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Abstract

An important symmetry of string theory, T-duality relates string theory on

different backgrounds and may be realized as a transformation between two-

dimensional σ-models. A systematic method has been developed by Bouwknegt,

Evslin and Mathai to analyze the global properties of T-duality in the presence

of NS −NS 3-form H-flux. Cavalcanti and Gualtieri subsequently realized that

generalized geometry provides a natural setting to study global T-duality.

In the case when two T-dual σ-models with target spaces are principal circle

bundles over a common base manifold, Cavalcanti and Gualtieri showed that T-

duality can be viewed as an isomorphism between Courant algebroids. In this

thesis, we generalize the result of Cavalcanti and Gualtieri to general principal

torus bundles and show that a principal torus bundle E and its T-dual space Ê

are related by T-duality as isomorphic Courant algebroids.

Next, we generalize the above construction to Poisson-Lie T-duality, which

is a non-Abelian T-duality proposed by Klimc̆́ık and S̆evera. For a Poisson-Lie

group G and its dual group G̃, Poisson-Lie T-duality relates a pair of σ-models

with targets being principal G and G̃-bundles E and Ê, respectively. We then

show that Poisson-Lie T-duality can be viewed as an isomorphism relating E and

Ê as isomorphic Courant algebroids.

We also investigate the non-geometric flux compactifications proposed by

Shelton, Taylor and Wecht. We show that the full gauge algebras arising from

a Scherk-Schwarz compactification correspond to a Courant algebra, and the

non-geometric fluxes proposed by Shelton, Taylor and Wecht correspond to the

fluxes arising from the global T-duality formulated by Bouwknegt, Hannabuss

and Mathai.
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Chapter 1

Introduction

1.1 Introduction

String theory is without doubt the most active research area in Mathematical

Physics at present. T-duality originally arises as a symmetry which relates type

IIA and type IIB string theories. Geometrically, T-duality arises from compact-

ifying a theory on a circle with radius R, and one can show that such a theory

describes the same physics as a theory compactified on a circle with radius 1/R.

While T-duality is a symmetry of String theory, it relates different String back-

grounds, i.e. classical solutions of the underlying low-energy effective theories.

Thus it can be used, for example, to construct new solutions to Einstein’s equa-

tions in General Relativity out of existing solutions.

In particular, T-duality relates String Theory on different backgrounds and

may be realized as a transformation between two-dimensional σ-models [29]. A

two-dimensional σ-model describes the world-sheet theory of a string propagating

on a target manifold E equipped with a Riemannian metric gij and a locally

defined antisymmetric B-field bij, with string background defined by Eij ≡ gij +

bij.

Locally the duality rules for T-duality with an Abelian isometry were con-

structed by Buscher [13] in 1987, and are known as the Buscher rules. To

obtain the Buscher rules, E is required to have an Abelian isometry group which

leaves the σ-model invariant. The dual model can then be obtained by gauging

the isometry, with gauge fields being integrated out. Here, let us simply refer to

this type of construction as Abelian T-duality.

However, since the B-field is often only locally defined, it is of great interest

to obtain a global characterisation of T-duality in terms of some global objects.
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One such object is the NS−NS background H-flux, which is locally given by the

exterior derivative of the B-field. Through examples in literature, it is argued

that T-duality leads to a topology change of the underlying manifold [4, 34].

Many open questions regarding T-duality in the presence of background fluxes

remain to be answered though. In order to understand the topology change under

T-duality, we follow a systematic method that has been developed to study the

global aspect of T-duality by Bouwknegt, Evslin and Mathai [6, 7].

In this construction, one considers a target space E that is a principal torus

bundle over a base manifold M . σ-models are characterised topologically by

(M,F,H), where the H-flux on E is a closed, integral, 3-form H on E and can

be characterized by the four tuple (H(3), H(2), H(1), H(0)), where H(i) is a vector

valued i-form on M . This method of characterising H ∈ Ω3(E) by forms on

the base manifold is referred to as “dimensional reduction”. F is the curvature

2-form on M . In the case when E is a principal circle bundle, H(1) and H(0)

vanish and the T-dual space turns out to be another principal circle bundle with

corresponding dual H-flux. Extending to the general principal torus bundle case,

in which case the H(1) and (or) H(0) components can be non-vanishing, one arrives

at some interesting results involving topology change. As argued in [62], if one

considers a principal Tn-bundle with H(1) 6= 0 and H(0) = 0, then the T-dual

bundle surprisingly has noncommutative tori as fibres. Furthermore, if H(0) 6= 0

then the T-dual bundle has non-associative tori as fibres.

In order to analyse the above mentioned topology change in more detail, we

study T-duality in the framework provided by generalized geometry. General-

ized geometry, first introduced by Hitchin [38] in 2002 and further developed by

Gualtieri [32] and Cavalcanti [16], has emerged to provide a useful framework

for studying string compactifications and T-duality. Generalized geometry is a

geometry that doubles the original space, i.e. in generalized geometry, a vector

space V is replaced by V ⊕V ∗, here V ∗ is its dual space. In particular the object

that we are interested in is the direct sum of the tangent and cotangent bundles

TE ⊕ T ∗E. As first studied by Cavalcanti [16] and Gualtieri [33], considering

the case when E is a principal S1-bundle, there is a natural inner product and

an antisymmetric bracket structure called the Courant bracket satisfying certain

properties on (TE ⊕ T ∗E)S1 – the invariant sections of TE ⊕ T ∗E – and making

(TE ⊕ T ∗E)S1 into a Courant algebroid. They also showed that invariant struc-

tures on (TE ⊕ T ∗E)S1 can be transported to an invariant structure on its dual

space (TÊ ⊕ T ∗Ê)Ŝ1 , where Ê is the dual principal Ŝ1-bundle.

Thus, T-duality can be viewed as isomorphism between a pair of Courant



1.1 Introduction 3

algebroids:

((TE ⊕ T ∗E)inv, 〈 , 〉, [[ , ]]H)
∼= //

π
))TTTTTTTTTTTTTTTTT ((TÊ ⊕ T ∗Ê)inv, 〈 , 〉, [[ , ]]Ĥ)

π̃
uukkkkkkkkkkkkkkkk

TM

We then extend Cavalcanti and Gualtieri’s result of principal circle bundles

to the general case – principal torus bundles – and generalist the Courant bracket

on the invariant sections of TE ⊕ T ∗E, where E is a principal torus bundle and

Ê is its dual space.

It it not apparent that the generalized Courant bracket in this case together

with the non-degenerate bilinear form makes the space of invariant sections of

TE ⊕ T ∗E a Courant algebroid. But once we redefine the generalized Courant

bracket in terms of the bracket on an object called proto-bialgebroid [55, 66],

then the space of invariant sections of TE ⊕ T ∗E is recognized as the double of

a proto-bialgebroid, as a result (TE ⊕ T ∗E)inv can be interpreted as a Courant

algebroid.

Any invariant structure on TE ⊕ T ∗E can be transported to an invariant

structure on T ∗Ê⊕TÊ, even when E and Ê has different topology. Therefore we

use the setting of T-duality as an isomorphism between Courant algebroids and

show that the topology change for principal torus bundles with nonvanishing H(1)

and H(0) agrees with the result previously obtained by Bouwknegt, Hannabuss

and Mathai [8, 9].

Since the Abelian T-duality described by the Buscher rules is so simple and

beautifully symmetric, a naive question to ask is whether the Buscher rules can

be extended to the case when the isometry is non-Abelian. With such a gener-

alization, T-duality can then be further applied to σ-models with non-Abelian

isometry groups.

A first attempt to construct T-duality with non-Abelian isometry was formu-

lated by de la Ossa and Quevedo [20] in 1993. Inspired by Buscher’s technique,

they applied a T-duality transformation following Buscher’s procedure using non-

Abelian isometry groups. However it was soon realized by de la Ossa, Quevedo

and other authors [4, 20, 27] that non-Abelian T-duality in this formalism suf-

fered certain drawbacks, the most noticeable being that this technique is not

symmetric, i.e. one can not in general recover the original theory by repeating

the T-duality procedure.

In another attempt to construct non-Abelian T-duality, Klimc̆́ık and S̆evera

[49] abandoned the requirement of isometry as dualizability and proposed a gen-
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eralization of T-duality in 1995, which has come to be known as Poisson-Lie T-

duality. In this formalism of non-Abelian T-duality, instead of the requirement

of an isometry, the crucial concept of Drinfel’d double are required to construct

a pair of dual σ-models.

Since in the Abelian case, we have set up a framework to study T-dual spaces

as isomorphic Courant algebroids, we are then attempted to set up a similar

framework for Poisson-Lie T-duality. For a pair of Poisson-Lie groups G and G̃,

Poisson-Lie T-duality relates a pair of dual σ-models on targets E and Ê being

principal G and G̃-bundles. Thus generalizing the Abelian case, TE ⊕ T ∗E and

TÊ⊕T ∗Ê can be viewed as isomorphic Courant algebroids related by Poisson-Lie

T-duality.

We also investigate the non-geometric flux compactification proposed by Shel-

ton, Taylor and Wecht [74]. In this formalism, they showed that performing T-

duality on H-flux in one direction yields a twisted torus compactification, which

is characterised by a ‘geometric fluxes’ f c
ab . While performing another T-duality

on a twisted torus in one direction yields a globally non-geometric space charac-

terized by a ‘non-geometric flux’ qab
c. They further proposed that if one performs

T-duality once more in one direction, one obtains a non-geometric string back-

ground characterized by a non-geometric flux rabc. To be more precise, these

fluxes arise as the charges of algebras of the full T-duality invariant gauge al-

gebra from a Scherk-Schwarz compactification on the string background E. We

show that the full gauge algebra arising from a Scherk-Schwarz compactification

correspond to the Courant bracket on the invariant sections of the generalized

tangent space TE ⊕ T ∗E, and the charges f c
ab , qab

c and rabc correspond to the

fluxes F(2), F(1) and F(0) which are the T-dual of H(2), H(1) and H(0).

1.2 Outline

This thesis is organized as follows.

In Chapter 2, we first review some basic concepts of Poisson geometry includ-

ing the concepts of Poisson-Lie groups and Drinfel’d doubles, which is crucial

to the study of Poisson-Lie T-duality. Then we introduce some algebraic ob-

jects such as Lie algebroids, Lie bialgebroids, Proto-bialgebroids and Courant

algebroids, which will be needed later.

In chapter 3 we review the basic construction of Abelian T-duality, i.e. the

Buscher rules. Followed by a review of a non-Abelian version of T-duality, the
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Poisson-Lie T-duality.

Chapter 4 reviews the basic ingredients of generalized geometry, in particular

we focus on the generalized tangent space – the direct sum of the tangent and

cotangent bundle TE ⊕ T ∗E – with an interpretation of a Courant algebroid.

Then in Chapter 5, we move on to setting up a framework to study T-duality

using the framework of generalized geometry. We start by reviewing the global

T-duality followed by a generalization of such setting using the framework of gen-

eralized geometry. At the end of this chapter we analyse the generalize Courant

bracket in the principal torus bundle case and show that this bracket can be

rewritten as the derived bracket of a proto-bialgebroid, thus the generalized tan-

gent spaces of a principal torus bundle and its dual space are simply the double

of a proto-bialgebroid, or as one expect, a Courant algebroid. This chapter is a

joint work with Bouwknegt and Garretson.

In Chapter 6, we consider the non-Abelian version of T-duality – Poisson-Lie

T-duality – in the framework of generalized geometry. We begin by introducing

the Semenov-Tian-Shansky Poisson structure on a Poisson-Lie group G. We

then generalize the (Abelian) T-duality and establish an isomorphism of Courant

algebroids related by Poisson-Lie T-duality. This chapter is a joint work with

Bouwknegt.

The goal of Chapter 7 is to investigate the non-geometric flux compactification

and relate the non-geometric fluxes with the fluxes which appear in the global

T-duality using the language of Courant algebroid. This chapter is a joint work

with Bouwknegt and Garretson.
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Chapter 2

Poisson geometry and Lie

algebroid theory

2.1 Introduction and outline

As stated by Mackenzie [61], Poisson geometry has been developed over the years

from three principal sources.

Firstly, Poisson geometry provides a more natural and convenient framework

to study symplectic geometry. There is a canonical Poisson structure associated

with any symplectic manifold (M,ω) such that the Poisson bracket makes C∞(M)

into a real Lie algebra. Symplectic structures naturally give rise to non-degenerate

Poisson structures, and conversely the symplectic structure can be recovered from

the Poisson bracket.

Secondly, Poisson geometry can be viewed as a semi-classical limit of mod-

ern quantum geometry. In particular, a class of interesting Poisson manifolds

introduced by Drinfel’d called Poisson-Lie groups has emerged from the study of

Quantum Groups. On the other hand, the discovery of Poison-Lie groups pro-

vides a large class of degenerate Poisson structures which makes the theory of

Poisson geometry more interesting. Finally, Poisson geometry embodies a theory

dual to Lie algebra theory, and more generally, to Lie algebroid theory. In this

chapter we shall concentrate more on this observation, in particular the relation

between Poisson geometry and Lie algebroid theory.

The third source arises from the fact that poisson brackets on a manifold M

give a Lie algebra structure on the real vector space of smooth functions on M .

In the case where M is symplectic, the condition that the symplectic two-form

be closed is precisely what is needed for the Poisson bracket to satisfy the Jacobi



8 Poisson geometry and Lie algebroid theory

identity. These structures are the famous Poisson-Lie structures. Poisson-Lie

structures can be considered as canonical Poisson structures living on the dual

space g∗ of a Lie algebra g. Thus one can view these manifolds with Poisson-

Lie structures as being dual to Lie algebras, and instead of the Lie algebras one

can work entirely with these Poisson-Lie structures. One can also interpret the

symplectic leaves of the Poisson-Lie structures as its coadjoint orbits, and the

symplectic forms on the orbits in such a case was obtained by Kirillov [46].

The importance of Lie algebroid theory in Poisson geometry is based on the

following observation. As an observation made by various authors (eg. [37]), it is

well-known that the Poisson bracket of one-forms on a Poisson manifold (M,π)

makes the cotangent bundle T ∗M a Lie algebroid. The cotangent bundle T ∗M

as a Lie algebroid, called the cotangent Lie algebroid of M , is both a tool in

understanding the Poisson geometry and an important source of examples of Lie

algebroids.

Furthermore, the cotangent Lie algebroid together with the tangent bundle

of a Poisson manifold (M,Π) turns out to be a Lie bialgebroid (TM, T ∗M), with

its double TM ⊕ T ∗M being a Courant algebroid. This observation provides an

important link between Poisson geometry and Courant algebroid theory.

This chapter is organized as follows.

Section 2.2 reviews the basic concept of Poisson geometry, starting with ba-

sic definitions of a Poisson manifold. Then a special class of Poisson manifolds

called Poisson-Lie groups and their infinitesimal analogues, Lie bialgebras are in-

troduced in Section 2.2.2. Lie bialgebras can be constructed out of its double, the

Manin triples, which is reviewed in section 2.2.3. The concept of a Manin triple

is important in the construction of Poisson-Lie T-duality which will be discussed

in Chapter 3. In section 2.3, objects called Lie algebroids, Lie bialgebroids and

Courant algebroids are introduced. Section 2.3.4 gives an alternative definition

of Lie bialgebroid in terms of derived bracket due to Kosmann-Schwarzbach [56]

and Roytenberg [67]. At the end of this section, the concept of an object called

proto-bialgebroid is introduced. Since the double of a proto-bialgebroid gives rise

to a Courant algebroid, it provides interesting examples to construct Courant

algebroids which will play an important role in Chapter 5.
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2.2 Poisson geometry

A Poisson manifold is a smooth manifold with a Poisson bracket defined on its

function space. The classical Poisson bracket was first introduced by Poisson in

the early 19th century in his study of the equations of motion in celestial me-

chanics. In 1835, Hamilton [35] revolutionized mechanics and reformulated the

equation of motion using the Poisson brackets. Since then, Poisson brackets, or

more precisely non-degenerate Poisson brackets coming from a canonical sym-

plectic structure on a vector space, have attracted interests in Physics and have

been exploited since the 19th century.

Later in 1980, Lie [58] examined some degenerate Poisson brackets and they

turned out to be the famous Poisson-Lie structure on Poisson-Lie groups.

In the last few decades, the theory of Poisson geometry has undertaken

tremendous developments due to its close connection with many fields in math-

ematics. Many independent researchers came across to the notion of “general

Poisson manifolds”. Among them, Kirillov [45] developed the notion of local Lie

algebras which encompasses that of Poisson structure, while Lichnerowicz [57]

introduced a precise definition of a Poisson manifold. A substantial contribution

to establish local structure of a general Poisson manifold was made by Weinstein

[80] in 1980.

In the last 15 years, a large class of interesting Poisson manifolds have emerged

from the study of Quantum Group theory, these are Poisson-Lie groups. The

notion of Poisson-Lie groups was first introduced by Drinfel’d in the early 1980s

and studied by Semenov-Tian-Shansky, Kosmann-Schwarzbach, Weinstein, Lu

and many others [14, 23, 70, 80]. The study of Poisson-Lie groups provides a

large class of interesting nonlinear and degenerate Poisson brackets.

In this section we review the basic concepts of Poisson manifolds, Poisson-Lie

groups, their infinitesimal analogues, the Lie bialgebras, and Manin triples which

provide a rich source of examples for Lie bialgebras.

2.2.1 Poisson manifolds

Poisson structures

Definition 2.1. A Poisson structure on a smooth manifold M is an R-bilinear

Lie bracket {·, ·} on C∞(M) called the Poisson bracket, which satisfies the

following conditions:

1. Antisymmetry, {f, g} = −{g, f},
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2. Jacobi-identity, {f, {g, {h}}+ cyclic = 0,

3. Leibnitz identity, {f, gh} = {f, g}h+ g{f, h}, where f, g, h ∈ C∞(M).

Remark 2.2. 1. The skew-symmetry property together with the Jacobi-identity

implies that the Poison bracket { , } is a Lie bracket on C∞(M).

2. The Leibnitz identity implies that the Poisson bracket can be considered as

a derivation in each variable for the associative multiplication on C∞(M).

A vector field Xf can be defined on M by

Xf (g) = {f, g},

and is called a Hamiltonian vector field.

3. The Jacobi-identity implies that the map f 7→ Xf is a homomorphism from

the Lie algebra C∞(M) of smooth functions under the Poisson bracket to

the Lie algebra of smooth vector fields under the Lie bracket, i.e.

[Xf , Xg] = X{f,g}.

One can define a bivector on M known as the Poisson bivector as follows.

Definition 2.3. The Poisson bivector is a map Π : T ∗M ⊕ T ∗M → M × R
corresponding to a 2-vector field Π : ∧2T ∗M → R defined by

Π(fdg, f ′dg′) = ff ′{g, g′}.

Definition 2.4. The map Π induces the sharp map π] : T ∗M → TM on (M,Π)

defined by

(π](α))(f) = ıαΠ(f), α ∈ T ∗M.

The sharp map π] is a well-defined bundle map on T ∗M , with the following

properties:

(1) π] is a bundle map on M , it induces a map on sections of T ∗M via

π] : Γ(T ∗M)→ Γ(TM), α 7→ ıαΠ. (2.2.1)

(2) On exact one-forms one has π](df) = Xf . The Poisson two-tensor Π can

be written in term of π] as

Π(df, dg) = 〈π](df), dg〉 = {f, g} = 〈Xf , dg〉.
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Definition 2.5. The Schouten-Nijenhuis bracket [ , ]SN : Γ(∧pTM)×Γ(∧qTM)→
Γ(∧p+q−1TM) is the natural extension of Lie bracket to multi-vector fields. It is

defined explicitly as

〈ω, [X, Y ]SN〉 = (−1)(p−1)(q−1)〈d(ıY ω), X〉 − 〈d(ıXω), Y 〉+ (−1)p〈dω,X ∧ Y 〉,
(2.2.2)

for all X ∈ Γ(∧pTM), Y ∈ Γ(∧qTM) and ω ∈ Ωp+q−1(M).

Here is a sufficient condition for a skew-symmetric two-vector field to define

a Poisson structure:

Proposition 2.6. The Poisson two-tensor is required to satisfy

[Π,Π]SN = 0, (2.2.3)

here [ , ]SN is the Schouten-Nijenhuis bracket on multi-vector fields defined by

(2.2.2).

Proof. Let ω ∈ Ω3(M). While [Π,Π]SN ∈ Γ(∧3TM), (2.2.2) gives rise to

〈ω, [Π,Π]SN〉 = −〈d(ıΠω),Π〉 − 〈d(ıΠω),Π〉+ 〈dω,Π ∧ Π〉. (2.2.4)

Let ω = df ∧ dg ∧ dh and {f, g} = 〈df ∧ dg,Π〉. Since d(df ∧ dg ∧ dh) = 0, the

above equation reduces to

〈ω, [Π,Π]SN〉 = −2〈dıΠω,Π〉
= −2〈dıΠ(df ∧ dg ∧ dh),Π〉
= −2〈d({g, h}df − {f, h}dg + {f, g}dh),Π〉
= −2〈d{g, h} ∧ df − d{f, h} ∧ dg + d{f, g} ∧ dh,Π〉
= −2({{g, h}, f} − {{f, h}, g}+ {{f, g}, h}) = 0. (2.2.5)

Therefore if Π is a Poisson structure then [Π,Π]SN = 0.

Note 1. Hence forth by abuse of notation, we will refer the Poisson bivector Π

as the Poisson structure.

Finally, let us define a particular set of functions on M .

Definition 2.7. A function f ∈ C∞(M) is called a Casimir function if {f, g} =

0 for all g ∈ C∞(M).

Here are some examples of Poisson structures on a manifold M .
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Example 2.8. Every manifold admits the trivial Poisson structure {f, g} = 0,

in such a case the bundle map π] = 0.

Example 2.9. At the opposite extreme to the trivial Poisson structure, (M,ω)

is a symplectic manifold if it is equipped with a non-degenerate closed 2-form

ω.

A Hamiltonian vector field Xf can be defined by ω(Xf , ·) = 〈−df, ·〉, i.e. ıXf
ω =

−df . An antisymmetric bracket on C∞(M) is defined by {f, g} := ω(Xf , Xg) =

−ω(Xg, Xf ) = −{g, f}.
Then one can check that the bracket { , } satisfies the following properties and

is a Poisson bracket:

• { , } is bilinear:

{f1 + f2, g} = ω(Xf1+f2
, Xg) = ω(Xf1 , Xg) + ω(Xf2 , Xg), since Xf1+f2 =

Xf1 +Xf2 .

• { , } satisfies the Jacobi-identity:

One can easily show that dω(Xf , Xg, Xh) = 3Jac(f, g, h) = 0.

• { , } satisfies the Leibnitz identity:

{f, gh} = ıXf
d(gh) = ıXf

(g(dh)+(dg)h) = gıXf
(dh)+ ıXf

(dg)h = g{f, h}+
{f, g}h.

Thus every symplectic structure gives rise to a Poisson structure.

Poisson manifolds

Definition 2.10. A smooth manifold M equipped with a Poisson structure Π is

a Poisson manifold, (M,Π).

Here is an example of Poisson manifold [68]:

Example 2.11. There is a Poisson structure on R3 with Poisson bracket given

by

{X i, Xj} =
3∑

k=1

εijkXk, (2.2.6)

where εijk is the completely antisymmetric three tensor.

One can show that this Poisson structure (2.2.6) is a degenerate Poisson struc-

ture, since it is well-known that Darboux coordinates can never exist on a mani-

fold of odd dimension.
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It can be shown that in this example, C2 :=
∑3

i=1X
iX i is a Casimir function.

In this example, the Poisson structure can be restricted constantly on two-

spheres given by the choice of a constant value for C2, and the restricted Poisson

structure turns out to be non-degenerate.

Generally speaking, any Poisson manifold with degenerate Poisson structure

foliates into a family of lower dimensional manifolds, which are often called the

symplectic leaves. Each symplectic leave is characterized by assigning a constant

value to the Casimir functions and is equipped with a non-degenerate Poisson

structure [68].

Poisson maps

Definition 2.12. Let (M1,Π1) and (M2,Π2) be Poisson manifolds. A smooth

map f : M1 →M2 is a Poisson map if

{u ◦ f, v ◦ f} = {u, v} ◦ f, ∀u, v ∈ C∞(M2).

Similarly, a map f is called anti-Poisson if

{u ◦ f, v ◦ f} = −{u, v} ◦ f, ∀u, v ∈ C∞(M2).

Example 2.13. Let M = R4 with basis {x1, y1, x2, y2} with a Poisson structure

given by

{xi, yj} = δij, otherwise 0. (2.2.7)

Let N = R2 with basis {x1, y1} with a Poisson structure {x1, y1} = 1.

Consider a map φ : M → N which is defined by (x1, y1, x2, y2) 7→ (x1, y1). It

is obvious that φ is a Poisson map.

Local description

Let (M,Π) be a Poisson manifold. In local coordinates (x1, . . . , xn) of M , the

Poisson tensor Π is determined by the matrix

Πij(x) = {xi, xj}

If Πij is invertible at each x, then Π is called nondegenerate or symplectic.

When Π is symplectic, the local matrices (ωij) = (−Πij)
−1 defines a global

two-form ω ∈ Ω2(P ) and ω is called the Symplectic form on M . With ω a

symplectic form, the Jacobi identity is equivalent to dω = 0 as we have seen

previously in Example (2.9).

Here are some example of Poisson structures:
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Example 2.14 (Constant Poisson structure). Let M = Rn and Πij be constant.

By a change of coordinates, we can choose coordinates (q1, . . . , qk; p1, . . . , pk; e1, . . .

, el) on M , with 2k + l = n. The splitting theorem [80] states that the Poisson

structure is given by

Π =
k∑

i=1

∂

∂qi
∧ ∂

∂pi

+
1

2

l∑
i,j=1

ϕij(e)
∂

∂ei

∧ ∂

∂ej

, ϕij(0) = 0. (2.2.8)

When l = 0, the Poisson structure is then symplectic and Π can be defined as

follows

Π =
∑

i

∂

∂qi
∧ ∂

∂pi

.

The Poisson bracket { , } can be expressed as

{f, g} =
∑

i

(
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi
)

We can recognize this as the original Poisson bracket in classical mechanics. Orig-

inally only non-degenerate Poisson structures are employed in classical mechan-

ics. However in the 1970s, many physical models arising from mechanical systems

with symmetry groups or constraints were discovered to have degenerate Poisson

brackets (eg. [21]).

Example 2.15 (Poisson-Lie structure). Let g be a finite-dimensional real Lie

algebra with Lie bracket [ , ], and g∗ be the dual algebra. The tangent space of

g∗ at any point can be identified canonically with g∗ itself, so df of any smooth

function f on g∗ is a map d : g∗ → (g∗)∗ ∼= g, and we can define a Poisson

structure on g as

{f1, f2}(ξ) = 〈[(df1)ξ, (df2)ξ], ξ〉, ∀ξ ∈ g∗, (2.2.9)

Note that if we take {Ta} as a basis of g and {T̃ a} a basis of g∗, g has a Lie

bracket [Ta, Tb] = f c
ab Tc. If one chooses f1 = T̃ a and f2 = T̃ b, then by (2.2.9) we

have

{T̃ a, T̃ b}(T̃ c) = 〈[Ta, Tb], T̃
c〉 = 〈f c

ab Tc, T̃
c〉 = f c

ab , (2.2.10)

since Ta(T̃
b) = δb

a thus

{T̃ a, T̃ b} = f c
ab Tc. (2.2.11)

Therefore Π = f c
ab Ta ∧ Tb is a Poisson tensor on g∗.

As a result, the dual space of a Lie algebra is always equipped with a canonical

Poisson structure called the Poisson-Lie structure.
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2.2.2 Poisson-Lie groups and Lie bialgebras

A Poisson-Lie group is a Lie group and a Poisson manifold, the two structures

being compatible as follows.

Definition 2.16. A Poisson-Lie group (G,Π) is a Lie group G equipped with

a Poisson structure Π on the manifold G, such that the multiplication map µ :

G×G→ G (µ(g1, g2) = g1g2) is a Poisson map.

Equivalently, Π is a Poisson-Lie structure on G if Π satisfies the equation:

Π(gh) = (Lg)∗Π(h) + (Rh)∗Π(g), ∀g, h ∈ G, (2.2.12)

where Lg : h 7→ gh and Rg : h 7→ hg.

Example 2.17. Any Lie group G with the trivial Poisson structure Π = 0 is a

Poisson-Lie group.

Example 2.18. A finite dimensional real Lie algebra g with a Poisson structure

defined in example (2.15) is a Poisson-Lie group when g is regarded as an Abelian

Lie group under addition.

Now, let us turn our attention to the infinitesimal analogues of Poisson-Lie

groups, the Lie bialgebras.

Definition 2.19. A Lie bialgebra is a vector space g together with a Lie bracket

[ , ] : ∧2g→ g and a Lie cobracket δ : g→ g⊗ g satisfying

(a) g together with [ , ] is a Lie algebra,

(b) g∗ together with [ , ]∗ = δ∗ : ∧2g∗ → g∗ is a Lie algebra.

(c) A compatibility condition between [ , ] and δ is satisfied:

δ[x, y] = (adx ⊗ 1 + 1⊗ adx)δ(y)− (ady ⊗ 1 + 1⊗ ady)δ(x), (2.2.13)

for all x, y ∈ g. The adjoint representation adx on g is given by the commutator

relation

adxy = [x, y], x, y ∈ g. (2.2.14)

Examples 2.20. (1) Any Lie algebra with δ = 0 is a Lie bialgebra.

(2) Let g be an Abelian Lie bialgebra. For δ∗ satisfies the Jacobi-identity, the

cobracket δ gives g a Lie bialgebra structure.

There is a direct correspondence between Poisson-Lie groups and Lie bialge-

bras.
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Theorem 2.21 (Drinfel’d [23]). Let G be a Lie group with Lie algebra g. If G

is a Poisson-Lie group, then g has a natural Lie bialgebra structure called the

tangent Lie bialgebra of G.

Conversely, if G is connected and simply connected and its Lie algebra g is a

Lie bialgebra, then there is a unique Poisson structure on G which makes G into

a Poisson-Lie group.

Proof. Let ξ1, ξ2 ∈ g∗ and f1, f2 ∈ C∞(G) such that (dfi)|e = ξi, there is a

canonical Lie algebra structure on g∗

[ξ1, ξ2]∗ = (d{f1, f2})e (2.2.15)

such that δ and the Lie bracket on g satisfy the compatibility condition (2.2.13),

thus the Lie algebra of a Poisson-Lie group has a natural Lie bialgebra structure.

For the converse, consider a Poisson-Lie group (G,Π) with Lie algebra (g, δ),

then (g∗, [·, ·]∗) is a Lie bialgebra. It integrates to an unique connected, simply

connected Poisson-Lie group G̃. We will refer G̃ as the dual Poisson-Lie group

of G.

2.2.3 Drinfel’d doubles and Manin triples

In this section we introduce the double of a Lie bialgebra, the Manin triple. The

definition of Manin triple conceals the fact that for a given Lie bialgebra (g, g∗), g

and g∗ play a symmetric role. Manin triples also provide a rich source of examples

for Lie bialgebras.

Let D be a Lie group with Lie algebra D. Now we define a symmetric,

nondegenerate bilinear form 〈 , 〉 on D, that is also ad-invariant, i.e.

ada〈b, c〉 = 〈[a, b], c〉+ 〈b, [a, c]〉 = 0, ∀a, b, c ∈ D. (2.2.16)

Definition 2.22. g is isotropic if for all x, y ∈ g, 〈x, y〉 = 0. Maximally

isotropic means that the space cannot be enlarged while preserving the property

of isotropy.

Definition 2.23. Let D be a Lie group with Lie algebra D. A Manin triple is

a triple of Lie algebras (D, g+, g−) together with an ad-invariant, non-degenerate

bilinear form 〈·, ·〉 on D, such that

(i) g+ and g− are subalgebras of D,

(ii) D = g+ ⊕ g− as vector spaces,

(iii) g+ and g− are maximally isotropic with respect to 〈·, ·〉.
The pair (g+, g−) is called a Drinfel’d double.
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Remark 2.24. g+ and g− are maximally isotropic with respect to 〈 , 〉 implies

that

(1) g+
∼= g∗

−, g− ∼= g∗
+.

(2) dim(g+) = dim(g−).

It follows from the next theorem that a Manin triple gives rise to Lie bialge-

bras, and conversely the double of a Lie bialgebra is a Drinfel’d double:

Theorem 2.25. (1) Suppose (g, g+, g−) is a Manin triple, and let [ , ] : ∧2g→ g

be a Lie bracket on g, and [ , ]+ and [ , ]− are the restriction of [ , ] on ∧2g+

and ∧2g− respectively. If one defines the dual operations

δ+ : (g−)∗ = g+ → ∧2g+, δ− : (g+)∗ = g− → ∧2g−, (2.2.17)

then (g+, δ+) and (g−, δ−) are Lie bialgebras.

(2) Let (g, δ) define a Lie bialgebra. One can define a bracket [ , ] and a

bilinear form 〈 , 〉 on g⊕ g∗ by

〈x+ ξ, y + η〉 = ξ(y) + η(x)

[x+ ξ, y + η] = [x, y] + ad∗
xη − ad∗

yξ + [ξ, η] + ad∗
ξy − ad∗

ηx, (2.2.18)

where x, y ∈ g and ξ, η ∈ g∗.

g⊕ g∗ with the above defined [ , ] and 〈 , 〉 is a Manin triple.

Proof. The coadjoint representation on g∗ is given by

〈adxy, ξ〉 = 〈y,−ad∗xξ〉, x, y ∈ g, ξ ∈ g∗. (2.2.19)

Thus the cocycle condition of a Lie bialgebra (2.2.13) can be rewritten as

〈δ([x, y]), ξ ⊗ η〉 = 〈(adx ⊗ 1 + 1⊗ adx)δ(y)− (ady ⊗ 1 + 1⊗ ady)δ(x), ξ ⊗ η〉
= −〈δ(y), ad∗x(ξ)⊗ η + ξ ⊗ ad∗xη〉+ 〈δ(x), ad∗y(ξ)⊗ η + ξ ⊗ ad∗yη〉
= 〈y, [ad∗xξ, η] + [ξ, ad∗xη]〉 − 〈x, [ad∗yξ, η] + [ξ, ad∗yη]〉
= 〈ad∗ηy, ad∗xξ〉 − 〈ad∗ξy, ad∗xη〉 − 〈ad∗ηx, ad∗yξ〉+ 〈ad∗ξx, ad∗yη〉. (2.2.20)

The invariance of the bilinear form implies

[ξ, x] = ad∗ξx− ad∗xξ, (2.2.21)

and

〈[ξ, x], η〉 = 〈ξ, [x, η]〉 = −〈ad∗xξ, η〉, 〈[ξ, x], y〉 = 〈ξ, [x, y]〉 = −〈ad∗xξ, y〉.
(2.2.22)
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Let us rewrite 〈δ([x, y]), ξ ⊗ η〉 as

〈δ([x, y]), ξ ⊗ η〉 = 〈[x, y], [ξ, η]〉, x, y ∈ g+, ξ, η ∈ g−. (2.2.23)

Then

〈δ[x, y], ξ ⊗ η〉 = 〈[x, y], [ξ, η]〉 = −〈x, [y, [ξ, η]]〉
= −〈x, [η, [y, ξ]] + [ξ, [η, y]]〉 (by Jacobi− identity)

= 〈x, [η, ad∗yξ − ad∗ηy] + [ξ, ad∗ηy − ad∗yη]〉
= 〈ad∗ηy, ad∗xξ〉 − 〈ad∗ξy, ad∗xη〉 − 〈ad∗ηx, ad∗yξ〉+ 〈ad∗ξx, ad∗yη〉 (2.2.24)

which agrees with (2.2.20).

The bracket in (2.2.18) simply follows from (2.2.21).

One can choose a basis in each subalgebra Ta ∈ g, T̃ a ∈ g∗ such that

〈Ta, Tb〉 = 〈T̃ a, T̃ b〉 = 0

〈Ta, T̃
b〉 = δb

a. (2.2.25)

The ad-invariance of the bilinear form 〈·, ·〉 given by (2.2.16) implies that the

brackets on the Drinfel’d double D is given by

[Ta, Tb] = f c
ab Tc,

[T̃ a, T̃ b] = f̃ab
cT̃

c,

[Ta, T̃
b] = f b

ca T̃
c + f̃ bc

aTc, (2.2.26)

where f c
ab and f̃ab

c are the structure constants of g and g∗, respectively.

It follows from the Jacobi-identity on the Drinfel’d double that the structure

constants are constrained to satisfy

f e
ab f̃

cd
e = f c

ae f̃
ed

b + f d
ae f̃

ce
b − f c

bd f̃
ed

a − f d
be f̃

ce
a. (2.2.27)

Example 2.26 (Abelian double). Let D = U(1)n × Ũ(1)n, and denote the gen-

erators of the Lie algebras of U(1)n and Ũ(1)n by {Ta}, {T̃ a}, for a = 1, · · · , n,

respectively. In this case all brackets vanish

[Ta, Tb] = [T̃ a, T̃ b] = [Ta, T̃
b] = 0.

Thus D is a Drinfel’d double.
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Example 2.27 (O(2, 2) double). Consider the Lie algebra sl(2,R) with genera-

tors H,E+, E− and commutators

[H,E±] = ±2E±, [E+, E−] = H, (2.2.28)

equipped with the non-degenerate, symmetric, invariant bilinear form

〈E+, E−〉 = 1, 〈H,H〉 = 2. (2.2.29)

There exists a Drinfel’d double D called the O(2, 2) double such that its Lie

algebra D is the direct sum of two copies of sl(2,R)

D = sl(2,R)⊕ sl(2,R) (2.2.30)

with the following bilinear form

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉 − 〈x2, y2〉, (x1, y1), (x2, y2) ∈ D. (2.2.31)

D can be decomposed into a pair of maximally isotropic subalgebras (sl(2,R), b2)

such that sl(2,R) is generated by

T1 =
1

2
(H,H), T2 = (E+, E+), T3 = (E−, E−), (2.2.32)

and b2 has generators

T̃ 1 =
1

2
(H,−H), T̃ 2 = (0,−E−), T̃ 3 = (E+, 0). (2.2.33)

These two sets of generators satisfy (2.2.25) and (2.2.26), therefore the pair

(sl(2,R), b2) is a Drinfel’d double.

2.3 Lie algebroid and Courant algebroid theory

For a general Poisson manifold (M,Π), it was noticed by Weinstein, Mackenzie

and Liu [61] that the concept of a Lie algebroid captures more closely the inherent

nature of a Poisson manifold than that of a Lie bialgebra. A Poisson structure

on M induces a Lie algebroid structure on the cotangent bundle T ∗M , thus both

TM and T ∗M have Lie algebroid structures and one can extend the notion of Lie

bialgebra to Lie bialgebroid in the sense of Mackenzie and Xu [83].

In the previous section, we noted that Lie bialgebras can be defined in terms

of Manin triples. It is then natural to ask if the notion of Manin triples can be
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extended to Lie bialgebroids. This extension of the theory of Manin triples to Lie

bialgebroids is constructed by Liu, Weinstein and Wu [59].

For a Lie bialgebroid (A,A∗) over M , there is a natural Courant algebroid

structure on the double of the Lie bialgebroid, which is analogous to the Drinfel’d

double of a Lie bialgebra when M is a point. And conversely, for a pair of

complementary isotropic subbundles (A,A∗) of a Courant algebroid E, closed

under the bracket structure defined on a Courant algebroid, there is a natural

Lie bialgebroid structure on (A,A∗) such that its double is isomorphic to E.

Therefore the theory of Manin triples of Lie algebras extends to Lie algebroids.

In this section we review the definitions of a Lie algebroid, a Lie bialgebroid,

a Courant algebroid and an exact Courant algebroid, and we also review an

alternative construction of a Lie bialgebroid using the definition of a derived

bracket constructed by Kosmann-Schwarzbach [56] and Roytenberg [67]. At the

end of this section, we introduce an object called the proto-bialgebroid which is

a “quasi”-version of Lie bialgebroids [56].

2.3.1 Lie algebroids and Lie bialgebroids

In this section we review the notion of a Lie algebroid and a Lie bialgebroid,

which are important for the construction of Courant algebroids.

Definition 2.28. A Lie algebroid (A,M, ρ, [·, ·]) is a vector bundle A over a

manifold M together with an anchor map ρ : A → TM and a Lie bracket [·, ·]A
on Γ(A) satisfying the following conditions:

(1) ρ[X, Y ]A = [ρX, ρY ].

(2) [X, fY ]A = f [X, Y ]A + (ρ(X)f)Y ,

where X, Y ∈ Γ(A) and f ∈ C∞(M).

Example 2.29. Any vector bundle with zero anchor map and Lie bracket is a

Lie algebroid.

Example 2.30. A Lie algebra regarded as a vector bundle over a point is a Lie

algebroid.

Example 2.31. The tangent bundle TM of a manifold M with the usual Lie

bracket of vector fields and ρ the identity map is a Lie algebroid.

Example 2.32 (Cotangent Lie algebroid). Let (M,Π) be a Poisson manifold,

and π] : T ∗M → TM be the bundle map defined by 〈β, π]α〉 = Π(α, β) for all

differential one-forms α and β. For every Poisson manifold M there exists a Lie
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algebroid structure on T ∗M , with anchor ρ = π] and the associated bracket on

Γ(T ∗M) being the Koszul bracket of differential forms defined by

[α, β]Π = Lπ](α)β − Lπ](β)α− d(Π(α, β)). (2.3.1)

Here the Koszul bracket has the following properties:

(1) It is a Lie bracket [ , ]Π satisfying

[df, dg]Π = d{f, g}, ∀f, g ∈ C∞(P ),

where {·, ·} is the Poisson bracket of functions defined by Π.

(2) It satisfies

[α, fβ]Π = f [α, β]Π + (π](α)f)β, ∀α, β ∈ Ω1(P ), f ∈ C∞(P ),

(3) The bundle map π] is a Lie algebra homomorphism:

[π](α), π](β)] = π][α, β]Π. (2.3.2)

And the associated differential on Γ(∧•TM) is defined by dΠ = [Π, ·]SN , here the

bracket [ , ]SN is the Schouten bracket of multi-vector fields.

The Lie algebroid in the previous example is called a cotangent Lie alge-

broid, it provides an important link between Poisson geometry and Lie algebroid

theory.

Definition 2.33. Let (A,M, ρ, [ , ]) and the dual bundle (A∗,M, ρ∗, [ , ]∗) both

be vector bundles equipped with Lie algebroid structures. A Lie bialgebroid

is a dual pair (A,A∗) such that the differential d∗ on Γ(∧•A) coming from the

structure on A∗ is a derivation of the bracket [ , ] on Γ(A), i.e. if for all X, Y ∈
Γ(A), the following condition is satisfied:

d∗[X, Y ] = [d∗X, Y ] + [X, d∗Y ]. (2.3.3)

Remark 2.34. The condition (2.3.3) is equivalent to having the differential d on

Γ(∧•A∗) dual to d∗ with respect to the natural pairing 〈·, ·〉 on A and A∗, such

that d is a derivation of the bracket [ , ]∗ on Γ(A∗), i.e.

d[φ, ψ]∗ = [dφ, ψ]∗ + [φ, dψ]∗

for all φ, ψ ∈ Γ(A∗).
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Example 2.35. A Lie bialgebra (g, g∗) regarded as a pair of vector bundles over

a point is a Lie bialgebroid.

Example 2.36. Let (M,Π) be a Poisson manifold, one can verify that (TM, T ∗M)

is a Lie bialgebroid, where the Lie algebroid (TM, [ , ], ρ, d) is equipped with the

standard Lie bracket [ , ], identity anchor map ρ = id, and the differential d on

Γ(∧T ∗M) is given by the de Rham differential d. While (T ∗M, [ , ]Π, ρ∗ = π], dΠ)

is a Lie algebroid with the structures as given by example 2.32.

Not only does a Poisson structure induce a Lie algebroid structure on the

cotangent bundle T ∗M of a Poisson manifold M , a Lie algebroid structure also

induces a Poisson structure on its base manifold, by the following lemmas.

Let (A,A∗) be a Lie bialgebroid over a Poisson manifold M with Lie algebroid

structures (A, [ , ], ρ, d) and (A∗, [ , ]∗, ρ∗, d∗), then [53]

Lemma 2.37. for all f, g ∈ C∞(M),

d{f, g} = [df, dg]∗, d∗{f, g} = −[d∗f, d∗g]. (2.3.4)

Lemma 2.38. The bracket on C∞(M) defined by

{f, g} = 〈df, d∗g〉 (2.3.5)

is a Poisson structure on M .

2.3.2 Courant algebroids

The Courant bracket was first introduced by Courant and Weinstein [18, 19] as

an extension of the Lie bracket of vector fields on TM to sections of TM ⊕T ∗M .

In order to extend the theory of Manin triples from Lie bialgebras to Lie bial-

gebroids, Liu, Weinstein and Xu [59] axiomatized the properties of the Courant

bracket to those of a Courant algebroid. Under this construction, the double of a

Lie bialgebroid carries a Courant algebroid structure, and conversely a Courant

algebroid gives rise to a Lie bialgebroid. Thus a Courant algebroid can be natu-

rally constructed from a given Lie bialgebroid.

It was also realized that an exact Courant algebroid provides the natural

setting to study generalized complex structures in generalized geometry.

The following definition of Courant algebroids is due to Kosmann-Schwarzbach

[55]:
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Definition 2.39. A Courant algebroid C = (E,M, ◦, ρ) is a vector bundle

E →M equipped with a nondegenerate symmetric bilinear form 〈 , 〉, a Dorfmann

bracket ◦ on Γ(E) which is an R-linear map satisfying the Jacobi-identity,

A ◦ (B ◦ C) = (A ◦B) ◦ C +B ◦ (A ◦ C), A,B,C ∈ Γ(E), (2.3.6)

a bundle map ρ : E → TM called the anchor satisfying the following conditions

for all A,B,C ∈ Γ(E):

(1) ρ(A)〈B,C〉 = 〈A,B ◦ C + C ◦B〉,
(2) ρ(A)〈B,C〉 = 〈A ◦B,C〉+ 〈B,A ◦ C〉. (2.3.7)

The Dorfmann bracket in a Courant algebroid C is not skew-symmetric. The

skew symmetrization of the Dorfmann bracket of C is known as the Courant

bracket

[[A,B]] =
1

2
(A ◦B −B ◦ A). (2.3.8)

Two main theorems for Lie bialgebroids in [59] show that a Courant algebroid

can be constructed from a Lie bialgebroid and conversely a Courant algebroid

gives rise to a Lie bialgebroid.

Theorem 2.40. Let (A,A∗) be a Lie bialgebroid. Both A and A∗ are Lie alge-

broids over the base manifold M , with anchor maps ρ and ρ∗, respectively. (A,A∗)

is equipped with two natural nondegenerate bilinear forms, one symmetric and one

antisymmetric

〈x1 + ξ1, x2 + ξ2〉± = ξ1(x2)± ξ2(x1), (2.3.9)

and a Courant bracket on Γ(A⊕ A∗)

[[e1, e2]] = ([x1, x2] + L∗
ξ1
x2 − L∗

ξ2
x1 −

1

2
d∗〈e1, e2〉−)

+([ξ1, ξ2]∗ + Lx1ξ2 − Lx2ξ1 +
1

2
d〈e1, e2〉−), (2.3.10)

where e1 = x1+ξ1, e2 = x2+ξ2, x1, x2 ∈ Γ(A), ξ1, ξ2 ∈ Γ(A∗) and L∗
ξ = ıξd∗+d∗ıξ.

There is an anchor map ρE : A⊕ A∗ → TM defined by ρE = ρ+ ρ∗, i.e.

ρE(x+ ξ) = ρ(x) + ρ∗(ξ), ∀x ∈ Γ(A), ξ ∈ Γ(A∗). (2.3.11)

Then E = A⊕ A∗ together with ([[ , ]], ρE, 〈 , 〉+) is a Courant algebroid.

Conversely, we have

Theorem 2.41. In a Courant algebroid (E, ρ, [·, ·], 〈·, ·〉), suppose that L1 and L2

are Dirac subbundles transversal to each other, i.e., E = L1 ⊕ L2. Then (L1, L2)

is a Lie bialgebroid, where L2 is considered as the dual bundle of L1 under the

pairing 〈 , 〉.
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2.3.3 Exact Courant algebroids

Definition 2.42. A Courant algebroid E over M is an exact Courant alge-

broid if the following sequence

0→ T ∗M
ρ∗−→ E

ρ−→ TM → 0 (2.3.12)

is exact. Here ρ is the anchor map of E.

Definition 2.43. A connection on E is a map A : TM → E such that it is an

isotropic splitting - it splits the anchor map ρ, i.e. ρ ◦A = idTM , and is isotropic,

i.e. for x, y ∈ Γ(TM), 〈A(x), A(y)〉 = 0.

Remark 2.44. The space of connections is an affine space under Ω2(E). Let

ω ∈ Ω2(E) be a two-form. If one adds ω to the original connection, one sees that

A+ ω : x 7→ A(x) + ıxω is also a connection – the new connection splits ρ and is

isotropic.

One defines the curvature of the connection A as the antisymmetric map

F : TM × TM → E given by

F (x, y) = [[A(x), A(y)]]− A([x, y]). (2.3.13)

The curvature 3-form H for the connection A is defined by H(x, y, z) =

ızF (x, y). Here ız acts on Γ(E) via the natural pairing 〈 , 〉 on E, that is,

ızF (x, y) = 〈z, F (x, y)〉. Thus the curvature 3-form is given by

H(x, y, z) = 〈A(x) ◦ A(y), A(z)〉 (2.3.14)

and H is closed.

Proof. The closedness of H follows from the Jacobi-identity

Jac(A(x), A(y), A(z)) = −ıxıyızdH, (2.3.15)

i.e. dH = 0.

Thus given an exact Courant algebroid E with an isotropic splitting A, such a

splitting is characterized by a curvature 3-form H given by (2.3.14). The splitting

A give rises to the bundle isomorphism A+ρ∗ : TM⊕T ∗M → E, and one can use

such a bundle map to transport the Courant algebroid structures onto TM⊕T ∗M .

The Courant algebroid structure on TM ⊕ T ∗M has a natural pairing as before:

〈x+ ξ, y + η〉 =
1

2
(ξ(y) + η(x)), (2.3.16)
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for x + ξ, y + η ∈ Γ(TM ⊕ T ∗M). While the Courant bracket on TM ⊕ T ∗M

is twisted by the curvature 3-form H, i.e. it is equipped with the H-twisted

Courant bracket on TM ⊕ T ∗M :

[[x+ ξ, y + η]]H = [[x+ ξ, y + η]] + ıxıyH. (2.3.17)

Therefore an exact Courant algebroid E equipped with a natural pairing and

a Courant bracket is equivalent to TM ⊕ T ∗M equipped with the same natural

pairing and a twisted Courant bracket. The notion of a generalized tangent space

TM ⊕ T ∗M will be discussed in Chapter 4.

If one chooses an isotropic splitting (a connection A) of the exact sequence,

i.e. E ∼= TM ⊕ T ∗M , one can add to A a 2-form b ∈ Ω2(M) to obtain a

new connection. Adding b changes H to H + db. Thus an H-twisted Courant

algebroid (TM ⊕ T ∗M)H is isomorphic to an H ′ = H + db-twisted Courant

algebroid (TM ⊕ T ∗M)H′ , with the isomorphic map (x, ξ) 7→ (x, ξ + ıxb). So we

have the following lemma:

Lemma 2.45. An exact Courant algebroid E is characterized by [H] ∈ H3(M,R).

This classification of exact Courant algebroids is due to S̆evera [72] and [H]

is often referred to as the S̆evera class or characteristic class.

2.3.4 An alternative definition of a Lie bialgebroid

There is an elegant way to define a Lie bialgebroid using the concept of a de-

rived bracket in the sense of Kosmann-Schwarzbach [55] (originally introduced

by Roytenberg [67].) This construction of a Lie bialgebroid provides a convenient

setting to extend the notion of a Lie bialgebroid to a proto-bialgebroid defined

by Kosmann-Schwarzbach [56].

In this section we start by introducing the derived brackets, then the general

construction of a Lie bialgebroid using derived brackets. At the end of this section

we introduce an object called proto-bialgebroid.

Derived bracket

Definition 2.46. If (V, [·, ·], D) is a graded Lie algebra over R with degree n and

a derivation D, the derived bracket of [ , ] by D is a bilinear map [ , ]D :

V ⊗ V → V defined by

[a, b]D = (−1)n+|a|+1[Da, b], (2.3.18)

for a, b ∈ V .
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Properties of the derived bracket:

(1) The derived bracket satisfies the graded Jacobi-identity

[a, [b, c]D]D = [[a, b]D, c]D + (−1)(n+|a|+1)(n+|b|+1)[b, [a, c]D]D. (2.3.19)

(2) With the graded Leibnitz rule

D[a, b]D = [Da, b]D + (−1)|a|+n+1|[a,Db]D. (2.3.20)

The graded Leibnitz rule can also be expressed as

[a, b]D = [a,Db] + (−1)n+|a|+1D[a, b], (2.3.21)

∀a, b, c ∈ V .

Definition 2.47. An interior derivation D by an element d ∈ V is a map D :

a 7→ [d, a] for a ∈ V , where d is an element of square 0 in (V, [ , ]).

Theorem 2.48 (Kosmann-Schwarzbach[55]). Let D be the interior derivation of

(V, [ , ]) by an element d ∈ V , with |d| the degree of d and n the degree of the

bracket. If |d|+ n is odd and [d, d] = 0, then the derived bracket is

[a, b]d = [[d, a], b], (2.3.22)

for a, b ∈ V .

Remark 2.49. For example, the Cartan formulae [Lx, ıy] = ı[x,y] can be rewritten

as

ı[x,y] = [[d, ıx], ıy],

As a result, the Lie bracket of vector fields is a derived bracket.

Interpreting a Lie bialgebroid using the derived bracket

This approach defines Lie algebroids in terms of functions on the supermanifolds

and is developed by Vaintrob [76], Roytenberg [66, 67] and Kosmann-Schwarzbach

[55].

Let A be a vector bundle over M . Equivalently, a Lie algebroid structure can

be defined in three ways:

Firstly, recall in Section 2.3.1 that a Lie algebroid structure on A is given by

a Lie algebra structure [ , ] on ΓA and an anchor map ρ satisfying the axioms

in Definition 2.28. Or equivalently the Lie algebroid structure is given by a

derivation d on Γ(A∗).
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Alternatively, one can view Γ(A∗) as the algebra of funcitons on the super-

manifold ΠA, where Π denotes the change of parity functors applied to each

fibre.

Let xi be local coordinates on M , {ea} be a local basis of Γ(A) and (xi, ya) be

the local coordinates on A. The anchor ρ and the Lie bracket on A is given by

ρ(ea) = Ai
a(x)

∂

∂xi
,

[ea, eb] = f c
ab ec. (2.3.23)

Let (xi, ỹa) be the local coordinates on ΠA, then the homological vector field

dA has the local expression

dA = ỹaAi
a(x)

∂

∂xi
+

1

2
f c

ab ỹ
aỹb ∂

∂ỹc
. (2.3.24)

One can also view a Lie algebroid structure on A as follows [55, 66, 67]:

Definition 2.50. A Lie algebroid structure on A is a degree three function µ on

the supermanifold T ∗(ΠA∗). µ is required to satisfy

{µ, µ} = 0, (2.3.25)

where { , } is the canonical Poisson bracket of T ∗(ΠA∗).

Let (xi, ξ∗a) be the local coordinates on ΠA∗ dual to (xi, ỹa), and (xi, ξ∗a, x
∗
i , ξ

a)

be the associated coordinates on T ∗(ΠA∗), then locally µ is defined by

µ = x∗iA
i
a(x)ξ

a +
1

2
f c

ab (x)ξ∗c ξ
aξb. (2.3.26)

Since T ∗(ΠA∗) is Z2-graded, we assign bi-degree (0, 1) to variables ξa, (1, 0)

to variables ξ∗a, and (1, 1) to variables xa and x∗a. The degree of a function on

T ∗(ΠA∗) with bi-degree (p, q) is p+ q.

The canonical Poisson structure on C∞(T ∗ΠA) is defined as follows and has

the following properties:

1. The bracket is uniquely determined by the relations:

{xa, xb} = {x∗a, x∗b} = {ξ∗a, ξ∗b} = {ξa, ξb} = 0,

{x∗a, xb} = {ξ∗a, ξb} = δb
a. (2.3.27)

2. The Poisson bracket is skew symmetric:

{e1, e2} = −(−1)kl{e2, e1}, (2.3.28)

where e1 and e2 are degree k and degree l functions on T ∗ΠA∗, respectively.
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3. For e a degree k function on T ∗ΠA, the bracket is a derivation of degree

k − 2, i.e.

{e, e1e2} = {e, e1}e2 + (−1)k−2e1{e, e2}. (2.3.29)

4. And the bracket { , } satisfies a graded Jacobi-identity:

{e1, {e2, e3}} = {{e1, e2}, e3}+ (−1)kl{e2, {e1, e3}}, (2.3.30)

where e1, e2, e3 are degree k, l,m functions on T ∗ΠA, respectively.

Definition 2.51. A Lie algebroid structure on A is the supermanifold ΠA to-

gether with a homological vector field of degree 1, i.e. a derivation dA on Γ(∧•A∗)

increasing degree by 1 and satisfying d2
A = 0.

The Lie algebroid brackets can be defined in terms of the Poisson bracket on

T ∗(ΠA∗) by [56]:

Theorem 2.52. A Lie algebroid bracket [ , ]A on A is given by the derived bracket

[x, y]A = {{x, µ}, y}, x, y ∈ C∞(ΠA∗) = Γ(∧•A), (2.3.31)

while the anchor is given by

ρA(x)f = {{x, µ}, f}, x ∈ C∞(ΠA∗), f ∈ C∞(M). (2.3.32)

A Lie bialgebroid (A,A∗) can be defined as follows:

Definition 2.53. A Lie bialgebroid (A,A∗) is a pair of Lie algebroids in dual-

ity. The Lie algebroids (A, [ , ]A, ρA) and (A∗, [ , ]A∗ , ρA∗) have Lie algebroid

structures correspond to functions µ and γ on the same supermanifold T ∗(ΠA),

respectively. The Lie bialgebroid condition (2.3.3) is equivalent to placing the

following condition on structures µ and γ

{µ+ γ, µ+ γ} = 0. (2.3.33)

The Lie bialgebroid (A,A∗) has the associated differential dA and dA∗ on

Γ(∧•A∗) and Γ(∧•A) given by

dA = {µ, ·}, dA∗ = {γ, ·}, (2.3.34)

which satisfy

d2
A = d2

A∗ = 0. (2.3.35)
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Proto bialgebroid

The notion of a Lie bialgebroid discussed previously in this section can be gener-

alized to a proto-bialgebroid [55, 67].

Definition 2.54. A Proto-bialgebroid (A,A∗) is a supermanifold T ∗ΠA with

a quadruple (µ, γ, ϕ, ψ) such that µ, γ, ϕ and ψ are bi-degree (1, 2), (2, 1), (3, 0)

and (0, 3) functions on T ∗ΠA∗ satisfying

{θ, θ} = 0, (2.3.36)

where θ = µ+ γ + ϕ+ ψ.

In local coordinates on T ∗ΠA, these structures are given by [67]

µ = ξaAi
a(x)x

∗
i −

1

2
f c

ab (x)ξaξbξ∗c ,

γ = Āai(x)x∗i ξ
∗
a −

1

2
qab

c(x)ξ
∗
aξ

∗
b ξ

c,

ϕ =
1

6
ϕabc(x)ξ∗aξ

∗
b ξ

∗
c ,

ψ =
1

6
ψabc(x)ξ

aξbξc. (2.3.37)

On a proto-bialgebroid (A,A∗), we have the following structures:

• Lie algebroid brackets [ , ]A and [ , ]A∗ are given by

[·, ·]A = {{·, µ+ ψ}, ·},
[·, ·]A∗ = {{·, γ + ϕ}, ·}. (2.3.38)

• Anchor maps ρA and ρA∗ given by

ρA(x)(f) = {{x, µ}, f} = Ai
a(x)∂if,

ρA∗(ξ)(f) = {{ξ, γ}, f} = Āai(x)∂if, (2.3.39)

where x ∈ Γ(A) and ξ ∈ Γ(A∗).

• Quasi-differentials dA and dA∗ on Γ(∧•A∗) and Γ(∧•A) respectively,

dA = {µ, ·}, dA∗ = {γ, ·}, (2.3.40)

satisfying

(dA)2 + {dA∗ψ, ·} = 0, (dA∗)2 + {dAϕ, ·} = 0. (2.3.41)
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Recall that the condition for the structures (µ, γ, ψ, ϕ) to define a proto-

bialgebroid (A,A∗) is that it obeys the structure equation (2.3.36). Splitting the

degree 3-function θ = µ+γ+ψ+ϕ into components according to the bi-grading,

the above condition is equivalent to a set of five conditions:

1
2
{µ, µ}+ {γ, ψ} = 0,

{µ, γ}+ {ϕ, ψ} = 0,
1
2
{γ, γ}+ {µ, ϕ} = 0,

{µ, ψ} = 0,

{γ, ϕ} = 0.

(2.3.42)

Proposition 2.55. The double of a proto-bialgebroid A⊕ A∗ is a Courant alge-

broid, with the Dorfmann bracket defined by the derived bracket

(x+ ξ) ◦ (y + η) = {{x+ ξ, θ}, y + η}, (2.3.43)

where x, y ∈ Γ(A) and ξ, η ∈ Γ(A∗). And the anchor map ρ is given by

ρ(x+ ξ)(f) = ρA(x)(f) + ρA∗(ξ)(f) = {{x+ ξ, θ}, f}, (2.3.44)

where f ∈ C∞(M).

Proof. We need to check the properties (2.3.7) for A ⊕ A∗ to define a Courant

algebroid. For simplicity, let us identify A,B,C ∈ Γ(A⊕A∗) with their images in

C∞(T ∗ΠA). We will also use the Jacobi-identity (2.3.30) of the Poisson bracket

{ , } of C∞(T ∗ΠA).

We first prove property (1) of (2.3.7). In terms of functions on C∞(T ∗ΠA)

and the canonical Poisson bracket, this property can be rewrite as

{{A,Θ}, {B,C}} = {A, {{B,Θ}, C}}+ {A{{C,Θ}, B}}

RHS = {A, {B, {Θ, C}}}+ {A, {C, {Θ, B}}}+ {A, {Θ, {B,C}}}
+{A, {Θ, {C,B}}}
= {A, {{B,Θ}, C}}+ {A, {{C,Θ}, B}}
= {A, {{B,Θ}, C}}+ {A, {C, {Θ, B}}}+ {A, {,Θ, {C,B}}}
= {{A,Θ}, {B,C}} = LHS. (2.3.45)

Property (2) of (2.3.7) can similarly be written as

{{A,Θ}, {B,C}} = {A,Θ}, B}, C}+ {B, {{A,Θ}, C}}.
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RHS = {{A,Θ}, {B,C}} − {B, {{A,Θ}, C}}+ {B, {{A,Θ}, C}}
= {{A,Θ}, {B,C}} = LHS. (2.3.46)
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Chapter 3

Abelian T-duality and

Poisson-Lie T-duality

3.1 Introduction and outline

T-duality in string theory plays an important role as it relates String theory

on different backgrounds and can be realized as a transformation between two-

dimensional σ-models [29]. A two-dimensional σ-model describes the world-sheet

theory of a string propagating on a target manifold M equipped with a Rieman-

nian metric gij and an antisymmetric B-field bij, with string background defined

by Eij ≡ gij + bij.

The rules for T-duality with an Abelian isometry were first constructed by

Buscher [13] in 1987, and these rules are known as the Buscher rules. To

obtain the Buscher rules, M is required to have some Abelian isometry group

which leaves the σ-model invariant. The dual model can then be obtained by

gauging the isometry, with gauge fields being integrated out. Here, let us simply

refer to this type of construction as Abelian T-duality.

Since the Buscher rules are so simple and beautifully symmetric, a naive

question to ask is whether the Buscher rules can be extended to the case when

the isometry is non-Abelian.

A first attempt to construct a version of T-duality with respect to a non-

Abelian isometry was done by de la Ossa and Quevedo [20] in 1993. Inspired by

Buscher’s technique, they applied a T-duality transformation following Buscher’s

procedure using non-Abelian isometry groups. However it was soon realized by

de la Ossa, Quevedo and other authors [4, 20, 27] that non-Abelian T-duality

in this formalism suffered certain drawbacks, the most noticeable being that this
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technique is not symmetric, i.e. one does not in general recover the original theory

by repeating the T-duality procedure.

In another attempt to construct non-Abelian T-duality, Klimc̆́ık and S̆evera

[49] abandoned the requirement of isometry as dualizability and proposed a gen-

eralization of T-duality in 1995, which has come to be known as the Poisson-Lie

T-duality. In this formalism of non-Abelian T-duality, the requirement of an

isometry is replaced by the Poisson-Lie condition, which places a restriction on the

backgrounds of a dual pair of σ-models. The Poisson-Lie condition is necessary

for the existence of the dual worldsheet. Also the relevant structure underlying

non-Abelian T-duality is a Drinfel’d double. With a given Drinfel’d double, a

dual pair of σ-models with backgrounds satisfying the Poisson-Lie condition can

be constructed.

The structure of this chapter is organized as follows. Section 3.2 gives a brief

account of the basic concept of Abelian T-duality, i.e. the Buscher rules. In

section 3.3, we review the construction of Poisson-Lie T-duality due to Klimc̆́ık

and S̆evera [47, 49].

3.2 Abelian T-duality

3.2.1 T-duality with a U(1)n isometry

In string theory, a string propagates in d-dimensional space-time E sweeping out

a two-dimensional worldsheet with coordinates z and z̄, and the action of such a

string is described by the two-dimensional σ-model action:

Definition 3.1. The two-dimensional σ-model action is described by a met-

ric gij and a locally defined two-form bij on the d-dimensional target manifold E

with the following action

S =
1

2π

∫
d2z(gij + bij)∂x

i∂̄xj =
1

2π

∫
d2zEij(x)∂x

i∂̄xj, (3.2.1)

here xi, i = 1, . . . , d denote target space coordinates and ∂xi (resp. ∂̄xi) are

derivatives with respect to the world-sheet coordinates z (resp. z̄).

Roughly speaking, this action integrates over the two-dimensional world-sheet

of a string.

Starting with a σ-model action (3.2.1) with a U(1)n isometry, let us choose

coordinates {xi} = {xa, xµ}, a = 1, . . . , n, µ = n+1, . . . , d, such that the isometry
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acts by translation of xa. The string background Eij can be decomposed as

Eij =

(
Eab Eaν

Eµb Eµν

)
, (3.2.2)

and the σ-model action becomes

S =
1

2π

∫
d2z(Eab∂x

a∂̄xb + Eaν∂x
a∂̄xν + Eµb∂x

µ∂̄xb + Eµν∂x
µ∂̄xν). (3.2.3)

To obtain the dual theory, let us first gauge the U(1)n isometry xa 7→ xa + εa

by replacing

∂xa 7→ Dxa = ∂xa + Aa, ∂̄xa 7→ D̄xa = ∂̄xa + Āa, (3.2.4)

where Aa are connection one forms on M .

Adding a Lagrangian multiplier term

1

2π

∫
d2z x̃a(∂Āa − ∂̄Aa) (3.2.5)

we then end up with a σ-model action

Sd+1 =
1

2π

∫
d2z[EabDx

aD̄xb + (Eaν)Dx
a∂̄xν + (Eµb)∂x

µD̄xb + (Eµν)∂x
µ∂̄xν

+ x̃a(∂Āa − ∂̄Aa)]. (3.2.6)

This action has a gauge symmetry

xa 7→ xa + εa, Aa 7→ Aa − ∂εa, Āa 7→ Āa − ∂̄εa, (3.2.7)

Integrating out the Lagrange multipliers x̃a requires the field strength F a =

∂Āa − ∂̄Aa to vanish, which imposes pure gauge conditions on Aa and Āa, i.e.

Aa = ∂x̃a, Āa = ∂̄x̃a.

To retrieve the original σ-model action, we gauge fix Sd+1 by either choosing

xa = 0 or x̃a = 0. On the other hand, to obtain the dual σ-model we integrate

out the gauge fields Aa and Āa and the resulting σ-model action with the dual

metric and B-fields is given in terms of the dual coordinates (x̃a, xµ). It follows

that the dual string background Êij is related to the original string background

Eij via:

Theorem 3.2. The T-duality transformation rules of the metric g and the B-field

b with a U(1)n isometry are given by a set of rules called the Buscher rules:

Êab = (E−1)ab , Êaν = (E−1) b
a Ebν ,

Êµb = −Eµa(E
−1)a

b , Êµν = Eµν − Eµa(E
−1)abEbν , (3.2.8)
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As an example, let us consider the n = 1 case, when a two-dimensional σ-

model has an Abelian isometry corresponding to a compact U(1) group.

One can now choose coordinates {xi} = {x0, xµ} such that the isometry acts

by translation of the coordinate x0 = θ. In this case the metric g and B-field

b are transformed to ĝ and b̂ under the T-duality transformation given by the

Buscher rules:

ĝµν = gµν − 1
g00

(gµ0gν0 − bµ0bν0) , ĝ00 = 1
g00
, ĝµ0 = bµ0

g00
,

b̂µν = bµν − 1
g00

(gµ0bν0 − gµ0bν0) , b̂µ0 = gµ0

g00
.

(3.2.9)

3.2.2 O(n, n) T-duality group

It turns out that the T-duality symmetry of R → 1/R when, generalized to

arbitrary n-dimensional toroidal compactifications, is generated by an element of

the T-duality group O(n, n; Z) [28, 73].

Consider string theory compactified on a n-torus.

Let T be an element of O(n, n; Z) defined by

T =

(
a b

c d

)
, (3.2.10)

where a, b, c, d are n× n matrices.

Then T preserves the form

J =

(
0 Id

Id 0

)
,

such that

T tJT = J. (3.2.11)

In terms of (3.2.10) we have

atc+ cta = 0

btd+ dtb = 0

atd+ ctb = 1. (3.2.12)

The T-duality group acts on a string background Eab = gab + bab (a, b = 1, . . . , n)

on the n-torus via

T (E) = (a(E) + b)(c(E) + d)−1. (3.2.13)
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Example 3.3. Consider a particular element T ∈ O(d, d; Z) given by

T =

(
0 In

In 0

)
. (3.2.14)

The T-duality action of T on E = g + b gives us the dual string background Ê

on the n-torus as follows

T (Eab) = Êab = (E−1)ab = ĝab + b̂ab, (3.2.15)

which is consistent with the Buscher rules given by Theorem 3.2. And it follows

that the dual metric and B-field transform as

ĝ = (g − bg−1b)−1

b̂ = (b− gb−1g)−1. (3.2.16)

In the case when n = 1, (3.2.16) reduces to ĝ00 = g −1
00 and obeys the Buscher

rules (3.2.9) for T-duality with U(1)-isometry, i.e. this is the standard R→ 1/R

duality.

3.3 Poisson-Lie T-duality

This section is organized as follows. In Section 3.3.1 we review the Poisson-Lie

condition which is necessary for the existence of a dual σ-model. In Section

3.3.2 we show that one can solve the Poisson-Lie condition using the concept of

the Drinfel’d double. Section 3.3.3 gives three examples for different types of

Poisson-Lie T-duality.

3.3.1 The Poisson-Lie condition and Poisson-Lie symme-

try

Poisson-Lie T-duality is a generalization of the non-Abelian T-duality proposed

by Klimc̆́ık and S̆evera [49], which allows the duality to be performed on a target

space E without the requirement of an isometry.

However, the background does need to satisfy a certain condition which we

will refer to as the Poisson-Lie condition. The Poisson-Lie condition is essential

for the existence of a well-defined dual world-sheet.

Before going into Poisson-Lie T-duality, we need the concept of Noetherian

currents.
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Consider a σ-model with a group G acting freely on its target manifold E

with va(x) the left-invariant vector fields corresponding to the action of G on E.

Definition 3.4. Let G be a Lie group acting on a manifold E. A left invariant

vector field on G is a section vh of TG such that

(Lg)∗vh = vgh, ∀g ∈ G. (3.3.1)

where (Lg) is the left translation given by (Lg)h = gh and (Lg)∗ is the induced

map on the tangent spaces, i.e. (Lg)∗ : ThG→ TghG.

Definition 3.5. Noetherian currents Ja are quantities corresponding to sym-

metries of the Lagrangian, which are defined by the variation of the σ-model

action with respect to the free action of G on the target manifold E, and are

given by

δS = S(x+ εava)− S(x) =

∫
dεa ∧ Ja +

∫
εaLva(L). (3.3.2)

where g ∈ G and ε is in the Lie algebra of G and Lva is the Lie derivative with

respect to the left-invariant vector fields va.

Now consider the 2-dimensional σ-model described by a metric gij on the

target manifold E and a locally defined 2-form bij on E with the action given by

(3.2.1).

We can associate to the action of G on E the Noetherian current one forms

on the world-sheet:

Lemma 3.6. The Noether current 1-forms associated with the action of G on E

are given by

Ja = vi
a(x)Eij ∂̄x

jdz̄ − vi
a(x)Eji∂x

jdz. (3.3.3)

Proof. Using the variational principle, δS is given by

δ(S) = S(x+ εava)− S(x)

=

∫
dz2Eij∂(xi + εavi

a)∂̄(xj + εavj
a)−

∫
dz2Eij∂x

i∂̄xj

=

∫
dεa ∧ (vi

aEij ∂̄x
jdz̄ − vi

aEji∂x
jdz) +

∫
εaLva(L)

=

∫
dεa ∧ Ja +

∫
εaLva(L). (3.3.4)
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Let us consider the following two cases:

Case I : If the action of G is an isometry, i.e. LvaE = 0, then [50]

0 = δS =

∫
dεa ∧ Ja → dJ = 0, (3.3.5)

i.e. the Noether currents given by (3.3.3) are closed one forms on the world-sheets

of extremal strings.

Case II : If the action of G is not an isometry but a free action on E such

that δS = 0, then it follows from (3.3.2) that on the extremal string surfaces we

have

Lva(L) = −dJa. (3.3.6)

Although these forms Ja are no longer closed, one simply requires that on the

extremal surfaces the forms Ja satisfy the Maurer-Cartan equation so they are

still integrable

dJa = −1

2
f̃ bc

aJb ∧ Jc, (3.3.7)

where f̃ bc
a are the structure constants of some Lie algebra g̃ of a Lie group G̃.

Definition 3.7. If the Noether currents (3.3.3) with respect to the action of a

group G obey the condition (3.3.7) on the extremal surfaces, then such a σ-model

is said to have G-Poisson-Lie symmetry with respect to the group G̃.

Proposition 3.8. The condition

Lva(Eij) = f̃ bc
a vm

b v
n
cEmjEin (3.3.8)

on the string backgrounds is referred to as the Poisson-Lie condition. It is

the sufficient condition for a σ-model to possess a Poisson-Lie dual.

Proof. It follows from (3.3.3) and (3.3.6) that (3.3.7) becomes

Lva(L) = −1

2
f̃ bc

aJb ∧ Jc

= −1

2
f̃ bc

a(v
m
b Emj ∂̄x

jdz̄ − vm
b Ejm∂x

jdz) ∧ (vn
cEni∂̄x

idz̄ − vn
cEin∂x

idz),

= f̃ bc
av

m
b v

n
cEmjEindx

idxj

= Lva(Eij)dx
idxj, (3.3.9)

thus LvaEij = f̃ bc
av

m
b v

n
cEmjEin.
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When the string background satisfies the Poisson-Lie condition (3.3.8), then

following from (3.3.7) Ja can be explicitly expressed as

T̃ a · Ja = −dg̃g̃−1 (3.3.10)

or

g̃ = P exp

∫
γ

JaT̃
a, (3.3.11)

where g̃ ∈ G̃, T̃ a are the generators of the Lie algebra g̃ of G̃, and P means the

path-ordered exponential.

At this point a natural question to ask is, how is the group G̃ related to G?

It turns out that the Poisson-Lie condition (3.3.8) requires a certain compat-

ibility condition on the structure constants of the Lie algebras of G and G̃.

Proposition 3.9. Let f c
ab be the structure constants of g, the Lie algebra of G.

The integrability condition on (3.3.8) requires the following constraint

f̃ac
kf

e
fa − f̃

ae
kf

c
fa − f̃

ac
ff

e
ka + f̃ae

ff
c

ka − f̃ ea
af

a
fk = 0. (3.3.12)

Proof. It follows from [va, vb] = f c
ab vc that Lva satisfies the following relation

[Lva ,Lvb
] = f c

ab Lvc . (3.3.13)

Using the above identity on Eij and substituting the Poisson-Lie condition (3.3.8)

into the above equation, we have

f c
ab LvcEij = f c

ab f̃
ed

cv
m
e v

n
dEmjEin

= [Lva ,Lvb
]Eij = LvaLvb

Eij − Lvb
LvaEij

= Lva(f̃
cd

bv
m
c v

n
dEmjEin)− Lvb

(f̃ cd
av

m
c v

n
dEmjEin)

= (f̃ cd
bf

e
ac + f̃ ef

bf
d

af − f̃
cd

af
e

bc − f̃
ef

af
d

bf )vm
e v

n
dEmjEin

+(f̃ cd
bf̃

fg
a − f̃

fg
af̃

cd
b)v

m
c v

n
d v

k
fv

l
gEkjEmlEin

+(f̃ cd
bf̃

fg
a − f̃

fg
af̃

cd
b)v

m
c v

n
d v

k
fv

l
gEknEmjEil

= (f̃ cd
bf

e
ac + f̃ ef

bf
d

af − f̃
cd

af
e

bc − f̃
ef

af
d

bf )vm
e v

n
dEmjEin,

therefore we obtain the following constraint:

f̃ cd
bf

e
ac + f̃ ef

bf
d

af − f̃
cd

af
e

bc − f̃
ef

af
d

bf − f̃
ed

cf
c

ab = 0. (3.3.14)
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It is obvious that the relation (3.3.12) is the standard relation which is obeyed

by the structure constants of a Lie bialgebra, i.e. this is exactly the relation

(2.2.27). Therefore the pair (g, g̃) forms a Drinfel’d double.

Condition (3.3.12) is manifestly dual, i.e. the condition (3.3.12) is invariant

with respect to the exchange of structure constants f ↔ f̃ .

This suggests that there exists an equivalent dual σ-model where the roles of g

and g̃ are exchanged. The following Poisson-Lie condition is required for the dual

σ-model:

Lṽa(Êij) = f bc
a ṽ

m
b ṽ

n
c ÊmiÊjn. (3.3.15)

That is, there exists a dual σ-model on a target manifold Ê with G̃ acting freely

on Ê.

To see that this σ-model is dual to the σ-model with string background E

satisfying (3.3.8), it follows from the fact that the dual Noetherian form for G̃

acting freely on Ê can be organized in the g∗-valued form J̃ = J̃aT̃
a and the

whole procedure can be repeated to retrieve the original σ model on E.

Both the target manifold E and its dual manifold Ê are embedded into an

extended manifold Ẽ which has a natural structure of a fibre bundle over base

manifold M = E/G = Ê/G̃ with the fibre being the Drinfel’d double.

As a result, dual σ-models are naturally constructed using Drinfel’d

doubles.

As a conclusion, for a pair of Lie groups (G, G̃) whose Lie algebras constitute a

Drinfel’d double, every σ-model such that a group G acts freely on its target space

and its action is Poisson-Lie symmetric with respect to G̃ has a dual counterpart,

such that G̃ acts freely on the dual target space Ê and its action is Poisson-Lie

symmetric with respect to G.

3.3.2 Solutions to the Poisson-Lie condition

In this section we consider the case when G acts on the target E not only freely

but also transitively, i.e. the target manifold can be identified with the group

manifold. In this case solutions of (3.3.8) and (3.3.15) can be solved using the

concept of the Drinfel’d double.

First, the action (3.2.1) can be rewritten in terms of group elements g ∈ G

S =

∫
d2zwa

iEab(g)w
b
j∂x

i∂̄xj, (3.3.16)

where wa
i ∂x

i = (g−1∂g)a and wa
i ∂̄x

i = (g−1∂̄g)a are the left-invariant one-forms,
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and

Eab(g) = wi
aEij(g)w

j
b , (3.3.17)

where Eij(g) is the string background given by (3.2.1).

Now, let D be a Drinfel’d double containing the groups G and G̃ with Lie

algebra double D. D can be decomposed as g ⊕ g̃, where g is the Lie algebra of

G and g̃ is the Lie algebra of G̃.

Let us choose a basis {Ta, T̃
a} of D such that {Ta} are the generators of g

while {T̃ a} are the generators of g̃, where {Ta} and {T̃ a} are dual with respect

to the nondegenerate bilinear form 〈 , 〉 on D.

Lemma 3.10. The adjoint representation of G on D can be written in terms of

the matrices a(g), c(g), d(g) defined as the coefficients in the expansion

g−1Tag ≡ a(g) b
a Tb, g−1T̃ ag ≡ c(g)abTb + d(g)a

bT̃
b. (3.3.18)

Proof. Since (g, g̃) is a Drinfel’d double, Ta and T̃ a follow relations (2.2.26) can

be chosen to satisfy the orthogonality conditions (2.2.25) with respect to a non-

degenerate bilinear form on D, invariant under the adjoint action of D, i.e.

〈AdlV,AdlW 〉 = 〈lV l−1, lW l−1〉 = 〈V,W 〉, V,W ∈ D, l ∈ D. (3.3.19)

Then using (3.3.18) and g ∈ G, the orthogonality conditions give rise to the

following constraints

a(g)T = d(g)−1,

c(g)d(g)T = −d(g)c(g)T . (3.3.20)

Remark 3.11. Let us express Adg as(
a(g) 0

c(g) d(g)

)
.

According to (3.3.20), a(g), c(g) and d(g) satisfy the conditions (3.2.12) when one

puts a = a(g), b = 0, c = c(g) and d = d(g), in other words, Adg is an element of

O(n, n,Z)(n = dim(g)).

Next, we will follow a procedure cleverly constructed by Klimc̆́ık and P. S̆evera

[47] such that Eab(g) is found by translating a general g independent reference

field E(e) from the identity e ∈ G to the point g ∈ G by left action of G on itself.
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Let R+ be an n-dimensional subspace of the 2n-dimensional D and R− be its

orthogonal complement such that R± span the whole algebra D. R± are precisely

the graph of an arbitrary matrix E(e) in D:

R+ = Span{(t+E(e)(t, ·)), t ∈ g̃}, R− = Span{(t−E(e)(·, t)), t ∈ g̃}. (3.3.21)

Consider the Lagrangian L and L̂ corresponding to the Drinfel’d double (G, G̃)

as follows.

Lemma 3.12. The Lagrangians L and L̂ satisfying (3.3.8) and (3.3.15) can be

deduced from an equation of motion on the Drinfel’d double. Let l : Σ→ D such

that

〈(∂l)l−1, R+〉 = 〈(∂̄l)l−1, R−〉 = 0. (3.3.22)

According to Drinfel’d, any arbitrary element of D can be decomposed as the

product of elements g ∈ G and h̃ ∈ G̃, i.e.

l = gh̃ = g̃h, g, h ∈ G, g̃, h̃ ∈ G̃. (3.3.23)

This decomposition is generally not unique. However, according to Drinfel’d [22],

there exists the unique decomposition in the vicinity of the unit element of D as

the product of elements from G and G̃.

Any two decompositions give rise to a pair of equivalent σ-models. The possi-

bility to decompose a Drinfel’d double into two (or more) Manin triples enables

one to construct two (or more than two) equivalent σ-models on G and G̃ (or

equivalently on others groups too) from the decompositions. This property is called

Poisson-Lie T-plurality [77].

So there is a dual pair of σ-models on D and the string backgrounds Eab(g)

and Êab(g̃) are defined by R± via

g−1R+g = Span(Ta + Eab(g)T̃
b), (3.3.24)

g−1R−g = Span(Ta − Eba(g)T̃
b),

and

g̃−1R+g̃ = Span(T̃ a + Êab(g̃)Tb), (3.3.25)

g̃−1R−g̃ = Span(T̃ a − Êba(g̃)Tb).

Proof. Inserting (3.3.24) into (3.3.22) and imposing conditions (3.3.22), it follows

that

−(∂g̃g̃−1)a = Eab(g)(g
−1∂g)b ≡ A+

a (g)

−(∂̄g̃g̃−1)a = −Eba(g)(g
−1∂̄g)b ≡ A−

a (g). (3.3.26)
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Eliminating g̃, we arrive at the following set of equations

∂A−
a (g)− ∂̄A+

a − f̃ bc
a A−

b (g)A+
c (g) = 0, (3.3.27)

where the f̃ bc
a are the structure constants of the Lie algebra g̃.

It can then be checked that the the above set of equations (3.3.27) are the

field equations of the σ-model action (3.3.16).

Similarly, the field equations of the dual σ-model action can be obtained by

eliminating g following the above arguments. Thus we conclude that the σ-model

Lagrangian L and the dual Lagrangian L̂ can be deduced from (3.3.22).

Proposition 3.13. The σ-model background Eab(g) can be written conveniently

as

Eab(g) = ([a(g) + E(e)c(g)]−1) c
a Ecd(e)d(g)

d
b (3.3.28)

Proof. Starting with g = e the identity element

R+ = Span(Ta + Eab(e)T̃
b),

the explicit dependence of Eab on g is given by the matrices of the adjoint repre-

sentation of D and is given by

g−1R+g = Span{g−1(Ta + Eab(e)T̃
b)g}

= Span[(a(g) c
a + Eab(e)c(g)

bc)Tc + Eab(e)d(g)
b
cT̃

c]. (3.3.29)

Comparing (3.3.24) and (3.3.29) the matrix E(g) is given by

Eab(g) = ([a(g) + E(e)c(g)]−1) c
a Ecd(e)d(g)

d
b. (3.3.30)

Alternatively, Eab(g) can be defined equivalently as follows.

Proposition 3.14. Let Πab(g) be defined by

Πab(g) ≡ c(g)ac(a(g)−1) b
c , (3.3.31)

then up to a similarity transformation, Eab(g) can be expressed as

Eab(g) = ([E(e)−1 + Π(g)]−1)ab (3.3.32)
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Proof. Starting with (3.3.29), the matrix E(g) given by (3.3.30) can be rewritten

as

g−1R+g = Span[(a(g) c
a + Eab(e)c(g)

bc)Tc + Eab(e)d(g)
b
cT̃

c]. (3.3.33)

Consider a basis transformation of {Ta} of g and {T̃ a} of g∗ via

Ta 7→ (a(g) b
a )−1Tb T̃ a 7→ (d(g)a

b)
−1T̃ b, (3.3.34)

then (3.3.33) becomes

g−1R+g = Span[(I + Eab(e)c(g)
bc(a(g) d

c )−1)Td + Eab(e)T̃
b]

= Span(Ta + Eab(g)T̃
b), (3.3.35)

thus up to a similarity transformation, E(g) can be expressed as

E(g) = [E(e)−1 + c(g)a(g)−1]−1 = [E(e)−1 + Π]−1. (3.3.36)

Remark 3.15. As we will show in Section 6.2, Πab(g) = c(g)ac(a(g)−1) b
c is a

natural Poisson structure on G.

The dual background Êab is found by transporting ẽ ∈ G̃ to any h̃ ∈ G̃ by the

action of G̃ on itself.

Following the previous construction for the dual σ-model with target G̃, we

have the following result:

Theorem 3.16. The matrices ã(g̃), c̃(g̃) and d̃(g̃) are defined in a similar way to

(3.10)

g̃−1T̃ ag̃ ≡ ã(g̃)a
bT̃

b, g̃−1Tag̃ ≡ c̃(g̃)abT̃
b + d̃(g̃) b

a Tb, (3.3.37)

with the dual background found to be

Êab(g̃) = d̃(g̃)a
cÊ

cd(ẽ)([ã(g̃) + c̃(g̃)Ê(ẽ)]−1) b
d . (3.3.38)

Equivalently, in terms of the dual Poisson structure Π̃ab(g̃) ≡ c̃(g̃)ac(ã(g̃)−1) b
c ,

the dual background can be written as

Êab(g̃) = ([Ê(ẽ)−1 + Π̃(g̃)]−1)ab. (3.3.39)

The following lemma relates the original σ-model and the dual σ-model:
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Lemma 3.17. At the origin of the group, the matrices E(e) and Ê(ẽ) are related

by

E(e)Ê(ẽ) = Ê(ẽ)E(e) = 1 (3.3.40)

Proof. R± = R̃± is the crucial choice. Thus

R+ = Span{Ta + E(e)abT̃
b}

= R̃+ = Span{T̃ a + Ê(ẽ)abTb} = Span{Ta + (Ê(ẽ)−1)abT̃
b}, (3.3.41)

therefore E(e)ab = (Ê(ẽ)ab)
−1.

That is, the Poisson-Lie T-duality is a generalization of the standard Abelian

T-duality, i.e. the R → 1/R symmetry. An example for Abelian T-duality is

constructed in Section 3.3.3.

3.3.3 Classification of Poisson-Lie T-duality

Poisson Lie T-duality can be classified by the following types of underlying Drin-

feld doubles:

1. Abelian doubles, which correspond to standard Abelian T-duality.

2. Semi-Abelian doubles, which correspond to the non-Abelian T-duality be-

tween a G-isometric σ-model with the target manifold being the group G,

and a σ-model on G̃ viewed as the Abelian group. This is non-Abelian

T-duality in the sense of de la Ossa and Quevedo [20].

3. Non-Abelian doubles which correspond to non-trivial Poisson-Lie T-duality

where none of the σ-models of the dual pair is isometric with respect to the

action of the group.

Poisson-Lie T-duality with Abelian double

In the Abelian double case, let us take the Drinfel’d double D = U(1)n × U(1)n.

Starting with a σ-model with a free G = U(1)n action on the target manifold

E, we choose coordinates yµ (µ = 1, . . . , n) for the orbits of U(1)n on E. The

matrix of the σ-model, Eij, has both types of indices corresponding to yµ and

g ∈ U(1)n, and the Lagrangian can be decomposed as

L = E(y)µν∂y
µ∂̄yν + E(y, g)µb∂y

µ(g−1∂̄g)b

+ E(y, g)aν(g
−1∂g)a∂̄yν + E(y, g)ab(g

−1∂g)a(g−1∂̄g)b. (3.3.42)
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Or in matrix form, let us write

E(y, g)ij =

(
E(y)µν E(y, g)µb

E(y, g)aν E(y, g)ab

)
. (3.3.43)

The dependence of Eij on g is fixed by the Poisson-Lie condition (3.3.8) and is

given by (3.3.28), i.e.

Eab(y, g) = [(a(g) + E(e)c(g))−1] c
a E(e)cdd(g)

d
b,

hence it follows that the σ-model matrix E (3.3.43) is given by

E(y, g) =

[(
In 0

0 a(g)

)
+ E(y, e)

(
0 0

0 c(g)

)]−1

E(y, e)

(
In 0

0 d(g)

)
,

(3.3.44)

where e is the unit element of G, and a(g), c(g) and d(g) are the matrices given

by (3.3.18). Since U(1)n is Abelian, thus

a(g) = d(g) = Idn, c(g) = 0. (3.3.45)

Comparing (3.3.43) and (3.3.44), we have made the choice E(y, e) = E(y, g) in

the adaptive coordinate (y, g).

The dual model Ê is defined similarly with the choice of coordinates (y, g̃)

and the dependence of Ê on g̃ is given by (3.3.38), i.e.

Ê(y, g̃) =

(
Idn 0

0 d̃(g̃)

)
Ê(y, ẽ)

[(
0 0

0 ã(g̃)

)
+

(
Idn 0

0 c̃(g̃)

)
Ê(y, ẽ)

]−1

.

(3.3.46)

According to Section 3.2.2, Ê(y, ẽ) can be chosen as

Ê(y, ẽ)

=

((
In 0

0 a

)
E(y, e) +

(
0 0

0 b

))((
0 0

0 c

)
E(y, e) +

(
In 0

0 d

))−1

=

((
In 0

0 0

)
E(y, e) +

(
0 0

0 In

))((
0 0

0 In

)
E(y, e) +

(
In 0

0 0

))−1

=

(
Eµν − Eµa(E

−1)abEbν −Eµa(E
−1)a

b

(E−1)
b

a Ebν E −1
ab

)
, (3.3.47)

where we have chosen a = d = 0, and b = c = In.
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Since the dual group is G̃ = U(1)n, the matrices ã, c̃ and d̃ are given by

ã(g̃) = d̃(g̃) = Idn, c̃(g̃) = 0. (3.3.48)

The dual model Ê(y, g̃) follows from (3.3.46), (3.3.47) and (3.3.48) is thus

Ê(y, g̃) =

(
Eµν − Eµa(E

−1)abEbν −Eµa(E
−1)a

b

(E−1)
b

a Ebν E −1
ab

)
. (3.3.49)

This is exactly the Buscher rules with a U(1)n isometry (3.2.8), as given previously

in Section 3.2.1.

Poisson-Lie T-duality with semi-Abelian double

Non-Abelian T-duality originally introduced by de la Ossa and Quevedo [20] is

a special case of Poisson-Lie T-duality, such that the double corresponding to a

Poisson-Lie symmetry is the so called semi-Abelian double.

Semi-Abelian doubles correspond to non-Abelian T-duality between a G-

isometric σ-model with a G-target and a non-isometric σ-model with the target

G̃ which can be considered as an Abelian Lie group.

In this case the double D is simply the cotangent bundle T ∗G which is the

semi-direct product of the non-Abelian group G and the Abelian group U(1)n,

where n = dim(G), i.e. D = Gn U(1)n.

Example 3.18. [36] Let {T̃ a}, a = 1, 2 be the generators for the Lie algebra of

the Abelian group G̃ = U(1)2. And let {T1, T2} be a basis of G such that

[T1, T2] = T2, (3.3.50)

then the mix-algebra relation is given by

[T1, T̃
2] = −T̃ 2, [T2, T̃

2] = T̃ 1. (3.3.51)

I.e. (G, G̃) is a Drinfel’d double.

Now let (θ̃, ϕ̃) and (θ, ϕ) be group coordinates of G̃ = U(1)2 and G, respec-

tively.

Computing the matrices a(g), c(g) and d(g) of (3.3.18) we have

a(g) =

(
1 0

−ϕ eθ

)
, c(g) =

(
0 0

0 0

)
, d(g) =

(
1 ϕ e−θ

0 e−θ

)
, (3.3.52)
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and similarly, ã(g̃), c̃(g̃) and d̃(g̃) are given by

ã(g̃) =

(
1 0

0 1

)
, c̃(g̃) =

(
0 0

0 0

)
, d̃(g̃) =

(
1 0

0 1

)
. (3.3.53)

Let us choose the constant matrix E(e) and Ê(ẽ) as follows

E(e) =

(
x y

u v

)
, Ê(ẽ) =

(
x̃ ỹ

ũ ṽ

)
, (3.3.54)

such that E(e) and Ê(ẽ) satisfy the relation E(e)Ê(ẽ) = Ê(ẽ)E(e) = Id.

Then the string backgrounds E(θ, ϕ) and Ê(θ̃, ϕ̃) are given by

E(θ, ϕ) =
1

ṽx̃− ũỹ

(
−e−θϕ(u− ϕ+ ϕx+ y) + v −e−θy + ϕx

−e−θu+ e−2θϕx e2θx

)
,

Ê(θ̃, ϕ̃) =
1

1 + ϕ̃ũ+ ϕ̃2ṽx̃− ϕ̃ỹ − ϕ̃2ũỹ

(
1− ϕ̃ỹ −ϕ̃ṽ
ϕ̃x̃ 1 + ϕ̃ũ

)
. (3.3.55)

Poisson-Lie T-duality with non-Abelian double

The following example is an example of Poisson-Lie T-duality with a non-Abelian

double, which was first worked out explicitly in [48].

Example 3.19 (Borelian double). The simplest non-Abelian double is the D =

GL(2,R) group with Lie algebra D = gl(2,R) and is called the Borelian double.

The Borel group G with Lie algebras g has the basis

T1 =

(
1 0

0 0

)
, T2 =

(
0 1

0 0

)
, (3.3.56)

while the dual group G̃ with algebra g̃ has the following basis

T̃ 1 =

(
0 0

0 1

)
, T̃ 2 =

(
0 0

−1 0

)
. (3.3.57)

There is a symmetric bilinear pairing 〈 , 〉 on D defined by

〈x, y〉 = Det(x+ y), x, y ∈ D. (3.3.58)

It is obvious that 〈Ta, Tb〉 = 〈T̃ a, T̃ b〉 = 0 and 〈Ta, T̃
b〉 = δb

a. One can also

show that 〈 , 〉 is ad-invariant, i.e. it satisfies

〈[x, y], z〉 − 〈y, [x, z]〉 = 0.
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Thus both sets of generators span a Borel subalgebra of the algebra D = gl(2, R)

and D is a Drinfel’d double. And an easy computation shows that the commu-

tation relations is of the mixed type satisfying (2.2.26).

Now consider a pair of σ-models in duality with targets being G and G̃,

respectively.

The elements g ∈ G have a parametrization

g =

(
eχ θ

0 1

)
.

Then according to Eqn. (3.3.18), we find the matrices a(g), c(g) and d(g) to be

a(g) =

(
1 e−χθ

0 e−χ

)
, c(g) =

(
0 −e−χθ

θ e−χθ2

)
, d(g) =

(
1 0

−θ eχ

)
.

(3.3.59)

Let us define the σ-model matrix E(e) at the unit element of G by

E(e) =

(
x y

u v

)
. (3.3.60)

Substituting (3.3.59) and (3.3.60) into (3.3.28), the string background Eab(g) is

given by

E(g) = A

(
x− θ(u+ y) + θ2v eχ(y + θ(v(x− 1)− uy))

eχ(u− θv(1 + x) + θuy) e2χv

)
, (3.3.61)

where A = (1 + θ(y − u) + θ2(vx− uy))−1.

Similarly the element of G̃ as the group manifold of the dual σ-model with

Lie algebra g̃ given by (3.3.57) can be parameterized as

g̃ =

(
1 0

−ρ eσ

)
. (3.3.62)

Then computing ã(g̃), c̃(g̃) and d̃(g̃) accordingly, we find

ã(g̃) =

(
1 e−σρ

0 e−σ

)
, c̃(g̃) =

(
0 −e−σρ

ρ e−σρ2

)
, d̃(g̃) =

(
1 0

−ρ eσ

)
,

(3.3.63)

where the inverse dual σ-model matrix Ê(e) at the unit element is

Ê(ẽ) =

(
x y

u v

)−1

. (3.3.64)
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Then the dual string background Ê(g̃) can be obtained by substituting (3.3.63)

and (3.3.64) into (3.3.38):

Ê(g̃) =
1

ρ2 + vx+ ρ(u− y)− uy

(
v + ρ(u+ y) + ρ2 −eσ(y + ρ(x− 1))

−eσ(u+ ρ+ ρx) e2σx

)
.

(3.3.65)
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Chapter 4

Generalized geometry

4.1 Introduction and outline

Generalized geometry was first introduced by Hitchin [38] as a form of construct-

ing differential geometry with a background B-field. Then the notion of general-

ized geometry was further developed by Cavalcanti and Gualtieri [16, 32] in their

thesis.

Generalized geometry is a geometry on TM⊕T ∗M , the direct sum of tangent

and cotangent bundles of a manifold M . Generally speaking, one would like to

view TM ⊕ T ∗M as a Courant algebroid over M .

Generalized geometry was first introduced as a generalized structure which

unifies symplectic and complex structures. It was soon noticed by physicists that

generalized geometry applies naturally to mirror symmetry [25, 30, 34].

As suggested by Gualtieri and Cavalcanti [16, 33], generalized geometry pro-

vides a natural geometry to study T-duality. They showed that global T-duality

introduced by Bouwknegt, Evslin and Mathai [6] behaves naturally in the con-

text of generalized geometry for the case of principal circle bundles. And since

generalized geometry doubles the original geometry, it can also be related to the

the double geometry of T-folds [40].

This chapter is organized as follows. In Section 4.2 we introduce natural

operations on the generalized tangent space TM ⊕ T ∗M . Section 4.3 reviews

the definition of Clifford algebra on the generalized tangent space, followed by

an introduction to a generalized Cartan system on TM ⊕ T ∗M in Section 4.4.

In Section 4.5, the Courant bracket is viewed as an extension of the Lie bracket.

Section 4.6 introduces the concept of a Dirac structure and maximal isotropic

subspaces. In the last section, we introduce the generalized metric, which is a



54 Generalized geometry

generalized version of a Riemannian metrics on TM ⊕ T ∗M .

4.2 Natural operations

Let M be a smooth manifold of dimension n. TM⊕T ∗M has a natural symmetric

non-degenerate bilinear form defined by

〈X + ξ, Y + η〉 =
1

2
(ıY ξ + ıXη) , (4.2.1)

where X, Y ∈ Γ(TM), and ξ, η ∈ Γ(T ∗M).

This symmetric form has signature (n, n) and is invariant under the orthogonal

group O(n, n).

There are a certain special symmetries of TM ⊕T ∗M . To explore the various

orthogonal symmetries of TM⊕T ∗M , let us consider the special orthogonal group

SO(TM ⊕ T ∗M) ∼= SO(n, n) which preserves the non-degenerate, symmetric,

bilinear form 〈 , 〉. The Lie algebra of SO(TM ⊕ T ∗M) is defined by

so(TM⊕T ∗M) = {T |〈TX1,X2〉+〈X1, TX2〉 = 0,∀X1,X2 ∈ TM⊕T ∗M}. (4.2.2)

T can be decomposed as

T =

(
A β

B −A∗

)
, (4.2.3)

where A ∈ End(TM), β : TM → T ∗M and B : T ∗M → TM , and B and β

are both skew-symmetric. Thus B is a 2-form and acts on X ∈ Γ(TM) via the

interior product B(X) = ıXB. Similarly, β is a bivector and acts on a form

ξ ∈ Γ(T ∗M) via β(ξ) = ıξβ.

A special case of T called the B-field transform can be obtained by expo-

nentiation; this is an orthogonal symmetry of TM ⊕ T ∗M given by

exp(B) =

(
1 0

B 1

)
, (4.2.4)

the B-field transform sends X + ξ 7→ X + ξ + ıXB, here X ∈ Γ(TM) and

ξ ∈ Γ(T ∗M).

β-transform is another important symmetry given by β ∈ ∧2(TM), it is

given by the element

exp(β) =

(
1 β

0 1

)
, (4.2.5)

the β-transform sends X + ξ 7→ X + ξ + ıξβ.



4.2 Natural operations 55

Besides the non-degenerate bilinear form, there is a natural bracket operation

on smooth sections of TM ⊕ T ∗M , called the Courant bracket. The Courant

bracket was first introduced by Courant [18] to define a geometric structure called

a Dirac structure, which is used by Courant and Weinstein [19] to unify Poisson

geometry and presymplectic geometry by expressing each structure as a maximal

isotropic subbundle of TM ⊕ T ∗M .

Definition 4.1. The Courant bracket is defined on pairs (X, ξ) = X + ξ of

a vector field X and a one-form ξ on a manifold M . Here X + ξ, Y + η ∈
Γ(TM ⊕ T ∗M):

[]X + ξ, Y + η[] = [X, Y ] + LXη − LY ξ −
1

2
d(ıXη − ıY ξ), (4.2.6)

Note that the Courant bracket reduces to a Lie bracket on vector fields, i.e.

let ρ : TM ⊕ T ∗M → TM be the projection on TM , then

ρ([[X1,X2]]) = [ρ(X1), ρ(X2)], (4.2.7)

where Xi ∈ Γ(TM ⊕ T ∗M).

The Courant bracket has the following properties [32]:

1. It does not in general satisfy the Jacobi-identity, but its Jacobiator

Jac(X1,X2,X3) = [[[[X1,X2]],X3]] + [[[[X2,X3]],X1]] + [[[[X3,X1]],X2]],

can be expressed as the derivative of the Nijenhuis operator:

Nij(A,B,C) =
1

3
(〈[[X1,X2]],X3〉+ 〈[[X2,X3]],X1〉+ 〈[[X3,X1]],X2〉)

through

Jac(X1,X2,X3) = d(Nij(X1,X2,X3)). (4.2.8)

2. The Courant bracket satisfies a certain Leibnitz identity:

[[X1, fX2]] = f [[X1,X2]] + (ρ(X1)f)X2 − 〈X1,X2〉df, (4.2.9)

where f ∈ C∞(M).

3. Let B be a smooth two-form which maps TM → T ∗M via the interior

product X 7→ ıXB. Then for X + ξ, Y + η ∈ Γ(TM ⊕ T ∗M), the B-field

transform

eB =

(
1 0

B 1

)
: X + ξ 7→ X + ξ + ıXB
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satisfies

[[eB(X + ξ), eB(Y + η)]] = eB([[X + ξ, Y + η]]) + ıXıY dB.

i.e. the map eB is an automorphism of the Courant bracket if and only if

B is closed, i.e. dB = 0.

As the result, the Courant bracket has a non-trivial automorphism defined

by a closed 2-form B.

4. The Courant bracket can be “twisted” by a real, closed, 3-form H. That

is, define another bracket [[ , ]]H on sections of TM ⊕ T ∗M :

[[X + ξ, Y + η]]H = [[X + ξ, Y + η]] + ıXıYH. (4.2.10)

[[ , ]]H defines a Courant algebroid structure on T⊕T ∗ if and only if dH = 0.

The notion of Courant algebroid has been discussed in Section 2.3.2.

The (twisted) Courant bracket is the anti-symmetrization of a bracket called

the (twisted) Dorfmann bracket defined as follows:

Definition 4.2. The (twisted) Dorfmann bracket is a bracket on Γ(TM ⊕
T ∗M) defined by

(X + ξ) ◦H (Y + η) = ([X, Y ] + LXη − ıY dξ + ıXıYH). (4.2.11)

It is related to the (twisted) Courant bracket by

[[(X + ξ), (Y + η)]]H = (X + ξ) ◦H (Y + η)− d〈X + ξ, Y + η〉. (4.2.12)

Properties of the (twisted) Dorfmann bracket are:

• The (twisted) Dorfmann bracket on TM⊕T ∗M is not skew-symmetric, but

its skew-symmetrization gives the Courant bracket, i.e.

[[X1,X2]]H =
1

2
(X1 ◦H X2 − X2 ◦H X1), Xi ∈ Γ(TM ⊕ T ∗M). (4.2.13)

• The (twisted) Dorfmann bracket satisfies the Jacobi-identity

X1 ◦H (X2 ◦H X3) = (X1 ◦H X2) ◦H X3 + X2 ◦H (X1 ◦H X3). (4.2.14)
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4.3 Clifford algebra on TM ⊕ T ∗M

Definition 4.3. The Clifford algebra CL(TM ⊕ T ∗M) is defined by the as-

signment X 7→ γX, with the relation

{γX1 , γX2} = 2〈X1,X2〉, ∀X1,X2 ∈ Γ(TM ⊕ T ∗M). (4.3.1)

Proposition 4.4. The Clifford algebra has a natural representation on the exte-

rior algebra ∧•(T ∗M) given by the action of X = X + ξ ∈ Γ(TM ⊕T ∗M) defined

by

γXΩ ≡ ıXΩ + ξ ∧ Ω, (4.3.2)

where Ω ∈ ∧•(T ∗M).

Proof. We can verify this by showing that

1

2
{γX+ξ, γX+ξ}Ω = ıX(ıXΩ + ξ ∧ Ω) + ξ ∧ (ıXΩ + ξ ∧ Ω)

= (ıXξ)Ω

= 〈X + ξ,X + ξ〉Ω, (4.3.3)

as required.

4.4 Generalized Cartan system

First recall Cartan’s formulas with ingredients (ıX ,LX , d, [ , ]) as follows

[d, d] = 0, [ıX , ıY ] = 0 LX = [ıX , d], [LX , ıY ] = ı[X,Y ], [LX ,LY ] = L[X,Y ].

(4.4.1)

Here X, Y are vector fields on a manifold, ıX is the interior product with respect

to X, LX is the Lie derivative with respect to X, d is the de Rham differential

and [ , ] is the graded commutator of differential forms except on the right hand

side of the last two formulas, which denote the Lie brackets.

On TM⊕T ∗M , there is a differential system with ingredients (γX,LX, dH , ◦H)

in analogy with the Cartan system we have just recalled. These ingredients are

• X = (X, ξ) ∈ Γ(TM ⊕ T ∗M), in analogy with vector fields in Cartan’s

system.



58 Generalized geometry

• As defined in the previous section, γX = γ(X,Ξ) is the Clifford algebra on

TM⊕T ∗M , in analogy with ıX in Cartan’s system. Recall that when acting

on differential forms Ω,

γ(X,ξ) · Ω = ıXΩ + ξ ∧ Ω.

• LX in analogy with the Lie derivative LX in Cartan’s system. LX acts on

differential forms Ω via,

L(X,ξ) · Ω = LXΩ + (dξ + ıXH) ∧ Ω. (4.4.2)

• dH is the twisted differential on differential forms, in analogy with the de

Rham differential d in Cartan’s system. dH = d + H acts on differential

forms by

dHΩ = dΩ +H ∧ Ω. (4.4.3)

• ◦H in analogy with the Lie bracket in the Cartan’s system is the (twisted)

Dorfmann bracket defined previously by (4.2.11) in Section 4.2.

We then claim that

Proposition 4.5. In analogy with Cartan’s formulas (4.4.1), the algebraic struc-

ture of the differential graded algebra on TM ⊕ T ∗M can be stated as follows

(1) [dH , dH ] = 0, (4.4.4)

(2) [γX1 , γX2 ] = 2〈X1,X2〉,
(3) [dH , γX] = LX,

(4) [LX, γY] = γX◦HY,

(5) [LX1 ,LX2 ] = LX1◦HX2 = L[[X1,X2]]H ,

(6) [dH ,LX] = 0, (4.4.5)

where X,X1,X2 ∈ Γ(TM ⊕ T ∗M), [ , ] is the graded commutator of the graded

algebra on TM ⊕ T ∗M .

Proof. (1) and (2) follow from the definitions.

(3)

[dH , γX]Ω = (d+H∧)(ıXΩ + ξ ∧ Ω) + (ıX + ξ∧)(d+H∧)Ω

= LXΩ + (dξ + ıXH) ∧ Ω = LXΩ.
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(4) Starting with LHS:

[LX1 , γX2 ] · Ω
= LX1(ıX2 + ξ2∧)Ω + (dξ1 + ıX1H) ∧ (ıX2 + ξ2∧)Ω

−ıX2(LX1 + (dξ1 + ıX1H) ∧ Ω)− ξ2 ∧ (LX1 + (dξ1 + ıX1H)∧)Ω

= [LX1 , ıX2 ]Ω + (LX1ξ2 − ıX2dξ1 − ıX2ıX1H) ∧ Ω

= ı[X1,X2]Ω + (LX1ξ2 − ıX2dξ1 + ıX1ıX2H) ∧ Ω = γX1◦HX2Ω.

(6)

[dH ,LX] = dH(dHγX + γXdH)− (dHγX + γXdH)dH = 0.

(5)

[LX1 ,LX2 ] = LX1 [dH , γX2 ]− [dH , γX2 ]LX1 (via (3))

= LX1(dHγX2 + γX2dH)− (dHγX2 + γX2dH)LX1

= dHLX1γX2 + LX1γX2dH − dHγX2LX1 − γX2LX1dH (via (6))

= γX1◦HX2dH + dHγX1◦HX2 (via (4))

= LX1◦HX2 (via (3)).

(4.4.6)

Also by (5) we have

L[[X1,X2]]H =
1

2
(LX1◦HX2 − LX2◦HX1) =

1

2
([LX1 ,LX2 ]− [LX2 ,LX1 ]) = LX1◦HX2 .

4.5 Courant bracket - extension of the Lie bracket

The Courant bracket can be viewed as a natural extension of the Lie bracket on

TM ⊕ T ∗M in the following sense.

The Lie bracket satisfies the following identity when acting on a form Ω [52]:

ı[X1,X2]Ω = [ıX1 , ıX2 ]dΩ + d[ıX1 , ıX2 ]dΩ + 2ıX1d(ıX2Ω)− 2ıX2d(ıX1Ω). (4.5.1)

As observed by Gualtieri [32] (Lemma 4.24), the identity (4.5.1) for Lie bracket

can be generalized to the Courant bracket on TM ⊕ T ∗M , acting on forms via

the Clifford action:

γ[[X1,X2]]Ω =
1

2
[γX1 , γX2 ]dΩ +

1

2
d[ıX1 , γX2 ] + ıX1d(ıX2Ω)− ıX2d(ıX1Ω), (4.5.2)
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here X1,X2 ∈ Γ(TM ⊕ T ∗M), and [ , ] is the graded commutator on the graded

algebra on TM ⊕ T ∗M . This extension of the Lie bracket can be generalized to

the twisted Courant bracket as follows:

Proposition 4.6. In terms of the generalized Cartan system (γ(X,Ξ),L(X,Ξ), dH , [[ , ]]H),

the twisted Courant bracket gives a natural extension of the Lie bracket on TM ⊕
T ∗M acting on forms via the Clifford action:

γ[[X1,X2]]H · Ω =
1

2
[γX1 , γX2 ] · dHΩ +

1

2
dH([γX1 , γX2 ] · Ω)

+γX1 · dH(γX2 · Ω)− γX2 · dH(γX1 · Ω). (4.5.3)

Proof. RHS. of (4.5.3) can first be rearranged as follows

RHS =
1

2
[γX1 , γX2 ] · dHΩ +

1

2
dH([γX1 , γX2 ] · Ω) + γX1 · dH(γX2 · Ω)

−γX2 · dH(γX1 · Ω)

=
1

2
(γX1 · γX2 − γX2 · γX1) · dHΩ +

1

2
dH(γX1 · γX2 · Ω− γX2 · γX1 · Ω)

+γX1 · dH(γX2 · Ω)− γX2 · dH(γX1 · Ω)

=
1

2
(γX1 · LX2Ω− γX2 · LX1Ω + LX1 · γX2Ω− LX2 · γX1Ω)

=
1

2
[LX1 , γX2 ]Ω−

1

2
[LX2 , γX1 ]Ω,

using Property (4) in Proposition 4.5 along with the definition (4.2.13) of the

Dorfmann bracket, it follows that

RHS. =
1

2
γX1◦HX2Ω−

1

2
γX2◦HX1Ω

= γ[[X1,X2]]HΩ

= LHS.

Imposing dHΩ = dΩ + H ∧ Ω, the above relation can be expand and be

rewritten as

[[X1,X2]]H = [X1, X2] + LX1ξ2 − LX2ξ1 −
1

2
d(ıX1ξ2 − ıX2ξ1) + ıX1ıX2H,

where Xi = (Xi, ξi) and the above is simply the twisted Courant bracket (4.2.10).
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4.6 Dirac structure

The vector space TM ⊕T ∗M can often be decomposed into a direct sum of other

spaces, for instance, maximally isotropic subspaces:

Definition 4.7. A subspace L ∈ TM ⊕ T ∗M is isotropic if 〈X, Y 〉 = 0 for all

X, Y ∈ Γ(L). If the dimension of L is maximal, i.e. dim(L) = dim(TM) then L

is called maximally isotropic.

If L and L′ are two maximally isotropic subspace of TM ⊕ T ∗M such that

L ∩ L′ = 0, then the inner product defines an isomorphism L′ ∼= L∗, and one can

alternatively split TM ⊕ T ∗M ∼= L⊕ L′.

Definition 4.8. A subspace L ∈ Γ(TM ⊕ T ∗M) is called involutive if it is

closed with respect to the Courant bracket, i.e.

[[X1,X2]] ∈ Γ(L), ∀X1,X2 ∈ Γ(L). (4.6.1)

Definition 4.9. If a maximally isotropic subspace L ∈ TM ⊕T ∗M is involutive,

which implies that L is integrable and in this case L is called a Dirac structure.

Proposition 4.10 ([32] Proposition 2.37). Let L be a maximally isotropic sub-

bundle of TM ⊕ T ∗M , then L being involutive is equivalent to

J(X1,X2,X3) = 0, ∀Xi ∈ Γ(L). (4.6.2)

Thus as a consequence:

Proposition 4.11. Let L be a Dirac structure, together with the usual Leibnitz

identity on L implies that L is a Lie algebroid.

4.7 Generalized metric

Recall that a Courant algebroid is endowed with a natural non-degenerate pairing

〈 , 〉. One can generalize the concept of a Riemannian metric g on manifold M

to a generalized metric G on TM ⊕ T ∗M . First introduced by Gualtieri [32] and

Witt [78], a generalized metric is defined by

Definition 4.12. Let E = TM ⊕T ∗M be the generalized tangent space of M . A

generalized metric G : E → E is an orthogonal and self adjoint operator such

that

〈Ge, e〉 > 0, ∀e ∈ Γ(E) \ {0}. (4.7.1)
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Since G is symmetric and orthogonal, one notices that G is an involution

G2 = GGt = GG−1 = Id. (4.7.2)

Therefore G splits E into its ±1-eigenspaces, C±, i.e.

TM ⊕ T ∗M = C+ ⊕ C−. (4.7.3)

One can describe C± as a graph over TM , in terms of a metric g ∈ Sym2T ∗M

and a 2-form b ∈ ∧2T ∗M [16]:

C+ = {X + (b+ g)(X)|X ∈ TM}
C− = {X + (b− g)(X)|X ∈ TM}. (4.7.4)

One can express G in terms of the metric g and the B-fields b. Consider the

case when b = 0, one finds G0 = G(g, b = 0) in matric form is given by:

G0 =

(
0 g−1

g 0

)
(4.7.5)

with the corresponding subbundles C0±.

Now turn on a B-field b. Then C± can be obtained by B-transform C± =

ebC0±, and the generalized metric G transforms as G = ebG0e
−b. In matrix form

G is thus given by

G =

(
1 0

b 1

)(
0 g−1

g 0

)(
1 0

−b 1

)
=

(
−g−1b g−1

g − bg−1b bg−1

)
. (4.7.6)



Chapter 5

T-duality and generalized

geometry

5.1 Introduction and outline

T-duality originally arises as a symmetry of string theory which relates string

theory compactified on large circles with string theory compactified on small

circles. T-duality in string theory plays an important role as it relates string

theory on different backgrounds and may be realized as a transformation between

two-dimensional σ-models [29]. A two-dimensional σ-model describes the world-

sheet theory of a string propagating on a target manifold M equipped with a

Riemannian metric gij and an antisymmetric B-field bij, with string background

defined by Eij ≡ gij + bij. The transformation rules of the low energy effective

fields under T-duality are given by the well-known Buscher rules. However, B-

fields are only defined on local patches of the underlying manifold, while globally

we have a well-defined 3-form H = dB. Thus it is tempting to interpret the

geometry of the underlying manifold in terms of H-flux instead of B-fields.

Through examples in the literature [4, 34], it is argued that T-duality leads to a

topology change of the underlying manifold. To understand the global properties

of T-duality in the presence of NS−NS 3-form H-flux, a systematic method has

been developed by Bouwknegt, Evslin and Mathai [6, 7].

In this construction of T-duality, a principal torus bundle E over M with a

curvature 2-form F and T-dualizable H-flux is topologically determined by the

pair (H,F ). In the most general case, the flux [H] ∈ H3(E) invariant with

respect to the isometry can be decomposed via the Chern-Weil homomorphism

into a four-tuple (H(3), H(2), H(1), H(0)) while the curvature class [F ] ∈ H2(M)
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can be characterized by a three-tuple (F(2), F(1), F(0)). Here H(i) and F(i) are

vector-valued i-forms on M . The T-dual object is found to be classified by Ĥ =

(H(3), F(2), 0, 0) together with the triple F̂ = (F̂(2), F̂(1), F̂(0)) = (H(2), H(1), H(0))

[9]. It turns out that when H(1) 6= 0 and H(0) 6= 0, the T-dual object characterized

by the triple (F̂(2), F̂(1), F̂(0)) is no longer a principal torus bundle [9, 62]. There

are some proposals offered to interpret such an object [40, 62].

It was recently discovered by Gualtieri and Cavalcanti [16, 33] that generalized

geometry provides a natural setting to study global T-duality. They showed that

for a principal circle bundle E, the space of invariant sections of TE ⊕ T ∗E

together with a non-degenerate bilinear form 〈 , 〉 and the twisted Courant bracket

[[ , ]]H can be identified with a Courant algebroid. T-duality is then realized as an

isomorphism of Courant algebroids.

In particular, we extend the results of Gualtieri and Cavalcanti from principal

circle bundles to general principal torus bundles with a generalization of the

Courant bracket which is invariant under T-duality in the presence of non-trivial

background H-flux.

We show that for a general principal torus bundle E over M , on the invariant

sections of the generalized tangent space TM ⊕ T ∗E, TE ⊕ T ∗E together with a

nondegenerate natural pairing 〈 , 〉, a generalized Courant bracket [[ , ]]H,F and

an anchor map ρ defines a Courant algebroid E = (E,M, [[ , ]]H,F , ρ). Thus a

principal torus bundle E and its T-dual space Ê can be described in terms of

an isomorphism of Courant algebroids related by T-duality. We also show that

using the language of Courant algebroids, the T-duality transformation rules for

the fluxes (H,F ) agree with the global T-duality due to Bouwknegt, Hannabuss

and Mathai [9].

This chapter is organized as follows.

In section 5.2, we introduce some basic concepts of the global properties of

T-duality first developed by Bouwknegt, Evslin and Mathai [6, 7] by considering

two cases - principal circle bundles and principal torus bundles. In section 5.3

we begin by reviewing Gualtieri and Cavalcanti’s [16, 32] formalism of T-duality

using the framework of generalized geometry for the case of principal circle bun-

dle, then we generalize this construction to the case of general principal torus

bundles, and define a generalized Courant bracket on the generalized tangent

space. In order to show that on the space of invariant sections, the generalized

Courant bracket together with the natural pairing make the generalized tangent

space into a Courant algebroid, we show in section 5.4 that one can consider the

generalized Courant bracket as the bracket on the double of a proto-bialgebroid,
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thus a generalized tangent space together with the generalized Courant bracket

can be interpreted as the double of a proto-bialgebroid, or generally speaking, a

Courant algebroid.

Sections 5.3.2, 5.4.2 and 5.4 are collaborative works with Bouwknegt and

Garretson [10, 11].

5.2 Global T-duality

T-duality arises as the generalization of the R→ 1/R invariance of string theory

compactified on a circle of radius R. Recall in Section 3.2, T-duality from a local

perspective is derived by gauging the isometries of a two-dimensional σ-model

action, followed by coupling to Lagrangian multipliers which provide the extra

coordinates of the dual σ-model. Integrating out the Lagrangian multipliers leads

to the original action, whereas integrating out the gauge fields gives the dual σ-

model action. The resulting Buscher rules give the local transformation rules for

the metric and B-field. Globally, one would then like to derive the transformation

rules for the globally defined H-flux from the local transformation rules of the

B-field.

In Section 5.2.1 we first consider T-dualizing on a circle, i.e. we view the

spacetime E as a principal circle bundle. Following the construction developed

by Bouwknegt, Evslin and Mathai [6], we start with the Buscher rules and derive

the T-duality transformation rules of the globally defined H-flux. Section 5.2.2

generalizes the principal circle bundle case to general principal torus bundles,

following the construction developed in [8].

5.2.1 Principal circle bundles

Let π : E → M be a principal S1-bundle with H-flux [H] ∈ H3(E). When

we choose a connection one-form A on E, and a metric ḡ on the base M , the

canonical metric on E is given by g = ḡ + A⊗ A.

Locally the coordinates on E can be chosen to be xi = (xµ, x0) or denoted

(xµ, θ) on E such that the Killing vector of the S1 isometry is given by κ = ∂/∂θ.

And again locally H = db with b a two form required to be invariant, i.e. Lκb = 0.

The invariance condition LκH = Lκb = 0 imply that the components Hijk and

bij are independent of θ.

The connection can be chosen locally as A = Aidx
i = dθ + Aµdx

µ, where
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Aµdx
µ ∈ Ω1(M). The metric, g, and B-field, b, can then be written as

g = ḡ + A⊗ A = ḡµνdx
µ ⊗ dxν + (dθ + Aµdx

µ)2,

b =
1

2
Bµνdx

µ ∧ dxν +Bµdx
µ ∧ (dθ + Aνdx

ν), (5.2.1)

Or, in matrix form, the components of metric and B-field b are given by

gij =

(
ḡµν + AµAν Aµ

Aν 1

)
, bij =

(
bµν + (bµAν − Aµbν) bµ

−bν 0

)
. (5.2.2)

Applying the Buscher rules (3.2.9), the metric and the B-field components after

the T-duality transformation become

ĝij =

(
ḡµν + bµbν bµ

bν 1

)
, b̂ij =

(
bµν Aµ

−Aν 0

)
. (5.2.3)

From Eqn. (5.2.2) and Eqn. (5.2.3), we see that T-duality locally corresponds to

the interchange between Aµ and bµ.

Denoting the coordinate of the dual circle by θ̂, we can define Â = dθ̂+ bµdx
µ

as a connection on a dual circle bundle π̂ : Ê →M .

In local coordinates (xµ, θ, θ̂), b̂ becomes

b̂ = b+ A ∧ Â− dθ ∧ dθ̂, (5.2.4)

so that

Ĥ −H = d(A ∧ Â) = F ∧ Â− A ∧ F̂ , (5.2.5)

where F = dA and F̂ = dÂ are the curvatures of A and Â, respectively.

Eqn. (5.2.5) can be rewritten as

H − F̂ ∧ A = Ĥ − F ∧ Â. (5.2.6)

The left hand side of (5.2.6) is a form on E, while the right hand side is a form

on Ê. Therefore both sides need to equal a form H(3) defined on M , i.e.

H = H(3) + A ∧ F̂ ,
Ĥ = H(3) + Â ∧ F. (5.2.7)

Now let us denote H = H(3) + A ∧ H(2) by (H(3), H(2)) and Ĥ = H(3) + Â ∧ F
by (H(3), F ), with H(2) = F̂ = π∗H and Ĥ(2) = F = π̂∗Ĥ. Here π∗ and π̂∗

denote the pushforward maps of the bundle projections π and π̂ on E and Ê,

respectively. Then a T-duality transformation corresponds to the interchange of

the pairs (H(2), F )↔ (F,H(2)).



5.2 Global T-duality 67

Theorem 5.1 (BHM [8]). A principal torus bundle E →M with T-dualizable H-

flux is determined topologically by (H,F ) while its T-dual Ê →M is determined

by (Ĥ, F̂ ). The H-flux and its dual are given by

H = H(3) + A ∧ F̂ ,
Ĥ = H(3) + Â ∧ F, (5.2.8)

where H(3) ∈ Ω3(M), F ∈ Ω2(M, t) (resp. F̂ ∈ Ω2(M, t∗)), and A (resp Â) is

a connection one form on E (resp. Ê) taking value in the Lie algebra t. Here t

denote the Lie algebra of S1 and t∗ denote the dual Lie algebra.

As a result, H-flux and the first Chern class of the bundle are exchanged under

T-duality:

F = π̂∗Ĥ, F̂ = π∗H. (5.2.9)

5.2.2 Principal torus bundles

To generalize the previous construction to principal torus bundles, we need to

define the following notions.

Let π : E → M be a principal Tn-bundle, and t and t∗ the Lie algebra of Tn

and its dual, respectively. Let us choose a basis {ta}(a = 1, . . . , n) of t and a

corresponding dual basis {ta} of t∗. The connection A and curvature F = dA are

t-valued, expressed as

A = Aat
a, F = Fat

a = dAat
a. (5.2.10)

Denoting the T-dual of E by Ê, one defines

Definition 5.2. The correspondence space of E and Ê is the fibered product

E ×M Ê = {(x, x̂) ∈ E × Ê|π(x) = π̂(x̂)}, with the following commutative

diagram:

E ×M Ê

p
{{wwwwwwwww

p̂
##GGGGGGGGG

E

π
$$HHHHHHHHHH Ê

π̂zzvvvvvvvvvv

M

(5.2.11)

That is to say, the correspondence space is the higher dimensional space con-

taining both the original space and its dual, such that there exist two independent

projections which give the original space E and the dual geometry Ê.
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The action of Tn on E associates to each element X ∈ t a vector field which

we will also denote by X.

Definition 5.3. For all X ∈ t, a form Ω ∈ Ωk(E) is called invariant if LXΩ = 0.

In the construction of global T-duality, we only consider principal torus bun-

dles E with the “T-dualizable” H-fluxes which admit a T-dual.

Definition 5.4. An H-flux on E is a closed integral 3-form H ∈ Ω3(E). H is

called T-dualizable if there exists a closed t∗-valued 2-form F̂ on M such that

dH = 0

ıXH = π∗F̂ (X), (5.2.12)

for all X ∈ t, and F̂ (X) ∈ Ω2(M) is the dual pairing of F̂ ∈ Ω2(M, t∗) with

X ∈ t.

Pairs (H, F̂ ) satisfying (5.2.12) are called T-dualizable fluxes.

It follows from Definition (5.4) that all T-dualizable fluxes (H, F̂ ) satisfy

LXH = LXF̂ = 0, ∀X ∈ t. (5.2.13)

Proposition 5.5 ([31]). Let Ω(E)inv be forms invariant under the U(1)n isom-

etry. There is an isomorphism H•(E) =̃ H•(Ω(E)inv, d), i.e. every cohomology

class in H(E) contains an invariant representative.

One can then decompose an invariant form Ωk(E)inv by

Ωk(E)inv
∼=
⊕

p+q=k

(Ωp(M)⊗ ∧qt∗). (5.2.14)

For instance, one can decompose H-flux as:

H = H(3) + Aa ∧Ha
(2) +

1

2
Aa ∧ Ab ∧Hab

(1) +
1

6
Aa ∧ Ab ∧ Ac ∧Habc

(0) , (5.2.15)

where H(i) ∈ H i(M,∧3−it∗).

In a short-hand notation, let us denote the above decomposition by the 4-tuple

H = (H(3), H(2), H(1), H(0)).

This way of decomposing the fluxes [H] ∈ H3(E) by the H(a)’s is referred to

as dimensional reduction or Chern-Weil homomorphism.

Suppose we are given a principal Tn-bundle over M with H-flux H ∈ H3(E)

and curvature F ∈ H2(M) satisfying (5.2.12). Upon dimensional reduction,
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(H,F ) is characterized by the tuple ((H(3), H(2), H(1), H(0)), (F(2), 0, 0)), where

H(i) ∈ Ωi(M)⊗∧3−it∗ and F(i) ∈ Ωi(M)⊗∧3−it. The T-dual fluxes Ĥ and F̂ char-

acterizing the T-dual object can be deduced from the Gysin sequence of principal

torus bundles [9], and the resulting (Ĥ, F̂ ) on Ê, upon dimensional reduction, is

found to be characterized by the tuple ((Ĥ(3), Ĥ(2), Ĥ(1), Ĥ(0)), (F̂(2), F̂(1), F̂(0))) =

((H(3), F(2), 0, 0), (H(2), H(1), H(0))). I.e. T-duality exchanges the role of H(i) and

F(i). In the case when E is a principal circle bundle, H(1) and H(0) vanish and

T-duality exchanges H(2) and F(2). This is in agreement with the T-duality trans-

formation rule given by (5.2.9).

A question we would like to pose at this point is: What is the topology of the

dual space characterized by such an Ĥ and F̂ , i.e. when F̂(1) and (or) F̂(0) are

nonzero? What type of topology change of the underlying manifold is a result of

T-duality transformation?

Possible interpretations:

Here are two possible interpretations for the T-dual of a principal torus bundle

with non-trivial H-flux:

(1) The T-dual manifold as a field of non-commutative / non-associative tori:

For a principal torus bundle E with non-vanishing H(1), E is characterized

by H = (H(3), H(2), H(1), 0) and F = (F(2), 0, 0), while the T-dual object is char-

acterized by Ĥ ≡ (H(3), F(2), 0, 0) and F̂ ≡ (H(2), H(1), 0). It was proposed by

Mathai and Rosenberg [62, 63, 64] that the T-dual space in this case turns out

to be a continuous field C of noncommutative tori. I.e. the fibre over a point in

the base M is a noncommutative torus. Let θ ∈ [0, 1] be the non-commutativity

parameter, the non-commutative torus Aθ can be realized as taking the cross

product C(T) o Z, where the generator of Z acts on T by rotation through an

angle of 2πθ. It turns out that when θ is rational, Aθ is Morita equivalent to

C(T2) [62]. Thus in this approach, the action of T-duality is considered as taking

the crossed-product algebra.

Next consider a principal Tn-bundle E with H-flux and curvature F such that

upon dimensional reduction, (H,F ) is characterized by ((H(3), H(2), H(1), H(0)),

(F(2), 0, 0)). In this case when H(0) is also nonzero, (Ĥ, F̂ ) on the dual bundle

Ê upon dimensional reduction, is classified by ((H(3), F(2), 0, 0), (H(2), H(1), H(0))).

In this case the T-dual object carries an integral class [H(0)] ∈ H0(M,∧3t∗). It is

well known that such a class often corresponds to nonassociativity [15, 42]. Thus

in this case the T-dual bundle is proposed to be a continuous field of noncommu-
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tative, nonassociative tori [9].

(2) The T-dual manifold as a non-geometric object called a T-fold :

Consider a string theory on a spacetime which is locally viewed as a Tn-bundle

E over M . In this construction, the fibre of E is doubled from a Tn to a T2n, so

that globally there is an extended space Ẽ which is a T2n-bundle over N . String

theory on E – a Tn-bundle over M – becomes a string theory on the extended

space Ẽ. A choice of a subspace Tn ∈ T2n gives rise to a physical subspace. For

a geometric background, the local choice of Tn fit together to give a space which

is a Tn-bundle. When considering a non-geometric string background, the local

choice of Tn do not fit together to form a manifold but rather a non-geometric

object called the T-fold [39, 40, 41].

T-folds, originally constructed by Hull [39], are spaces where T-dualities can

be transition functions between local patches. T-folds locally look like a conven-

tional patch of a spacetime with a torus fibration, where the transition functions

also include T-duality transformations.

5.3 T-duality and generalized geometry

Let E be a principal Tn-bundle. The generalized tangent space, TE⊕T ∗E, is the

natural object in generalized geoemtry. It was first realized by Cavalcanti and

Gualtieri [16, 33] that one can build a framework on generalized tangent space

to study T-duality, in particular, T-duality can be viewed as an isomorphism of

Courant algebroids.

This section is organized as follows. Section 5.3.1 starts with the simple case,

T-duality for principal circle bundles with non-trivialH-flux. To built up a frame-

work on generalized geometry for T-duality, we follow the constructions in [16]

and firstly define a T-duality map between the complexes of invariant differential

forms and a T-duality map between invariant sections of the generalized tangent

space. A twisted Courant bracket is then defined as the natural bracket on the

generalized tangent space. At the end of this section we review an important

theorem due to Cavalcanti and Gualtieri [16] – Theorem 5.9 concludes that on

the invariant sections of the generalized tangent spaces, a principal circle bundle

and its T-dual space can be related as a pair of isomorphic Courant algebroids.

In section 5.3.2, we generalize the previous construction to the case when the

underlying manifold is a principal torus bundle. We then generalized Theorem

5.9 to general principal torus bundles.
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5.3.1 Principal circle bundles

Let us consider a principal S1-bundle E over M , with t (= R) the Lie algebra of

S1 and t∗ the dual algebra. Let A be a t-valued connection one-form on E.

An invariant section of TE⊕T ∗E is denoted by X = (X,Ξ) ∈ Γ(TE⊕T ∗E)S1 .

Any invariant section can further be written in dimensionally reduced form as

(x, f ; ξ, g) ∈ (Γ(TM) × C∞(M, t)) × (Γ(T ∗M) × C∞(M, t∗)). This is equivalent

to X = x + f∂A and Ξ = ξ + gA, where A is a connection on E and ∂A is the

vector field dual to A.

An invariant k-form Ω on E can be decomposed as Ω = Ω(k)+A∧Ω(k−1) where

Ω(i) ∈ Ωi(M), and we will often use the short-hand notation Ω = (Ω(k),Ω(k−1)).

In this section, we define T-duality maps τ and Ω between invariant dif-

ferential forms on E and Ê and invariant sections of the generalized tangent

spaces TE⊕T ∗E and TÊ⊕T ∗Ê, respectively. Following the introduction of the

twisted Courant bracket on the generalized tangent space, we review the impor-

tant theorem 5.9 linking generalized geometry and T-duality due to Cavalcanti

and Gualtieri [16, 33].

T-duality maps

Let us first introduce a T-duality map τ between the complexes of invariant

differential forms, τ : Ω•(E)S1 → Ω•(Ê)Ŝ1 by

τ(Ω(k) + A ∧ Ω(k−1)) = −Ω(k−1) + Â ∧ Ω(K) (5.3.1)

which can be written in the short handed form:

τ(Ω(k),Ω(k−1)) = (−Ω(k−1),Ω(k)). (5.3.2)

Theorem 5.6 ([6]). The map τ : (Ω•(E)S1 , dH)→ (Ω•(Ê)Ŝ1 ,−dĤ) is an isomor-

phism of differential complexes, where dH is the twisted differential dH = d +H

and acts on invariant forms by

dHΩ = dΩ +H ∧ Ω. (5.3.3)

The T-duality map τ has the following property. If we T-dualize twice and

choose
ˆ̂
A = A, then on invariant forms it is clear that τ 2 = −Id.

We also have a T-duality map of invariant sections ϕ : Γ((TE ⊕ T ∗E)S1) →
Γ((TÊ ⊕ T ∗Ê)S1) by

ϕ(x, f ; ξ, g) = (x, g; ξ, f). (5.3.4)
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It is obvious that ϕ2 = Id and ϕ is an isomorphism between invariant sections of

TE ⊕ T ∗E and TÊ ⊕ T ∗Ê.

Remark 5.7. This map ϕ along with the fibre orientation reversing automor-

phism ϕ′(x, f ; ξ, g) = (x,−f ; ξ,−g) generate the four element T-duality group

O(1, 1,Z). As we will see in Section 5.5, the generalized metric defined in Section

4.7 can be transported using the T-duality map ϕ and as a result reclaim the

Buscher rules.

τ also induces an isomorphism of Clifford modules ∧•(T ∗E)S1
∼= ∧•(T ∗Ê)Ŝ1 ,

i.e.

Theorem 5.8. Let Ω be an invariant form and recall that the Clifford action of

γ(X,Ξ) on Ω is given by

γ(X,Ξ) · Ω = ıXΩ + Ξ ∧ Ω.

Then for X = (X,Ξ) ∈ Γ(TE)× Γ(T ∗E)

τ(γX · Ω) = −γϕ(X) · τ(Ω). (5.3.5)

Proof. First, let us compute the Clifford action using the short-hand notation:

γ(x,f ;ξ,g)(Ω(k),Ω(k−1)) = ((ıxΩ(k) + ξ ∧ Ω(k) + fΩ(k−1)), (−ıxΩ(k−1) − ξ ∧ Ω(k−1)

+gΩ(k)))

= (γ(x,ξ) · Ω(k) + fΩ(k−1),−γ(x,ξ) · Ω(k−1) + gΩ(k)). (5.3.6)

Then apply τ to the above equation we find

τ(γ(x,f ;ξ,g) · Ω) = (γ(x,ξ) · Ω(k−1) − gΩ(k), γ(x,ξ) · Ω(k) + fΩ(k−1)), (5.3.7)

while computing the right-hand side of equation (5.3.5) we find

γ(x,g;ξ,f) · (τΩ) = γ(x,g;ξ,f) · (−Ω(k−1),Ω(k))

= (−γ(x,ξ) · Ω(k−1) + gΩ(k),−γ(x,ξ) · Ω(k) − fΩ(k−1)).(5.3.8)

From relations (5.3.7) and (5.3.8), we have arrived at the proof.

Twisted Courant bracket

Recall from Section 4.2 that the twisted Courant bracket for Xi = (Xi,Ξi) ∈
Γ(TE ⊕ T ∗E) is defined by

[[(X1,Ξ1), (X2,Ξ2)]]H = ([X1, X2],LX1Ξ2−LX2Ξ1−
1

2
d(ıX1Ξ2− ıX2Ξ1)+ ıX1ıX2H),

(5.3.9)
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where H = H(3) + A ∧H(2).

Let F = dA be the curvature two-form on E. The Lie bracket on (TE)S1 is

given by [32]

[(x1, f1), (x2, f2)] = ([x1, x2], x1(f2)− x2(f1) + ıx1ıx2F ), (5.3.10)

where (xi, fi) ∈ Γ(TM)× C∞(M, t).

Thus in dimensionally reduced form, the twisted Courant bracket is given by

[[(x1, f1; ξ1, g1), (x2, f2; ξ2, g2)]]H = ([x1, x2], x1(f2)− x2(f1) + ıx1ıx2F ;

(Lx1ξ2 − Lx2ξ1) + (g2ıx1F − g1ıx2F )− 1

2
d(ıx1ξ2 − ıx2ξ1) +

1

2
(df1g2 + f2dg1

−f1dg2 − df2g1) + ıx1ıx2H(3) + (f2ıx1H(2) − f1ıx2H(2)), x1(g2)− x2(g1)

+ıx1ıx2H(2)). (5.3.11)

The above bracket by construction has the properties of a Courant bracket, i.e.

it is antisymmetric and it satisfies a Jacobiator condition (4.2.8).

Together with Theorem 5.8, the properties of the T-duality maps ϕ and τ are

encoded in the following theorem, proved in [16]:

Theorem 5.9 ([16]). The following hold:

1. ϕ is orthogonal with respect to the non-degenerate bilinear form 〈 , 〉 on

invariant sections (TE ⊕ T ∗E)S1 and (TÊ ⊕ T ∗Ê)Ŝ1, hence it induces an

isomorphism of Clifford algebras, CL(TE ⊕ T ∗E)S1
∼= CL(TÊ ⊕ T ∗Ê)Ŝ1;

2. ϕ defines an automorphism of the Courant bracket, (Γ(TE⊕T ∗E)S1 , [[ , ]]H)
∼= (Γ(TÊ ⊕ T ∗Ê)Ŝ1 , [[ , ]]Ĥ) :

ϕ([[(x1, f1; ξ1, g1), (x2, f2; ξ2, g2)]]H) = [[ϕ(x1, f1; ξ1, g1), ϕ(x2, f2; ξ2, g2)]]Ĥ .

(5.3.12)

3. As a result of (5.3.5), τ induces an isomorphism of Clifford modules, i.e.

∧•T ∗
S1E ∼= ∧•T ∗

Ŝ1Ê.

An important conclusion of the above theorem can be stated as follows:

Any structure on E in terms of the natural pairing, the twisted

Courant bracket and invariant forms (closed forms) has a correspond-

ing one on the dual space Ê.

Since (TE ⊕ T ∗E)S1 together with the natural pairing 〈 , 〉 and the twisted

Courant bracket [[ , ]]H defines a Courant algebroid, Theorem 5.9 states that the

Courant algebroids defined by invariant sections of a pair of T-dual principal

circle bundles are isomorphic.
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5.3.2 Principal torus bundles

In this section we extend the previous construction of principal S1-bundles to

general principal Tn-bundles.

T-duality map

The T-duality maps defined in section (5.3.1) can be generalized for principal

torus bundles as follows.

For a principal Tn-bundle, the T-duality map between invariant sections of

TE ⊕ T ∗E and TÊ ⊕ T ∗Ê is defined by ϕ = ϕ1ϕ2 · · ·ϕi · · ·ϕn, here

ϕa(x, f1, . . . , fa, . . . , fn; ξ, g1, . . . , ga, . . . , gn)

= (x, f1, . . . , g
a, . . . , fn; ξ, g1, . . . , fa, . . . , g

n), (5.3.13)

i.e. ϕa is the T-duality map of invariant sections in the a− th circle of Tn.

The T-duality map between invariant forms τ is simply defined by τ = τ1 . . . τn

where τa is T-duality with respect to the a-th circle.

Properties of τa:

(1) Due to the antisymmetry of Aa ∧ Ab, the τa’s anti-commute:

τaτb = −τbτa. (5.3.14)

(2) The map τa acts on invariant forms as the Clifford action of (−∂Aa , Aa)

followed by replacing the remaining Aa with Âa. As an example, consider the

case when E is a principal T2-bundle. The map τ1 acts on an invariant form

Ω = A1 ∧ Ω1 via

τ1(Ω) = (−∂A(1)
, A1)(A1 ∧ Ω1) = −Ω1.

Similarly, the map τ2 acts on Ω as

τ2(Ω) = (−∂A2 , A2)(A1 ∧ Ω1)

= A2 ∧ A1 ∧ Ω1 (A2 → Â2)

= Â2 ∧ A1 ∧ Ω1.

Since τ = τ1 . . . τn and each τa satisfies Eqn. (5.3.5), we immediately have

Theorem 5.10.

τ(γXΩ) = (−1)nγϕ(X) · τ(Ω), (5.3.15)

where X ∈ Γ(TE ⊕ T ∗E)Tn.
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Example 5.11. Consider a principal T2-torus bundle E. Any invariant k-form

on E can be written in the following dimensionally reduced form

Ω = Ω(k) + Aa ∧ Ωa
(k−1) +

1

2
Aa ∧ Ab ∧ Ωab

(k−2)

= Ω(k) + A1 ∧ Ω1
(k−1) + A2 ∧ Ω2

(k−1) + A1 ∧ A2 ∧ Ω12
(k−2). (5.3.16)

In shorthand, we denote this by

Ω ≡ (Ω(k),

(
Ω1

(k−1)

Ω2
(k−1)

)
,Ω12

(k−2)).

Applying T-duality map τ

τΩ = τ1τ2(Ω(k) + A1 ∧ Ω1
(k−1) + A2 ∧ Ω2

(k−1) + A1 ∧ A2 ∧ Ω12
(k−2))

= (−∂A1 , A1) · (−∂A2 , A2) · (Ω(k) + A1 ∧ Ω1
(k−1) + A2 ∧ Ω2

(k−1) + A1 ∧ A2 ∧ Ω12
(k−2))

with (A2 → Â2)

= (−∂A1 , A1) · (Â2 ∧ Ω(k) + Â2 ∧ A1 ∧ Ω1
(k−1) − Ω2

(k−1) + A1 ∧ Ω12
(k−2))

with (A1 → Â1))

= Â1 ∧ Â2 ∧ Ω(k) + Â2 ∧ Ω1
(k−1) − Â1 ∧ Ω2

(k−1) − Ω12
(k−2)

≡ (−Ω12
(k−2),

(
−Ω2

(k−1)

Ω1
(k−1)

)
,Ω(k)).

Thus

τ(Ω(k),

(
Ω1

(k−1)

Ω2
(k−1)

)
,Ω12

(k−2)) = (−Ω12
(k−2),

(
−Ω2

(k−1)

Ω1
(k−1)

)
,Ω(k)) (5.3.17)

And it is easy to verify that τ 2 = −1.

Generalized Courant bracket

To generalize the Courant bracket on a principal Tn-bundle, let us first make the

following observation.

Consider the ı(x1,f1,a)ı(x2,f2,a)H term in the twisted Courant bracket (5.3.11),

expanding this twisting term gives us

ı(x1,f1,a)ı(x2,f2,b)H = ıx1ıx2H(3) − f2,bıx1H
b
(2) + f1,aıx2H

a
(2)

+f1,af2,bH
ab
(1) + Aa ∧ (ıx1ıx2H

a
(2) − f2,bıx1H

ab
(1) + f1,bıx2H

ab
(1)

+f1,bf2,cH
abc
(0) ). (5.3.18)
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Applying the T-duality map ϕ to the Courant bracket (5.3.11), we find the

corresponding ı(x1,f1,a)ı(x2,f2,b)Ĥ term

ı(x1,f1,a)ı(x2,f2,b)Ĥ = ıx1ıx2H(3) + Âa ∧ ıx1ıx2F
a
(2)− f2,aıx1F

a
(2) + f1,aıx2F

a
(2), (5.3.19)

here F ∈ Ω2(M)⊗ t and we denote F = (F(2), 0, 0).

Recall that from Theorem 5.9, the twisted Courant bracket is preserved under

the map ϕ in the case of principal circle bundles. We expect the same rule for

principal torus bundles. However, it is obvious that for non-zero H(1) and H(0)

the map ϕ does not preserve the twisted Courant bracket by comparing (5.3.18)

and (5.3.19). To resolve this, we need to generalize the twisted Courant bracket

(5.3.11) by adding terms involving g′s and contractions of x with new variables

F(1) ∈ Ω1(M)⊗∧2t and F(0) ∈ C∞(M)⊗∧3t, i.e. we arrive at the “generalized

Courant bracket” [[ , ]]H,F given in terms of dimensional reduced form

[[(x1, f1,a; ξ1, g
a
1), (x2, f2,a; ξ2, g

a
2)]]H,F = ([x1, x2], (5.3.20)

(x1(f2,a)− x2(f1,a)) + ıx1ıx2F(2)a + gb
2ıx1F(1)ab − gb

1ıx2F(1)ab − gb
1g

c
2F(0)abc;

(Lx1ξ2 − Lx2ξ1)−
1

2
d(ıx1ξ2 − ıx2ξ1) + ıx1ıx2H(3) +

(ga
2 ıx1F(2)a − ga

1 ıx2F(2)a) + (f2,aıx1H
a
(2) − f1,aıx2H

a
(2))− f1,af2,bH

ab
(1)

−ga
1g

b
2F(1)ab +

1

2
(df1,ag

a
2 + f2,adg

a
1 − f1,adg

a
2 − df2,ag

a
1), x1(g

a
2)

−x2(g
a
1) + ıx1ıx2H

a
(2) + (f2,aıx1H

ab
(1) − f1,aıx2H

ab
(1))− f1,bf2,cH

abc
(0) ).

To write (5.3.20) in a more invariant notation, let us introduce 2d-dimensional

vectors and forms

h =

(
f

g

)
∈ C∞(M, t⊕ t∗), Fi =

(
F(i)

H(i)

)
∈ Ωi(M,∧3−it⊕∧3−it∗), (5.3.21)

as well as

J =

(
0 1d

1d 0

)
, (5.3.22)

and write X = (x, ξ).

Then the generalized Courant bracket can be rewritten as

[[(X1, h1), (X2, h2)]]F = ([[X1,X2]]H(3)
− (h1J ıx2F2 − h2J ıx1F2) +

1

2
(dh1J h2

−h1J dh2)− (h1J )(h2J )F1, x1(h2)− x2(h1) + ıx1ıx2F2 + (h1J )F1

−(h1J )(h2J )F0), (5.3.23)
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from which is is obvious that the O(n, n) T-duality group provides automorphisms

of this generalized Courant bracket.

With the T-duality maps τ and ϕ and the newly defined generalized Courant

bracket, we have thus generalized Theorem 5.9 to general principal torus bundles:

Theorem 5.12. The following hold

1. ϕ is orthogonal with respect to the non-degenerate bilinear form 〈 , 〉 on

the invariant sections of (TE⊕T ∗E) and (TÊ⊕T ∗Ê), hence it induces an

isomorphism of Clifford algebras on the invariant sections of (TE ⊕ T ∗E)

and (TÊ ⊕ T ∗Ê).

2. ϕ defines an automorphism of the generalized Courant bracket [[ , ]]H,F on

the invariant sections of (TE ⊕ T ∗E) and (TÊ ⊕ T ∗Ê), i.e.

ϕ([[(x1, f1,a; ξ1, g
a
1), (x2, f2,a; ξ2, g

a
2)]]H,F )

= [[ϕ(x1, f1,a; ξ1, g
a
1), ϕ(x2, f2,a; ξ2, g

a
2)]]Ĥ,F̂ . (5.3.24)

3. τ induces an isomorphism of Clifford modules on the invariant sections of

(TE ⊕ T ∗E) and (TÊ ⊕ T ∗Ê) via (5.3.15).

A question which arises naturally at this point is, does the space of invariant

sections of (TE ⊕ T ∗E) together with the natural non-degenerate pairing 〈 , 〉
and the generalized Courant bracket [[ , ]]H,F define a Courant algebroid, which is

introduced previously in Section 2.3.2? Can we still interpret T-duality between

a Principal Tn-bundle and its dual in terms of an isomorphism between a pair of

Courant algebroids?

Originally we expect that the generalized Courant bracket can be interpreted

as the bracket of a Courant algebroid. However, upon taking the natural anchor

map ρ : (x, f ; ξ, g)→ (x, f), one finds

ρ([[(x1, f1,a; ξ1, g
a
1), (x2, f2,a; ξ2, g

a
2)]]H,F ) = [ρ(x1, f1,a; ξ1, g

a
1), ρ(x2, f2,a; ξ2, g

a
2)]

+(gb
2ıx1F(1)ab − gb

1g
c
2F(0)abc),

(5.3.25)

i.e.

ρ([[(x1, f1,a; ξ1, g
a
1), (x2, f2,a; ξ2, g

a
2)]]H,F ) 6= [ρ(x1, f1,a; ξ1, g

a
1), ρ(x2, f2,a; ξ2, g

a
2)]

(5.3.26)
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Thus the space of invariant sections of (TE ⊕ T ∗E) together with the non-

degenerate pairing 〈 , 〉 and the generalized Courant bracket fail to be a Courant

algebroid with the natural anchor map.

We can, however, choose the anchor map as a projection onto the base

manifold M , ρ0 : (x, f ; ξ, g) → (x, 0). The Courant algebroid with this an-

chor map is only defined over the base manifold, i.e. one can take (TM ⊕
T ∗M,ρ0, 〈 , 〉, [[ , ]]H,F ) and this is a Courant algebroid.

To resolve this problem of (TE⊕T ∗E)Tn failing to have an interpretation of a

Courant algebroid, we show in the next section that one can construct a Courant

algebroid on the invariant sections of (TE ⊕ T ∗E) with the generalized Courant

bracket from the double of a proto-bialgebroid (TE, T ∗E).

5.4 Generalized Courant bracket of a Courant

algebroid

Recall that for E a principal S1-bundle, the (twisted) Courant bracket on invari-

ant sections of TE⊕T ∗E makes it into a Courant algebroid, it is natural to ask if

this is true for general principal Tn-bundles with the generalized Courant bracket

(5.3.2).

In this section, we will redefine the generalized Courant bracket as a derived

bracket on a symplectic manifold (cf. Section 2.3.4). Thus when E is a principal

Tn-bundle, on the invariant sections of (TE⊕T ∗E), (TE⊕T ∗E) can be realized

as the double of a proto-bialgebroid defined previously in Section 2.3.4, i.e. a

Courant algebroid. As a result, for a principal Tn-bundle E, the space of invariant

sections of TE ⊕ T ∗E together with a non-degenerate bilinear form 〈 , 〉 and the

generalized Courant bracket [[ , ]]H,F defines a Courant algebroid. As a result,

T-duality can be realized as a map relating isomorphic Courant algebroids.

5.4.1 TE ⊕ T ∗E as a Courant algebroid

Let E be a principal Tn-bundle over M (dim(M) = d). Let us choose coordinates

{xi} = {xµ, xa}(µ = 1, . . . , d; a = 1, . . . , n) on E, and coordinates (xi, ξ∗i , x
∗
i , ξ

i)

on T ∗(ΠT ∗E).

Let (TE, T ∗E) be a proto-bialgebroid defined previously in Section 2.3.4,

with proto-bialgebroid structures (µ, γ, ϕ, ψ) which are degree 3-functions on

T ∗(ΠT ∗E). The structures (µ, γ, ϕ, ψ) are required to satisfy the condition (2.3.42).
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We choose the proto-algebroid structures (µ, γ, ϕ, ψ) on (TE, T ∗E) as follows

µ = ξix∗i +
1

2
f a

µν ξµξνξ∗a,

γ =
1

2
q ab
µ ξ∗aξ

∗
b ξ

µ,

ϕ =
1

6
ϕabcξ∗aξ

∗
b ξ

∗
c ,

ψ =
1

6
ψµνγξ

µξνξγ +
1

2
ψaµνξ

aξµξν +
1

2
ψabµξ

aξbξµ +
1

6
ψabcξ

aξbξc. (5.4.1)

Here f , q, ϕ and ψ can be identified with H’s and F ’s via

F(2)a ≡ f a
µν ξµξνξ∗a, F(1)ab ≡ qab

µξ
∗
aξ

∗
b ξ

µ, F(0)abc ≡ ϕabcξ∗aξ
∗
b ξ

∗
c ,

H(3) ≡ ψµνγξ
µξνξγ, Ha

(2) ≡ ψaµνξ
aξµξν , Hab

(1) ≡ ψabµξ
aξbξµ,

Habc
(0) ≡ ψabcξ

aξbξc. (5.4.2)

Next we will construct the anchor map, the quasi-differential and the Courant

bracket correspond to the above defined proto-bialgebroid structures.

Anchor map

The anchor map ρ on TE ⊕ T ∗E is defined by

ρ(X + ξ) = ρTE(X) + ρT ∗E(Ξ), (5.4.3)

with ρTE and ρT ∗E given, respectively by

ρTE(X)(f) = {{X, θ}, f},
ρT ∗E(Ξ)(f) = {{Ξ, θ}, f}, (5.4.4)

where X ∈ Γ(TE),Ξ ∈ Γ(T ∗E), f ∈ C∞(M) and θ = µ+ γ + ϕ+ ψ.

Consider the anchor map on invariant sections of TE⊕T ∗E. For (x, fa; ξ, ga)

an invariant section of TE ⊕ T ∗E, the anchor map gives

ρ(x, fa; ξ, ga)(f) = xµx∗µ(f) + fax∗af = xµ∂µf + fa∂af. (5.4.5)

In this case the anchor becomes

ρ(x, fa; ξ, ga) = (x, fa∂a). (5.4.6)
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Quasi-differentials vs twisted differential

The associated quasi-differentials, dµ and dγ on Γ(∧•T ∗E) and Γ(∧•TE) are given

by

dµΞ = {µ,Ξ}, dγX = {γ,X}. (5.4.7)

The quasi-differentials dµ and dγ are “quasi” in the sense that they do not

square to zero but satisfy the following relations:{
(dµ)2 ·+{dγψ, ·} = 0

(dγ)
2 ·+{dµϕ, ·} = 0.

(5.4.8)

The quasi-differential relations (5.4.8) are equivalent to the first two of the five

constraints placed on the proto-bialgebroid structures (2.3.42):

1
2
{µ, µ}+ {γ, ψ} = 0,

1
2
{γ, γ}+ {µ, ϕ} = 0,

{µ, γ}+ {ϕ, ψ} = 0,

{µ, ψ} = 0,

{γ, ϕ} = 0.

(5.4.9)

Substituting (5.4.1) into (5.4.9) and making the identification given by (5.4.2),

we find the following constraints on H’s and F ’s

dH(3) + F(2)a ∧Ha
(2) = 0,

dHa
(2) + F(2)b ∧Hab

(1) = 0,

dHab
(1) + F(2)c ∧Hcab

(0) = 0,

dHabc
(0) = 0,

dF(2)a + F(1)ab ∧Hb
(2) = 0,

dF(1)ab + F(0)abc ∧Hc
(2) = 0,

dF(0)abc = 0.

(5.4.10)

Courant bracket

Recall in Section 2.3.4 that the double of a proto-bialgebroid (TE, T ∗E), given

by TE⊕T ∗E is a Courant algebroid, and is equipped with the Dorfmann bracket

on TE ⊕ T ∗E defined by the derived bracket

(X1 + Ξ1) ◦ (X2 + Ξ2) = {{X1 + Ξ1, θ}, X2 + Ξ2}, (5.4.11)

for Xi ∈ Γ(TE) and Ξi ∈ Γ(T ∗E).
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The Lie bracket on TE and T ∗E are given by

[X1, X2]µ = {{X1, µ}, X2},
[Ξ1,Ξ2]γ = {{Ξ1, γ},Ξ2}. (5.4.12)

Using an analogous notation for the interior product and the Lie derivations,

let us define

Lµ
X = dµıX + ıXdµ, Lγ

Ξ = dγıΞ + ıΞdγ.

Thus the components of (5.4.11) can be written as

X1 ◦X2 = [X1, X2]µ + ıX1ıX2ψ,

X1 ◦ Ξ2 = −ıΞ2dγX1 + Lµ
X1

Ξ2,

Ξ1 ◦X2 = Lγ
Ξ1
X2 − ıX2dµΞ1,

Ξ1 ◦ Ξ2 = [Ξ1,Ξ2]γ + ıΞ1ıΞ2ϕ. (5.4.13)

On invariant sections of TE ⊕ T ∗E the bracket becomes

(x1, f1,a; ξ1, g
a
1) ◦ (x2, f2,a; ξ2, g

a
2)

= {{xµ
1ξ

∗
µ + fa

1 ξ
∗
a + ξ1,µξ

µ + g1,aξ
a, θ}, xµ

2ξ
∗
µ + fa

2 ξ
∗
a + ξ2,µξ

µ + g2,aξ
a}

= [x1, x2] + x1(f2)− x2(f1) + f a
µν xµ

1x
ν
2ξ

∗
a + ψµνAx

µ
1x

ν
2ξ

i + ψaµif
a
1 x

µ
2ξ

i

+ψµaix
µ
1f

a
2 ξ

i + ψabif
a
1 f

b
2ξ

i + qab
µx

µ
1g2,aξ

∗
b + Lx1ξ2 + ıx1dg2 + f a

µν xµ
1g2,aξ

ν

+qab
µx

µ
2g1,aξ

∗
b + f a

µν xµ
2g1,aξ

ν − ıx2dξ1 − ıx2dg1 + dfa
1 g2,a + fa

2 dg1,a

+ϕabcg1,ag2,bξc + qab
µg1,ag2,bξ

µ, (5.4.14)

the indices µ, ν, γ = 1, . . . , dim(M), a, b, c = 1, . . . , n, while i, j = 1, . . . , rank(E).

In terms of H’s and F ’s, the above Dorfmann bracket can be rewritten as

(x1, f1,a; ξ1, g
a
1) ◦ (x2, f2,a; ξ2, g

a
2) = ([x1, x2], x1(f2)− x2(f1) + ıx1ıx2F(2)a

+ga
2 ıx1F(1)ab − ga

1 ıx2F(1)ab + ıx1ıx2H(3) − ga
1g

b
2F(0)abc;Lx1ξ2 − ıx2dξ1

+(f2,aıx1H
a
(2) − f1,aıx2H

a
(2))− f1,af2,bH

ab
(1) + (ga

2 ıx1F(2)a − ga
1 ıx2F(2)a)

−ga
1g

b
2F(1)ab + df1,ag

a
2 + f2,adg

a
1 , x1(g

a
2)− x2(g

a
1) + ıx1ıx2H

a
(2)

+(f2,aıx1H
ab
(1) − f1,aıx2H

ab
(1))− f1,af2,bH

abc
(0) ). (5.4.15)

The bracket (5.4.15) is exactly the Dorfmann bracket corresponding to the gener-

alized Courant bracket (5.3.20) defined in Section 5.3.2. Therefore for a principal

torus bundle, the generalized Courant bracket (5.3.20) on invariant sections of

TE ⊕ T ∗E can be alternatively defined via the derived bracket (5.4.11) with

structures (µ, γ, ϕ, ψ) given by (5.4.1).
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Therefore we conclude that the space of invariant sections of TE ⊕ T ∗E with

the generalized Courant bracket defines a Courant algebroid, with H’s and F ’s

required to satisfy (5.4.10).

At this point we have not specified [ , ]γ, the Lie bracket on T ∗M given in

terms of the proto-bialgebroid structure qab
µ. Later in Sections 5.4.3 and 5.4.4,

we will study the special cases when [ , ]γ is defined via a Poisson structure [56].

The first example in Section 5.4.3 is my own work, while the second example

in Section 5.4.4 is due to Garretson [26].

5.4.2 Generalized Cartan system

Recall in Section 4.5 that the Courant bracket can be viewed as an extension of

the Lie bracket, acting on forms via the Clifford action on the generalized tangent

space. The twisted Courant bracket [[ , ]]H and the twisted differential dH are

compatible in the sense of Proposition 4.6.

In this section, we generalize Proposition 4.6 to general principal Tn-bundles,

showing that the generalized Cartan system in Proposition 4.5 can be formulated

similarly for principal torus bundles, with the generalized Courant bracket [[ , ]]H,F

and the differential dθ.

Let E ba a principal torus bundle, with dθ the differential defined in terms of

the structure θ = µ+ γ+ϕ+ψ and the canonical Poisson bracket on T ∗(ΠT ∗E):

dθ· = {θ, ·}. (5.4.16)

The differential dθ acts on X = (X + Ξ) and gives

dθ(X + Ξ) = dµΞ + dγX + ıXψ + ıΞϕ, (5.4.17)

where dµ and dγ are the quasi-differential defined by (5.4.7).

Also recall from the previous section, the (generalized) Dorfmann bracket is

given by

X1 ◦H,F X2 = {{θ,X1},X2}. (5.4.18)

Let us define the generalized Cartan system on TE⊕T ∗E with the ingredients

(γX,LX, dθ, ◦H,F ) given by:

• X = (X, ξ) ∈ Γ(TE⊕T ∗E), in analogy with vector fields in Cartan’s system.

• γX in analogy with ıX in Cartan’s system, acts on differential forms via

γX = {X, ·}.
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• LX in analogy with the Lie derivative in Cartan’s system, is defined by

LX· = [dθ, γX] ·
= {{θ,X}, ·}+ {X, {θ, ·}}. (5.4.19)

• A differential dθ defined by (5.4.16), in analogy with the de Rham differen-

tial d in Cartan’s system.

• The Dorfmann bracket ◦H,F defined by (5.4.18), in analogy with the Lie

bracket in Cartan’s system.

Thus we claim:

Proposition 5.13. The generalized Cartan formulaes defined in Section 4.5 on

TE ⊕ T ∗E can be generalized as follows

(1)[dθ, dθ] = 0,

(2)[γX1 , γX2 ] = 2〈X1,X2〉,
(3)[dθ, γX] = LX,

(4)[LX1 , γX2 ] = γX1◦H,F X2 ,

(5)[LX1 ,LX2 ] = LX1◦H,F X2 ,

(6)[dθ,LX] = 0,

where Xi ∈ Γ(TE⊕T ∗E) and [ , ] is the graded commutator of the graded algebra

on TE ⊕ T ∗E.

Proof. (1)

[dθ, dθ] = 2{θ, {θ, ·}} = 0. (5.4.20)

(2) and (3) by definition.

(4)

[LX1 , γX2 ] = LX1γX2 − γX2LX1

= dθγX1γX2 + γX1dθγX2 − γX2dθγX1 − γX2γX1dθ

= {θ, {X1, {X2, ·}}}+ {X1, {θ, {X2, ·}}} − {X2, {θ, {X1, ·}}}
−{X2, {X1, {θ, ·}}}

= {{θ,X1}, {X2, ·}} − {X2, {{X1, θ}, ·}}
= {{{θ,X1},X2}, ·}
= γX1◦H,F X2 · . (5.4.21)



84 T-duality and generalized geometry

(6)

[dθ,LX] = dθdθγX + dθγXdθ − dθγXdθ − dθdθγX

= 0. (5.4.22)

(5)

[LX1 ,LX2 ] = LX1LX2 − LX2LX1

= (dθγX1 + γX1dθ)(dθγX2 + γX2dθ)− (dθγX2 + γX2dθ)(dθγX1 + γX1dθ)

= {θ, {X1, {θ, {X2, ·}}}}+ {θ, {X1, {X2, {θ, ·}}}}
+{X1, {θ, , {θ, {X2, ·}}}}+ {X1, {θ, {X2, {θ, ·}}}}
−{θ, {X2, {θ, {X1, ·}}}} − {θ, {X2, {X1, {θ, ·}}}}
−{X2, {θ, {θ, {X1, ·}}}} − {X2, {θ, {X1, {θ, ·}}}}

= {θ, {X1, {{X2, θ}, ·}}}+ {X1, {θ, {{θ,X2}, ·}}}
−{θ, {X2, {{X1, θ}, ·}}} − {X2, {θ, {{θ,X1}, ·}}}

= {θ, {{{θ,X1},X2}, ·}}
= {{θ, {{θ,X1},X2}}, ·}+ {{{θ,X1},X2}, {θ, ·}}
= LX1◦H,F X2 . (5.4.23)

The following theorem follows immediately

Theorem 5.14. The generalized Courant bracket is related to the Lie bracket

and twisted differential dθ through the relation:

γ[[X1,X2]]H,F
Ω =

1

2
[γX1 , γX2 ] · dθΩ +

1

2
dθ([γX1 , γX2 ] · Ω) + γX1 · dθ(γX2 · Ω)

−γX2 · dθ(γX1 · Ω). (5.4.24)

5.4.3 Example: Principal torus bundles with Poisson struc-

tures

Consider a principal Tn-bundle E over M with a Poisson structure Π. Let us

choose coordinates {xi} = {xµ, xa}(µ = 1, . . . , dim(M); a = 1, . . . , n) on E. Sup-

pose Π has components only on the fibre of the bundle, i.e. locally on T ∗(ΠT ∗E)

the Poisson structure is given by Π = 1
2
Πabξ∗aξ

∗
b .
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(TE, T ∗E) is a proto-bialgebroid with structures (µ, γ, ϕ, ψ) given by (5.4.1),

except in this case the structure γ is replaced by γ = {µ,Π}, i.e. the derived

bracket corresponding to γ is the Koszul bracket on one-forms [53]:

[ξ, η]γ = {{γ, ξ}, η} = Lπ]ξη − Lπ]ηξ − d(Π(ξ, η)). (5.4.25)

We can re-define ϕ = ∧3π]ψ. Thus in local coordinates on T ∗ΠA, the proto-

algebroid structures are given by

µ = ξix∗i −
1

2
f a

µν ξµξνξ∗a,

γ = {µ,Π} = ∂µ(Πab(x))ξµξ∗aξ
∗
b ,

ϕ =
1

6
{Π, {Π, {Π, ψ}}} =

1

6
ΠadΠbeΠcfψabcξ

∗
dξ

∗
eξ

∗
f =

1

6
ϕdefξ∗dξ

∗
eξ

∗
f ,

ψ =
1

6
ψµνγξ

µξνξγ +
1

2
ψµabξ

µξaξb +
1

2
ψµνaξ

µξνξa +
1

6
ψabcξ

aξbξc, (5.4.26)

for implicity, we relabel ΠadΠbeΠcfψabc ≡ ϕdef and qab
µ ≡ ∂µΠab.

Recall in Section 2.3.4 that in order for ((TE, T ∗E), µ, γ, ϕ, ψ) to define a

proto-bialgebroid, we need the consistency relations given by (5.4.9).

It follows from (5.4.26) that {µ, µ} = {γ, γ} = 0. Thus the consistency

relations (5.4.9) breakdown to the following sets of relations:

{µ, ψ} = {µ, ϕ} = 0,

{µ, γ}+ {ϕ, ψ} = 0,

{γ, ψ} = {γ, µ} = {γ, γ} = {µ, µ} = 0,

(5.4.27)

Substituting (5.4.26) into (5.4.27) gives us the following set of conditions:

∂µ(ψνγκ)−
3

2
f a

µν ψaγκ = 0,

∂µ(ψaνγ) + f b
µν ψbaγ = 0,

∂µ(ψabν)−
3

2
f c

µν ψabc = 0,

∂µ(ψabc) = 0.

ϕabcψaij = 0, (∂µΠab)ψbij = 0, ∂µϕ
abc = 0, (5.4.28)

On invariant sections of TE⊕T ∗E, the Dorfmann bracket defined by these struc-
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tures is given by

(x1, f1,a; ξ1, g
a
1) ◦ (x2, f2,a; ξ2, g

a
2)

= {{xµ
1ξ

∗
µ + fa

1 ξ
∗
a + ξ1,µξ

µ + g1,aξ
a, θ}, xµ

2ξ
∗
µ + fa

2 ξ
∗
a + ξ2,µξ

µ + g2,aξ
a}

= [x1, x2] + x1(f2)− x2(f1) + f a
µν xµ

1x
ν
2ξ

∗
a + ψµνix

µ
1x

ν
2ξ

i + ψaµif
a
1 x

µ
2ξ

i

+ψµaix
µ
1f

a
2 ξ

i + ψabif
a
1 f

b
2ξ

i + ∂µ(Πab(x))xµ
1g2,aξ

∗
b + Lx1ξ2 + ıx1dg2

+f a
µν xµ

1g2,aξ
ν + ∂µ(Πab(x))xµ

2g1,aξ
∗
b + f a

µν xµ
2g1,aξ

ν − ıx2dξ1 − ıx2dg1

+dfa
1 g2,a + fa

2 dg1,a + ϕabcg1,ag2,bξc + ∂µ(Πab(x))g1,ag2,bξ
µ, (5.4.29)

is invariant under T-duality transformation ϕ defined in Section 5.3.2, with the

corresponding terms exchange under T-duality:

f a
µν ↔ ψµνa, (5.4.30)

qab
µ ↔ ψµab, (5.4.31)

ϕabc ↔ ψabc. (5.4.32)

If one makes the identification

H(3) ≡ ψµνγξ
µξνξγ, Ha

(2) ≡ ψaµνξ
aξµξν , Hab

(1) ≡ ψabµξ
aξbξµ,

Habc
0 ≡ ψabcξ

aξbξc, F(2)a ≡ f a
µν ξµξνξ∗a, (5.4.33)

F(1)ab ≡ ∂µ(Πab(x))ξµξ∗aξ
∗
b = dΠ, F(0)abc ≡ ϕabcξ∗aξ

∗
b ξ

∗
c = (∧3π])H,

we see that T-duality exchanges (H(2), H(1), H(0)) with (F(2), F(1), F(0)) as one

would expect.

In terms of the H and F , the set of consistency relations (5.4.27) become

dH(3) − 3
2
F(2)aH

a
(2) = 0,

dHa
(2) + F(2)bH

ab
(1) = 0,

dHab
1 − 3

2
F(2)cH

cab
(0) = 0,

dHabc
(0) = 0,

dF(2)a = 0,

dF(1)ab = 0, dF(1)abH
a
(2) = 0, dF(1)abH

ac
(1) = 0, dF(1)abH

acd
(0) = 0,

dF(0)abc = 0, dF(0)abcH
a
2 = 0, dF(0)abcH

ad
1 = 0, dF(0)abcH

ade
(0) = 0.

(5.4.34)

By specifying the structure γ so that the Lie bracket on T ∗E is replaced by the

Koszul bracket on one forms, the set of constraints (5.4.28) is a set of stricter

constraints on the H and F than (5.4.10).

In this example, the principal Tn-bundle with Poisson structure Π is character-

ized by the H-flux H = (H(3), H(2), H(1), H(0)) and the three tuple (F(2), F(1), F(0)).

Here F(2) is the curvature two form, F(1) = dΠ and F(0) = (∧3π])H.
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5.4.4 Example: Principal torus bundles twisted by a Pois-

son structure

In this example, let us consider a principal torus bundle E with Π a Poisson

structure, satisfying

[Π,Π]µ = {{µ,Π},Π} = 0. (5.4.35)

Consider a Poisson structure Π such that its components only live on the fibre,

i.e., locally on T ∗(ΠT ∗E) the Poisson structure is given by Π = 1
2
Πab(x)ξ∗aξ

∗
b . We

will now consider twisting a proto-bialgebroid by Π as introduced by Roytenberg

[66] and Kosmann-Schwarzbach [56].

Let us start with a proto-bialgebroid (TE, T ∗E) with structures (µ, 0, 0, ψ),

where µ and ψ are the structures defined in (5.4.1). One can twist this proto-

bialgebroid by a bivector Π to construct a proto-bialgebroid with twisted struc-

tures (µΠ, γΠ, ϕΠ, ψΠ) given by ([56] section (4.1.2)).

µΠ = µ+ π]ψ = µ+ {Π, ψ}

= ξix∗i −
1

2
f a

µν ξµξνξ∗a + f b
µa ξ

µξaξ∗b + f c
ab ξ

aξbξ∗c ,

γΠ = {µ,Π}+ (∧2π])ψ = {µ,Π}+
1

2
{Π, {Π, ψ}}

=
1

2
q ab
µ ξµξ∗aξ

∗
b +

1

2
q bc
a ξaξ∗b ξ

∗
c ,

ϕΠ = (∧3π])ψ =
1

6
{Π, {Π, {Π, ψ}}}

= ϕabcξ∗aξ
∗
b ξ

∗
c ,

ψΠ = ψ (5.4.36)

=
1

6
ψµνγξ

µξνξγ +
1

2
ψaµνξ

aξµξν +
1

2
ψabµξ

aξbξµ +
1

6
ψabcξ

aξbξc,

where

f a
µc = Πabψbµc, f a

cd = Πabψbcd, qab
µ = ∂µΠab,

qcd
a = ΠceΠdfψaef , ϕabc = (∧3π])ψ. (5.4.37)

This twisted proto-bialgebroid has consistency relations given by the original

(untwisted) proto-bialgebroid, which is

{µ, ψ} = dµψ = 0. (5.4.38)

If as usual we identify ψ ≡ H, (5.4.38) simply gives the consistency relation

dH = 0, (5.4.39)
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which is equivalent to saying d2
H = 0.

The Courant bracket defined by

(x+ ξ) ◦ (y + η) = {{θΠ, x+ ξ}, y + η}, θΠ = µΠ + γΠ + ϕΠ + ψΠ (5.4.40)

is still invariant under T-duality, with the corresponding terms exchange under

T-duality:

f a
µν ↔ ψµνa, qab

µ ↔ ψµab, ϕabc ↔ ψabc,

f b
µa ↔ f a

µb f a
bc ↔ qbc

a. (5.4.41)

If we make the following identification

H(3) ≡ ψµνγξ
µξνξγ, Ha

(2) ≡ ψaµνξ
aξµξν , Hab

(1) ≡ ψabµξ
aξbξµ,

Habc
(0) ≡ ψabcξ

aξbξc, F(2)a ≡ f a
µν ξµξνξ∗a, (5.4.42)

F(1)ab ≡ (∂µΠab(x))ξµξ∗aξ
∗
b = dΠ, F(0)abc ≡ ϕabcξ∗aξ

∗
b ξ

∗
c = (∧3π])H,

it it obvious that T-duality exchanges (H(2), H(1), H(0)) with (F(2), F(1), F(0)) as

one expects.

However, we end up with additional f b
µa , f a

cd and the qbc
a components coming

from (5.4.36), as a result of this twisting. These extra terms are either dual to

each other or self-dual under T-duality.

5.5 T-duality and the Generalized metric

As pointed out by Cavalcanti [17], the generalized metric G : TE ⊕ T ∗E →
TE ⊕ T ∗E defined in Section 4.7 is another geometric structure that can be

transported via T-duality.

A generalized metric G on TE ⊕ T ∗E is introduced by Hull in terms of a

symmetric matrix g (the metric) and an antisymmetric matrix b (the B-field) on

E [40]

G =

(
g − bg−1b bg−1

−g−1b g−1

)
. (5.5.1)

The dual generalized metric Ĝ on TÊ ⊕ T ∗Ê can be obtained by

Ĝ = ϕGϕ−1. (5.5.2)

Recall from Section 4.7 that G is a self-adjoint, orthogonal metric which splits

TE ⊕ T ∗E into ±-eigenspaces C± ∈ TE ⊕ T ∗E. C± are given as the graph of
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g + b and g − b, respectively. I.e.

C+ = Span{x+ (g + b)(x)|x ∈ TE},
C− = Span{x+ (g − b)(x)|x ∈ TE}. (5.5.3)

One can transfer C± to its dual counterpart Ĉ± using the T-duality map ϕ,

i.e.

ϕ(C±) = ϕ(Span{X + (g + b)(X)})
= Span{x̂+ (ĝ ± b̂)(x̂)|x̂ ∈ TÊ}
= Ĉ±. (5.5.4)

Since the dual +-eigenspace Ĉ+ is given by the graph of ĝ + b̂ on the dual

space Ê, the corresponding ĝ and b̂ can be determined from Ĉ+.

We will start with the simplest case – when E is a principal circle bundle –

and show that the corresponding ĝ and b̂ on Ê are related to the original one by

the Buscher rules, followed by a generalization to the case of a general principal

torus bundle.

5.5.1 Principal circle bundle case

E is a principal circle bundle over M , with local coordinates {xi} = {xµ, θ},
where {xµ} are the coordinates on M and θ is the coordinate on the circle.

For simplicity, let us denote E = g + b. In this case E is given by

E = E00dθ ⊗ dθ + Eµ0dx
µ ⊗ dθ + E0νdθ ⊗ dxν + Eµνdx

µ ⊗ dxν . (5.5.5)

To determine the corresponding Ê, recall that Ĉ+ = ϕ(C+):

ϕ(C+) = ϕ(Span{∂θ + ∂xµ + (E00 + Eµ0)dθ + (E0ν + Eµν)dx
ν})

= Span{(E00 + Eµ0)∂θ̂ + ∂xµ + dθ̂ + Eµνdx
ν}

= Span

{(
E00 0

Eµ0 I

)(
∂θ̂

∂xµ

)
;

(
1 E0ν

0 Eµν

)(
dθ̂

dxν

)}

= Span

∂θ̂ + ∂xµ +

(
E00 0

Eµ0 I

)−1(
1 E0ν

0 Eµν

)(
dθ̂

dxν

)
= Span{∂θ̂ + ∂xµ + (E−1

00 − (E−1
00 Eµ0))dθ̂ + (E−1

00 E0ν + Eµν

−E−1
00 Eµ0E0ν)dx

ν}
= Span{∂θ̂ + ∂xµ + (Ê00 + Êµ0)dθ̂ + (Ê0ν + Êµν)dx

ν}.
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Therefore we have the following correspondence between Ê and E

Ê00 = E−1
00 , Êµ0 = −E−1

00 Eµ0, Ê0ν = E−1
00 E0ν , Êµν = Eµν − E−1

00 Eµ0E0ν .

If we insert E = g + b and Ê = ĝ + b̂ into the previous line, we find

ĝ00 = g−1
00 , ĝµ0 =

gµ0

g00

, ĝ0ν =
g0ν

g00

,

b̂µ0 =
bµ0

g00

, b̂0ν = −b0ν

g00

,

ĝµν = gµν −
1

g00

(gµ0g0ν + bµ0b0ν), b̂µν = bµν −
1

g00

(bµ0g0ν + gµ0b0ν),

i.e. we retrieve the Buscher rules given by (3.2.9).

5.5.2 Principal torus bundle case

Now let us consider a general principal Tn-bundle E over M . Let {xµ} be coor-

dinates on M and {θa} be coordinates on the torus.

The string background E = b+ g decomposes as

E = Eµνdx
µ ⊗ dxν + Eµbdx

µ ⊗ dθb + Eaνdθ
a ⊗ dxν + Eabdθ

a ⊗ dθb. (5.5.6)

The T-duality map ϕ transforms C+ to C̃+ via

ϕ(C+) = ϕ(Span{∂xµ + ∂θa + (Eµν + Eaν)dx
ν + (Eab + Eµb)dθ

b})
= Span{∂xµ + (Eab + Eµb)∂θ̂b + (Eµν + Eaν)dx

ν + dθ̂a}

= Span

{(
I Eµb

0 Eab

)(
∂xµ

∂θ̂b

)
+

(
Eµν 0

Eaν I

)(
dxν

dθ̂b

)}

= Span

∂xµ + ∂θ̂a +

(
I Eµb

0 Eab

)−1(
Eµν 0

Eaν I

)(
dxν

dθ̂b

)
= Span

{
∂xµ + ∂θ̂a +

(
Eµν − Eµa(E

−1)abEbν −Eµa(E
−1)a

b

(E−1) b
a Ebν (E−1)ab

)(
dxν

dθ̂b

)}
= Span{∂xµ + ∂θ̂a + (Êµν + Êaν)dx

ν + (Êab + Êµb)dθ̂
b}.

Thus the dual string background is given by

Ê =

(
Eµν − Eµa(E

−1)abEbν −Eµa(E
−1)a

b

(E−1) b
a Ebν (E−1)ab

)
, (5.5.7)

which agrees with the Buscher rules (3.2.8).



Chapter 6

Poisson-Lie T-duality and

generalized geometry

6.1 Introduction and outline

The Poisson-Lie T-duality is a generalization of (Abelian) T-duality proposed by

Klimc̆́ık and S̆evera [49] in 1995. This construction of T-duality does not need the

requirement of an isometry, instead, the backgrounds of a dual pair of σ-models

are required to obey the Poisson-Lie condition, which is the necessary condition

for the existence of the dual worldsheet. The dual pair of σ-models with targets G

and G̃ are defined on a Drinfel’d double D as a generalized space in the following

sense.

The Lie group D with Lie algebra D has subgroups G and G̃, which is a pair of

Poisson-Lie groups with Lie algebras g and g∗, respectively. The algebras g and g∗

form the maximally isotropic subspaces of D with respect to the ad-invariant non-

degenerate bilinear form on D. Starting with the tangent space TeD ∼= D = g⊕g∗

at the unit element of D, we take a dim(G)-dimensional subspace R+ of D which

is the graph of a non-degenerate linear mapping E(e) : g → g∗. The subspace

R+ can be transferred to every point g ∈ G and the resulting subspace Rg
+ is the

graph of the string background E(g) of the σ-model on G. Similarly transferring

R+ to g̃ ∈ G̃ gives rise to the dual string background Ê(g̃) of the dual σ-model

on G̃. Thus we transfer the subspace R+ of D = g⊕ g∗ onto G and G̃.

The above can be extended to Courant algebroids. Let E and Ê be principal

G and G̃-bundles over M . Similar to the Abelian T-duality case, the spaces of

invariant sections of TE ⊕ T ∗E and TÊ ⊕ T ∗Ê can be viewed as isomorphic

Courant algebroids related by Poisson-Lie T-duality.
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This chapter is organized as follows.

Section 6.2 introduces the Semenov-Tian-Shansky Poisson structure on a Drin-

fel’d double D and is used to define a Poisson structure Π on G. In this section,

we showed that the structure Π which appeared previously in Proposition 3.14 is

indeed a Poisson structure on G.

In Section 6.3 we revisit the Poisson-Lie T-duality first introduced in Chapter

3. In particular we explicitly show that the dual pair of string backgrounds

expressed in terms of the Poisson structures on G and G̃ satisfy the Poisson-Lie

condition.

Recall that our general argument of Chapter 5 is that the Abelian T-duality

can be viewed as a duality between isomorphic Courant algebroids. This mo-

tivates us to consider Poisson-Lie T-duality on a Drinfel’d double as a gener-

alized space, which is discussed in Section 6.4. In Section 6.4.3, we generalize

the (Abelian) T-duality case and establish an isomorphism of Courant algebroids

related by Poisson-Lie T-duality.

This chapter is a collaborative work with Bouwknegt.

6.2 The Poisson structure on G

In this section we introduce the Semenov-Tian-Shansky Poisson structure [70] on

a Drinfel’d double D. When restricted on G, this Poisson structure turns out to

be the structure Π appeared previously in Proposition 3.14.

Let D be a Drinfel’d double containing both groups G and G̃ with Lie algebra

D. D can be decomposed as g⊕ g∗, where g is the Lie algebra of G and g∗ is the

Lie algebra of G̃.

Let us choose a basis {Ta, T̃
a} of D such that {Ta} is a basis of g while {T̃ a}

is a basis of g∗. Ta and T̃ a are orthogonal with respect to the non-degenerate

bilinear form on D, i.e.

〈Ta, T̃
b〉 = δb

a. (6.2.1)

According to Lemma 3.10, there is an adjoint representation of the group G

on D.

Definition 6.1. The adjoint representations of G on D can be defined in terms

of the matrices a, c and d as the coefficients in the expansion

g−1Tag ≡ a(g) b
a Tb, g−1T̃ ag ≡ c(g)abTb + d(g)a

bT̃
b, (6.2.2)

where g ∈ G.
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There exists a natural Poisson structure introduced by Semenov-Tian-Shansky

[70] onD, however, before introducing such a Poisson structure the following must

be defined.

Left and right gradients

For any group G there are left and right gradients ∇L and ∇R taking values in

g∗:

〈∇Lf(g), ξ〉 =
d

dt
f(etξg)|t=0,

〈∇Rf(g), ξ〉 =
d

dt
f(getξ)|t=0, (6.2.3)

where ξ ∈ g and f is a function of g ∈ G.

In terms of {Ta} and {T̃ a}, we have

df = (∇Lf)aw
a
L = (∇Rf)aw

a
R, (6.2.4)

where wa
L and wa

R are the (Maurer-Cartan) one-form given by

g−1dg = wa
LTa, dg g−1 = wa

RTa. (6.2.5)

and

(∇Lf)a(g) = 〈df, vL
a 〉(g) =

d

dt
f(etTag)|t=0,

(∇Rf)a(g) = 〈df, vR
a 〉(g) =

d

dt
f(getTa)|t=0, (6.2.6)

where vL
a and vR

a are the left and right-invariant vector fields corresponding to

Ta, respectively.

Apply the previous construction on D, it gives

(∇Lf)a(g) =
d

dt
f(etT̃ a

g)|t=0,

(∇Rf)a(g) =
d

dt
f(getT̃ a

)|t=0, (6.2.7)

where g ∈ D.

Next, we introduce the Semenov-Tian-Shansky Poisson structure on D, and

in particular we show that Π = c(g)a(g)−1 is a Poisson structure on G.
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Poisson structure on G

Definition 6.2. Let g a Lie algebra, r ∈ End g a linear operator and 〈 , 〉 a

nondegenerate invariant scalar product on g, then (g, r) is called a Boxter Lie

algebra if r is skew-symmetric and satisfies the Yang-Baxter equation

[rX, rY ] = r([rX, Y ] + [X, rY ])− [X, Y ], ∀X, Y ∈ g. (6.2.8)

Such an operator r is called a classical r-matrix.

Proposition 6.3. The Yang-Baxter equation (6.2.8) implies

[X, Y ]r =
1

2
([rX, Y ] + [X, rY ]) (6.2.9)

is a Lie bracket.

Consider a Drinfel’d double D with Lie algebra D = g⊕g∗. The left and right

gradients give rise to ∇Lf and ∇Rf ∈ C∞(D,D). Let Pg and Pg∗ be projection

operators onto g and g∗ parallel to g∗ and g, respectively.

Proposition 6.4 ([70]).

PD = Pg − Pg∗ ∈ End D (6.2.10)

is skewsymmetric with respect to the natural pairing on D and satisfies the Yang-

Baxter equation (6.2.8).

The right and left gradients defined in the previous section generalize to

∇Lf,∇Rf ∈ C∞(D,D) via (6.2.3).

Proposition 6.5 ([70]). The Semenov-Tian-Shansky Poisson structure on C∞(D)

is given by

{f, f ′}D = −1

2
(〈PD∇Lf,∇Lf

′〉 − 〈PD∇Rf,∇Rf
′〉). (6.2.11)

In terms of a basis {Ta} of g and a dual basis {T̃ a} of g∗, (6.2.11) can be expressed

as

{f, f ′}D =
1

2
((∇Lf)a(∇Lf

′)a − (∇Lf)a(∇Lf
′)a)

− 1

2
((∇Rf)a(∇Rf

′)a − (∇Rf)a(∇Rf
′)a). (6.2.12)

The manifold D equipped with the above Poisson bracket is called a Heisen-

berg double.
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Proposition 6.6. Consider functions f, f ′ on D, which are invariant under the

right action of G̃. Then these functions can be interpreted as functions on G. The

Poisson bracket in equation (6.2.12) on such functions defines a Poisson bracket

on G and can be written as

{f, f ′}G = Πab(g)(∇Lf)a(∇Lf
′)b, (6.2.13)

such that Π(g) is given by

Π(g) = c(g)a(g)−1, (6.2.14)

where a(g) and c(g) are given by (6.2.2).

Proof. Firstly, for functions on D, invariant under the right action of G̃, we have

the following relations

(∇Lf)a(g) =
d

dt
f(etT̃ a

g)|t=0 =
d

dt
f(gg−1etT̃ a

g)|t=0 = c(g)ab(∇Rf)b(g),

(∇Rf)a(g) =
d

dt
f(getTa)|t=0 =

d

dt
f(getTag−1g)|t=0 = a(g−1) b

a (∇Lf)b(g),

(∇Rf)a(g) = 0. (6.2.15)

Therefore the Poisson bracket (6.2.12) restricted on G becomes

{f, f ′}G = c(g)ac(a(g)−1) b
c (∇Lf)a(∇Lf

′)b = Πab(∇Lf)a(∇Lf
′)b. (6.2.16)

Before showing that Π = c(g)a(g)−1 defines a Poisson structure on G, we need

the following results.

Lemma 6.7. The left gradient on Π is given by

(∇LΠab)c = f a
cd Πdb + f b

cd Πad − f̃ab
c. (6.2.17)

Proof. Starting with (a(g)−1) b
a = 〈gTag

−1, T̃ b〉 = 〈Ta, g
−1T̃ bg〉 and c(g)ab =

〈g−1T̃ ag, T̃ b〉, (∇L(a−1) b
a )c and (∇Lb

ab)c are found to be

(∇L(a(g)−1) b
a )c =

d

dt
〈Ta, g

−1e−TctT̃ betTcg〉|t=0 = 〈Ta, g
−1[T̃ b, Tc] g〉

= 〈Ta, g
−1 (f b

cd T̃
d + f̃db

cTd) g〉 = f b
cd d(g)

d
a = f b

cd(a(g)
−1) d

a ,

(∇Lc(g)
ab)c =

d

dt
〈g−1e−TctT̃ aetTcg, T̃ b〉|t=0 = 〈g−1 [T̃ a, Tc] g, T̃

b〉

= 〈g−1(f a
cd T̃ d − f̃ad

cTd)g, T̃
b〉 = f a

cd c(g)db − f̃ad
ca(g)

b
d .
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Therefore

(∇LΠab)c = (∇Lc
ad(g))c(a(g)

−1) b
d + cad(g)(∇L(a(g)−1) b

d )c

= f a
cd c(g)de(a(g)−1) b

e − f̃ab
ca(g)

d
b (a(g)−1) b

d + f b
cd c(g)

ae(a(g)−1) d
e

= f a
cd Πdb − f̃ab

c + f b
cd Πad. (6.2.18)

Lemma 6.8. The left gradients (∇L) do not commute but satisfy

(∇L(∇Lf)a)b − (∇L(∇Lf)b)a = −f c
ab (∇Lf)c. (6.2.19)

Proof. From definition, (∇L(∇Lf)a)b is given by

d

ds

d

dt
f(esTbetTag)|t=0,s=0. (6.2.20)

Thus using Taylor expansion around e ∈ G, we have

(∇L(∇Lf)a)b − (∇L(∇Lf)b)a =
d

ds

d

dt
(f(esTbetTag)− f(esTaetTbg))|t=0,s=0

= −
∞∑
i=1

f (i)(e)[Ta, Tb]g
i

= −f c
ab

∞∑
i=0

d

dt
(f(e) +

1

i!
f (i)(e)(eTctg)i)|t=0

= −f c
ab (∇Lf)c. (6.2.21)

Proposition 6.9. Π = c(g)a(g)−1 defines a Poisson structure on G.

Proof. Let us first simplify our notation and denote (∇Lf)a ≡ ∇af .

To check that Π(g) = c(g)a(g)−1 is a Poisson structure, recall in Section 3.3.2

that a(g), c(g) and d(g) are constrained by

a(g)T = d(g)−1, c(g)d(g)T = −d(g)c(g)T , (6.2.22)

which directly guarantee that Πab = −Πba. It is also obvious that Π satisfies the

Leibnitz rule. Thus we only need to check if Π satisfies the Jacobi-identity.
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Using Lemma 6.7 and Lemma 6.8, one finds

{{g, h}, f} − {{f, h}, g}+ {{f, g}, h}
= {Πbc∇bg∇ch, f} − {Πac∇af∇ch, g}+ {Πab∇bf∇bg, g}
= (Πda∇dΠ

bc − Πdb∇dΠ
ac + Πdc∇d)∇af∇bg∇ch

+ΠdcΠab(∇d∇af)∇bg∇ch+ ΠdcΠab(∇b∇dg)∇af∇ch

−ΠadΠbc(∇d∇bg)∇af∇ch− ΠadΠbc(∇d∇ch)∇af∇bg

+ΠbdΠab(∇d∇bf)∇bg∇ch+ ΠbdΠac(∇d∇ch)∇af∇bg

= (Πda∇dΠ
bc − Πdb∇dΠ

ac + Πdc∇d)∇af∇bg∇ch

+ΠabΠdcf a
da + ΠadΠcbf c

dc + ΠabΠcdf b
bd )∇af∇bg∇ch

= (Πda∇dΠ
bc − Πdb∇dΠ

ac + Πdc∇d + f b
ad ΠdcΠab + f b

bd ΠdcΠab

−f c
cd ΠadΠbc)∇af∇bg∇ch

= (f b
bd ΠadΠbc + f a

ad ΠbaΠdc + f c
dc ΠbdΠac − f̃ab

dΠ
dc + f̃ bc

dΠ
ad

−f̃ac
dΠ

bd)∇af∇bg∇ch. (6.2.23)

Next, consider the adjoint action of g on [Ta, Tb]

g−1[Ta, Tb]g = g−1(f c
ab Tc)g = f c

ab a
e

c Te

= [g−1Tag, g
−1Tbg] = [a c

a Tc, a
d

b Td] = a c
a a

d
b f

e
cd Te,

thus we have the following constraint

f c
ab a

e
c = f e

cd a
c

a a
d

b . (6.2.24)

Similarly for [T̃ a, T̃ b] we have

g−1[T̃ a, T̃ b]g = g−1(f̃ab
cT̃

c)g = f̃ab
c(c

ceTe + dc
eT̃

e)

= [cacTc + da
cT̃

c, cbdTd + db
dT̃

d]

= (caccbdf e
cd + cacdb

df̃
de

c − da
cc

bdf̃ ce
d)Te + (f d

ec c
acdb

d − f c
ed d

a
cc

bd

+da
cd

b
df̃

cd
e)T̃

e,

as a result, we obtain the following constraints

f̃ab
cc

ce = caccbdf e
cd + cacdb

df̃
de

c − da
cc

bdf̃ ce
d (6.2.25)

f̃ab
cd

c
e = f d

ec c
acdb

d − f c
ed d

a
cc

bd + da
cd

b
df̃

cd
e. (6.2.26)

Computing f̃ab
dΠ

dc we find

f̃ab
dΠ

dc = f̃ab
dc

de(a−1) c
e

(6.2.25)⇒ = (caecbdf f
ed + caed b

d f̃
df

e − d
a

e c
bdf̃ ef

d)(a
−1)c

f

(6.2.24)⇒ = f c
dc ΠbdΠac + f̃df

dΠ
acdb

f − f̃
df

fΠ
bcda

d. (6.2.27)
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Permuting a, b, c in the above equation (6.2.27) and add up f̃Π’s, we find

f̃ab
dΠ

dc + f̃ bc
dΠ

da + f̃ ca
dΠ

db = f c
cd Πbd + f̃ ed

ed
b
d − f̃de

eΠ
bcda

d

+f a
ad ΠcdΠba + f̃ ed

ed
c
d − f̃de

eΠ
cadb

d + f b
bd ΠadΠcb + f̃ ed

eΠ
cbda

d − f̃de
ed

c
d

= f c
dc ΠbdΠac + f a

da ΠcdΠba + f b
db ΠadΠcb. (6.2.28)

Substituting (6.2.28) into (6.2.23) we obtain the Jacobi-identity. And therefore

Π = c(g)a(g)−1 defines a Poisson structure on G.

Example 6.10 (Borelian double). Let us consider the simplest non-Abelian dou-

ble appeared previously in Section 3.3.3, the Borelian double D = GL(2,R) con-

sists of the Borel group G and the dual group G̃ such that their Lie algebras g

and g∗ have basis {Ta} and {T̃ a} given by

T1 =

(
1 0

0 0

)
, T2 =

(
0 1

0 0

)

T̃ 1 =

(
0 0

0 1

)
, T̃ 2 =

(
0 0

−1 0

)
. (6.2.29)

An element g ∈ G can be chosen by

g =

(
eϕ θ

0 1

)
, (6.2.30)

and it follows that the matrices a(g), c(g) and d(g) from (6.2.2) are found to be

a(g) =

(
1 e−ϕθ

0 e−ϕ

)
c(g) =

(
0 −e−ϕθ

θ e−ϕθ2

)
, d(g) =

(
1 0

−θ eϕ

)
. (6.2.31)

Thus the Poisson structure Πab = cad(g)(a(g)−1)b
d on G is

Π =

(
0 −θ
θ 0

)
. (6.2.32)

Now, let us compute (∇LΠab)c. Since (∇LΠab)c is given by

(∇LΠab)c = f a
cd Πdb + f b

cd Πad − f̃ab
c, (6.2.33)

the components of (∇LΠab)c are found to be

(∇LΠ12)1 = −(∇LΠ21)1 = −θ, (∇LΠ12)2 = −(∇LΠ21)2 = −1. (6.2.34)
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One can then easily check that the Poisson structure Π given by (6.2.32) satisfies

the Jacobi-identity, therefore Π is a Poisson structure on the Borel group G.

Similarly, if we choose an element g̃ ∈ G̃ parameterized by

g̃ =

(
1 0

−θ̃ eϕ̃

)
, (6.2.35)

we obtain the Poisson structure Π̃ on the dual group G̃ as

Π̃ = c̃(g̃)(ã(g̃)−1) =

(
0 −θ̃
θ̃ 0

)
. (6.2.36)

6.3 Poisson-Lie T-duality revisited

In this section, we give a short revision of the Poisson-Lie T-duality introduced

previously in Chapter 3. In particular, we focus on the solutions of the dual pair

of σ-models defined in terms of the Poisson structures on the dual groups G and

G̃.

Recall in Section 3.3.2, for a σ-model (3.2.1) to possess a Poisson-Lie dual σ-

model, the string background Eij is required to satisfy the Poisson-Lie condition:

Lva(Eij) = f̃ bc
av

m
b v

n
cEmjEin, (6.3.1)

where f̃ bc
a is the structure constants of G̃, and vL

a = vi
a∂i are the left invariant

vector fields on G.

A dual pair of σ-models with the targets being Lie groups G and G̃ can be

constructed with the Lagrangian

L = E(g)ab(∂gg
−1)a(∂̄gg−1)b,

L̂ = Ê(g̃)ab(∂g̃g̃−1)a(∂̄g̃g̃
−1)b, (6.3.2)

where g ∈ G and g̃ ∈ G̃.

The string background Eij is related to Eab(g) via

Eijdx
id̄xj = Eabw

a
Lw

b
L = Eabw

a
i dx

iwb
j d̄x

j, (6.3.3)

where wa
L = wa

i dx
i are the (Maurer-Cartan) one forms on G.

Next, we show explicitly that the String background E defined in terms of

the Poisson structure Π on G satisfies the Poisson-Lie condition.



100 Poisson-Lie T-duality and generalized geometry

Proposition 6.11. A pair of σ-models with targets being G and G̃ have string

backgrounds E(g) and Ê(g̃) given explicitly by

E(g) = (a(g) + E(e)c(g))−1E(e)d(g),

Ê(g̃) = d̃(g̃)Ê(ẽ)(ã(g̃) + c̃(g̃)Ê(ẽ))−1, (6.3.4)

or as have been shown in Section 3.3.2 that up to a similarity transformation,

E(g) can be conveniently written as

E−1(g)ab = (E−1(e) + Π(g))ab

Ê−1(g̃)ab = (E(e) + Π̃(g̃))ab. (6.3.5)

Proof. We show that (6.3.5) satisfies the Poisson-Lie condition (6.3.3).

Let us start with LvaEbc and use the Poisson-Lie condition (6.3.3), we find

LvaEbc = Lva(v
i
bv

j
cEij)

= f d
ab v

i
dv

j
cEij + facv

i
bv

j
dEij + f̃de

av
i
bv

j
cv

m
d v

n
eEmjEbe

= f d
ab Edc + f d

ac Ebd + f̃de
aEdcEbe. (6.3.6)

Substituting (6.3.6) into Lva(E
−1)bc, we have

Lva(E
−1)bc = −(E−1)br(LvaErs)(E

−1)sc

= −(E−1)br(f d
ar Eds + f d

as Erd + f̃de
aEdsEre)(E

−1)sc

= −(E−1)brf c
ar − (E−1)scf b

as − f̃ cb
a. (6.3.7)

We have seen in Lemma 6.7 that

(∇LΠbc)a = −LvaΠ
bc = f c

ad Πdc + f c
ad Πbd − f̃ bc

a

hence Πbc satisfies (6.3.7), while E−1(e) + Π satisfies (6.3.7) provided

f b
ad (E−1(e))dc + f c

ad (E−1(e))bd = 0, (6.3.8)

i.e. this condition is equivalent to the requirement LvaE(e)bc = 0. Thus E(g) =

[E−1(e)+Π]−1 satisfies the Poisson-Lie condition requiring that (6.3.8) is satisfied.

6.4 Poisson-Lie T-duality and generalized ge-

ometry

Recall in Chapter 5 that using the framework of generalized geometry, (Abelian)

T-duality between a pair of dual σ-models on E and Ê can be viewed as duality
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between invariant sections of TE⊕T ∗E and TÊ⊕T ∗Ê. This result motivates us

to consider Poisson-Lie T-duality as a duality on the Drinfel’d double D = g⊕g∗

in a similar way.

We begin in section 6.4.1 defining the natural operations on g⊕g∗. In Section

6.4.2, we consider the Poisson-Lie T-duality between a pair of σ-models on G and

G̃ as a duality on the orthogonal subspaces of the generalized space D. In Section

6.4.3, We generalize the construction for (Abelian) T-duality in Chapter 5 and

establish an isomorphism of Courant algebroids related by Poisson-Lie T-duality.

6.4.1 Natural operation on the Drinfel’d double D

The double D = g⊕ g∗ is equipped with an ad -invariant non-degenerate bilinear

form

〈x+ ξ, y + η〉 = 〈x, η〉+ 〈y, ξ〉, (6.4.1)

where x, y ∈ g, ξ, η ∈ g∗. 〈 , 〉 is the canonical orthogonal pairing between g and

g∗, i.e. 〈Ta, T̃
b〉 = δb

a, and otherwise 0.

D is equipped with the bracket

[x+ ξ, y + η]D = [x, y] + ad∗ξy − ad∗ηx
+[ξ, η] + ad∗xη − ad∗yξ, (6.4.2)

where x, y ∈ g and ξ, η ∈ g∗. ad∗x is the ad∗-operator for g acting on g∗ and ad∗ξ
corresponds to the coadjoint action of g∗ on g, i.e.

〈ad∗yξ, x〉 = 〈ξ, [x, y]〉, 〈ad∗ηx, ξ〉 = 〈x, [ξ, η]〉. (6.4.3)

The Lie brackets on g and g∗ are given respectively by

[Ta, Tb]D = f c
ab Tc,

[T̃ a, T̃ b]D = f̃ab
cT̃

c, (6.4.4)

where f c
ab and f̃ab

c are structure constants on g and g∗. Then it follows from

(6.4.2) that the brackets between g and g∗ are given by

[Ta, T̃
b]D = −ad∗

T̃ bTa + ad∗Ta
T̃ b

= f̃ bc
aTc + f b

ca T̃
c,

[T̃ a, Tb]D = ad∗
T̃ aTb − ad∗Tb

T̃ a

= −f̃ac
bTc + f a

bc T̃
c. (6.4.5)
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These brackets are simply the brackets between g and g∗ given previously in

Section 2.2.3.

The bracket (6.4.2) on D has the following properties:

1. It is antisymmetric.

2. The bracket on the Drinfel’d double D satisfies the Jacobi-identity by plac-

ing the following condition on the structure constants:

f̃ ed
cf

c
ab = f̃ cd

bf
e

ac + f̃ ef
bf

d
af − f̃

cd
af

e
bc − f̃

ef
af

d
bf , (6.4.6)

we recognize this as the integrability condition of the Poisson-Lie condition

(6.3.3) given previously in Proposition 3.9.

Here is an example of a Borelian double following Example 6.10.

Example 6.12. The Borelian double D = GL(2,R) with Lie algebra D = g⊕ g∗

has subgroups G and G̃, such that the Borel group G has Lie algebra g and the

dual group G̃ has Lie algebra g∗, respectively.

The Lie algebras g and g∗ have basis {Ta} and {T̃ a} given by (6.2.29). There

is a non-degenerate pairing on D satisfying 〈Ta, T̃
b〉 = δb

a:

〈x, y〉 = Det(x+ y), ∀x, y ∈ D. (6.4.7)

It follows from (6.2.29) that the Lie brackets on g and g∗ are

[T1, T2] = T2, [T̃ 1, T̃ 2] = T̃ 2, (6.4.8)

thus according to (6.4.5), the brackets on D between g and g∗ are found to be

[T1, T̃
2] = −T̃ 2, [T̃ 1, T2] = −T2, (6.4.9)

and otherwise 0.

These are simply the commutation relations of the Lie algebra D = gl(2,R)

with a basis {T1, T2, T̃
1, T̃ 2}.

6.4.2 Orthogonal subspaces of the Drinfel’d double D

Let us consider the tangent space TeD ∼= D at e the unit element of D. I.e. e is

the unit element of both G and G̃ at the same time (i.e. e = ẽ).

The generalized space D = g ⊕ g∗ can be decomposed as linear orthogonal

subspaces R± as follows:

D = g⊕ g∗ = R+ ⊕R−, 〈R+, R−〉 = 0. (6.4.10)
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Let E(e) be a non-degenerate linear mapping E(e) : g → g∗. R± can be

defined as the graph of E(e) in D, i.e.

R+ = Span{t+ E(e)(t, ·)|t ∈ g},
R− = Span{t− E(e)(·, t)|t ∈ g}, (6.4.11)

or R± can be expressed as

R+ = Span{Ta + E(e)abT̃
b}

R− = Span{Ta − E(e)baT̃
b}. (6.4.12)

Remark 6.13. The subspaces R± are self dual, i.e. R± = R̃±, where

R̃+ = Span{T̃ a + Ê(ẽ)abTb}, R̃− = Span{T̃ a − Ê(ẽ)baTb}. (6.4.13)

E(e) and Ê(ẽ) are related by E(e)Ê(ẽ) = Ê(ẽ)E(e) = 1.

There is a generalized metric G on TeD = g ⊕ g∗, i.e. G : TeD → TeD with

the following properties:

1. G is an involution, i.e. G2 = 1,

2. G is required to be a (linear) homomorphism of the Lie algebras, G[x, y] =

[Gx,Gy], for all x, y ∈ D.

3. G is self-adjoint with respect to the non-degenerate bilinear form 〈 , 〉 on

D, i.e. 〈Gx, y〉 = 〈x,Gy〉.

4. G : D → D has eigenspaces R±,

G(R±) = ±R±. (6.4.14)

Remark 6.14. Since G is a homomorphism of Lie algebras, we have the following

properties:

G[R+, R+] = [R+, R+], G[R+, R−] = −[R+, R−], G[R−, R−] = [R−, R−],

(6.4.15)

and thus

[R+, R+] ∈ R+, [R−, R−] ∈ R+, [R+, R−] ∈ R−. (6.4.16)

Since R+ and R− are orthogonal subspaces with respect to 〈 , 〉, we have the

following relation:

〈[R+, R+], R−〉 = 〈[R+, R−], R+〉 = 〈[R−, R−], R−〉 = 0. (6.4.17)
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In terms of the symmetric part G(e) and the anti-symmetric part B(e) of

E(e), the generalized metric G can be expressed as a matrix

G =

(
−G(e)−1B(e) G(e)−1

G(e)−B(e)G(e)−1B(e) B(e)G(e)−1

)
. (6.4.18)

Now, consider a pair of σ-models with targets being G and G̃. For each

element g ∈ G, TeD can be transported to TgD via the action of g on D (i.e.

(6.2.2)) such that the subspaces R± are transported to Rg
± ∈ TgD ∼= D according

to

Rg
+ = g−1R+g = Span{Ta + E(g)abT̃

b},
Rg

− = g−1R−g = Span{Ta − E(g)baT̃
b}, (6.4.19)

where E(g) is defined explicitly in Proposition 6.11 in terms of the Poisson struc-

ture Π on G and satisfies the Poisson-Lie condition, i.e. E(g) defines the string

background on a σ-model.

Apparently Rg
± span TgD = D and since the non-degenerate bilinear form

〈 , 〉 is ad-invariant, thus Rg
± are orthogonal subspaces of D, i.e.

〈Rg
+, R

g
−〉 = 〈g−1R+g, g

−1R−g〉 = 〈R+, R−〉 = 0. (6.4.20)

There is also a generalized metric Gg : TgD → TgD with Rg
± its ±-eigenspaces.

I.e. we have the following commutative diagram

TeD
G //

g

��

TeD

g

��
TgD

Gg // TgD

(6.4.21)

According to [2], every element f ∈ D can have two different decompositions

f = gh̃ = g̃h, g, h ∈ G, g̃, h̃ ∈ G̃. (6.4.22)

Thus, similarly for g̃ ∈ G̃, TeD can be transported to Tg̃D via the action of

g̃ on D such that the subspaces R± are transported to Rg̃
± ∈ Tg̃D ∼= D. The

subspaces Rg̃
± are given by

Rg̃
+ = Span{T̃ a + Ê(g̃)abTb}, Rg̃

− = Span{T̃ a − Ê(g̃)baTb}, (6.4.23)

where Ê(g̃) defines the string background on the dual σ-model and is given in

terms of the Poisson structure Π̃ on G̃ in Proposition 6.11.
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Let Gg̃ be the generalized metric on Tg̃D ∼= D with Rg̃
± its ±-eigenspaces,

then we have the commutative diagram

TeD
G //

g̃
��

TeD

g̃
��

Tg̃D
Gg̃ // Tg̃D

(6.4.24)

Example 6.15. Consider again the Borelian double D = GL(2,R) following

Examples 6.10 and 6.12. D has subgroups B2 and G̃ with Lie algebras g and g∗

generated by {T1, T2} and {T̃ 1, T̃ 2} defined previously in (6.2.29).

Let us choose the matrix E(e)−1 as

E(e)−1 =

(
x y

u v

)
, (6.4.25)

i.e.

E(e) =
1

uy − vx

(
−v y

u −x

)
. (6.4.26)

Then the subspaces R± are found to be

R+ = Span{Ta + E(e)abT̃
b} = Span

{(
1 0
−y

uy−vx
−v

uy−vx

)
,

(
0 1
x

uy−vx
u

uy−vx

)}

R− = Span{Ta − E(e)baT̃
b} = Span

{(
1 0
−u

uy−vx
v

uy−vx

)
,

(
0 1
−x

uy−vx
−y

uy−vx

)}
.

(6.4.27)

An element g ∈ B2 can be parameterized by

g =

(
eϕ θ

0 1

)
. (6.4.28)
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Thus R+ can be transported to Rg
+ via

Rg
+ = g−1R+g

= Span

{
1

uy − vx

(
(uy − vx)rϕ + θy θ(uy − vx) + θ2ye−ϕ + θe−ϕv

−yeϕ −yθ − v

)
,

1

uy − vx

(
−θx −θ2e−ϕx− θue−ϕ + uy − vx
xeϕ xθ + u

)}

= Span

{(
0 1

e2ϕx
θ(y−u)+eϕ(uy−vx)+e−ϕθ2

θ+(θx+u)eϕ

θ(y−u)+eϕ(uy−vx)+e−ϕθ2

)
,(

1 0
−yeϕ−θ

θ(y−u)+eϕ(uy−vx)+e−ϕθ2

−xθ2−θ(u+y)−v
θ(y−u)+eϕ(uy−vx)+e−ϕθ2

)}
= Span{Ta + E(g)abT̃

b}. (6.4.29)

Thus comparing terms we find that the string background E(g) is given by

E(g) =
1

θ(y − u) + eϕ(uy − vx) + e−ϕθ2

(
−(xθ2 + θ(u+ y) + v) yeϕ + θ

θ + (θx+ u)eϕ −e2ϕx

)
.

(6.4.30)

Let us choose a parametrization of the dual group G̃

g̃ =

(
1 0

−θ̃ eϕ̃

)
. (6.4.31)

One can check that both g and g̃ give a different decomposition of l ∈ D via

(6.4.22).

Again transporting R+ to Rg̃
+ gives us

Rg̃
+ = g̃−1R+g̃

= Span

{
1

uy − vx

(
uy − vx 0

e−ϕ̃(vθ̃ − y) + θ̃e−ϕ̃(uy − vx) −v

)
,(

−θ̃(uy − vx) eθ̃(uy − vx)
e−θϕ(x− yθ̃ − θ̃2(uy − vx)) θ̃(uy − vx) + y

)}

= Span

{(
e−ϕ̃(uy−vx)(x−θ̃2v)

−e−ϕ̃(vx+y2)+θ̃2(uy−vx)

−(uy−vx)(vθ̃−y+θ̃(uy−vx))

−e−ϕ̃(vx+y2)+θ̃2(uy−vx)

0 1

)
,(

(uy−vx)(θ̃(uy−vx)+y−vθ̃)

e−ϕ̃(θ̃2(uy−vx)2+vx)

eϕ̃v(uy−vx)

e−ϕ̃(θ̃2(uy−vx)2+vx)

1 0

)}
= Span{T̃ a + Ê(g̃)abTb}. (6.4.32)
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Comparing terms we find that the string background Ê(g̃) on the dual σ-model

is given by

Ê(g̃) =

 e−ϕ̃(uy−vx)(x−θ̃2v)

−e−ϕ̃(vx+y2)+θ̃2(uy−vx)

−(uy−vx)(vθ̃−y+θ̃(uy−vx))

−e−ϕ̃(vx+y2)+θ̃2(uy−vx)

− (uy−vx)(θ̃(uy−vx)+y−vθ̃)

e−ϕ̃(θ̃2(uy−vx)2+vx)
− eϕ̃v(uy−vx)

e−ϕ̃(θ̃2(uy−vx)2+vx)

 . (6.4.33)

We can compare the above dual pair of string backgrounds E(g) and Ê(g̃) with the

string backgrounds computed previously in (3.19) in Section 3.3.3 using (6.3.5).

These solutions agree up to re-parameterizations.

6.4.3 Poisson-Lie T-duality on Courant algebroids

In this section we establish an isomorphism of Courant algebroids related by

Poisson-Lie T-duality.

Consider a Poisson-Lie group G and its dual group G̃. Let {va} be a basis of

left-invariant vector fields on G and {wa} be the dual basis of left-invariant one

forms on G.

The Lie bracket on the left-invariant vector fields is given by

[va, vb] = f c
ab vc, (6.4.34)

while the dual one forms are defined by

wa(vb) ≡ ıvb
wa = δa

b , (6.4.35)

satisfy

dwa =
1

2
f a

bc w
b ∧ wc. (6.4.36)

Lemma 6.16. In terms of left action of g, Lemma (6.7) becomes

(∇LΠab)c = f a
dc Πdb + f b

dc Πad + f̃ab
c. (6.4.37)

Proof. With g a left action, the adjoint action of g on D is given by

gTag
−1 = a(g) b

a Tb, gT̃ ag−1 = c(g)abTb + d(g)a
bT̃

b. (6.4.38)

Computing (∇L(a(g)−1) b
a )c and (∇Lc(g)

ab)c, we find

(∇L(a(g)−1) b
a )c = f b

dc (a(g)−1) d
a ,

(∇Lc(g)
ab)c = f a

dc c(g)
db + f̃ad

ca(g)
b

d . (6.4.39)
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Thus

(∇LΠab)c = (∇Lc(g)
ad)c(a(g)

−1) b
d + c(g)ad(∇L(a(g)−1) b

d )c

= f a
dc Πdb + f b

dc Πad + f̃ab
c. (6.4.40)

Lemma 6.17. The Koszul bracket [ , ]Π defined by (2.3.1) on invariant sections

of T ∗G is given by

[wa, wb]Π = f̃ab
cw

c, (6.4.41)

where f̃ab
c is the structure constant of G̃.

Proof. The bracket [ , ]Π on invariant forms is given by

[wa, wb]Π = Lπ](wa)w
b − Lπ](wb)w

a − dΠ(wa, wb)

= dΠ(wa, wb) + ıπ](wa)dw
b − dΠ(wb, wa)− ıπ](wb)dw

a − dΠ(wa, wb)

= f b
cd Π(wc, wa)wd − f a

cd Π(ec, eb)wd − dΠ(wb, wa)

= f b
cd Πcawd − f a

cd Πcbwd + dΠab

= f b
cd Πcawd − f a

cd Πcbwd + (∇LΠab)cw
c. (6.4.42)

Substituting (6.4.37) into the above equation, we obtain

[wa, wb]Π = f̃ab
cw

c. (6.4.43)

Lemma 6.18. The differential dΠ = [Π, ·]SN on left-invariant vector fields is

given by

dΠva =
1

2
f̃ bc

avb ∧ vc. (6.4.44)

where [ , ]SN is the Schouten bracket on multi-vector fields.

Proof.

dΠvc = [
1

2
Πabvavb, vc]SN

=
1

2
(Πab[va, vc]vb − Πab[vb, vc]va + vc(Π

ab)va ∧ vb)

=
1

2
(−Πdbf a

dc − Πadf b
dc + vc(Π

ab))va ∧ vb

=
1

2
(−Πdbf a

dc − Πadf b
dc + (∇LΠab)c)va ∧ vb

=
1

2
f̃ab

cva ∧ vb, (6.4.45)

where we have used (6.4.37).
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Recall in Example 2.32 in Section 2.3.1 that when G is a Poisson manifold

with a Poisson structure Π, then (T ∗G, [ , ]Π, ρ∗ = π], dΠ) is a Lie algebroid over

G, with the associated bracket on Γ(T ∗G) being the Koszul bracket [ , ]Π, anchor

π] and a differential dΠ on Γ(∧•TG) defined by dΠ = [Π, ·]SN . (T ∗G, [ , ]Π, ρ∗ =

π], dΠ) is often called a cotangent Lie algebroid.

As we have seen in Example 2.36 that (TG, T ∗G) defines a Lie bialgebroid,

where the Lie algebroid (TG, [ , ], ρ, d) is equipped with the usual Lie bracket on

Γ(TG), identity anchor map ρ and de Rham differential d. T ∗G is a cotangent

Lie algebroid with the above mentioned structures. Since (TG, T ∗G) defines a

Lie bialgebroid, according to Theorem 2.40, its double TG⊕T ∗G form a Courant

algebroid equipped with a non-degenerate bilinear form 〈 , 〉 and a Courant

bracket [[ , ]] on Γ(TG⊕ T ∗G). On invariant sections, the non-degenerate bilinear

form is given by

〈va, w
b〉 = δb

a. (6.4.46)

The Courant bracket on invariant sections of TG⊕ T ∗G is found to be

[[fa
1 va + g1,aw

a, fa
2 va + g2,aw

a]] = [fa
1 va, f

b
2vb] + LΠ

g1,awaf b
2vb − LΠ

g2,awaf b
1vb

+[g1,aw
a, g2,bw

b] + Lfa
1 vb

(g2,aw
b)− Lfa

2 va(g1,bw
b) +

1

2
d(g1,af

a
2 − g2,af

a
1 )

= (fa
1 f

b
2f

c
ab + fa

2 g1,bf̃
bc

a − fa
1 g2,bf̃

bc
a)vc + (g1,ag2,bf̃

ab
c + f b

1g2,af
a

bc

−f b
2g1,af

a
bc )wc, (6.4.47)

where fa, ga ∈ C∞(G) are constant functions and LΠ = [ı, dΠ].

Since (TG⊕T ∗G)G
∼= g⊕ g∗, it is obvious that the above Courant bracket on

g⊕ g∗ coincides with (2.2.26), i.e. the Lie brackets on the Drinfel’d double D.

Similarly for the dual group G̃ with a Poisson structure Π̃, let {ṽa} be a basis

of left-invariant vector fields on G̃ and {w̃a} be a basis of left-invariant one forms

on G̃. The Lie bracket on the left-invariant vector fields on G̃ is given by

[ṽa, ṽb] = f̃ab
cṽ

c, (6.4.48)

while the dual basis of one forms on G̃ are defined by

w̃a(ṽ
b) ≡ ıṽbw̃a = δb

a, (6.4.49)

satisfy

dw̃a =
1

2
f̃ bc

aw̃b ∧ w̃c. (6.4.50)

According to Lemma 6.17 and Lemma 6.18, on left invariant forms of G̃, the

Koszul bracket is given by

[w̃a, w̃b]Π̃ = f c
ab w̃c, (6.4.51)
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and the associated differential dΠ̃ is given by

dΠṽ
a =

1

2
f a

bc ṽ
b ∧ ṽc. (6.4.52)

It follows that (TG̃, T ∗G̃) is a Lie bialgebroid, where the Lie algebroid (TG̃, [ , ],

ρ̃, d) is equipped with the usual Lie bracket on Γ(TG̃), identity anchor map ρ̃ and

de Rham differential d. And (T ∗G̃, [ , ]Π̃, ρ̃ = π̃], dΠ̃) is a cotangent Lie algebroid

with the Koszul bracket [ , ]Π̃ on Γ(T ∗G̃), anchor map ρ̃ = π̃] and a differential

dΠ̃ = [Π̃, ·]SN on Γ(∧•TG̃). Since (TG̃, T ∗G̃) defines a Lie bialgebroid, its double

TG̃⊕ T ∗G̃ is a Courant algebroid.

Let ϕ be a map relating invariant sections of TG⊕ T ∗G and TG̃⊕ T ∗G̃ and

is defined by

ϕ : fava + gaw
a → gaṽ

a + faw̃a. (6.4.53)

ϕ is an isomorphism of invariant sections and ϕ2 = 1. It is obvious that the map

ϕ simply exchanges the role of g with g∗. Thus, let us refer to ϕ as a “Poisson-Lie

T-duality map” relating invariant sections of TG⊕ T ∗G and TG̃⊕ T ∗G̃.

Then we have the following result:

Theorem 6.19. (1) ϕ is orthogonal with respect to the the non-degenerate bilin-

ear form 〈 , 〉 on the invariant sections of TG⊕ T ∗G and TG̃⊕ T ∗G̃.

(2) ϕ preserves the Courant brackets on the invariant sections of TG ⊕ T ∗G

and TG̃⊕ T ∗G̃

ϕ([[fa
1 va +g1,aw

a, fa
2 va +g2,aw

a]]) = [[ϕ(fa
1 va +g1,aw

a), ϕ(fa
2 va +g2,aw

a)]]. (6.4.54)

Proof. (1) This is trivial from the definition.

(2) It is obvious that ϕ preserves the Lie brackets on D given by (2.2.26).

Therefore on the space of invariant sections, TG ⊕ T ∗G and TG̃ ⊕ T ∗G̃ are

isomorphic Courant algebroids related by the Poisson-Lie T-duality map ϕ.

This can be generalized to principal G and G̃-bundles over a common base

manifold M .

Let E be a principal G-bundle over M , and Ê be a principal G̃-bundle over

M . The invariant sections of TE ⊕ T ∗E decompose as (TM × g)⊕ (T ∗M × g∗)

while the invariant sections of TÊ⊕T ∗Ê decompose as (TM× g̃)⊕(T ∗M× g̃∗) ≡
(TM × g∗)⊕ (T ∗M × g). Thus the previous construction applies to principal G

and G̃-bundles in the obvious way, such that the Poisson-Lie T-duality map ϕ

simply exchanges the role of g and g∗ on the invariant sections of TE⊕ T ∗E and

TÊ ⊕ T ∗Ê.
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In the Abelian case when E is a principal Tn-bundle and Ê its dual space,

the Koszul brackets on T ∗E and T ∗Ê vanish, and the map ϕ coincides with the

T-duality map between invariant sections of TE ⊕ T ∗E and TÊ ⊕ T ∗Ê defined

previously in Section 5.3.2.
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Chapter 7

Non-geometric flux

compactification vs global

T-duality

7.1 Introduction and outline

(Super)string theory requires 10-dimensional spacetime, and one of the most chal-

lenging aspects of string theory is to reduce the 10-dimensional spacetime to our

4-dimensional world consistently. There is a systematic method developed by

Scherk and Schwarz [69] for reducing supergravities as a generalization of the

Kaluza-Klein reduction. Such a reduction of supergravities gives a lower di-

mensional supergravity, in particular when a non-Abelian Yang-Mills group is

involved.

The Scherk-Schwarz reduction on a D+d dimensional field theory with target

E on a d-dimensional internal manifold T gives rise to a D-dimensional field

theory with gauge symmetry, mass terms and a scalar potential. Kaloper and

Myers [44] showed that the Scherk-Schwarz reduction can be constructed on an

internal space which is a twisted torus, thus the Scherk-Schwarz reduction can be

generalized by introducing a flux labeled f c
ab corresponding to the twisting. In

string theory, this construction can be used to compactify a D + d-dimensional

string theory on d-dimensional (twisted) tori with the presence of background

H-flux. In the literature, the H-flux and the fluxes corresponding to the twisting

of the internal space are referred to as the geometric fluxes [41, 44, 74].

Shelton, Taylor and Wecht [74] then take the Scherk-Schwarz reduction of

string theory on twisted tori one step further by including compactifications on
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spaces which cannot be described geometrically. In their constructions additional

algebraic structures are introduced to be included on a given string background

which results in the string background no longer describing a manifold. These

algebraic structures are referred to as the non-geometric fluxes. The non-

geometric fluxes, labeled qab
c and rabc, appeared naturally by T-dualizing the

original internal manifold. As a result, Shelton, Taylor and Wecht proposed the

following T-duality rule

habc
Ta←→ f a

bc

Tb←→ qab
c

Tc←→ rabc,

where a, b, c denote the indices of the coordinates on the internal space.

It turns out that the brackets on the gauge algebras of the reduced theory

simply correspond to the Courant bracket on the invariant sections of the gen-

eralized tangent space TE ⊕ T ∗E when restricted on T. And the non-geometric

fluxes qab
c and rabc simply corresponds to the fluxes F(1)ab and F(0)abc introduced

by Bouwknegt, Evslin and Mathai [6] for the global T-duality.

This Chapter is organized as follows: In Section 7.2 we review the basic idea

of Scherk-Schwarz reduction and the gauge algebra of the reduced theory when

the internal space is a flat torus. In Section 7.3, we follow Kaloper and Myers’

generalization of Scherk-Schwarz reduction to the case when the internal space is

a twisted torus. Section 7.4 reviews the idea of non-geometric compactification

proposed by Shelton, Taylor and Wecht [74]. In Section 7.5 we show how to

obtain the full gauge algebra which is invariant under T-duality, while in Section

7.6 we show that the non-geometric fluxes introduced by Shelton, Taylor and

Wecht are related to the fluxes F(1) and F(0) introduced previously in Chapter 5.

This Chapter is collaborative work with Bouwknegt and Garretson [11].

7.2 Scherk-Schwarz reduction and gauge alge-

bra

Let us consider a D + d = 10-dimensional string theory compactified on a d-

dimensional internal manifold T which gives rise to a D-dimensional string theory

on the manifold M . Let ya (a = 1, . . . , d) be coordinates on T and xµ (µ =

1, . . . , D) be coordinates on M .

The Scherk-Schwarz reduction [69] of a string theory on a n-torus Tn gives a
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decomposition of the metric g, the B-field b and the gauge fields as follows

g = gµν(x)dx
µ ⊗ dxν + gab(x, y)A

a ⊗ Ab

= (gµν(x) + gabA
a
µA

b
ν)dx

µ ⊗ dxν + gab(x)A
b
νdy

a ⊗ dxν + gab(x)A
a
µdx

µ ⊗ dyb

+gab(x)dy
a ⊗ dyb,

b =
1

2
bµν(x)dx

µ ∧ dxν + bµa(x)dx
µ ∧ Aa +

1

2
bab(x, y)A

a ∧ Ab

= (
1

2
bµν(x) + bµa(x)A

a
ν +

1

2
bab(x, y)A

a
µA

b
ν)dx

µ ∧ dxν

+(bµa(x) +
1

2
babA

b
µ −

1

2
bbaA

b
µ)dxµ ∧ dya +

1

2
bab(x)dy

a ∧ dyb, (7.2.1)

where Aa = dya + Aa
µdx

µ and Aa
µdx

µ are Kaluza-Klein fields.

Similarly, a p-form gauge potential V decomposes as

V = V(p) + V(p−1)a ∧ Aa +
1

2
V(p−2)ab ∧ Aa ∧ Ab + . . . . (7.2.2)

Let us organize the B-field b in (7.2.1) as

bµν = bµν(x) + 2bµa(x)A
a
ν + bab(x, y)A

a
µA

b
ν ,

bµa = bµa(x) +
1

2
bab(x, y)A

b
µ −

1

2
bba(x, y)A

b
µ,

bab = bab(x, y). (7.2.3)

Similarly, we organize the metric g terms in (7.2.1) as

gµν = gµν(x) + gabA
a
µA

b
ν ,

gaν = gab(x)A
b
ν ,

gab = gab(x). (7.2.4)

One can introduce the flux habc and decompose bab(x, y) by including an explicit

dependence on the coordinate y as follows

bab(x, y) = bab(x) + habcy
c. (7.2.5)

By introducing the flux habc, the fields Aa
i arise from the metric and the B-field

transform under two types of reduced gauge transformations [44]:

(1) Kalb-Ramond gauge transformations with gauge algebra λa:

Let ξa be a basis of non-vanishing one-forms on the internal space. The B-field

b has a one-form gauge symmetry in the original 10-dimensional theory given by

a one-form Λ:

b→ b′ = b+ dΛ, Λ = λaξ
a + λidx

i. (7.2.6)



116 Non-geometric flux compactification vs global T-duality

If we set λi = 0, an explicit computation shows that the reduced two form B-field

transforms according to

b′µa = bµa + ∂µλa,

b′µν = bµν + F a
µν λa, (7.2.7)

where F a
µν = ∂µA

a
ν − ∂νA

a
µ is the field strength of Aa

i .

(2) Kaluza-Klein gauge transformations with gauge algebra ωa:

The forms dya transform under spacetime diffeomorphism according to dya →
dy′a = dya + dωa. In order to ensure the invariance of the internal space d-

bein, i.e dya +Aa
µdx

µ → dy′a +A′a
µ dx

µ is invariant, Aa
µ transforms under Kaluza-

Klein transformation according to Aa
µ → A′a

µ = Aa
µ − ∂µω

a. While the B-field b

transforms according to

b′µa = bµa + habcω
cAb

µ,

b′ab = bab + habcω
c,

b′µν = bµν + hµνaω
a + 3habcω

aAb
µA

c
ν , (7.2.8)

where hµνa = ∂µbνa − ∂νbµa is the field strength of bµa.

Those fields that are not listed above are invariant under the corresponding

transformations.

Let Xa be generators of the Kalb-Ramond gauge transformation and Za be

generators of the Kaluza-Klein gauge transformation.

The generators Za and Xa satisfy

[Za, Zb] = A c
ab Zc +BabcX

c,

[Za, X
b] = C b

ac X
c +D bc

a Zc,

[Xa, Xb] = EabcZc + F ab
cX

c, (7.2.9)

where A,B,C,D,E and F are some structure constants to be determined.

To find these structure constants, let us consider the successive application

of the Kalb-Ramond and the Kaluza-Klein gauge transformations. Let gi =

eiαa
i Za and hi = eiβi,aXa

be gauge transformations corresponding to the Kalb-

Ramond and the Kaluza-Klein gauge transformations with αa and βa the gauge

transformation parameters, respectively.

Now computing the forms g1g2 − g2g1, g1h2 − h2g1 and h1h2 − h2h1, and

comparing the products with the corresponding successive gauge transformations

given by (7.2.7) and (7.2.8), we obtain the structure constants in (7.2.9)

Babc = habc, otherwise 0. (7.2.10)
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Thus the gauge algebra becomes

[Za, Zb] = habcX
c,

[Za, X
b] = [Xa, Xb] = 0. (7.2.11)

7.3 Gauge algebra on a twisted torus

In the previous section, the 10-dimensional string theory is compactified on the

flat n-torus with coordinates ya. In this section, we will consider the case when

the internal space T is not restricted to be homeomorphic to fibred torus Tn, but

a space called the twisted torus.

To illustrate the idea of a twisted torus, let us first consider an example of a

twisted three-torus T provided in [43].

Consider string theory compatified on T3 with non-trivialH-flux. Let (y1, y2, y3)

be coordinates on T3, each with period 1. We start with a metric and H-flux

(which corresponds to h123 = k in the previous notation) given by

g = (dy1)2 + (dy2)2 + (dy3)2, H = kdy1 ∧ dy2 ∧ dy3. (7.3.1)

This metric has symmetry (y1, y2, y3) v (y1 + 1, y2, y3) v (y1, y2 + 1, y3) v

(y1, y2, y3 + 1). If we then choose a local gauge H = db, with b = ky3dy1 ∧ dy2,

we can do a T-duality transformation on the y1 or y2 coordinate. Performing

T-duality transformation on the y1-direction, the Buscher rules (3.2.9) give us

ĝ = (dŷ1 − ky3dy2)2 + (dy2)2 + (dy3)2, b̂ = 0 (≡ Ĥ = 0). (7.3.2)

The dual metric ĝ has symmetry (ỹ1, y2, y3) v (ỹ1 + ky2, y2, y3 + 1) v (ỹ1 +

1, y2, y3) v (ỹ1, y2 + 1, y3).

The shift of dy1 by ky3zdy in the metric turns T3 into a twisted three-torus.

The twisted three-torus is a manifold. The T-duality transformation mixes

the metric and the B-field b by an SL(2,Z) ∈ O(2, 2; Z) transformation which is

characterized by k ∈ Z.

To generalize the above construction to twisted d-torus T, let ξa be a basis of

one-forms on T defined by a vielbein σa
b(y) which is related to coordinate twisting

of ya

ξa = σa
b(y)dy

b. (7.3.3)

The inverse of the above map is

dya = σ a
b (y)ξb, (7.3.4)
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where σ a
b (y) is the inverse of σa

b.

The generators Za of the Kaluza-Klein gauge transformation are the Killing

vector fields generating the spacetime isometry of the internal space, and are dual

to the basis one-forms ξa. The Killing vector fields Za can be expressed as

Za = σ b
a ∂b, (7.3.5)

where ∂b = ∂
∂yb .

The Killing vector fields Za must satisfy

[Za, Zb] = f c
ab Zc, (7.3.6)

where f c
ab are some structure constants.

Let us include the flux f c
ab by a shifting of dya via

dya → dya − f a
bc y

bdyc. (7.3.7)

Thus the components of the metric g and B-field b in (7.2.1) now decompose

as:

gµν = gµν(x) + gabA
a
µA

b
ν ,

gµb = gab(x)A
a
µ − gad(x)f

d
cb A

a
µy

c,

gab = gab(x, y)− gad(x)f
d

cb y
c. (7.3.8)

and

bµν = bµν(x) + bµa(x)A
a
ν +

1

2
bab(x, y)A

a
µA

b
ν ,

bµa = bµa(x) +
1

2
bab(x, y)A

b
µ −

1

2
bba(x, y)A

b
µ − bµb(x)f

b
ca y

c − bcb(x, y)Ac
µf

b
ea y

e,

bab = bab(x, y)−
1

2
bad(x, y)f

d
be y

e − 1

2
bdb(x, y)f

d
ea ye. (7.3.9)

Therefore by including the flux f c
ab which is related to the twisting, the gauge

transformations (7.2.7) and (7.2.8) that appeared in the previous section are now

generalized as follows [44]:

(1) Kalb-Ramond gauge transformations with gauge algebra λa

b′ab(x) = bab − f c
ab λc,

b′µa(x) = bµa(x) + ∂µλa − f c
ab A

b
µλc,

b′µν(x) = bµν(x) + F a
µν λa +

1

2
f c

ab A
a
µA

b
νλc, (7.3.10)
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(2) Kaluza-Klein gauge transformations with gauge algebra ωa:

A′a
µ = Aa

µ − ∂µω
a − f a

bc ω
bAc

µ, (7.3.11)

b′µa(x) = bµa(x) + habcω
cAb

µ + f c
ab ω

bbµc +O(ω2),

b′ab(x) = bab(x) + habcω
c +O(ω2),

b′µν(x) = bµν(x) + hµνaω
a − 3habcω

aAb
µA

c
ν − f c

ab ω
ab[µcA

b
µ] +O(ω2).

Those fields that are not listed above are invariant under the corresponding trans-

formations.

Following the procedure in the previous section by applying successive gauge

transformations, the structure constants in (7.2.9) are found to be

A c
ab = −C c

ab = f c
ab , Babc = habc, otherwise 0. (7.3.12)

Thus the gauge algebras Za and Xa satisfy

[Za, Zb] = f c
ab Zc + habcX

c,

[Xa, Zb] = −f a
bc X

c,

[Xa, Xb] = 0. (7.3.13)

These brackets define a Lie algebra if we further require the following condi-

tions on h’s and f ’s:

f d
ab f

e
dc + f d

bc f
e

da + f d
ca f e

db = 0,

f d
ab hdce + f d

ce hadb + f d
bc hdae + f d

ae hcbd + f d
ca hdbe + f d

be hacd = 0.

7.4 Non-geometric flux compactification

First, let us recall the twisted three-torus example in Section 7.3. Denoting

f 1
23 = k, the shift of dy1 by f 1

23 y3dy2 in the metric (7.3.2) turns T3 into a

twisted three-torus. These fluxes f 1
23 ∈ Z are referred to as geometric fluxes

since they characterize twisting of the coordinates. As a result, T-dualizing on

the y1 direction takes:

h123
T1−→ f 1

23 . (7.4.1)

If we further perform another T-duality on the y2 direction, the Buscher rules

give us

ĝ =
1

1 + k2(y3)2
((dỹ1)2 + (dỹ2)2) + (dy3)2, b̂ =

ky3

1 + k2(y3)2
dỹ1 ∧ dỹ2. (7.4.2)
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Although the metric ĝ and B-field b̂ are defined locally, the string background

with such ĝ and b̂ is globally not a manifold. The T-duality transformation mixes

the metric and the B-field by a SL(2,Z) ∈ O(2, 2; Z) transformation which is

characterized by q12
3 = k ∈ Z, and q is called a non-geometric flux. Thus

T-duality takes

h123
T1←→ f 1

23
T2←→ q12

3. (7.4.3)

For general twisted d-torus, Shelton, Taylor and Wecht [74] proposed the

following T-duality transformation rules for non-geometric fluxes:

habc
Ta←→ f a

bc

Tb←→ qab
c

Tc←→ rabc, (7.4.4)

where habc corresponds to the NS-NS H-flux with three legs in the internal space,

f a
bc is the geometric flux corresponding to coordinate twisting, and qab

c and rabc

are both non-geometric fluxes.

7.5 Full gauge algebra under T-duality

Recall that in the previous sections 7.2 and 7.3, the gauge algebra Za associated

with the Kaluza-Klein gauge transformations (7.3.11) is the generator of the

spacetime isometry on the internal space, which corresponds to Killing vector

fields on the internal space T. Since the gauge algebra Xa associated with the

Kalb-Ramond gauge transformations (7.3.10) is the generator corresponding to

the one-form gauge symmetry of the B-field, thus Xa correspond to the one-form

Λ = λaξ
a and can be associated with the one-form basis ξa on the internal space

T.

Thus Za and Xa can be viewed as gauge algebras corresponding to invariant

vector fields and invariant one-form on the internal space T.

Let E be a T-bundle over M . Recall in Chapter 5, the T-duality map ϕ inter-

changes the invariant vector fields and the invariant one-forms on the invariant

section of TE⊕T ∗E. Thus we expect in the a-th coordinate on the internal space

T, Za ↔ Xa under the T-duality transformation.

For T a twisted d-torus, the gauge algebras Za and Xa satisfy

[Za, Zb] = f c
ab Zc + habcX

c,

[Xa, Zb] = −f a
bc X

c,

[Xa, Xb] = 0.
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where habc is the component of theH-flux on T, while f c
ab comes from the twisting

of the coordinates ya on T.

Now, applying the T-duality transformation to the above set of brackets, we

obtain

[Xa, Xb] = qab
cX

c + rabcZc,

[Xa, Zb] = qac
bZc,

[Za, Zb] = 0.

where qab
c is the flux T-dual to f c

ab and rabc is the flux T-dual to habc.

Thus for the algebras to be closed under T-duality, we need to modify the

brackets (7.3.13) by including the T-dual fluxes qab
c and rabc, i.e.

[Za, Zb] = f c
ab Zc + habcX

c,

[Xa, Zb] = −f a
bc X

c + qac
bZc,

[Xa, Xb] = qab
cX

c + rabcZc, (7.5.1)

and the fluxes are related via T-duality as

f c
ab

T←→ qab
c, habc

T←→ rabc. (7.5.2)

Next, we show that the brackets (7.5.1) on Za andXa correspond to a Courant

bracket on the generalized space of T.

Let us first introduce a basis {va} of vector field on T and a dual basis {wa}
of one-forms on T. Here we have introduced the notation va(f) = ∂a(f), while

the dual basis of one-forms are defined by

wa(vb) ≡ ıvb
wa = δa

b (7.5.3)

then wa satisfies

dwa =
1

2
f a

bc w
b ∧ wc. (7.5.4)

The Lie bracket between vector fields in this case is given by

[va, vb] = f c
ab vc, (7.5.5)

while the bracket on wa’s is given by

[wa, wb]∗ = [wa, wb]γ = qab
cw

c, (7.5.6)

where [ , ]γ is defined by (5.4.12).
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Recall in Section 5.4, the Dorfmann bracket on the generalized space can be

defined in terms of proto-bialgebroid structures θ = µ+γ+ϕ+ψ given by (5.4.1).

The Dorfmann brackets are given as follows:

X1 ◦X2 = [X1, X2]µ + ıX1ıX2ψ,

X1 ◦ Ξ2 = −ıΞ2dγX1 + Lµ
X1

Ξ2,

Ξ1 ◦X2 = Lγ
Ξ1
X2 − ıX2dµΞ1,

Ξ1 ◦ Ξ2 = [Ξ1,Ξ2]γ + ıΞ1ıΞ2ϕ, (7.5.7)

where X ∈ Γ(TT) and Ξ ∈ Γ(T ∗T). dµ and dγ are the quasi-differentials defined

by (5.4.7) while Lµ
X = dµıX + ıXdµ and Lγ

Ξ = dγıΞ + ıΞdγ.

On the basis {va} and {wa}, the Dorfmann bracket becomes

va ◦ vb = [va, vb] + ıvaıvb
ϕ = f c

ab vc + ϕabcw
c,

va ◦ wb = −ıwbdγva + Lµ
va
wb =

1

2
f b

ac w
c − 1

2
qbc

avc,

wa ◦ vb = Lγ
wavb − ıvb

dµw
a =

1

2
qac

bvc −
1

2
f a

bc w
c,

[wa, wb] = [wa, wb]∗ + ıwaıwbϕ = qab
cw

c + ϕabcvc. (7.5.8)

Anti-symmetrizing the above Dorfmann bracket, we obtain the Courant brack-

ets on va and wa as

[[va, vb]] = f c
ab vc + habcw

c,

[[va, w
b]] = f b

ac w
c − qbc

avc,

[[wa, wb]] = qab
cw

c + ϕabcvc. (7.5.9)

Thus comparing the charges of algebras in (7.5.1) with (7.5.9), we identify the

charges (f c
ab , q

ab
c, habc, r

abc) of (7.5.1) with (f c
ab , q

ab
c, habc, ϕ

abc) of (7.5.9).

7.6 Global T-duality and non-geometric flux com-

pactification

In this section we relate the non-geometric flux compactification with the global

T-duality discussed previously in Chapter 5.

Let E be the target manifold of a 10-dimensional σ-model compactified on a

d-dimensional internal space T over a manifold M . Let us re-define coordinates

on the internal manifold T. Let yi (i = 1, . . . , d) be the coordinates on T and we
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choose from T n-coordinates ya (1, . . . , n) to carry out T-duality transformations

and denote the rest as yµ (µ = n+ 1, . . . , d).

Recall in Chapter 5 that T-duality exchanges the role of invariant vector fields

with invariant one-forms on the generalized tangent space TE ⊕ T ∗E via the T-

duality map ϕ defined by (5.3.4). As remarked in the previous section, this is

equivalent to the exchange between Za and Xa.

Now, recall that the generalized Courant bracket on invariant sections of TE⊕
T ∗E given in Section 5.3.2 is

[[(x1, f1,a; ξ1, g
a
1), (x2, f2,a; ξ2, g

a
2)]]H,F = ([x1, x2], (7.6.1)

(x1f2,a − x2f1,a) + ıx1x2F(2)a + gb
2ıx1F(1)ab − gb

1ıx2F(1)ab − gb
1g

c
2F(0)abc;

(Lx1ξ2 − Lx2ξ1)−
1

2
d(ıx1ξ2 − ıx2ξ1) + ıx1ıx2H(3) +

(ga
2 ıx1F(2)a − ga

1 ıx2F(2)a) + (f2,aıx1H
a
(2) − f1,aıx2H

a
(2))− f1,af2,bH

ab
(1)

−ga
1g

b
2F(1)ab +

1

2
(df1,ag

a
2 + f2,adg

a
1 − f1,adg

a
2 − df2,ag

a
1), x1(g

a
2)

−x2(g
a
1) + ıx1ıx2H

a
2 + (f2,aıx1H

ab
(1) − f1,aıx2H

ab
(1))− f1,bf2,cH

abc
(0) ),

where x and ξ are invariant vector fields and one-forms on M , and fa and ga

correspond to invariant vector fields and one-form, taking the value Za and Xa

respectively.

The generalized Courant bracket (7.6.1) on a basis of vector fields va and

one-forms wa decomposes as

[[vµ, vν ]]H,F = f γ
µν vγ + F(2)a(·, vµ, vν) +H(3)(vµ, vν , ·) +Ha

(2)(·, vµ, vν),

[[va, vµ]]H,F = Ha
(2)(va, vµ, ·) +Hab

(1)(va, ·, vµ)

[[va, vb]]H,F = −Hab
(1)(va, vb, ·)−Habc

(0) (va, vb, ·),
[[vµ, w

a]]H,F = F(1)ab(vµ, w
a, ·) + F(2)a(vµ, ·, wa),

[[wa, wb]]H,F = −F(1)ab(·, wa, wb)− F(0)abc(w
a, wb, ·),

[[va, w
b]]H,F = 0, (7.6.2)

where H(i) ∈ Γ(∧3T ∗T) has (3 − i)-legs in the T-duality coordinates ya, and

F(i) ∈ Γ(∧iT ∗T⊕ ∧3−iTT) has all three legs in the T-duality coordinates.

Then let us decompose the brackets (7.5.1) in terms of coordinates of yi and
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ya as follows:

[Zµ, Zµ] = f a
µν Za + f γ

µν Zγ + hµνaX
a + hµνγX

γ,

[Zµ, Za] = f b
µa Zb + f ν

µa Zν + hµabX
b + hµaνX

ν ,

[Za, Zb] = f c
ab Zc + f µ

ab Zµ + habµX
µ + habcX

c,

[Xa, Xb] = qab
cX

c + qab
µZ

µ + rabcZc + rabµZµ,

[Za, X
b] = f b

ac X
c + f b

aµ Xµ − qbc
aZc − qbµ

aZµ. (7.6.3)

Comparing (7.6.1) and (7.6.3) gives us the following correspondence between

the charges of the algebra (7.6.3) and the fluxes:

hµνγ ≡ H(3)(vµ, vν , vγ) haµν ≡ Ha
(2)(va, vµ, vν),

habµ ≡ −Hab
(1)(va, vb, vµ), habc ≡ −Habc

(0) (va, vb, vc),

f a
µν ≡ F(2)a(vµ, vν , w

a), qab
µ ≡ −F(1)ab(vµ, w

a, wb) rabc ≡ −F(0)abc(w
a, wb, wc),

otherwise 0. (7.6.4)

Thus the gauge algebras (7.6.3) become

[Zµ, Zν ] = hµνaX
a + hµνγX

γ,

[Zµ, Za] = hµabX
b + hµaνX

ν ,

[Za, Zb] = habµX
µ + habcX

c,

[Zµ, X
a] = f a

µν Xν − qab
µZb,

[Xa, Xb] = qab
µX

µ + rabcZc,

[Za, X
b] = 0. (7.6.5)

Therefore the charges (f c
ab , q

ab
c, r

abc, habc) appear in (7.4.4) are in correspon-

dence with the fluxes (F(2)a, F(1)ab, F(0)abc, H
abc
(0) ) coming from the global T-duality.

These brackets are invariant under T-duality transformation. Let ϕ : Xa ↔
Za be a T-duality map, and consider the T-duality map ϕ as a homomorphism

of the gauge algebras, i.e. ϕ[Zi, Zj] = [ϕ(Zi), ϕ(Zj)], ϕ[Zi, X
j] = [ϕ(Zi), ϕ(Xj)]

and ϕ[X i, Xj] = [ϕ(X i), ϕ(Xj)] implies the following T-duality transformation

between the charges:

hµνγ ↔ hµνγ, haµν ↔ f a
µν habµ ↔ qab

µ, habc ↔ rabc. (7.6.6)

This transformation rule can be rewritten in terms of H’s and F ’s using the

correspondence (7.6.4), as a result, T-duality changes the fluxes according to

(H(3), H
a
(2), H

ab
(1), H

abc
(0) )

T←→ (H(3), F(2)a, F(1)ab, F(0)abc). (7.6.7)
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This agrees with the global T-duality discussed previously in Chapter 5.

As a conclusion, the non-geometric flux transformation rule (7.4.4) proposed

by Shelton, Taylor and Wecht [74] is a particular example of the global T-duality

transformation rules introduced by Bouwknegt, Evslin and Mathai [6] when con-

sidering T-duality transformation in one coordinate at a time.
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