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Graph Configuration Spaces
Let Γ “ pV pΓq,EpΓqq be an abstract graph with

§ Vertices V pΓq “ tv1, . . . , vnu (finite set)
§ Edges EpGq. An element of EpGq is of the form tvi , vju, i ‰ j.

All graphs in this paper will be simple (no loops and no multiple
edges) and vertex-labeled.

Let X be a path-connected topological space. The graph
configuration space is defined to be

ConfΓpXq “ tpx1, ¨ ¨ ¨ ,xnq P X |V pΓq| | xi ‰ xj if ti, ju P EpΓqu

‚ Different labeling of vertices produce homeomorphic spaces.

‚ WLOG we can assume our graphs to be connected, since

ConfΓ1\Γ2
pXq – ConfΓ1pXq ˆConfΓ2pXq
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Example 1: When the graph is complete G “ Kn, one recovers the
classical configuration space of pairwise distinct points

ConfKn
pXq “ ConfnpXq

Example 2: The line graph Lm on nodes labeled 1,2, . . . ,m.

1 2 m

ConfLmpXq “ tpx1,x2, . . . ,xmq P Xm | xi ‰ xi`1 ,1 ď i ă mu

Notice x1 ‰ x2 but x2 and x3 can be equal, etc.

We have a homeomorphism

ConfLmpRN q
–

ÝÑRN ˆ pRN ´ t0uq ˆ ¨ ¨ ¨ ˆ pRN ´ t0uq

px1, . . . ,xmq ÞÝÑ px1,x2 ´ x1,x3 ´ x2, . . . ,xm ´ xm´1q

so

ConfLmpRN q »

m´1
ź

SN´1
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If G is the category whose objects are undirected simple graphs,
which are vertex labeled and whose morphisms are the graph
homomomorphisms.

Fix X “ RN (or any other good enough space).

Then Ψ : G ÝÑ T op, which sends

Γ ÞÝÑ ConfΓpXq

is a contravariant functor

The study of ConfΓpXq was motivated by the study of INVARIANTS
OF GRAPHS in data analysis.
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The Chromatic Polynomial

Let Γ be a graph, and λ P N. A mapping f : V pGq Ñ t1,2, . . . ,λu is
called a λ-colouring of Γ if f piq ‰ f pjq whenever ti, ju P EpΓq.

The number of distinct λ-colourings of Γ is denoted by πΓpλq, and this
is a polynomial in λ (the chromatic polynomial).

Examples:

§ If Γ “ Ln is the line graph with n vertices, then
πLnpλq “ λnpλ´ 1qn´1.

§ If Γ “ Kn is the complete graph on n-vertices, then πKn
pλq is the

falling factorial πKn
pλq “ λpλ´ 1q ¨ ¨ ¨ pλ´n` 1q



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Let χcpXq denote the Euler characteristic of a space X (with compact
supports).

Let Γ be a simple graph.

The following is a categorification type of result.

Theorem: (Eastwood-Huggett, Kallel-Taamallah)

πΓpχcpXqq “ χcpConfΓpXqq

Corollary:
χpConfΓpRnqq “ p´1qn|V |πΓpp´1qnq

This key result is the starting point of this work.
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Example:

**

*

Different coloring configurations of the Y -graph.

ConfpX,T q consists of all tuples px1,x2,x3,x4q with xi ‰ x1

This space stratify as follows

tpy,x,x,xqu , tpy,x,x,zqu ,tpy,x,z,xqu ,tpy,x,z,zqu , tpy,x,z, tqu

where different letters mean distinct entries in X.

Every stratum in X4 is homeomorphic to a ConfpX,iq.

We have the stratification

ConfpX,Γq „ ConfpX,2q \ 3ConfpX,3q \ConfpX,4q
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Graph Theoretic Results

We need some preliminary results.

Let Γ be a simple graph with n vertices.

Theorem (Whitney’s broken circuit theorem)

πΓpλq “

n
ÿ

i“1

p´1qn´iaipΓqλi (1)

where the coefficient aipΓq for 0 ă i ă n counts the number of
spanning subgraphs of Γ that have exactly n´ i edges and that
contain no broken circuits.

It is clear that an´1 is the number of edges.

Here an “ 1 always.

The Linear Term: The number a1pΓq has several interpretations. It is
the number of “spanning trees with no broken circuits” of Γ.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Graph Theoretic Results

We need some preliminary results.

Let Γ be a simple graph with n vertices.

Theorem (Whitney’s broken circuit theorem)

πΓpλq “

n
ÿ

i“1

p´1qn´iaipΓqλi (1)

where the coefficient aipΓq for 0 ă i ă n counts the number of
spanning subgraphs of Γ that have exactly n´ i edges and that
contain no broken circuits.

It is clear that an´1 is the number of edges.

Here an “ 1 always.

The Linear Term: The number a1pΓq has several interpretations. It is
the number of “spanning trees with no broken circuits” of Γ.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Graph Theoretic Results

We need some preliminary results.

Let Γ be a simple graph with n vertices.

Theorem (Whitney’s broken circuit theorem)

πΓpλq “

n
ÿ

i“1

p´1qn´iaipΓqλi (1)

where the coefficient aipΓq for 0 ă i ă n counts the number of
spanning subgraphs of Γ that have exactly n´ i edges and that
contain no broken circuits.

It is clear that an´1 is the number of edges.

Here an “ 1 always.

The Linear Term: The number a1pΓq has several interpretations. It is
the number of “spanning trees with no broken circuits” of Γ.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Results:
‚ (Eisenberg) Γ is a tree if and only if a1pΓq “ 1,

‚ (Read) Γ is connected if and only if a1pΓq ě 1.

We now give a better alternative description of a1pΓq in terms to
acyclic orientations of graphs.

§ An orientation of a graph Γ “ pV ,Eq is an assignment of a
direction (i.e. arrow) to each edge ti, ju, denoted by i Ñ j or
j Ñ i, as the case may be.

§ An orientation of Γ is said to be acyclic if it has no directed cycles.
§ A vertex v0 of Γ is a source if all arrows emanate from v0.

Theorem (Stanley):
Let |ApΓ, v0q| be the number of all acyclic orientations with a unique
sink (or source) v0. Then

|ApΓ, v0q| “ a1pΓq

and this number is independent of the choice of v0.
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Example: Let C4 be the square graph. The acyclic orientations of C4
with a single source are displayed below

The top left vertex v0 being a source.

There are only a1 “ 3 orientations where v0 is the “unique” source.
There are in total 14 acyclic orientations of C4.

The chromatic polynomial of C4 is

χC4
pλq “ λ4 ´ 4λ3 ` 6λ2 ´ 3λ

so a1 “ 3 .
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Bond Partitions

Given a graph Γ with vertex set V pΓq, a “connected partition” or “a
bond partition” of Γ is any unordered set partition of V pΓq, written
B1|B2| ¨ ¨ ¨ |Bk , where the Bi ’s are the blocks which are assumed to be
the vertices of a connected subgraph Γi of Γ.

The orderof the Bi ’s appearing in this notation is immaterial.

The integer k, 1 ď k ď |V pΓq|, is the length of the partition.

Example: Consider the line graph L5 on 5 vertices labeled 1,2, . . . ,5.

1 2 3 4 5

The bond partitions of length 3 of L5 are listed lexicographically as
follows:

1|2|345 , 1|5|234 , 4|5|123 , 1|23|45 , 3|12|45 , 5|12|34
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Denote the set of all connected partitions of Γ having length k by
BkpΓq.

If B “ B1|B2| ¨ ¨ ¨ |Bk P BkpΓq, write |B| “ k the length of B.

Each block Bi corresponds to a connected subgraph Γi Ă Γ.

For such B, define the product

a1pBq :“ a1pΓ1q . . . a1pΓkq

Finally, write the set of all subgraph partitions of Γ as

BpΓq “
Ť

1ďkďnBkpΓq
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Main Result

Theorem (S.K and M. Bouzouita):
Let Γ be a finite simple graph, N ě 2 and m “ |V pΓq|. Then stably
(after one suspension)

ConfΓpRN q` »s

ł

BPBpΓq

´

Spm´|B|qpN´1q
¯

Ž

a1pBq

i.e. Every B P BpΓq contributes a wedge summand consisting of a1pBq wedge
copies of a sphere of dimension pm´ |B|qpN ´ 1q.

Consequences:
‚ The homology of the configuration space is torsion free and it is
concentrated in degrees that are a multiple of N ´ 1.

‚ The first non-zero betti number is bN´1 “ |EpΓq| (number edges).
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Corollary: The Poincaré polynomial of ConfΓpRN q is

PΓpRN q “
ÿ

BPBpΓq

a1pBqtpm´|B|qpN´1q

Literature: The COhomology of ConfΓpRN q is computed by Bökstedt
and Minuz (2020):
Cohomology of generalised configuration spaces of points on Rr .

They recover (not knowing it, but in a nicer way) much earlier
computations of Longueville and Schultz (2001):
The cohomology rings of complements of subspace arrangements,
Math. Ann. 319 (2001),625–646.

In Bökstedt and Minuz, the cohomology is given in terms of
generators and relations. In Longueville and Schultz, it is given as the
cockernel of a big DGA morphism.

The Poincaré series is not computed and it is not readily obtainable.
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Simple Example: Consider the line graph with THREE nodes labeled
1,2,3. The graph is in R3 (N “ 3)

1 2 3

Bond length Whitney
number

Sphere
summand

B |B| a1pBq Sp3´|B|qpN´1q

1|2|3 3 1 S0

12|3 2 1 S2

1|23 2 1 S2

123 1 1 S4

Here a1pBq “ 1 since all connected subgraphs are trees!

Consequently ConfL3pR3q »s S
2 _ S2 _ S4

This is consistent with the earlier result ConfL3pR3q – S2 ˆ S2.
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Second Example: The Cyclic Graphs

Let Γ “ Cm be the cyclic graph on m-vertices.

The associated configuration space is called the “cyclic configuration
space”

ConfCm
pXq “ tpx1, . . . ,xmq | x1 ‰ x2,x2 ‰ x3, ¨ ¨ ¨ ,xn ‰ x1u

Literature: This space has been studied by M. Farber and S.
Tabachnikov in connection with the problem of finding upper bounds
to the number of periodic trajectories of high dimensional billiard
problems.
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The following corollary was originally obtained using sophisticated
methods (Leray Spectral Sequence).

Theorem (Farber-Tabashnikov):

PCm
pRN q “ ptN´1 ` 1qm ´ tpm´1qpN´1q ´ tmpN´1q

Our approach to this result is completely combinatorial.

One for example needs to establish the following result about graphs:

Let BkpCmq be the set of all bond partitions of the cyclic graph Cm,

k ě 2. Then |BkpCmq| “

ˆ

m
k

˙

.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The following corollary was originally obtained using sophisticated
methods (Leray Spectral Sequence).

Theorem (Farber-Tabashnikov):

PCm
pRN q “ ptN´1 ` 1qm ´ tpm´1qpN´1q ´ tmpN´1q

Our approach to this result is completely combinatorial.

One for example needs to establish the following result about graphs:

Let BkpCmq be the set of all bond partitions of the cyclic graph Cm,

k ě 2. Then |BkpCmq| “

ˆ

m
k

˙

.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The following corollary was originally obtained using sophisticated
methods (Leray Spectral Sequence).

Theorem (Farber-Tabashnikov):

PCm
pRN q “ ptN´1 ` 1qm ´ tpm´1qpN´1q ´ tmpN´1q

Our approach to this result is completely combinatorial.

One for example needs to establish the following result about graphs:

Let BkpCmq be the set of all bond partitions of the cyclic graph Cm,

k ě 2. Then |BkpCmq| “

ˆ

m
k

˙

.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Third Example: The complete graph

Let Γ “ Km be the complete graph on m-vertices. Then one recovers
the following well-known result.

Theorem (Stable Arnold-Cohen):

ConfKm
pRN q` »s

m´1
ł

k“0

´

SkpN´1q
¯

«

m
m´ k

ff

where
„

m
m´ k

ȷ

is the unsigned Stirling numbers of the first kind

corresponding to the number of permutations of m elements with k
disjoint cycles.

Note that
„

m
m´ 1

ȷ

“
`mpm´1q

2

˘

is the number of edges of Km indeed.

How do we get this splitting from our main result?
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‚ When Γ “ Km is a complete graph, any collection of vertices makes
up a complete subgraph of Γ.

‚ For a complete graph Kr , a1pKrq “ pr ´ 1q!

Remark: The stable Arnold-Cohen splitting is classically deduced
from the fact that the homology of ConfmpRN q is generated by
classes of products of spheres (Cohen-Taylor, Fadell-Husseini,
Salvatore), so that

ConfmpRN q` »s

m´1
ź

k“1

´

SN´1
¯

Ž

k
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Poset topology
This is an extremely powerful area of (combinatorial) topology.

First initiated by H. Whitney and G. Rota in the 50s, it was later vastly
developed by R.P. Stanley in the 70s, and a bit later by A. Bjorner, M.
Wachs and many others.

A poset pP ,ďq means a set P with partial order ď.

The order complex of P is the simplicial complex whose simplices
are the chains of P

∆pPq “ tti1, . . . , iku, i1 ă i2 ă ¨¨ ¨ ă ik in Pu
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The order complex of P is the simplicial complex whose simplices
are the chains of P

∆pPq “ tti1, . . . , iku, i1 ă i2 ă ¨¨ ¨ ă ik in Pu
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Bond Poset

The connection with graph arrangements is through the bond lattice
(A lattice is a poset where every two points have a meet and a join).

Let Γ be a graph. Construct the poset ΠΓ:

§ Every bond partition B :“ B1|B2| ¨ ¨ ¨ |Bk is an element of ΠpΓq.
§ B ď B1 if B1 is a coarsening of B.

Figure: The Bond lattice ΠL4 of the line graph L4.
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The Graphic Arrangements

An arrangement of affine (or linear subspaces) Ai in RN is any finite
collection of such: A “ tAiuiPI .

An arrangement A gives rise to a poset of intersections (also called
the “intersection semi-lattice”) LpAq.

The elements of LpAq are the Ai ’s and their intersections. The order
is given by REVERSE inclusion so that x ď y if y Ă x.
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Let Γ be a simple graph, and |V pΓq| “ m.

Then obviously ConfΓpRnq is the complement of a subspace
arrangement

pRnqm ´
ď

Aij

where

Aij “ tpx1, . . . ,xmq P pRnqm | xi ‰ xi , if ti, ju P EpΓqu

Observation:The bond lattice of Γ is isomorphic to the intersection
lattice of LpAq.

We can now use the theory subspace arrangements to compute the
homology of the graph configuration spaces.

This uses a formula by Goresky and MacPherson
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Goresky and MacPherson, in “Stratified Morse Theory”, make the link
between the homology of the COMPLEMENT of a subspace
arrangement and the homology of LOWER INTERVALS in the
intersection LATTICE (LA).

Theorem: Goresky-MacPherson Formula
H̃ ipConfpRN ,Γq;Zq – ‘xPLpAqzt0̂uH̃mN´i´dimBpxq´2p∆p0̂,xq;Zq

Here ∆p0̂,xq “ ty P LpAq | 0̂ ă y ă xu and Bpxq is the subspace
associated to x (dimBpxq is also the length of the corresponding
bond).

Remark: The streamlined way to think about this formula is as a
direct application of Alexander duality.

Associated to the subspace arrangement A “ tAiu in RN is the
singularity link

V 0A :“ SN´1 X
ď

i

Ai

and Alexander duality gives that
H ipMA;Fq – Hn´2´ipV 0A;Fq pF is any fieldq
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Literature: The (stable) homotopy type of V 0A was computed by
Ziegler and Zivaljevic (and Kozlov). The answers are phrased in
terms of the lower intervals in the intersection lattice LA of the
subspace arrangement A. For general subspace arrangements,
these lower intervals in LA can have arbitrary homotopy type.

To prove our Theorem, we first get the homology, and to that end, we
need understand the homology of the intervals!

Strategy:
‚ Show that each interval is the homotopy type of a wedge of
spheres (This uses shellability).

‚ Knowing the dimension of those spheres, we can deduce
their number from the Euler characteristic (so link to chro-
matic).
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A facet is a maximal face of a 
simplicial complex.

A simplex is pure if all facets 
have the same dimension.

A shelling is a linear order on the 
facets with a special condition: 
Pick a first facet. Then each new 
facet added to the list must meet 
the old complex at a nonempty 
union of MAXIMAL proper faces.

A shellable complex is a pure complex with a shelling
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A greatly useful result in the theory is that a shellable simplicial
complex has the homotopy type of a wedge of spheres.

More precisely, let µpPq “ µp0̂, 1̂q be the Mobius function of the poset.

Theorem: Let P “ P̊ Y t0̂, 1̂u be a bounded and ranked poset (P̊ is its
proper part), and suppose that ∆pP̊q is shellable. Then ∆pP̊q is a
wedge of p´1qdµpPq spheres of dimension d “ rkpPq ´ 2.

The rank of a ranked poset is the length of a maximal chain (this is
well defined if P is ranked).

Example: Below is an example of a poset that is not ranked
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Let Γ be a simple graph on m vertices, and let ΠΓ its bond poset.

‚ The bond poset is ranked:

rkpxq = number of blocks in partition

i.e. if x “ B1| . . . |Bk P ΠΓ is a bond element, then rkpxq “ k.

‚ The bond poset is shellable
Indeed, it is geometric and bounded, so shellable (general result in
the field).

As a result we get the following main consequence.

Proposition: Let Γ be a simple graph with n vertices, and let Π̊Γ be

the proper part of the bond lattice. Then |Π̊Γ| »

˘µpΠΓq
ł

Sn´3.
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SO TO RECAPITULATE !

§ The bond lattice is nice (ranked, shellable).
§ The intervals of the bond lattice are also ranked and shellable.
§ The interval p0̂,xq, x “ B1| . . . |Bk , is the POSET PRODUCT of the
bond lattices of the Γi ’s (where Γi is the connected graph
corresponding to Bi ).

§ The number of spheres is related to the mobius function of ΠΓ

So we get our theorem by putting this all together, interval by interval.

BUT, where does the a1pΓq (linear term of the chromatic polynomial)
come from?
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Mobius Inversion Let P be a finite poset and f ,g : P Ñ R (or Z).
Suppose that for all x P P we have

f pxq “
ÿ

yěx

gpyq ùñ gpxq “
ÿ

yěx

µpx,yqf pyq.

In our case, let P be the poset of intersections tAαu of an
arrangement A in X, with α ă β if Aα Ą Aβ . Set

gpAαq “ χc

¨

˝Aα ´
ď

αăβ

Aβ

˛

‚

f pAαq “ χcpAαq

Since
f pAαq “ χcpAαq “

ÿ

βěα

gpAβq

It follows by Mobius inversion that
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Proposition:

χc

´

Xz
ď

Aα

¯

“
ÿ

0̂ďαď1̂

µp0̂,αqχcpAαq

Apply this to the graph configuration space and its bond poset, we get

Corollary (Rota): The characteristic polynomial of ΠΓ coincides with
the chromatic polynomial

χΓpλq “
ÿ

xPΠΓ

µp0̂,xqλρpxq (2)

By comparing Whitney’s and Rota’s formulas, we see that

µpΠΓq “ p´1qn´1a1pΓq (3)
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Application (Configuration Spaces with Obstacles)
For ζ “ pp1, . . . ,pnq P ConfnpXq.

Consider the following configuration space of points

ConfpX,ζq :“ tpx1, . . . ,xnq | xi ‰ xj , i ‰ j and xi ‰ pi ,@iu

These are configuration of pairwise distinct points px1, . . . ,xnq in X
such that xi avoid pi , for all i.

Let KnlK2 be the “box product ” of the complete graphs Kn and K2.
This is like a “doubling” operation (below when n “ 3)

v

v v

w

ww1

2

3

1

2 3
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Theorem: (K - Bouzouita)

PtpConfpRN ,ζqq “
PtpConfpRN ,KnlK2qq

PtpConfpRN ,Knqq

In particular, the first non-trivial positive betti number is
bN´1 “

`n
2

˘

`n.

This relies on a “Fadell-Neuwirth type” generalized fibration result
which says the following.

A subgraph H in G is relatively complete if whenever a vertex of v of
GzH shares edges with v1 and v2 in H, then tv1, v2u must be an edge
in H.

Proposition:
Suppose H is relatively complete in G. Then the projection map
ConfGpRN q ÝÑ ConfHpRN q is a bundle projection.
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