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Abstract. I will introduce the topic of representation theory of finite groups

by investigating representations of S3 and S4 using character theory. Then I

will generalize these examples by describing all irreducible representations of
any symmetric group on n letters. Finally, I will briefly discuss how to dis-

cover irreducible representations of any group using Schur Functors, which are

constructed using the irreducible representations of Sn. This paper assumes
familiarity with group theory, FG-modules, linear algebra, and category the-

ory.
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1. Introduction

A representation of a group G is a homomorphism ρ from G into the general
linear group of some vector space V . When such a map exists, if we write g · v
rather than ρ(g)(v) to denote the image of a vector v in V under the automorphism
ρ(g), then we can think of V as a CG-module, since for any vectors v and w, any
group elements g and h, and any scalar c, the following properties hold:

(1) ρ(g)(v) = g · v is in V .
(2) ρ(1) = I ∈ GL(V ) by the homomorphism property, so ρ(1)(v) = I(v) = v,

which means 1 · v = v.
(3) (ρ(g) ◦ ρ(h))(v) = ρ(g)(ρ(h)(v)), so (gh) · v = g · (h · v).
(4) ρ(g)(cv) = cρ(g)(v) by linearity, so g · cv = c(g · v).
(5) ρ(g)(v + w) = ρ(g)(v) + ρ(g)(w) by linearity, so g · (v + w) = g · v + g · w.

When we know the particular CG-module structure of V , we often call V itself
a representation of G. A subspace W of V is a subrepresentation if it is invariant
under the action of G. A representation V of G is irreducible if it has no proper
nontrivial subrepresentations. Otherwise, it is reducible. As we will soon see, every
representation of a finite group over a finite-dimensional complex vector space can
be expressed as a direct sum of irreducible representations (over finite-dimensional
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complex vector spaces) of the group. Two main goals of representation theory
are to describe all irreducible representations of a given group G and to find a
sure-fire method of decomposing any arbitrary representation of G into a direct
sum of irreducible representations. We will accomplish both of these goals for the
symmetric group on n letters Sn.

2. Basic Definitions and Complete Reducibility

We begin by describing some common representations and a few ways of con-
structing new representations from known ones. Assume that all groups mentioned
in this paper (except in Section 5) are finite and that all vector spaces mentioned
are finite-dimensional over C.

Definition 2.1. The trivial representation of a finite group G is C equipped with
the trivial action of G: gx = x for every x in C and for every g in G. Note
that every finite group has the trivial representation, and since C has no proper
nontrivial subspaces, it is irreducible, as is any one-dimensional representation.

Definition 2.2. Let X be any finite G-set. Let W be the vector space generated
by the basis {ex | x ∈ X}. Define the action of G on W by

g · (a1ex1 + a2ex2 + . . .+ amexm) = a1egx1 + a2egx2 + . . .+ amegxm .

Such a W is called a permutation representation of G. Notice that the subspace
spanned by the vector ex1 + ex2 + · · · + exm is invariant under the action of G
because each element of G simply “shuffles” the addends but does not change the
sum. Thus, every permutation representation has a nontrivial subrepresentation
and is therefore reducible.

Definition 2.3. In Definition 2.2, replace the arbitrary G-set X by G itself under
the action of left multiplication. In this case, W is called the regular representation
of G.

Definition 2.4. For a symmetric group Sn, the alternating representation is C
equipped with the action

σ · v =

{
v, if σ is an even permutation
−v, if σ is an odd permutation

or equivalently, ρ(σ) = sgn(σ)I for every σ in Sn. Note that any Sn where n ≥ 2
has the alternating representation, and since this representation is one-dimensional,
it is irreducible.

Definition 2.5. For any n, let {e1, e2, . . . en} be the standard basis for Cn. Define
the action of Sn on Cn to be

σ(a1e1 + a2e2 + · · ·+ anen) = a1eσ(1) + a2eσ(2) + · · ·+ aneσ(n).

This is a permutation representation of Sn. Again, notice that the one-dimensional
subspace of C spanned by e1 + e2 + · · · + en is invariant under the action of Sn.
Therefore, 〈e1 + e2 + · · ·+ en〉 is a subrepresentation of Cn. Its orthogonal comple-
ment V = {(x1, x2, . . . , xn) | x1 +x2 + · · ·+xn = 0} is also invariant and therefore
a subrepresentation. V is called the standard representation of Sn.
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Remark 2.6. It can be shown that given any representation V of a group G, its dual
space, its symmetric powers, and its alternating powers are also representations of
G. Furthermore, given two representations V and W of G, their tensor product and
direct sum are also representations, as is the vector space Hom(V,W). In Section
5, we will see how we can construct new representations (of any group) from old
using special functors.

The following results show that the irreducible representations of a given group
G are the “building blocks” for all of its other representations.

Lemma 2.7. Any representation V of a finite group G can be given a G-invariant
inner product, meaning that for any h in G and for any v1, v2 in V , 〈hv1, hv2〉 =
〈v1, v2〉.

Proof. Let 〈·, ·〉∗ be any positive-definite Hermitian inner product on V. Define a
new Hermitian inner product on V in the following way:

〈v1, v2〉 =
1
|G|

∑
g∈G
〈gv1, gv2〉∗ for any v1, v2 ∈ V.

Now see that for any h in G and for any v1, v2 in V , we have:

〈hv1, hv2〉 =
1
|G|

∑
g∈G
〈g(hv1), g(hv2)〉∗

=
1
|G|

∑
g∈G
〈(gh)v1, (gh)v2〉∗

=
1
|G|

∑
g∈G
〈gv1, gv2〉∗ because for every g ∈ G, gh is in G also

= 〈v1, v2〉.
�

Lemma 2.8. Let V be a representation of a finite group G, and let W be a sub-
representation of V . Then W⊥, the orthogonal complement to W inside V under
the G-invariant inner product described above, is also a subrepresentation of V .

Proof. Fix an x in W⊥ = {x ∈ V | 〈w, x〉 = 0 for every w ∈ W}. Because our
inner product is G-invariant, 〈w, gx〉 = 〈w, x〉 = 0 for any g in G and for any w in
W . Therefore, for any x in W⊥, gx is in W⊥ also. This shows that W⊥ is invariant
under the action of G. �

Exercise 2.9. Using Lemma 2.8, show that any representation of a finite group G
is the direct sum of irreducible representations.

Definition 2.10. Let V and W be representations of a finite group G. A map
between V and W as representations is a vector space map φ : V → W such that
g · φ(v) = φ(g · v) for every v in V and for every g in G.

Proposition 2.11. The kernel of φ is a subrepresentation of V , and the image of
φ is a subrepresentation of W .

Proof. Fix a g in G. Since φ is a map between representations, for any x in V we
have φ(g · x) = g · (φ(x)) = g · (0) = ρ(g)(0) = 0 by linearity of the transformation
ρ(g). Thus, kerφ is invariant under the action of G.
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Again, fix a g in G. Let z be any vector in the image of φ. Then g · z = g · φ(x)
for some x in V . And since φ is a map between representations, we have g · φ(x) =
φ(g · x), which is in the image since for every x in V , g · x is also in V . Therefore,
imφ is also invariant under the action of G. �

Lemma 2.12. (Schur’s Lemma) Let X and Y be two distinct, irreducible rep-
resentations of G, and let φ : X → Y be a map of representations between them.
Then φ is either an isomorphism or the zero map.

Proof. By Proposition 2.11, kerφ and imφ are subrepresentations of X and Y ,
respectively. Since X is irreducible, it can have no proper nontrivial subrepresenta-
tions. Therefore, kerφ is either {0} or all of X. If kerφ = {0}, then φ is one-to-one.
Since Y is also irreducible, again, either imφ = {0} or imφ = Y . If the image is all
of Y , then φ is onto, making it an isomorphism. If the image is {0}, then φ is the
zero map. If, on the other hand, kerφ = X, then φ sends every vector in X to 0,
making it the zero map. �

Theorem 2.13. Any representation V of a finite group G can be written uniquely
as a direct sum of the form

V = V ⊕a1
1 ⊕ V ⊕a2

2 ⊕ · · · ⊕ V ⊕akk ,

where the Vi’s are distinct irreducible representations of V and the multiplicity ai
of each Vi is unique.

Proof. Suppose V can also be expressed as

V = W⊕b11 ⊕W⊕b22 ⊕ · · · ⊕W⊕bmm .

Let φ : V → V be the identity map. Then by Schur’s Lemma, restricted to each
irreducible component V ⊕aii , φ is an isomorphism between V ⊕aii and the component
W
⊕bj
j for which Vi is isomorphic to Wj . �

3. Characters and Hands-on Examples Involving Them

This section introduces characters and how they can be used to find irreducible
representations and decompositions of arbitrary representations.

Definition 3.1. Let V be a representation of a finite group G, and let ρ be the
associated group homomorphism. The character χV of V is the function from G
into C given by

χV (g) = Tr(ρ(g))

Remark 3.2. Since conjugate matrices have the same trace, for a fixed element g
in G, Tr(ρ(g)) = Tr(ρ(h)ρ(g)ρ(h−1)) = Tr(ρ(hgh−1)) for any h in G. This follows
from the linearity of ρ. Therefore, the character of any representation V of G is, in
fact, a class function, which is a function that is constant on conjugacy classes.

It turns out that computing the characters of permutation representations is
very easy if we use the next theorem:

Theorem 3.3. (The Fixed Point Formula) Let G be a finite group, and let
X be a finite G-set. Let V be the associated permutation representation of G as
described in Definition 2.2. Then for every element g in G, χV (g) is the number
of elements in X left fixed by the action of g.
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Proof. The matrix M associated with the action of g is a permutation matrix.
For example, suppose that X has four elements x1, x2, x3, and x4 and that ρ(g)
permutes the basis vectors of V by sending ex1 to ex3 , ex2 to itself, ex3 to ex1 , and
ex4 to itself. Then M is the 4× 4 matrix

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .
In general, if gexi = exj for some xi in X, then M will have a 1 in the i-th column
and j-th row, and zeroes in all other entries of that column. In particular, if
gxi = xi, then gexi = egxi = exi , meaning that M has a 1 in the i-th row and i-th
column. Therefore, the trace of M is the number of 1’s along the diagonal, which
is exactly the number of points left fixed by g. �

Proposition 3.4. For any representations V and W of a group G, χV⊕W =
χV + χW and χV⊗W = χV · χW .

Proof. This is left as an exercise, but it simply involves counting the number of
eigenvalues of any transformation ρ(g). �

The set of class functions on a finite group G is a vector space. We can define
the following inner product on this space by:

〈α, β〉 =
1
|G|

∑
g∈G

α(g)β(g)

Theorem 3.5 and Corollaries 3.6 through 3.9 below allow us to decompose any
representation of a finite group by applying this inner product to characters. Proofs
can be found in [3] on pages 16, 17, and 22 and in [4] on pages 137 through 144.

Theorem 3.5. The set of character functions of the irreducible representations of
G is orthonormal with respect to this inner product.

Corollary 3.6. Any representation of G is determined by its character.

Corollary 3.7. A representation V of G is irreducible if and only if 〈χV , χV 〉 = 1.

Corollary 3.8. Let W be any representation of G. As we know, W can be written
uniquely as a direct sum of irreducible representations in the form

W = V ⊕a1
1 ⊕ V ⊕a2

2 ⊕ · · · ⊕ V ⊕akk .

In this decomposition,
• ai = 〈χW , χVi〉 for every i,
• 〈χW , χW 〉 =

∑k
i=1 a

2
i ,

•
∑k
i=1(dim(Vi))2 = |G|, and

• for any g in G that is not the identity,
∑k
i=1(dimVi) · χVi(g) = 0.

Corollary 3.9. The number of irreducible representations of a finite group G is
equal to the number of conjugacy classes in G.

Example 3.10. Let’s see what these results can tell us about the group S3. We
know right away from Corollary 3.9 that S3 has exactly three irreducible representa-
tions. This is because in a symmetric group, each equivalence class of permutations
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of a certain cycle type constitutes a conjugacy class, and S3 has three cycle-types;
namely, the identity, transpositions, and 3-cycles. The trivial and alternating rep-
resentations (let’s denote them by U and U ′, respectively) of S3 are irreducible
because they are one-dimensional. Since in the trivial representation ρ(g) is the
1×1 identity matrix [1] for every g, we know that χU (g) = Tr[1] = 1 for every g. In
the alternating representation, we have χU ′(ι) = Tr[1] = 1, χU ′(12) = Tr[−1] = −1,
and χU ′(123) = Tr[1] = 1. There now remains only one more irreducible represen-
tation for us to find. It cannot be any sort of permutation representation, because
those are all reducible. Thus, it is worth checking the standard representation
V = {(x1, x2, x3) | x1 + x2 + x3 = 0}. By definition, C3 = 〈e1 + e2 + e3〉 ⊕ V .
Note that 〈e1 + e2 + e3〉 under the permutation action of S3 is isomorphic to C
under the trivial action of S3, so it is the trivial representation U . Since S3 acts
on C3 by permuting the three standard basis vectors, by the Fixed-Point Formula
we have χC3(ι) = 3, χC3(12) = 1, and χC3(123) = 0. Also, because C3 ∼= U ⊕ V ,
by Proposition 3.4 we have χC3 = χU + χV . Therefore, χC3 has values 3 − 1 = 2,
1−1 = 0, and 0−1 = −1 on the conjugacy classes of ι, (12) and (123), respectively.
Notice that

〈χC3 , χC3〉 =
1
|S3|

(22 · 1 + 02 · 3 + (−1)2 · 2) =
1
6
· 6 = 1.

Therefore, by Corollary 3.7, V is irreducible. We found it! We can summarize the
work we did into the following simple array called the character table for S3:

Conjugacy Class Sizes 1 3 2
Representatives ι (12) (123)

Trivial Representation U 1 1 1
Alternating Representation U ′ 1 -1 1

Standard Representation V 2 0 -1

Remark 3.11. Notice that for any representation W of a finite group G, χW (1) =
Tr(ρ(1)) = Tr(I). This is simply the number of columns of I, which is the dimension
of W . Thus, the first column of the character table above shows the dimension of
each irreducible representation. We can use this and other handy information from
the table to decompose any other representation of S3.

Example 3.12. Since S3 acts on the vertices of the equilateral triangle by per-
muting its three diagonals, there is a permutation representation associated with
the resulting action on the set of vertices. If we label our triangle as shown,

�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A

A
C

B

�
�
�
�
�
�
��

Q
Q
Q

Q
Q
Q

QQ
3 1

2
then we see that the transposition (12) acts on the triangle by interchanging diag-
onals 1 and 2. This is a reflection about diagonal 3, and it interchanges vertices
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A and B but leaves vertex C fixed. Similarly, the other transpositions in S3 each
leave exactly one vertex fixed. The element (123) rotates the triangle by 120 de-
grees clockwise and therefore leaves no vertices fixed. Finally, the identity element
leaves all three vertices fixed. By the Fixed Point Formula, then, the character of
this representation has values 3, 1, and 0 on the conjugacy classes consisting of the
identity, transpositions, and 3-cycles, respectively. Therefore, we have

〈χW , χW 〉 =
1
|S3|

(32 · 1 + 12 · 3 + 02 · 2) =
1
6

(9 + 3 + 0) =
1
6
· 12 = 2.

By Corollary 3.8, 〈χW , χW 〉 is the sum of the squares of the multiplicities of the
irreducible representations in the decomposition of W . Since 2 = 12 + 12, and this
is the only way to write 2 as the sum of squares of nonnegative integers, it must
be that W is the direct sum of exactly two distinct irreducible representations of
S3. To find out which two, we simply take the product of χW with the character
of each irreducible representation as follows:

〈χW , χU 〉 =
1
6

(3 · 1 · 1 + 1 · 1 · 3 + 0 · 1 · 2) = 1,

〈χW , χU ′〉 =
1
6

(3 · 1 · 1 + 1 · (−1) · 3 + 0 · 1 · 2) = 0,

〈χW , χV 〉 =
1
6

(3 · 2 · 1 + 1 · 0 · 3 + 0 · (−1) · 2) = 1

By Corollary 3.8, the trivial representation U appears in the decomposition of W
once, the standard representation V appears once, and the alternating representa-
tion U ′ does not appear at all. Therefore, we have the decomposition W ∼= U ⊕ V .

Example 3.13. As mentioned before, any tensor power of a known representa-
tion of a group is again a representation. Therefore, the n-th tensor power of the
standard representation V of S3 is another representation of S3. To find its decom-
position, first note that Proposition 3.4 implies χV ⊗n = (χV )n. Therefore, we have
χV ⊗n(ι) = 2n, χV ⊗n((12)) = 0n = 0, and χV ⊗n((123)) = (−1)n. Take the product
of χV ⊗n with the character of each irreducible:

〈χV ⊗n , χU 〉 =
1
6

(2n ·1·1+0·1·3+(−1)n ·1·2) =
1
6

(2n+2(−1)n) =
1
3

(2n−1+(−1)n),

〈χV ⊗n , χU ′〉 =
1
6

(2n·1·1+0·(−1)·3+(−1)n·1·2) =
1
6

(2n+2(−1)n) =
1
3

(2n−1+(−1)n),

〈χV ⊗n , χV 〉 =
1
6

(2n·2·1+0·0·3+(−1)n·(−1)·2) =
1
6

(2n+1+2(−1)n+1) =
1
3

(2n+(−1)n+1).

This gives us the decomposition

V ⊗n ∼= U
1
3 (2n−1+(−1)n) ⊕ U ′ 13 (2n−1+(−1)n) ⊕ V 1

3 (2n+(−1)n+1).

Example 3.14. Now let’s compute the character table of S4. Since there are five
cycle-types (i.e., conjugacy classes) in S4, we know right away that S4 has exactly
five irreducible representations. The trivial and alternating representations U and
U ′ are irreducible, and we know their characters. The next easy candidate to check
is the standard representation V . It is left as an exercise to show that V and the
representation V ′ = V ⊗U are both irreducible. (You will need Proposition 3.4 and
Corollary 3.7.) It remains now to find the character values of the final irreducible
representation, which we will call W . Let a, b, c, d, and e denote the values of χW on
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the conjugacy classes of ι, (12), (123), (1234) and (12)(34), respectively. Corollary
3.8 and the entries in the first column that we know so far give us

5∑
i=1

(dim(Vi))2 = |S4| =⇒ 12 + 12 + 32 + 32 + a2 = 24 =⇒ a2 = 4 =⇒ a = 2.

Now we can use the last part of Corollary 3.8 to compute b:

5∑
i=1

(dim Vi)·χVi(g) = 0 =⇒ 1·1+(−1)·1+1·3+(−1)·3+b·2 = 0 =⇒ 2b = 0 =⇒ b = 0.

We can compute c, d and e in the same way, giving us the complete character table:

1 6 8 6 3
S4 ι (12) (123) (1234) (12)(34)
U 1 1 1 1 1
U ′ 1 -1 1 -1 1
V 3 1 0 -1 -1
V ′ 3 -1 0 1 -1
W 2 0 -1 0 2

Although for now the only thing we know about W is its character, in Section 4
we will learn the tools for explicitly describing the vector space W itself.

Example 3.15. S4 acts on the faces, vertices and edges of the cube by permuting
the four long diagonals inside the cube and thus has a permutation representation
associated with each action. We will decompose each representation. Label the
cube as shown:

PPPPP
PPPPP

PPPPP
PPPPP

a

b

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ

A
A
A
A
A
A�

��
�
��

�
��

�
��

�
�
�
�
�
�
�
�
�

z

1 2

3

4

Faces: Call this permutation representation X. The identity permutation does
not move the cube at all, leaving the 6 faces fixed. The transposition (12) rotates
the cube 180 degrees about the axis connecting the midpoints of edges a and b. This
motion moves every face to a new location and therefore fixes no faces. The 3-cycle
(123) rotates the cube 120 degrees about long diagonal number 4 and also fixes no
faces. The 4-cycle (1234) rotates the cube 90 degrees about the axis z, leaving the
top and bottom faces fixed but moving the other four around. Finally, (12)(34)
rotates the cube 180 degress about z, again leaving only the top and bottom faces
fixed. Therefore, by the Fixed Point Formula, χX has the values 6, 0, 0, 2, 2 on the
conjugacy classes of ι, (12), (123), (1234), and (12)(34), respectively. This gives us

〈χX , χX〉 =
1
|S4|

(62 ·1+02 ·6+02 ·8+22 ·6+22 ·3) =
1
24

(36+24+12) =
1
24
·72 = 3.
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Since the only way to express 3 as the sum of squares is 3 = 12 + 12 + 12, we know
that X is the direct sum of exactly three irreducible representations. See that

〈χX , χU 〉 =
1
|S4|

(6·1·1+0·1·6+0·1·8+2·1·6+2·1·3) =
1
24

(6+12+6) =
1
24
·24 = 1,

〈χX , χU ′〉 =
1
|S4|

(6·1·1+0·(−1)·6+0·1·8+2·(−1)·6+2·1·3) =
1
24

(6−12+6) =
1
24
·0 = 0,

〈χX , χV 〉 =
1
|S4|

(6·3·1+0·1·6+0·0·8+2·(−1)·6+2·(−1)·3) =
1
24
·(18−12−6) =

1
24
·0 = 0,

〈χX , χV ′〉 =
1
|S4|

(6·3·1+0·(−1)·6+0·0·8+2·1·6+2·(−1)·3) =
1
24
·(18+12−6) =

1
24
·24 = 1.

At this point, we know that X must contain a copy of W . Therefore, we have the
decomposition X = U ⊕ V ′ ⊕W .

Vertices: Call this permutation representation Y . The identity permutation
fixes all 8 vertices. Transpositions fix no vertices. Each 3-cycle fixes 2 vertices.
Each 4-cycle fixes no vertices. Finally, elements in the conjugacy class of (12)(34)
do not fix any vertices, either. Therefore, χY has the values 8, 0, 2, 0, 0 on the
respective conjugacy classes, which gives us

〈χY , χY 〉 =
1
|S4|

(82 · 1 + 02 · 6 + 22 · 8 + 02 · 6 + 02 · 3) =
1
24

(64 + 32) =
1
24
· 96 = 4.

Since the possible ways of writing 4 as the sum of squares of nonnegative integers
are 4 = 22 and 4 = 12 + 12 + 12 + 12, Y is either the direct sum of four irreducible
representations or the direct sum of two copies of one irreducible representation.
To find out which case it is, we simply compute:

〈χY , χU 〉 =
1
|S4|

(8 ·1 ·1+0 ·1 ·6+2 ·1 ·8+0 ·1 ·6+0 ·1 ·3) =
1
24

(8+16) =
1
24
·24 = 1,

〈χY , χU ′〉 =
1
|S4|

(8·1·1+0·(−1)·6+2·1·8+0·(−1)·6+0·1·3) =
1
24

(8+16) =
1
24
·24 = 1,

〈χY , χV 〉 =
1
|S4|

(8 · 3 · 1 + 0 · 1 · 6 + 2 · 0 · 8 + 0 · (−1) · 6 + 0 · (−1) · 3) =
1
24
· 24 = 1,

〈χY , χV ′〉 =
1
|S4|

(8 · 3 · 1 + 0 · (−1) · 6 + 2 · 0 · 8 + 0 · 1 · 6 + 0 · (−1) · 3) =
1
24
· 24 = 1.

Again, we don’t need to compute 〈χY , χW 〉. We already know the decomposition:
Y = U ⊕ U ′ ⊕ V ⊕ V ′.

Edges: Call this permutation representation Z. By following the same process
as described above, we can find that χZ has the values 12, 2, 0, 0, 0 on the respective
conjugacy classes, and therefore Z decomposes as Z = U ⊕ V ⊕2 ⊕ V ′ ⊕W .

4. Representations of Sn

Recall that Sn has exactly as many irreducible representations as it does con-
jugacy classes, and each conjugacy class is a cycle-type equivalence class. Now,
there is a one-to-one correspondence between the set of cycle-types and the ways
to write n as the sum of positive integers. For example, S4 has the following five
cycle-types:
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Permutation of the Form Can Also be Written As Corresponds to the Sum
ι (1)(2)(3)(4) 1 + 1 + 1 + 1

(12) (12)(3)(4) 2 + 1+ 1
(123) (123)(4) 3 + 1

(12)(34) (12)(34) 2 + 2
(1234) (1234) 4

A fundamental tool for studying the representations of Sn is the Young Diagram,
which is an array of boxes: for a given partition n = λ1 + λ2 + · · ·+ λk (which we
denote by λ = (λ1, λ2, . . . , λk)) where λi ≥ λi+1 for every 1 ≤ i ≤ k, we draw a
row of λ1 boxes. Beneath it, we draw a row of λ2 boxes, and so on so that the last
row contains λk boxes and each row is as long as or shorter than the one above it.
Thus, the Young Diagrams corresponding to the partitions of 4 are:

Now that we see how each conjugacy class of Sn corresponds to a Young Diagram,
let’s look at an algorithm that actually generates all of the irreducible representa-
tions of Sn. (For a proof of why this method works, see Section 7.2 of [2] and
Section 4.2 of [3].) First, let’s pick a particular partition λ = (λ1, λ2, . . . , λk) of
n and label the boxes of the corresponding Young Diagram in order, from left to
right and from the top down, with the integers 1 through n. For example, if we
were working in S6 and had chosen to find the irreducible representation associated
with the partition λ = (3, 2, 1), then we would number our boxes like this:

λ1 = 3
λ2 = 2
λ3 = 1

1 2 3
4 5
6

Define the following two sets, which are, in fact, subgroups of Sn:

Pλ = {σ ∈ Sn | σ preserves the set of numbers in each row} and
Qλ = {σ ∈ Sn | σ preserves the set of numbers in each column}.

For our particular numbered diagram above, we have:

Pλ = {ι, (12), (23), (13), (123), (132), (45), (12)(45), (23)(45), (13)(45), (123)(45), (132)(45)},
Qλ = {ι, (14), (16), (46), (146), (164), (25), (14)(25), (16)(25), (46)(25), (146)(25), (164)(25)}.

Before we proceed, we need:

Definition 4.1. Let F be any field, and let G be a group. The group algebra of
G over F is the vector space over F generated by the basis {ex | x ∈ G} with
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multiplication defined by(∑
x∈G

cxx

)∑
y∈G

dyy

 =
∑
x,y∈G

cxdyxy ,

where the cx’s and dy’s are scalars in F . Note that if we let F = C, then CG becomes
a permutation representation under the group action defined by g · ex = egx.

Now define the following three elements of the group algebra CSn:

aλ =
∑
σ∈Pλ

eσ,

bλ =
∑
τ∈Qλ

sgn(τ)eτ , and

cλ = aλbλ.

It turns out that the subspace CSn · cλ is an irreducible representation of Sn,
and distinct partitions of λ correspond to distinct irreducible representations. It
is important to know that although the number of conjugacy classes of any finite
group will always equal the number of its irreducible representations, very rarely
do we see an explicit bijection between these sets as we do here.

Example 4.2. To see this in action, let’s find all irreducible representations of
S3 again. There are three partitions of 3 and therefore three corresponding Young
Diagrams. We will number each one in the manner described above:

λ = (3)

1 2 3

µ = (2, 1)

1 2
3

ν = (1, 1, 1)

1
2
3

In the first diagram, 1, 2 and 3 are all sitting in one row, so any reshuffling of
these numbers will preserve the row. The only permutation that will preserve the
columns, however, is the identity. Therefore, Pλ = S3 and Qλ = {ι}. This gives us

aλ = eι + e(12) + e(23) + e(13) + e(123) + e(132),

bλ = eι,

cλ = (eι + e(12) + e(23) + e(13) + e(123) + e(132))eι
= eι + e(12) + e(23) + e(13) + e(123) + e(132).

The associated irreducible representation, then, is CS3 · cλ = C · cλ = 〈cλ〉 because
multiplying by any element in the basis of CS3 will simply rearrange the addends
of cλ but not change the sum. Notice that the subspace generated by cλ is one-
dimensional. Furthermore, because σ · rcλ = rcλ for any σ in S3 and for any scalar
r, the action of every σ leaves every vector in 〈cλ〉 fixed, which means 〈cλ〉 is the
trivial representation.
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In the second diagram, Pµ = {ι, (12)} and Qµ = {ι, (13)}. Therefore, we have

aµ = eι + e(12),

bµ = eι − e(13),
cµ = (eι + e(12))(eι − e(13))

= eι − e(13) + e(12) − e(132).
According to our algorithm, the associated irreducible representation is CS3 · cµ.
To find out what this subspace is, we multiply cµ by the basis elements of CS3:

eι(eι − e(13) + e(12) − e(132)) = eι − e(13) + e(12) − e(132),
e(12)(eι − e(13) + e(12) − e(132)) = e(12) − e(132) + e(ι) − e(13),
e(13)(eι − e(13) + e(12) − e(132)) = e(13) − eι + e(123) − e(23),
e(23)(eι − e(13) + e(12) − e(132)) = e(23) − e(123) + e(132) − e(12),
e(123)(eι − e(13) + e(12) − e(132)) = e(123) − e(23) + e(13) − e(ι),
e(132)(eι − e(13) + e(12) − e(132)) = e(132) − e(12) + e(23) − e(123).

This set is spanned by the first and third vectors, showing that CS3 · cµ is the
subspace 〈eι − e(13) + e(12) − e(132), e(13) − eι + e(123) − e(23)〉. This must be the
standard representation, which is the only two-dimensional representation of S3.

In the third diagram, any permutation in S3 will preserve the column, but only
the identity will fix the rows. Therefore, we have Pν = {ι} and Qν = S3. This
gives us

aν = eι,

bν = eι − e(12) − e(23) − e(13) + e(123) + e(132),

cν = eι(eι − e(12) − e(23) − e(13) + e(123) + e(132))
= eι − e(12) − e(23) − e(13) + e(123) + e(132).

Again, the associated irreducible representation is CS3 · cν = C · cν = 〈cν〉 because
multiplying by any element in the basis of CS3 will rearrange the addends of cν and
negate their signs. This subspace is also one-dimensional. Furthermore, for any σ
in S3 and for any scalar r, σ · rcν is rcν if σ is even and −rcν if σ is odd. Thus,
〈cν〉 is the alternating representation.

Not only do we have a straightforward way of constructing every irreducible rep-
resentation of Sn, but we also have an explicit formula for computing the character
of each one: For a partition λ = (λ1, λ2, . . . , λk) of n, let Ci denote any conjugacy
class of Sn. Let j be an index that runs from 1 through n. If we write any element
in Ci as the product of disjoint cycles, then define ij to be the number of cycles of
length j in this product. Introduce k independent variables x1, x2, . . . , xk. Define
the jth power sum to be Pj(x) = xj1 + xj2 + · · · + xjk. Define the discriminant of
{x1, x2, . . . , xk} to be

∆(x) =

∣∣∣∣∣∣∣
1 xk · · · xk−1

k
...

...
. . .

...
1 x1 · · · xk−1

1

∣∣∣∣∣∣∣ .
Let `s = λs + k − s for every 1 ≤ s ≤ k. Finally, if f(x) is some polynomial
function of x1, x2, . . . , xk, let [f(x)](`1,`2,...,`k) denote the coefficient on the term
x`11 x

`2
2 · · ·x

`k
k . Then:
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Theorem 4.3. (The Frobenius Formula) The character of the irreducible rep-
resentation of Sn associated with λ is given by

χλ(Ci) =

∆(x) ·
∏
j

Pj(x)ij


(`1,`2,...,`k)

.

Proof. See Section 4.3 of [3]. �

Example 4.4. Let’s compute χ(2,1) for the conjugacy class of transpositions in
S3. Here k = 2, so we introduce two independent variables x1 and x2. Each
transposition can be written as a product of a 2-cycle and a 1-cycle, so we have
i1 = 1, i2 = 1, i3 = 0. This means the polynomial inside the brackets of the formula
above is (x2 − x1)(x1

1 + x1
2)(x2

1 + x2
2)) = x4

2 − x4
1. Therefore, the coefficient on

the term x2
1x2 is 0. Notice that this agrees with the value for χV (12) (where V

is the standard representation) that we computed when we were constructing the
character table of S3.

5. Schur Functors

In this section, we will see how, given a representation of a group (finite or not),
we can use the irreducible representations of Sn to discover new representations of
that group.

Definition 5.1. If V and V ′ are representations of groups H and H ′, respectively,
then the external tensor product V � V ′ is the representation V ⊗ V ′ of H × H ′
where the group action is given by (h, h′) · (v ⊗ v′) = hv ⊗ h′v′ for every (h, h′) in
H ×H ′ and every v ⊗ v′ in V ⊗ V ′.

Definition 5.2. If ρ : GLn → GLk(W ) is a representation of GLn, then ρ sends
matrices to matrices:

ρ

a11 · · · a1n

...
. . .

...
an1 · · · ann

 =

f11(a11, . . . , ann) · · · f1n(a11, . . . , ann)
...

. . .
...

fn1(a11, . . . , ann) · · · fnn(a11, . . . , ann)


If the fij ’s in the image matrix are polynomial functions, we say that W is a
polynomial representation.

The group GL(V ) has a natural representation: V equipped with the group
action given by T · v = T (v) for every T in GL(V ). Just as with finite groups, any
tensor power of V is also a representation of GL(V ). The group action here is

T · (v1 ⊗ v2 ⊗ · · · ⊗ vn) = T (v1)⊗ T (v2)⊗ · · · ⊗ T (vn)

V ⊗n is also naturally a representation of Sn under the group action given by

(v1 ⊗ v2 ⊗ · · · ⊗ vn)σ = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

Notice that these actions commute. We can therefore compose them to obtain a
new group action on V ⊗n of GL(V ) × Sn, making V ⊗n into a representation of
GL(V )× Sn.

Definition 5.3. As shown in Section 4, any partition λ of n corresponds to a
Young symmetrizer cλ. The image of the action of cλ on V ⊗n, which we denote
by Sλ(V ), is another representation of GL(V ). We call the functor (between the
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category of representations of G and itself) that sends a representation V to Sλ(V )
the Schur Functor associated with the partition λ and denote it by Fλ.

Theorem 5.4. V ⊗n can be decomposed as

V ⊗n ∼=
⊕
λ`n

Sλ(V )⊗mλ

where each Sλ(V ) is an irreducible representation of GL(V ) and mλ is the dimen-
sion of Vλ, the irreducible representation of Sn associated with the partition λ of
n.

Another way of saying this is that V ⊗n can be decomposed as V ⊗n =
⊕
Vi

where each i corresponds to a partition of n and each Vi has the form Mi�Wi, and
Mi and Wi are irreducible representations of Sn and GL(V ), respectively. Further-
more, if the dimension of V is greater than or equal to n, then every irreducible
representation of Sn occurs exactly once in the decomposition, and every polyno-
mial irreducible representation of GL(V ) occurs in the decomposition of exactly
one V ⊗n as n varies from 1 to ∞. For a given n, we would like to find out exactly
what the Wi’s are in the decomposition of V ⊗n. Let mi = dim(Mi). If we ignore
the CSn-module structure on Sn, we have

V ⊗n =
⊕
i

Cmi ⊗Wi =
⊕
i

(Wi)mi .

It turns out that we can recover each Wi by applying the Schur Functor associated
with the partition i to V ⊗n.

By starting with just one representation of GL(V ) (namely, V ), we can recover
all irreducible representations of GL(V ). The same method can be used to find
many, if not all, of the irreducible representations of other groups besides GL(V ).
There is also an explicit formula for computing the characters of these resulting
representations called the Weyl Character Formula. It would be an interesting
topic for further study.
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