
CHAPTER 1

BASIC TOPOLOGY

Topology, sometimes referred to as “the mathematics of continuity”,
or “rubber sheet geometry”, or “the theory of abstract topological spaces”,
is all of these, but, above all, it is a language, used by mathematicians in
practically all branches of our science. In this chapter, we will learn the
basic words and expressions of this language as well as its “grammar”, i.e.
the most general notions, methods and basic results of topology. We will
also start building the “library” of examples, both “nice and natural” such as
manifolds or the Cantor set, other more complicated and even pathological.
Those examples often possess other structures in addition to topology and
this provides the key link between topology and other branches of geometry.
They will serve as illustrations and the testing ground for the notions and
methods developed in later chapters.

1.1. Topological spaces

The notion of topological space is defined by means of rather simple
and abstract axioms. It is very useful as an “umbrella” concept which al-
lows to use the geometric language and the geometric way of thinking in a
broad variety of vastly different situations. Because of the simplicity and
elasticity of this notion, very little can be said about topological spaces in
full generality. And so, as we go along, we will impose additional restric-
tions on topological spaces, which will enable us to obtain meaningful but
still quite general assertions, useful in many different situations in the most
varied parts of mathematics.

1.1.1. Basic definitions and first examples.

DEFINITION 1.1.1. A topological space is a pair (X, T ) where X is
a set and T is a family of subsets of X (called the topology of X) whose
elements are called open sets such that

(1) ∅, X ∈ T (the empty set and X itself are open),
(2) if {Oα}α∈A ⊂ T then

⋃
α∈A Oα ∈ T for any set A (the union of

any number of open sets is open),
(3) if {Oi}k

i=1 ⊂ T , then
⋂k

i=1 Oi ∈ T (the intersection of a finite
number of open sets is open).
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If x ∈ X , then an open set containing x is said to be an (open) neigh-
borhood of x.

We will usually omit T in the notation and will simply speak about a
“topological space X” assuming that the topology has been described.

The complements to the open sets O ∈ T are called closed sets .
EXAMPLE 1.1.2. Euclidean space Rn acquires the structure of a topo-

logical space if its open sets are defined as in the calculus or elementary real
analysis course (i.e a set A ⊂ Rn is open if for every point x ∈ A a certain
ball centered in x is contained in A).

EXAMPLE 1.1.3. If all subsets of the integers Z are declared open, then
Z is a topological space in the so–called discrete topology.

EXAMPLE 1.1.4. If in the set of real numbers R we declare open (be-
sides the empty set and R) all the half-lines {x ∈ R|x ≥ a}, a ∈ R, then we
do not obtain a topological space: the first and third axiom of topological
spaces hold, but the second one does not (e.g. for the collection of all half
lines with positive endpoints).

EXAMPLE 1.1.5. Example 1.1.2 can be extended to provide the broad
class of topological spaces which covers most of the natural situations.

Namely, a distance function or a metric is a function of two variables
on a setX (i,e, a function of the Cartesian productX ×X ofX with itself)
which is nonnegative, symmetric, strictly positive outside the diagonal, and
satisfies the triangle inequality (see Definition 3.1.1). Then one defines an
(open) ball or radius r > 0 around a point x ∈ X as the set of all points
at a distance less that r from X , and an open subset of X as a set which
together with any of its points contains some ball around that point. It
follows easily from the properties of the distance function that this defines
a topology which is usually called the metric topology. Naturally, different
metrics may define the same topology. We postpone detailed discussion of
these notions till Chapter 3 but will occasionally notice how natural metrics
appear in various examples considered in the present chapter.

The closure Ā of a set A ⊂ X is the smallest closed set containing A,
that is, Ā :=

⋂
{C A ⊂ C and C closed}. A set A ⊂ X is called dense

(or everywhere dense) if Ā = X . A set A ⊂ X is called nowhere dense if
X \ Ā is everywhere dense.

A point x is said to be an accumulation point (or sometimes limit point)
of A ⊂ X if every neighborhood of x contains infinitely many points of A.

A point x ∈ A is called an interior point of A if A contains an open
neighborhood of x. The set of interior points of A is called the interior of
A and is denoted by Int A. Thus a set is open if and only if all of its points
are interior points or, equivalently A = Int A.
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A point x is called a boundary point ofA if it is neither an interior point
of A nor an interior point ofX \A. The set of boundary points is called the
boundary of A and is denoted by ∂A. Obviously Ā = A ∪ ∂A. Thus a set
is closed if and only if it contains its boundary.

EXERCISE 1.1.1. Prove that for any set A in a topological space we
have ∂A ⊂ ∂A and ∂(Int A) ⊂ ∂A. Give an example when all these three
sets are different.

A sequence {xi}i∈N ⊂ X is said to converge to x ∈ X if for every open
setO containing x there exists anN ∈ N such that {xi}i>N ⊂ O. Any such
point x is called a limit of the sequence.

EXAMPLE 1.1.6. In the case of Euclidean space Rn with the standard
topology, the above definitions (of neighborhood, closure, interior, conver-
gence, accumulation point) coincide with the ones familiar from the calcu-
lus or elementary real analysis course.

EXAMPLE 1.1.7. For the real line R with the discrete topology (all sets
are open), the above definitions have the following weird consequences:
any set has neither accumulation nor boundary points, its closure (as well
as its interior) is the set itself, the sequence {1/n} does not converge to 0.

Let (X, T ) be a topological space. A set D ⊂ X is called dense or
everywhere dense in X if D̄ = X . A set A ⊂ X is called nowhere dense if
X \ Ā is everywhere dense.

The space X is said to be separable if it has a finite or countable dense
subset. A point x ∈ X is called isolated if the one–point set {x} is open.

EXAMPLE 1.1.8. The real line R in the discrete topology is not separa-
ble (its only dense subset is R itself) and each of its points is isolated (i.e. is
not an accumulation point), but R is separable in the standard topology (the
rationals Q ⊂ R are dense).
1.1.2. Base of a topology. In practice, it may be awkward to list all

the open sets constituting a topology; fortunately, one can often define the
topology by describing a much smaller collection, which in a sense gener-
ates the entire topology.

DEFINITION 1.1.9. A base for the topology T is a subcollection β ⊂ T
such that for any O ∈ T there is a B ∈ β for which we have x ∈ B ⊂ O.

Most topological spaces considered in analysis and geometry (but not
in algebraic geometry) have a countable base. Such topological spaces are
often called second countable.

A base of neighborhoods of a point x is a collection B of open neigh-
borhoods of x such that any neighborhood of x contains an element of B.
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If any point of a topological space has a countable base of neighborhoods,
then the space (or the topology) is called first countable.

EXAMPLE 1.1.10. Euclidean space Rn with the standard topology (the
usual open and closed sets) has bases consisting of all open balls, open balls
of rational radius, open balls of rational center and radius. The latter is a
countable base.

EXAMPLE 1.1.11. The real line (or any uncountable set) in the discrete
topology (all sets are open) is an example of a first countable but not second
countable topological space.

PROPOSITION 1.1.12. Every topological space with a countable space
is separable.

PROOF. Pick a point in each element of a countable base. The resulting
set is at most countable. It is dense since otherwise the complement to its
closure would contain an element of the base. !
1.1.3. Comparison of topologies. A topology S is said to be stronger

(or finer) than T if T ⊂ S, and weaker (or coarser) if S ⊂ T .
There are two extreme topologies on any set: the weakest trivial topol-

ogy with only the whole space and the empty set being open, and the
strongest or finest discrete topology where all sets are open (and hence
closed).

EXAMPLE 1.1.13. On the two point set D, the topology obtained by
declaring open (besidesD and∅) the set consisting of one of the points (but
not the other) is strictly finer than the trivial topology and strictly weaker
than the discrete topology.

PROPOSITION 1.1.14. For any set X and any collection C of subsets of
X there exists a unique weakest topology for which all sets from C are open.

PROOF. Consider the collection T which consist of unions of finite in-
tersections of sets from C and also includes the whole space and the empty
set. By properties (2) and (3) of Definition 1.1.1 in any topology in which
sets from C are open the sets from T are also open. Collection T satisfies
property (1) of Definition 1.1.1 by definition, and it follows immediately
from the properties of unions and intersections that T satisfies (2) and (3)
of Definition 1.1.1. !

Any topology weaker than a separable topology is also separable, since
any dense set in a stronger topology is also dense in a weaker one.

EXERCISE 1.1.2. How many topologies are there on the 2–element set
and on the 3–element set?
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EXERCISE 1.1.3. On the integers Z, consider the profinite topology for
which open sets are defined as unions (not necessarily finite) of arithmetic
progressions (non-constant and infinite in both directions). Prove that this
defines a topology which is neither discrete nor trivial.

EXERCISE 1.1.4. Define Zariski topology in the set of real numbers
by declaring complements of finite sets to be open. Prove that this defines
a topology which is coarser than the standard one. Give an example of a
sequence such that all points are its limits.

EXERCISE 1.1.5. On the set R ∪ {∗}, define a topology by declaring
open all sets of the form {∗} ∪ G, where G ⊂ R is open in the standard
topology of R.

(a) Show that this is indeed a topology, coarser than the discrete topol-
ogy on this set.

(b) Give an example of a convergent sequence which has two limits.

1.2. Continuous maps and homeomorphisms

In this section, we study, in the language of topology, the fundamen-
tal notion of continuity and define the main equivalence relation between
topological spaces – homeomorphism. We can say (in the category the-
ory language) that now, since the objects (topological spaces) have been
defined, we are ready to define the corresponding morphisms (continuous
maps) and isomorphisms (topological equivalence or homeomorphism). Categorical language:

preface, appendix
reference?1.2.1. Continuous maps. The topological definition of continuity is

simpler and more natural than the ε, δ definition familiar from the elemen-
tary real analysis course.

DEFINITION 1.2.1. Let (X, T ) and (Y,S) be topological spaces. A
map f : X → Y is said to be continuous if O ∈ S implies f−1(O) ∈ T
(preimages of open sets are open):

f is an open map if it is continuous and O ∈ T implies f(O) ∈ S
(images of open sets are open);

f is continuous at the point x if for any neigborhood A of f(x) in Y the
preimage f−1(A) contains a neighborhood of x.

A function f from a topological space to R is said to be upper semicon-
tinuous if f−1(−∞, c) ∈ T for all c ∈ R:

lower semicontinuous if f−1(c,∞) ∈ T for c ∈ R.
EXERCISE 1.2.1. Prove that a map is continuous if and only if it is

continuous at every point.

Let Y be a topological space. For any collection F of maps from a
set X (without a topology) to Y there exists a unique weakest topology on
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R

]−1, 1[

FIGURE 1.2.1. The open interval is homeomorphic to the
real line

X which makes all maps from F continuous; this is exactly the weakest
topology with respect to which preimages of all open sets in Y under the
maps from F are open. If F consists of a single map f , this topology is
sometimes called the pullback topology on X under the map f .

EXERCISE 1.2.2. Let p be the orthogonal projection of the squareK on
one of its sides. Describe the pullback topology on K. Will an open (in the
usual sense) disk inside K be an open set in this topology?

1.2.2. Topological equivalence. Just as algebraists study groups up to
isomorphism or matrices up to a linear conjugacy, topologists study (topo-
logical) spaces up to homeomorphism.

DEFINITION 1.2.2. A map f : X → Y between topological spaces is a
homeomorphism if it is continuous and bijective with continuous inverse.

If there is a homeomorphism X → Y , then X and Y are said to be
homeomorphic or sometimes topologically equivalent.

A property of a topological space that is the same for any two homeo-
morphic spaces is said to be a topological invariant .

The relation of being homeomorphic is obviously an equivalence rela-
tion (in the technical sense: it is reflexive, symmetric, and transitive). Thus
topological spaces split into equivalence classes, sometimes called homeo-
morphy classes. In this connection, the topologist is sometimes described
as a person who cannot distinguish a coffee cup from a doughnut (since
these two objects are homeomorphic). In other words, two homeomorphic
topological spaces are identical or indistinguishable from the intrinsic point
of view in the same sense as isomorphic groups are indistinguishable from
the point of view of abstract group theory or two conjugate n× n matrices
are indistinguishable as linear transformations of an n-dimensional vector
space without a fixed basis.

there is a problem with
positioning this figure in the

page EXAMPLE 1.2.3. The figure shows how to construct homeomorphisms
between the open interval and the open half-circle and between the open
half-circle and the real line R, thus establishing that the open interval is
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homeomorphic to the real line.

EXERCISE 1.2.3. Prove that the sphere S2 with one point removed is
homeomorphic to the plane R2.

EXERCISE 1.2.4. Prove that any open ball is homeomorphic to R3.

EXERCISE 1.2.5. Describe a topology on the set R2 ∪ {∗} which will
make it homeomorphic to the sphere S2.

To show that certain spaces are homeomorphic one needs to exhibit a
homeomorphism; the exercises above give basic but important examples
of homeomorphic spaces; we will see many more examples already in the
course of this chapter. On the other hand, in order to show that topological
spaces are not homeomorphic one need to find an invariant which distin-
guishes them. Let us consider a very basic example which can be treated
with tools from elementary real analysis.

EXAMPLE 1.2.4. In order to show that closed interval is not homeo-
morphic to an open interval (and hence by Example 1.2.3 to the real line)
notice the following. Both closed and open interval as topological spaces
have the property that the only sets which are open and closed at the same
time are the space itself and the empty set. This follows from characteri-
zation of open subsets on the line as finite or countable unions of disjoint
open intervals and the corresponding characterization of open subsets of a
closed interval as unions of open intervals and semi-open intervals contain-
ing endpoints. Now if one takes any point away from an open interval
the resulting space with induced topology (see below) will have two proper
subsets which are open and closed simultaneously while in the closed (or
semi-open) interval removing an endpoint leaves the space which still has
no non-trivial subsets which are closed and open.

In Section 1.6 we will develop some of the ideas which appeared in this
simple argument systematically.

The same argument can be used to show that the real lineR is not home-
omorphic to Euclidean space Rn for n ≥ 2 (see Exercise 1.10.7). It is not
sufficient however for proving that R2 is not homeomorphic R3. Never-
theless, we feel that we intuitively understand the basic structure of the
space Rn and that topological spaces which locally look like Rn (they are
called (n-dimensional) topological manifolds) are natural objects of study
in topology. Various examples of topological manifolds will appear in the
course of this chapter and in Section 1.8 we will introduce precise defini-
tions and deduce some basic properties of topological manifolds.
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1.3. Basic constructions

1.3.1. Induced topology. If Y ⊂ X , then Y can be made into a topo-
logical space in a natural way by taking the induced topology

TY := {O ∩ Y O ∈ T }.

FIGURE 1.3.1. Induced topology

EXAMPLE 1.3.1. The topology induced from Rn+1 on the subset

{(x1, . . . , xn, xn+1) :
n+1∑

i=1

x2
i = 1}

produces the (standard, or unit) n–sphere Sn. For n = 1 it is called the
(unit) circle and is sometimes also denoted by T.

EXERCISE 1.3.1. Prove that the boundary of the square is homeomor-
phic to the circle.

EXERCISE 1.3.2. Prove that the sphere S2 with any two points removed
is homeomorphic to the infinite cylinderC := {(x, y, z) ∈ R3|x2+y2 = 1}.

EXERCISE 1.3.3. Let S := {(x, y, z) ∈ R3 | z = 0, x2 + y2 = 1}.
Show that R3 \ S can be mapped continuously onto the circle.

1.3.2. Product topology. If (Xα, Tα), α ∈ A are topological spaces
and A is any set, then the product topology on

∏
α∈A X is the topology

determined by the base
{∏

α

Oα Oα ∈ Tα, Oα += Xα for only finitely many α
}

.

EXAMPLE 1.3.2. The standard topology in Rn coincides with the prod-
uct topology on the product of n copies of the real line R.
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X

Y

FIGURE 1.3.2. Basis element of the product topology

EXAMPLE 1.3.3. The product of n copies of the circle is called the
n–torus and is usually denoted by Tn. The n– torus can be naturally identi-
fied with the following subset of R2n:

{(x1, . . . x2n) : x2
2i−1 + x2

2i = 1, i = 1, . . . , n.}
with the induced topology.

EXAMPLE 1.3.4. The product of countably many copies of the two–
point space, each with the discrete topology, is one of the representations of
the Cantor set (see Section 1.7 for a detailed discussion).

EXAMPLE 1.3.5. The product of countably many copies of the closed
unit interval is called the Hilbert cube. It is the first interesting example
of a Hausdorff space (Section 1.4) “too big” to lie inside (that is, to be
homeomorphic to a subset of) any Euclidean space Rn. Notice however,
that not only we lack means of proving the fact right now but the elementary
invariants described later in this chapter are not sufficient for this task either.

1.3.3. Quotient topology. Consider a topological space (X, T ) and
suppose there is an equivalence relation ∼ defined on X . Let π be the nat-
ural projection of X on the set X̂ of equivalence classes. The identification
space or quotient space X/∼ := (X̂,S) is the topological space obtained
by calling a set O ⊂ X̂ open if π−1(O) is open, that is, taking on X̂ the
finest topology for which π is continuous. For the moment we restrict our-
selves to “good” examples, i.e. to the situations where quotient topology is
natural in some sense. However the reader should be aware that even very
natural equivalence relations often lead to factors with bad properties rang-
ing from the trivial topology to nontrivial ones but lacking basic separation
properties (see Section 1.4). We postpone description of such examples till
Section 1.9.2.
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EXAMPLE 1.3.6. Consider the closed unit interval and the equivalence
relation which identifies the endpoints. Other equivalence classes are single
points in the interior. The corresponding quotient space is another represen-
tation of the circle.

The product of n copies of this quotient space gives another definition
of the n–torus.

EXERCISE 1.3.4. Describe the representation of the n–torus from the
above example explicitly as the identification space of the unit n–cube In:

{(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . n.

EXAMPLE 1.3.7. Consider the following equivalence relation in punc-
tured Euclidean space Rn+1 \ {0}:

(x1, . . . , xn+1) ∼ (y1, . . . , yn+1) iff yi = λxi for all i = 1, . . . , n + 1

with the same real number λ. The corresponding identification space is
called the real projective n–space and is denoted by RP (n).

A similar procedure in which λ has to be positive gives another defini-
tion of the n–sphere Sn.

EXAMPLE 1.3.8. Consider the equivalence relation in Cn+1 \ {0}:
(x1, . . . , xn+1) ∼ (y1, . . . , yn+1) iff yi = λxi for all i = 1, . . . , n + 1

with the same complex number λ. The corresponding identification space
is called the complex projective n–space and is detoted by CP (n).

EXAMPLE 1.3.9. The map E : [0, 1] → S1, E(x) = exp 2πix es-
tablishes a homeomorphism between the interval with identified endpoints
(Example 1.3.6) and the unit circle defined in Example 1.3.1.

EXAMPLE 1.3.10. The identification of the equator of the 2-sphere to a
point yields two spheres with one common point.

FIGURE 1.3.3. The sphere with equator identified to a point
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EXAMPLE 1.3.11. Identifying the short sides of a long rectangle in the
natural way yields the lateral surface of the cylinder (which of course is
homeomorphic to the annulus), while the identification of the same two
sides in the “wrong way” (i.e., after a half twist of the strip) produces the
famous Möbius strip. We assume the reader is familiar with the failed ex-
periments of painting the two sides of the Möbius strip in different colors or
cutting it into two pieces along its midline. Another less familiar but amus-
ing endeavor is to predict what will happen to the physical object obtained
by cutting a paper Möbius strip along its midline if that object is, in its turn,
cut along its own midline.

FIGURE 1.3.4. The Möbius strip

EXERCISE 1.3.5. Describe a homeomorphism between the torus Tn

(Example 1.3.3) and the quotient space described in Example 1.3.6 and the
subsequent exercise.

EXERCISE 1.3.6. Describe a homeomorphism between the sphere Sn

(Example 1.3.1) and the second quotient space of Example 1.3.7.

EXERCISE 1.3.7. Prove that the real projective space RP (n) is homeo-
morphic to the quotient space of the sphere Sn with respect to the equiva-
lence relation which identifies pairs of opposite points: x and −x.

EXERCISE 1.3.8. Consider the equivalence relation on the closed unit
ball Dn in Rn:

{(x1, . . . , xn) :
n∑

i=1

x2
i ≤ 1}

which identifies all points of ∂Dn = Sn−1 and does nothing to interior
points. Prove that the quotient space is homeomorphic to Sn.

EXERCISE 1.3.9. Show that CP (1) is homeomorphic to S2.
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DEFINITION 1.3.12. The cone Cone(X) over a topological spaceX is
the quotient space obtained by identifying all points of the form (x, 1) in
the product (X × [0, 1] (supplied with the product topology).

The suspension Σ(X) of a topological space X is the quotient space
of the product X × [−1, 1] obtained by identifying all points of the form
x × 1 and identifying all points of the form x × −1. By convention, the
suspension of the empty set will be the two-point set S0.

The join X ∗ Y of two topological spaces X and Y , roughly speaking,
is obtained by joining all pairs of points (x, y), x ∈ X , y ∈ Y , by line
segments and supplying the result with the natural topology; more precisele,
X ∗ Y is the quotient space of the product X × [−1, 1] × Y under the
following identifications:

(x,−1, y) ∼ (x,−1, y′) for any x ∈ X and all y, y′ ∈ Y ,
(x, 1, y) ∼ (x′, 1, y) for any y ∈ Y and all x, x′ ∈ X .

EXAMPLE 1.3.13. (a) Cone(∗) = D1 and Cone(Dn−1) = Dn for n > 1.
(b) The suspension Σ(Sn) of the n-sphere is the (n + 1)-sphere Sn+1.
(c) The join of two closed intervals is the 3-simplex (see the figure).

FIGURE 1.3.5. The 3-simplex as the join of two segments

EXERCISE 1.3.10. Show that the cone over the sphere Sn is (homeo-
morphic to) the disk Dn+1.

EXERCISE 1.3.11. Show that the join of two spheres Sk and Sl is (home-
omorphic to) the sphere Sk+l+1.

EXERCISE 1.3.12. Is the join operation on topological spaces associa-
tive?

1.4. Separation properties

Separation properties provide one of the approaches to measuring how
fine is a given topology.
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x y

T1 Hausdorff T4

FIGURE 1.4.1. Separation properties

1.4.1. T1, Hausdorff, and normal spaces. Here we list, in decreas-
ing order of generality, the most common separation axioms of topological
spaces.

DEFINITION 1.4.1. A topological space (X, T ) is said to be a
(T1) space if any point is a closed set. Equivalently, for any pair of

points x1, x2 ∈ X there exists a neighborhood of x1 not containing x2;
(T2) or Hausdorff space if any two distinct points possess nonintersect-

ing neighborhoods;
(T4) or normal space if it is Hausdorff and any two closed disjoint

subsets possess nonintersecting neighborhoods. 1

It follows immediately from the definition of induced topology that any On the picture the interior
does not looks closed but

the exterior does
of the above separation properties is inherited by the induced topology on
any subset.

EXERCISE 1.4.1. Prove that in a (T2) space any sequence has no more
than one limit. Show that without the (T2) condition this is no longer true.

EXERCISE 1.4.2. Prove that the product of two (T1) (respectively Haus-
dorff) spaces is a (T1) (resp. Hausdorff) space.

REMARK 1.4.2. We will see later (Section 1.9) that even very naturally
defined equivalence relations in nice spaces may produce quotient spaces
with widely varying separation properties.

The word “normal” may be understood in its everyday sense like “com-
monplace” as in “a normal person”. Indeed, normal topological possess
many properties which one would expect form commonplaces notions of
continuity. Here is an examples of such property dealing with extension of
maps:

THEOREM 1.4.3. [Tietze] If X is a normal topological space, Y ⊂ X
is closed, and f : Y → [−1, 1] is continuous, then there is a continuous

1Hausdorff (or (T1)) assumption is needed to ensure that there are enough closed sets;
specifically that points are closed sets. Otherwise trivial topology would satisfy this prop-
erty.
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extension of f to X , i.e., a continuous map F : X → [−1, 1] such that
F |Y = f .

The proof is based on the following fundamental result, traditionally
called Urysohn Lemma, which asserts existence of many continuous maps
from a normal space to the real line and thus provided a basis for introducing
measurements in normal topological spaces (see Theorem 3.5.1) and hence
by Corollary 3.5.3 also in compact Hausdorff spaces.

THEOREM 1.4.4. [Urysohn Lemma] IfX is a normal topological space
and A, B are closed subsets of X , then there exists a continuous map u :
X → [0, 1] such that u(A) = {0} and u(B) = {1}.

PROOF. Let V be en open subset ofX and U any subset ofX such that
U ⊂ V . Then there exists an open set W for which U ⊂ W ⊂ W ⊂ V .
Indeed, for W we can take any open set containing U and not intersecting
an open neighborhood of X \ V (such aW exists because X is normal).

Applying this to the sets U := A and V := X \ B, we obtain an
“intermediate” open set A1 such that

(1.4.1) A ⊂ A1 ⊂ X \B,

where A1 ⊂ X \B. Then we can introduce the next intermediate open sets
A′

1 and A2 so as to have

(1.4.2) A ⊂ A′
1 ⊂ A1 ⊂ A2 ⊂ X \B,

where each set is contained, together with its closure, in the next one.
For the sequence (1.4.1), we define a function u1 : X → [0, 1] by setting

u1(x) =






0 for x ∈ A ,

1/2 for x ∈ A1 \ A,

1 for X \ A1.

For the sequence (1.4.2), we define a function u2 : X → [0, 1] by setting

u2(x) =






0 for x ∈ A ,

1/4′ for x ∈ A′
1 \ A ,

1/2 for x ∈ A1 \ A′
1,

3/4 for x ∈ A2 \ A1,

1 for x ∈ X \ A2.
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Then we construct a third sequence by inserting intermediate open sets
in the sequence (1.4.2) and define a similar function u3 for this sequence,
and so on. maybe insert a picture

Obviously, u2(x) ≥ u1(x) for all x ∈ X . Similarly, for any n > 1
we have un+1(x) ≥ un(x) for all x ∈ X , and therefore the limit function
u(x) := limn→infty un(x) exists. It only remains to prove that u is continu-
ous.

Suppose that at the nth step we have constructed the nested sequence of
sets corresponding to the function un

A ⊂ A1 ⊂ . . . Ar ⊂ X \B,

where Ai ⊂ Ai+1. Let A0 := int A be the interior of A, let A−1 := ∅, and
Ar+1 := X . Consider the open sets Ai+1 \ Ai−1, i = 0, 1, . . . , r. Clearly,

X =
r⋃

i=0

(Āi \ Ai−1) ⊂
r⋃

i=0

(Ai+1 \ Ai−1),

so that the open sets Ai+1 \ Ai−1 cover the entire space X .
On each set Ai+1 \ Ai−1 the function takes two values that differ by

1/2n. Obviously,

|u(x)− un(x)| ≤
∞∑

k=n+1

1/2k = 1/2n.

For each point x ∈ X let us choose an open neighborhood of the form
Ai+1 \ Ai−1. The image of the open set Ai+1 \ Ai−1 is contained in the
interval (u(x)− ε, u(x) + ε), where ε < 1/2n. Taking ε →∞, we see that
u is continuous. !

Now let us deduce Theorem 1.4.3 from the Urysohn lemma.
To this end, we put

rk :=
1

2

(2

3

)k

, k = 1, 2, . . . .

Let us construct a sequence of functions f1, f2, . . . on X and a sequence of
functions g1, g2, . . . on Y by induction. First, we put f1 := f . Suppose that
the functions f1, . . . , fk have been constructed. Consider the two closed
disjoint sets

Ak := {x ∈ X | fk(x) ≤ −rk} and Bk := {x ∈ X | fk(x) ≥ rk}.

Applying the Urysohn lemma to these sets, we obtain a continuous map
gk : Y → [−rk, rk] for which gk(Ak) = {−rk} and gk(Bk) = {rk}. On the
set Ak, the functions fk and gk take values in the interval ] − 3rk,−rk[; on
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the set Ak, they take values in the interval ]rk, 3rk[; at all other points of the
set X , these functions take values in the interval ]− rk, rk[.

Now let us put fk+1 := fk − gk|X . The function fk+1 is obviously
continuous on X and |fk+1(x)| ≤ 2rk = 3rk+1 for all x ∈ X .

Consider the sequence of functions g1, g2, . . . on Y . By construction,
|gk(y)| ≤ rk for all y ∈ Y . The series

∞∑

k=1

rk =
1

2

∞∑

k=1

(2

3

)k

converges, and so the series Σ∞
k=1 gk(x) converges uniformly on Y to some

continuous function

F (x) :=
∞∑

k=1

gk(x).

Further, we have

(g1+· · ·+gk) = (f1−f2)+(f2−f3)+· · ·+(fk−fk+1) = f1−fk+1 = f−fk+1.

But limk→∞ fk+1(y) = 0 for any y ∈ Y , hence F (x) = f(x) for any
x ∈ X , so that F is a continuous extension of f .

It remains to show that |F (x)| ≤ 1. We have

|F (x)| ≤
∞∑

k=1

|gk(x)| ≤
∞∑

k=1

rk =
∞∑

k=1

(2

3

)k

=
∞∑

k=1

(2

3

)k

=
1

3

(
1− 2

3

)−1

= 1. !

COROLLARY 1.4.5. Let X ⊂ Y be a closed subset of a normal space
Y and let f : X → R be continuous. Then f has a continuous extension
F : Y → R.

PROOF. The statement follows from the Tietze theorem and the Urysohn
lemma by appropriately using the rescaling homeomorphism

g : R → (−π/2, π/2) given by g(x) := arctan(x). !

Most natural topological spaces which appear in analysis and geome-
try (but not in some branches of algebra) are normal. The most important
instance of non-normal topology is discussed in the next subsection.
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1.4.2. Zariski topology. The topology that we will now introduce and
seems pathological in several aspects (it is non-Hausdorff and does not pos-
sess a countable base), but very useful in applications, in particular in alge-
braic geometry. We begin with the simplest case which was already men-
tioned in Example 1.1.4

DEFINITION 1.4.6. The Zariski topology on the real line R is defined
as the family Z of all complements to finite sets.

PROPOSITION 1.4.7. The Zariski topology given above endows R with
the structure of a topological space (R,Z), which possesses the following
properties:

(1) it is a (T1) space;
(2) it is separable;
(3) it is not a Hausdorff space;
(4) it does not have a countable base.
PROOF. All four assertions are fairly straightforward:
(1) the Zariski topology on the real line is (T1), because the complement

to any point is open;
(2) it is separable, since it is weaker than the standard topology in R;
(3) it is not Hausdorff, because any two nonempty open sets have nonempty

intersection;
(4) it does not have a countable base, because the intersection of all

the sets in any countable collection of open sets is nonemply and thus the
complement to any point in that intersection does not contain any element
from that collection. !

The definition of Zariski topology onR (Definition 1.4.6) can be straight-
forwardly generalized to Rn for any n ≥ 2, and the assertions of the propo-
sition above remain true. However, this definition is not the natural one,
because it generalizes the “wrong form” of the notion of Zariski topology.
The “correct form” of that notion originally appeared in algebraic geometry
(which studies zero sets of polynomials) and simply says that closed sets
in the Zariski topology on R are sets of zeros of polynomials p(x) ∈ R[x].
This motivates the following definitions.

DEFINITION 1.4.8. The Zariski topology is defined
• in Euclidean space Rn by stipulating that the sets of zeros of all
polynomials are closed;

• on the unit sphere Sn ⊂ Rn+1 by taking for closed sets the sets of
zeros of homogeneous polynomials in n + 1 variables;

• on the real and complex projective spaces RP (n) and CP (n) (Ex-
ample 1.3.7, Example 1.3.8) via zero sets of homogeneous poly-
nomials in n + 1 real and complex variables respectively.
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EXERCISE 1.4.3. Verify that the above definitions supply each of the
sets Rn, Sn, RP (n), and CP (n) with the structure of a topological space
satisfying the assertions of Proposition 1.4.7.

1.5. Compactness

The fundamental notion of compactness, familiar from the elementary
real analysis course for subsets of the real line R or of Euclidean space Rn,
is defined below in the most general topological situation.

1.5.1. Types of compactness. A family of open sets {Oα} ⊂ T , α ∈ A
is called an open cover of a topological spaceX ifX =

⋃
α∈A Oα, and is a

finite open cover if A is finite.

DEFINITION 1.5.1. The space (X, T ) is called
• compact if every open cover of X has a finite subcover;
• sequentially compact if every sequence has a convergent subsequence;
• σ–compact if it is the union of a countable family of compact sets.
• locally compact if every point has an open neighborhood whose clo-

sure is compact in the induced topology.

It is known from elementary real analysis that for subsets of a Rn com-
pactness and sequential compactness are equivalent. This fact naturally gen-
eralizes to metric spaces (see Proposition 3.6.4 ).

PROPOSITION 1.5.2. Any closed subset of a compact set is compact.

PROOF. If K is compact, C ⊂ K is closed, and Γ is an open cover for
C, then Γ0 := Γ ∪ {K " C} is an open cover for K, hence Γ0 contains a
finite subcover Γ′ ∪ {K " C} forK; therefore Γ′ is a finite subcover (of Γ)
for C. !

PROPOSITION 1.5.3. Any compact subset of a Hausdorff space is closed.

PROOF. Let X be Hausdorff and let C ⊂ X be compact. Fix a point
x ∈ X " C and for each y ∈ C take neighborhoods Uy of y and Vy of x
such that Uy ∩ Vy = ∅. Then

⋃
y∈C Uy ⊃ C is a cover of C and has a finite

subcover {Uxi 0 ≤ i ≤ n}. Hence Nx :=
⋂n

i=0 Vyi is a neighborhood of x
disjoint from C. Thus

X " C =
⋃

x∈X!C

Nx

is open and therefore C is closed. !
PROPOSITION 1.5.4. Any compact Hausdorff space is normal.
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PROOF. First we show that a closed set K and a point p /∈ K can be
separated by open sets. For x ∈ K there are open sets Ox, Ux such that
x ∈ Ox, p ∈ Ux and Ox ∩ Ux = ∅. Since K is compact, there is a finite
subcover O :=

⋃n
i=1 Oxi ⊃ K, and U :=

⋂n
i=1 Uxi is an open set containing

p disjoint from O.
Now suppose K, L are closed sets. For p ∈ L, consider open disjoint

sets Op ⊃ K, Up / p. By the compactness of L, there is a finite subcover
U :=

⋃m
j=1 Upj ⊃ L, and so O :=

⋂m
j=1 Opj ⊃ K is an open set disjoint from

U ⊃ L. !
DEFINITION 1.5.5. A collection of sets is said to have the finite inter-

section property if every finite subcollection has nonempty intersection.

PROPOSITION 1.5.6. Any collection of compact sets with the finite in-
tersection property has a nonempty intersection.

PROOF. It suffices to show that in a compact space every collection of
closed sets with the finite intersection property has nonempty intersection.
Arguing by contradiction, suppose there is a collection of closed subsets in
a compact space K with empty intersection. Then their complements form
an open cover of K. Since it has a finite subcover, the finite intersection
property does not hold. !

EXERCISE 1.5.1. Show that if the compactness assumption in the pre-
vious proposition is omitted, then its assertion is no longer true.

EXERCISE 1.5.2. Prove that a subset of R or of Rn is compact iff it is
closed and bounded.

1.5.2. Compactifications of non-compact spaces.

DEFINITION 1.5.7. A compact topological spaceK is called a compact-
ification of a Hausdorff space (X, T ) if K contains a dense subset homeo-
morphic to X .

The simplest example of compactification is the following.

DEFINITION 1.5.8. The one-point compactification of a noncompact
Hausdorff space (X, T ) is X̂ := (X ∪ {∞},S), where

S := T ∪ {(X ∪ {∞}) " K K ⊂ X compact}.

EXERCISE 1.5.3. Show that the one-point compactification of a Haus-
dorff space X is a compact (T1) space with X as a dense subset. Find a
necessary and sufficient condition on X which makes the one-point com-
pactification Hausdorff.

EXERCISE 1.5.4. Describe the one-point compactification of Rn.
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Other compactifications are even more important.
EXAMPLE 1.5.9. Real projective space RP (n) is a compactification of

the Euclidean space Rn. This follows easily form the description of RP (n)
as the identification space of a (say, northern) hemisphere with pairs of op-
posite equatorial points identified. The open hemisphere is homeomorphic
to Rn and the attached “set at infinity” is homeomorphic to the projective
space RP (n− 1).

EXERCISE 1.5.5. Describe the complex projective space CP (n) (see
Example 1.3.8) as a compactification of the space Cn (which is of course
homeomorphic to R2n). Specifically, identify the set of added “points at
infinity” as a topological space. and desribe open sets which contain points
at infinity.
1.5.3. Compactness under products, maps, and bijections. The fol-

lowing result has numerous applications in analysis, PDE, and other math-
ematical disciplines.

THEOREM 1.5.10. The product of any family of compact spaces is com-
pact.

PROOF. Consider an open cover C of the product of two compact topo-
logical spacesX and Y . Since any open neighborhood of any point contains
the product of opens subsets in x and Y we can assume that every element
of C is the product of open subsets in X and Y . Since for each x ∈ X the
subset {x} × Y in the induced topology is homeomorphic to Y and hence
compact, one can find a finite subcollection Cx ⊂ C which covers {x}× Y .

For (x, y) ∈ X × Y , denote by p1 the projection on the first factor:
p1(x, y) = x. Let Ux =

⋂
C∈Ox

p1(C); this is an open neighborhood of
x and since the elements of Ox are products, Ox covers Ux × Y . The
sets Ux, x ∈ X form an open cover of X . By the compactness of X ,
there is a finite subcover, say {Ux1 , . . . , Uxk

}. Then the union of collections
Ox1 , . . . ,Oxk

form a finite open cover of X × Y .
For a finite number of factors, the theorem follows by induction from

the associativity of the product operation and the case of two factors. The
proof for an arbitrary number of factors uses some general set theory tools
based on axiom of choice. !

PROPOSITION 1.5.11. The image of a compact set under a continuous
map is compact.

PROOF. If C is compact and f : C → Y continuous and surjective, then
any open cover Γ of Y induces an open cover f∗Γ := {f−1(O) O ∈ Γ} of
C which by compactness has a finite subcover {f−1(Oi) i = 1, . . . , n}.
By surjectivity, {Oi}n

i=1 is a cover for Y . !
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A useful application of the notions of continuity, compactness, and sep-
aration is the following simple but fundamental result, sometimes referred
to as invariance of domain:

PROPOSITION 1.5.12. A continuous bijection from a compact space to
a Hausdorff space is a homeomorphism.

PROOF. SupposeX is compact, Y Hausdorff, f : X → Y bijective and
continuous, and O ⊂ X open. Then C := X " O is closed, hence compact,
and f(C) is compact, hence closed, so f(O) = Y " f(C) (by bijectivity)
is open. !

Using Proposition 1.5.4 we obtain

COROLLARY 1.5.13. Under the assumption of Proposition 1.5.12 spaces
X and Y are normal.

EXERCISE 1.5.6. Show that for noncompact X the assertion of Propo-
sition 1.5.12 no longer holds.

1.6. Connectedness and path connectedness

There are two rival formal definitions of the intuitive notion of con-
nectedness of a topological space. The first is based on the idea that such a
space “consists of one piece” (i.e., does not “fall apart into two pieces”), the
second interprets connectedness as the possibility of “moving continuously
from any point to any other point”.

1.6.1. Definition and invariance under continuous maps.

DEFINITION 1.6.1. A topological space (X, T ) is said to be
• connected if X cannot be represented as the union of two nonempty

disjoint open sets (or, equivalently, two nonempty disjoint closed sets);
• path connected if for any two points x0, x1 ∈ X there exists a path

joining x0 to x1, i.e., a continuous map c : [0, 1] → X such that c(i) =
xi, i = {0, 1}.

PROPOSITION 1.6.2. The continuous image of a connected space X is
connected.

PROOF. If the image is decomposed into the union of two disjoint open
sets, the preimages of theses sets which are open by continuity would give
a similar decomposition for X . !

PROPOSITION 1.6.3. (1) Interval is connected
(2) Any path-connected space is connected.
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PROOF. (1) Any open subset X of an interval is the union of disjoint
open subintervals. The complement of X contains the endpoints of those
intervals and hence cannot be open.

(2) Suppose X is path-connected and let x = X0 ∪ X1, where X0 and
X1 are open and nonempty. Let x0 ∈ X0, x1 ∈ X1 and c : [0, 1] → X is
a continuous map such that c(i) = xi, i ∈ {0, 1}. By Proposition 1.6.2
the image c([0, 1]) is a connected subset of X in induced topology which
is decomposed into the union of two nonempty open subsets c([0, 1]) ∩X0

and c([0, 1]) ∩X1, a contradiction. !
REMARK 1.6.4. Connected space may not be path-connected as is shown

by the union of the graph of sin 1/x and {0}× [−1, 1] in R2 (see the figure).

O

−1

1

x

y

y = sin 1/x

FIGURE 1.6.1. Connected but not path connected space

PROPOSITION 1.6.5. The continuous image of a path connected space
X is path connected.

PROOF. Let f : X → Y be continuous and surjective; take any two
points y1, y2 ∈ Y . Then by surjectivity the sets f−1(yi), i = 1, 2 are
nonempty and we can choose points xi ∈ f−1(y1), i = 1, 2. Since X is
path connected, there is a path α : [0, 1] → X joining x1 to x2. But then the
path f ◦ α joins y1 to y2. !

1.6.2. Products and quotients.

PROPOSITION 1.6.6. The product of two connected topological spaces
is connected.

PROOF. SupposeX, Y are connected and assume thatX×Y = A∪B,
where A and B are open, and A ∩ B = ∅. Then either A = X1 × Y for
some open X1 ⊂ X or there exists an x ∈ X such that {x} × Y ∩ A += ∅
and {x}× Y ∩B += ∅.
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x y

FIGURE 1.6.2. Path connectedness

The former case is impossible, else we would have B = (X \X1)× Y
and so X = X1 ∪ (X \X1) would not be connected.

In the latter case, Y = p2({x} × Y ∩ A) ∪ p2({x} × Y ∩ B) (where
p2(x, y) = y is the projection on the second factor) that is, {x} × Y is
the union of two disjoint open sets, hence not connected. Obviously p2

restricted to {x}×Y is a homeomorphism onto Y , and so Y is not connected
either, a contradiction. !

PROPOSITION 1.6.7. The product of two path-connected topological
spaces is connected.

PROOF. Let (x0, y0), (x1, y1) ∈ X × Y and cX , cY are paths connect-
ing x0 with x1 and y0 with y1 correspondingly. Then the path c : [0, 1] →
X × Y defined by

c(t) = (cX(t), cY (t))

connects (x0, y0) with (x1, y1). !

The following property follows immediately from the definition of the
quotient topology

PROPOSITION 1.6.8. Any quotient space of a connected topological
space is connected.

1.6.3. Connected subsets and connected components. A subset of a
topological space is connected (path connected) if it is a connected (path
connected) space in the induced topology.

A connected component of a topological space X is a maximal con-
nected subset of X .

A path connected component ofX is a maximal path connected subset
of X .

PROPOSITION 1.6.9. The closure of a connected subset Y ⊂ X is con-
nected.
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PROOF. If Ȳ = Y1 ∪ Y2, where Y1, Y2 are open and Y1 ∩ Y2 = ∅, then
since the set Y is dense in its closure Y = (Y ∩ Y1) ∪ (Y ∩ Y2) with both
Y ∩ Y1 and Y ∩ Y1 open in the induced topology and nonempty. !

COROLLARY 1.6.10. Connected components are closed.

PROPOSITION 1.6.11. The union of two connected subsets Y1, Y2 ⊂ X
such that Y1 ∩ Y2 += ∅, is connected.

PROOF. We will argue by contradiction. Assume that Y1 ∩ Y2 is the
disjoint union of of open sets Z1 and Z2. If Z1 ⊃ Y1, then Y2 = Z2 ∪ (Z1 ∩
Y2) and hence Y2 is not connected. Similarly, it is impossible that Z2 ⊃ Y1.
Thus Y1 ∩ Zi += ∅, i = 1, 2 and hence Y1 = (Y1 ∩ Z1) ∪ (Y1 ∩ Z2) and
hence Y1 is not connected. !

1.6.4. Decomposition into connected components. For any topolog-
ical space there is a unique decomposition into connected components and
a unique decomposition into path connected components. The elements of
these decompositions are equivalence classes of the following two equiva-
lence relations respectively:

(i) x is equivalent to y if there exists a connected subset Y ⊂ X which
contains x and y.

In order to show that the equivalence classes are indeed connected com-
ponents, one needs to prove that they are connected. For, if A is an equiv-
alence class, assume that A = A1 ∪ A2, where A1 and A2 are disjoint and
open. Pick x1 ∈ A1 and x2 ∈ A2 and find a closed connected set A3 which
contains both points. But then A ⊂ (A1 ∪A3)∪A2, which is connected by
Proposition 1.6.11. Hence A = (A1 ∪ A3) ∪ A2) and A is connected.

(ii) x is equivalent to y if there exists a continuous curve c : [0, 1] → X
with c(0) = x, c(1) = y

REMARK 1.6.12. The closure of a path connected subset may be fail
to be path connected. It is easy to construct such a subset by looking at
Remark 1.6.4

1.6.5. Arc connectedness. Arc connectedness is a more restrictive no-
tion than path connectedness: a topological spaceX is called arc connected
if, for any two distinct points x, y ∈ X there exist an arc joining them, i.e.,
there is an injective continuous map h : [0, 1] → X such that h(0) = x and
h(1) = y.

It turns out, however, that arc connectedness is not a much more stronger
requirement than path connectedness – in fact the two notions coincide for
Hausdorff spaces.
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THEOREM 1.6.13. A Hausdorff space is arc connected if and only if it
is path connected.

PROOF. Let X be a path-connected Hausdorff space, x0, x1 ∈ X and
c : [0, 1] → X a continuous map such that c(i) = xi, i = 0, 1. Notice
that the image c([0, 1]) is a compact subset ofX by Proposition 1.5.11 even
though we will not use that directly. We will change the map c within
this image by successively cutting of superfluous pieces and rescaling what
remains.

Consider the point c(1/2). If it coincides with one of the endpoints
xo or x1 we define c1(t) as c(2t − 1) or c(2t) correspondingly. Otherwise
consider pairs t0 < 1/2 < t1 such that c(t0) = c(t1). The set of all such
pairs is closed in the product [0, 1]× [0, 1] and the function |t0− t1| reaches
maximum on that set. If this maximum is equal to zero the map c is al-
ready injective. Otherwise the maximum is positive and is reached at a pair
(a1, b1). we define the map c1 as follows

c1(t) =






c(t/2a1), if 0 ≤ t ≤ a1,

c(1/2), if a1 ≤ t ≤ b1,

c(t/2(1− b1) + (1− b1)/2), if b1 ≤ t ≤ 1.

Notice that c1([0, 1/2)) and c1((1/2, 1]) are disjoint since otherwise there
would exist a′ < a1 < b1 < b′ such that c(a′) = c(b′) contradicting maxi-
mality of the pair (a1, b1).

Now we proceed by induction. We assume that a continuous map
cn : [0, 1] → c([0, 1]) has been constructed such that the images of in-
tervals (k/2n, (k + 1)/2n), k = 0, . . . , 2n − 1 are disjoint. Furthermore,
while we do not exclude that cn(k/2n) = cn((k + 1)/2n) we assume that
cn(k/2n) += cn(l/2n) if |k − l| > 1.

We find ak
n, b

k
n maximizing the difference |t0 − t1| among all pairs

(t0, t1) : k/2n ≤ t0 ≤ t1 ≤ (k + 1)/2n

and construct the map cn+1 on each interval [k/2n, (k+1)/2n] as above with
cn in place of c and ak

n, b
k
n in place of a1, b1 with the proper renormalization.

As before special provision are made if cn is injective on one of the intervals
(in this case we set cn+1 = cn) of if the image of the midpoint coincides with
that of one of the endpoints (one half is cut off that the other renormalized).

!

EXERCISE 1.6.1. Give an example of a path connected but not arc con-
nected topological space.
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1.7. Totally disconnected spaces and Cantor sets

On the opposite end from connected spaces are those spaces which do
not have any connected nontrivial connected subsets at all.

1.7.1. Examples of totally disconnected spaces.

DEFINITION 1.7.1. A topological space (X, T ) is said to be totally dis-
connected if every point is a connected component. In other words, the
only connected subsets of a totally disconnected space X are single points.

Discrete topologies (all points are open) give trivial examples of totally
disconnected topological spaces. Another example is the set

{
0, 1,

1

2
,
1

3
,
1

4
, . . . ,

}

with the topology induced from the real line. More complicated examples
of compact totally disconnected space in which isolated points are dense
can be easily constructed. For instance, one can consider the set of rational
numbers Q ⊂ R with the induced topology (which is not locally compact).

The most fundamental (and famous) example of a totally disconnected
set is the Cantor set, which we now define.

DEFINITION 1.7.2. The (standard middle-third) Cantor set C(1/3) is
defined as follows:

C(1/3); =
{

x ∈ R : x =
∞∑

i=1

xi

3i
, xi ∈ {0, 2}, i = 1, 2, . . .

}
.

Geometrically, the construction of the set C(1/3) may be described in
the following way: we start with the closed interval [0, 1], divide it into three
equal subintervals and throw out the (open) middle one, divide each of the
two remaining ones into equal subintervals and throw out the open middle
ones and continue this process ad infinitum. What will be left? Of course
the (countable set of) endpoints of the removed intervals will remain, but
there will also be a much larger (uncountable) set of remaining “mysterious
points”, namely those which do not have the ternary digit 1 in their ternary
expansion.

1.7.2. Lebesgue measure of Cantor sets. There are many different
ways of constructing subsets of [0, 1] which are homeomorphic to the Can-
tor set C(1/3). For example, instead of throwing out the middle one third
intervals at each step, one can do it on the first step and then throw out in-
tervals of length 1

18 in the middle of two remaining interval and inductively
throw out the interval of length 1

2n3n+1 in the middle of each of 2n intervals
which remain after n steps. Let us denote the resulting set Ĉ
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0 1

0 1

FIGURE 1.7.1. Two Cantor sets

EXERCISE 1.7.1. Prove (by computing the infinite sum of lengths of
the deleted intervals) that the Cantor set C(1/3) has Lebesgue measure 0
(which was to be expected), whereas the set Ĉ, although nowhere dense,
has positive Lebesgue measure.

1.7.3. Some other strange properties of Cantor sets. Cantor sets can
be obtained not only as subsets of [0, 1], but in many other ways as well.

PROPOSITION 1.7.3. The countable product of two point spaces with
the discrete topology is homeomorphic to the Cantor set.

PROOF. To see that, identify each factor in the product with {0, 2} and
consider the map

(x1, x2, . . . ) 1→
∞∑

i=1

xi

3i
, xi ∈ {0, 2}, i = 1, 2, . . . .

This map is a homeomorphism between the product and the Cantor set. !

PROPOSITION 1.7.4. The product of two (and hence of any finite number)
of Cantor sets is homeomorphic to the Cantor set.

PROOF. This follows immediately, since the product of two countable
products of two point spaces can be presented as such a product by mixing
coordinates. !

EXERCISE 1.7.2. Show that the product of countably many copies of
the Cantor set is homeomorphic to the Cantor set.

The Cantor set is a compact Hausdorff with countable base (as a closed
subset of [0, 1]), and it is perfect i.e. has no isolated points. As it turns out,
it is a universal model for compact totally disconnected perfect Hausdorff
topological spaces with countable base, in the sense that any such space
is homeomorphic to the Cantor set C(1/3). This statement will be proved
later by using the machinery of metric spaces (see Theorem 3.6.7). For now
we restrict ourselves to a certain particular case.

PROPOSITION 1.7.5. Any compact perfect totally disconnected subset
A of the real line R is homeomorphic to the Cantor set.
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PROOF. The set A is bounded, since it is compact, and nowhere dense
(does not contain any interval), since it is totally disconnected. Suppose
m = inf A and M = sup A. We will outline a construction of a strictly
monotone function F : [0, 1] → [m,M ] such that F (C) = A. The set
[m, M ] \ A is the union of countably many disjoint intervals without com-
mon ends (since A is perfect). Take one of the intervals whose length
is maximal (there are finitely many of them); denote it by I . Define F
on the interval I as the increasing linear map whose image is the interval
[1/3, 2/3]. Consider the longest intervals I1 and I2 to the right and to the
left to I . Map them linearly onto [1/9.2/9] and [7/9, 8/9], respectively.
The complement [m, M ] \ (I1 ∪ I ∪ I2) consists of four intervals which
are mapped linearly onto the middle third intervals of [0, 1] \ ([1/9.2/9] ∪
[1/3, 2/3] ∪ [7/9, 8/9] and so on by induction. Eventually one obtains a
strictly monotone bijective map [m,M ] \A → [0, 1] \C which by continu-
ity is extended to the desired homeomorphism. !

EXERCISE 1.7.3. Prove that the product of countably many finite sets
with the discrete topology is homeomorphic to the Cantor set.

1.8. Topological manifolds

At the other end of the scale from totally disconnected spaces are the
most important objects of algebraic and differential topology: the spaces
which locally look like a Euclidean space. This notion was first mentioned
at the end of Section 1.2 and many of the examples which we have seen so
far belong to that class. Now we give a rigorous definition and discuss some
basic properties of manifolds.

1.8.1. Definition and some properties. The precise definition of a topo-
logical manifold is as follows.

DEFINITION 1.8.1. A topological manifold is a Hausdorff spaceX with
a countable base for the topology such that every point is contained in an
open set homeomorphic to a ball in Rn for some n ∈ N. A pair (U, h)
consisting of such a neighborhood and a homeomorphism h : U → B ⊂ Rn

is called a chart or a system of local coordinates.

picture illustrating the
definition

REMARK 1.8.2. Hausdorff condition is essential to avoid certain patholo-
gies which we will discuss laler.

Obviously, any open subset of a topological manifold is a topological
manifold.
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If X is connected, then n is constant. In this case it is called the di-
mension of the topological manifold. Invariance of the dimension (in other
words, the fact that Rn or open sets in those for different n are not homeo-
morphic) is one of the basic and nontrivial facts of topology.

PROPOSITION 1.8.3. A connected topological manifold is path con-
nected.

PROOF. Path connected component of any point in a topological man-
ifold is open since if there is a path from x to y there is also a path from
x to any point in a neighborhood of y homeomorphic to Rn. For, one can
add to any path the image of an interval connecting y to a point in such a
neighborhood. If a path connected component is not the whole space its
complement which is the union of path connected components of its points
is also open thus contradicting connectedness. !

1.8.2. Examples and constructions.

EXAMPLE 1.8.4. The n–sphere Sn, the n–torus Tn and the real projec-
tive n–space RP (n) are examples of n dimensional connected topological
manifolds; the complex projective n–space CP (n) is a topological mani-
fold of dimension 2n.

EXAMPLE 1.8.5. Surfaces in 3-space, i.e., compact connected subsets
of R3 locally defined by smooth functions of two variables x, y in appro-
priately chosen coordinate systems (x, y, z), are examples of 2-dimensional
manifolds.

FIGURE 1.8.1. Two 2-dimensional manifolds

EXAMPLE 1.8.6. Let F : Rn → R be a continuously differentiable
function and let c be a noncritical value of F , that is, there are no critical
points at which the value of F is equal to c. Then F−1(c) (if nonempty) is
a topological manifold of dimension n − 1. This can be proven using the
Implicit Function theorem from multivariable calculus.
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Among the most important examples of manifolds from the point of
view of applications, are configuration spaces and phase spaces of mechan-
ical systems (i.e., solid mobile instruments obeying the laws of classical
mechanics). One can think of the configuration space of a mechanical sys-
tem as a topological space whose points are different “positions” of the
system, and neighborhoods are “nearby” positions (i.e., positions that can
be obtained from the given one by motions of “length” smaller than a fixed
number). The phase space of a mechanical system moving in time is ob-
tained from its configuration space by supplying it with all possible veloc-
ity vectors. There will be numerous examples of phase and configuration
spaces further in the course, here we limit ourselves to some simple illus-
trations.

EXAMPLE 1.8.7. The configuration space of the mechanical system
consisting of a rod rotating in space about a fixed hinge at its extremity
is the 2-sphere. If the hinge is fixed at the midpoint of the rod, then the
configuration space is RP 2.

EXERCISE 1.8.1. Prove two claims of the previous example.

EXERCISE 1.8.2. The double pendulum consists of two rods AB and
CD moving in a vertical plane, connected by a hinge joining the extremities
B and C, while the extremity A is fixed by a hinge in that plane. Find the
configuration space of this mechanical system.

EXERCISE 1.8.3. Show that the configuration space of an asymmetric
solid rotating about a fixed hinge in 3-space is RP 3.

EXERCISE 1.8.4. On a round billiard table, a pointlike ball moves with
uniform velocity, bouncing off the edge of the table according to the law
saying that the angle of incidence is equal to the angle of reflection (see the
figure). Find the phase space of this system.

FIGURE ?? Billiards on a circular table
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Another source of manifolds with interesting topological properties and
usually additional geometric structures is geometry. Spaces of various geo-
metric objects are endowed with a the natural topology which is often gen-
erated by a natural metric and also possess natural groups of homeomor-
phisms.

The simplest non-trival case of this is already familiar.

EXAMPLE 1.8.8. The real projective space RP (n) has yet another de-
scription as the space of all lines in Rn+1 passing through the origin. One
can define the distance d between two such line as the smallest of four an-
gles between pairs of unit vectors on the line. This distance generates the
same topology as the one defined before. Since any invertible linear trans-
formation of Rn+1 takes lines into lines and preserves the origin it naturally
acts by bijections on RP (n). Those bijections are homeomorphisms but
in general they do not preserve the metric described above or any metric
generating the topology.

EXERCISE 1.8.5. Prove claims of the previous example: (i) the distance
d defines the same topology on the space Rn+1 as the earlier constructions;
(ii) the groupGL(n+1, R) of invertible linear transformations of Rn+1 acts
on RP (n) by homeomorphisms.

There are various modifications and generalizations of this basic exam-
ple.

EXAMPLE 1.8.9. Consider the space of all lines in the Euclidean plane.
Introduce topology into it by declaring that a base of neighborhoods of a
given line L consist of the sets NL(a, b, ε) where a, b ∈ L, ε > 0 and
NL(a, b, ε) consist of all lines L′ such that the interval of L between a and b
lies in the strip of width ε around L′

EXERCISE 1.8.6. Prove that this defines a topology which makes the
space of lines homeomorphic to the Möbius strip.

EXERCISE 1.8.7. Describe the action of the group GL(2, R) on the
Möbius strip coming from the linear action on R2.

This is the simplest example of the family of Grassmann manifolds
or Grassmannians which play an exceptionally important role in several
branches of mathematics including algebraic geometry and theory of group
representation. The general Grassmann manifold Gk,n (over R) is defined
for i ≤ k < n as the space of all k-dimensional affine subspaces in Rn.
In order to define a topology we again define a base of neighborhoods of a
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given k-space L. Fix ε > 0 and k + 1 points x1, . . . , xk+1 ∈ L. A neighbor-
hood of L consists of all k-dimensional spaces L′ such that the convex hull
of points x1, . . . , xk+1 lies in the ε-neighborhood of L′.

EXERCISE 1.8.8. Prove that the Grassmannian Gk,n is a topological
manifold. Calculate its dimension. 2

Another extension deals with replacing R by C (and also by quater-
nions).

EXERCISE 1.8.9. Show that the complex projective space CP (n) is
homeomorphic to the space of all lines on Cn+1 with topology defined by a
distance similarly to the case of RP (n)

EXERCISE 1.8.10. Define complex Grassmannians, prove that they are
manifolds and calculate the dimension.

1.8.3. Additional structures on manifolds. It would seem that the ex-
istence of local coordinates should make analysis in Rn an efficient tool in
the study of topological manifolds. This, however, is not the case, because
global questions cannot be treated by the differential calculus unless the
coordinates in different neighborhoods are connected with each other via
differentiable coordinate transformations. Notice that continuous functions
may be quite pathological form the “normal” commonplace point of view.
This requirement leads to the notion of differentiable manifold, which will
be introduced in Chapter 4 and further studied in Chapter 10. Actually,
all the manifolds in the examples above are differentiable, and it has been
proved that all manifolds of dimension n ≤ 3 have a differentiable structure,
which is unique in a certain natural sense. For two-dimensional manifolds
we will prove this later in Section 5.2.3; the proof for three–dimensional
manifolds goes well beyond the scope of this book.

Furthermore, this is no longer true in higher dimensions: there are man-
ifolds that possess no differentiable structure at all, and some that have more
than one differentiable structure.

Another way to make topological manifolds more manageable is to en-
dow them with a polyhedral structure, i.e., build them from simple geomet-
ric “bricks” which must fit together nicely. The bricks used for this purpose
are n-simplices, shown on the figure for n = 0, 1, 2, 3 (for the formal defi-
nition for any n, see ??).

2Remember that we cannot as yet prove that dimension of a connected topological
manifold is uniquely defined, i.e. that the same space cannot be a topological manifold of
two different dimensions since we do not know that Rn for different n are not homeomor-
phic. The question asks to calculate dimension as it appears in the proof that the spaces are
manifolds.
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FIGURE ?? Simplices of dimension 0,1,2,3.
A PL-structure on an n-manifold M is obtained by representing M as

the union of k-simplices, 0 ≤ k ≤ n, which intersect pairwise along sim-
plices of smaller dimensions (along “common faces”), and the set of all
simplices containing each vertex (0-simplex) has a special “disk structure”.
This representation is called a triangulation. We do not give precise defi-
nitions here, because we do not study n-dimensional PL-manifolds in this
course, except for n = 1, 2, see ?? and ??. In chapter ?? we study a more
general class of topological spaces with allow a triangulation, the simplicial
complexes.

Connections between differentiable and PL structures on manifolds are
quite intimate: in dimension 2 existence of a differentiable structure will be
derived from simplicial decomposition in ??. Since each two-dimensional
simplex (triangle) possesses the natural smooth structure and in a triangu-
lation these structures in two triangles with a common edge argee along the
edge, the only issue here is to “smooth out” the structure around the corners
of triangles forming a triangulation.

Conversely, in any dimension any differentiable manifold can be trian-
gulated. The proof while ingenuous uses only fairly basic tools of differen-
tial topology.

Again for large values of n not all topological n-manifolds possess a
PL-structure, not all PL-manifolds possess a differentiable structure, and
when they do, it is not necessarily unique. These are deep and complicated
results obtained in the 1970ies, which are way beyond the scope of this
book.

1.9. Orbit spaces for group actions

An important class of quotient spaces appears when the equivalence
relation is given by the action of a groupX by homeomorphisms of a topo-
logical space X .

1.9.1. Main definition and nice examples. The notion of a group act-
ing on a space, which formalizes the idea of symmetry, is one of the most
important in contemporary mathematics and physics.

DEFINITION 1.9.1. An action of a group G on a topological spaceX is
a map G×X → X , (g, x) 1→ xg such that

(1) (xg)h = x(g · h) for all g, h ∈ G;
(2) (x)e = x for all x ∈ X , where e is the unit element in G.
The equivalence classes of the corresponding identification are called

orbits of the action of G on X .
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R2

/SO(3)

R2/SO(3)

FIGURE 1.9.1. Orbits and identification space of SO(2) ac-
tion on R2

The identification space in this case is denoted by X/G and called the
quotient of X by G or the orbit space of X under the action of G.

We use the notation xg for the point to which the element g takes the
point x, which is more convenient than the notation g(x) (nevertheless, the
latter is also often used). To specify the chosen notation, one can say that
G acts on X from the right (for our notation) or from the left (when the
notation g(x) or gx is used).

Usually, in the definition of an action of a group G on a space X , the
group is supplied with a topological structure and the action itself is as-
sumed continuous. Let us make this more precise.

A topological group G is defined as a topological Hausdorff space sup-
plied with a continuous group operation, i.e., an operation such that the
maps (g, h) 1→ gh and g 1→ g−1 are continuous. If G is a finite or countable
group, then it is supplied with the discrete topology. When we speak of the
action of a topological group G on a space X , we tacitly assume that the
map X ×G → X is a continuous map of topological spaces.

EXAMPLE 1.9.2. Let X be the plane R2 and G be the rotation group
SO(2). Then the orbits are all the circles centered at the origin and the
origin itself. The orbit space of R2 under the action of SO(2) is in a natural
bijective correspondence with the half-line R+.

The main issue in the present section is that in general the quotient space
even for a nice looking group acting on a good (for example, locally com-
pact normal with countable base) topological space may not have good sep-
aration properties. The (T1) property for the identification space is easy to
ascertain: every orbit of the action must be closed. On the other hand, there
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does not seem to be a natural necessary and sufficient condition for the quo-
tient space to be Hausdorff. Some useful sufficient conditions will appear
in the context of metric spaces.

Still, lots of important spaces appear naturally as such identification
spaces.

EXAMPLE 1.9.3. Consider the natural action of the integer lattice Zn

by translations in Rn. The orbit of a point p ∈ Rn is the copy of the integer
lattice Zn translated by the vector p. The quotient space is homeomorphic
to the torus Tn.

An even simpler situation produces a very interesting example.
EXAMPLE 1.9.4. Consider the action of the cyclic group of two ele-

ments on the sphere Sn generated by the central symmetry: Ix = −x. The
corresponding quotient space is naturally identified with the real projective
space RP (n).

EXERCISE 1.9.1. Consider the cyclic group of order q generated by the
rotation of the circle by the angle 2π/q. Prove that the identification space
is homeomorphic to the circle.

EXERCISE 1.9.2. Consider the cyclic group of order q generated by the
rotation of the plane R2 around the origin by the angle 2π/q. Prove that the
identification space is homeomorphic to R2.

1.9.2. Not so nice examples. Here we will see that even simple actions
on familiar spaces can produce unpleasant quotients.

EXAMPLE 1.9.5. Consider the following actionA ofR onR2: for t ∈ R
letAt(x, y) = (x+ty, y). The orbit space can be identified with the union of
two coordinate axis: every point on the x-axis is fixed and every orbit away
from it intersects the y-axis at a single point. However the quotient topology
is weaker than the topology induced from R2 would be. Neighborhoods of
the points on the y-axis are ordinary but any neighborhood of a point on the
x-axis includes a small open interval of the y-axis around the origin. Thus
points on the x-axis cannot be separated by open neighborhoods and the
space is (T1) (since orbits are closed) but not Hausdorff.

An even weaker but still nontrivial separation property appears in the
following example.

EXAMPLE 1.9.6. Consider the action of Z on R generated by the map
x → 2x. The quotient space can be identified with the union of the circle
and an extra point p. Induced topology on the circle is standard. However,
the only open set which contains p is the whole space! See Exercise 1.10.21.
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Finally let us point out that if all orbits of an action are dense, then the
quotient topology is obviously trivial: there are no invariant open sets other
than ∅ and the whole space. Here is a concrete example.

EXAMPLE 1.9.7. Consider the action T of Q, the additive group of
rational number on R by translations: put Tr(x) = x + r for r ∈ Q and
x ∈ R. The orbits are translations of Q, hence dense. Thus the quotient
topology is trivial.

1.10. Problems

EXERCISE 1.10.1. How many non-homeomorphic topologies are there
on the 2–element set and on the 3–element set?

EXERCISE 1.10.2. Let S := {(x, y, z) ∈ R3 | z = 0, x2 + y2 = 1}.
Show that R3 \ S can be mapped continuously onto the circle.

EXERCISE 1.10.3. Consider the product topology on the product of
countably many copies of the real line. (this product space is sometimes
denoted R∞).

a) Does it have a countable base?
b) Is it separable?

EXERCISE 1.10.4. Consider the space L of all bounded maps Z → Z
with the topology of pointwise convergece.

a) Describe the open sets for this topology.
b) Prove that L is the countable union of disjoint closed subsets each

homeomorphic to a Cantor set.
Hint: Use the fact that the countable product of two–point spaces with

the product topology is homeomorphic to a Cantor set.

EXERCISE 1.10.5. Consider the profinite topology on Z in which open
sets are defined as unions (not necessarily finite) of (non-constant and infi-
nite in both directions) arithmetic progressions. Show that it is Hausdorff
but not discrete.

EXERCISE 1.10.6. Let T∞ be the product of countably many copies of
the circle with the product topology. Define the map ϕ : Z → T∞ by

ϕ(n) = (exp(2πin/2), exp(2πin/3), exp(2πin/4), exp(2πin/5), . . . )

Show that the map ϕ is injective and that the pullback topology on ϕ(Z)
coincides with its profinite topology.
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EXERCISE 1.10.7. Prove that R (the real line) and R2 (the plane with
the standard topology) are not homeomorphic.

Hint: Use the notion of connected set.

EXERCISE 1.10.8. Prove that the interior of any convex polygon in R2

is homeomorphic to R2.

EXERCISE 1.10.9. A topological space (X, T ) is called regular (or
(T3)- space) if for any closed set F ⊂ X and any point x ∈ X \ F there
exist disjoint open sets U and V such that F ⊂ U and x ∈ V . Give an
example of a Hausdorff topological space which is not regular.

EXERCISE 1.10.10. Give an example of a regular topological space
which is not normal.

EXERCISE 1.10.11. Prove that any open convex subset of R2 is home-
omorphic to R2.

EXERCISE 1.10.12. Prove that any compact topological space is se-
quentially compact.

EXERCISE 1.10.13. Prove that any sequentially compact topological
space with countable base is compact.

EXERCISE 1.10.14. A point x in a topological space is called isolated if
the one-point set {x} is open. Prove that any compact separable Hausdorff
space without isolated points contains a closed subset homeomorphic to the
Cantor set.

EXERCISE 1.10.15. Find all different topologies (up to homeomorphism)
on a set consisting of 4 elements which make it a connected topological
space.

EXERCISE 1.10.16. Prove that the intersection of a nested sequence of
compact connected subsets of a topological space is connected.

EXERCISE 1.10.17. Give an example of the intersection of a nested se-
quence of compact path connected subsets of a Hausdorff topological space
which is not path connected.

EXERCISE 1.10.18. Let A ⊂ R2 be the set of all vectors (x, y) such
that x + y is a rational number and x− y is an irrational number. Show that
R2 \ A is path connected.
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EXERCISE 1.10.19. Prove that any compact one–dimensional manifold
is homeomorphic to the circle.

EXERCISE 1.10.20. Let f : S1 → R2 be a continuous map for which
there are two points a, b ∈ S1 such that f(a) = f(b) and f is injective on
S1 \ {a}. Prove that R2 \ f(S1) has exactly three connected components.

EXERCISE 1.10.21. Consider the one–parameter group of homeomor-
phisms of the real line generated by the map x → 2x. Consider three
separation properties: (T2), (T1), and

(T0) For any two points there exists an open set which contains one of
them but not the other (but which one is not given in advance).

Which of these properties does the quotient topology possess?

EXERCISE 1.10.22. Consider the group SL(2, R) of all 2× 2 matrices
with determinant one with the topolology induced from the natural coordi-
nate embedding into R4. Prove that it is a topological group.


