
K-THEORY AND MORITA THEORY

SANATH DEVALAPURKAR

Abstract. In this paper we provide multiple necessary and sufficient conditions involving ∞-

operads for derived categories of rings to be triangulated equivalent by studying the K-theory of

unital ∞-operads. This allows us to provide sufficient conditions for categories of module spectra

over E∞-ring spectra to be equivalent.
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1. Introduction

Carlsson asked when the K-theory of spectrum of a permutative category can be written as a

module spectrum over another K-theory spectrum of a bipermutative category. We will study this

problem in the “derived”∞-context, and ask, when is the K-theory of a unital∞-operad equivalent

to the ∞-category of O-modules over an O-algebra A over the K-theory another ∞-operad (here

O⊗ is an ∞-operad)? In the form of an equation, when is K(C⊗∞) ' ModO
A(K(D⊗∞))? We will

answer this question by proving that there is a fully faithful and essentially surjective functor

K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

However, we observe that the K-theory takes symmetric monoidal exact ∞-categories, or unital

∞-operads, to stable ∞-categories, i.e., K : Exact∞ → CatEx
∞ , so we can study the homotopy

category hK(C⊗∞), which acquires a triangulated structure. By our main theorem, which asserts

that K(ModO
A(C⊗∞)⊗) → ModO

A(K(C⊗∞)), we see that hK(ModO
A(C⊗∞)⊗) obtains the structure of a

“derived category of an algebra”. So when we’re attempting to study Carlsson’s question, we can

also create a derived Morita theory of algebras over ∞-operads.
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Returning back to Carlsson’s question, we see that because of our slightly different of exact ∞-

category, we see that in the image A of the functor K : CatEx
∞ → CatEx

∞ , the equivalence K(C⊗∞) '
ModO

A(K(D⊗∞)) holds if and only if C⊗∞ ' ModO
A(C⊗∞), and then D⊗∞ 'A C⊗∞.

This paper is structured like so: we define the K-theory in Section 2, and in Section 3, we present

the proof of our main theorem, which assists in answering Carlsson’s question (as mentioned above).

We also construct the derived category of algebras over∞-operads. In Section 4, we discuss possible

future directions, i.e., Goerss-Hopkins obstruction theory for realizing stable ∞-categories as the

K-theory of exact ∞-categories.

2. Defining the K-theory

The Quillen Q-construction allows us to define the K-theory of an exact 1-category C. The K-

theory functor K : Exact → Top, taking the category of exact 1-categories to the category of

topological spaces, is defined by K : C 7→ Ω |NQ(C)|. We may generalize and define an analog of

the Quillen Q-construction for a colored operad M satisfying certain conditions, where the K-theory

K : A → Sp takes a subcategory A of the category of colored operads Op to the category of

spectra Sp (this is because the objects of Sp are ”weakenings” of the objects of Top). It is natural

to generalize in a different way, from exact 1-categories to exact ∞-categories, to define the Quillen

Q-construction. Barwick has done so in [Bar], which we now outline.

Let X be a simplicial set; we can define another simplicial set by (O(X))n := Map(∆n ?∆n, X),

where ? is the concatenation operator on ∆. The Quillen Q-construction uses O(∆n), but in order

to define the Quillen Q-construction, we have to define ambigressive pullbacks and ambigressive

functors.

Let C∞ be an exact ∞-category1, and let C!
∞ and C•∞ be full subcategories of C∞ containing all

the equivalences. Given a pullback square

X //

��

Y

��
X ′ // Y ′

we call it ambigressive if X ′ → Y ′ and Y → Y ′ are morphisms in C!
∞ and C•∞, respectively. We call

a functor O(∆n)→ C∞ ambigressive if for all integers 0 ≤ i ≤ k ≤ l ≤ j ≤ n, the pullback square

Xij
//

��

Xkj

��
Xil

// Xkl

is ambigressive. We may now finally proceed to the Quillen Q-construction: define a simplicial set

Q(C∞), whose n-simplices are the ambigressive functors O(∆n)op → C∞. The K-theory is then

simply ΩQ(C∞), and this defines a functor from the∞-category Exact∞ of exact∞-categories and

exact functors between them to the ∞-category Cat∞ of ∞-categories.

1Our definition of an exact ∞-category differs from that of Barwick in that we define an exact ∞-category as a stable
∞-category satisfying certain conditions.
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Let C∞ be an exact ∞-category. If we equip it with a map C∞ → N(Fin∗) satisfying certain

conditions that make it an ∞-operad, we call C∞ a unital ∞-operad. To signify that it is equipped

with a map C∞, we will write it as C⊗∞. Let Exact⊗∞ be the subcategory of Exact∞ spanned by

the unital ∞-category. The K-theory construction for exact ∞-categories passes over to unital ∞-

categories, so we can ask what additional structure/properties K(C⊗∞) have? This can be answered

by looking at a pattern in the codomain of the K-theory functors; a simple analysis shows that for

∞-operads, the K-theory takes K : Exact⊗∞ → CatEx
∞ , where CatEx

∞ is the ∞-category of stable

∞-categories and exact ∞-functors between them. This is because the objects of CatEx
∞ are the

analogues of spectra in the ∞-context. Note that what we call exact functors are exact functors

between exact ∞-categories, in the sense of [Bar], and what we call exact ∞-functors are exact

∞-functors between stable ∞-categories.

3. K-theory of modules and derived categories

Consider the homotopy category hK(C⊗∞), which, because K(C⊗∞) is a stable ∞-category, is a

triangulated category. We would like to develop some sort of derived Morita theory, and so we’d

like to consider the homotopy category of some ∞-operad of module objects.

Lurie has defined such objects in [Lura]; more specifically, he has defined an∞-operad ModO(C⊗∞)⊗

of O-module objects over C⊗∞, and an ∞-category Alg/O(C⊗∞) of O-algebra objects over C⊗∞, where

O⊗ is an ∞-category. We can define the ∞-operad ModO
A(C⊗∞)⊗ of O-module objects over an O-

algebra object A over C⊗∞ as the pushout ModO(C⊗∞)⊗
∏

Alg/O(C⊗∞){A}. Since we’d like to provide

a derived category structure on hK(C⊗∞) through ModO
A(C⊗∞)⊗, we will study ModO

A(C⊗∞)⊗ first.

We provide two interesting properties that it satisfies, one of which will help us define the derived

category of an algebra over an ∞-operad.

The first follows from induction using [Lura, Corollary 3.4.1.9]:

Theorem 3.1. Let (ModO
A)n(C⊗∞) denote ModO

A(C⊗∞)⊗ iterated n times. Then (ModO
A)n(C⊗∞) is

equivalent to ModO
A(C⊗∞)⊗ for any n ≥ 1.

Consider the identity morphism idK(C⊗∞) : K(C⊗∞) → K(C⊗∞), which is an equivalence of cate-

gories. Since ModO
A(C⊗∞)⊗ ' C⊗∞ when O⊗ = E⊗0 , we expect one of the following three statements

to hold true:

(1) There is a fully faithful non-essentially surjective functor ModO
A(K(C⊗∞))→ K(ModO

A(C⊗∞)⊗).

(2) There is a fully faithful non-essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

(3) There is a fully faithful essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

We will proceed to inspect each of these points separately:

(1’) There is a fully faithful non-essentially surjective functor ModO
A(K(C⊗∞))→ K(ModO

A(C⊗∞)⊗).

This induces a map ModO
A(K(C⊗∞)) → ModO

A(K(ModO
A(C⊗∞)⊗)), which implies the exis-

tence of a forgetful functor K(C⊗∞)→ ModO
A(K(ModO

A(C⊗∞)⊗)), and this is obviously false,

meaning that there is no fully faithful non-essentially surjective functor ModO
A(K(C⊗∞)) →

K(ModO
A(C⊗∞)⊗). When O⊗ = E⊗0 , this means that there is no fully faithful non-essentially

surjective functor K(C⊗∞)→ K(C⊗∞).
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(2’) There is a fully faithful non-essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

This reduces to the statement that there is a fully faithful non-essentially surjective functor

K(C⊗∞) → K(C⊗∞), and we just showed this to be false. This implies that the only left

option must hold true:

(3’) There is a fully faithful essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

We will state this as a theorem to emphasize that this is a very important result:

Theorem 3.2. There is a fully faithful essentially surjective functor K(ModO
A(C⊗∞)⊗)→ ModO

A(K(C⊗∞)).

Returning to derived categories, we see that we can define the derived category D(A) to be the

homotopy category hK(ModO
A(C⊗∞)⊗), because of two reasons:

(i) K(ModO
A(C⊗∞)⊗) is a stable ∞-category, and so its homotopy category must have the struc-

ture of a triangulated category.

(ii) K(ModO
A(C⊗∞)⊗) has the structure of an ∞-operad of modules by Theorem 3.2, so its ho-

motopy category must be similar to the derived category of an algebra.

Derived Morita theory is concerned with the following question:

Question 3.3. When are the derived categories D(A) and D(A′) equivalent as triangulated cate-

gories?

In order to answer this question, we’ll introduce a model structure on the homotopy category

hK(ModO
A(C⊗∞)⊗).

The category hK(ModO
A(C⊗∞)⊗) admits finite limits and colimits, which allows us to define the

model structure on it. We will define the cofibrations and fibrations as the isomorphisms. Let

f : v → v′ be a morphism in ModO(C⊗∞)⊗. We call f a weak equivalence if for any map g : v → v′,

there is a 2-simplex:

v′
idv′ // v′

v

g
??

f

OO

We are now ready to state our theorem regarding the derived Morita theory of algebras over ∞-

operads:

Theorem 3.4. Let F : ModO
A(K(C⊗∞))→ ModO′

A′(K(C⊗∞)) be a functor that induces a map between

homotopy categories LF : hModO
A(K(C⊗∞)) → hModO′

A′(K(C⊗∞)), and hence a map between the

derived categories LF : D(A)→ D(A′). The following statements are equivalent:

(1) F is an equivalence of ∞-categories.

(2) LF is a Quillen equivalence.

(3) LF is a triangulated equivalence of derived categories.

4. Future Directions

There seems to be a relation between GHOsT and the K-theory studied in this paper, either

directly, or by studying GHOsT by studying Hopf-Galois extensions, in the ∞-context, of the K-

theories of unital ∞-operads. This will be studied in future papers.
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