.16. A cogenerating simplicial subset of a cocomplete logos is separating.

25.17. Let X be a (locally small) cocomplete logos. We shall say that an object
x ∈ X is atomic if the map homX(x,−) : X → U is cocontinuous.

25.18. Any complete or cocmplete logos is Karoubi complete. In particular, the
logos P(A) is Karoubi complete for any simplicial set A. Moreover, the Yoneda
map yA : A → P(A) admits an extension y′A : κ(A) → P(A) to the Karoubi
envelope of A and this xtension is homotopy unique. The map y′A is fully faithful
and it induces an equivalence between κ(A) and the full simplicial subset of P(A)
spanned by atomic objects.

25.19. If g : Ao → U is a prestack on a small logos A, then the atoms of the logos
P(A)/g are the morphisms a→ g, with a ∈ κ(A).

25.20. Let X be a cocomplete (locally small) logos and A ⊆ X be a small full
simplicial subset spanned by atomic objects. Then the left Kan extension

i! : P(A)→ X.

of the inclusion i : A ⊆ X along the map yA : A→ P(A) is fully faithful. Moreover
i! is an equivalence iff A cogenerates X iff A separates X.

25.21. A cocomplete logos X is equivalent to a logos of prestacks iff it is cogener-
ated by a small set of atoms.

25.22. If A is a simplicial set, we say that a pre-stack g ∈ P(A) is finitely presented
if it is the colimit of a finite diagram of representable prestacks.

25.23. If A is a simplicial set, we say that a pre-stack g ∈ P(A) is finitely pre-
sentable if it is the colimit of a finite diagram of representable prestacks. We shall
denote by Pf (A) the full simplicial subset of P(A) spanned by the finitely pre-
sentable prestacks. The Yoneda map yA : A → P(A) induces a map A → Pf (A)
(also denoted yA).

25.24. We conjecture that an atomic prestack is finitely presentable iff it is repre-
sentable.

25.25. For any (small) simplicial set A, the map yA : A → Pf (A) exhibits the
logos Pf (A) as the free completion of A under finite colimits. More precisely, if S
and T are cocartesian logoi, let us denote by Cf (S, T ) the full simplicial subset of
TS spanned by the finitely cocontinuous maps S → T . Then the map

y∗A : Cf (Pf (A), X)→ XA

induced by the map yA : A → Pf (A) is an equivalence for any cocartesian logos
X. The inverse equivalence associates to a map g : A → X its left Kan extension
g! : Pf (A)→ X along the map yA : A→ Pf (A).

25.26. A logos A is cocartesian iff the map yA : A→ Pf (A) has a left adjoint.
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25.27. For any prestack g ∈ P(A), the equivalence P(A/g) ' P(A)/g of 25.19
induces an equivalence

Pf (A/g) ' Pf (A)/g,

25.28. If u : A → B is a map of simplicial sets, then the map u! : P(A) → P(B)
takes finitely presentable prestacks to a finitely presentable prestacks. We obtain a
square

A

yA

��

u // B

yB

��
Pf (A)

u! // Pf (B)

which commutes up to a canonical isomorphism. The induced map u! : Pf (A) →
Pf (B) is fully faithful iff u is fully faithful. We conjecture that u! is an equivalence
iff u is a weak categorical equivalence.

25.29. If A is a simplicial set, we say that a pre-stack g ∈ P(A) is α-presentabe if
it is the colimit of a diagram of cardinality < α of representable prestacks. We shall
denote by Pα(A) the full simplicial subset of P(A) spanned by the α-presentable
prestacks. The Yoneda map yA : A → P(A) induces a map A → Pf (A) (also
denoted yA).

25.30. If For any (small) simplicial set A the map yA : A → Pf (A) exhibits the
logos Pα(A) as the free completion of A under α-colimits. More precisely, if S and
T are α-cocomplete logoi, let us denote by Cα(S, T ) the full simplicial subset of TS

spanned by the α-cocontinuous maps S → T . Then the map

y∗A : Cα(Pα(A), X)→ XA

induced by the map yA : A→ Pα(A) is an equivalence for any α-cocomplete logos
X. The inverse equivalence associates to a map g : A → X its left Kan extension
g! : Pα(A)→ X along the map yA : A→ Pα(A).

25.31. A logos A is α-cocomplete iff the map yA : A→ Pα(A) has a left adjoint.

25.32. For any prestack g ∈ P(A), the equivalence P(A/g) ' P(A)/g of 25.19
induces an equivalence

Pα(A/g) ' Pα(A)/g,

25.33. The correspondance f 7→ el(f) of 16.8 between the maps B → U and the
left fibrations in S/B can be used for translating the properties of the former to
the latter. For example, a map f : B → U is said to be coexact on an inductive
cone c : K ? 1 → B if the inductive cone fc : K ? 1 → U is coexact. We shall say
a left fibration q : X → B is coexact on c : K ? 1 → B if it is classified by a map
f : B → U wjhich is coexact on c. It is easy to see that q : X → B is coexact on c
iff the inclusion (ci)∗(X) ⊆ c∗(X) is a weak homotopy equivalence, where i denotes
the inclusion K ⊆ K ? 1. Dually, a map f : B → U is said to be exact on a cone
c : 1 ?K → B if the composite fc : 1 ?K → U is exact. A left fibration q : X → B
is exact on c : 1 ?K → B iff the map [i,X] : [1 ?K,X]→ [K,X] obtained from the
inclusion i : K ⊆ 1 ? K is a weak homotopy equivalence.
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25.34. If B is a logos, we shall say that a left fibration p : E → B preserves the
colimit of a diagram d : K → B if this colimit exists and p is coexact on the coexact
inductive cone which extends d. Dually, we shall say that p preserves the limit of d
if this limit exists and p is exact on the exact projective cone which extends d. For
example, for any map a : A → B, the left fibration a\B → B preserves the limit
of any diagram K → B. The notion of a right fibration p : E → B preserving the
limit or the colimit of a diagram d : K → B is defined dually.

26. Factorisation systems in logoi

In this section, we introduce the notion of factorisation system in a logos. It is
closely related to the notion of homotopy factorisation system in a model category
introduced in section 11.

26.1. We first define the orthogonality relation u⊥f between the arrows of a logos
X. If u : a→ b and f : x→ y are two arrows in X, then an arrow s ∈ XI(u, f) in
the logos XI is a a commutative square s : I × I → X,

a //

u

��

x

f

��
b // y,

such that s|{0}×I = u and s|{1}×I = f . A diagonal filler for s is a map I ?I → X
which extends s along the inclusion I × I ⊂ I ? I. The projection q : XI?I → XI×I

defined by the inclusion I × I ⊂ I ? I is a Kan fibration. We shall say that u is left
orthogonal to f , or that f is right orthogonal to u, and we shall write u⊥f , if the
fiber of q at s is contractible for every commutative square s ∈ XI(u, f). An arrow
f ∈ X is invertible iff we have f⊥f .

26.2. When X has a terminal object 1, then an arrow x → 1 is right orthogonal
to an arrow u : a→ b iff the map

X(u, x) : X(b, x)→ X(a, x)

induced by u is a homotopy equivalence. In this case we shall say that x is right
orthogonal to the arrow u, or that x local with respect to u, and we shall write u⊥x.

26.3. If h : X → hoX is the canonical map, then the relation u⊥f between the
arrows of X implies the relation h(u) t h(f) in hoX. However, if h(u) = h(u′) and
h(f) = h(f ′), then the relations u⊥f and u′⊥f ′ are equivalent. Hence the relation
u⊥f only depends on the homotopy classes of u and f . If A and B are two sets of
arrows in X, we shall write A⊥B to indicate the we have u⊥f for every u ∈ A and
f ∈ B. We shall put

A⊥ = {f ∈ X1 : ∀u ∈ A, u⊥f}, ⊥A = {u ∈ X1 : ∀f ∈ A, u⊥f}.

The set A⊥ contains the isomorphisms, it is closed under composition and it has
the left cancellation property. It is closed under retracts in the logos XI . And
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it is closed under base changes when they exist. This means that the implication
f ∈ A⊥ ⇒ f ′ ∈ A⊥ is true for any pullback square

x′ //

f ′

��

x

f

��
y′ // y

in X.

26.4. Let X be a (large or small) logos. We shall say that a pair (A,B) of class of
arrows in X is a factorisation system if the following two conditions are satisfied:

• A⊥ = B and A = ⊥B;
• every arrow f ∈ X admits a factorisation f = pu (in hoX) with u ∈ A and
p ∈ B.

We say that A is the left class and that B is the right class of the factorisation
system.

26.5. If X is a logos, then the image by the canonical map h : X → hoX of a fac-
torisation system (A,B) is a weak factorisation system (h(A), h(B)) on the category
hoX. Moreover, we have A = h−1h(A) and B = h−1h(B). Conversely, if (C,D) is
a weak factorisation system on the category ho(X), then the pair (h−1(C), h−1(D))
is a factorisation system on X iff we have h−1(C)⊥h−1(D).

26.6. The left class A of a factorisation system (A,B) in a logos has the right
cancellation property and the right class B the left cancellation property. Each
class is closed under composition and retracts. The class A is closed under cobase
changes when they exist. and the class B under base changes when they exist.

26.7. The intersection A ∩ B of the classes of a factorisation system (A,B) on a
logos X is the class of isomorphisms in X. Let us denote by A′ the 1-full simplicial
subset of X spanned by A. The simplicial set A′ is a logos by ??, since we have
A = h−1h(A) and h(A) is a subcategory of hoX. We shall say that it is the sub-logos
spanned by A. If B′ is the sub-logos spanned by B, then we have A′ ∩B′ = J(X),
where J(X) is the largest sub Kan complex of X.

26.8. Let (A,B) be a factorisation system in a logos X. Then the full sub-logos
of XI spanned by the elements in B is reflective; it is thus closed under limits.
Dually, the full sub-logos of XI spanned by the elements in A is coreflective; it is
thus closed under colimits.

26.9. Let (A,B) be a factorisation system in a logos X. Then the full sub-logos
of XI spanned by the elements in B is reflective. Hence this sub-logos is closed
under limits. Dually, the full sub=logos of XI spanned by the elements in A is
coreflective.

26.10. L’et (A,B) be a factorisation system in a logos X. If p : E → X is a left or
a right fibration, then the pair (p−1(A), p−1(B)) is a factorisation system in E; we
shall say that the system (p−1(A), p−1(B)) is obtained by lifting the system (A,B)
to E along p. In particular, every factorisation system on X can lifted to X/b (resp.
b\X) for any vertex b ∈ X.
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26.11. A factorisation system (A,B) on a logos X induces a factorisation sys-
tem (AS , BS) on the logos XS for any simplicial set S. By definition, a natural
transformation α : f → g : S → X belongs to AS (resp. BS) iff the arrow
α(s) : f(s)→ g(s) belongs to A (resp. B) for every vertex s ∈ S. We shall say that
the system (AS , BS) is induced by the system (A,B).

26.12. Let p : E → L(E) be the homotopy localisation of a model category. If
(A,B) is a factorisation system in L(E), then the pair (p−1(A), p−1(B) is a homo-
topy factorisation system in E , and this defines a bijection between the factorisation
systems in L(E) and the homotopy factorisation systems in E .

26.13. If A is the class of essentially surjective maps in the logos U1 and B is the
class of fully faithful maps, then the pair (A,B) is a factorisation system. If A is the
class of final maps in U1 and B is the class of right fibrations then the pair (A,B)
is a factorisation system. If B is the class of conservative maps in U1 and A is
the class of iterated homotopy localisations, then the pair (A,B) is a factorisation
system. If A is the class of weak homotopy equivalences in U1 and B is the class
of Kan fibrations then the pair (A,B) is a factorisation system.

26.14. Let p : X → Y be a Grothendieck fibration between logoi. If A ⊆ X is the
set of arrows inverted by p and B ⊆ X is the set of cartesian arrows, then the pair
(A,B) is a factorisation system on X.

26.15. If X is a logos with pullbacks then the target functor t : XI → X is a
Grothendieck fibration. It thus admits a factorisation system (A,B) in which B is
the class of pullback squares. An arrow u : a→ b in XI belongs to A iff the arrow
u1 in the square

a0

��

u0 // b0

��
a1

u1 // b1

is quasi-invertible.

26.16. We say that a factorisation system (A,B) in a logos with finite products X
is stable under finite products if the class A is closed under products in the category
XI . When X has pullbacks, we say that a factorisation system (A,B) is stable
under base changes if the class A is closed under base changes. This means that
the implication f ∈ A⇒ f ′ ∈ A is true for any pullback square

x′ //

f ′

��

x

f

��
y′ // y.

26.17. Every factorisation system in the logos U is stable under finite products.
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26.18. We shall say that an arrow u : a → b in a logos X is a monomorphism or
that it is monic if the commutative square

a
1a //

1a

��

a

u

��
a

u // b

is cartesian. Every monomorphism in X is monic in the category hoX but the
converse is not necessarly true. A map between Kan complexes u : A→ B is monic
in U iff it is homotopy monic.

26.19. We shall say that an arrow in a cartesian logos X is surjective, or that is a
surjection , if it is left orthogonal to every monomorphism of X. We shall say that
a cartesian logos X admits surjection-mono factorisations if every arrow f ∈ X
admits a factorisation f = up, with u a monomorphism and p a surjection. In this
case X admits a factorisation system (A,B), with A the set of surjections and B
the set of monomorphisms. If logos X admits surjection-mono factorisations, then
so do the logoi b\X and X/b for every vertex b ∈ X, and the logos XS for every
simplicial set S.

26.20. If logos X admits surjection-mono factorisations, then so does the category
hoX.

26.21. We say that a cartesian logos X is regular if it admits surjection-mono
factorisations and system is stable under base changes.

26.22. The logos U is regular. If a logos X is regular then so are the logoi b\X
and X/b for any vertex b ∈ X and the logos XA for any simplicial set A.

26.23. Recall that a simplicial set A is said to be a 0-object if the canonical map
A → π0(A) is a weak homotopy equivalence, If X is a logos, we shall say that an
object a ∈ X is discrete or that it is a 0-object if the simplicial set X(x, a) is a
0-object for every object x ∈ X. When the product a× a exists, the object a ∈ X
is a 0-object iff the diagonal a→ a× a is monic. When the exponential aS

1
exists,

the object a ∈ X is a 0-object iff the projection aS
1 → a is invertible. We shall

say that an arrow u : a → b in X is a 0-cover if it is a 0-object of the slice logos
X/b. An arrow u : a → b is a 0-cover iff the map X(x, u) : X(x, a) → X(x, b) is
a 0-cover for every node x ∈ X. We shall say that an arrow u : a → b in X is
0-connected if it is left orthogonal to every 0-cover in X. We shall say that a logos
X admits 0-factorisations if every arrow f ∈ X admits a factorisation f = pu with
u a 0-connected arrow and p a 0-cover. In this case X admits a factorisation system
(A,B) with A the set of 0-connected maps and B the set of 0-covers. If a logos X
admits 0-factorisations, then so do the logoi b\X and X/b for every vertex b ∈ X,
and the logos XS for every simplicial set S.

26.24. There is a notion of n-cover and of n-connected arrow in every logos for
every n ≥ −1. If X is a logos, we shall say that a vertex a ∈ X is a n-object if
the simplicial set X(x, a) is a n-object for every vertex x ∈ X. If n = −1, this
means that X(x, a) is contractible or empty. When the exponential aS

n+1
exists,

then a is a n-object iff the projection aS
n+1 → a is invertible. We shall say that an

arrow u : a → b is a n-cover if it is a n-object of the slice logos X/b. If n ≥ 0 and
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the product a× a exists, the vertex a is a n-object iff the diagonal a → a× a is a
(n − 1)-cover. We shall say that an arrow in a logos X is n-connected if it is left
orthogonal to every n-cover. We shall say that a logos X admits n-factorisations if
every arrow f ∈ X admits a factorisation f = pu with u a n-connected map and p
a n-cover. In this case X admits a factorisation system (A,B) with A the set of n-
connected maps and B the class of n-covers. If n = −1, this is the surjection-mono
factorisation system. If X admits k-factorisations for every −1 ≤ k ≤ n, then we
have a sequence of inclusions

A−1 ⊇ A0 ⊇ A1 ⊇ A2 · · · ⊇ An

B−1 ⊆ B0 ⊆ B1 ⊆ B2 · · · ⊆ Bn,
where (Ak, Bk) denotes the k-factorisation system in X.

26.25. The logos U admits n-factorisations for every n ≥ −1 and the system is
stable under base change.

26.26. If a logos X admits n-factorisations, then so do the logoi b\X and X/b for
every vertex b ∈ X, and the logos XS for every simplicial set S.

26.27. Suppose that X admits k-factorisations for every 0 ≤ k ≤ n. If k > 0, we
shall say that a k-cover f : x → y in X is an Eilenberg-MacLane k-gerb and f is
(k − 1)-connected. A Postnikov tower (of height n) for an arrow f : a → b is a
factorisation of length n+ 1 of f

a x0
p0oo x1

p1oo · · ·p2oo xn
pnoo b,

qnoo

where p0 is a 0-cover, where pk is an EM k-gerb for every 1 ≤ k ≤ n and where qn
is n-connected. The tower can be augmented by further factoring p0 as a surjection
followed by a monomorphism. Every arrow in X admits a Postnikov tower of
height n and the tower is unique up to a homotopy unique isomorphism in the
logos X∆[n+1].

26.28. We shall say that a factorisation system (A,B) in a logos X is generated
by a set Σ of arrows in X if we have B = Σ⊥. Let X be a cartesian closed logos.
We shall say that a factorisation system (A,B) in X is multiplicatively generated
by a set of arrows Σ if it is generated by the set

Σ′ =
⋃
a∈X0

a× Σ.

A multiplicatively generated system is stable under products. For example, in
the logos U, the n-factorisations system is multiplicatively generated by the map
Sn+1 → 1. In the logos U1, the system of essentially surjective maps and fully
faithful maps is multiplicatively generated by the inclusion ∂I ⊂ I. The system
of final maps and right fibrations is multiplicatively generated by the inclusion
{1} ⊂ I. The dual system of initial maps and left fibrations is multiplicatively
generated by the inclusion {0} ⊂ I. The system of iterated homotopy localisations
and conservative maps is multiplicatively generated by the map I → 1 (or by the
inclusion I ⊂ J , where J is the groupoid generated by one isomorphism 0 → 1).
The system of weak homotopy equivalences and Kan fibrations is multiplicatively
generated by the pair of inclusions {0} ⊂ I and {1} ⊂ I.
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27. n-objects

27.1. Recall that a simplicial set X is said to be a n-object, where n ≥ 0, if we have
πi(X,x) = 1 for every i > n and x ∈ X. A Kan complex X is a n-object iff every
sphere ∂∆[m]→ X of dimension m− 1 > n can be filled. We shall say that a map
of simplicial sets u : A → B is a weak homotopy n-equivalence if the map π0(u) :
π0(A) → π0(B) is bijective as well as the maps πi(u, a) : πi(A, a) → πi(B, u(a))
for every 1 ≤ i ≤ n and a ∈ A. The model category (S,Who) admits a Bousfield
localisation with respect to the class of weak homotopy n-equivalences. We shall
denote the local model structure shortly by (S,Who[n]), where Who[n] denotes the
class of weak homotopy n-equivalences. Its fibrant objects are the Kan n-objects.

27.2. Recal that a simplicial set X is said to be a (−1)-object if it is contractible
or empty (ie if the map X → ∃X is a weak homotopy equivalence, where ∃X ⊆ 1
denotes the image of the map X → 1). A Kan complex X is a (−1)-object iff every
sphere ∂∆[m]→ X with m > 0 can be filled. We shall say that a map of simplicial
sets u : A → B is a (−1)-equivalence if it induces a bijection ∃A → ∃B. The
model category (S,Who) admits a Bousfield localisation with respect to the class
of weak homotopy (−1)-equivalences. We shall denote the local model structure
shortly by (S,Who[−1]), where Who[−1] denotes the class of weak homotopy (−1)-
equivalences. Its fibrant objects are the Kan (−1)-objects.

27.3. Recall that a simplicial set X is said to be a (−2)-object if it is contractible.
Every map of simplicial sets is by definition a (−2)-equivalence. The model cat-
egory (S,Who) admits a Bousfield localisation with respect to the class of (−2)-
equivalences (ie of all maps). The local model can be denoted by by (S,Who[−2]),
where Who[−2] denotes the class of all maps. Its fibrant objects are the contractible
Kan complexes.

27.4. The homotopy n-type of a simplicial set A is defined to be a fibrant replace-
ment of A→ π[n](A) of A in the model category (S,Who[n]).

27.5. If n ≥ −2, we shall denote by U[n] the coherent nerve of the category of Kan
n-objects. It is the full simplicial subset of U spanned by these objects. We have
an infinite sequence of logoi,

U[−2] // U[−1] // U[0] // U[1] // U[2] // · · · .

The logos U[−2] is equivalent to the terminal logos 1. The logos U[−1] is equivalent
to the poset {0, 1} and the logos U[0] to the category of sets. The logos U[1] is
equivalent to the coherent nerve of the category of groupoids. Each logos U[n] is
bicomplete and locally cartesian closed. The inclusion U[n] → U is reflective and
its left adjoint is the map

π[n] : U→ U[n]

which associates to a Kan complex its homotopy n-type. The map π[n] preserves
finite products.
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27.6. We shall say that a map f : X → Y in S/B is a fibrewise homotopy n-
equivalence if the map X(b) → Y (b) induced by f between the homotopy fibers
of X and Y is a weak homotopy n-equivalence for every vertex b ∈ B. The
model category (S/B,Who) admits a Bousfield localisation with respect to the
fibrewise homotopy n-equivalences. We shall denotes the local model structure
shortly by (S/B,WhoB [n]), where WhoB [n] denotes the class of fibrewise homo-
topy n-equivalences in S/B. Its fibrant objects are the Kan n-covers X → B.

27.7. If u : A→ B is a map of simplicial sets, then the pair of adjoint functors

u! : S/A→ S/B : u∗

is a Quillen adjunction between the model category (S/A,WhoA[n]) and the model
category (S/B,WhoB [n]). Moreover, it is a Quillen equivalence when u is a weak
homotopy (n + 1)-equivalence. This is true in particular when u is the canonical
map A→ π[n+1]A.

28. Truncated logoi

28.1. We shall say that a logos X is 1-truncated if the canonical map X → τ1X is a
weak categorical equivalence. A logos X is 1-truncated iff the following equivalent
conditions are satisfied:

• the simplicial set X(a, b) is a 0-object for every pair a, b ∈ X0.
• every simplicial sphere ∂∆[m]→ X with m > 2 can be filled.

A Kan complex is 1-truncated iff it is a 1-object.

28.2. A category C is equivalent to a poset iff the set C(a, b) has at most one
element for every pair of objects a, b ∈ C. We say that a logos X is 0-truncated
if it is 1-truncated and the category τ1X is equivalent to a poset. A logos X is
0-truncated iff the following equivalent conditions are satisfied:

• the simplicial set X(a, b) is empty or contractible for every pair a, b ∈ X0;
• every simplicial sphere ∂∆[m]→ X with m > 1 can be filled.

A Kan complex is 0-truncated iff it is a 0-object.

28.3. For any n ≥ 2, we say that a logos X is n-truncated if the simplicial set
X(a, b) is a (n − 1)-object for every pair a, b ∈ X0. A logos X is n-truncated iff
every simplicial sphere ∂∆[m]→ X with m > n+ 1 can be filled. A Kan complex
is n-truncated iff it is a n-object.

28.4. The logos U[n] is (n+ 1) truncated for every n ≥ −1.

28.5. We shall say that a map of simplicial sets u : A → B is a weak categorical
n-equivalence if the map

τ0(u,X) : τ0(B,X)→ τ0(A,X)

is bijective for every n-truncated logos X. The model structure (S,Wcat) ad-
mits a Bousfield localisation with respect to the class Wcat[n] of weak categori-
cal n-equivalences. The fibrant objects are the n-truncated logoi. The localised
model structure is cartesian closed and left proper. We shall denote it shortly by
(S,Wcat[n]).
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28.6. If n ≥ 0, then a map between logoi f : X → Y is a categorical n-equivalence
iff it is essentially surjective and the map X(a, b) → Y (fa, fb) induced by f is a
homotopy (n−1)-equivalence for every pair of objects a, b ∈ X. A map of simplicial
sets uj : A→ B is a weak categorical 1-equivalence iff the functor τ1(u) : τ1 → τ1B
is an equivalence of categories. A map of simplicial sets u : A → B is a weak
categorical 0-equivalence iff it induces an isomorphism between the poset reflections
of A and B.

28.7. The categorical n-truncation of a simplicial set A is defined to be a fibrant
replacement of A→ τ[n](A) of A in the model category (S,Wcat[n]). The funda-
mental category τ1A is a categorical 1-truncation of A. The poset reflection of A
is a categorical 0-truncation of A.

28.8. If n ≥ 0, we shall denote by U1[n] the coherent nerve of the (simplicial)
category of n-truncated logoi. It is the full simplicial subset of U1 spanned by the
n-truncated logoi. We have an infinite sequence of logoi,

U1[0] // U1[1] // U1[2] // U1[3] // · · ·

The logos U1[0] is equivalent to the category of posets and the logos U1[1] to the
coherent nerve of Cat. We have U[n] = U ∩U1[n] for every n ≥ 0. The inclusion
U1[n]→ U1 is reflective and its left adjoint is the map

τ[n] : U1 → U1[n]

which associates to a logos its categorical n-truncation. The map τ[n] preserves
finite products. The logos U1[n] is is cartesian closed and (n+ 1)-truncated.

28.9. We right fibration X → B is said to be n-truncated if its fibers are n-objects.
The model category (S/B,Wcont) admits a Bousfield localisation in which the
fibrant objects are the right n-fibrations X → B. The weak equivalences of the
localised structure are called contravariant n-equivalences. The localised model
structure is simplicial. We shall denotes it by (S/B,Wcont[n]),

28.10. A map u : M → N in S/B is a contravariant n-equivalence if the map

π0[u,X] : π0[M,X]→ π0[N,X]

is bijective for every right n-fibration X → B.

28.11. For each vertex b ∈ B, let us choose a factorisation 1 → Lb → B of the
map b : 1→ B as a left anodyne map 1→ Lb followed by a left fibration Lb→ B.
Then a map u : M → N in S/B is a contravariant n-equivalence iff the map
Lb×B u : Lb×BM → Lb×BN is a homotopy n-equivalence for every vertex b ∈ B.
When B is a logos, we can take Lb = b\B. In this case a map u : M → N in
S/B is a contravariant n-equivalence iff the map b\u = b\M → b\N is a homotopy
n-equivalence for every object b ∈ B.

28.12. If u : A→ B is a map of simplicial sets, then the pair of adjoint functors

u! : S/A→ S/B : u∗

is a Quillen adjunction between the model category (S/A,Wcont[n]) and the model
category (S/B,Wcont[n]). Moreover, it is a Quillen equivalence when u is a cate-
gorical (n+ 1)-equivalence. This is true in particular when u is the canonical map
A→ τ[n+1]A.
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28.13. Dually, we say that a map u : M → N in S/B is a covariant n-equivalence
if the map uo : Mo → No is a contravariant n-equivalence in S/Bo. The model
category (S/B,Wcov) admits a Bousfield localisation with respect to the class of
covariant n-equivalences for any n ≥ 0. A fibrant object of this model category is
a left n-fibration X → B. The localised model structure is simplicial. We shall
denote it by (S/B,Wcov[n]),

29. Accessible logoi

29.1. A shall say that a (small) category C is directed if the colimit map

lim
−→
C

: SetC → Set

preserves finite limits. We shall say that C is filtered if Co is directed.

29.2. If A is a logos, we say that a diagram d : K → A is bounded above if d admits
an extension K ? 1 → A. Dually, we say that the diagram is bounded below if d
admits an extension 1 ? K → A.

29.3. A logos A is directed iff every finite diagram K → A is bounded above iff
every simplicial sphere ∂∆[n]→ A is bounded above iff the simplicial set Ex(A) is
a contractible Kan complex

29.4. If A is a directed logos, then so is the logos d\A for any finite diagram
d : K → A and the map d\A→ A is final.

29.5. A logos A is directed iff it is non-empty and the simplicial set d\A is weakly
contractible for any diagram d : Λ0[2]→ A.

29.6. [Lu1] For every directed logos A there exists a directed category C together
with a final map C → A. Moreover, C can be chosen to be a poset [SGA].

29.7. We say that a diagram d : A → X in a logos X is directed if A is directed,
in which case we shall say that the colimit of d is directed if it exists. We say that
a logos X has directed colimits if every (small) directed diagram A → X has a
colimit. We shall say that a map between logoi is inductive if it preserves directed
colimits.

29.8. A logos with directed colimits is Karoubi complete. A cocartesian logos with
directed colimits is cocomplete.

29.9. If A is a simplicial set, we shall say that a prestack g ∈ P(A) is directed, (or
that it is an ind-object) if the simplicial set A/g (or El(g)) is directed. We shall
denote by Ind(A) the full simplicial subset of P(A) spanned by the ind-objects.
The Yoneda map yA : A → P(A) induces a map A → Ind(A) (also denoted yA).
The map yA : A → Ind(A) exhibits the logos Ind(A) as the free completion of A
under directed colimits. More precisely, if S and T are logoi with directed colimits,
let us denote by Ind(S, T ) the full simplicial subset of TS spanned by the inductive
maps S → T . Then the map

y∗A : Ind(Ind(A), X)→ XA

induced by the map yA : A→ Ind(A) is an equivalence for any logos with directed
colimits X. The inverse equivalence associates to a map g : A → X its left Kan
extension g! : Ind(A)→ X along the map yA : A→ Ind(A).
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29.10. If A is a simplicial set, then we have a decomposition

P(A) ' Ind(Pf (A)).

29.11. We shall say that a logos X is finitary accessible if it is equivalent to a logos
Ind(A) for a small logos A.

29.12. Let X be a (locally small) logos with directed colimits. We say that an
object a ∈ X is compact if the map

homX(a,−) : X → U

is inductive.

29.13. A finite colimit of compact objects is compact. A retract of a compact
object is compact.

29.14. A pre-stack g ∈ P(A) is compact iff it is a retract of a finitely presented
pre-stack. Not every compact object of U = P(1) is finitely presented. A pre-stack
g ∈ Ind(A) is compact iff it it is a retract of a representable prestack.

29.15. Let X be a logos with directed colimits and let K ⊆ X be a small full sub
logos of compact objects. Then the left Kan extension

i! : Ind(K)→ X

of the inclusion i : K ⊆ X is fully faithful. Moreover, i! is an equivalence if every
object of X is a colimit of a directed diagram of compact objects.

29.16. A locally small logos X is finitary accessible iff the following conditions are
satisfied:

• X has directed colimits;
• every object of X is the colimit of a directed diagram of compact objects;
• the full sub-logos of compact objects of X is essentially small.

29.17. Let α be a regular cardinal. We shall say that a simplicial set A is α-directed
if the colimit map

lim
−→
A

: UA → U

is α-continuous.

29.18. The notion of α-directed simplicial set is invariant under Morita equiva-
lence. A simplicial set A is α-directed iff the canonical map A → Pα(A) is final.
A logos A is α-directed iff every diagram K → A of cardinality < α is bounded
above. A simplicial set with a terminal vertex is α-directed. An α-cocomplete logos
is α-directed.

29.19. Let α be a regular cardinal. We shall say that a diagram d : A → X is
α-directed if A is α-directed, in which case we shall say that the colimit of d is
α-directed when it exists. We shall say that a logos X has α-directed colimits if
every (small) α-directed diagram A → X has a colimit. We shall say that a map
between logoi is α-inductive if it preserves α-directed colimits.

29.20. If an α-cocomplete logos has α-directed colimits, then it is cocomplete.
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29.21. If A is a simplicial set, we shall say that a prestack g ∈ P(A) is α-directed,
if the simplicial set A/g (or El(g)) is α-directed. We shall denote by Indα(A) the
full simplicial subset of P(A) spanned by the α-directed prestacks. The Yoneda
map yA : A → P(A) induces a map A → Indα(A) (also denoted yA). The map
yA : A → Indα(A) exhibits the logos Indα(A) as the free completion of A under
α-directed colimits. More precisely, if S and T are logoi with directed colimits, let
us denote by Indα(S, T ) the full simplicial subset of TS spanned by the inductive
maps S → T . Then the map

y∗A : Ind(Indα(A), X)→ XA

induced by the map yA : A → Indα(A) is an equivalence for any logos with α-
directed colimits X. The inverse equivalence associates to a map g : A→ X its left
Kan extension g! : Indα(A)→ X along the map yA : A→ Indα(A).

29.22. If A is a simplicial set, then we have a decomposition

P(A) ' Indα(Pα(A)).

29.23. We shall say that a logos X is α-accessible if it is equivalent to a logos
Indα(A) for a small logos A. We shall say that X is accessible if it is equivalent to
a logos Indα(A) for a small logos A and some regular ordinal α.

29.24. Let X be a (locally small) logos with α-directed colimits. We say that an
object a ∈ X is α-compact if the map

homX(a,−) : X → U

is α-inductive.

29.25. An α-colimit of α-compact objects is compact. A pre-stack g ∈ Indα(A) is
α-compact iff it it is a retract of a representable prestack.

29.26. Let X be a logos with α-directed colimits and let K ⊆ X be a small full
sub logos of α-compact objects. Then the left Kan extension

i! : Indα(K)→ X

of the inclusion i : K ⊆ X is fully faithful. Moreover, i! is an equivalence if every
object of X is a colimit of an α-directed diagram of α-compact objects.

29.27. A locally small logos X is α-accessible iff the following conditions are sat-
isfied:

• X has α-directed colimits;
• every object of X is the colimit of an α-directed diagram of α-compact

objects;
• the full sub-logos of α-compact objects of X is essentially small.

30. Limit sketches

The notion of limit sketch was introduced by Ehresman. A structure defined by
a limit sketch is said to be essentially algebraic.
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30.1. Recall that a projective cone in a simplicial set A is a map of simplicial sets
c : 1 ? K → A; A limit sketch is a pair (A,P ), where A is a simplicial set and P
is a set of projective cones in A. A model of (A,P ) with values in a logos X is
a map f : A → X which takes every cone c : 1 ? K → A in P to an exact cone
fc : 1 ? K → X. In other words, a model is a diagram A → X which satisfies the
exactness conditions specified by the cones in P . A model of a limit sketch is said
to be essedntially algebraic. We shall write f : A/P → X to indicate that a map
f : A → X is a model of (A,P ). A model A/P → U is called a homotopy model,
or just a model if the context is clear. The models of (A,P ) with values in X form
a logos Mod(A/P,X); it is the full simplicial subset of XA spanned by the models
A/P → X. We shall write

Mod(A/P ) = Mod(A/P,U).

The logos Mod(A/P ) is bicomplete and the inclusion Mod(A/P ) ⊆ UA has a left
adjoint.

30.2. Recall from 21.42 that the cardinality of a diagram d : K → A in a simplicial
set A is defined to be the cardinality of K. We say that a limit sketch (A,P ) is
finitary if every cone in P is finite. We say that an essentially algebraic structure
is finitary if it can be defined by a finitary limit sketch.

30.3. The notion of stack on a topological space is essentially algebraic, but it is
not finitary in general.

30.4. Recall that a logos is said to be cartesian if it has finite limits. A cartesian
theory is defined to be a small cartesian logos. A model of a cartesian theory T
with values in a logos X is a map f : T → X which preserves finite limits (such a
map is said to be left exact). The models of T → X form a logos Mod(T,X), also
denoted T (X). By definition, it is the full simplicial subset of XT spanned by the
models T → X. We shall say that a model T → U is a homotopy model, or just a
model if the context is clear. We shall write

Mod(T ) = Mod(T,U).

We shall say that a model T → Set is discrete. If S and T are cartesian theories, we
shall say that a model S → T is a morphism S → T , or that it is an interpretation
of S into T . The identity morphism T → T is the generic or tautological model of
T .

30.5. The logos of models of a cartesian theory T is bicomplete and the inclusion
Mod(T ) ⊆ UT has a left adjoint. If u : S → T is a morphism of cartesian theories,
then the map

u∗ : Mod(T )→Mod(S)
induced by the map Uu : UT → US has a left adjoint u!. The pair (u!, u

∗) an
equivalence of logoi iff the map u : S → T is a Morita equivalence.

30.6. It T is a cartesian theory, then the map hom(a,−) : T → U is a model for
every objects a ∈ T . Hence the Yoneda map T o → UT induces a map

y : T o →Mod(T ).

We shall say that a model f ∈ Mod(T ) is finitely presentable if it belongs the the
image of y. A model is compact iff it is a retract of a finitely presentable model.
The map y : T o → Mod(T ) preserves finite colimits and it induces an equivalence



108 ANDRÉ JOYAL

between T o and the full sub-logos Mod(T )f spanned by the finitely presentable
models of T . The left Kan extension of the inclusion Modf ⊆ Mod(T ) along the
inclusion Modf ⊆ Ind(Modf ) is an equivalence of logoi,

Ind(Modf ) 'Mod(T ).

30.7. If (A,P ) is a finitary limit sketch, we shall say that a model u : A/P → T
with values in a cartesian theory T is universal if the map

u∗ : Mod(T,X)→Mod(A/P,X)

induced by u is an equivalence for any cartesian logos X. We shall say that a
universal model u : A/P → T is a presentation of the theory T by the sketch (A,P ).
Every finitary limit sketch (A,P ) has a universal model u : A → U(A/P ) with
values in a cartesian theory U(A/P ). The opposite logos U(A/P )o is equivalent to
the logos of finitely presentable models of (A,P ). More precisely. if we compose
the Yoneda map Ao → UA with the left adjoint to the inclusion Mod(A/P ) ⊆ UA

we obtain a map

y : Ao →Mod(A/P )

which takes a cone in P o to a coexact cone. We say that a model of (A,P ) is finitely
presentable if it is the colimit of a finite diagram of objects in the image of y. Let
us denote by Mod(A/P )f the full simplicial subset of Mod(A/P ) spanned by the
finitely presentable models. Then the map u : A→ U(A/P ) is the opposite of the
map Ao →Mod(A/P )f induced by the map y : Ao →Mod(A/P ).

30.8. We shall denote by OB the cartesian theory of a naked (unstructured) object.
The opposite logos OBo is equivalent to the logos Uf of finite homotopy types.

30.9. A stable object or a spectrum in a cartesian logos X is defined to be an infinite
sequence of pointed objects (xn) together with an infinite sequence of isomorphisms

un : xn → Ω(xn+1).

Hence the notion of spectrum is defined by a finitary limit sketch (A,P ). We shall
denote by Spec the cartesian theory U(A/P ). Fot any cartesian logos X, the logos
Spec(X) is the (homotopy) projective limit of the infinite sequence of logoi

1\X 1\XΩoo 1\XΩoo · · · .Ωoo

The logos Spec(U) is equivalent to the coherent nerve of the (simplicial) category
of spectra.

30.10. LetOB′ be the cartesian theory of pointed objects and Spec be the cartesian
theory of spectra defined in 30.9. Consider the interpretation u : OB′ → Spec
defined by the pointed object x0 of the generic spectrum (xn). The adjoint pair
u! : Mod×(OB′)↔Mod(Spec) : u∗ is the classical adjoint pair

Σ∞ : 1\U↔ Spec : Ω∞,
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30.11. We denote by CT the category of cartesian logoi and morphisms. The
category CT has the structure of a 2-category induced by the 2-category structure
on the category of simplicial sets. If S and T are two cartesian theories then so
is the logos Mod(S, T ) of morphisms S → T . The 2-category CT is symmetric
monoidal closed. The tensor product S�T of two cartesian theories is the target of
a map S×T → S�T left exact in each variable and universal with respect to that
property. More precisely, for any cartesian logos X, let us denote by Mod(S, T ;Z)
the full simplicial subset of XS×T spanned by the maps S × T → X left exact in
each variable. Then the map

φ∗ : Mod(S � T,X)→Mod(S, T ;X)

induced by φ is an equivalence of logoi. It follows that we have two canonical
equivalences of logoi

Mod(S � T,Z) 'Mod(S,Mod(T,X)) 'Mod(T,Mod(S,X)).

In particular, we have two canonical equivalences

Mod(S � T ) 'Mod(S,Mod(T )) 'Mod(T,Mod(S)).

The unit for the tensor product is the cartesian theoryOB.

30.12. The notion of monomorphism between two objects of a logos is essentially
algebraic (and finitary): an arrow a→ b is monic iff the square

a
1a //

1a

��

a

u

��
a

u // b

is cartesian. The notion of (homotopy) discrete object is essentially algebraic: an
object a is discrete iff the diagonal a→ a× a is monic. This condition is expressed
by two exact cones,

b
p1

����
��

��
�� p2

��?
??

??
??

?

a a,

a
1a //

1a

��

a

d

��
a

d // b.

and two relations pd = qd = 1a. The notion of 0-cover is also essentially algebraic,
since an arrow a → b is a 0-cover iff the diagonal a → a ×b a is monic. It follows
that the notion of 1-object is essentially algebraic, since an object a is a 1-object
iff its diagonal a→ a× a is a 0-cover. It is easy to see by induction on n that the
notions of n-object and of n-cover are essentially algebraic for every n ≥ 0. We
shall denote the cartesian theory of n-objects by OB[n]. We have

Mod(OB[n])) = U[n],

where U[n] is the logos of n-objects in U. Let us say that an object of U[n] is n-
finite if it is the n-type of a finite homotopy type. It then follows from 30.7 that the
logos OB[n]o is equivalent to the logos U[n]f of n-finite n-objects. In particular,
the logos OB[1]o is equivalent to the logos of finitely presentable groupoids, and
the logos OB[0]o to the category of finite sets.
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30.13. If X is a cartesian category, a simplicial object C : ∆o → X is called a
category if it satisfies the Segal condition. The condition can be expressed in many
equivalent ways, for example by demanding that C takes every pushout square of
the form

[0]

m

��

0 // [n]

��
[m] // [m+ n],

to a pullback square in X. The notion of category object is essentially algebraic
and finitary. If C : ∆o → X is a category object, we shall say that C0 ∈ X is
the object of objects of C and that C1 is the object of arrows. A category C is a
monoid iff C0 = 1. The source morphism s : C1 → C0 is the image of the arrow
d1 : [0] → [1], the target morphism t : C1 → C0 is the image of d0 : [0] → [1], and
the unit morphism u : C0 → C1 is the image of s0 : [1] → [0]. The multiplication
C2 → C1 is image of d1 : [1]→ [2]. If Q is the set of pushout squares involved in the
Segal condition, then the pair (∆o, Qo) is a finitary limit sketch. The sketch has a
universal model u : ∆o → Cat, and this defines the cartesian theory of categories
Cat. If X is a cartesian logos, then we have an equivalence of logoi,

Cat(X) = Mod(∆o/Qo, X).

30.14. If Cat denotes the cartesian theory of categories then Cat2 = Cat�Cat is
the theory of double categories. If X is a cartesian logos, then an object of

Cat2(X) = Cat(Cat(X))

is a double category in X. By definition, a double simplicial object ∆o ×∆o → X
is a double category iff it is a category object in each variable. We shall denote by
Catn(X) the logos of n-fold categories in X and by Catn the cartesian theory of
n-fold categories.

30.15. A category C is a monoid iff we have C0 = 1. We shall denote by CMon the
cartesian theory of monoids. It follows from the conjecture in 31.15 that CMon�n is
the cartesian theory of En-monoids for every n ≥ 1. It follows that CMon�n�Cat
is the cartesian theory of En-monoidal categories for every n ≥ 1. In particular,
CMon � Cat is the cartesian theory of monoidal categories, and CMon�2 � Cat
is the cartesian theory of braided monoidal categories.

30.16. The notion of groupoid is essentially algebraic and finitary. By definition,
a category object C : ∆o → X is a groupoid if it takes the squares

[0]

d0

��

d0 // [1]

d0

��
[1]

d1 // [2],

[0]

d1

��

d1 // [1]

d2

��
[1]

d1 // [2]
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to pullback squares,

C2

∂0

��

m // C1

t

��
C1

t // C0,

C2

∂2

��

m // C1

s

��
C1

s // C0.

(one is enough). We shall denotes the cartesian theory of groupoids by Gpd and
the logos of groupoid objects in a cartesian logos X by Gpd(X). A groupoid C is
a group iff C0 = 1.

30.17. Let Cat be the cartesian theory of categories and Gpd be the cartesian
theory of groupoids. If X is a cartesian logos, then the inclusion Gpd(X) ⊆ Cat(X)
has a right adjoint which associates to a category C ∈ Cat(X) its groupoid of
isomorphisms J(C). We have J(C) = q∗(C), where q : Gpd→ Cat is the groupoid
of isomorphisms of the generic category. We say that a category C satisfies the Rezk
condition, or that it is reduced, if the map J(C)1 → J(C)0 = C0 is invertible. The
notion of a reduced category is essentially algebraic. We shall denote the cartesian
theory of reduced categories by RCat and the logos of reduced category objects in
a cartesian logos X by RCat(X).

30.18. Let N : U1 → [∆o,U] be the nerve map defined in 25.5. It follows from
[JT2] that N is fully faithful and that it induces an equivalence of logoi

N : U1 'Mod(RCat).

30.19. We say that a category object C in a cartesian logos X is n-truncated if
the map C1 → C0 × C0 is a (n − 1)-cover. The notion of n-truncated category is
essentially algebraic and finitary. We denotes the cartesian theory of n-truncated
categories by Cat[n]. If a category object C ∈ Cat(X) is n-truncated and reduced,
then Ck is a n-object for every k ≥ 0. The notion of n-truncated reduced category
is essentially algebraic. We denotes the cartesian theory of n-truncated reduced
categories by RCat[n].

30.20. If X is a cartesian logos, then the map Ob : Gpd(X)→ X has a left adjoint
Sk0 : X → Gpd(X) and a right adjoint Cosk0 : X → Gpd(X). The left adjoint
associate to an object b ∈ X the constant simplicial object Sk0(b) : ∆o → X with
value b. The right adjoint associates to b the simplicial object Cosk0(b) obtained
by putting Cosk0(b)n = b[n] for each n ≥ 0. We say that Cosk0(b) is the coarse
groupoid of b. More generally, the equivalence groupoid Eq(f) of an arrow f : a→ b
in X is defined to be the coarse groupoid of the object f ∈ X/b (or rather its
image by the canonical map X/b → X). The loop group Ω(b) of a pointed object
1→ b is the equivalence groupoid of the arrow 1→ b. Consider the interpretation
u : Grp→ OB′ defined by the loop group of the generic pointed object. The map

u! : Mod(Grp)→Mod(OB′)

takes a group object G to its (pointed) classifying space BG. It induces an equiv-
alence between Mod(Grp) and the full sub-logos of pointed connected spaces 1\U
by a classical result. It is thus fully faithful. Hence the morphism Grp → OB′ is
fully faithful. More generally, let Gpd be the cartesian theory of groupoids and let
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Map be the cartesian theory of maps. Consider the interpretation v : Gpd→Map
defined by the equivalence groupoid of the generic map. Then the map

v! : Mod(Gpd)→Mod(Map)

takes a groupoid C to its classifying space BC equipped with the map C0 → BC.
It induces an equivalence between Mod(Gpd) and the full sub-logos of UI spanned
by the surjections by a classical result. It is thus fully faithful. Hence the morphism
v : Gpd→Map is fully faithful.

30.21. We shall say that a pair (A,B) of classes of maps in CT is a homotopy
factorisation system if the following conditions are satisfied:

• the classes A and B are invariant under categorical equivalences;
• the pair (A ∩ C,B ∩ F) is a weak factorisation system in CT, where C is

the class of monomorphism (in S) and F is the class of pseudo-fibrations;
• the class A has the right cancellation property;
• the class B has the left cancellation property.

The last two conditions are equivalent in the presence of the others. The class A
is the left class of the system and B the right class.

30.22. The category CT admits a homotopy factorisation system (A,B) in which
A is the class of essentially surjective morphisms and B the class of fully faithful
morphisms. A morphism u : S → T is fully faithful, iff the map u! : Mod(T ) →
Mod(S) is fully faithful. If u : S → T is essentially surjective, then u∗ : Mod(T )→
Mod(S) is conservative.

30.23. The category CT admits a homotopy factorisation system (A,B) in which
B is the class of conservative morphisms. A morphism in the class (A is said to be
an iterated cartesian localisation. Let us define the notion of cartesian localisation.
We say that a set Σ of arrows in a cartesian logos X is closed under base change if
the implication f ∈ Σ⇒ f ′ ∈ Σ is true for any pullback square

x′ //

f ′

��

x

f

��
y′ // y

in X. If Σ is closed under base change, then the logos L(X,S) has finite limits and
and they are preserved by the canonical map c : X → L(X,S). We then say that
c is a cartesian localisation. If a morphism of cartesian theories u : S → T belongs
to (A, then the map u∗ : Mod(T )→Mod(S) is fully faithful.

30.24. It T is a cartesian theory, we shall say that a left fibration X → T is a
comodel of T if its classifying map T → U is a model. A left fibration X → T
is a comodel iff the logos X has finite limits and the map X → T is left exact.
The simplicial set of elements of a model f : T → U is a comodel el(f) → T and
conversely. The notions of model T → U and of comodel X → T are essentially
equivalent. The left fibration a\T → T is a comodel for every object a ∈ T . The
coherent nerve of the simplicial category Comod(T ) of comodels of T is equivalent
to Mod(T ). If p : X → T is a comodel, then a left fibration g : Y → X is a comodel
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of X iff the composite pg : Y → T is a comodel of T . We thus have an equivalence
of simplicial categories

Comod(X) ' Comod(T )/X.

If X = el(f), the equivalence induces an equivalence of logoi

Mod(el(f)) 'Mod(T )/f.

We shall say that a morphism of algebraic theories u : S → T is coinitial if the map

u! : Mod(S)→Mod(T )

takes a terminal model to a terminal model. The category CT admits a homotopy
factorisation system (A,B) in which A is the class of coinitial morphisms. A mor-
phism u : S → T belongs to B iff its admits a factorisation u = u′w : S → S′ → T
with w a categorical equivalence and u′ a comodel. See [?].

30.25. If T is a cartesian theory, then the model category (S/T,Wcov) admits a
Bousfield localisation in which the (fibrant) local objects are the comodels of T . A
map u : A → B in S/T is a weak equivalence for the local model structure iff the
map

π0[u,X] : π0[B,X]→ π0[A,X]

is bijective for every comodel X → T .

30.26. If T is a cartesian theory, then so is the logos T/a for any object a ∈ T .
The base change map x 7→ a × x is a morphism of theories u : T → T/a. The
extension u : T → T/a is obtained by freely adjoining an arrow 1→ a to the theory
T .

30.27. Every cartesian theory T has an initial model

0T = Hom(1,−) : T → U.

We shall say that a morphism of cartesian theories u : S → T is tight if the map

u∗ : Mod(T )→Mod(S)

takes an initial model to an initial model. A morphism u : S → T is tight iff the
commutative square

1\S

��

1\u // 1\T

��
S

u // T

is a homotopy pullback (in the model category (S,Wcat)). The category CT admits
a homotopy factorisation system (A,B) in which B is the class of tight morphisms.
We shall say that a morphism in the class A is a Henkin extension. The base change
map a×− : T → T/a is a Henkin extension for every object a ∈ T .
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30.28. If T is a cartesian theory, then every model f : T → U admits a factorisation
f = f ′e : T → T [f ]→ U with e : T → T [f ] a Henkin extension and f ′ : T [f ]→ U
an initial model, and the factorisation is homotopy unique. Conversely, to every
Henkin extension u : T → E we can associates a model u∗(0E) : T → U. This
defines a ”one-to-one” correspondance between the Henkin extensions T → E and
the models T → U. It follows that there is an equivalence of logoi

f\Mod(T ) 'Mod(T [f ])

for any model f ∈Mod(T ).

30.29. If u : T → E is a Henkin extension, let us denote by Γ(u) the comodel of
T defined by the pullback square

Γ(u)

��

// 1\E

��
T

u // E

This defines a functor Γ which induces a DK-equivalence between the simplicial
category of cofibrant Henkin extension of T and the simplicial category of comodels
of T (an extension u : T → E is cofibrant if u is monic).

30.30. We shall say that a small logos T with pullbacks is a pullback theory. A
pullback model of T with values in a logos X is a map f : T → X which preserves
pullbacks. We shall say that a limit sketch (A,C) is a pullback sketch if all the
projective cones in C are squares I × I → A. Every pullback sketch (A,C) has a
universal model u : A→ PT (A/C) with values in pullback theory PT (A/C).

30.31. For example, the notions of category and of groupoids are defined by a
pullback sketch. Similarly for the notion of monomorphism and more generally for
the notion of n-cover for every n ≥ 0. The notion of a reduced category is also
defined by a pullback sketch. The notion of a pointed object cannot be defined by
a pullback sketch.

30.32. If T is a cartesian theory and b is an object of a cartesian logos X, then a
model T → X/b is called a parametrized model, and b is said to be the parameter
space or the base of the model. The composite T → X/b → X is a pullback
model of T . Conversely, every pullback model f : T → X admits a factorisation
T → X/b → X, where T → X/b is a model of T . This defines an equivalence
between the pullback models of T and the parametrized models of T . More precisely,
let PT be the category of pullback theories and morphisms the maps preserving
pullbacks. Then the forgetful functor U : CT → PT has a left adjoint which
associates to a pullback theory V a cartesian theory CV equipped with a pullback
preserving map u : V → CV which is universal with respect to that property. If
T ∈ CT, let us put PT = CU(T ). There is then an equivalence between the
parametrized model of T , the pullback models of T and the models of PT . Thus,
PT is the cartesian theory of parametrized models of T . A model of PT in U is a
model

T → U/K.
where K is a Kan complex. Equivalently, a model of PT is a map K → Mod(T );
it is thus a Kan diagram of models of T .
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30.33. For any sketch (A,P ), we can construct another sketch (A′, P ′) whose mod-
els are the parametrized models of (A,P ). Here is the construction If u : 1?B → A
is a projective cone, then u ? 1 : 1 ? B ? 1→ A ? 1 is a projective cone in A ? 1. By
construction (A′, P ′) = (A ? 1, P ? 1), where P ? 1 = {u ? 1 : u ∈ P}.

30.34. If X is a logos and K is a Kan complex, we say that a map K → X is a Kan
diagram in X. There is then a logos D(Kan,X) of such diagrams. A morphism
between two Kan diagrams d : K → X and d′ : K ′ → X is a map u : K → K ′

together with a homotopy d → d′u. Let us give a global description of the logos
D(Kan,X) in the case where X is a small logos. To a Kan diagram d : K → X we
can associate the colimit L(d) of the composite yXd : K → P(X). ThenD(Kan,X)
is defined to be the full simplicial subset of P(X) spanned by the objects L(d). The
Yoneda map y : X → P(A) induces a map X → D(Kan,X), also denoted y. The
logos D(Kan,X) is closed under colimit of Kan diagrams K → D(Kan,X). The
map y : X → D(Kan,X) exhibits the logos D(Kan,X) as the free cocompletion of
X under colimits of Kan diagrams. The colimit map D(Kan,X) → U associates
to L(d) the domain of the map d : K → X. It is a Grothendieck fibration, and a
bifibration when X is has colimits of Kan diagrams.

30.35. If PT is the theory of parametrized models of a cartesian theory T , then
there is a pullback preserving map u : T → PT which is universal. The object
u(1) ∈ PT is the generic base. The map u admits a factorisation u = pv : T →
PT/u(1) → PT , where v : T → PT/u(1) preserves finite limits and p is the
projection PT/u(1)→ PT . The base b(f) of a model f ∈Mod(PT ) is obtained by
evaluating the map f : PT → U at u(1). If we compose the map v : T → PT/u(1)
with the map PT/u(1) → U/b(f) induced by f , we obtain a parametrized model
of T ,

f ′ : T → U/b(f).
This defines the equivalence of logoi,

Mod(PT )→ D(Kan,Mod(T )).

30.36. If OB′ is the theory of pointed objects, then POB′ is the theory of split
morphisms. The notion of split morphism is described by a sketch (A, ∅) where A
is the simplicial set ∆[2]/∂1∆[2] of 35.6.

30.37. If Spec is the theory of spectra described in 30.9, then PSpec is the theory
of parametrized spectra. More precisely, a model of PSpec is a stable object of the
logos U/K for some Kan complex K ∈ U. There is then an equivalence of logoi

Mod(PSpec) = D(Kan,Spec).

30.38. If α is a regular cardinal, we say that a limit sketch (A,P ) is α-bounded
if every cone in P has a cardinality < α. We say that an essentially algebraic
structure is α-definable if it can be defined by an α-bounded limit sketch.

30.39. Let α is a regular cardinal. An α-cartesian theory is a small α-complete
logos T . A model of T with values in a logos X is an α-continuous map f : T → X.
The models of T with values in X form a logos Modα(T,X). By definition, it is
the full simplicial subset of XT spanned by the models T → X. We shall put

Modα(T ) = Modα(T,U).
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The inclusion Modα(T ) ⊆ UT has a left adjoint and the logos Modα(T ) is bicom-
plete.

30.40. Let α is a regular cardinal. Every α-bounded limit sketch (A,P ) has a
universal model u : A → Cα(A/P ) with values in an α-complete logos Cα(A/P ).
The logos Cα(A/P ) is small and the universality means that the map

u∗ : Modα(Cα(A/P ), X)→Mod(A/P,X)

induced by u is an equivalence for any α-complete logos X. Let us describe a
construction of Cα(A/P ). If we compose the Yoneda map Ao → [A,U] with the
left adjoint to the inclusion Mod(A/P ) ⊆ [A,U] we obtain a map

y : Ao →Mod(A/P )

which takes a cone in P o to a coexact cone. We say that a model of (A,P ) is α-
presented if it is a colimit of a diagram yd : K →Mod(A/P ), where d : K → Ao is a
diagram of cardinality < α. We denote by Mod(A/P )(α) the full simplicial subset
of Mod(A/P ) spanned by the α-presented models. The map A→Mod(A/P )(α)o

induced by the map yo : A→Mod(A/P )o is the universal model u : A→ Cα(A/P ).
If T is an α-cartesian theory, then the Yoneda map T o → Modα(T ) induces an
equivalence of logoi T o →Modα(T )(α).

31. Universal algebra

An algebraic structure can be defined to be a product preserving Universal alge-
bra studies In this section we extend universal algebra from structured objects in
a category to structured objects in a logos.

31.1. Recall that an algebraic theory in the sense of Lawvere is a small category
with finite products T [La]. More generally, we shall say that a small logos with
finite products T is an algebraic theory. A model of T with values in a logos X, is a
map f : T → X which preserves finite products. The models T → X form a logos
Mod(T,X), also denoted T (X). By definition, it is the full simplicial subset of XT

spanned by the models T → X. We shall say that a model T → U is a T -algebra
and we shall put

Mod(T ) = Mod(T,U).

We shall say that a model T → Set is discrete. If S and T are algebraic theories, we
shall say that a model S → T is a morphism S → T or that it is an interpretation
of S into T . The identity morphism T → T is the generic or tautological model of
T .

31.2. If T is an algebraic theory, then so is the category hoT . We shall say that
an algebraic theory T is discrete if the map T → hoT is an equivalence of logoi.
An algebraic theory T is discrete iff the logos T is 1-truncated. We shall say that
a model T → U is discrete if it takes its values in the 0-objects of U. The logos of
discrete models Mod(T,U[0]) is equivalent to the category Mod(hoT,Set).
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31.3. The logos of models of an algebraic theory T is bicomplete and the inclusion
Mod(T ) ⊆ UT has a left adjoint. If u : S → T is a morphism of algebraic theories,
then the map

u∗ : Mod(T )→Mod(S)

induced by the map Uu : UT → US has a left adjoint u!. Moreover, the pair
(u!, u

∗) an equivalence of logoi iff the map u : S → T is a Morita equivalence.

31.4. It T is a cartesian theory, then the map hom(a,−) : T → U is a model for
every objects a ∈ T . Hence the Yoneda map T o → UT induces a map

y : T o →Mod(T ).

We shall say that a model f ∈ Mod(T ) is finitely free if it belongs the the image
of y. The map y : T o → Mod(T ) preserves finite coproducts and it induces an
equivalence between T o and the full sub-logos Mod(T )ff spanned by the finitely
free models of T . We say that a model of T is finitely presented if it is a finite
colimit of finitely free models.

31.5. We call a projective cone 1?K → A in a simplicial set A a product cone if the
simplicial set K is discrete. We call a limit sketch (A,P ) a product sketch if every
cone in P is a product cone. A model A/P → X of a product sketch with values in
a quasi-category X is called an algebra. If X = U, it is called a homotopy algebra,
and if X = Set, it is called a discrete algebra. The models of (A,P ) with values
in X form a quasi-category Mod(A/P,X). By definition, it is the full simplicial
subset of [A,X] spanned by the models A/P → X. We shall put

Mod(A/P ) = Mod(A/P,U).

The inclusion Mod(A/P ) ⊆ UA has a left adjoint r : HoA → Mod(A/P ). If we
compose the Yoneda map Ao → [A,U] with r, we obtain a map

y : Ao →Mod(A/P ).

A model of (A,P ) is said to be free if it is a coproduct of objects in the image of y.

31.6. Let Γ be the category of finite pointed sets and basepoint preserving maps.
If n+ = nt{?} is a finite pointed set with base point ?, then for each k ∈ n consider
the map pk : n+ → 1+ taking the value 1 at k and ? elsewere. The family of maps
(pk : k ∈ n) defines a product cone cn : 1 ? n→ Γ for each n ≥ 0. If C is the set of
cones C = {cn : n ≥ 0}, then (Γ, C) is the product sketch introduced by Segal in
[S2]. A model of (Γ, C) is often called a Γ-space, or an E∞-space.

31.7. Every finitary product sketch (A,P ) has a universal model u : A→ U(A/P )
with values in an algebraic theory. The universality means that the map

u∗ : Mod(U(A/P ), X)→Mod(A/P,X)

induced by u is an equivalence for any logos with finite products X. Let us describe
a construction of U(A/P ). We say that a model of (A,P ) is finitely free if it is the
coproduct of a finite family of models in the image of the map y : Ao →Mod(A/P ).
Let us denote by Mod(A/P )ff the full simplicial subset of Mod(A/P ) spanned by
the finitely free models. Then the map u : A→ U(A/P ) is the opposite of the map
Ao →Mod(A/P )ff induced by the map y : Ao →Mod(A/P ).
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31.8. We shall denote by O the algebraic theory of a naked (unstructured) object.
By definition, O is a logos with finite products freely generated by an object u ∈ O.
This means that for any logoi with finite products X, the evalutation map u∗ :
Mod(O,X)→ X defined by putting u∗(f) = f(u) is an equivalence of logoi. Every
logos A generates freely a logos with finite products i : A → u(A). The freeness
means here that for any logos with finite productsX, the map i∗ : Mod(t(A), X)→
XA induced by i is an equivalence of logoi. The logos u(A) is a category when A
is a category and its construction is classical. We have u(A)o = t(Ao), where
t(Ao) denotes the free completion of Ao under finite coproducts. For example, the
category t(1) can be taken to be the category N whose objects are the natural
numbers and whose arrows are the maps m → n, where n = {1, · · · , n}. The
opposite category No is equivalent to O.

31.9. We shall denote by AT the category of algebraic theories and morphisms.
The category AT has the structure of a 2-category induced by that of the category of
simplicial sets. If S and T are two algebraic theories then so is the logos Mod(S, T )
of morphisms S → T . The 2-category AT is symmetric monoidal closed. The
tensor product S � T of two algebraic theories is defined to be the target of a map
φ : S × T → S � T which preserves finite products in each variable and which is
universal with respect to that property [BV]. More precisely, for any logos with
finite product X, let us denote by Mod(S, T ;X) the full simplicial subset of XS×T

spanned by the maps S × T → X which preserves finite products in each variable.
Then the map

φ∗ : Mod(S � T,X)→Mod(S, T ;X)

induced by φ is an equivalence of logoi. It follows that we have two canonical
equivalence of logoi

Mod(S � T,X) 'Mod(S,Mod(T,X)) 'Mod(T,Mod(S,X)).

In particular, we have two equivalences of logoi,

Mod(S � T ) 'Mod(S,Mod(T )) 'Mod(T,Mod(S)).

The unit for the tensor product is the theory O described in 31.8.

31.10. The forgetful functor CT→ AT has a left adjoint

C : AT→ CT

which associates to an algebraic theory T the cartesian theory CT freely generated
by T . The freeness means that for any cartesian logos X, the map

i∗T : Modc(CT,X)→Modp(T,X)

induced by the canonical map iT ;T → CT is an equivalence of logos, where Modc
denotes the left exact maps and Modp the product preserving maps. The opposite
of the map iT ;T → CT is equivalent to the inclusion Mod(T )f ⊆Mod(T )ff .

The functor C preserves the tensor product � that we have on each side. This
means that the canonical map C(S � T )→ CS �CT is an equivalence of logos for
any pair of algebraic theories S and T . Notices that C(O) = OB.
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31.11. We shall denote by Map the algebraic theory of maps. In the notation of
??, we have Map = u(I), where I = [1]. For any algebraic theory T and any logos
with finite products X we have two equivalences of logoi

Mod(T �Map,X) 'Mod(T,XI) 'Mod(T,X)I .

This means that T �Map is the theory of maps between two models of T .

31.12. A pointed object in a logos with terminal object X is defined to be an object
of the logos 1\X. We shall denote by O′ the algebraic theory of pointed objects.
By definition, O′ is freely generated by a morphism p : 1 → u, where 1 denotes a
terminal object. It turns out that we have O′ = O/u, where u ∈ O is the universal
object. The opposite logos (O′)o is equivalent to the category of finite pointed
sets. For any algebraic theory T and any logos with finite products X we have two
equivalences of logoi

Mod(O′ � T,X) 'Mod(T, 1\X) ' 1\Mod(T,X).

Hence the logoi O′ � T is the theory of pointed models of T .

31.13. The category AT has cartesian products and the forgetful functor AT →
QCat preserves them. The simplicial category AT is semi-additive in the following
sense. Observe that the terminal algebraic theory 1 is also initial, since the logos
Mod(1, T ) is equivalent to 1 for every T ∈ AT. If S and T are algebraic theories,
consider the maps

iS : S → S × T and iT : S → S × T
defined by putting iS(x) = (x, 1) and iT (y) = (1, y) for every x ∈ S and y ∈ T .
The maps are turning the product S × T into a coproduct of S and T , since the
map

(i∗S , i
∗
T ) : Mod(S × T,X)→Mod(S,X)×Mod(T,X)

induced by the pair (iS , iT ) is an equivalence of logoi for any logos with finite
products X.

31.14. We shall say that an object v of an algebraic theory T generates the theory
if every object of T is isomorphic to a power vn for some n ≥ 0. An algebraic
theory T equipped with a generator v ∈ T is said to be unisorted. If T = (T, v) is
a unisorted theory, then the forgetful map

v∗ : Mod(T )→ U

defined by putting v∗(f) = f(v) is conservative.

31.15. The bar construction associates to a monoid object M in a category with
product E . a simplicial object BM : ∆o → E called the nerve of M . A simplicial
object C : ∆o → E is the nerve of a monoid iff C0 = 1 and the edge map Cn → Cn1
defined from the inclusions (i−1, i) ⊆ [n] for 1 ≤ i ≤ n is invertible for every n ≥ 1.
A monoid object in a logos X can be defined to be a simplicial object C : ∆o → E
with C0 = 1 and such that the edge map Cn → Cn1 is invertible for every n ≥ 1.
There is then a universal monoid M : ∆o →Mon with values in an algebraic theory
Mon. The logos Mon is 1-truncated and the opposite logos Mono is equivalent to
the category of finitely generated free monoids. We conjecture that the tensor power
Mon2 = Mon �Mon is the algebraic theory of braided monoids. More generally,
we conjecture that Monn = Mon⊗n is the algebraic theory of En-monoids for every
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n ≥ 0. The theory Mon is unisorted; from the canonical morphism u : O → Mon
we can define a morphism un : Monn →Monn+1 for every n ≥ 0. The (homotopy)
colimit of the infinite sequence ot theories

O
u0 // Mon

u1 // Mon2
u2 // Mon3

u3 // · · ·

is the theory of symmetric monoids SMon = Mon∞, defined by the Segal sketch
31.17.

31.16. The algebraic theory of symmetric monoids SMon has the following explicit
description in terms of spans between finite sets. Let us denote by N the category
of finite cardinals and maps. A (finite) span A→ B is a map (s, t) : S → A×B in
N ,

S
s

����
��

��
�

t

  A
AA

AA
AA

A

A B.

We shall denote by Span(A,B) the groupoid of isomorphisms of the category
N/(A×B) of finite spans A → B. The composite of a span X ∈ Span(A,B)
with a span Y ∈ Span(B,C) is the span Y ◦X = X ×B Y ∈ Span(A,C),

X ×B Y
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The composition functor

− ◦ − : Span(B,C)× Span(A,B)→ Span(A,C)

is coherently associative and this defines a bicategory Span. Every bicategory has
a coherent nerve, and the coherent nerve of Span is a logos that we shall denote
by SMon. The bicategory Span has finite cartesian products, where the cartesian
product of B and C is the disjoint union B t C, viz the canonical equivalence of
groupoids

Span(A,B t C) ' Span(A,B)× Span(A,C).
It follows that the logos SMon has finite product. A model SMon → U is an
E∞-space. A model SMon→ U1 is a symmetric monoidal logos.

31.17. The Segal sketch (Γ, C) of 31.17 has the following universal model u :
Γ/C → SMon induced by the functor u : Γ→ SMon which associates to a pointed
map f : m+ → n+, the span u(f) described by the diagram

k
l

����
��

��
�� r

��?
??

??
??

?

m n,

where k = {i ∈ m : f(i) 6= ?}, where l is the inclusion k ⊆ n and where r is induced
by f .
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31.18. We shall say that a monoid M is a group if the map

(m, p1) : M ×M →M ×M

is invertible. We denote by Grp the algebraic theory of groups The logos Grp is
1-truncated and the opposite logos Grpo is equivalent to the category of finitely
generated free groups. The conjecture 31.15 implies that Grpn = Grp�n is the
algebraic theory of n-fold loop spaces for every n ≥ 1. The theory Grp is unisorted;
from the canonical morphism u : O →Mon we can define a morphism un : Grpn →
Grpn+1 for every n ≥ 0. The (homotopy) colimit of the infinite sequence

O
u0 // Grp

u1 // Grp2 u2 // Grp3 u3 // · · ·

is the theory of infinite loop spaces SGrp = Grp∞. .

31.19. The algebraic theory of E∞-rig spaces has the following explicit description
(a rig is a ring without additive inverse). Let N be the category of finite cardinals
and maps. We recall from [BJ] and [KJBM] that a a diagram of finite sets

E
l
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�

p // B
r
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S T

defines a polynomial functor F = r!p∗l
∗,

N/S
l∗ // N/E

p∗ // N/B
r! // N/T,

where l∗ is the pullback functor along l, where p∗ is the right adjoint to p∗ and
where r! is left adjoint to r∗. If we fix S and T , there is a groupoid Pol(S, T ) of
such diagrams, where a map F → F ′ is a pair of isomorphisms (α, β) fitting in a
commutative diagram

E
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There is a natural composition functor

− ◦ − : Pol(S, T )× Pol(T,U)→ Pol(S,U)

with a natural isomorphism (G ◦ F )(X) ' G(F (X)) for X ∈ N/S. The resulting
bicategory Pol has cartesian products. Its coherent nerve is an algebraic theory
that we shall denote by SRig. A model of SRig is an E∞-rig spaces. Notice
that the algebraic theory SMon admits two interpretations in SRig. The additive
interpretation u : SMon→ SRig is induced by the (2)-functor Span→ Pol which
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takes a span S : A→ B to the polynomial

S
s
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t
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A

A B.

The resulting map u∗ : Mod(SRig) → Mod(SMon) takes an E∞-rig space to its
underlying additive structure. The multiplicative interpretation v : SMon→ SRig
is induced by the (2)-functor Span → Pol which takes a span S : A → B to the
polynomial

S
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t // B
1B
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AA
AA

A

A B.

The resulting map v∗ : Mod(SRig) → Mod(SMon) takes an E∞-rig space to its
underlying mutiplicative structure.

31.20. The notion of homotopy factorisation system in AT is defined as in 31.22.
The category AT admits a homotopy factorisation system (A,B) in which A is the
class of essentially surjective morphisms and B the class of fully faithful morphisms.
If a morphism of algebraic theories u : S → T is essentially surjective, then the
map u∗ : Mod(T )→Mod(S) is conservative.

31.21. A unisorted theory can be defined to be a theory T equipped with an es-
sentially surjective morphism s : O → T . More generally, a theory T is multisorted
if it is equipped with an essentially surjective morphism s : u(S) → T , where S is
the set of sorts. The corresponding forgetful map

s∗ : Mod(T )→ US

is conservative.

31.22. The category AT admits a homotopy factorisation system (A,B) in which
B is the class of conservative morphisms. A morphism in the class (A is said to
be an iterated multiplicative localisation. Let us define the notion of multiplicative
localisation. We say that a set Σ of arrows in a logos with finite products X is
stable under finite products if the implication f ∈ Σ ⇒ a× f ∈ Σ is true for every
object a ∈ X. If Σ is stable under finite products, then the logos L(X,S) has finite
products and they are preserved by the canonical map X → L(X,S). We then say
that c a multiplicative localisation. If a morphism of algebraic theories u : S → T
belongs to (A, then the map u∗ : Mod(T )→Mod(S) is fully faithful.

31.23. The theory of groups Grp is a multiplicative localisation of the theory
of monoids Mon. This is because a monoid M is a group iff the map (m, p2) :
M ×M →M ×M is invertible, where m is the multiplication. More generally, the
theory of n-fold loop Grpn spaces is a multiplicative localisation of the theory of
n-fold monoids Monn for every n ≥ 0; the theory of infinite loop spaces SGrp is a
multiplicative localisation of the theory of symmetric monoids SMon.
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31.24. Every algebraic theory T is the multiplicative localisation of a free theory
u(A), for example we can take A = T . Moreover, we can suppose that A is a
category. It follows that every algebraic theory is a multiplicative localisation of a
discrete algebraic theory.

31.25. It T is an algebraic theory, we shall say that a left fibration X → T is a
comodel of T if its classifying map T → U is a model. A left fibration X → T
is a comodel iff the logos X has a finite products and the map X → T preserves
finite products. The simplicial set of elements of a model f : T → U is a comodel
el(f)→ T and conversely. The notions of model T → U and of comodel X → T are
essentially equivalent. The coherent nerve of the simplicial category of comodels
of T is equivalent to Mod(T ). If p : X → T is a comodel, then a left fibration
g : Y → X is a comodel of X iff the composite pg : Y → T is a comodel of T . We
thus have an equivalence of simplicial categories

Comod(X) ' Comod(T )/X.

If X = el(f), the equivalence induces an equivalence of logoi

Mod(el(f)) 'Mod(T )/f.

We shall say that a morphism of algebraic theories u : S → T is coinitial if the map

u! : Mod(S)→Mod(T )

takes a terminal model to a terminal model. The category AT admits a homotopy
factorisation system (A,B) in which A is the class of coinitial morphisms. A mor-
phism u : S → T belongs to B iff its admits a factorisation u = u′w : S → S′ → T
with w a categorical equivalence and u′ a comodel. See [?].

31.26. If T is an algebraic theory, then the model category (S/T,Wcov) admits a
Bousfield localisation in which the (fibrant) local objects are the comodels of T . A
map u : A → B in S/T is a weak equivalence for the local model structure iff the
map

π0[u,X] : π0[B,X]→ π0[A,X]
is bijective for every comodel X → T .

31.27. Every algebraic theory T has an initial model

0T = Hom(1,−) : T → U.

We shall say that a morphism of algebraic theories u : S → T is tight if the map

u∗ : Mod(T )→Mod(S)

takes an initial model to an initial model. A morphism u : S → T is tight iff the
commutative square

1\S

��

1\u // 1\T

��
S

u // T

is a homotopy pullback (in the model category (S,Wcat)). The category AT admits
a homotopy factorisation system (A,B) in which B is the class of tight morphisms.
We shall say that a morphism in the class A is a Henkin extension. See [?].
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31.28. If T is an algebraic theory, then every model f : T → U admits a fac-
torisation f = f ′e : T → T [f ] → U with e : T → T [f ] a Henkin extension
and f ′ : T [f ] → U an initial model, and the factorisation is homotopy unique.
Conversely, to every Henkin extension u : T → E we can associates a model
u∗(0E) : T → U. This defines a ”one-to-one” correspondance between the Henkin
extensions T → E and the models T → U. It follows that there is an equivalence
of logoi

f\Mod(T ) 'Mod(T [f ])

for any model f ∈Mod(T ).

31.29. A simplicial algebraic theory X can be defined to be a small simplicial
category with finite products. A model of X is a simplicial functor X → S which
preserves finite products. We shall denote by Mod(X) the full subcategory of [X,S]
spanned by the models X → S. The category Mod(X) admits a simplicial model
structure Mod(X)proj in which the weak equivalences and the fibrations are defined
pointwise [Q][B4]. Recall from [Bad1] that a simplicial functor X → S is said to be
a homotopy model if it preserves finite products up to homotopy. The projective
model structure [X,S]proj admits a Bousfield localisation in which the (fibrant)
local objects are the fibrant homotopy models [Bad1][B4]. We shall denote the
local model structure by [X,S]m. The inclusion functor Mod(X)proj → [X,S]m is
the right adjoint in a Quiilen equivalence of model categories.

31.30. Recall that an object t in a simplicial category X is said to be homotopy
terminal if the simplicial set X(x, t) is contractible for every object x ∈ X. Recall
that the homotopy product of two objects a and b in a simplicial category X is an
object a × b equipped with a pair of maps p1 : a × b → a and p2 : a × b → c such
that the induced map

(X(x, p1), X(x, p2)) : X(x, a× b)→ X(x, a)×X(x, b)

is a weak homotopy equivalence for every object x ∈ X. A simplicial category
enriched over Kan complexes X has finite homotopy products iff the logos C !X
has finite products. Conversely, a logos A has finite products iff the simplicial
category C!A has finite homotopy products. We shall say that a small simplicial
category with finite homotopy products X is a (generalised) simplicial algebraic
theory. A homotopy model of a simplicial algebraic theory X is a simplicial functor
F : X → S which preserves finite homotopy products. The projective model struc-
ture [X,S]proj admits a Bousfield localisation in which the (fibrant) local objects
are the fibrant homotopy models. Let us denote by Modh(X) the full subcategory
of fibrant-cofibrant objects of the localised model structure. Then the evaluation
functor ev : X × [X,S] → S induces a functor e : X ×Modh(X) → Kan. The
coherent nerve of this functor is a map of simplicial sets

C !X × C !Modh(X)→ U.

If the simplicial category X is fibrant, the corresponding map C !Modh(X)→ UC!X

induces an equivalence of logoi,

C !Modh(X)→Mod(C !X).
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It follows by adjointness that we have an equivalence of logoi

C !Modh(C!A)→Mod(A)

for any algebraic theory A.

32. Locally presentable logoi

The logos of models of a limit sketch is locally presentable. See Lurie [Lu1] for
another treatment of locally presentable logoi.

32.1. Recall that an inductive cone in a simplicial set A is a map of simplicial sets
K ? 1→ A. A colimit sketch is defined to be a pair (A,Q), where A is a simplicial
set and Q is a set of inductive cones in A. A model of the sketch with values in
a logos X is a map f : A → X which takes every cone c : K ? 1 → A in Q to a
coexact cone fc : K ? 1→ X in X. We shall write f : Q\A→ X to indicate that a
map f : A→ X is a model of (A,Q). The models of (A,Q) with values in a logos
X form a logos Mod(Q\A,X). By definition, it is the full simplicial subset of XA

spanned by the models Q\A→ X.

32.2. Every colimit sketch (A,Q) has a universal model u : A → U(Q\A) with
values in a (locally small) cocomplete logos U(Q\A). The universality means that
the map

u∗ : CC(U(Q\A), X)→Mod(Q\A,X)
induced by u is an equivalence for any cocomplete logos X, where CC denotes
cocontinuous maps. We say that a logos Y is locally presentable is if it is equivalent
to a logos U(Q\A) for some colimit sketch (A,Q). In this case, we shall say that
a the universal model Q\A → Y is a presentation of Y by (A,Q). Every locally
presentable logos is bicomplete.

32.3. A colimit sketch (A,Q) is finitary if every cone in Q is finite. We say that a
logos X is finitary presentable if it admits a presentation Q\A → X by a finitary
colimit sketch (A,Q).

32.4. It follows from ?? that the Yoneda map yA : A → P(A) is a presentation
of the logos P(A) by the colimit sketch (A, ∅). Hence the logos P(A) is locally
presentable. In particular, the logos U = P(1) is locally presentable. The opposite
logos Uo is not locally presentable.

32.5. A logos is locally presentable iff it is equivalent to a logos of models of a
limit sketch. More precisely, the opposite of an inductive cone c : K ? 1 → A is a
projective cone co : 1 ?Ko → Ao. The opposite of a colimit sketch (A,Q) is defined
to be the limit sketch (Ao, Qo), where Qo = {co : c ∈ Q}. If u : A → U(Q\A) is
the canonical map, then for every object x ∈ U(Q\A) the map

ρ(x) = hom(u(−), x) : Ao → U

is a model of the limit sketch (Ao, Qo), The resulting map

ρ : U(Q\A) 'Mod(Ao/Qo)

is an equivalence of logoi. Conversely, if (A,P ) is a limit sketch, then the logoi
Mod(A/P ) and U(P o\Ao) are equivalent.

32.6. A logos X is finitary presentable iff it is equivalent to the logos of models of
a finitary limit sketch.



126 ANDRÉ JOYAL

32.7. If X is locally presentable, then so are the slice logoi a\X and X/a for any
object a ∈ X and the logos XA for any simplicial set A. More generally, the logos
Mod(A/P,X) is locally presentable for any limit sketch (A,P ).

32.8. If X is locally presentable and Y is cocomplete (locally small), then every
cocontinuous map X → Y has a right adjoint. In particular, every continuous map
Xo → U is representable.

32.9. We denote by LT the category of locally presentable logoi and cocontinuous
maps. The category LT has the structure of a 2-category induced by the 2-category
structure on the category of (large) simplicial sets. If X and Y are locally presenta-
bles logoi, then so is the logos Map(X,Y ) of cocontinuous maps X → Y . The
2-category LP is symmetric monoidal closed. The tensor product X ⊗ Y of two
locally presentable logoi is defined to be the target of a map φ : X × Y → X ⊗ Y
cocontinuous in each variable and universal with respect to that property. More
precisely, for any locally presentable logos Z, let us denote by Map(X,Y ;Z) the
full simplicial subset of ZX×Y spanned by the maps X × Y → Z ccontinuous in
each variable. Then the map

φ∗ : Map(X ⊗ Y,X)→Map(X,Y ;Z)

induced by φ is an equivalence of logoi. The natural isomorphism ZX×Y = (ZY )X

induces a natural isomorphism Map(X,Y ;Z) = Map(X,Map(Y,Z). It follows that
we have a canonical equivalence of logoi

Map(X ⊗ Y, Z) 'Map(X,Map(Y, Z)).

The unit object for the tensor product is the logos U. The equivalence U⊗X ' X
is induced by the action map (A, x) 7→ A · x described in 25.1.

32.10. If A is a (small) simplicial set, then the logos P(A) is locally presentable
and freely generated by the Yoneda map yA : A→ P(A). It follows that the map

y∗A : Map(P(A), X)→ XA

is an equivalence of logoi. for any X ∈ LP. The map ρ : A×X → XAo

defined in
24.20 can be extended as a map P(A) ×X → XAo

cocontinuous in each variable.
The resulting map

P(A)⊗X → XAo

is an equivalence of logoi. The external product of a pre-stack f ∈ P(A) with a
pre-stack g ∈ P(B) is the prestack f�g ∈ P(A×B) defined by putting

(f�g)(a, b) = f(a)× g(b)
for every pair of objects (a, b) ∈ A×B. The map (f, g) 7→ f�g is cocontinuous in
each variable and the induced map

P(A)⊗P(B)→ P(A×B).

is an equivalence of logoi. The cocontinuous extension of the map homA : Ao×A→
U is the trace map

TrA : P(Ao ×A)→ U
defined in 24.21 . The scalar product of f ∈ P(Ao) and g ∈ P(A) is defined by
putting

〈f, g〉 = TrA(f · g),
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where
(f · g)(ao, b) = f(ao) · g(b).

The map
〈− | −〉 : P(Ao)×P(A)→ U

is obtained by composing the canonical map P(Ao)×P(A)→ P(Ao×A) with the
trace map. The map 〈f,−〉 : P(A) → U is a cocontinuous extension of the map
f : A→ U and the map 〈−, g〉 : P(Ao)→ U a cocontinuous extension of the map
g : Ao → U. The scalar product defines a perfect duality between P(A) and P(Ao).
It yields the equivalence above

P(A)⊗X 'Map(P(Ao), X) = XAo

and the equivalence of 24.20,

Map(XAo

, Y ) 'Map(X,Y A)

for X.Y ∈ LP.

32.11. For any logos X, the map homX : Xo × X → U is continuous in each
variable. If X is locally presentable, the opposite map X ×Xo → Uo induces an
equivalence of logoi

Xo ' CC(X,Uo).
More generally, it induces two equivalences of logoi

(X ⊗ Y )o ' CC(X,Y o)
' CC(Y,Xo)

for any pair of locally presentable logoi X and Y .

32.12. If X is locally presentable and (A,P ) is a limit sketch, then we have an
equivalence of logoi,

Mod(A/P )⊗X = Mod(A/P,X).

The canonical map ⊗ : Mod(A/P )×X →Mod(A/P,X) can be defined as follows.
The inclusion Mod(A/P,X) ⊆ XA has a left adjoint r : XA → Mod(A/P,X). If
f ∈ Mod(A/P ) and x ∈ X, then the object f ⊗ x ∈ Mod(A/P,X) is obtained
by applying r to the map a 7→ f(a) · x. If (B.Q) is another limit sketch and
X = Mod(B/Q) this gives two equivalence of logoi:

Mod(A/P )⊗Mod(B/Q) ' Mod(A/P,Mod(B/Q))
' Mod(B/Q,Mod(A/P )).

32.13. Let Σ be a (small) set of arrows in a locally presentable logos X. Then
the pair (⊥(Σ⊥),Σ⊥) is a factorisation system. We say that an object a ∈ X
is Σ-local if it is right orthogonal to every arrow in Σ (see 26.2). Let us denote
by XΣ the full simplicial subset of X spanned by the Σ-local objects. Then the
inclusion i : XΣ ⊆ X has a left adjoint r : X → XΣ and the logos XΣ is locally
presentable. The map r is cocontinuous and it inverts universally the arrows in
Σ. More precisely, if Y is a cocomplete locally small logos and f : X → Y is a
cocontinuous map which inverts the arrows in Σ, then there exists a cocontinuous
map g : XΣ → X together with an invertible 2-cell α : f ' gr, and the pair (g, α)
is unique up to a unique invertible 2-cell. We shall say that the map r : X → XΣ is
a localisation. A map f : X → Y in LP is a reflection iff it admits a factorisation
wr : X → XΣ → Y , where r a localisation with respect to a (small) set Σ of arrows



128 ANDRÉ JOYAL

in X and w is an equivalence of logoi. The 2-category LP admits a homotopy
factorisation system (A,B) in which A is the class of localisations (=reflections)
and B is the class of conservative maps.

32.14. For any cone c : B ? 1→ A, let us denote by l(c) the colimit of the diagram
yAciB : B → P(A), where yA is the Yoneda map A → P(A) and where iB is the
inclusion B ⊂ B ? 1. There is then canonical arrow σ(c) : l(c) → yc(1) in P(A).
If f ∈ P(A), then the cone fco : 1 ? B → U is exact iff we have σ(c)⊥f , where
⊥ is the orthogonality relation defined in 26.2. It follows by dualising that for any
limit sketch (A,P ), there is a set Σ of arrows in UA with the property that a map
f : A → U is a model of (A,P ) iff we have u⊥f for every u ∈ Σ. In the notation
of 32.13, this means that we have

Mod(A/P ) = (UA)Σ.

32.15. We shall say that a map f : X → Y in LP is weakly dense if Y is cogenerated
by f(X0). A map f : X → Y is weakly dense iff its right adjoint is conservative.
The 2-category LP admits a homotopy factorisation system (A,B) in which A is
the class of weakly dense maps and B is the class of fully faithful maps.

32.16. Let f : X → Y be a map in LP. If tX is the terminal object of X, then
for every object x ∈ X, the image by f of the morphism x → tX is an object
f ′(x) : f(x) → f(tX) of the logos Y/f(tX). This defines a cocontinuous map
f ′ : X → Y/f(tX) and we obtain a factorisation

f = pf ′ : X → Y/f(tX)→ Y,

where p is the projection Y/f(tX) → Y . The 2-category LP admits a homotopy
factorisation system (A,B) in which a map f : X → Y belongs to A iff it preserves
terminal objects. A map f : X → Y belongs to B iff it is equivalent to a map
Y/b→ Y iff it is equivalent to a right fibration.

32.17. Let f : X → Y be a map in LP with right adjoint g : Y → X. If
iY is the initial object of Y , then for every object y ∈ Y , the image by g of
the morphism iY → y is an object g′(y) : g(iY ) → g(y) of the logos g(iY )\X.
This defines a continuous map g′ : Y → g(iY )\X and we obtain a factorisation
g = pg′ : Y → g(iY )\X → X, where p is the projection g(iY )\X → X. There is a
corresponding factorisation the left adjoint f ,

f = f ′i : X → g(iY )\X → Y,

where i is the cobase change map x 7→ g(iY ) t x. The map f ′ takes a morphism
g(iY )→ x to the object f ′(x) defined by the pushout square

fg(iY ) //

��

f(x)

��
iY // f ′(x),

where the morphism fg(iY ) → iY is the counit of the adjunction f ` g. The
2-category LP admits a homotopy factorisation system (A,B) in which a map
f : X → Y belongs to B iff its right adjoint preserves initial objects. A map
f : X → Y belongs to A iff it is equivalent to a cobase change map X → a\X iff
its right adjoint is equivalent to a left fibration.
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32.18. The category 1 is both terminal and initial in the 2- category LP. The
cartesian product X × Y of two locally presentable logoi X and Y is also their
coproduct. More precisely, if iX : X → X × Y and iY : Y → X × Y are the maps
defined by putting iX(x) = (x, 1) and iY (y) = (1, y), then the induced map

(i∗X , i
∗
Y ) : Map(X × Y, Z)→Map(X,Z)×Map(Y, Z)

is an equivalence for any cocomplete logos X. More generally,the product∏
i∈S

Xi.

of a family of locally presentable logoi is also a coproduct,

32.19. Let X be a finitary presentable logos and f : X ↔ Y ; g be a pair of adjoint
maps, where Y is a cocomplete logos. Then the right adjoint g is inductive iff the
left adjoint f takes a compact object to a compact object.

32.20. If (A,P ) is a finitary limit sketch, then the inclusion i : Mod(A/P ) ⊆ UA

is inductive. If X is a finitary presentable logos, then the limit map XA → X is
inductive for any finite simplicial set A.

32.21. Let X be a cocomplete logos and let K ⊆ X is a small full sub logos of
compact objects closed under finite colimits. Then the left Kan extension

i! : Ind(K)→ X

of the inclusion i : K ⊆ X iMoreover, i! is an equivalence if in addition K cogener-
ates X.

32.22. A (locally small) cocomplete logosX is finitary presentable iff it is generated
by a small set of compact objects. More precisely, if X is finitary presentable, then
the full sub logos k(X) of compact objects of X is cocartesian, essentially small,
and there is a canonical equivalence of logoi,

X ' In(k(X)).

32.23. Two finitary presentable logoi are equivalent iff their (full) sub logoi of
compact objects are equivalent.

32.24. The category of finitary presentable logoi and inductive maps is cartesian
closed. If X and Y are ω-presentables, then the logos of inductive maps X → Y is
equivalent to the logos Y kX .

32.25. If α is a regular cardinal, we say that a colimit sketch (A,Q) is α-bounded
if the cardinality of every cone in P is < α. We say that a logos X α-presentable if
it admits a presentation Q\A→ X by an α-bounded colimit sketch (A,Q).

33. Varieties of homotopy algebras

We introduce the notion of variety of homotopy algebras. We show that a co-
complete quasi-category is a variety iff it is generated by a set of bicompact objects
[Ros]. We show that a cocontinuous map is sifted iff it is finitary and preserves
geometric realisation. We obtain a new characterisation of bicompact objects.

33.1. We say that a quasi-category is a variety of homotopy algebras if it is equiv-
alent to a quasi-category Mod×(T ) for some (finitary) algebraic theory T .
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33.2. If X is a variety of homotopy algebras then so are the slice quasi-categories
a\X and X/a for any object a ∈ X and the quasi-category XA for any simplicial
set A. More generally, the quasi-category Mod×(T,X) is a variety for any algebraic
theory T .

33.3. A variety of homotopy algebras X is ω-presentable. Hence the colimit map

lim
−→

: UA → U

preserves finite limits for any directed simplicial set A.

33.4. A variety of homotopy algebras is a regular quasi-category. An arbtrary
product of surjections is a surjection.

33.5. Let X be a regular quasi-category. We say that an object a ∈ X is projective
if every surjection b→ a splits.

33.6. Let X be a regular quasi-category. Then an object a ∈ X is projective iff the
map

homX(a,−) : X → U

takes a surjection to a surjection.

33.7. A retract of a projective object is projective. A coproduct of projective
objects is projective.

33.8. An object of U is projective iff it is discrete.

33.9. If T is an algebraic theory, then the Yoneda map y : T o → Mod×(T ) in-
duces an equivalence between the Karoubi envelope of T o and the quasi-category
of compact projective models of T .

33.10. Let us denote by Var the sub (2-)category of LP whose objects are the of
varieties and whose morphisms are the cocontinuous maps which preserves compact
projective objects. If u : S → T is a morphism of algebraic theories, then the map
u∗ : Mod×(T )→Mod×(S) has a left adjoint

u! : Mod×(S)→Mod×(T )

which preserves compact projective objects, This defines a (pseudo-2) functor

Mod× : AT→ Var.

If X is a variety, let us denote by kp(X) the full simplicial subset of X spanned by
compact projective objects of X, The (pseudo-2) functor Mod× has a right adjoint

kpo : Var→ AT

which associates to X the opposite of kp(X). The (2-)functor kpo is fully faithful
and the unit of the adjunction Mod×` kpo is the Karoubi envelope T → κ(T ) for
every T ∈ AT. The essential image of kpo is the full sub (2-)category of AT spanned
by the Karoubi complete theories. A morphism of algebraic theories u : S → T is
a Morita equivalence iff the adjoint pair

u! : Mod×(S)↔Mod×(T ) : u∗

an equivalence of quasi-categories.
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33.11. Recall that a category C is said to be sifted, but we shall say 0-sifted, if the
colimit functor

lim
−→

: SetC → Set

preserves finite products. This notion was introduced by C. Lair in [La] under the
name of categorie tamisante. We shall say that a simplicial set A is sifted if the
colimit map

lim
−→

: UA → U

preserves finite products.

33.12. The notion of sifted simplicial set is invariant under Morita equivalence. A
directed simplicial set is sifted. A sifted simplicial set is weakly contractible. A
non-empty simplicial set A is sifted iff the diagonal A → A × A is final. A non-
empty quasi-category A is sifted iff the simplicial set a\A ×A b\A defined by the
pullback square

a\A×A b\A

��

// b\A

��
a\A // A

is weakly contractible for any pair of objects a, b ∈ A. A quasi-category A is sifted
iff the canonical map A→ t(A) is final. A quasi-category with finite coproducts is
sifted. The category ∆o is sifted.

33.13. If X is a quasi-category, we shall say that a diagram d : A→ X is sifted if
the simplicial set A is sifted, in which case we shall say that the colimit of d is sifted
if it exists. We shall say that X has sifted colimits if every (small) sifted diagram
A → X has a colimit. A quasi-category with sifted colimits has directed colimits.
We shall say that a map between quasi-categories is stronly inductive if it preserves
sifted colimits.

33.14. If T is an algebraic theory, then the inclusion i : Mod×(T ) ⊆ UT is reflective
and strongly inductive.

33.15. If X is a homotopy variety, then the product map Xn → X is strongly
inductive for every n ≥ 2.

33.16. A quasi-category with sifted colimits and finite coproducts is cocomplete.
A map between cocomplete quasi-category is cocontinuous iff it preserves finite
coproducts and sifted colimits.

33.17. Let us sketch the proof of 33.16. If a quasi-category X has finite coproducts
and directed colimit, then it has arbitrary coproducts, since we have⊔

i∈S
xi = lim

−→
Ffin ⊆S

⊔
i∈F

xi,

where F runs in the poset of finite subsets of S. Hence a quasi-category with
sifted colimits and finite coproducts has coproducts. But a quasi-category with
coproducts and ∆o-indexed colimits is cocomplete by 21.45. The proof of the
second statement is similar.
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33.18. Let X be a (locally small) quasi-category with sifted colimits. We shall say
that an object a ∈ X is bicompact if the map

homX(a,−) : X → U

preserves sifted colimits. We shall say that a is adequate if the map homX(a,−)
preserves ∆o-indexed colimits. A bicompact object is compact and adequate.

33.19. A finite colimit of bicompact objects is bicompact. A retract of a bicompact
object is bicompact. And similarly for adequate objects.

33.20. A model of an algebraic theory T is bicompact iff it is compact and projec-
tive iff it is a retract of a representable.

33.21. Let f : X ↔ Y ; g be a pair of adjoint maps, where X is a variety and Y
is cocomplete. Then g is strongly inductive iff f takes a bicompact object to a
bicompact object.

33.22. We shall use the following observations in 33.23. Let N be the category of
finite cardinals and maps. If S is a set, let us denote by N/S the full subcategory
of Set/S whose objects are the maps n → S with n ∈ N . Consider the map
i : S → Ob(N/S) which associates to s ∈ S the map s : 1 → S. The category
N/S has finite coproducts and the map i : S → N/S exhibits the category N/S as
the free cocompletion of the discrete category S under finite coproducts. Hence we
have t(S) = N/S and it follows that the category t(S) has finite colimits when
S is discrete. If f : S → T is a map between discrete categories, then the functor
f! : N/S → N/T is a discrete fibration, hence also the functor t(f) : t(S)→ t(T ).
Recall the Grothendieck construction which associates to a functor F : Bo → Cat
a category of elements Tot(F ) whose objects are the pairs (a, x), with a ∈ ObB and
x ∈ ObF (a), and whose arrows (a, x)→ (b, y) are the pairs (f, u) with f : a→ b and
u : x→ F (f)(y). The natural projection Tot(F )→ B is a Grothendieck fibration.
Let us denote by L the set of arrows (f, u) ∈ Tot(F ) with f an identity arrow and
by R the set of arrows (f, u) with u an identity arrow. Both sets are closed under
composition and every arrow g ∈ Tot(F ) admits a truly unique factorisation g = rl
with l ∈ L and r ∈ R. We say that (L,R) is strict factorisation system (compare
with 26.14). We saw in ?? that if C is a category, then the category t(C) is obtained
by applying the Grothendieck construction to the functor F : No → Cat defined
by putting F (n) = Cn for every n ∈ N . In this case we have R = t(C0) ⊆ t(C)
and L is the coproduct of the categories Cn for n ≥ 0.

33.23. The following construction is needed for proving a basic result on strongly
inductive maps in 33.24. For any category C, there is a diagram of categories

E
β //

q

��

u(C)

∆

with β an initial functor and q is a Grothendieck fibration with cartesian fibers.
Before giving the construction, we make a preliminary remark. It follows from
33.22 that the category u(C) is equipped with a strict factorisation system (L,R)
where L = u(C0) ⊆ u(C) and R is the coproduct of the categories Cn for n ≥ 0.
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Let us now describe the construction of the diagram (q, β). Recall from 21.44 that
we have a diagram of categories

el(C) θ //

p

��

C

∆,

where el(C) is the category of elements of (the nerve of) C and where p is the
natural projection. The value of θ on a chain x : [n] → C is defined to be the top
object x(n) ∈ C. The category el(C) can be obtained by applying the Grothendieck
construction to the functor [n[7→ Cn, where Cn is the set of chains [n] → C. For
each n ≥ 0, let us put F ([n]) = u(Cn). This defines a functor F : ∆o → Cat.
If we apply the Grothendieck construction to the functor F and put E = Tot(F ),
we obtain a Grothendieck fibration q : E → ∆ whose fiber at [n] is the category
u(Cn). The category u(Cn) is cartesian by 33.22 dualised. Let us now define the
map β : E → u(C). We have el(C) ⊂ E since we have Cn ⊂ u(Cn) for each
n ≥ 0. There is then a unique functor β : E → u(C) which extends the functor
θ : el(C) → C and which preserves finite products on each fiber of q. The functor
β extends each functor u(θn) : u(Cn) → u(C0), where θn : Cn → C0 is the map
defined by θ. Thus, β is a discrete opfibration on each fiber of q by 33.22 dualised.
We shall use this observation in the proof that the functor θ is initial. In order to
show this, it suffices to show by ?? that the category E/b defined by the pullback
square

E/b //

��

E

β

��
u(C)/b // u(C)

is weakly contractible for every object b ∈ u(C). The object b is defined by a
map n → C0 for some n ∈ N . Let us denote by Eb the fiber at b of the functor
β. We have Eb ⊆ E/b and b ∈ Eb, since β(b) = b. It is easy to see that the
object b is initial in Eb. Hence que category Eb is contractible. Let us show
that the inclusion i : Eb ⊆ E/b admits a left adjoint r : E/b → Eb. An object
of E/b is pair (x, f), where x is an object of u(Ck) for some k ≥ 0 and where
f : β(x) → b is a morphism in u(C). The category u(C) admits a factorisation
system (L,R) with L = u(C0) by our first remark above. The subcategory R is
the disjoint union of the subcategories Cn for n ≥ 0. There is thus a factorisation
f = gu : β(x) → a → b with u ∈ L and g ∈ R. We have g ∈ Cn, since g ∈ R
and b ∈ Cn0 . Thus, a ∈ Cn0 and g(i) : a(i) → b(i) for every i ∈ n. The functor
u(Ck) → u(C0) induced by β is a discrete opfibration by the made observation
above. Hence there is a unique map v ∈ u(Ck) with source x such that β(v) = u.
We have v : x → x′ for some object x′ ∈ u(Ck). For each i ∈ n, let us denote by
x(i) : [k+ 1]→ C the chain which extends the chain x′(i) : [k]→ C by grafting the
arrow g(i) : a(i)→ b(i) at the top of x′(i). This defines an element x ∈ u(Ck+1)∩Eb.
Let us put r(x, f) = x ∈ Eb. The inclusion [k] ⊂ [k + 1] induces a map d : x′ → x
in E and we have β(dv) = β(d)β(v) = gu = f . Hence the map dv : x → x defines
a map η : (x, f) → (x, 1b) in E/b. This defines a functor r : E/b → Eb equipped
with a natural transformation η : id → ir. It is easy to verify that it is the unit
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of an adjunction r ` i. Hence the category E/b is weakly contractible, since Eb is
contractible. We have completed the proof that the functor β is initial.

33.24. A map f : X → Y between cocomplete quasi-categories is strongly induc-
tive iff it preserves directed colimits and ∆o-indexed colimits. The implication (⇒)
is obvious. Let us prove the implication (⇐). Let us show that f preserves the
colimit of any sifted diagram d : A → X. Let us choose a fibrant replacement
i : A→ A′ in the model structure for quasi-categories. We can suppose that i is a
cofibration. In this case the map d : A→ X admits an extension d′ : A′ → X, since
X is a quasi-category. The map i is final, since a weak categorical equivalence is
final by 11.21. Hence the the map f preserves the colimit of d iff it preserves the
colimit of d′ by 21.29. But A′ is sifted, since A is sifted. Hence we can suppose that
A is a quasi-category, In this case, the canonical map A → t(A) is final by 33.12,
since A is sifted. The map d : A → X admits an extension d! : t(A) → X by ??,
since X is cocomplete. Hence the map f preserves the colimit of d iff it preserves
the colimit of d! by 21.29. The map θA : el(A)→ A is a localisation by ??. Hence
also the map λ = t(θA) : t(el(A)) → t(A). But a localisation is final by 19.7.
Hence it suffices to show that f preserves the colimit of d!λ by 21.29. Let us show
more generally that f preserves the colimit of any diagram t(C)→ X, where C a
category. It follows from 33.23 dualised that there is a diagram of categories

E
α //

p

��

t(C)

∆o

with α a final functor and p a Grothendieck opfibration with cocartesian fibers.
The map f preserves the colimit of a diagram u : t(C) → X iff it preserves the
colimit of the diagram v = uα : E → X, since α is final. But the colimit of v is
the same as the colimit of its left Kan extension along p : E → ∆o by 24.5. Hence
it show that f preserves left Kan extensions along p, since it preserves ∆o-indexed
colimits by hypothesis. For this, we have to show that the canonical 2-cell

Σp(fv)→ fΣp(v)

is invertible. But for this, it suffices to show that the arrow

Σp(fv)([n])→ fΣp(v)([n])

is quasi-invertible for every n ≥ 0 by 1.11. But the left Kan extensions along p are
fiberwise by ??, since p is a Grothendieck opfibration. Hence it suffices to show
that the canonical arrow

lim
−→

x∈E(n)

fv(x)→ f lim
−→

x∈E(n)

v(x)

is quasi-invertible for every n ≥ 0, where E(n) denotes the fiber of p over [n]. But
the category E(n) is directed, since a cocartesian category is directed. This shows
that f preserves the left Kan extensions along p. We have proved that f preserves
sifted colomits.

33.25. It follows from 33.24 that an object in a cocomplete quasi-category is bi-
compact iff it is compact and adequate.
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33.26. If A is a simplicial set, we shall say that a pre-stack g ∈ P(A) is sifted, if it
is a sifted colimit of representables. We shall denote by Sft(A) the full simplicial
subset of P(A) spanned by sifted pre-stacks. The quasi-category Sft(A) is has sifted
colimits and the Yoneda map yA : A → P(A) induces a map yA : A → Sft(A). If
A is a quasi-category with finite coproducts then a prestack g ∈ P(A) is sifted iff
the map g : Ao → U preserves finite products; hence we have

Sft(A) = Mod×(Ao)

in this case.

33.27. A pre-stack g ∈ P(A) is sifted iff its simplicial set of elements El(g) = A/g
is sifted iff its cocontinuous extension

〈−, g〉 : P(Ao)→ U

defined in 32.10 preserves finite products.

33.28. If A is a simplicial set, then the map yA : A → Sft(A) exhibits the quasi-
category Sft(A) as the free cocompletion of A under sifted colimits. More precisely,
if X is a quasi-category with sifted colimits, then the left Kan extension

f! : Sft(A)→ X

of any map f : A → X along the map yA : A → Sft(A) is strongly inductive.
Moreover, any strongly inductive extension of f is canonically isomorphic to f!.

33.29. If A is a quasi-category with finite coproducts, then the map yA : A →
Mod×(Ao) exhibits the quasi-category Mod×(Ao) as the (relatively free) cocomple-
tion of A under colimits. More precisely, if X is a cocomplete quasi-category, then
the left Kan extension

f! : Mod×(Ao)→ X

(along yA) of a map f : A→ X which preserves finite coproducts is cocontinuous.
Moreover, any cocontinuous extension of f is canonically isomorphic to f!.

33.30. If A is a simplicial set, then we have a decomposition

P(A) ' Sft(t(A)).

33.31. Let X be a quasi-category with sifted colimits and let K ⊆ X be a small
full sub quasi-category of bicompact objects. Then the left Kan extension

i! : Sft(K)→ X.

of the inclusion i : K ⊆ X is strongly inductive and fully faithful. Moreover, if K
is closed under finite coproducts, then we have Sft(K) = Mod×(Ko) and the map

i! : Mod×(Ko)→ X

is cocontinuous and fully faithful. Moreover, i! is an equivalence if in addition K
separates X, or if X is cocomplete and K generates X.
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33.32. Let E be a (cocomplete locally small) quasi-category and Uk : E → U
(k ∈ K) be a family of continuous maps. Let us suppose that Uk is epresented
by an object uk ∈ X. Let E be the closure under finite coproducts of the full
sub quasi-category of X spanned by the objects uk for k ∈ K. The opposite
quasi-category T = Eo is the theory of algebraic operation on the family of maps
U = (Uk : k ∈ K) (by Yoneda lemma). The map G : Eo → Mod×(T ) defined
by putting G(x)(y) = hom(y, x) for every y ∈ E has a left adjoint L. We have a
commutative diagram,

E G //

U   A
AA

AA
AA

A Mod×(T )

Vzzuuuuuuuuu

UK ,

where V associates to f : Eo → U the family (f(uk) : k ∈ K). The map G is
a coreflection (ie L is fully faithful) if the maps Uk preserve directed colimits and
the colimit of ∆o-indexed diagrams by 33.31. Moreover, G is an equivalence of
quasi-categories if in addition U is conservative. Hence the quasi-category E is a
variety in this case.

33.33. A (locally small) cocomplete quasi-category X is a variety iff it is generated
by a small set of bicompact objects. More precisely, if X is a variety, then the
full sub quasi-category A = kk(X) of bicompact objects of X is closed under
finite coproducts, essentially small, and there is a canonical equivalence of quasi-
categories,

X ' Sft(A) = Mod×(Ao).

33.34. Two varieties are equivalent iff their (full) sub quasi-categories of bicompact
objects are equivalent.

33.35. A prestack g ∈ Sft(A) is bicompact iff it is atomic. More generally, if
g ∈ Sft(A), then the bicompact objects of the quasi-category Sft(A)/g are the
morphisms k → g, with k ∈ κ(A). Moreover, the equivalence P(A/g) ' P(A)/g of
25.19 induces an equivalence

Sft(A/g)→ Sft(A)/g.

33.36. From a map of simplicial sets u : A→ B, we obtain a square

A

yA

��

u // B

yB

��
Sft(A)

u! // Sft(B)

which commutes up to a canonical isomorphism. The map u! is defined to be the
left Kan extension of the map yBu : A → Sft(B) along yA. The map u! is fully
faithful iff u is fully faithful. It is an equivalence iff u is a Morita equivalence.

33.37. The category of varieties and strongly inductive maps is cartesian closed. If
X and Y are varieties, then the quasi-category of strongy inductive maps X → Y
is equivalent to the quasi-category Y kkX .
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34. Para-varieties

34.1. Recall that a category E is said to be a Grothendieck topos, but we shall say
a 1-topos, if it is a left exact reflection of a presheaf category [Co,Set]. This means
that E is equivalent to a reflective category of [Co,Set], with a reflection functor
[Co,Set]→ E which is left exact.

34.2. We call a locally presentable quasi-category X an∞-topos if it is a left exact
reflection of a quasi-category of pre-stacks P(A) for some simplicial set A. If n ≥ 0
we call a locally presentable quasi-category X a n-topos if it is a left exact reflection
of a quasi-category of n-pre-stacks P(A)(n) for some simplicial set A.

34.3. We call a locally presentable quasi-category X a para-variety if it is a left
exact reflection of a variety of homotopy algebras. We call a locally presentable
quasi-category X a para-n-variety if it is a left exact reflection of a n-variety of
homotopy algebras Prod(T )(n) for some algebraic theory T .

34.4. If X is a para-variety, then so are the slice quasi-categories a\X and X/a for
any object a ∈ X and the quasi-category XA for any simplicial set A. More gen-
erally, the quasi-category Prod(T,X) is a para-variety for any (finitary) algebraic
theory T . A similar result is true for para-n-variety,

34.5. A para-variety admits surjection-mono factorisations and the factorisations
are stable under base changes. More generally, it admits k-factorisations stable
under base changes for every k ≥ −1. A similar result is true for para-n-variety,

34.6. If X is a para-variety, then the colimit map

lim
−→
A

: XA → X

preserves finite limits (finite products) for any directed (resp. sifted) simplicial set
A. A similar result is true for para-n-variety,

35. Stabilisation

35.1. The (homotopy) colimit of an infinite sequence of maps

X0
f0 // X1

f1 // X2
f2 // · · ·

in the category LP is the (homotopy) limit in the category QCAT of the corre-
sponding sequence of right adjoints

X0 X1
g0oo X

g1oo · · · .g2oo

An object of this limit L is a pair (x, a), where x = (xn) is a sequence of objects
xn ∈ Xn and a = (an) is a sequence of equimorphisms an : xn ' gn(xn+1). The
canonical map u0 : X0 → L has no simple description, but its right adjoint L→ X is
the projection (x, a) 7→ x0. The quasi-category L can also be obtained by localising
another locally presentable quasi-category of L′ constructed as follows. An object
of L′ is pair (x, b), where x = (xn) is a sequence of objects xn ∈ Xn and b = (bn) is a
sequence of morphisms bn : fn(xn)→ xn+1. The object (x, b) can also be described
as a pair y = (x, a), where x = (xn) is a sequence of objects xn ∈ Xn and a = (an)
is a sequence of morphisms an : xn) → gn(xn+1). The obvious inclusion L ⊆ L′

has a left adjoint q : L′ → L which can be described explicitly by a colimit process
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using transfinite iteration. If y = (x, a) ∈ L′ let us put ρ(y) = ρ(x, a) = ρ(x), ρ(a)),
where ρ(x)n = gn(xn+1) and g(a)n = gn(an+1). This defines a map ρ : L′ → L′

and the sequence an : xn → gn(xn+1) defines a morphism θ(y) : y → ρ(y) in L′

which is natural in y. It is easy to see that we have θ ◦ ρ = ρ ◦ θ : ρ → ρ2. By
iterating ρ transfinitly, we obtain a cocontinuous chain

Id
θ // ρ θ // ρ2 θ // ρ3 θ // · · ·

where
ρα(y) = lim

−→
i<α

ρi(y).

for a limit ordinal α. The chain stabilises enventually and we have

q(x) = lim
−→
α

ρα(x).

If directed colimits commute with finite limits in each Xn, then the reflection q :
L′ → L is left exact.

35.2. We conjecture that the quasi-category L′ is a para-variety (resp. an∞-topos)
if each quasi-category Xn is a para-variety (resp. an ∞-topos) It follows that the
quasi-category L is a para-variety (??n ∞-topos) in this case.

35.3. Consider the category End(LP) whose objects are the pairs (X,φ), where
X ∈ LP and φ is a cocontinuous map X → X, and whose morphisms (X,φ) →
(Y, ψ) are the pairs (f, α), where f : X → Y is a map and α is an invertible 2-cell
α : fφ→ ψf in the square

X
f //

φ

��

Y

ψ

��
X

f // Y.

The category End(LP) has the structure of a 2-category, induced by that of LP.
Let Aut(LP) be the full sub-category of End(LP) whose objects are the pairs
(X,φ) with φ an equivalence. The inclusion functor Aut(LP) ⊂ End(LP) has a
(pseudo-) left adjoint

S : End(LP)→ Aut(LP)
which associates to an object (X,φ) ∈ End(LP), its stabilisation S(X,φ) = (X ′, φ′).
The quasi-category X ′ is the (homotopy) colimit in LP of the sequence of quasi-
categories

X
φ // X

φ // X
φ // · · ·

If ω : X → X is right adjoint to φ : X → X, then X ′ is the (homotopy) limit of
the sequence of quasi-categories

X X
ωoo X

ωoo · · ·ωoo

An object of X ′ is an ω-spectrum: it is a pair (x, a), where x = (xn) is a sequence
of objects of X and a = (an) is a sequence of equimorphisms an : xn ' ω(xn+1).
The map φ′ : X ′ → X ′ is obtained by putting φ′(x, a) = (σ(x), σ(a)), where
σ(x)n = xn+1 and σ(a)n = an+1. Its inverse is the map ω′ : X ′ → X ′ obtained by
putting ω′(x, a) = (ω(x), ω(a)), where ω(x)n = ω(xn) and ω(a)n = ω(an) for every
n ≥ 0. The canonical map u : X → X ′ has no simple description, but its right
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adjoint X ′ → X is the projection (x, a) 7→ x0. It follows from the conjecture in
35.1 that X ′ is a para-variety if X is a para-variety.

35.4. If X is a para-variety, then so is the quasi-category Spec(X) of spectra in
X. Let us sketch a proof. We can suppose that X is pointed. We then have
Spec(X) = S(X,Σ), where Σ : X → X is the suspension map. Let us show that
S(X,Σ) is a para-variety if X is a para-variety (hence proving conjecture 35.2 in
this case). A pre-spectrum in X is an infinite sequence of pointed objects (xn)
together with an infinite sequence of commutative squares

xn //

��

1

��
1 // xn+1,

The notion of pre-spectrum is essentially algebraic and finitary. Let us denote
by PSpec the algebraic theory of pre-spectra. The quasi-category PSpec(X) =
Mod×(PSpec,X) is a para-variety by 34.4, since X is a para-variety. But the quasi-
category Spec(X) is a left exact reflection of PreSpec(X) by 35.1, since directed
colimits commute with finite limits in X by 34.6. It is thus a para-variety.

35.5. (Joint work with Georg Biedermann) If X is a para-variety (resp. an ∞-
topos), then so is the quasi-category of parametrised spectra in X. Let us sketch
the proof. Let us denote by PSpec the cartesian theory of parametrised spectra
30.37. If X is a para-variety (resp. an ∞-topos), let us show that PSpec(X)
is a para-variety (resp. an ∞-topos). Let PPreSpec be the cartesian theory of
parametrized pre-spectra. An object of PPreSpec(X) is a pre-spectrum in X/b for
some object b ∈ X. A pointed object of X/b is an arrow p : x→ b equipped with a
section s : b→ x. A pre-spectrum in X/b is an infinite sequence of pointed objects
(xn, pn, sn) together with an infinite sequence of commutative squares

xn
pn //

pn

��

b

sn+1

��
b

sn+1 // xn+1.

Clearly, a parametrised pre-spectrum in X is a map B → X, where B is a certain
simplicial set. Hence the quasi-category PPreSpec(X) of parametrized pre-spectra
in X is of the form XB for some simplicial set B. It is thus a para-variety (resp.
an ∞-topos), since X is a para-variety (resp. an ∞-topos). But the quasi-category
PSpec(X) is a left exact reflection of PPreSpec(X) by 35.1, since directed colimits
commute with finite limits in X by 34.6. It is thus a para-variety (resp. an ∞-
topos).

35.6. Let PSpec be the cartesian theory of parametrised spectra described in 30.37.
If X is a para-variety (resp. an ∞-topos), let us show that PSpec(X) is a para-
variety (resp. an∞-topos). Let PPreSpec be the cartesian theory of parametrized
pre-spectra. An object of PPreSpec(X) is a pre-spectrum in X/b for some object
b ∈ X. A pointed object of X/b is an arrow p : x → b equipped with a section s :
b→ x. A pre-spectrum in X/b is an infinite sequence of pointed objects (xn, pn, sn)
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together with an infinite sequence of commutative squares

xn
pn //

pn

��

b

sn+1

��
b

sn+1 // xn+1.

Clearly, a parametrised pre-spectrum in X is a map B → X, where B is a certain
simplicial set. Hence the quasi-category PPreSpec(X) of parametrized pre-spectra
in X is of the form XB for some simplicial set B. It is thus a para-variety (resp.
an ∞-topos), since X is a para-variety (resp. an ∞-topos). But the quasi-category
PSpec(X) is a left exact reflection of PPreSpec(X) by 35.1, since directed colimits
commute with finite limits in X by 34.6. It is thus a para-variety (resp. an ∞-
topos).

36. Descent theory

36.1. Let X be a cartesian quasi-category. If C : ∆o → X is a category object, we
say that a functor p : E → C in Cat(X) is a left fibration if the naturality square

E1
s //

p1

��

E0

p0

��
C1

s // C0

is cartesian, where s is the source map. The notion of right fibration is defined
dually by using the target map. The two notions coincide when C is a groupoid.
We shall denote by XC the full simplicial subset of Cat(X)/C spanned by the left
fibrations E → C. If f : C → D is a functor in Cat(X), then the pullback of a
left fibration E → D along f is a left fibration f∗(E) → C. This defines the base
change map

f∗ : XD → XC .

36.2. LetX be a cartesian quasi-category. There is then a map Eq : XI → Gpd(X)
which associates to an arrow u : a→ b its equivalence groupoid Eq(u) as defined in
39.1. Let us describe the map explicitely. Let ∆+ be the category of finite ordinals,
empty or not. The category I is isomorphic to the full subcategory of ∆+ spanned
by the ordinals 0 = ∅ and 1 = [0]. If i is the inclusion I ⊂ ∆+, then the functor

i∗ : [∆o
+, X]→ [Io, X]

has a right adjoint i∗ which associates to an arrow u : a→ b an augmented simplicial
object Eq+(u). The groupoid Eq(u) is obtained by restricting Eq+(u) along the
inclusion ∆ ⊂ ∆+. If u : a → b is an arrow in X, then the base change map
u∗ : X/b→ X/a admits a lifting ũ∗ : X/b→ XEq(u),

XEq(u)

p

��
X/b

ũ∗
;;vvvvvvvvv

u∗ // X/a,
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where p is the forgeful map. We shall say that ũ∗ is the lifted base change map. It
associates to an arrow e→ b the arrow a×b e→ a

a×b e //

��

e

��
a

u // b

equipped with a natural action of the groupoid Eq(u). Let us describe ũ∗ explicitly.
The map Eq : XI → Gpd(X) takes the morphism (u, 1b) : u→ 1b of XI

a
u //

u

��

b

1b

��
b

1b // b

to a functor q : Eq(u)→ Eq(1b) = Sk0(b). We thus obtain a base change map

q∗ : XSk0(b) → XEq(u)

by 36.1. But the quasi-category XSk0(b) is equivalent to the quasi-category X/b.
The map ũ∗ is obtained by composing this equivalence with q∗. An arrow u : a→ b
is said to be a descent morphism if the lifted base change map ũ∗ is an equivalence
of quasi-categories.

36.3. If u : 1 → b is a pointed object in a cartesian quasi-category X, then the
groupoid Eq(u) is the loop group Ωu(b) defined in 39.1. In this case, the lifted base
change map

ũ∗ : X/b→ XΩu(b)

associates to an arrow e→ b its fiber e(u) = u∗(e) equipped with the natural action
(say on the right) of the group Ωu(b).

36.4. Every surjection in U is a descent morphism. This is true more generally for
any surjection in a para-variety.

36.5. Let X be a cartesian quasi-category. If A is a simplicial set, then the pro-
jection XA?1 → X defined from the inclusion 1 ⊆ A? 1 is a Grothendieck fibration.
The base change of a cone c : A ? 1 → X along an arrow u : e → c(1) is a cone
u∗(c) : A ? 1→ X with u∗(c)(1) = e. By construction, we have

u∗(c)(a) = e×c(1) c(a)

for every a ∈ A. We say that the cone c is stably coexact if the cone u∗(c) is coexact
for any arrow u : e → c(1). In this case, the colimit c(1) of the diagram c | A is
said to be stable under base change

36.6. Let X be a cartesian quasi-category and A be a simplicial set. We say that
a natural transformation α : f → g : A→ X is cartesian if the naturality square

f(a)
f(u) //

��

f(b)

��
g(a)

g(u) // g(b)
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is cartesian for every arrow u : a → b in A. This notion only depends on the
homotopy class of α in the simplicial set XA(f, g). It is thus a property of the
2-cell [α] : f → g. The set of cartesian natural transformations is invariant under
equimorphism in XA. Moreover, it is closed under composition, base changes and
it has the left cancellation property. We call a cartesian natural transformation
α : f → g a gluing datum over g : A → X. We shall denote by Glue(g) the full
simplicial subset of XA/g spanned by the gluing data over g. When the category
τ1A is a groupoid, every natural transformation α : f → g : A → X is cartesian.
Thus, Glue(g) = XA/g in this case.

36.7. A functor f : C → D in Cat(X) is a natural transformation f : C → D :
∆o → X. The natural transformation is cartesian iff it is both a left and a right
fibration.

36.8. Let X be a cartesian quasi-category. If u : A → B is a map of simplicial
sets, then the map Xu : XB → XA takes a cartesian natural transformation to a
cartesian natural transformation. It thus induces a map

u∗ : Glue(g)→ Glue(gu)

for any diagram g : B → X. We call u∗ the restriction along u. The map u∗ is an
equivalence of quasi-categories when u is final. In particular, it is an equivalence
if u is a weak categorical equivalence. In particualr, if c : A ? 1 → X, then the
restriction map

Glue(c)→ X/c(1)
is an equivalence of quasi-categories, since the inclusion 1 ⊆ A ? 1 is final. By
composing the inverse equivalence with the restriction

i∗ : Glue(c)→ Glue(ci)

along the inclusion i : A ⊆ A ? 1 we obtain a map

X/c(1)→ Glue(ci)

called the spread map. We say that a diagram d : A→ X is a descent diagram if it
has a colimit b and the spread map

σ : X/b→ Glue(d)

is an equivalence of quasi-categories. In which case, the inverse of σ associates to a
cartesian morphism f → g its colimit

lim
−→
a∈A

f(a)→ lim
−→
a∈A

g(a) = b.

The colimit of an descent diagram is stable under base change.

36.9. Every diagram in U is a descent diagram (and every colimit is stable under
base change). Let us sketch a proof using the correspondance f 7→ El(f) of 16.8.
If B is a simplicial set, let us denote by K(B) the full sub-category of S/B whose
objects are the Kan fibrations X → B. The category K(B) is enriched over Kan
complexes. Moreover, if i : A→ B is a weak homotopy equivalence, then the map
i∗ : K(B) → K(A) is a Dwyer-Kan equivalence. If g : A → U is a diagram, let us
put G = El(g) and let us choose a weak homotopy equivalence i : G ⊆ Y with Y a
Kan complex. Then the object Y ∈ U is the colimit of g. A natural transformation
α : f → g : A → U is cartesian iff the map El(α) : El(f) → El(g) = G is a
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homotopy covering in the sense of 11.22. It follows that the quasi-category Glue(g)
is equivalent to the coherent nerve of the simplicial category K(G). Moreover, the
spread map U/Y → Glue(g) is induced by the functor i∗ : K(Y ) → K(G). It is
thus an equivalence of quasi-categories, since i is a weak homotopy equivalence.

36.10. Let X ⊆ Y be a left exact reflection of a cartesian quasi-category Y . Then
a diagram g : A→ X which is a descent diagram in Y is also a descent diagram in
X. Let us sketch a proof. Let i be the inclusion X ⊆ Y . The composite ig : A→ Y
is a descent diagram by assumption. If b is the colimit of the ig, then r(b) is the
colimit of g in X. Consider the diagram

X/r(b)

i0

��

σ′ // Glue(g)

i1

��
Y/r(b)

p∗ // Y/b
σ // Glue(ig),

where i0 and i1 are induced by i : X ⊆ Y , where σ and σ′ are the spread maps, and
where p∗ is base change along the canonical arrow p : b→ r(b). It is easy to see that
the diagram commutes up to a canonical isomorphism. The map q : Y/b→ X/r(b)
induced by r is left adjoint to the composite p∗i0 : X/r(b) → Y/r(b) → Y/b.
Moreover, the counit of the adjunction q ` p∗i0 is invertible by the left exactness of
r. Thus. p∗i0 is fully faithful. It follows that i1σ′ = σp∗i0 is fully faithful, since σ
is an equivalence by assumption. Thus, σ′ is fully faithful, since i1 is fully faithful.
It remains to show that σ′ is essentially surjective. Let α : f → g be an object of
Glue(g) and u : a→ b be the colimit of α in Y . Then the canonical square

f(a)

α(a)

��

// a

u

��
g(a) // b

is a pullback for every a ∈ A, since g is a descent diagram in Y . Hence the square

f(a)

α(a)

��

// r(a)

r(u)

��
g(a) // r(b),

is also a pullback in X, since r is left exact. This proves that σ′ is essentially
surjective.

36.11. Every diagram in an ∞-topos is a descent diagram (and every colimit is
stable under base changes).

36.12. Let Y be a cartesian quasi-category, X ⊆ Y be a full reflective sub quasi-
category and A be a simplicial set. Suppose that X admits A-indexed colimits
and that these colimits are preserved by the inclusion i : X ⊆ Y . Then a diagram
g : A → X which is a descent diagram in Y , is a descent diagram in X. Let us
sketch a proof. If b is the colimit of g in X, then i(b) is the colimit of ig in Y , since
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i preserves A-indexed colimits. Consider the square

X/b

i0

��

// Glue(g)

i1

��
Y/i(b) // Glue(ig),

where the maps i0 and i1 are induced by i and where the horizontal maps are
the spread maps. The square commutes up to a canonical isomorphism, since
i preserves finite limits. The maps i0 and i1 are fully faithful, since i is fully
faithful. The bottom spread map is an equivalence, since ig is a descent diagram
by assumption. It follows that the top spread map is fully faithful. Hence it suffices
to show that it is essentially surjective. Let α : f → g be an object of Glue(g).
If a is the colimit of f in X, then i(a) is the colimit of if in Y , since i preserves
A-indexed colimits by assumption. The colimit of α is an arrow u : a → b. The
image by the bottom spread map of the object i(u) of Y/i(b) is quasi-isomorphic to
the object i(α) : if → ig of Glue(ig), since ig is a descent diagram by assumption.
Hence the image of u by the top spread map is quasi-isomorphic to the object
α : f → g of Glue(g), since i1 is fully faithful and the square commutes up to a
natural isomorphism.

36.13. Every sifted diagram in a para-variety is a descent diagram (and every sifted
colimit is stable under base changes). In particular, every groupoid is a descent
diagram. Let us sketch a proof. We first consider the case of a sifted diagram
g : A → Y with values in an ω-variety Y . The quasi-category Y is equivalent
to a quasi-category Mod(T ) for some algebraic theory T by 33.9. The inclusion
i : Mod(T ) ⊆ UT is reflective and it preserves sifted colimits by 33.14. The diagram
ig : A → UT is a descent diagram by 36.11. Hence also g by 36.12. We can now
consider the case of a sifted diagram g : A→ X with values in a pseudo-ω-variety
X. The quasi-category X is a left exact reflection of an ω-variety Y . If i is the
inclusion X ⊆ Y , then the composite ig : A → Y is descent diagram in Y by the
first part of the proof. It then follows from 36.10 that g is a descent diagram.

37. Exact quasi-categories

37.1. LetX be a cartesian quasi-category. There is then a map Eq : XI → Gpd(X)
which associates to an arrow u : a→ b its equivalence groupoid Eq(u). If a groupoid
C : ∆o → X has a colimit BC and p : C0 → BC is the canonical morphism, then
there is a canonical functor C → Eq(p). We say that a groupoid C is effective if it
has a colimit p : C0 → BC and the canonical functor C → Eq(p) is invertible.

37.2. LetX be a cartesian quasi-category. Recall from 36.2 that an arrow u : a→ b
in X is said to be a descent morphism if the lifted base change map

ũ∗ : X/b→ XEq(u)

is an equivalence of quasi-categories.

37.3. Recall that a cartesian quasi-category X is said to be regular if it admits
surjection-mono factorisations stable under base changes. Recall that a regular
category C is said to be exact, but we shall say 1-exact, if every equivalence rela-
tion is effective. It follows from this condition that every surjection is a descent
morphism.
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37.4. We say that a regular quasi-category X is exact if it satisfies the following
two conditions:

• Every surjection is a descent morphism;
• Every groupoid is effective.

37.5. The quasi-category U is exact. If a quasi-category X is exact, then so are
the quasi-categories b\X and X/b for any vertex b ∈ X, the quasi-category XA for
any simplicial set A and the quasi-category Prod(T,X) for any algebraic theory
T . A variety of homotopy algebras is exact. A left exact reflection of an exact
quasi-category is exact. A para-variety is exact.

37.6. We say that a map X → Y between regular quasi-categories is exact if it is
left exact and preserves surjections.

37.7. Let u : a → b be an arrow in an exact quasi-category X. Then the base
change map u∗ : X/b→ X/a is exact. Moreover, u∗ is conservative if u is surjective.

37.8. An exact quasi-category X admits n-factorisations for every n ≥ 0. An
object a is connected iff the arrows a→ 1 and a→ a× a are surjective. An arrow
a→ b is 0-connected iff it is surjective and the diagonal a→ a×b a is surjective. If
n > 0, an arrow a→ b is n-connected iff it is surjective and the diagonal a→ a×b a
is (n − 1)-connected. If a → e → b is the n-factorisation of an arrow a → b, then
a→ a×e a→ a×b a is the (n− 1)-factorisation of the arrow a→ a×b a. An exact
map f : X → Y between exact quasi-categories preserves the n-factorisations for
every n ≥ 0.

37.9. Let u : a→ b be a surjection in an exact quasi-category X. Then the lifted
base change map

ũ∗ : X/b→ XEq(u)

of 36.2 is an equivalence of quasi-categories. A pointed object u : 1→ b is connected
iff the map u is surjective. In this case the map

u∗ : X/b→ XΩu(b)

defined in 36.3 is an equivalence of quasi-categories.

37.10. Let X be a cartesian quasi-category. We shall say that a functor f : C → D
in Cat(X) is fully faithful if the square

C1
f1 //

(s,t)

��

D1

(s,t)

��
C0 × C0

f0×f0 // D0 ×D0

is cartesian. For example, if u : a→ b is an arrow in X, then the canonical functor
Eq(u)→ b is a fully faithful, where b denotes the category Sk0(b).
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37.11. Let X be a regular quasi-category. We say that a functor f : C → D in
Gpd(X) is essentially surjective if the morphism tp1 in the square

D1 ×D0 C0
p2 //

p1

��

tp1

yytttttttttt
C0

f0

��
D0 D1t
oo s // D0

is surjective. Let J : Cat(X) → Gpd(X) be the right adjoint to the inclusion
Gpd(X) ⊆ Cat(X). We say that a functor f : C → D in Cat(X) is essentially
surjective if the functor J(f) : J(C) → J(D) is essentially surjective. We say that
f is a weak equivalence if it is fully faithful and essentially surjective. For example,
if u : a → b is a surjection in X, then the canonical functor Eq(u) → b is a weak
equivalence.

37.12. Let X be a cartesian quasi-category. We say that a functor f : C → D in
Cat(X) is a Morita equivalence if the induced map f∗ : XD → XC defined in 36.1
is an equivalence of quasi-categories. If X is an exact quasi-category, then every
weak equivalence f : C → D is a Morita equivalence, and the converse is true if C
and D are groupoids.

37.13. Let X be an exact quasi-category. Then the map Eq : XI → Gpd(X) which
associates to an arrow u : a → b its equivalence groupoid Eq(u) has left adjoint
B : Gpd(X) → XI which associates to a groupoid C its ”quotient” or ”classifying
space” BC equipped with the canonical map C0 → BC. Let us denote by Surj(X)
the full simplicial subset of XI spanned by the surjections. The map B is fully
faithful and its essential image is equal to Surj(X). Hence the adjoint pair B ` Eq
induces an equivalence of quasi-categories

B : Gpd(X)↔ Surj(X) : Eq.

37.14. The canonical map Ob : Gpd(X) → X is a Grothendieck fibration; we
denote its fiber at a ∈ X by Gpd(X, a). An object of the quasi-category Gpd(X, a)
is a groupoid C ∈ Gpd(X) with C0 = a. The source map s : XI → X is a
Grothendieck fibration; its fiber at a ∈ X is the quasi-category a\\X, which is
equivalent to the quasi-category a\X. The adjoint pair B : Gpd(X) ↔ XI : Eq
induces an adjoint pair

B : Gpd(X, a)↔ a\X : Eq
for each object a ∈ A. Let us denote by Surj(a,X) the full simplicial subset of
a\X spanned by the surjection a → x. Then the equivalence above induces an
equivalence

B : Gpd(X, a)↔ Surj(a,X) : Eq.
A groupoid in Gpd(X, 1) is a group object in X. Hence the adjoint pair above
induces an adjoint pair

B : Grp(X)↔ 1\X : Ω,
where Ω associates to pointed objec 1 → b its ”loop group” Ω(b). An object of
Surj(1, X) is a ”pointed connected” object of X. The adjoint pair above induces
an equivalence of quasi-categories

B : Grp(X)↔ Surj(1, X) : Ω.
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37.15. Let X be an exact quasi-category. If we iterate the adjoint pair B :
Gpd(X)↔ XI : Eq we obtain an adjoint pair

Bn : Gpdn(X)↔ XIn

: Eqn

for each n ≥ 1, where Gpdn(X) is the quasi-category of n-fold groupoids in X.
Let us denote by Surjn(X) the full simplicial subset of XIn

spanned by the cubes
of surjections In → X. The map Bn is fully faithful and its essential image is
equal to Surjn(X). Hence the adjoint pair B ` Eq induces an equivalence of
quasi-categories

Bn : Gpdn(X)↔ Surjn(X) : Eqn.

37.16. LetX be a pointed exact quasi-category. Then an object x ∈ X is connected
iff the morphism 0→ x is surjective. More generally, an object x ∈ X is n-connected
iff the morphism 0→ x is (n− 1)-connected. If CO(X) denotes the quasi-category
of connected objects in X, then we have an equivalence of quasi-categories

B : Grp(X)↔ CO(X) : Ω

by 37.14. Hence the quasi-category CO(X) is exact, since the quasi-category
Grp(X) is exact. A morphism in CO(X) is n-connected iff it is (n+ 1) connected
in X. Similarly, a morphism in CO(X) is a n-cover iff it is a (n + 1) cover in X.
Let us put COn+1(X) = CO(COn(X)) for every n ≥ 1. This defines a decreasing
chain

X ⊇ CO(X) ⊇ CO2(X) ⊇ · · · .
An object x ∈ X belongs to COn(X) iff x is (n − 1)-connected. Let Grpn(X) be
the quasi-category of n-fold groups in X. By iterating the equivalence above we
obtain an equivalence

Bn : Grpn(X)↔ COn(X) : Ωn

for every n ≥ 0.

37.17. Let X be a cartesian quasi-category. We say that a groupoid C : ∆o → X
is n-truncated if the morphism C1 → C0 × C0 is a (n− 1)-cover. An object b ∈ X
is a n-object iff the groupoid Sk0(b) is a n-truncated.

37.18. Recall that a cartesian quasi-category X is n-truncated iff every object in
X is a (n− 1) object.

37.19. If n ≥ 1, we say that a n-truncated regular quasi-category X is n-exact if
it satisfies the following two conditions:

• Every surjection is a descent morphism;
• Every (n− 1)-truncated groupoid is effective.

37.20. The quasi-category U(n) is n-exact. If a quasi-category X is exact, then
the quasi-category X(n) of (n − 1)-objects in X is n-exact. If a quasi-category X
is n-exact, then so are the quasi-categories b\X and X/b for any vertex b ∈ X, and
the quasi-category Prod(T,X) for any algebraic theory T . A n-variety of homotopy
algebras is n-exact. A left exact reflection of a n-exact quasi-category is n-exact.
A para-n-variety is n-exact.
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37.21. If X is an exact quasi-category, we denote by X(n) the full simplicial subset
of X spanned by the (n − 1)-objects of X. The quasi-category X(n) is n-exact.
The inclusion X(n) ⊆ X has a left adjoint

π(n−1) : X → X(n)

which preserves finite products. We call an arrow f : a → b in X a n-equivalence
if the arrow π(n)(f) : π(n)(a) → π(n)(b) is invertible. Every n-connected arrow
is a n-equivalence and every n-equivalence is (n − 1)-connected. If f : a → b is
an arrow in X, then the map f∗(n) : (X/b)(n) → (X/a)(n) induced by the map
f∗ : X/b→ X/a has a left adjoint f!(n). Moreover, the adjoint pair

f!(n) : (X/a)(n)↔ (X/b)(n) : f∗(n)

is an equivalence of quasi-categories when f is a n-equivalence. It follows that the
quasi-category (X/b)(n) is equivalent to the quasi-category (X/π(n)(b))(n) for every
object b ∈ X. If n = 0, this means that the poset of subobjects of b is isomorphic
to the poset of subobjects of π0(b) = π(0)(b). If n = 1, this means that the (quasi-)
category of 0-objects in X/b is equivalent to category of 0-objects in X/π(1)(b).

37.22. We say that an exact quasi-category X is n-generated if for every object
b ∈ X there exists a surjection a → b whith a a n-object. The quasi-category U
is 0-generated. The quasi-category UA is n-generated for any (n + 1)-truncated
quasi-category A. More generally, the quasi-category Mod(T ) is n-generated for
any (n+ 1)-truncated algebraic theory T .

37.23. Let X be an exact quasi-category. We say that an arrow in X is ∞-
connected if it is n-connected for every n ≥ 0. An arrow f ∈ X is ∞-connected
iff it is a n-equivalence for every n ≥ 0. We say that X is t-complete if every
∞-connected arrow is invertible.

37.24. The exact quasi-category U is t-complete. If an exact quasi-category X is
t-complete, then so are the quasi-categories b\X and X/b for any vertex b ∈ X,
and the quasi-category Mod(T,X) for any algebraic theory T .

37.25. Let X be a t-complete exact quasi-categories. If Y is an exact quasi-
category, then an exact map X → Y is conservative iff the induced map X(1) →
Y (1) is conservative. Every t-complete exact quasi-category X admits a conserva-
tive exact map X → U.

37.26. Let Ex be the category of exact categories and exact maps. The category
Ex has the structure of a 2-category induced by the 2-category structure of the
category of simplicial sets. If TEx is the full sub-quasi-category of Ex spanned
by the t-complete exact quasi-categories, then the inclusion TEx ⊂ Ex has a left
adjoint which associates to an exact quasi-category X its t-completion tX. The
quasi-category tX can be constructed as a localisation L(X,Σ), where Σ is the set
of ∞-connected arrows in X.
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37.27. Let X be an exact quasi-category. If RCat(X) is the quasi-category of
reduced categories in X, then the inclusion RCat(X) ⊆ Cat(X) has a left adjoint

R : Cat(X)→ RCat(X)

which associates to a category C ∈ Cat(X) its reduction R(C). When C is a
groupoid, we have R(C) = B(C). In general, we have a a pushout square in
Cat(X),

J(C) //

��

C

��
B(J(C)) // R(C),

where J(C) is the groupoid of isomorphisms of a category C. The simplicial object
R(C) can be constructed by putting (RC)n = B(J(C [n])) for every n ≥ 0, where
C [n] is the (internal) category of functor [n] → C. The canonical map C → R(C)
is an equivalence of categories, hence it is also a Morita equivalence. A functor
f : C → D in Cat(X) is an equivalence iff the functor R(f) : R(C) → R(D) is
a isomorphism in RCat(X). If W ⊆ Cat(X) is the set of equivalences, then the
induced map

L(Cat(X),W )→ RCat(X)

is an equivalence of quasi-categories.

37.28. LetX be an exact pointed quasi-category. The quasi-category of n-connected
2n-objects in X is equivalent to the quasi-category of (n−1)-objects in COn+1(X),
which is equivalent to the quasi-category of (n−1)-objects in Grpn+1(X). In other
words, the quasi-category of n-connected 2n-objects in X is equivalent to the quasi-
category

Mod(OB(n− 1), Grpn+1(X)) = Mod(OB(n− 1)�c Grpn+1, X).

The suspension theorem of Freudenthal implies that the cartesian theory OB(n−
1)�cGrpn+1 is additive by 40.30. It follows that a n-connected 2n-object in X has
the structure of an infinite loop space.

37.29. Let X be an exact quasi-category. If G is a group object in X, we say
that an object E ∈ XG with group action a : G × E → E is a G-torsor if the
map E → 1 is surjective and the map (p1, a) : G × E → E × E is invertible. If
n > 0, every n-connected 2n-object a ∈ X is a torsor over an infinite loop space
J(a), called the Jacobian of a. Let us sketch the construction of J(a). The object
a′ = a∗(a) = a× a ∈ X/a is pointed by the diagonal a→ a× a. It is a n-connected
2n-object. Hence it has the structure of an infinite loop space J(a′) by 37.28. The
map a → 1 is surjective, since a is n-connected. It is thus a descent morphism.
The infinite loop space J(a′) is equipped with a descent datum, since the structure
is canonical. Descent theory implies that there is an infinite loop space J(a) such
that a∗J(a) = J(a′). From the action of J(a′) on a′ (= J(a′)) we obtain an action
of J(a) on a. The object a is a torsor over J(a), since the object a′ is a torsor over
J(a′).
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37.30. Let X be an exact quasi-category. An Eilenberg-MacLane n-space is defined
to be a pointed n-object a ∈ A which is (n − 1)-connected. The equivalence B :
Grp(X)↔ Surj(1, X) : Ω of 37.14 induces an equivalence

K(−, 1) : Grp(X)(1)↔ EM1 : Ω

between the category of discrete group objects in X and the quasi-category of
Eilenberg-MacLane 1-spaces. If n > 1, every Eilenberg-MacLane n-spaces has the
structure of an infinite loop space. The equivalence Bn : Grpn(X)↔ COn(1\X) :
Ωn of 37.16 induces an equivalence

K(−, n) : Ab(X)(1)↔ EMn : Ωn

between the category of abelian discrete group objects in X and the quasi-category
of Eilenberg-MacLane n-spaces. An Eilenberg-MacLane n-gerbe is defined to be a
n-object which is (n − 1)-connected. If n > 1, every Eilenberg-MacLane n-gerbe
a ∈ A is naturally a torsor over its Jacobian J(a) which is an Eilenberg-MacLane
n-space.

38. Meta-stable quasi-categories

38.1. We say that an exact quasi-category X is meta-stable if every object in X
is ∞-connected. A cartesian quasi-category X is meta-stable iff if it satisfies the
following two conditions:

• Every morphism is a descent morphism;
• Every groupoid is effective.

38.2. The sub-quasi-category of ∞-connected objects in an exact quasi-category
is meta-stable. We shall see in 31.30 that the quasi-category of spectra is meta-
stable. In a meta-stable quasi-category, every monomorphism is invertible and
every morphism is surjective.

38.3. If a quasi-category X is meta-stable then so are the quasi-categories b\X
and X/b for any vertex b ∈ X, the quasi-category XA for any simplicial set A, and
the quasi-category Prod(T,X) for any algebraic theory T . A left exact reflection
of a meta-stable quasi-category is meta-stable.

38.4. Let u : a→ b be an arrow in a meta-stable quasi-category X. Then the lifted
base change map

ũ∗ : X/b→ XEq(u)

of 36.2 is an equivalence of quasi-categories. In particular, if u : 1→ b is a pointed
object, then the map

ũ∗ : X/b→ XΩu(b)

defined in 36.3 is an equivalence of quasi-categories.

38.5. Let X be a meta-stable quasi-category. Then the map Eq : XI → Gpd(X)
which associates to an arrow u : a→ b the equivalence groupoid Eq(u) is invertible.
We thus have an equivalence of quasi-categories

B : Gpd(X)↔ XI : Eq.

The equivalence can be iterated as in 37.15. It yields an equivalence of quasi-
categories

Bn : Gpdn(X)↔ XIn

: Eqn
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for each n ≥ 1.

38.6. Let X be a meta-stable quasi-category. Then the equivalence

B : Gpd(X)↔ XI : Eq.

induces an equivalence
B : Gpd(X, a)↔ a\X : Eq

for each object a ∈ A, where Gpd(X, a) is the quasi-category of groupoids C ∈
Gpd(X) with C0 = a. In particular, it induces an equivalence

B : Grp(X)↔ 1\X : Ω,

where Grp(X) is the quasi-category of groups in X. By iterating, we obtain an
equivalence

Bn : Grpn(X)↔ 1\X : Ωn,
for each n ≥ 1.

38.7. Let Ex be the category of exact categories and exact maps. If MEx is the
full sub-quasi-category of Ex spanned by the meta stable quasi-categories, then the
inclusion MEx ⊂ Ex has a right adjoint which associates to an exact quasi-category
X its full sub-quasi-category of meta-stable objects.

39. Fiber sequences

39.1. Let Grp be the theory of groups and Point = OB′c be the cartesian theory
of a pointed object. Consider the interpretation u : Grp → Point defined by the
loop group of the generic pointed object. The map

u! : Mod(Grp)→Mod(Point) = Mod×(OB′) = 1\U
takes a group G to its classifying space BG. It induces an equivalence between
Mod(Grp) and the full sub-quasicategory of pointed connected objects in 1\U. It
is thus fully faithful. Hence the morphism of theories u : Grp → Point is fully
faithful. More generally, let Gpd be the cartesian theory of groupoids and Mapc be
the cartesian theory of maps. Consider the interpretation v : Gpd→Mapc defined
by the equivalence groupoid of the generic map. Then the map

v! : Mod(Gpd)→Mod(Mapc) = Mod×(Map) = UI

takes a groupoid C to its classifying space BC equipped with the map C0 → BC.
It induces an equivalence between Mod(Gpd) and the full sub-quasicategory of UI

spanned by the surjections It is thus fully faithful. Hence the morphism of cartesian
theories v : Gpd→Mapc is fully faithful.

39.2. Recall that a null object in a quasi-category X is an object 0 ∈ X which is
both initial and final. The homotopy category of a quasi-category with nul object
is pointed. In a quasi-category with nul object X we say that sequence of two
arrows a→ b→ c is null if its composite is null in hoX. A fiber sequence is a null
sequence a→ b→ c fitting in a cartesian square

a //

��

b

��
0 // c.

The notion of cofiber sequence is defined dually.
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39.3. Let X be a cartesian quasi-category. Recall from 39.1 that the equivalence
groupoid of a pointed object u : 1→ b is the loop group Ωu(b). Consider the map

u∗ : X/b→ XΩu(b)

which associates to an arrow p : e→ b its fiber u∗(e) equipped with a natural action
(say on the right) of the group Ωu(b). In the special case where p = u : 1→ b, this
gives the natural right action of Ωu(b) on itself. If l : e′ → e is an arrow in X/b,
then the arrow u∗(l) : u∗(e′) → u∗(e) respects the right action by Ωu(b). Suppose
that we have a base point v : 1→ e over the base point u : 1→ b. Then the arrow
∂ = u∗(v) : Ωu(b) → e(u) respects the right action by Ωu(b). The top square of
the following commutative diagram is cartesian, since the bottom square and the
boundary rectangle are cartesians,

Ωu(b)

∂

��

// 1

v

��
u∗(e)

��

i // e

p

��
1

u // b.

Hence the arrow ∂ : Ωu(b) → e(u) is the fiber at v of the arrow u∗(e) → e. The
base point v : 1→ e lifts naturally as a base point w : 1→ u∗(e). Let us show that
the arrow Ω(p) : Ωv(e)→ Ωu(b) is the fiber at w of the arrow ∂. For this, it suffices
to show that we have a cartesian square

Ωv(e)

��

Ω(p) // Ωu(b)

∂

��
1

w // u∗(e)

By working in the quasi-category Y = X/b, we can suppose that b = 1, since the
canonical map X/b→ X preserves pullbacks. For clarity, we shall use a magnifying
glass by denoting the objects of Y = X/b by capital letters. The base point u : 1→ b
defines an object T ∈ Y and the arrow p : e→ b an object E ∈ Y . The base point
v : 1→ e defines a morphism v : T → E. Observe that the image of the projection
p2 : T ×E → E by the canonical map Y → X is the arrow i : u∗(u)→ e. Similarly,
the image of the canonical morphism j : T ×E T → T × T by the map Y → X
is the arrow Ω(p) : Ω(e) → Ω(b). The square in the NE corner of the following
commutative diagram is cartesian,

T ×E T
j //

p1

��

T × T
p2 //

T×v
��

T

v

��
T

(1T ,v) // T × E
p2 //

p1

��

E

��
T // 1.
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It follows that the square in the NW corner is cartesian, since the composite of the
top squares is cartesian. This shows that the square above is cartesian and hence
that the arrow Ω(p) : Ωv(e) → Ωu(b) is the fiber at w of the arrow ∂. We thus
obtain a fiber sequence

Ω(e)
Ω(p) // Ω(b) ∂ // f

i // e
p // b .

By iterating, the sequence can be extended to a long fiber sequence

· · · // Ω2(e) ∂ // Ω(f)
Ω(i) // Ω(e)

Ω(p) // Ω(b) ∂ // f
i // e

p // b .

39.4. The considerations above can be dualised. Let X be a pointed cocartesian
quasi-category with nul object 0 ∈ X. The cofiber of an arrow u : x → y is the
arrow v : x→ y defined by a pushout square

x

u

��

// 0

��
y v // z.

The suspension Σ(x) is the cofiber of the nul arrow x → 0. It follows from the
duality that Σ(x) has the structure of a cogroup object in X. We obtain the Puppe
cofiber sequence

x
u // y v // z ∂ // Σ(x)

Σ(u) // Σ(y)
Σ(v) // Σ(z) ∂ // Σ2(z) // · · · .

40. Additive quasi-categories

40.1. A category with finite products is pointed iff its terminal object is initial.
Recall that the product of two objects x × y in a pointed category C is called a
direct sum x⊕ y if the pair of arrows

x
(1x,0) // x× y y

(0,1y)oo

is a coproduct diagram. A pointed category C is said to be semi-additive if has
finite products and the product x × y of two objects of C is a direct sum x ⊕ y.
In a semi-additive category, the coproduct x of a family of objects (xi : i ∈ I) is
denoted as a direct sum

x =
⊕
i∈I

xi.

The opposite of a semi-additive category is semi-additive. The set of arrows between
two object of a semi-additive category has the structure of a commutative monoid.
A semi-additive category C is said to be additive if the monoid C(x, y) is a group
for any pair of objects x, y ∈ C.

40.2. A quasi-category with finite products is pointed iff its terminal object is
initial. We shall say that the product x × y of two objects in a pointed quasi-
category is a direct sum x⊕ y if the pair of arrows

x
(1x,0) // x× y y

(0,1y)oo

is a coproduct diagram. A pointed quasi-category with finite products X is said to
be semi-additive if the product x× y of any two objects is a direct sum x⊕ y. In a



154 ANDRÉ JOYAL

semi-additive quasi-category, the coproduct x of a family of objects (xi : i ∈ I) is
denoted as a direct sum

x =
⊕
i∈I

xi.

The opposite of a semi-additive quasi-category X is semi-additive. The homotopy
category of a semi-additive quasi-category is semi-addditive. A semi-additive quasi-
category X is said to be additive if the category hoX is additive. The opposite of
an additive quasi-category is additive.

40.3. If a quasi-category X is semi-additive (resp. additive), then so is the quasi-
category XA for any simplicial set A and the quasi-category Mod×(T,X) for any
algebraic theory T .

40.4. An additive quasi-category T is unisorted iff it is equipped with an essentially
surjective morphism Add → T . A unisorted additive quasi-category is essentially
the same thing as a ring space.

40.5. Recall that the fiber a→ x of an arrow x→ y in a quasi-category with null
object 0 is defined by a pullback square

a //

��

x

��
0 // y.

The cofiber of an arrow is defined dually. An additive quasi-category is cartesian iff
every arrow has a fiber. An additive quasi-category is finitely bicomplete iff every
arrow has a fiber and a cofiber.

40.6. Let X be an additive quasi-category. To a commutative square in X

a

u

��

v // c

f

��
b

g // d

corresponds a null sequence

a
(u,v)// b⊕ c

(−g,f) // d.

The square is a pullback iff the sequence is a fiber sequence. The square is a pushout
iff the sequence is a cofiber sequence.

40.7. Let X be a cartesian additive quasi-category. Then to each arrow f : x→ y
in X we can associate by 39.3 a long fiber sequence,

· · · // Ω2(y) ∂ // Ω(z)
Ω(i) // Ω(x)

Ω(f) // Ω(y) ∂ // z i // x
f // y .

where i : z → x is the fiber of f .

40.8. A map f : X → Y between semi-additive quasi-categories preserves finite
products iff it preserves finite coproducts iff it preserves finite direct sums. Such
a map is said to be additive. The canonical map X → hoX is additive for any
semi-additive quasi-category X.
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40.9. A map between cocomplete additive quasi-categories is cocontinuous iff it
preserves direct sums and cofibers. An additive map between cartesian additive
quasi-categories is left exact iff it preserves fibers.

40.10. The Karoubi envelope of a semi-additive (resp. additive) quasi-category is
semi-additive (resp. additive). If an additive quasi-categoryX is Karoubi complete,
then every idempotent e : x → x has a fiber Ker(e) and we have a decomposition
x ' Ker(e)⊕ Im(e), where x→ Im(e)→ x is a splitting of e.

40.11. Let X be a Karoubi complete additive quasi-category. If C : ∆o → X
is a simplicial object, then the morphism C(dn) : Cn+1 → Cn is splitted by the
morphism C(sn) : Cn → Cn+1 for every n ≥ 0. We thus obtain a decomposition

δCn ⊕ Cn ' Cn+1,

where δCn → Cn+1 is the fiber of C(dn) : Cn+1 → Cn. This defines a simplicial
object δC : ∆o → X called the first difference of C. The simplicial object δC
is augmented, with the augmentation ∂C : δC0 → C0 obtained by composing the
canonical morphism δC0 → C1 with the morphism C(d0) : C1 → C0. This defines
an augmented simplicial object δ+C = (δC, ∂C). The resulting map

δ+ : [∆o, X]→ [∆o
+, X]

is an equivalence of quasi-categories. The inverse equivalence associates to an aug-
mented simplicial object D : ∆o

+ → X the simplicial object ΣD obtained by putting

(ΣD)n =
n⊕
i=0

D(i)

for every n ≥ 0. Let us describe the simplicial object ΣD more explicitly. Let
σ : ∆+ → ∆ be the functor defined by putting σ(n) = n + 1 = [n]. Then the left
Kan extension of D along σ is computed by the following formula:

σ!(D)n =
n+1⊕
i=0

D(i).

If u denotes the inclusion ∆ ⊂ ∆+, then we have u∗(D)n = D(n+1). Let us describe
a morphism αD : u∗(D)→ σ!(D) whose cofiber is a morphism σ!(D)→ ΣD. From
the obvious natural transformation Id → σu, we obtain a natural transformation
β : Id→ σ!u!. If ε : u!u

∗ → Id is the counit of the adjunction u! ` u∗, then we can
take

αD = σ!(εD)βu∗(D) : u∗(D)→ σ!u!u
∗(D)→ σ!(D).

40.12. The first difference C 7→ δC can be iterated. Let Ch be the pointed category
whose objects are the natural numbers and whose arrows are given by

Ch(m,n) =

 {∂, 0} if m = n+ 1
{id, 0} if m = n.
{0} otherwise

The only relation is ∂∂ = 0. If X is an additive quasi-category, a chain complex in
X is defined to be a map Ch→ X which send a null arrow to a nul arrow. We shall
denote by Ch(X) the full simplicial subset of XCh spanned by the chain complexes
in X. The quasi-category Ch(X) is additive. If C : ∆o → X, then the simplicial
object δ(C) is equipped with an augmentation map ∂ : δC0 → C0. The second
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difference δ2C = δ(δ(C)) is equipped with an augmentation ∂ : δ2C0 → δC0 and
we have ∂∂ = 0. By iterating, we obtain a chain complex

C0 δC0
∂oo δ2C0

∂oo · · ·∂oo

It follows from the construction that δnC0 is the fiber of the map

(∂1, . . . , ∂n) : Cn →
n⊕
i=1

Cn−1

for every n > 0. The map

ch : [∆o, X]→ Ch(X)

defined by putting ch(C) = δ∗C0 is an equivalence of quasi-categories; it is the
Dold-Kan correspondance. The inverse equivalence associates to a chain complex
D ∈ Ch(X) the simplicial object S(D) obtained by putting

S(D)n =
n⊕
k=0

(
n

k

)
Dk

for every n ≥ 0. The equivalence

Cn ' S(δ∗C)n =
n⊕
k=0

(
n

k

)
δkC0

is Newton’s formula of finite differences calculus. Let us describe the simplicial
object S(D) more explictly. The binomial coefficient

(
n
k

)
is the number of surjec-

tions [n]→ [k]. Let ∆m ⊂ ∆ be the subcategory of monomorphisms. Consider the
functor G : ∆m → Ch which takes a monomorphism f : [m]→ [n] to the morphism
G(f) : m→ n defined by putting

G(f) =

 ∂ if n = m+ 1 and f = d0

id if m = n.
0 otherwise

Then the map S(D) : ∆o → X is the left Kan extension of the composite D ◦ G :
∆o
m → X along the inclusion ∆m ⊂ ∆.

40.13. Let X be an additive cartesian quasi-category. Then a simplicial object
C : ∆o → X is a groupoid iff we have δnC = 0 for every n > 1. The Dold-Kan
correspondance associates to a groupoid C : ∆o → X the map ∂C : δC0 → C0. It
induces an equivalence

∂− : Grpd(X) ' XI

between the quasi-category Grpd(X) of groupoids in X and the quasi-category XI

of maps in X. If C is the equivalence groupoid of an arrow u : x → y, then the
arrow ∂C is the fiber Ker(u)→ x. A functor p : E → C in Grpd(X) is fully faithful
iff the square

δE0

δp0

��

∂E // E0

p0

��
δC0

∂C // C0

is cartesian. A functor p : E → C in is a left (or right) fibration iff the morphism
δp0 : δE0 → δC0 is invertible. Hence the Dold-Kan correspondance induces an
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equivalence between the quasi-category XC and the quasi-category Fact(∂C , X) of
factorisations of the arrow ∂C .

40.14. An additive quasi-category X is exact iff the following five conditions are
satisfied:

• X admits surjection-mono factorisations;
• The base change of a surjection is a surjection;
• Every morphism in has a fiber and a cofiber;
• Every morphism is the fiber of its cofiber;
• Every surjection is the cofiber of its fiber.

40.15. Let us sketch a proof of 40.14. (⇒) Every morphism has a fiber, since
X is cartesian. Moreover, X admits surjection-mono factorisations stable under
base changes, since X is exact. Let Surj(X) be the full sub-quasi-category of XI

spanned by the surjections in X. It follows from 40.13 and 37.13 that the map
Ker : Surj(X)→ XI which associates to a surjection its fiber is an equivalence of
quasi-categories. The inverse equivalence XI → Surj(X) associates to a morphism
its cofiber. Thus, every morphism has a cofiber and is the fiber of its cofiber.
Moreover, every surjection is the cofiber of its fiber. (⇐) The quasi-category X is
cartesian, since X is additive and every morphism has a fiber. Let us show that
every surjection f : x → y is a descent morphism. For this we have to show that
the map D : X/y → XEq(f) induced by f∗ : X/y → X/x is an equivalence of quasi-
categories. If i : z → x is the fiber of f , then D associates to a morphism q : y′ → y
a factorisation i = pi′ : z → x′ → x, where x′ = f∗(y′) and i′ = (i, 0) : z → x×y y′.
Let f ′ : x′ →→ y′ be the projection. The boundary squares of the following diagram
is a pullback,

z //

i′

��

0

��
x′

p

��

f ′ // y′

q

��
x

f // y.

Hence also the top square, since the boundary square is a pullback. Hence the
morphism i′ : z → x′ is the fiber of the morphism f ′ : x′ →→ y′. But f ′ is
surjective, since f is surjective. Thus, f ′ is the cofiber of of i′. The map D has a
left adjoint L which associates to a factorisation i = pi′ : z → x′ → x the arrow
q : y′ → y in the following diagram of pushout squares,

z //

i′

��

0

��
x′

p

��

f ′ // y′

q

��
x

f // y.

We have LD(q) ' q for every morphism q : y′ → y, since f ′ is the cofiber of of i′.
Let us show that the map DL is isomorphic to the identity. The map L associates
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to a factorisation i = pi′ : z → x′ → x the morphism q : y′ → y in the diagram of
pushout squares above. We have to show that the the pushout square

x′
f ′ //

p

��

y′

q

��
x

f // y.

is a pullback. By 40.6, it suffices to show that the null sequence

x′
(p,f ′)// x⊕ y′

(f,−q) // y

is a fiber sequence. But the sequence is a cofiber sequence by 40.6, since the square
is a pushout. It is thus a fiber sequence, since every morphism is the fiber of its
cofiber. This proves that every surjection is a descent morphism. It remains to
show that every groupoid is effective. But this follows from the fact that every
morphism is the fiber of its cofiber.

40.16. Let X be an exact additive quasi-category. If a morphism f : x → y is
surjective, then a null sequence 0 = fi : z → x → y is a fiber sequence iff it is a
cofiber sequence.

40.17. Let X be an exact additive quasi-category. An object a ∈ X is discrete iff
Ω(a) = 0. A morphism u : a→ b in X is a 0-cover iff its fiber Ker(u) is discrete. An
object a ∈ X is connected iff the morphism 0→ a is surjective. A morphism a→ b
is 0-connected iff it is surjective and the fiber Ker(u) is connected. The suspension
Σ : X → X induces an equivalence between X and the full sub-quasi-category of
connected objects of X.

40.18. Let X be an exact additive quasi-category. An object a ∈ X is a n-object
iff Ωn(a) = 0. An arrow u : a → b in X is a n-cover iff its fiber Ker(u) is a
n-object. An object a ∈ X is n-connected iff it is connected and Ω(a) is (n − 1)-
connected. A morphism a→ b is n-connected iff it is surjective and its fiber Ker(u)
is n-connected.

40.19. If a quasi-category X is additive and exact, then so is the quasi-category
XA for any simplicial set A and the quasi-category Mod×(T,X) for any algebraic
theory T .

40.20. The algebraic theory of symmetric monoids SMon is semi-additive. The
direct sum A⊕B of two finite sets is their disjoint union AtB. This is illustrated
by the equivalences of groupoids,

SMon(A tB,C) ' SMon(A,C)× SMon(B,C),
SMon(C,A tB) ' SMon(C,A)× SMon(C,B)

for any triple of finite sets (A,B,C).

40.21. If an algebraic theory T is semi-additive, then so is the quasi-category
Mod×(T,X) for any quasi-category with finite products X.
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40.22. Let us sketch a proof of 40.21. We first verify that the quasi-category
Mod×(T,X) is pointed. The nul object 0 ∈ T is both initial and terminal. Hence
the map 0 : 1 → T is both left and right adjoint to the map p : T → 1. Hence
the map 0∗ : Mod×(T,X) → Mod×(1, X) = 1 is both left and right adjoint to
the map p∗ : 1 = Mod×(1, X) → Mod×(T,X). It follows that the object p∗(1) is
both initial and terminal in Mod×(T,X). We have proved that the constant map
T → X with value 1 is both initial and terminal in Mod×(T,X). Let us now show
that the product map Mod×(T,X)×Mod×(T,X)→Mod×(T,X) is left adjoint to
the diagonal. The 2-category of algebraic theories AT is by itself ”semi-additive”
by ??. Hence the map Mod×(T,X) ×Mod×(T,X) → Mod×(T × T,X) obtained
from the inclusions in1 : T → T × T and in2 : T → T × T is an equivalence of
quasi-categories. If δ : T → T × T is the diagonal, then

δ∗ : Mod×(T,X)×Mod×(T,X)→Mod×(T,X)

is the product map. If σ : T × T → T is the product map, then

σ∗ : Mod×(T,X)→Mod×(T,X)×Mod×(T,X)

is the diagonal. But σ is left adjoint to the diagonal, since the product is a coproduct
in T . Hence we have δ∗ ` σ∗ since we have σ ` δ. This shows that the product
map δ∗ is left adjoint to the diagonal. A closer examination reveals that δ∗ is a
direct sum map.

40.23. Let Mon be the algebraic theory of monoids and SMon be the algebraic
theory of symmetric monoids. Then the following conditions on a quasi-category
with finite products X are equivalent (assuming a conjecture in 31.15):

• X is semi-additive;
• the forgetful map Mon(X)→ X is an equivalence of quasi-categories;
• the forgetful map SMon(X)→ X is an equivalence of quasi-categories.

40.24. Let us sketch a proof of 40.23. (i)⇒(iii) LetX be an additive quasi-category.
Let Γ be the category of finite pointed sets and basepoint preserving maps. The
category Γ has finite coproducts. It follows from 31.12 that it is freely generated
by the pointed object 1+ = {1, ?}. Hence the forgetful map

Mapt(Γ, X)→ X

is an equivalence of quasi-categories, where Mapt(Γ, X) is the quasi-category of
maps Γ→ X which preserves finite coproducts. It is easy to see that a map Γ→ X
preserves finite coproducts iff it is a model of the Segal sketch (Γ, C) of 31.17. Thus,

Mapt(Γ, X) = Mod(Γ/C,X).

It follows that the forgetful map

Mod(Γ/C,X)→ X,

is an equivalence of quasi-categories. But we have an equivalence of quasi-categories

Mod(Γ/C,X) 'Mod×(SMon,X)

by ??. It follows that the forgetful map

Mod×(SMon,X)→ X,
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is an equivalence of quasi-categories. (iii)⇒(i) The quasi-category SMon(X) is
semi-additive by 40.21, since SMon is semi-additive by 40.20. Hence the quasi-
category X is semi-additive if the forgetful map SMon(X)→ X is an equivalence.
(iii)⇒(ii) The canonical morphism SMon→ SMon�Mon is an equivalence, since
SMon is the (homotopy) colimit of the theories Monn for n ≥ 0 by a conjecture in
31.15. Hence the forgelful map Mon(SMon(X)) → SMon(X) is an equivalence.
This shows that the forgelful map Mon(X) → X is an equivalence since we have
X ' SMon(X). (ii)⇒(iii) If the forgetful map Mon(X) → X is an equivalence,
then so is the map forgetful mapMonn(X)→ X for every n ≥ 0 if we iterate. Hence
also the the forgetful map SMon(X) → X, since the quasi-category SMon(X) is
the (homotopy) projective limits of the quasi-categories Monn(X) when n → ∞.
Hence the forgetful map SMon(X)→ X is an equivalence by a conjecture in 31.15.

40.25. Let Mon be the algebraic theory of monoids and SMon be the theory
of symmetric monoids. Then following conditions on an algebraic theory T are
equivalent (assuming a conjecture in 31.15):

• T is semi-additive;
• Mod×(T ) is semi-additive;
• the canonical morphism T → T �Mon is an equivalence;
• the canonical morphism T → T � SMon is an equivalence.

40.26. Let us sketch a proof of 40.25. The implication (i)⇒(ii) follows from 40.21.
Let us prove the implication (ii)⇒ (i). The Yoneda map T o → Mod×(T ) is fully
faithful and it preserves finite coproducts. It thus induces an equivalence between
the quasi-category T o and a full additive sub-quasi-category of Mod×(T ). This
shows that T o is semi-additive. It follows that T is semi-additive. (i)⇒(iii) If T
is semi-additive, then so is the quasi-category Mod×(T,X) for any quasi-category
with finite product X by 40.21. Hence the forgetful map Mon(Mod×(T,X)) →
Mod×(T,X) is an equivalence by 40.23. But we have

Mon(Mod×(T,X)) = Mod×(Mon,Mod×(T,X)) = Mod×(T �Mon,X).

It follows by Yoneda lemma that the canonical morphism T → T � Mon is an
equivalence. (iii)⇒(ii) If the canonical morphism T → T �Mon is an equivalence,
then so is the forgetful morphism Mon(Mod×(T )) → Mod×(T ). This proves that
Mod×(T ) is semi-additive by 40.23. The implications (i)⇒(iii)⇒(ii) are proved
similarly.

40.27. The results of 40.21 and 40.25 can be reformulated for cartesian theories
instead of algebraic theories. If a cartesian theory T is semi-additive, then so is
the quasi-category Mod(T,X) for any cartesian quasi-category X. Moreover, the
following conditions on a cartesian theory T are equivalent (assuming a conjecture
in 31.15):

• T is semi-additive;
• Mod(T ) is semi-additive;
• the canonical morphism T → T �Mon is an equivalence;
• the canonical morphism T → T � SMon is an equivalence.

40.28. A (multiplicative) localisation of a semi-additive (resp. additive) algebraic
theory is semi-additive (resp.additive). The algebraic theory of infinite loop spaces
Add is additive.
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40.29. The results of 40.23 and of 40.27 can be reformulated in the additive case.
Let Grp be the algebraic theory of groups and Add be the algebraic theory of
infinite loop spaces. If X is a quasi-category with finite products, then the following
conditions are equivalent:

• X is additive;
• the forgetful map Grp(X)→ X is an equivalence of quasi-categories;
• the forgetful map Add(X)→ X is an equivalence of quasi-categories.

If a cartesian theory T is additive, then so is the quasi-category Mod(T,X) for
any cartesian quasi-category X. Moreover, the following conditions on a cartesian
theory T are equivalent (assuming a conjecture in 31.15):

• T is additive;
• Mod(T ) is additive;
• the canonical morphism T → T �Grp is an equivalence;
• the canonical morphism T → T �Add is an equivalence.

40.30. The suspension theorem of Freudenthal implies that a pointed n-connected
space with vanishing homotopy groups in dimension > 2n is naturally a loop space
[May2]. The (n + 1)-fold loop space functor induces an equivalence between the
homotopy category of pointed n-connected spaces and the homotopy category of
(n + 1)-fold loop spaces by a classical result [?]. The (n + 1)-fold loop space of
a 2n-object is a (n − 1) object. It then follows from Freudenthal theorem that a
(n + 1)-fold loop space with vanishing homotopy groups in dimension > n − 1 is
naturally a (n+ 2)-fold loop space. This means that the forgetful map

Grpn+2(U(n− 1))→ Grpn+1(U(n− 1))

is an equivalence of quasi-categories for every n ≥ 1. It follows that the cartesian
theory

OB(n− 1)�Grpn+1

is additive for every n ≥ 1 by 40.29.

40.31. (Generalised Suspension Conjecture) We conjecture that the cartesian the-
ory

OB(n)�Monn+2

is semi-additive for every n ≥ 0.

40.32. Let AT be the (2-)category of algebraic theories. Then the full sub(2-
)category AAT of AT spanned by the additive algebraic theories is (pseudo) re-
flective and coreflective. The left adjoint to the inclusion AAT ⊂ AT is the functor
X 7→ X �Add and its right adjoint is the functor X 7→Mod×(Add,X).

40.33. Let CT be the 2-category of cartesian theories. Then the full sub 2-category
ACT of CT spanned by the additive cartesian theories is (pseudo) reflective and
coreflective. The left adjoint to the inclusion ACT ⊂ CT is the functor T 7→
T �Add and its right adjoint is the functor T 7→Mod×(Add, T ).
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40.34. Let LP be the (2-)category of locally representable quasi-categories. Then
the full sub(2-)category ALP of LP spanned by the additive locally presentable
quasi-categories is (pseudo) reflective and coreflective. The left adjoint to the in-
clusion ALP ⊂ LP is the functor X 7→ Mod×(Add,X) ' X ⊗Add and its right
adjoint is the functor X 7→Map(Add, X), where Add = Mod×(Add) is the quasi-
category of infinite loop spaces.

40.35. If A is a algebraic theory, then the quasi-category Mod×(A,Add) is ex-
act and a variety of homotopy algebras. Let us give a proof. The quasi-category
Add) = Mod×(Add) is obviously a variety. Hence also the quasi-categoryMod×(A,Add)
by 33.2. It is thus exact by 38.3.

40.36. If A is an additive quasi-category, then the map homA : Ao×A→ U admits
a factorisation

Add

U

��
Ao ×A

homA //

hom′A

66mmmmmmmmmmmmm
U,

where hom′
A preserves finite products in each variable and where U is the forgetful

map. The factorisation is unique up to a unique invertible 2-cell. This defines an
”enrichement” of the quasi-category A over the quasi-category Add. The Yoneda
map

yA : Ao →Mod×(A,Add)

is obtained from hom′
A by exponential adjointness.

40.37. Let A be an additive algebraic theory. We say that a map f : A → Add
is representable if it belongs to the essential image of the Yoneda map Ao →
Mod×(A,Add).

40.38. Let X be a (locally small) cocomplete additive quasi-category. Then an
object x ∈ X is bicompact iff the map y(x) : X → Add is cocontinuous. Let us
give a proof. (⇒) If x is bicompact, then the map y(x) is cocontinuous by 33.16
since it preserves finite coproducts.

40.39. Let A be an additive algebraic theory. Then the following conditions on an
object x ∈Mod×(A,Add) are equivalent:

• x is bicompact
• x is compact and projective;
• x is a retract of a representable.

Let us give a proof. The forgetful map Add→ U induces an equivalence of quasi-
categories

Mod×(A,Add)→Mod×(A,U)

by 40.32 since we have Mod×(Add,U) = Add. The result then follows from 33.20.

40.40. A cocomplete additive quasi-category X is equivalent to a quasi-category
Mod×(A,Add) for some additive algebraic theory A iff it is generated by a set of
bicompact objects.
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41. Stable quasi-categories

41.1. Let X be a quasi-category with null object 0 ∈ X. Recall that the loop space
Ω(x) of an object x ∈ X is defined to be the fiber of the arrow 0 → x. We say
that X is stable if if every object x ∈ X has a loop space, and the loop space map
Ω : X → X is an equivalence of quasi-categories.

41.2. Let X be a stable quasi-category. Then the arrow x → 0 has a cofiber
x → Σ(x) for every object x ∈ X. The map Σ : X → X is the inverse of the map
Ω : X → X. We shall put

Ω−n = Σn and Σ−n = Ωn

for every n ≥ 0. The opposite of a stable quasi-category X is stable. The loop
space map Ω : Xo → Xo is obtained by putting Ω(xo) = Σ(x)o for every object
x ∈ X.

41.3. We say that a map f : X → Y between stable quasi-categories is stable if it
preserves nul objects and the canonical morphism f ◦ Ω→ Ω ◦ f is invertible.

41.4. If T is a stable algebraic theory and X is a pointed cartesian quasi-category,
we say that a model T → X is stable if the canonical natural transformation
f ◦Ω→ Ω ◦ f is invertible. We denote by SProd(T,X) the full simplicial subset of
Prod(T,X) spanned by the stable models. We shall put

SProd(T ) = SProd(T, 1\U).

The forgetful map Spec→ 1\U induces an equivalence of quasi-categories

SProd(T,Spec) ' SProd(T ).

41.5. The quasi-category Spec(X) is stable for any cartesian quasi-category X.
A cartesian quasi-category X is stable iff the forgetful map Spec(X) → X is an
equivalence. The quasi-categories Spec and Mod(Spec) = Spec are stable.

41.6. Let us give a proof of 41.5, starting with the first statement. We have
Spec(X) = Spec(1\X). Hence we can suppose that X is pointed. In this case, the
quasi-category Spec(X) is the (homotopy) projective limit of the infinite sequence
of quasi-categories

X X
Ωoo X

Ωoo · · · .Ωoo

It follows that the map Ω : Spec(X) → Spec(X) is an equivalence. Let us prove
the second statement. Clearly, the forgetful map Spec(X)→ X is an equivalence if
X is stable, Conversely, if the forgetful map Spec(X)→ X is an equivalence, then
X is stable, since Spec(X) is stable. Let us prove the last statement. The quasi-
category Spec = Spec(U) is stable. Hence the quasi-category Spec is pointed,
since Yoneda map Speco → Spec preserves initial objects. Let us show that the
map Ω : Spec → Spec is invertible. The map Mod(Ω, X) : Mod(Spec,X) →
Mod(Spec,X) is invertible for any cartesian quasi-category X, since the quasi-
category Mod(Spec,X) = Spec(X) is stable. It follows by Yoneda lemma that the
map Ω : Spec→ Spec is invertible.
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41.7. A stable quasi-category with finite products X is additive. Let us sketch a
proof. The loop space Ω(x) of an object x ∈ X has the structure of a group by
39.1. If Grp(X) denotes the quasi-category of group objects in X, then the map
Ω : X → X can be lifted along the forgetful map Grp(X)→ X,

Grp(X)

��
X

Ω //

G
;;wwwwwwwww
X.

But Ω is an equivalence of quasi-categories, since X is stable. It follows that
the forgetful map Grp(X) → X admits a section which preserves finite products.
Hence also the forgetful map Grpn+1(X) → Grpn(X) for every n ≥ 0. But the
quasi-category Add(X) is the (homotopy) projective limit of the sequence of quasi-
categories

X ← Grp(X)← Grp2(X)← · · ·
by ??. It follows that the forgetful map Add(X) → X admits a section which
preserves finite products. But the quasi-category Add(X) is additive by 40.29,
since Add is additive by 40.28. Hence it suffices to show that a retract of an
additive quasi-category is additive (when the retraction and the section preserve
finite products). But this follows from 40.23.

41.8. We denote by SAT the category of stable algebraic theories and stable mor-
phisms of theories. The category SAT has the structure of a 2-category induced by
the 2-category structure of the category of simplicial sets. If T is a stable algebraic
theory and X is a pointed cartesian quasi-category, we say that a model T → X
is stable if the canonical natural transformation f ◦ Ω → Ω ◦ f is invertible. We
denote by SProd(T,X) the full simplicial subset of Prod(T,X) spanned by the
stable models. We shall put

SProd(T ) = SProd(T, 1\U).

The forgetful map Spec→ 1\U induces an equivalence of quasi-categories

SProd(T,Spec) ' SProd(T ).

If u : S → T is a stable morphism of theories, then the map

u∗ : SProd(T )→ SProd(S)

induced by u has a left adjoint u!. The adjoint pair (u!, u
∗) an equivalence iff the

map u : S → T is a Morita equivalence.

41.9. We denote by SAdd the stable algebraic theory freely generated by one object
u ∈ SAdd. Every object f ∈ SAdd is a finite direct sum

f =
⊕
i∈F

Σni(u)

where ni is an integer. We say that a stable algebraic theory T is unisorted if it
is equipped with an essentially surjective map SAdd → T . A ”ring spectrum” is
essentially the same thing as a unisorted stable theory. In other words, a stable
algebraic theory T is a ”ring spectrum with many objects”. A stable model f :
T → Spec is a left T -module.
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41.10. The opposite of a stable algebraic theory is a stable algebraic theory. The
stable theory SAddo is freely generated by the object uo ∈ SAdd. Hence the stable
morphism SAdd→ SAddo which takes u to uo is an equivalence. The duality takes
the object Σn(u) to the object Σ−n(u) for every integer n.

41.11. Every stable algebraic theory T generates freely a cartesian theory u : T →
Tc. By definition, Tc is a pointed cartesian theory and u : T → Tc is a stable
morphism which induces an equivalence of quasi-categories

Mod(Tc, X) ' SProd(T,X)

for any pointed cartesian quasi-category X. The cartesian theory Tc is stable. For
example, we have SAddc = Spec.

41.12. The quasi-category of spectra Spec is exact. More generally, if T is a stable
algebraic theory, then the quasi-category SProd(T ) is stable and exact.

41.13. Let us sketch a proof of 41.12. The quasi-category Spec is a para-variety by
35.4. It is thus exact by ??. Let us show that the quasi-category SProd(T,Spec)
is stable and exact. It is easy to see that it is stable. Let us show that it is a
para-variety. The quasi-category Prod(T,Spec) is a para-variety by 34.4. Hence
it suffices to show that the quasi-category SProd(T,Spec) is a left exact reflection
of the quasi-category Prod(T,Spec). A model f : T → Spec is stable iff the the
canonical natural transformation α : f → ΩfΣ is invertible. By iterating, we obtain
an infinite sequence

f
α // ΩfΣ ΩαΣ // Ω2fΣ2 // · · ·

The colimit R(f) of this sequence is a stable map T → Spec. This defines a left
exact reflection

R : Prod(T,Spec)→ SProd(T,Spec).
Thus, SProd(T,Spec) is a para-variety. Hence it is exact by ??.

41.14. An additive quasi-category X is stable and exact iff the following two con-
ditions are satisfied:

• Every morphism has a fiber and a cofiber;
• A null sequence z → x→ y is a fiber sequence iff it is a cofiber sequence.

41.15. Let us sketch a proof of 40.14. (⇒) Every morphism in X has a fiber and
a cofiber by 40.14, since X is exact and additive. Let us show that every arrow
is surjective. For this it suffices to show that every monomorphism is invertible,
since every arrow is right orthogonal to every quasi-isomorphism. If u : a→ b is a
monomorphism, then we have a fiber sequence

Ω(a)
Ω(u) // Ω(b) // 0 // a u // b .

by 40.7. Thus, Ω(u) invertible, since it is the fiber of a nul morphism, It follows that
u is invertible, since the map Ω : X → X is an equivalence. We have proved that
every arrow is surjective. It then follows from 40.16 that a nul sequence z → x→ y
is a fiber sequence iff it is a cofiber sequence. (⇐) Let us show that X is stable. If
x ∈ X, then we have ΣΩ(x) ' x, since the fiber sequence Ω(x)→ 0→ x is a cofiber
sequence. Moreover, we have x ' ΩΣ(x), since the cofiber sequence x→ 0→ Σ(x)
is a fiber sequence. This shows that X is stable. It remains to show that X is
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exact. For this, it suffices to show that the conditions of 40.14 are satisfied. Let
us first show that X admits surjection-mono factorisations. For this, it suffices to
show that every monomorphism is invertible. If x→ y is monic, then the sequence
0 → x → y is a cofiber sequence, since it is a fiber sequence. It follows that the
arrow x → y is invertible. This proves that every monomorphism is invertible.
Thus, every morphism is surjective. Hence the base change of a surjection is a
surjection.

41.16. The opposite of an exact stable quasi-category is exact and stable.

41.17. An additive map X → Y between two exact stable quasi-categories is exact
iff it is left exact iff it is right exact.

41.18. Let X be an exact stable quasi-category. Then to each arrow f : x→ y in
X we can associate by 40.7 a two-sided long fiber sequence,

· · ·Ω(x)
Ω(f) // Ω(y) ∂ // z i // x

f // y ∂ // Σ(z)
Σ(i) // Σ(x) · · · .

where i : z → x is the fiber of f . The sequence is entirely described by a triangle

x
f // y

∂����
��

��
�

z
i

__????????

.

where ∂ is now regarded as a morphism of degree -1 (ie as a morphism y → Σ(x)).

41.19. If A and B are two stable algebraic theories then so is the quasi-category
SProd(A,B) of stable models A→ B. The 2-category SAT is symmetric monoidal
closed. The tensor product A�S B of two stable algebraic theories is the target of
a map A × B → A �S B which is a stable morphism in each variable (and which
is universal with respect to that property). There is a canonical equivalence of
quasi-categories

SProd(A�S B,X) ' SProd(A,SProd(B,X))

for any cartesian quasi-category X. In particular, we have two equivalences of
quasi-categories,

SProd(A�S B) ' SProd(A,SProd(B)) ' SProd(B,Prod(A)).

The unit for the tensor product is the theory SAdd described in ??. The opposite
of the canonical map S × T → S � T can be extended along the Yoneda maps as a
map cocontinuous in each variable.

SProd(A)× SProd(B)→ SProd(A�S B).

41.20. Let CT be the (2-)category of cartesian theories. Then the full sub(2-
)category SCT of CT spanned by the stable cartesian theories is (pseudo) reflec-
tive and coreflective. The left adjoint to the inclusion SCT ⊂ CT is the func-
tor T 7→ T �c Spec and its right adjoint is the functor T 7→ Mod(Spec, T ) '
SProd(SAdd, T ).
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41.21. Let LP be the (2-)category of locally representable quasi-categories. Then
the full sub(2-)category SLP of LP spanned by the stable locally presentable quasi-
categories is (pseudo) reflective and coreflective. The left adjoint to the inclusion
SLP ⊂ LP is the functor X 7→ Mod(Spec,X) ' SProd(SAdd,X) ' X ⊗ Spec
and its right adjoint is the functor X 7→Map(Spec, X).

41.22. If A is a stable quasi-category, then the map homA : Ao × A → U admits
a factorisation

Spec

U

��
Ao ×A

homA //

hom′A

66mmmmmmmmmmmmm
U,

where the map hom′
A is stable in each variable, and where U is the forgetful map.

The factorisation is unique up to a unique invertible 2-cell. This defines an ”en-
richement” of the quasi-category A over the quasi-category of spectra Spec. The
Yoneda map

y : Ao → SpecA

is obtained from hom′
A by exponential adjointness.

41.23. If T is a stable algebraic theory, then the Yoneda map y : T o → SpecT

induces a map y : T o → SProd(T ). We say that a model f : T → Spec is
representable if it belongs to the essential image of the Yoneda map.

42. Homotopoi (∞-topoi)

The notion of homotopos (∞-topos) presented here is due to Carlos Simpson
and Charles Rezk.

42.1. Recall from 34.1 that a category E is said to be a Grothendieck topos if it is
a left exact reflection of a presheaf category [Co,Set]. A homomorphism E → F
between Grothendieck topoi is a cocontinuous functor f : E → F which preserves
finite limits. The 2-category of Grothendieck topoi and homomorphism is has
the structure of a 2-category, where a 2-cell is a natural transformation. Every
homomorphism has a right adjoint. A geometric morphism E → F is an adjoint
pair

g∗ : F ↔ E : g∗
with g∗ a homomorphism. The map g∗ is called the inverse image part of g
and the map g∗ its direct image part. . We shall denote by Gtop the category
of Grothendieck topoi and geometric morphisms. The category Gtop has the
structure of a 2-category, where a 2-cell α : f → g is a natural transformation
α : g∗ → f∗. The 2-category Gtop is equivalent to the opposite of the 2-category
of Grothendieck topoi and homomophism.

42.2. Recall from 34.3 that a locally presentable quasi-category X is said to be
a homotopos, or an ∞-topos, if it is a left exact reflection of a quasi-category of
prestacks. P(A) for some simplicial set A. The quasi-category of homotopy types
Tp is the archtype of a homotopos. If X is a homotopos, then so is the quasi-
category X/a for any object a ∈ X and the quasi-category XA for any simplicial
set A.
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42.3. Recall that a cartesian quasi-category X is said to be locally cartesian closed
if the quasi-category X/a is cartesian closed for every object a ∈ X. A cartesian
quasi-category X is locally cartesian closed iff the base change map f∗ : X/b→ X/a
has a right adjoint f∗ : X/a→ X/b for any morphism f : a→ b in X.

42.4. A locally presentable quasi-category X is locally cartesian closed iff the base
change map f∗ : X/b→ X/a is cocontinuous for any morphism f : a→ b in X.

42.5. (Giraud’s theorem)[Lu1] A locally presentable quasi-category X is a homo-
topos iff the following conditions are satisfied:

• X is locally cartesian closed;
• X is exact;
• the canonical map

X/ t ai →
∏
i

X/ai

is an equivalence for any family of objects (ai : i ∈ I) in X.

42.6. A homomorphism X → Y between utopoi is a cocontinuous map f : X → Y
which preserves finite limits. Every homomorphism has a right adjoint. A geometric
morphism X → Y between utopoi is an adjoint pair

g∗ : Y ↔ X : g∗

with g∗ a homomorphism. The map g∗ is called the inverse image part of g and the
map g∗ the direct image part. . We shall denote by Utop the category of utopoi
and geometric morphisms. The category Utop has the structure of a 2-category,
where a 2-cell α : f → g between geometric morphisms is a natural transformation
α : g∗ → f∗. The opposite 2-category Utopo is equivalent to the sub (2-)category
of LP whose objects are utopoi, whose morphisms (1-cells) are the homomorphisms,
and whose 2-cells are the natural transformations.

42.7. If u : A → B is a map of simplicial sets, then the pair of adjoint maps
u∗ : P(B) → P(A) : u∗ is a geometric morphism P(A) → P(B). If X is a
homotopos, then the adjoint pair f∗ : X/b → X/a : f∗ is a geometric morphism
X/a→ X/b for any arrow f : a→ b in X.

42.8. Recall that if X is a bicomplete quasi-category and A is a simplicial set,
then every map f : A → X has a left Kan extension f! : P(A) → X. A locally
presentable quasi-category X is a homotopos iff the map f! : P(T ) → X is left
exact for any cartesian theory T and any cartesian map f : T → X.

42.9. If X is a homotopos, we shall say that a reflexive sub quasi-category S ⊆ X
is a sub-homotopos if it is locally presentable and the reflection functor r : X → S
preserves finite limits. If i : S ⊆ X is a sub-homotopos and r : X → S is the
reflection, then the pair (r, i) is a geometric morphism S → X. In general, we say
that a geometric morphism g : X → Y is an embedding if the map g∗ : X → Y is
fully faithful. We say that a geometric morphism g : X → Y is surjective if the
map g∗ : Y → X is conservative. The (2-) category Utop admits a homotopy
factorisation system (A,B) in which A is the class if surjections and B the class of
embeddings.
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42.10. If X is a homotopos, then the quasi-category Dis(X) spanned by the 0-
objects of X is (equivalent to) a Grothendieck topos. The inverse image part of a
geometric morphism X → Y induces a homorphism Dis(Y )→ Dis(X), hence also
a geometric morphism Dis(X)→ Dis(Y ). The 2-functor

Dis : Utop→ Gtop

has a right adjoint constructed as follows. If E is a Grothendieck topos, then the
category [∆o, E ] of simplicial sheaves on E has a simplicial model structure. The
coherent nerve of the category of fibrant objects of [∆o, E ] is a homotopos Ê and
there is a canonical equivalence of categories Dis(Ê) ' E . The 2-functor

ˆ(−) : Gtop(1)→ Utop

is fully faithful and left adjoint to the functor Dis. Hence the (2-)-category Gtop
is a reflective sub-(2)-category of Utop.

42.11. A set Σ of arrows in a homotopos X is called a Grothendieck topology if
the quasi-category of Σ-local objects XΣ ⊆ X is a sub-homotopos. Every sub-
homotopos of X is of the form XΣ for a Grothendieck topology Σ. In particular,
if A is a simplicial set, every sub-homotopos of P(A) is of the form P(A)Σ for a
Grothendieck topology Σ on A. The pair (A,Σ) is called a site and a Σ-local object
f ∈ P(A) is called a stack.

42.12. For every set Σ of arrows in a homotopos X, the sub-quasi-category XΣ

contains a largest sub-homotopos L(XΣ). We shall say that a Grothendieck topol-
ogy Σ′ is generated by Σ if we have XΣ′ = L(XΣ).

is contained in a Grothendieck topology Σ′ with the property that a subtopos
then we have f∗(X) ⊆ Y Σ iff f∗ take every arrow in Σ to a quasi-isomorphism

in X.

42.13. If Σ is Grothendieck topology on Y , then we have f∗(X) ⊆ Y Σ iff f∗ take
every arrow in Σ to a quasi-isomorphism in X.

42.14. Every simplicial set A generates freely a cartesian quasi-category A →
C(A). Similarly, every simplicial set A generates freely an homotopos i : A →
UT (A). The universality means that every map f : A → X with values in a
homotopos has an homomorphic extension f ′ : UT (A)→ X which is unique up to
a unique invertible 2-cell. By construction, UT (A) = P(C(A)). The map i : A →
UT (A) is obtained by composing the canonical map A → C(A) with the Yoneda
map C(A)→ P(C(A)).

42.15. A geometric sketch is a pair (A,Σ), where Σ is a set of arrows in UT (A).
A geometric model of (A,Σ) with values in a homotopos X is a map f : A → X
whose homomorphic extension f ′ : UT (A) → X takes every arrow in Σ to an
equimorphism in X. We shall denote by Mod(A/Σ, X) the full simplicial subset of
XA spanned by the models A→ X.
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42.16. Every geometric sktech has a universal geometric model u : A→ UT (A/Σ).
The universality means that for every homotopos X and every geometric model
f : A → X there exists a homomorphism f ′ : UT (A/Σ) → X such that f ′u = f ,
and moreover that f ′ is unique up to a unique invertible 2-cell. We shall say that
UT (A/Σ) is the classifying homotopos of (A,Σ). The homotopos UT (A/Σ) is a
sub-homotopos of the homotopos UT (A). We have UT (A/Σ) = UT (A)Σ

′
, where

Σ′ ⊂ UT (A) is the Grothendieck topology generated by Σ.

43. Higher categories

We introduce the notions of n-fold category object and of n-category object in
a quasi-category. We finally introduced the notion of truncated n-category object.

43.1. Let X be a quasi-category. If A is a simplicial set, we say that a map
f : A→ X is essentially constant if it belongs to the essential image of the diagonal
X → XA. If A is weakly contractible, then a map f : A → X is essentially
constant iff it takes every arrow in A to an isomorphism in X. A simplicial object
C : ∆o → X in a quasi-categoryX is essentially constant iff the canonical morphism
sk0(C0) → C is invertible. A category object C : ∆o → X is essentially constant
iff it inverts the arrow [1] → [0]. A n-fold category C : (∆n)o → X is essentially
constant iff C inverts the arrow [ε] → [0n] for every ε = (ε1, · · · , εn) ∈ {0, 1}n,
where [0n] = [0, . . . , 0].

43.2. Let X be a cartesian quasi-category. We call a double category C : ∆o →
Cat(X) a 2-category if the simplicial object C0 : ∆o → X is essentially constant. A
double category C ∈ Cat2(X) is a 2-category iff it inverts every arrow in [0] ×∆.
Let us denote by Id the set of identity arrows in ∆. Then the set of arrows

Σn =
⊔

i+1+j=n

Idi × [0]×∆j

is a subcategory of ∆n. We say that a n-fold category object C ∈ Catn(X) is a
n-category if it inverts every arrow in Σn. The notion of n-category object in X
can be defined by induction on n ≥ 0. A category object C : ∆o → Catn−1(X)
is a n-category iff the (n − 1)-category C0 is essentially constant. We denote by
Catn the cartesian theory of n-categories and by Catn(X) the quasi-category of
n-category objects in X.

43.3. The object of k-cells C(k) of a n-category C : (∆o)n → X is the image by C
of the object [1k0n−k]. The source map s : C(k)→ C(k−1) is the image of the map
[1k−1]×d1× [0n−k] and the target map t : C(k)→ C(k−1) is the image of the map
[1k−1] × d0 × [0n−k]. From the pair of arrows (s, t) : C(k) → C(k − 1) × C(k − 1)
we obtain an arrow ∂ : C(k) → C(∂k), where C(∂k) is defined by the following
pullback square

C(∂k) //

��

C(k − 1)

(s,t)

��
C(k − 1)

(s,t) // C(k − 2)× C(k − 2).

If n = 1, ∂ = (s, t) : C(1)→ C(0)× C(0).
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43.4. There is a notion of n-fold reduced category for every n ≥ 0. If RCat
denotes the cartesian theory of reduced categories, then RCatn is the theory of
n-fold reduced categories. If X is a cartesian quasi-category, then we have

RCatn+1(X) = RCat(RCatn(X))

for every n ≥ 0.

43.5. We say that a n-category C ∈ Catn(X) is reduced if it is reduced as a n-fold
category. We denote by RCatn the cartesian theory of reduced n-categories. A
n-category C : ∆o → Catn−1(X) is reduced iff it is reduced as a category object
and the (n − 1)-category C1 is reduced. If X is an exact quasi-category, then the
inclusion RCatn(X) ⊆ Catn(X) has a left adjoint

R : Catn(X)→ RCatn(X)

which associates to a n-category C ∈ Catn(X) its reduction R(C) . We call a map
f : C → D in Catn(X) an equivalence if the map R(f) : R(C)→ R(D) is invertible
in RCatn(X). The quasi-category

Typn = Mod(RCatn)

is cartesian closed.

43.6. The object [0] is terminal in ∆. Hence the functor [0] : 1→ ∆ is right adjoint
to the functor ∆ → 1. It follows that the inclusion in : ∆n = ∆n × [0] ⊆ ∆n+1

is right adjoint to the projection pn : ∆n+1 = ∆n × ∆ → ∆n. For any cartesian
quasi-category X, the pair of adjoint maps

p∗n : [(∆o)n, X]↔ [(∆o)n+1, X] : i∗n

induces a pair of adjoint maps

inc : Catn(X)↔ Catn+1(X) : res.

The ”inclusion” inc is fully faithful and we can regard it as an inclusion by adopting
the same notation for C ∈ Catn(X) and inc(C) ∈ Catn+1(X). The map res
associates to C ∈ Catn+1(X) its restriction res(C) ∈ Catn(X). The adjoint pair
pn ` i∗n also induces an adjoint pair

inc : RCatn(X)↔ RCatn+1(X) : res.

In particular, it induces an adjoint pair

inc : Typn ↔ Typn+1 : res.

When n = 0, the map inc is induced by the inclusion Kan ⊂ QCat and the map
res by the functor J : QCat → Kan. The inclusion Typn ⊂ Typn+1 has also a
left adjoint which associates to a reduced (n+1)-category C the reduced n-category
obtained by inverting the (n+ 1)-cells of C.

43.7. Recall from ?? that a quasi-category X is said to be n-truncated if the sim-
plicial set X(a, b) is a (n − 1)-object for every pair a, b ∈ X0. A quasi-category X
has a nerve NX : ∆o → Typ which is a (reduced) category object in Typ by 30.18.
By construction we have (NX)p = J(X∆[p]) for every p ≥ 0. A quasi-category X
is n-truncated iff the morphism (NX)1 → (NX)0 × (NX)0 is a (n− 1)-cover.
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43.8. Let X be a cartesian quasi-category. We say that a category object C in X
is n-truncated if the morphism C1 → C0×C0 is a (n−1)-cover. If C is n-truncated
and reduced, then Ck is a n-object for every k ≥ 0.

43.9. The notion of n-truncated category is essentially algebraic and finitary. We
denotes the cartesian theory of n-truncated categories by Cat[n]. The notion of n-
truncated reduced category is also essentially algebraic. We denotes the cartesian
theory of n-truncated reduced categories by RCat[n]. The equivalence N : Typ1 '
Mod(RCat) of 30.18 induces an equivalence

Typ1[n] 'Mod(RCat[n])

for every n ≥ 0. In particular, an ordinary category is essentially the same thing
as a 1-truncated reduced category in Typ. Recall from 37.27 that if X is an
exact quasi-category, then the inclusion RCat(X) ⊆ Cat(X) has a left adjoint
R : Cat(X) → RCat(X) which associates to a category C ∈ Cat(X) its reduction
R(C). If C ∈ Cat[n](X), then R(C) ∈ RCat[n](X).

43.10. Let C be a n-category object in a cartesian quasi-category X. If 1 ≤ k ≤ n
and C(k) is the object of k-cells of C, then from the pair of arrows (s, t) : C(k)→
C(k − 1) × C(k − 1) we obtain an arrow ∂ : C(k) → C(∂k) by 43.3. If m ≥ n,
we say that C is m-truncated if the map C(n) → C(∂n) is a (m − n)-cover. If
n = 1, this means that the category C is m-truncated in the sense of 30.19. We
shall denote by Catn[m] the cartesian theory of m-truncated n-categories. We shall
denote by RCatn[m] the cartesian theory of m-truncated reduced n-categories. If
X is an exact quasi-category, then a n-category C ∈ Catn(X) is m-truncated iff
its reduction R(C) ∈ RCatn(X) is m-truncated. Hence the notion of m-truncated
n-category in X is invariant under equivalence of n-categories. If C ∈ Catn[m](X)
and n < m, then inc(C) ∈ Catn+1[m](X). Moreover, if C ∈ RCatn[m](X), then
res(C) ∈ RCatn−1[m](X) and Cp is a m-object for every p ∈ ∆n. Hence the
canonical morphism

RCatn[m]→ RCatn[m]�c OB(m)

is an equivalence of quasi-categories for every m ≥ n.

44. Higher monoidal categories

The stabilisation hypothesis of Breen-Baez-Dolan was proved by Simpson in
[Si2]. We show that it is equivalent to a result of classical homotopy theory 40.30.

44.1. If Mon denotes the theory of monoids, then Monk is the theory of k-monoids
and Monk � Catn the theory of k-monoidal n-categories. For any cartesian quasi-
category X we have

Mod(Monk � Catn, X) = Catn(Monk(X)).

IfX is an exact quasi-category, then inclusionRCatn(Monk(X)) ⊆ Catn(Monk(X))
has a left adjoint

R : Catn(Monk(X))→ RCatn(Monk(X)),

since the quasi-category Monk(X) is exact. We call a map f : C → D between
k-monoidal n-categories in X an equivalence if the map R(f) : R(C) → R(D) is
invertible in RCatn(Monk(X)).
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44.2. An object of the quasi-category Modk(Catn[n](X)) is a k-fold monoidal n-
truncated n-category. The stabilisation hypothesis of Baez and Dolan in [BD] can
be formulated by saying that the forgetful map

Monk+1(Catn[n](X))→Monk(Catn[n](X))

is an equivalence if k ≥ n + 2 and X = Typ. But this formulation cannot be
totally correct, since it it does use the correct notion of equivalence between n-
categories. In order to take this notion into account, it suffices to replace Catn(X)
by RCatn(X). If correctly formulated, the hypothesis asserts the forgetful map

Monk+1(RCatn[n](X))→Monk(RCatn[n](X))

is an equivalence of quasi-categories if k ≥ n + 2 and X = Typ. A stronger
statement is that it is an equivalence for any X. In other words, that the canonical
map

Monk �c RCatn[n]→Monk+1 �c RCatn[n]
is an equivalence if k ≥ n+ 2.

44.3. Let us show that the stabilisation hypothesis of Breen-Baez-Dolan is equiv-
alent to the Generalised Suspension Conjecture in 40.30. We first prove the the
implication GSC⇒BBD. For this it suffices to show by 40.25 that the cartesian
theory Monk�cRCatn[n] is semi-additive for k ≥ n+2. But for this, it suffices to
show that the cartesian theory Monn+2�cRCatn[n] is semi-additive. Let us show
more generally that the the cartesian theory RCatn[m]�Monm+2 is semi-additive
for every m ≥ n. But we have an equivalence RCatn[m] ' RCatn[m] �c OB(m)
by 43.10. Hence it suffices to show that the cartesian theory

RCatn[m]�c OB(m)�Monm+2

is semi-additive. But this is true of the cartesian theory OB(m)�Monm+2 by the
GSC in 40.30. Hence the canonical map

RCatn[m]�c OB(m)�Monm+2 → RCatn[m]�c OB(m)�Monm+3

is an equivalence. The implication GSC⇒BBD is proved. Conversely, let us prove
the implication BBD⇒GSC. The cartesian theory RCat0[m] �Monm+2 is semi-
additive if we put n = 0. But we have RCat0[m] = OB(m). Hence the cartesian
theory OB(m)�Monm+2 is semi-additive.

45. Disks and duality

45.1. We begin by recalling the duality between the category ∆ and the category
of intervals. An interval I is a linearly ordered set with a first and last elements
respectively denoted ⊥ and > or 0 and 1. If 0 = 1 the interval is degenerate,
otherwise we say that is strict. A morphism I → J between two intervals is defined
to be an order preserving map f : I → J such that f(0) = 0 and f(1) = 1. We
shall denote by D(1) the category of finite strict intervals (it is the category of finite
1-disk). The category D(1) is the opposite of the category ∆. The duality functor
(−)∗ : ∆o → D(1) associates to [n] the set [n]∗ = ∆([n], [1]) = [n + 1] equipped
with the pointwise ordering. The inverse functor D(1)o → ∆ associates to an
interval I ∈ D(1) the set I∗ = D(1)(I, [1]) equipped with the pointwise ordering.
A morphism f : I → J in D(1) is surjective (resp. injective) iff the dual morphism
f∗ : J∗ → I” is injective (resp. surjective). A simplicial set is usually defined to
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be a contravarint functors ∆o → Set; it can be defined to be a covariant functor
D(1)→ Set.

45.2. If I is a strict interval, we shall put ∂I = {0, 1} and int(I) = I \ ∂I. We say
that a morphism of strict intervals f : I → J is proper if f(∂I) ⊆ ∂J . We shall say
that f : I → J is a contraction if it induces a bijection f−1(int(J)) → int(J). A
morphism f : I → J is a contraction iff it has a unique section. If A is the class
of contractions and B is the class of proper morphisms then the pair (A,B) is a
factorisation system in D(1).

45.3. The euclidian-ball of dimension n ≥ 0 Bn = {x ∈ Rn :|| x ||≤ 1} is the
main geometric example of an n-disk. The boundary of the ball is a sphere ∂Bn

of dimension n− 1. The sphere ∂Bn is the union of two disks, the lower an upper
hemispheres. In order to describe this structrure, it is convenient to use the projec-
tion q : Bn → Bn−1 which forget the last coordinate. Each fiber q−1(x) is a strict
interval except when x ∈ ∂Bn−1 in which case it is reduced to a point. There are
two canonical sections s0, s1 : Bn−1 → Bn obtained by selecting the bottom and
the top elements in each fiber. The image of s0 is the lower hemisphere of ∂Bn and
the image of s1 the upper hemisphere; observe that s0(x) = s1(x) iff x ∈ ∂Bn−1.

45.4. A bundle of intervals over a set B is an interval object in the category Set/B.
More explicitly, it is a map p : E → B whose fibers E(b) = p−1(b) have the
structure on an interval. The map p has two canonical sections s0, s1 : B → E
obtained by selecting the bottom and the top elements in each fiber. The interval
E(b) is degenerated iff s0(b) = s1(b). If s0(b) = s1(b), we shall say that b is in
the singular set indexAsingular set—textbf. The projection q : Bn → Bn−1 is an
example of bundle of intervals. Its singular set is the boundary ∂Bn−1. If we order
the coordinates in Rn we obtain a sequence of bundles of intervals:

1← B1 ← B2 ← · · ·Bn−1 ← Bn.

45.5. A n-disk D is defined to be a sequence of length n of bundles of intervals

1 = D0 ← D1 ← D2 ← · · ·Dn−1 ← Dn

such that the singular set of the projection p : Dk+1 → Dk is equal to the boundary
∂Dk := s0(Dk−1)∪s1(Dk−1) for every 0 ≤ k < n. By convention ∂D0 = ∅. If k = 0,
the condition means that the interval D1 is strict. It follows from the definition
that we have s0s0 = s1s0 and s0s1 = s1s1. The interior of Dk is defined to be
int(Dk) = Dk\∂Dk. There is then a decomposition

∂Dn '
n−1⊔
k=0

2 · int(Dk).

We shall denote by Bn the n-disks defined by the sequence of projections

1← B1 ← B2 ← · · ·Bn−1 ← Bn.

45.6. A morphism between two bundles of intervals E → B and E′ → B′ is a pair
of maps (f, g) in a commutative square

B

f

��

Eoo

g

��
B′ E′oo
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such that the map E(b)→ E′(f(b)) induced by g is a morphism of intervals for every
b ∈ B. A morphism f : D → D′ between n-disks is defined to be a commutative
diagram

1

��

D1
oo

f1

��

D2
oo

f2

��

· · ·oo Dn−1

fn−1

��

Dn
oo

fn

��
1 D′

1
oo D′

2
oo · · ·oo D′

n−1 D′
n

oo

and which the squares are morphisms of bundles of intervals. Every morphism
f : D → D′ can be factored as a surjection D → f(D) followed by an inclusion
f(D) ⊆ D′.

45.7. A planar tree T of height ≤ n, or a n-tree, is defined to be a sequence of maps

1 = T0 ← T1 ← T2 ← · · · ← Tn−1 ← Tn

with linearly ordered fibers. If D is a n-disk, then we have p(int(Dk)) ⊆ int(Dk−1)
for every 1 ≤ k ≤ n, where p is the projection Dk → Dk−1. The sequence of maps

1← int(D1)← int(D2)← · · · int(Dn−1)← int(Dn)

has the structure of a planar tree called the interior of D and denoted int(D).
Every n-tree T is the interior of a n-disk T̄ . By construction, we have T̄k = Tkt∂T̄k
for every 1 ≤ k ≤ n, where

∂T̄k =
k−1⊔
i=0

2 · Ti.

We shall say that T̄ is the closure of T . We have int(D) = D for every disk D.
A morphism of disks f : D → D′ is completely determined by its values on the
sub-tree int(D) ⊆ D. More precisely, a morphism of trees g : S → T is defined to
be a commutative diagram

1

��

S1
oo

g1

��

S2
oo

g2

��

· · ·oo Sn−1

gn−1

��

Snoo

gn

��
1 T1
oo T2

oo · · ·oo Tn−1 Tnoo

in which fk preserves the linear order on the fibers of the projections for each
1 ≤ k ≤ n. If Disk(n) denotes the category of n-disks and Tree(n) the category
of n-trees, then the forgetful functor Disk(n)→ Tree(n) has a left adjoint T 7→ T̄ .
If D ∈ Disk(n), then a morphism of trees T → D can be extended uniquely to a
morphism of disks T̄ → D. It follows that there a bijection between the morphisms
of disks D → D′ and the morphisms of trees int(D)→ D′.

45.8. We shall say that a morphism of disks f : D → D′ is proper if we have
f(int(Dk)) ⊆ int(D′

k) for every 1 ≤ k ≤ n. An proper morphism f : D →
D′ induces a morphism of trees int(f) : int(D) → int(D′). The functor T 7→
T̄ induces an equivalence between the category Tree(n) and the sub-category of
proper morphisms of Disk(n). We shall say that a morphism of disks f : D → D′

is a contraction if it induces a bijection f−1(int(D))→ int(D′). Every contraction
f : D → D′ has a section and this section is unique. If A is the class of contractions
and B is the class of proper morphisms then the pair (A,B) is a factorisation system
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in D(n). Every surjection f : D → D′ admits a factorisation f = up with p a
contraction and u a proper surjection and this factorisation is essentially unique.

45.9. A sub-tree of a n-tree T is a sequence of subsets Sk ⊆ Tk closed under the
projection Tk → Tk−1 for 1 ≤ k ≤ n and with S0 = 1. If T = int(D) then the
map C 7→ C ∩ T induces a bijection between the sub-disks of D and the sub-trees
of T . The set of sub-disks of D is closed under non-empty unions and arbitrary
intersections.

45.10. We shall say that a n-disk D is finite if Dn is a finite set. The degree | D |
of a finite disk D, is defined to be the number of edges of the tree int(D). By
definition,

| D |=
n∑
k=1

Card(int(Dk)).

We have
2(1+ | D |) = Card(Dn) + Card(int(Dn)).

The set
D∨= hom(D,Bn)

has the structure of a topological ball of dimension | D |. The space D∨ has
the following description. Let us transport the order relation on the fibers of the
planar tree T = int(D) to its edges. Then D∨ is homeomorphic to the space of
maps f : edges(T )→ [−1, 1] which satisfy the following conditions

• f(e) ≤ f(e′) for any two edges e ≤ e′ with the same target;
•

∑
e∈C f(e)2 ≤ 1 for every maximal chain C connecting the root to a leaf.

We can associate to f a map of n-disks f ′ : D → Bn by putting

f ′(x) = (f(e1), · · · , f(ek))

where (e1, · · · , ek) is the chain of edges which connects the root to the vertex x ∈ Tk.
The map f ′ : D → Bn is monic iff f belongs to the interior of the ball D∨. Every
finite n-disk D admits an embedding D → Bn.

45.11. We shall denote by Θ(n) the category opposite to D(n). We call an object
of Θ(n) a cell of height ≤ n. To every disk D ∈ D(n) corresponds a dual cell
D∗ ∈ Θ(n) and to every cell C ∈ Θ(n) corresponds a dual disk C∗ ∈ D(n). The
dimension of C is the degree of C∗. A Θ(n)-set is defined to be a functor

X : Θ(n)o → Set,

or equivalently a functor X : D(n)→ Set. We shall denote by Θ̂(n) the category of
Θ(n)-sets. If t is a finite n-tree we shall denote by [t] the cell dual to the disk t. The
dimension of [t] is the number of edges of t. We shall denote by Θ[t] the image of
[t] by the Yoneda functor Θ(n)→ Θ̂(n). The realisation of a cell C is defined to be
the topological ball R(C) = (C∗)∨, This defines a functor R : Θ(n)→ Top, where
Top denotes the category of compactly generated spaces. Its left Kan extension

R! : Θ̂(n)→ Top

preserves finite limits. We call R!(X) the geometric realisation of X.
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45.12. We shall say that a map f : C → E in Θ(n) is surjective (resp. injective) if
the dual map f∗ : E∗ → C∗ is injective (resp. surjective). Every surjection admits
a section and every injection admits a retraction. If A is the class of surjections and
B is the class of injections, then the pair (A,B) is a factorisation system in Θ(n).
If D′ and D” are sub-disks of a disk D ∈ D(n), then the intersection diagram

D′ ∩D” //

��

D”

��
D′ // D

is absolute, ie it is preserved by any functor with codomain D(n). Dually, for every
pair of surjections f : C → C ′ and g : C → C” in the category Θ(n), we have an
absolute pushout square (Eilenberg-Zilber lemma). square

C
g //

f

��

C”

��
C ′ // C ′”.

If X is a Θ(n)-set, we shall say that a cell x : Θ[t] → X of dimension n > 0 is
degenerate if it admits a factorisation Θ[t] → Θ[s] → X via a cell of dimension
< n, otherwise we shall say that x is non-degenerate. Every cell x : Θ[t] → X
admits a unique factorisation x = ypΘ[t]→ Θ[s]→ X with p a surjection and y a
non-degenerate cell.

45.13. For each 0 ≤ k ≤ n, let put bk = Θ[tk], where tk is the tree which consists of
a unique chain of k-edges. There is a unique surjection bk → bk−1 and the sequence
of surjections

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk βn in the topos Θ̂n. It is the generic n-disk in the
sense of classifying topos. The geometric realisation of βn is the euclidian n-disk
Bn.

45.14. We shall say that a map f : C → E in Θ(n) is open (resp. is an inflation)
if the dual map f∗ : E∗ → C∗ is proper (resp. is a contraction). Every inflation
admits a unique retraction. If A is the class of open maps in Θ(n) and B is the class
of inflations then the pair (A,B) is a factorisation system. Every monomorphism
of cells i : D → D′ admits a factorisation i = qu with u an open monomorphism
and q an inflation.

45.15. Recall that a globular set X is defined to be a sequence of pairs of maps
sn, tn : Xn+1 → Xn (n ≥ 0) such that we have

snsn+1 = sntn+1 and tnsn+1 = tntn+1

for every n ≥ 0. An element x ∈ Xn is called an n-cell; if n > 0 the element sn−1(x)
is said to be the source and the element tn−1(x) to be the target of x. A globular set
X can be defined to be a presheaf X : Go → Set on a category G of globes which can
be defined by generators and relations. By definition ObG = {G0, G1, . . .}; there
are two generating maps in0 , i

n
1 : Gn → Gn+1 for each n ≥ 0; the relations

in+1
0 in0 = in+1

1 in0 and in+1
0 in1 = in+1

1 in1 .
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is a presentation. The relations imply that there is exactly two maps i0, i1 : Gm →
Gn for each m < n. A globular set X is thus equipped with two maps s, t : Xn →
Xm for each m < n. A reflexive globular set is defined to be a globular set X
equipped with a sequence of maps un : Xn → Xn+1 such that snun = tnun = id.
By composing we obtain a map u : Xm → Xn for each m < n. There is also a
notion of globular set of height ≤ n for each n ≥ 0. It can be defined to be a
presheaf Gon → Set, where Gn is the full sub-category of G spanned by the globes
Gk with k ≤ n. Notice that a globular set of of height ≤ 0 is the same thing as a
set and that globular set of of height ≤ 1 is a graph.

45.16. Recall that a (strict) category is a graph s, t : X1 → X0, equipped with an
associative composition operation

◦ : X1 ×s,t X1 → X1

and a unit map u : X0 → X1. A functor between two categories is a map of graphs
f : X → Y which preserves composition and units. A (strict) ω-category is defined
to be a reflexive globular set X equipped with a category structure

◦k : Xn ×k Xn → Xn

for each 0 ≤ k < n, where Xn ×k Xn is defined by the pullback square

Xn ×k Xn

��

// Xn

t

��
Xn

s // Xk.

The unit map u : Xk → Xn is given by the reflexive graph structure. The operations
should obey the interchange law

(x ◦k y) ◦m (u ◦k v) = (x ◦m u) ◦k (y ◦m v)

for each k < m < n. A functor f : X → Y between ω-categories is a map of
globular sets which preserves composition and units. We shall denote by Catω the
category of ω-categories. The notion of (strict) n-category is defined similarly but
by using a globular set of height ≤ n. We shall denote by Catn the category of
n-categories.

45.17. We saw in 45.12 that the sequence of cells

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk in the category Θn. The lower and upper sections
s0, s1 : bk → b(k + 1) give the sequence the structure of a co-globular set of height
≤ n. This defines a functor b : Gn → Θn from which we obtain a functor

b! : Θn → Ĝn.
Let us see that the functor b! can be lifted to Catn,

Catn

U

��
Θn

b̃!
<<zzzzzzzzz b! // Ĝn

EEEE
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We shall denote by Θ(n) the category opposite toD(n) and by Θ(∞) the category
opposite to D(∞). We call an object of Θ(∞) a cell. To every disk D ∈ D(∞)
corresponds a dual cell D∗ ∈ Θ(∞) and to every cell C ∈ Θ(∞) corresponds a dual
disk C∗ ∈ D(∞). The dimension of C is defined to be the degree of C∗ and the
height of C to be the height of C∗. If t is a finite planar tree, we shall denote by
[t] the cell opposite to the disk t. The dimension of [t] is the number of edges of t
and the height of [t] is the height of t.

45.18. The height of a n-tree T is defined to be the largest integer k ≥ 0 such that
Tk 6= ∅. The height of a n-disk D is defined to be the height of its interior int(D).
If m < n, the obvious restriction functor Disk(n) → Disk(m) has a left adjoint
Exn : Disk(m) → Disk(n). The extension functor Exn is fully faithful and its
essential image is the full subcategory of Disk(n) spanned by the disks of height
≤ n. We shall identify the category Disk(m) with a full subcategory of Disk(n) by
adoptiong the same notation for a disk D ∈ Disk(m) and its extension Exn(D) ∈
Disk(n). We thus obtain an increasing sequence of coreflexive subcategories,

Disk(1) ⊂ Disk(2) ⊂ · · · ⊂ Disk(n).

Hence also an increasing sequence of coreflexive subcategories,

D(1) ⊂ D(2) ⊂ · · · ⊂ D(n).

The coreflection functor ρk : D(n)→ D(k) takes a disk T to the sub-disk T k ⊂ T ,
where T k is the k-truncation of T . We shall denote by D(∞) the union of the
categories D(n),

D(∞) =
⋃
n

D(n)

An object of D(∞) is an infinite sequence of bundles of finite intervals

1 = D0 ← D1 ← D2 ←

such that
• the singular set of the projection Dn+1 → Dn is the set ∂Dn := s0(Dn−1)∪
s1(Dn−1) for every n ≥ 0;
• the projection Dn+1 → Dn is bijective for n large enough.

We have increasing sequence of reflexive subcategories,

Θ(1) ⊂ Θ(2) ⊂ · · · ⊂ Θ(∞),

where Θ(k) is the full subcategory of Θ(∞) spanned by the cells of height ≤ k. By
45.1, we have Θ1 = ∆ A cell [t] belongs to ∆ iff the height of t is ≤ 1. If n ≥ 0 we
shall denote by n the unique planar tree height ≤ 1 with n edges. A cell [t] belongs
to ∆ iff we have t = n for some n ≥ 0. The reflection functor ρk : Θ(∞) → Θ(k)
takes a cell [t] to the cell [tk], where tk is the k-truncation of t.

45.19. A Θ-set of height ≤ n is defined to be a functor

X : Θ(n)o → Set,

or equivalently a functor X : D(n)→ Set. We shall denote by Θ̂(n) the category of
Θ-sets of height ≤ n. If t is a finite tree of height ≤ n, we shall denote by Θ[t] the
image of [t] by the Yoneda functor Θ(n)→ Θ̂(n). Consider the functor R : Θ(n)→
Top defined by putting R(C) = (C∗)∨ = Hom(C∗,Bn), where Top denotes the
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category of compactly generated spaces. Its left Kan extension R : Θ̂(n) → Top
preserves finite limits. We call R(X) the geometric realisation of the Θ-set X.

The left Kan extension of the inclusion

Θ1 ⊂ Θm

45.20. For each 0 ≤ k ≤ n, let us denote by Ek the n-disk whose interior is a
chain of k edges. The geometric realisation of dual cell bk = (Ek)∗ is the euclidian
k-ball Bk. There is a unique open map of disks Ek−1 → Ek, hence a map of cells
bk → bk−1. The sequence

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk βn in the topos Θ̂n. It is the generic n-disk in the
sense of classifying topos.

45.21. Recall that a globular set X is defined a sequence of sets (Xn : n ≥ 0)
equipped with a sequence of pair of maps sn, tn : Xn+1 → Xn such that we have

snsn+1 = sntn+1 and tnsn+1 = tntn+1

for every n ≥ 0. An element x ∈ Xn is called an n-cell; if n > 0 the element sn−1(x)
is said to be the source and the element tn−1(x) to be the target of x. A globular set
X can be defined to be a presheaf X : Go → Set on a category G of globes which can
be defined by generators and relations. By definition ObG = {G0, G1, . . .}; there
are two generating maps in0 , i

n
1 : Gn → Gn+1 for each n ≥ 0; the relations

in+1
0 in0 = in+1

1 in0 and in+1
0 in1 = in+1

1 in1 .

is a presentation. The relations imply that there is exactly two maps i0, i1 : Gm →
Gn for each m < n. A globular set X is thus equipped with two maps s, t : Xn →
Xm for each m < n. A reflexive globular set is defined to be a globular set X
equipped with a sequence of maps un : Xn → Xn+1 such that snun = tnun = id.
By composing we obtain a map u : Xm → Xn for each m < n. There is also a
notion of globular set of height ≤ n for each n ≥ 0. It can be defined to be a
presheaf Gon → Set, where Gn is the full sub-category of G spanned by the globes
Gk with k ≤ n. Notice that a globular set of of height ≤ 0 is the same thing as a
set and that globular set of of height ≤ 1 is a graph.

45.22. Recall that a (strict) category is a graph s, t : X1 → X0, equipped with an
associative composition operation

◦ : X1 ×s,t X1 → X1

and a unit map u : X0 → X1. A functor between two categories is a map of graphs
f : X → Y which preserves composition and units. A (strict) ω-category is defined
to be a reflexive globular set X equipped with a category structure

◦k : Xn ×k Xn → Xn

for each 0 ≤ k < n, where Xn ×k Xn is defined by the pullback square

Xn ×k Xn

��

// Xn

t

��
Xn

s // Xk.
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The unit map u : Xk → Xn is given by the reflexive graph structure. The operations
should obey the interchange law

(x ◦k y) ◦m (u ◦k v) = (x ◦m u) ◦k (y ◦m v)

for each k < m < n. A functor f : X → Y between ω-categories is a map of
globular sets which preserves composition and units. We shall denote by Catω the
category of ω-categories. The notion of (strict) n-category is defined similarly but
by using a globular set of height ≤ n. We shall denote by Catn the category of
n-categories.

45.23. We saw in 45.20 that the sequence of cells

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk in the category Θn. The lower and upper sections
s0, s1 : bk → b(k + 1) give the sequence the structure of a co-globular set of height
≤ n. This defines a functor b : Gn → Θn from which we obtain a functor

b! : Θn → Ĝn.

Let us see that the functor b! can be lifted to Catn,

Catn

U

��
Θn

b̃!
<<zzzzzzzzz b! // Ĝn

if 0 ≤ k ≤ n, let us denote by Ek the n-disk whose interior is a chain of k edges.
There is a unique element ek ∈ int(Ek)k. The interval over ek has exactly two
points. There are two map of disks p0, p1 : Ek → Ek−1. The first takes ek ∈ Ek
to the top element of the interval over ek−1 ∈ Ek−1, and the second to the top
element of the interval over ek−1 ∈ Ek−1.

There is a unique map of disks ek−1 → ek and two maps of disks
let us denote by ek the n-disk whose interior is a chain of k edges. The geometric

realisation of the cell bk = ∗ek is the euclidian n-ball. There is a unique map of
disks ek−1 → ek, hence also a unique map of cells bk → bk−1. The sequence

1 = b0 ← b1 ← b2 ← · · · bn

has the structure of a n-disk b in the topos Θ̂n. It is the generic n-disk in the sense
of classifying topos.

45.24. The composite D ◦ E of a n-disk D with a m-disk E is the m+ n disk

1 = D0 ← D1 ← · · · ← Dn ← (Dn, ∂Dn)× E1 ← · · · ← (Dn, ∂Dn)× Em,

where (Dn, ∂Dn)× Ek is defined by the pushout square

∂Dn × Ek //

��

Dn × Ek

��
Ek // (Dn, ∂Dn)× Ek.

This composition operation is associative.
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45.25. The category S(n) = [(∆n)o,Set], contains n intervals

Ik = 1�1� · · · 1�I�1 · · · 1�1,

one for each 0 ≤ k ≤ n. It thus contain a n-disk I(n) : I1 ◦ I2 ◦ · · · ◦ In. Hence there
is a geometric morphism

(ρ∗, ρ∗) : S(n) → Θ̂,

such that ρ∗(b) = I(n). We shall say that a map of Θn-sets f : X → Y is a weak
categorical equivalence if the map ρ∗(f) : ρ∗(X) → ρ∗(Y ) is a weak equivalence in
the model structure for reduced Segal n-spaces. The category Θ̂n admits a model
structure in which the weak equivalences are the weak categorical equivalences and
the cofibrations are the monomorphisms. We shall say that a fibrant object is
a Θn-category. The model structure is cartesian closed and left proper. We call
it the model structure for Θn-categories. We denote by ΘnCat the category of
Θn-categories. The pair of adjoint functors

ρ∗ : Θ̂n → S(n) : ρ∗

is a Quillen equivalence between the model structure for Θn-categories and the
model structure for reduced Segal n-spaces.

46. Higher quasi-categories

EEE
A n-quasi-category can be defined to be a fibrant object with respect to a certain

model structure structure on the category of presheaves on certain category Θn.
The category Θn was introduced for this purpose by the author in 1998. It was first
defined as the opposite of the category of finite n-disks. It was later conjectured
(jointly by Batanin, Street and the author) to be isomorphic to a category T ∗n
introduced by Batanin in his theory of higher operads [?]. The category T ∗n is a full
subcategory of the category of strict n-categories. The conjecture was proved by
Makkai and Zawadowski in [MZ] and by Berger in [Ber]. The model structure for n-
quasi-categories can be described in various ways. In principle, the model structure
for n-quasi-categories can be described by specifying the fibrant objects, since the
cofibrations are supposed to be the monomorphisms. But a complete list of the
filling conditions defining the n-quasi-categories is still missing (a partial list was
proposed by the author in 1998). An alternative approach is find a way of specifying
the class Wcatn of weak equivalences (the weak categorical n-equivalences). Let
us observe that the class Wcat in S can be extracted from the canonical map
i : ∆ → U1, since a map of simplicial sets u : A → B is a weak categorical
equivalence if the arrow i!(u) : i!A → i!B is invertible in U1, where i! : ∆̂ → U1

denotes the left Kan extension of i along the Yoneda functor. In general, it should
suffices to exibit a map i : Θn → Un with values in a cocomplete quasi-category
chosen appropriately. The quasi-category U1 is equivalent to the quasi-category of
reduced category object in U. It seems reasonable to suppose that Un is the quasi-
category of reduced n-category object in U. A n-category object in U is defined
to be a map C : Θo

n → U satisfying a certain Segal condition. A n-category C
is reduced if every invertible cell of C is a unit. The notion of reduced n-category
object is essentially algebraic. Hence the quasi-category Un is cocomplete, since it is
locally presentable. The canonical map i : Θn → Un is obtained from the inclusion
of Θn in the category of reduced strict n-categories. A map u : A → B in Θ̂n is
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then defined to be a weak categorical n-equivalence if the arrow i!(u) : i!A → i!B

is invertible in Un, where i! : Θ̂n → Un denotes the left Kan extension of i along
the Yoneda functor. The model category (Θ̂n,Wcatn) is cartesian closed and its
full subcategory of fibrant objects QCatn has the structure of a simplicial category
enriched over Kan complexes. We conjecture that the coherent nerve of QCatn is
equivalent to Un. There is another description of Wcatn which is conjectured by
Cisinski and the author. It is easy to show that the localizer Wcat is generated by
inclusions I[n] ⊆ ∆[n] (n ≥ 0), where I[n] is the union of the edges (i − 1, i) for
1 ≤ i ≤ n. The simplicial set I[n] is said to be the spine of ∆[n]. The objects of
Θn are indexed by finite planar trees of height ≤ n. For each tree t, let us denote
by Θ[t] the representable presheaf generated by the object [t] of Θn. The spine
S[t] ⊆ Θ[t] is the union of the generators of the n-category [t] (it is the globular
diagram associted to t by Batanin). It is conjectured that Wcatn is the localizer
generated by the inclusions S[t] ⊆ Θ[t].

EEEE

46.1. There is a notion of n-fold Segal space for every n ≥ 1. Recall that the cate-
gory [(∆o)n,S] = S(n)S of n-fold simplicial spaces admits a Reedy model structure
in which the weak equivalences are the level wise weak homotopy equivalences and
the cofibrations are the monomorphisms. A n-fold Segal space is defined to be a
Reedy fibrant n-fold simplicial space C : (∆o)n → S which satisfies the Segal condi-
tion ?? in each variable. The Reedy model structure admits a Bousfield localisation
in which the fibrant objects are the n-fold Segal spaces. The model structure is
simplicial. It is the model structure for n-fold Segal spaces. The coherent nerve
of the simplicial category of n-fold Segal spaces is equivalent to the quasi-category
Catn(Typ).

46.2. There is a notion of n-fold Rezk space for every n ≥ 1. It is a n-fold Segal
space which satisfies the Rezk condition ?? in each variable. The Reedy model
structure admits a Bousfield localisation in which the fibrant objects are the n-fold
Rezk spaces. The model structure is simplicial. It is the model structure for n-fold
Rezk spaces. The coherent nerve of the simplicial category of n-fold Rezk spaces is
equivalent to the quasi-category RCatn(Typ).

46.3. There is a notion of Segal n-space for every n ≥ 1. It is defined by induction
on n ≥ 1. If n = 1, it is a Segal space C : ∆o → S. If n > 1, it is a n-fold Segal
space C : ∆o → S(n−1)S such that

• Ck is a Segal n-space for every k ≥ 0,
• C0 : (∆o)n−1 → S is homotopically constant.

The model structure for n-fold Segal spaces admits a Bousfield localisation in which
the fibrant objects are the Segal n-spaces. The model structure is simplicial. It is
the model structure for Segal n-spaces. The coherent nerve of the simplicial category
of Segal n-spaces is equivalent to the quasi-category Catn(Typ).

46.4. There is a notion of Rezk n-space for every n ≥ 1. By definition, it is a Segal
n-space which satisfies the Rezk condition ?? in each variable. The model structure
for Segal n-spaces admits a Bousfield localisation for which the fibrant objects are
the Rezk n-spaces. It is the model structure for Rezk n-spaces. The coherent
nerve of the simplicial category of Rezk n-spaces is equivalent to the quasi-category
RCatn(Typ).
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46.5. There is a notion of n-fold quasi-category for every n ≥ 1. If n = 1, this is
a quasi-category. The projection p : ∆n × ∆ → ∆n is left adjoint to the functor
i : ∆n → ∆n×∆ defined by putting i(a) = (0, [0]) for every n ≥ 0. We thus obtain
a pair of adjoint functors

p∗ : S(n) ↔ S(n+1) : i∗.

Let us say that a map f : X → Y in S(n) is a weak equivalence if the map p∗(f) is a
weak equivalence in the model structure for n-fold Rezk spaces. Then the category
S(n) admits a unique Cisinski model structure with these weak equivalences. We
call it the model structure for n-fold quasi-categories, A fibrant object for this model
structure is a n-fold quasi-category. The pair of adjoint functors (p∗, i∗) is a Quillen
equivalence between the model structure for n-fold quasi-categories and the model
structure for n-fold Rezk spaces.

46.6. There is box product functor

� : S(m) × S(n) → S(m+n)

for everym,n ≥ 0. The functor is a left Quillen functor of two variables with respect
to the model structures for p-fold quasi-categories, where p ∈ {m,n,m+ n}.

46.7. There is a notion of quasi-n-category for every n ≥ 1. Let p∗ : S(n) ↔
S(n+1) : i∗ be the pair of adjoint functors of 46.5. Let us say that a map f : X → Y
in S(n) is a weak equivalence if the map p∗(f) is a weak equivalence in the model
structure for Rezk n-spaces. Then the category S(n) admits a unique Cisinski model
structure with these weak equivalences. We call it the model structure for quasi-n-
categories. A fibrant object for this model structure is a quasi-n-category. The pair
of adjoint functors (p∗, i∗) is a Quillen equivalence between the model structure for
quasi-n-categories and the model structure for Rezk n-spaces.

46.8. The composite D ◦ E of a n-disk D with a m-disk E is the m+ n disk

1 = D0 ← D1 ← · · · ← Dn ← (Dn, ∂Dn)× E1 ← · · · ← (Dn, ∂Dn)× Em,

where (Dn, ∂Dn)× Ek is defined by the pushout square

∂Dn × Ek //

��

Dn × Ek

��
Ek // (Dn, ∂Dn)× Ek.

This composition operation is associative.

46.9. The category S(n) = [(∆n)o,Set], contains n intervals

Ik = 1�1� · · · 1�I�1 · · · 1�1,

one for each 0 ≤ k ≤ n. It thus contain a n-disk I(n) : I1 ◦ I2 ◦ · · · ◦ In. Hence there
is a geometric morphism

(ρ∗, ρ∗) : S(n) → Θ̂,

such that ρ∗(b) = I(n). We shall say that a map of n-cellular sets f : X → Y is a
weak categorical equivalence if the map ρ∗(f) : ρ∗(X)→ ρ∗(Y ) is a weak equivalence
in the model structure for quasi-n-categories. The category Θ̂n admits a model
structure in which the weak equivalences are the weak categorical equivalences and
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the cofibrations are the monomorphisms. We say that a fibrant object is a n-quasi-
category The model structure is cartesian closed and left proper. We call it the model
structure for n-quasi-categories. We denote the category of n-quasi-categories by
QCatn. The pair of adjoint functors

ρ∗ : Θ̂n → S(n) : ρ∗

is a Quillen equivalence between the model structure for n-quasi-categories and the
model structure for quasi-n-categories.

47. Appendix on category theory

47.1. We fix three arbitrary Grothendieck universes U1 ∈ U2 ∈ U3. Sets in U1

are said to be small, sets in U2 are said to be large and sets in U3 are said to be
extra-large. Beware that a small set is large and that a large set is extra-large. We
denote by Set the category of small sets and by SET the category of large sets. A
category is said to be small (resp. large, extra-large) if its set of arrows belongs to
U1 (resp. U2, U3). The category Set is large and the category SET extra-large.
We denote by Cat the category of small categories and by CAT the category of
large categories. The category Cat is large and the category CAT is extra-large. A
large category is locally small if its hom sets are small. We shall often denote small
categories by ordinary capital letters and large categories by curly capital letters.

47.2. We shall denote by Ao the opposite of a category A. It can be useful to
distinguish between the objects of A and Ao by writing ao ∈ Ao for each object
a ∈ A, with the convention that aoo = a. If f : a → b is a morphism in A, then
fo : bo → ao is a morphism in Ao. Beware that the opposite of a functor F : A→ B
is a functor F o : Ao → Bo. A contravariant functor F : A → B between two
categories is defined to be a (covariant) functor Ao → B; if a ∈ A, we shall often
write F (a) instead of F (ao). .

47.3. We say that a functor u : A → B is biunivoque if the map Ob(u) : ObA →
ObB is bijective. Every functor u : A → B admits a factorisation u = pq with q a
biunivoque functor and p a fully faithful functor. The factorisation is unique up to
unique isomorphism. It is called the Gabriel factorisation of the functor u.

47.4. The categories Cat and CAT are cartesian closed. We shall denote by BA

or [A,B] the category of functors A → B between two categories. If E is a locally
small category, then so is the category EA = [A, E ] for any small category A. Recall
that a presheaf

on a small category A is defined to be a functor X : Ao → Set. A map of
presheaves X → Y is a natural transformation. The presheaves on A form a locally
small category

Â = SetA
o

= [Ao,Set].

The category Â is cartesian closed and we shall denote by Y X . the presheaf of
maps X → Y between two presheaves.
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47.5. The Yoneda functor yA : A → Â associates to an object a ∈ A the presheaf
A(−, a). The Yoneda lemma asserts that for any object a ∈ A and any presheaf
X ∈ Â, the evaluation x 7→ x(1a) induces a bijection between the set of maps
x : A(−, a)→ X and X(a). We shall identify these two sets by adopting the same
notation for a map x : A(−, a) → X and the element x(1a) ∈ X(a). The Yoneda
functor is fully faithful. and we shall often regard it as an inclusion Ao ⊂ Â by
adopting the same notation for an object a ∈ A and the presheaf A(−, a). In this
notation, the map xu : a → X obtained by composing a map x : b → X with a
morphism u : a → b in A is the element X(u)(x) = X(u)(x(1b)) ∈ X(a). We say
that a presheaf X is represented by an element x ∈ X(a) if the map x : a → X is
invertible in Â. A presheaf X is said to be representable if it can be represented by a
pair (a, x). Recall that the category of elements El(X) of a presheaf X : A→ Set
is the category whose objects are the pairs (a, x), where a ∈ A and x ∈ X(a),
and whose arrows (a, x) → (b, y) are the morphism f : a → b in A such that
X(f)(y) = x. It follows from Yoneda lemma that we have El(X) = A/X, where
A/X is the full subcategory of Â/X whose objects are the maps a→ X with a ∈ A.
A presheaf X is represented by an element x ∈ X(a) iff the object (a, x) of El(X)
is terminal. Thus, a presheaf X representable iff its category of elements El(X)
has a terminal object.

47.6. The dual Yoneda functor yoA : Ao → [A,Set] associates to an object a ∈ A
the set valued functor A(a,−). The Yoneda lemma asserts that for any object
a ∈ A and any functor F : A→ Set, the evaluation x 7→ x(1a) induces a bijection
between the set of natural transformations x : A(a,−) → F and F (a). We shall
identify these two sets by adopting the same notation for a natural transformation
x : A(a,−) → F and the element x(1a) ∈ F (a). The dual Yoneda functor is fully
faithful. and we shall often regard it as an inclusion Ao ⊂ [A,Set] by adopting the
same notation for an object ao ∈ Ao and the presheaf A(a,−). We say that a functor
F : A → Set is represented by an element x ∈ F (a) if the corresponding natural
transformation x : ao → X is invertible. The functor F is said to be representable if
it can be represented by an element (a, x). The category of elements of a (covariant)
functor F : A→ Set is the category el(F ) whose objects are the pairs (a, x), where
a ∈ A and x ∈ F (a), and whose arrows (a, x)→ (b, y) are the morphisms f : a→ b
in A such that F (f)(x) = y. The functor X is represented by an element x ∈ F (a)
iff (a, x) is an initial object of the category el(X). Thus, F representable iff the
category el(F ) has an initial object.

47.7. Recall that a 2-category is a category enriched over Cat. An object of a 2-
category E is often called a 0-cell. If A and B are 0-cells, an object of the category
E(A,B) is called a 1-cell and an arrow is called a 2-cell. We shall often write
α : f → g : A → B to indicate that α is a 2-cell with source the 1-cell f : A → B
and target the 1-cell g : A → B. The composition law in the category E(A,B) is
said to be vertical and the composition law

E(B,C)× E(A,B)→ E(A,C)

horizontal. The vertical composition of a 2-cell α : f → g with a 2-cell β : g → h
is a 2-cell denoted by βα : f → h. The horizontal composition of a 2-cell α :
f → g : A → B with a 2-cell and β : u → v : B → C is a 2-cell denoted by
β ◦ α : uf → vg : A→ C.
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47.8. There is a notion of adjoint in any 2-category. If u : A→ B and v : B → A
are 1-cells in a 2-category, an adjunction (α, β) : u a v is a pair of 2-cells α : 1A →
vu and β : uv → 1B for which the adjunction identities hold:

(β ◦ u)(u ◦ α) = 1u and (v ◦ β)(α ◦ v) = 1v.

The 1-cell u is the left adjoint and the 1-cell v the right adjoint. The 2-cell α is
the unit of the adjunction and the 2-cell β the counit. Each of the 2-cells α and β
determines the other.

47.9. In any 2-category, there is a notion of left (and right) Kan extension of 1-cell
f : A → X along a 1-cell u : A → B. More precisely, the left Kan extension of f
along u is a pair (g, α) where g : B → X and α : f → gu is a 2-cell which reflects the
object f ∈ Hom(A,X) along the functor Hom(u,X) : Hom(B,X)→ Hom(A,X).
The right Kan extension of f along u is a pair (g, β) where g : B → X and
β : gu→ f is a 2-cell which coreflects the object f ∈ Hom(A,X) along the functor
Hom(u,X) : Hom(B,X)→ Hom(A,X).

47.10. Recall that a full subcategory A ⊆ B is said to be reflective if the inclusion
functor A ⊆ B has a left adjoint r : B → A called a reflection. In general, the
right adjoint v of an adjunction u : A ↔ B : v is fully faithful iff the counit of the
adjunction β : uv → 1B is invertible, in which case u is said to be a reflection and
v to be reflective. These notions can be defined in any 2-category. The left adjoint
u of an adjunction u : A ↔ B : v is said to be a reflection if the counit of the
adjunction β : uv → 1B is invertible, in which case v is said to be reflective. There
is a dual notion of coreflection: the right adjoint v of an adjunction u : A↔ B : v
is said to be a coreflection if the unit of the adjunction α : 1A → vu is invertible,
in which case u is said to be coreflective.

47.11. If A and B are small categories, a functor F : Ao × B → Set is called a
distributor F : A→ B. The composite two distributors F : A→ B and G : B → C)
is the distributor G ◦ F : A→ C obtained by putting

G ◦ F = (F ⊗B G)(a, c) =
∫ b∈B

F (a, b)×G(b, c).

This composition operation is coherently associative, and the distributor hom :
Ao × A → S is a unit. This defines a bicategory Dist whose objects are the small
categories. The bicategory Dist is biclosed. This means that the composition
functor ◦ is divisible on each side. See 51.25 for this notion. For every H ∈
Dist(A,C), F ∈ Dist(A,B) and G ∈ Dist(B,C) we have

G\H = HomC(G,H) and H/F = HomA(F,H).

Notice that Dist(1, A) = [A,Set] and that Dist(A, 1) = Â. To every distributor
F ∈ Dist(A,B) we can associate a cocontinuous functor − ◦ F : Dist(B, 1) →
Dist(A, 1). This defines an equivalence between the category Dist(A,B) and
the category of cocontinuous functors B̂ → Â. Dually, to every distributor F ∈
Dist(A,B) we can associate a cocontinuous functor F◦− : Dist(1, A)→ Dist(1, B).
This defines an equivalence between Dist(A,B) and the category of cocontinuous
functors [A,Set]→ [B,Set].
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47.12. The bicategory Dist is symmetric monoidal. The tensor product of F ∈
Dist(A,B) and G ∈ Dist(C,D) is the distributor F ⊗ G ∈ Dist(A × C,B × D)
defined by putting

(F ×G)((a, c), (b, d)) = F (a, b)×G(c, d)

for every quadruple of objects (a, b, c, d) ∈ A×B × C ×D.

47.13. The symmetric monoidal bicategory Dist is compact closed. The dual of
a category A is the opposite category Ao and the adjoint of a distributor F ∈
Dist(A,B) is the distributor F ∗ ∈ Dist(Bo, Ao) obtained by putting F ∗(bo, ao) =
F (a, b). The unit of the adjunction A ` Ao is a distributor ηA ∈ Dist(1, Ao × A)
and the counit a distributor εA ∈ Dist(A × Ao, 1). We have ηA = εA = HomA :
Ao ×A→ Set. The adjunction A ` Ao is defined by a pair of invertible 2-cells,

αA : IA ' (εA ⊗A) ◦ (A⊗ ηA) and βA : IAo ' (Ao ⊗ εA) ◦ (ηA ⊗Ao).

each of which is defined by using fthe canonical isomorphism∫
b∈A

∫
c∈A

A(a, b)×A(b, c)×A(c, d) ' A(a, d).

47.14. The trace of a distributor F ∈ Dist(A,A) defined by putting

TrA(F ) = εA ◦ (F ⊗Ao) ◦ ηAo

is isomorphic to the coend of the functor F : Ao ×A→ Set

coendA(F ) =
∫ a∈A

F (a, a).

47.15. To every functor u : A→ B in Cat is associated a pair of adjoint functor

u! : [Ao,Set]↔ [Bo,Set] : u∗.

We have u∗(Y ) = Γ(u) ⊗B Y = Y ◦ Γ(u) for every Y ∈ [Bo,Set], where the
distributor Γ(u) ∈ Dist(A,B) obtained by putting Γ(u)(a, b) = B(ua, b) for every
pair of objects a ∈ A and b ∈ B. We have u!(X) = Γ∗(u) ⊗A X = X ◦ Γ∗(u) for
every X ∈ [Ao,Set], where the distributor Γ(u) ∈ Dist(B,A) is defined by putting
Γ∗(u)(b, a) = B(b, ua). Notice that the functor u∗ has a right adjoint u∗ and that
we have u∗(X) = X/Γ(u) for every X ∈ [Ao,Set].

47.16. Recall that a set S of objects in a category A is called a sieve if the impli-
cation

target(f) ∈ S ⇒ source(f) ∈ S

is true for every arrow f ∈ A. We shall often identify S with the full subcategory
of A spanned by S. A cosieve in A is defined dually. The opposite of a sieve S ⊆ A
is a cosieve So ⊆ Ao. For any sieve S ⊆ A (resp. cosieve), there exists a unique
functor p : A→ I such that S = p−1(0) (resp. S = p−1(1)). We shall say that the
sieve p−1(0) and the cosieve p−1(1) are complementary. Complementation defines
a bijection between the sieves and the cosieves of A.
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47.17. We shall say that an object of the category Cat/I is a categorical cylinder,
or just a cylinder if the context is clear. The cobase of a cylinder p : C → I is
defined to be the the sieve C(0) = p−1(0) and its base to be the cosieve C(1) =
p−1(1). If i denotes the inclusion ∂I ⊂ I, then the functor

i∗ : Cat/I → Cat×Cat

has left adjoint i! and a right adjoint i∗. The functor i∗ is a Grothendieck bifibration,
since it is an isofibration and the functor i! is fully faithful. Its fiber at (A,B)
is the category Cyl(A,B) of cylinders with cobase A and base B. The cylinder
i!(A,B) = AtB is the initial object of Cyl(A,B) and the cylinder i∗(A,B) = A?B
is the terminal object.

47.18. The category Cat/I is cartesian closed. The model structure (Cat, Eq)
induces a cartesian closed model structure on the category Cat/I.

47.19. To every cylinder C ∈ Cyl(A,B) we can associate a distributor D(C) ∈
Dist(A,B) by putting D(C)(a, b) = C(a, b) for every pair of objects a ∈ A and
b ∈ B. The functor

D : Cyl(A,B)→ Dist(B,A)

so defined is an equivalence of categories. The inverse equivalence associate to a
distributor F : Ao × B the collage cylinder C = col(F ) = A ?F B constructed as
follows: Ob(C) = Ob(A) tOb(B) and for x, y ∈ Ob(A) tOb(B),

C(x, y) =


A(x, y) if x ∈ A and y ∈ A
B(x, y) if x ∈ B and y ∈ B
F (x, y) if x ∈ A and y ∈ B
∅ if x ∈ B and y ∈ A.

Composition of arrows is obvious. The category C has the structure of a cylinder
with base B and cobase A. The resulting functor

col : Dist(A,B)→ Cyl(A,B)

is an equivalence of categories. The collage of the distributor hom : Ao ×A→ Set
is the cylinder A×I; the collage of the terminal distributor 1 : Ao×B → Set is the
join A ? B; the collage of the empty distributor ∅ : Ao ×A→ Set is the coproduct
A tA.

48. Appendix on factorisation systems

In this appendix we study the notion of factorisation system. We give a few
examples of factorisation systems in Cat.

Definition 48.1. If E is a category, we shall say that a pair (A,B) of classes of
maps in E is a (strict) factorisation system if the following conditions are satisfied:

• each class A and B is closed under composition and contains the isomor-
phisms;
• every map f : A → B admits a factorisation f = pu : A → E → B with
u ∈ A and p ∈ B, and the factorisation is unique up to unique isomorphism.

We say that A is the left class and B the right class of the weak factorisation system.
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In this definition, the uniqueness of the factorisation f = pu : A → E → B
means that for any other factorisation f = p′u′ : A → E′ → B with u′ ∈ A and
p′ ∈ B, there exists a unique isomorphism i : E → F such that iu = u′ and p′i = p,

A

u

��

u′ // E′

p′

��
E p

//

i

>>}
}

}
}

B.

Recall that a class of maps M in a category E is said to be invariant under
isomorphisms if for every commutative square

A //

u

��

A′

u′

��
B // B′

in which the horizontal maps are isomorphisms we have u ∈ M ⇔ u′ ∈ M. It
is obvious from the definition that each class of a factorisation system is invariant
under isomorphism.

Definition 48.2. We shall say that a class of maps M in a category E has the
right cancellation property if the implication

vu ∈M and u ∈M ⇒ v ∈M

is true for any pair of maps u : A → B and v : B → C. Dually, we shall say that
M has the left cancellation property if the implication

vu ∈M and v ∈M ⇒ u ∈M

is true.

Proposition 48.3. The intersection of the classes of a factorisation system (A,B)
is the class of isomorphisms. Moreover,

• the class A has the right cancellation property;
• the class B has the left cancellation property.

Proof: If a map f : A→ B belongs to A ∩ B, consider the factorisations f = f1A
and f = 1Bf . We have 1A ∈ A and f ∈ B in the first, and we have f ∈ A and
1B ∈ B in the second. Hence there exists an isomorphism i : B → A such that
if = 1A and fi = 1B . This shows that f is invertible. If u ∈ A and vu ∈ A, let us
show that v ∈ A. For this, let us choose a factorisation v = ps : B → E → C, with
s ∈ A and p ∈ B, and put w = vu. Then w admits the factorisation w = p(su)
with su ∈ A and p ∈ B and the factorisation w = 1C(vu) with vu ∈ A and 1C ∈ B.
Hence there exists an isomorphism i : E → C such that i(su) = vu and 1Ci = p.
Thus, p ∈ A since p = i and every isomorphism belongs to A. It follows that
v = ps ∈ A, since A is closed under composition.
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Definition 48.4. We say that a map u : A→ B in a category E is left orthogonal
to a map f : X → Y , or that f is right orthogonal to u, if every commutative
square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a unique diagonal filler d : B → X (that is, du = x and fd = y). We shall
denote this relation by u⊥f .

Notice that the condition u⊥f means that the square

Hom(B,X)

Hom(B,f)

��

Hom(u,X) // Hom(A,X)

Hom(A,f)

��
Hom(B, Y )

Hom(u,Y )
// Hom(A, Y )

is cartesian. If A and B are two classes of maps in E , we shall write A⊥B to indicate
that we have a⊥b for every a ∈ A and b ∈ B.

If M is a class of maps in a category E , we shall denote by ⊥M (resp. M⊥)
the class of maps which are left (resp. right) orthogonal to every map inM. Each
class ⊥M andM⊥ is closed under composition and contains the isomorphisms. The
class ⊥M has the right cancellation property and the classM⊥ the left cancellation
property. If A and B are two classes of maps in E , then

A ⊆ ⊥B ⇔ A⊥B ⇔ A⊥ ⊇ B.

Proposition 48.5. If (A,B) is a factorisation system then

A = ⊥B and B = A⊥.

Proof Let us first show that we have A⊥B. If a : A → A′ is a map in A and
b : B → B′ is a map in B, let us show that every commutative square

A

a

��

u // B

b

��
A′

u′
// B′

has a unique diagonal filler. Let us choose a factorisation u = ps : A → E → B
with s ∈ A and p ∈ B and a factorisation u′ = p′s′ : A′ → E′ → B′ with s′ ∈ A
and p′ ∈ B. From the commutative diagram

A

a

��

s // E
p // B

b

��
A′

s′
// E′

p′
// B′,
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we can construct a square

A

s′a

��

s // E

bp

��
E′

p′
// B′.

Observe that s ∈ A and bp ∈ B and also that s′a ∈ A and p′ ∈ B. By the uniqueness
of the factorisation of a map, there is a unique isomorphism i : E′ → E such that
is′a = s and bpi = p′:

A

a

��

s // E
p // B

b

��
A′

s′
// E′

p′
//

i

OO

B′.

The composite d = pis′ is then a diagonal filler of the first square

A

a

��

u // B

b

��
A′

u′
//

d

=={
{

{
{

B′.

It remains to prove the uniqueness of d. Let d′ be an arrow A′ → B such that
d′a = u and bd′ = u′. Let us choose a factorisation d′ = qt : A′ → F → B with
t ∈ A and q ∈ B. From the commutative diagram

A

a

��

s // E
p // B

b

��

F

q
=={{{{{{{{

A′
s′
//

t

>>||||||||
E′

p′
// B′.

we can construct two commutative squares

A

ta

��

s // E

p

��
F q

// B,

A′

s′

��

t // F

bq

��
E′

p′
// B′.

Observe that we have ta ∈ A and q ∈ B. Hence there exists a unique isomorphism j :
F → E such that jta = s and pj = q. Similarly, there exists a unique isomorphism
j′ : E′ → F such that j′s′ = t and bqj′ = p′. The maps fits in the following
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commutative diagram,

A

a

��

s // E
p // B

b

��

F

j

OO
q

=={{{{{{{{

A′
s′
//

t

>>||||||||
E′

p′
//

j′

OO

B′.

Hence the diagram

A

s′a

��

s // E

bp

��
E′

p′
//

jj′
=={{{{{{{{
B′.

commutes. It follows that we have jj′ = i by the uniqueness of the isomorphism
between two factorisations. Thus, d′ = qt = (pj)(j′s′) = pis′ = d. The relation
A⊥B is proved. This shows that A ⊆ ⊥B. Let us show that ⊥B ⊆ A. If a map
f : A→ B is in ⊥B. let us choose a factorisation f = pu : A→ C → B with u ∈ A
and p ∈ B. Then the square

A

f

��

u // C

p

��
B

1B

// B

has a diagonal filler s : B → C, since f ∈ ⊥B. We have ps = 1B . Let us show that
sp = 1C . Observe that the maps sp and 1C are both diagonal fillers of the square

A

u

��

u // C

p

��
C p

// B.

This proves that sp = 1C by the uniqueness of a diagonal filler. Thus, p ∈ A, since
every isomorphism is in A. Thus, f = pu ∈ A.

Corollary 48.6. Each class of a factorisation system determines the other.

48.1. We shall say that a class of mapsM in a category E is closed under limits if
the full subcategory of EI spanned by the maps inM is closed under limits. There
is a dual notion of a class of maps closed under colimits.

Proposition 48.7. The classM⊥ is closed under limits for any class of mapsM
in a category E. Hence the right class of a factorisation system is closed under
limits.
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Proof: For any pair of morphisms u : A → B and f : X → Y in E , we have a
commutative square Sq(u, f):

E(B,X)

E(B,f)

��

E(u,X) // E(A,X)

E(A,f)

��
E(B, Y )

E(u,Y )
// E(A, Y ).

The resulting functor

Sq : (Eo)I × EI → SetI×I

continuous in each variable. An arrow f ∈ E belongs toM⊥ iff the square Sq(u, f)
is cartesian for every arrow u ∈M. This proves the result, since the full subcategory
of SetI×I spanned by the cartesian squares is closed under limits. QED

Recall that a map u : A → B in a category E is said to be a retract of another
map v : C → D, if u is a retract of v in the category of arrows EI . A class of maps
M in a category E is said to be closed under retracts if the retract of a map inM
belongs toM.

Corollary 48.8. The class M⊥ is closed under retracts for any class of maps M
in a category E. Each class of a factorisation system is closed under retracts.

48.2. Let (A,B) be a factorisation system in a category E . Then the full subcate-
gory of EI spanned by the elements of B is reflective. Dually, the full subcategory
of EI spanned by the elements of A is coreflective.
Proof: Let us denote by B′ the full subcategory of EI whose objects are the arrows
in B. Every map u : A→ B admits a factorisation u = pi : A→ E → B with i ∈ A
and p ∈ B. The pair (i, 1B) defines an arrow u → p in EI . Let us show that the
arrow reflects u in the subcategory B′. For this, it suffices to show that for every
arrow f : X → Y in B and every commutative square

A

u

��

x // X

f

��
B y

// Y,

there exists a unique arrow z : E → X such that fz = yp and zi = x. But this is
clear, since the square

A

i

��

x // X

f

��
E yp

// Y.

has a unique diagonal filler by 48.5.
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Recall that the projection A×B E → A in a pullback square

A×B E

��

// E

��
A // B

is said to be the base change of the map E → B along the map A→ B. A class of
maps B in a category E is said to be closed under base changes if the base change
of a map in B along any map in E belongs to B when this base change exists. The
classM⊥ is closed under base changes for any class of mapsM⊆ E . In particular,
the right class of a factorisation system is closed under base change. Recall that
the map B → E tA B in a pushout square

A

��

// B

��
E // E tA B

is said to be the cobase change of the map A→ E along the map A→ B. A class
of maps A in category E is said to be closed under cobase changes if the cobase
change of a map in A along any map in E belongs to A when this cobase change
exists. The class ⊥M is closed under cobase changes for any class of mapsM⊆ E .
In particular, the left class of a factorisation system is closed under cobase changes.

48.3. Let us say that an arrow f : X → Y in a category with finite limits is
surjective if it is left orthogonal to every monomorphism. The class of surjections
is closed under cobase change, under colimits and it has the right cancellation
property. Every surjection is an epimorphism, but the converse is not necessarly
true.

We now give some examples of factorisation systems.

Proposition 48.9. Let p : E → C be a Grothendieck fibration. Then the category E
admits a factorisation system (A,B) in which B is the class of cartesian morphisms.
An arrow u ∈ E belongs to A iff the arrow p(u) is invertible.

Dually, if p : E → C is a Grothendieck opfibration, then the category E admits
a factorisation system (A,B) in which A is the class of cocartesian morphisms. A
morphism u ∈ E belongs to B iff the morphism p(u) is invertible.

If E is a category with pullbacks, then the target functor t : EI → E is a
Grothendieck fibration. A morphism f : X → Y of the category EI is a com-
mutative square in E ,

X0

x

��

f0 // Y0

y

��
X1

f1 // Y1.

The morphism f is cartesian iff the square is a pullback (also called a cartesian
square). Hence the category EI admits a factorisation system (A,B) in which B is
the class of cartesian squares. A square f : X → Y belongs to A iff the morphism
f1 : X1 → Y1 is invertible.
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Corollary 48.10. Suppose that we have a commutative diagram

A0
//

��

B0
//

��

C0

��
A1

// B1
// C1

in which the right hand square is cartesian. Then the left hand square is cartesian
iff the composite square is cartesian.

Proof: This follows from the left cancellation property of the right class of a
factorisation system.

Corollary 48.11. Suppose that we have a commutative cube

A0
//

��

  B
BB

BB
BB

B C0

!!C
CC

CC
CC

C

��

B0

��

// D0

��

A1

  B
BB

BB
BB

B
// C1

!!C
CC

CC
CC

C

B1
// D1.

in which the left face, the right face and front face are cartesian. Then the back
face is cartesian.

We now give a few examples of factorisation systems in the category Cat.

Recall that a functor p : E → B is said to be a discrete fibration if for every object
e ∈ E and every arrow g ∈ B with target p(e), there exists a unique arrow f ∈ E
with target e such that p(f) = e. There is a dual notion of discrete opfibration.
Recall that a functor between small categories u : A→ B is said to be final (but we
shall say 0-final) if the category b\A = (b\B)×B A defined by the pullback square

b\A

��

h // A

u

��
b\B // B.

is connected for every object b ∈ B. There is a dual notion of initial functor (but
we shall say 0-initial).

Theorem 48.12. [Street] The category Cat admits a factorisation system (A,B)
in which B is the class of discrete fibrations and A the class of 0-final functors.
Dually, category Cat admits a factorisation system (A′,B′) in which B′ is the class
of discrete opfibrations and A′ is the class of 0-initial functors.
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48.4. Recall that a functor p : C → D is said to be conservative if the implication

p(f) invertible ⇒ f invertible

is true for every arrow f ∈ C. The model category (Cat, Eq) admits a factorisation
system (A,B) in which B is the class of conservative functors. A functor in the class
A is an iterated strict localisation Let us describe the strict localisations explicitly.
We say that a functor g : A → B inverts a set S of arrows in A if every arrow in
g(S) is invertible. When the category A is small. there is a functor lS : A→ S−1A
which inverts S universally. The universality means that for any functor g : A→ B
which inverts S there exists a unique functor h : S−1A→ B such that hlS = g. The
functor lS is a strict localisation. Every functor u : A → B admits a factorisation
u = u1l1 : A→ S−1

0 A→ B, where S0 is the set of arrows inverted by u and where
l1 = lS0 . Let us put A1 = S−1

0 A. The functor u1 is not necessarly conservative
but it admits a factorisation u1 = u2l2 : A1 → S−1

1 A1 → B, where S1 is the set
of arrows inverted by u1. Let us put A2 = S−1

1 A1. By iterating this process, we
obtain an infinite sequence of categories and functors,

A = A0
l1 //

u=u0

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM A1
l2 //

u1

##F
FFFFFFFFFFFFFFFFFFFFFFFFFFF A2

l3 //

u2

��:
::

::
::

::
::

::
::

::
::

::
: A3

l4 //

u4

��-
--

--
--

--
--

--
--

--
--

· · · E

v

����
��
��
��
��
��
��
��
��
�

B.

If the category E is the colimit of the sequence, then the functor v : E → B is
conservative. and the canonical functor l : A→ E is an iterated strict localisation.

48.5. For any category A, the full subcategory of A\Cat spanned by the iterated
strict localisations A→ C is equivalent to a complete lattice Loc0(A). Its maximum
element is defined by the strict localisation A→ π1A which inverts every arrow in
A. Every functor u : A→ B induces a pair of adjoint maps

u! : Loc0(A)→ Loc0(B) : u∗,

where u! is defined by cobase change along u.

49. Appendix on weak factorisation systems

49.1. Recall that an arrow u : A→ B in a category E is said to have the left lifting
property with respect to another arrow f : X → Y , or that f has the right lifting
property with respect to u, if every commutative square

A

u

��

x // X

f

��
B y

//

>>~
~

~
~

Y

has a diagonal filler d : B → X (that is, du = x and fd = y). We shall denote this
relation by u t f . If the diagonal filler is unique we shall write u⊥f and say that
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u is left orthogonal to f , ot that f is right orthogonal to u. For any class of maps
M⊆ E , we shall denote by tM (resp. Mt) the class of maps having the left lifting
property (resp. right lifting property) with respect to every map inM. Each class
tM andMt contains the isomorphisms and is closed under composition. If A and
B are two classes of maps in E , we shall write A t B to indicate that we have u t f
for every u ∈ A and f ∈ B. Then

A ⊆ tB ⇐⇒ A t B ⇐⇒ B ⊆ At.

49.2. We say that a pair (A,B) of classes of maps in a category E is a weak
factorisation system if the following two conditions are satisfied:

• every map f ∈ E admits a factorisation f = pu with u ∈ A and p ∈ B;
• A = tB and At = B.

We say that A is the left class and B the right class of the weak factorisation system.

49.3. Every factorisation system is a weak factorisation system.

49.4. We say that a map in a topos is a trivial fibration if it has the right lifting
property with respect to every monomorphism. This terminology is non-standard
but useful. The trivial fibrations often coincide with the acyclic fibrations (which
can be defined in any model category). An object X in a topos is said to be
injective if the map X → 1 is a trivial fibration. If B is the class of trivial fibrations
in a topos and A is the class monomorphisms, then the pair (A,B) is a weak
factorisation system. A map of simplicial sets is a trivial fibration iff it has the
right lifting property with respect to the inclusion δn : ∂∆[n] ⊂ ∆[n] for every
n ≥ 0.

49.5. We say that a Grothendieck fibration E → B is a 1-fibration if its fibers E(b)
are groupoids. We say that a category C is 1-connected if the functor π1C → 1
is an equivalence. We say that functor u : A → B is is 1-final) if the category
b\A = (b\B)×BA is 1-connected for every object b ∈ B. The category Cat admits
a weak factorisation system (A,B) in which B is the class of 1-fibrations and A the
class of 1-final functors.

49.6. Let E be a cocomplete category. If α = {i : i < α} is a non-zero ordinal, we
shall say that a functor C : α→ E is an α-chain if the canonical map

lim
−→
i<j

C(i)→ C(j)

is an isomorphism for every non-zero limit ordinal j < α. The composite of C is
the canonical map

C(0)→ lim
−→
i<α

C(i).

We shall say that a subcategory A ⊆ E is closed under transfinite composition if
the composite of any α-chain C : α→ E with values in A belongs to A.
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49.7. Let E be a cocomplete category. We shall say that a class of maps A ⊆ E is
saturated if it satisfies the following conditions:

• A contains the isomorphisms and is closed under composition ;
• A is closed under transfinite composition;
• A is closed under cobase change and retract;

Every class of maps Σ ⊆ E is contained in a smallest saturated class Σ called the
saturated class generated by Σ. We shall say that a saturated class A is accessible
if it is generated by a set of maps Σ ⊆ A.

49.8. [Ci1] The classM of monomorphisms in a Grothendieck topos is accessible.

49.9. If Σ is a set of maps in a locally presentable category, then the pair (Σ,Σt)
is a weak factorisation system, where Σ denotes the saturated class generated by
Σ.

50. Appendix on simplicial sets

We fix some notations about simplicial sets. The category of finite non-empty
ordinals and order preserving maps is denoted ∆. It is standard to denote the
ordinal n+1 = {0, . . . , n} by [n]. A map u : [m] → [n] in ∆ can be specified by
listing its values (u(0), . . . , u(m)). The order preserving injection [n − 1] → [n]
which omits i ∈ [n] is denoted di, and the order preserving surjection [n]→ [n− 1]
which repeats i ∈ [n− 1] is denoted si.

50.1. Recall that a (small) simplicial set is a presheaf on the category ∆. We shall
denote the category of simplicial sets by S. If X is a simplicial set and n ≥ 0,
it is standard to denote the set X([n]) by Xn. An element of Xn is said to be a
simplex of dimension n, or a n-simplex of X; a 0-simplex is called a vertex and a
1-simplex an arrow. If n > 0 and i ∈ [n], the map X(di) : Xn → Xn−1 is denoted
by ∂i, and if i ∈ [n−1], the map X(si) : Xn−1 → Xn is denoted by σi. The simplex
∂i(x) ∈ Xn−1 is the i-th face of a simplex x ∈ Xn. The source of an arrow f ∈ X1

is defined to be the vertex ∂1(f) and its target to be the vertex ∂0(f); we shall write
f : a→ b to indicate that a = ∂1(f) and b = ∂0(f).

50.2. The combinatorial simplex ∆[n] of dimension n is defined to be the simplicial
set ∆(−, [n]); the simplex ∆[1] is the combinatorial interval and we shall denote it
by I; the simplex ∆[0] is the terminal object of the category S and we shall denote
it by 1. We shall often identify a morphism u : [m] → [n] in ∆ with its image
y∆(u) : ∆[m] → ∆[n] by the Yoneda functor y∆ : ∆ → S. By the Yoneda lemma,
for every X ∈ S and n ≥ 0 the evaluation map x 7→ x(1[n]) is a bijection between
the maps ∆[n] → X and the elements of Xn; we shall identify these two sets by
adopting the same notation for a map ∆[n] → X and the corresponding simplex
in Xn. If u : [m] → [n] and x ∈ Xn, we shall denote the simplex X(u)(x) ∈ Xm

as a composite xu : ∆[m] → X. For example, ∂i(x) = xdi : ∆[n − 1] → X for
every x ∈ Xn and σi(x) = xsi for every x ∈ Xn−1. A simplex x ∈ Xn is said to be
degenerate if it belongs to the image of σi : Xn−1 → Xn for some i ∈ [n − 1]. To
every vertex a ∈ X0 is associated a degenerate arrow σ0(a) : a → a that we shall
denote as a unit 1a : a→ a.
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50.3. The cardinality of a simplicial set X is defined to be the cardinality of the set
of non-degenerate simplices of X. A simplicial set is finite if it has a finite number
of non-degenerate simplices. A simplicial set can be large. A large simplicial set
is defined to be a functor ∆o → SET, where SET is the category of large sets. We
say that a large simplicial set X is locally small if the vertex map Xn → Xn+1

0 has
small fibers for every n ≥ 0. If X is locally small, then so is the simplicial set XA

for any small simplicial set A.

50.4. Let τ : ∆ → ∆ be the automorphism of the category ∆ which reverses
the order of each ordinal. If u : [m] → [n] is a map in ∆, then τ(u) is the map
uo : [m] → [n] obtained by putting uo(i) = n − f(m − i). The opposite Xo of a
simplicial set X is obtained by composing the (contravariant) functor X : ∆→ Set
with the functor τ . We distinguish between the simplices of X and Xo by writing
xo ∈ Xo for each x ∈ X, with the convention that xoo = x. If f : a→ b is an arrow
in X, then fo : bo → ao is an arrow in Xo. Beware that the opposite of a map of
simplicial sets u : A→ B is a map uo : Ao → Bo. A contravariant map p : A→ B
between two simplicial sets is defined to be a map q : Ao → B; we shall often write
p(a) instead of q(ao) for a ∈ A. .

50.5. If X is a simplicial set, we say that a subfunctor A ⊆ X is a simplicial subset
of X. If n > 0 and i ∈ [n] the image of the map di : ∆[n − 1] → ∆[n] is denoted
∂i∆[n] ⊂ ∆[n]. The simplicial sphere ∂∆[n] ⊂ ∆[n] is the union the faces ∂i∆[n]
for i ∈ [n]; by convention ∂∆[0] = ∅. If n > 0, a map x : ∂∆[n] → X is said to
be a simplicial sphere of dimension n − 1 in X; it is determined by the sequence
of its faces (x0, . . . , xn) = (xd0, . . . , xdn). A simplicial sphere ∂∆[2] → X is called
a triangle. Every n-simplex y : ∆[n] → X has a boundary ∂y = (∂0y, . . . , ∂ny) =
(yd0, . . . , ydn) obtained by restricting y to ∂∆[n]. A simplex y is said to fill a
simplicial sphere x if we have ∂y = x. A simplicial sphere x : ∂∆[n]→ X commutes
if it can be filled.

50.6. If n > 0 and k ∈ [n], the horn Λk[n] ⊂ ∆[n] is defined to be the union of
the faces ∂i∆[n] with i 6= k. A map x : Λk[n] → X is called a horn in X; it is
determined by a lacunary sequence of faces (x0, . . . , xk−1, ∗, xk+1, . . . , xn). A filler
for x is a simplex ∆[n] → X which extends x. Recall that a simplicial set X is
said to be a Kan complex if every horn Λk[n] → X (n > 0, k ∈ [n]) has a filler
∆[n]→ X,

Λk[n]� _

��

∀ // X

∆[n].
∃

=={{{{{{{{

50.7. Let us denote by ∆(n) the full subcategory of ∆ spanned by the objects [k]
for 0 ≤ k ≤ n. We say that a presheaf on ∆(n) is a n-truncated simplicial set and we
put S(n) = [∆(n)o,Set]. If in denotes the inclusion ∆(n) ⊂ ∆, then the restriction
functor i∗n : S→ S(n) has a left adjoint (in)! and a right adjoint (in)∗. The functor
Skn = (in)!(in)∗ : S→ S associates to a simplicial set X its n-skeleton SknX ⊆ X;
it is the simplicial subset of X generated by the simplices x ∈ Xk of dimension
k ≤ n. The functor Coskn = (in)∗(in)∗ : S→ S associates to a simplicial set X its
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n-coskeleton CosknX. A simplex ∆[k] → CosknX is the same thing as a simplex
Skn∆[k]→ X.

50.8. We say that a map of simplicial sets f : X → Y is biunivoque if the map
f0 : X0 → Y0 is bijective. We say that a map of simplicial sets f : X → Y is n-full
if the ollowing square of canonical maps is a pullback,

X

��

f // Y

��
Coskn(X)

Coskn(f) // Coskn(Y ).

The n-full maps are closed under composition and base change. Every map f :
X → Y admits a factorisation f = pq : X → Z → Y with p a 0-full map and q
biunivoque. The factorisation is unique up to unique isomorphism. It is the Gabriel
factorisation of the map. A 0-full map between quasi-categories is fully faithful.
We say that a simplicial subset S of a simplicial set X is n-full if the inclusion of
the subset S ⊆ X is n-full. The inclusion of a subcategory in a category is always
1-full.

50.9. Let Top be the category of (small) topological spaces. Consider the functor
r : ∆[n]→ Top which associates to [n] the geometric simplex

∆n = {(x1, . . . , xn) : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1}.

The singular complex of a topological space Y is the simplicial set r!Y defined by
putting

(r!Y )n = Top(∆n, Y )
for every n ≥ 0. The simplicial set r!Y is a Kan complex. The singular complex
functor r! : Top→ S has a left adjoint r! which associates to a simplicial set X its
geometric realisation r!X. A map of simplicial sets u : A→ B is said to be a weak
homotopy equivalence if the map r!(u) : r!A → r!B is a homotopy equivalence of
topological spaces.

51. Appendix on model categories

51.1. We shall say that a class W of maps in a category E has the “three for two”
property if the following condition is satisfied:

• If two of three maps u : A→ B, v : B → C and vu : A→ C belong to W,
then so does the third.

51.2. Let E be a finitely bicomplete category. We shall say that a triple (C,W,F)
of classes of maps in E is a model structure if the following conditions are satisfied:

• W has the “three for two” property;
• the pairs (C ∩W,F) and (C,F ∩W) are weak factorisation systems.

A map inW is said to be acyclic or to be a weak equivalence. A map in C is called
a cofibration and a map in F a fibration . An object X ∈ E is said to be fibrant
if the map X → > is a fibration, where > is the terminal object of E . Dually, an
object A ∈ E is said to be cofibrant if the map ⊥ → A is a cofibration, where ⊥ is
the initial object of E . A Quillen model category is a category E equipped with a
model structure (C,W,F).
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51.3. We shall say that a model structure (C,W,F) in a cocomplete category E is
accessible or cofibrantly generated if the saturated classes C and C∩W are accessible.

51.4. A model structure is said to be left proper if the cobase change of a weak
equivalence along a cofibration is a weak equivalence. Dually, a model structure is
said to be right proper if the base change of a weak equivalence along a fibration is
a weak equivalence. A model structure is proper if it is both left and right proper.

51.5. If E is a model category, then so is the slice category E/B for each object
B ∈ E . By definition, a map in E/B is a weak equivalence (resp. a cofibration
, resp. a fibration) iff the underlying map in E is a weak equivalence (resp. a
cofibration , resp. a fibration). Dually, each category B\E is a model category.

51.6. Let E be a finitely bicomplete category equipped a class of maps W having
the “three-for-two” property and two factorisation systems (CW ,F) and (C,FW ).
Suppose that the following two conditions are satisfied:

• CW ⊆ C ∩W and FW ⊆ F ∩W;
• C ∩W ⊆ CW or F ∩W ⊆ FW .

Then we have CW = C ∩W, FW = F ∩W and (C,W,F) is a model structure.

51.7. The homotopy category of a model category E is defined to be the category
of fractions Ho(E) = W−1E . We shall denote by [u] the image of a map u ∈ E by
the canonical functor E → Ho(E). A map u : A → B is a weak equivalence iff [u]
invertible in Ho(E) by [Q].

51.8. We shall denote by Ef (resp. Ec) the full sub-category of fibrant (resp. cofi-
brant) objects of a model category E . We shall put Efc = Ef ∩ Ec. A fibrant
replacement of an object X ∈ E is a weak equivalence X → RX with codomain a
fibrant object. Dually, a cofibrant replacement of X is a weak equivalence LX → X
with domain a cofibrant object. Let us put Ho(Ef ) =W−1

f Ef where Wf =W ∩Ef
and similarly for Ho(Ec) and Ho(Efc). Then the diagram of inclusions

Efc

��

// Ef

��
Ec // E

induces a diagram of equivalences of categories

Ho(Efc)

��

// Ho(Ef )

��
Ho(Ec) // Ho(E).

51.9. A path object for an object X in a model category is obtained by factoring
the diagonal map X → X × X as weak equivalence δ : X → PX followed by a
fibration (p0, p1) : PX → X ×X. A right homotopy h : f ∼r g between two maps
u, v : A → X is a map h : A → PX such that u = p0h and v = p1h. Two maps
u, v : A → X are right homotopic if there exists a right homotopy h : f ∼r g
with codomain a path object for X. The right homotopy relation on the set of
maps A → X is an equivalence if X is fibrant. There is a dual notion of cylinder
object for A obtained by factoring the codiagonal A t A → A as a cofibration
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(i0, i1) : A tA→ IA followed by a weak equivalence p : IA→ A. A left homotopy
h : u ∼l v between two maps u, v : A→ X is a map h : IA→ X such that u = hi0
and v = hi1. Two maps u, v : A → X are left homotopic if there exists a left
homotopy h : u ∼l v with domain some cylinder object for A. The left homotopy
relation on the set of maps A → X is an equivalence if A is cofibrant. The left
homotopy relation coincides with the right homotopy relation if A is cofibrant and
X is fibrant; in which case two maps u, v : A→ X are said to be homotopic if they
are left (or right) homotopic; we shall denote this relation by u ∼ v.
Proposition 51.1. [Q]. If A is cofibrant and X is fibrant, let us denote by E(A,X)∼

the quotient of the set E(A,X) by the homotopy relation ∼. Then the canonical map
u 7→ [u] induces a bijection

E(A,X)∼ ' Ho(E)(A,X).

A map X → Y in Ecf is a homotopy equivalence iff it is a weak equivalence.

51.10. A model structure M = (C,W,F) in a category E is determined by its
class C of cofibrations together with its class of fibrant objects Fib(M). If M ′ =
(C,W ′,F ′) is another model structure with the same cofibrations, then the relation
W ⊆W ′ is equivalent to the relation Flb(M ′) ⊆ Fib(M).
Proof: Let us prove the first statement. It suffices to show that the class W is
determined by C and Fib(M). The class F ∩W is determined by C, since the pair
(C,W ∩F) is a weak factorisation system. For any map u : A→ B, there exists a
commutative square

A′

u′

��

// A

u

��
B′ // B

in which the horizontal maps are acyclic fibrations and the objects A′ and B′ are
cofibrants. The map u is acyclic iff the map u′ is acyclic. Hence it suffices to
show that the class W ∩ Ec is is determined by C and Fib(M). If A and B are
two objects of E , let us denote by h(A,B) the set of maps A → B between in
the category Ho(E). A map u : A → B in E is invertible in Ho(E) iff the map
h(u,X) : h(B,X)→ h(A,X) is bijective for every object X ∈ E by Yoneda lemma.
Hence a map u : A→ B in E belongs toW iff the map h(u,X) : h(B,X)→ h(A,X)
is bijective for every object X ∈ Fib(M), since every object in Ho(E) is isomorphic
to a fibrant object. If A is cofibrant and X is fibrant, let us denote by E(A,X)∼

the quotient of the set E(A,X) by the homotopy relation. It follows from 51.1 that
a map u : A → B in Ec belongs to W iff the map E(B,X)∼ → E(A,X)∼ induced
by the map E(u,X) is bijective for every object X ∈ Fib(M). Hence the result
will be proved if we show that the homotopy relation ∼ on the set E(A,X) only
depends on the class C if A is cofibrant and X is fibrant. But two maps A → X
are homotopic iff they are left homotopic, since A is cofibrant and X is fibrant.
A cylinder for A can be constructed by factoring the codiagonal A t A → A as a
cofibration (i0, i1) : AtA→ I(A) followed by an acyclic fibration I(A)→ A. Two
maps f, g : A→ X are left homotopic iff there exists a map h : I(A)→ X such that
hi0 = f and hi1 = g. The construction of I(A) only depends on C, since it only
depends on the factorisation system (C,W ∩F). Hence the left homotopy relation
on the set E(A,X) only depends on C. The first statement of the proposition
follows. The proof of the second statement is left to the reader.
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51.11. Recall from [Ho] that a cocontinuous functor F : U → V between two model
categories is said to be a left Quillen functor if it takes a cofibration to a cofibration
and an acyclic cofibration to an acyclic cofibration. A left Quillen functor takes
a weak equivalence between cofibrant objects to a weak equivalence. Dually, a
continuous functor G : V → U between two model categories is said to be a right
Quillen functor if it takes a fibration to a fibration and an acyclic fibration to an
acyclic fibration. A right Quillen functor takes a weak equivalence between fibrant
objects to a weak equivalence.

51.12. A left Quillen functor F : U → V induces a functor Fc : Uc → Vc hence also
a functor Ho(Fc) : Ho(Uc)→ Ho(Vc). Its left derived functor is a functor

FL : Ho(U)→ Ho(V)

for which the following diagram of functors commutes up to isomorphism,

Ho(Uc)

��

Ho(Fc)// Ho(Vc)

��
Ho(U) FL

// Ho(V),

The functor FL is unique up to a canonical isomorphism. It can be computed as
follows. For each object A ∈ U , we can choose a cofibrant replacement λA : LA→
A, with λA an acyclic fibration. We can then choose for each arrow u : A→ B an
arrow L(u) : LA→ LB such that uλA = λBL(u),

LA

L(u)

��

λA // A

u

��
LB

λB // B.

Then

FL([u]) = [F (L(u))] : FLA→ FLB.

51.13. Dually, a right Quillen functor G : V → U induces a functor Gf : Vf → Uf
hence also a functor Ho(Gf ) : Ho(Vf ) → Ho(Uf ). Its right derived functor is a
functor

GR : Ho(V)→ Ho(U)

for which the following diagram of functors commutes up to a canonical isomor-
phism,

Ho(Vf )

��

Ho(Gf )// Ho(Uf )

��
Ho(V) GR

// Ho(U).

The functor GR is unique up to a canonical isomorphism. It can be computed as
follows. For each object X ∈ V let us choose a fibrant replacement ρX : X → RX,
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with ρX an acyclic cofibration. We can then choose for each arrow u : X → Y an
arrow R(u) : RX → RY such that R(u)ρX = ρY u,

X

u

��

ρX // RX

R(u)

��
Y

ρY // RY.

Then
GR([u]) = [G(R(u))] : GRX → GRY.

51.14. Let F : U ↔ V : G be an adjoint pair of functors between two model
categories. Then the following two conditions are equivalent:

• F is a left Quillen functor;
• G is a right Quillen functor.

When these conditions are satisfied, the pair (F,G) is said to be a Quillen pair. In
this case, we obtain an adjoint pair of functors

FL : Ho(U)↔ Ho(V) : GR.

If A ∈ U is cofibrant, the adjunction unit A→ GRFL(A) is obtained by composing
the maps A→ GFA→ GRFA, where FA→ RFA is a fibrant replacement of FA.
If X ∈ V is fibrant, the adjunction counit FLGR(X)→ X is obtained by composing
the maps FLGX → FGX → X, where LGX → GX is a cofibrant replacement of
GX.

51.15. We shall say that a Quillen pair F : U ↔ V : G a homotopy reflection of
U into V if the right derived functor GR is fully faithful. Dually, we shall say that
(F,G) is a homotopy coreflection of V into U if the left derived functor FL is fully
faithful. We shall say that (F,G) is called a Quillen equivalence if the adjoint pair
(FL, GR) is an equivalence of categories.

51.16. A Quillen pair F : U ↔ V : G is a homotopy reflection iff the map FLGX →
X is a weak equivalence for every fibrant object X ∈ V, where LGX → GX denotes
a cofibrant replacement of GX. A homotopy reflection F : U ↔ V : G is a Quillen
equivalence iff the functor F reflects weak equivalences between cofibrant objects.

51.17. Let F : U ↔ V : G be a homotopy reflection beween two model categories.
We shall say that an object X ∈ U is local (with respect to the the pair (F,G)) if it
belongs to the essential image of the right derived functor GR : Ho(V)→ Ho(U).

51.18. Let Mi = (Ci,Wi,Fi) (i = 1, 2) be two model structures on a category E .
If C1 ⊆ C2 and W1 ⊆ W2, then the identity functor E → E is a homotopy reflection
M1 →M2. The following conditions on an object A are equivalent:

• A is local;
• there exists aM1-equivalence A→ A′ with codomain aM2-fibrant object
A′;
• ( everyM2-fibrant replacement A→ A′ is aM1-fibrant replacement.

In particular, every M2-fibrant object is local. A map between local objects is a
M1-equivalence iff it is aM2-equivalence.
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51.19. Let Mi = (Ci,Wi,Fi) (i = 1, 2) be two model structures on a category E .
If C1 = C2 and W1 ⊆ W2, we shall say that M2 is a Bousfield localisation of M1.
We shall say that M1 is the localised model structure and M2 is the local model
structure.

51.20. Let M2 = (C2,W2,F2) be a Bousfield localisation of a model structure
M1 = (C1,W1,F1) on a category E . A local object is M1-fibrant iff it is M2-
fibrant. An object A is local iff every M1-fibrant replacement i : A → A′ is a
M2-fibrant replacement. A map between M2-fibrant objects is a M2-fibration iff
it is a M1-fibration.

51.21. Let � : E1 × E2 → E3 be a functor of two variables with values in a finitely
cocomplete category E3. If u : A → B is map in E1 and v : S → T is a map in E2,
we shall denote by u�′ v the map

A� T tA�S B � S −→ B � T

obtained from the commutative square

A� S

��

// B � S

��
A� T // B � T.

This defines a functor of two variables

�′ : EI1 × EI2 → EI3 ,

where EI denotes the category of arrows of a category E .

51.22. [Ho] We shall say that a functor of two variables � : E1 × E2 → E3 between
three model categories is a left Quillen functor it is concontinuous in each variable
and the following conditions are satisfied:

• u�′ v is a cofibration if u ∈ E1 and v ∈ E2 are cofibrations;
• u�′ v is an acyclic cofibration if u ∈ E1 and v ∈ E2 are cofibrations and one

of the maps u or v is acyclic.

Dually, we shall say that the functor of two variables � is a right Quillen functor
if the opposite functor �o : Eo1 × Eo2 → Eo3 is a left Quillen functor.

51.23. [Ho] A model structure (C,W,F) on monoidal closed category E = (E ,⊗)
is said to be monoidal if the tensor product ⊗ : E × E → E is a left Quillen functor
of two variables and if the unit object of the tensor product is cofibrant.

51.24. A model structure (C,W,F) on a category E is said to be cartesian if the
cartesian product × : E ×E → E is a left Quillen functor of two variables and if the
terminal object 1 is cofibrant.
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51.25. We say that a functor of two variables � : E1 × E2 → E3 is divisible on the
left if the functor A�(−) : E2 → E3 admits a right adjoint A\(−) : E3 → E2 for every
object A ∈ E1. In this case we obtain a functor of two variables (A,X) 7→ A\X,

Eo1 × E3 → E2,

called the left division functor. Dually, we say that � is divisible on the right if the
functor (−)�B : E1 → E3 admits a right adjoint (−)/B : E3 → E1 for every object
B ∈ E2. In this case we obtain a functor of two variables (X,B) 7→ X/B,

E3 × Eo2 → E1,

called the right division functor.

51.26. If a functor of two variables � : E1 × E2 → E3 is divisible on both sides,
then so is the left division functor Eo1 × E3 → E2 and the right division functor
E3 × Eo2 → E1. This is called a tensor-hom-cotensor situation by Gray [?]. There is
then a bijection between the following three kinds of maps

A�B → X, B → A\X, A→ X/B.

The contravariant functors A 7→ A\X and B 7→ B\X are mutually right adjoint
for any object X ∈ E3.

51.27. Suppose the category E2 is finitely complete and that the functor � : E1 ×
E2 → E3 is divisible on the left. If u : A→ B is map in E1 and f : X → Y is a map
in E3, we denote by 〈u\ f〉 the map

B\X → B\Y ×A\Y A\X

obtained from the commutative square

B\X //

��

A\X

��
B\Y // A\Y.

The functor f 7→ 〈u\f〉 is right adjoint to the functor v 7→ u �′ v for every map
u ∈ E1. Dually, suppose that the category E1 is finitely complete and that the
functor � is divisible on the right. If v : S → T is map in E2 and f : X → Y is a
map in E3, we denote by 〈f/v〉 the map

X/T → Y/T ×Y/S X/S

obtained from the commutative square

X/T //

��

X/S

��
Y/T // Y/S.

the functor f 7→ 〈f/v〉 is right adjoint to the functor u 7→ u �′ v for every map
v ∈ E2.



208 ANDRÉ JOYAL

51.28. Let � : E1 × E2 → E3 be a functor of two variables divisible on both sides,
where Ei is a finitely bicomplete category for i = 1, 2, 3. If u ∈ E1, v ∈ E2 and
f ∈ E3, then

(u�′ v) t f ⇐⇒ u t 〈f/v〉 ⇐⇒ v t 〈u\f〉.

51.29. Let � : E1 × E2 → E3 be a functor of two variables divisible on each side
between three model categories. Then the functor � is a left Quillen functor iff the
corresponding left division functor Eo1 × E3 → E2 is a right Quillen functor iff the
the corresponding right division functor Eo1 × E3 → E2 is a right Quillen functor.

51.30. Let E be a symmetric monoidal closed category. Then the objects X/A
and A\X are canonicaly isomorphic; we can identify them by adopting a common
notation, for example [A,X]. Similarly, the maps 〈f/u〉 and 〈u\f〉 are canonicaly
isomorphic; we shall identify them by adopting a common notation, for example
〈u, f〉. A model structure on E is monoidal iff the following two conditions are
satisfied:

• if u is a cofibration and f is a fibration, then 〈u, f〉 is a fibration which is
acyclic if in addition u or f is acyclic;
• the unit object is cofibrant.

51.31. Recall that a functor P : E → K is said to be a bifibration if it is both a
Grothendieck fibration and a Grothendieck opfibration. If P is a bifibration, then
every arrow f : A → B in E admits a factorisation f = cfuf with cf a cartesian
arrow and uf a unit arrow (ie P (uf ) = 1P (A))), together with a factorisation
f = ufcf with cf a cocartesian arrow and uf a unit. Let us denote by E(S) the
fiber of the functor P at an object S ∈ K. Then for every arrow g : S → T in K
we can choose pair of adjoint functors

g! : E(S)→ E(T ) : g∗.

The pullback functor g∗ is obtained by choosing for each object B ∈ E(T ) a cartesian
lift g∗(B)→ B of the arrow g. The pushforward functor g! is obtained by choosing
for each object A ∈ E(S) a cocartesian lift A→ g!(A) of the arrow g.

51.32. Let P : E → K be a Grothendieck bifibration where K is a model category.
We shall say that a model structureM = (C,W,F) on E is bifibered by the functor
P if the following conditions are satisfied:

• The intersectionM(S) = (C∩E(S),W∩E(S),F∩E(S)) is a model structure
on E(S) for each object S ∈ K;
• The pair of adjoint functors

g! : E(S)→ E(T ) : g∗

is a Quillen pair for each arrow g : S → T inK and it is a Quillen equivalence
if g is a weak equivalence;
• An arrow f : A → B in E is a cofibration iff the arrows uf ∈ E(B) and
P (f) ∈ K are cofibrations;

• An arrow f : A → B in E is a fibration iff the arrows uf ∈ E(A) and
P (f) ∈ K are fibrations.

It follows from these conditions that the functor P takes a fibration to a fibration,
a cofibration to a cofibration and a weak equivalence to a weak equivalence. For
another notion of bifibered model category, see [Ro].
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51.33. Let P : E → K be a bifibered model category over a model category K.
Then the model structure on E is determined by the model structure on K together
with the model structure on E(S) for each object S ∈ K.

• An arrow f : A→ B in E is an acyclic cofibration iff the arrows uf ∈ E(B)
and P (f) ∈ K are acyclic cofibrations;
• An arrow f : A → B in E is an acyclic fibration iff the arrows uf ∈ E(A)

and P (f) ∈ K are acyclic fibrations.

52. Appendix on Cisinski theory

We briefly describe Cisinki’s theory of model structures on a Grothendieck topos.
It can be used to generate the model structure for n-quasi-category for every n ≥ 1.

52.1. We shall say that a model structure on a Grothendieck topos E is a Cisinski
structure if its cofibrations are the monomorphisms.

52.2. The classical model structure (S,Who) is a Cisinski model structure on the
category S. Also the model structure for quasi-categories. The model structure for
Segal categories is a Cisinski model structure on PCat. The model structure for
Segal spaces is a Cisinski structure on S(2), and also the model structure for Rezk
categories.

52.3. Let C be the left class of a weak factorisation system in a finitely bicomplete
category E . We shall say that a class of maps W ⊆ E is a localizer (with respect
to C) if the triple M(W) = (C,W, (C ∩W)t) is a model structure. A class of maps
W ⊆ E is a localizer with respect to C iff the following conditions are satisfied:

• W has the“three for two” property;
• Ct ⊆ W;
• C ∩W is the left class of a weak factoriszation system.

The map W 7→ M(W) induces a bijection between the localizers with respect to
C and the model structures on E having C for class of cofibrations. If W and
W ′ are two localizers with respect to C, then the model structure M(W ′) is a
Bousfield localisation of the model structure M(W) iff we have W ⊆ W ′. This
defines a partial order relation on the class of model structures having C for class
of cofibrations.

52.4. [Ci1] We say that a class W of maps in a Grothendieck topos E is a localizer
if it is a localizer with respect to the class C of monomorphisms. We shall say that a
localizerW is accessible if the saturated class C∩W is accessible. A localizerW ⊆ E
is accessible iff the triple M(W) = (C,W, C ∩ W)t) is a Cisinski model structure.
The map W 7→M(W) induces a bijection between the accessible localizers and the
Cisinski model structures.

52.5. [Ci1] If E is a Grothendieck topos, then every set of maps S ⊆ E is contained
in a smallest (accessible) localizer W(S) called the localizer generated by S . In
particular, there is a smallest localizerW0 =W(∅). We say that the model structure
M(W0) is minimal. The minimal Cisinski model structure M(W0) is cartesian
closed and proper. Every Cisinski model structure is a Bousfield localisation of
M(W0).
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52.6. In the category S of simplicial sets, the localizer Who is generated by the
maps ∆[n] → 1, where n ≥ 0. The localizer Wcat is generated by the inclusions
I[n] ⊆ ∆[n], where n ≥ 0.

52.7. [Ci2] Let L be the Lawvere object in a topos E and let t0, t1 : 1 → L be
the canonical elements (the first is classifying the subobject ∅ ⊆ 1 and the second
the subobject 1 ⊆ 1). Then an object X ∈ Ĉ is fibrant with respect to minimal
Cisinski model structure (C,W0,F0) iff the projection Xti : XL → X is a trivial
fibration for i = 0, 1. A monomorphism A→ B is acyclic iff the map XB → XA is
a trivial fibration for every fibrant object X.
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[La] C. Lair, Sur le genre d’esquissibilté des catégories modélables (accessibles) possédant

les produits de deux, Diagrammes 35 (1996), 25-52.

[Law] F. W Lawvere, Equality in hyperdoctrines and comprehension scheme as an adjoint
functor, Proc. Symp. Pure Math. Vol XVII, AMS (1970).

[Law] W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad, Sc.

50(1963), 869-872.
[Le] T. Leinster, Higher Operads, Higher Categories, arXiv:math.CT/0305049v1, 2003.

[Lu1] J. Lurie, Higher Topos Theory, arXiv:math.CT/0608040, 2007.

[Lu2] J. Lurie, Derived algebraic Geometry I: Stable ∞-Categories,
arXiv:math.CT/0608228v4, 2007.

[Lu3] J. Lurie, Derived Algebraic Geometry II: Non-commutative Algebra,
arXiv:math.CT/0702299, 2007.

[Lu4] J. Lurie, Derived Algebraic Geometry III: Commutative Algebra,

arXiv:math.CT/0703204, 2007.
[Lu5] J. Lurie, Derived Algebraic Geometry IV: Deformation Theory,

arXiv:math.CT/0709.3091, 2007.

[Mac] S. MacLane, Categories for the Working Mathematicians, Graduate Texts in Mathe-
matics 5, Springer-Verlag(1971).

[MZ] M. Makkai, M. Zawadowski duality for simple ω-categories and disks, Theory and

Applications pf Categories, Vol 8, No. 5, pp. 114-243 (2001).
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http://www.institut.math.jussieu.fr/ maltsin/ps/infctart.pdf.

[May1] P. May, The Geometry of Iterated loop spaces, Lect. Notes in Math. 271, Springer
Verlag, 1972.

[May2] P. May, A concise Course in Algebraic Topology Chicago Lect. Notes in Math., The

University of Chigago Press. 1999.

[MW1] I. Moerdijk, I. Weiss Dendroidal Sets, arXiv:math,AT/0701293, 2007.
[MW2] I. Moerdijk, I. Weiss On inner Kan complexes in the category of dendroidal sets

arXiv:math,AT/0701295, 2007.
[Ni] J.P. Nichols-Barrer, On quasi-categories as a foundation for Higher Algebraic Stacks

PhD Thesis, MIT, June 2001.

[P] R. Pellissier. Catégories enrichies faibles. Thèse, Université de Nice-Sophia Antipolis.
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Index of notation

Pf (A), 94
Pα(A), 95
(α, β) : u a v, 66
(Cat, Eq), 13
(Cat,Meq), 64
(SCat, DK), 16
(S,Wmor), 65
(S,Wcat), 13
(S,Who), 12
(S,Who[−1]), 101
(S,Who[n]), 101
(S/B,Wcont), 40
(S/B,Wcov), 40
(S/I,Wcat), 45
A�B, 18
A[S−1], 69
A�B, 44
A⊥B, 96
A · x, xA, 76
A �B, 32
A ? B, 27, 29
A×s B, 51
A ∧ x, 77
Aδ, 57
A⊥, ⊥A, 96
CC(S, T ), 91
C !X, C!X, 17
C∗(A), 17
Cα(S, T ), 95
Cc(S, T ), 94
El(g), 61
Eq, 13
Ex(A), 71
Fact(f,X), 30
I[n], 9
J , the groupoid, 11, 14
JB , 81
Kar(C), 64
Kar(X), 65
Med(A,B), 46
Span, 52
Spanf (A,B), 57
Split, 15
Sr, 65
T ◦ S, 51
TroA, 91

TrA, 91
X(a, b), 9
X/b, b\X, 29
X〈u〉, 89
X//b, 32
X〈S〉, 89
[A,S]inj , 43
[A,S]proj , 43
Λ, 57
Λ(A,B), 53
Ω(x), 78
Ωn(x), 78
Πu(f), 84
Σ(A), 56
Σ(x), 77
Σn(x), 77
Σu(f), 84∫ a∈A

f(a, a), 91∫
a∈A f(a, a), 91
κ(C), 65
κ(X), 66
Wcat, 13
Wcont, 40
Wcov, 40
Who, 12
Who[−1], 101
Who[−2], 101
Who[n], 101
Kan, 8
Log, 9
SCat, 16
U, 17
U[n], 101
U1, 17
π[n](A), 101
σ∗(S), σ∗(C), σ!(C), 52
τ0(A), 13
τ0(A,B), 13
τ1(X,Y ), 11
τ1X, π1X, 8
a\\X, 32
colima∈A, 72
el(g), 61
f!, 61
hoX, 10
hoX, 16
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u⊥f , 96
Cyl(A,B), 44
SCyl(A,B), 43
Span(A,B), 51
Cart(B), 81
G(B), 81
L(B), 40
PCat, 19
P(A), 61
R(B), 39
S,Who[−2]), 101
S(2), 18, 44
Sπ0 , 12
Sτ0 , 13
Sτ1 , 11
Ef , Ec, Efc, 34
P(B), 41
P!(u), P∗(u), 48
Q(B), 41
Q〈u〉, 54
Q!(u), Q∗(u), 49


