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Abstract. Bénabou pointed out in 1963 that a pair f Hu: A —- B
of adjoint functors induces a monoidal functor [f,u] : [4, A] — [B, B
between the (strict) monoidal categories of endofunctors. We show that
this result about adjunctions in the monoidal 2-category Cat extends
to adjunctions in any right-closed monoidal 2-category V, or more gen-
erally in any 2-category A with an action * of a monoidal 2-category
V admitting an adjunction A(T * A, B) = V(T, (A, B)); certainly such
an adjunction exists when * is the canonical action of A, A] on A, pro-
vided that A is complete and locally small. This result allows a concise
and general treatment of the transport of algebraic structure along an
equivalence.

1 Introduction

We suppose given a monoidal 2-category V: that is, a 2-category V along with a
monoidal structure (®, I, a,l,r) for which ® is a 2-functor and a, I, 7 are 2-natural.
We further suppose given a 2-category A and an action of V on A: that is, a
2-functor * : V x A — A together with 2-natural isomorphisms a: (X ® Y) * A =
X % (Y x A) and A : T x A = A satisfying the usual two coherence axioms. Finally
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we suppose each 2-functor — * A: V — A to have a right adjoint ((A, —)), so that
we have a 2-natural isomorphism

&: A(X + A, B) = V(X, (4, B). (1.1)

A first example is that where A is V itself, with ® for * and a, ! for o, A; then
((A, B)) is an “internal hom”, more commonly denoted by [A, B], whose existence
makes of V a right-closed monoidal 2-category. A second example is that where
A is any 2-category which is locally small and complete, while V is the monoidal
2-category [A, A] of endofunctors of A (meaning of course endo-2-functors, since A
is a 2-category), with composition for its tensor product and the identity functor
1 = 14 for its unit object. The action [A, .A] x A — A we intend here is that given
by evaluation, sending (T, A) to T'A and similarly defined on morphisms. Now (1.1)
takes the form

&: A(XA,B) = [A,A(X, (4, B)), (1.2)

where (A, B) is the right Kan extension of B: 1 — A along A : 1 — A given by
(A, B)C = BAGA),

There is a sense in which the second example is “extremal”. For in the context
of a general example as in (1.1), we can still apply (1.2) (provided A is locally small
and complete) to get

A(X x A, B) = [A, A|(X *—, (A, B)),
so that we have a natural isomorphism
V(X, (A, B)) = [A, Al(X * —, (A, B)). (1.3)

Moreover, as was discussed in [6], it is common in examples of such actions for the
2-functor V — [A, A] sending X to X * — to have a right adjoint 6 : [A, A] — V;
and when this is so, (1.3) gives a natural isomorphism (A, B)) = 6(A, B). In these
circumstances, our main results below for the general case (1.1) are consequences
of those for the extremal case (1.2).

However, it in fact costs nothing to consider the general case throughout, es-
pecially if we use the coherence to simplify the notation as follows. Forget for the
moment that V and A are 2-categories. To give a monoidal category V and an
action x : YV x A —» A of V on A is equally to give a bicategory B with just two
object 0 and 1, having

B(0,0) = V, B(1,0) = A ,B(1,1) =1, B(0,1) =0,

where the last 0 denotes the empty category. As shown by Mac Lane and Paré
[15] — for a more elegant alternative proof attributed to Gordon and Power see
also [7] — we can replace B by an equivalent bicategory C, with the same objects
0 and 1, in which composition is strictly associative. (Recall that this is indeed
an equivalence, and not merely a biequivalence: there are homomorphisms B — C
and C — B, each of whose composites is isomorphic to the identity via (invertible)
strong transformations.) When V and A are in fact 2-categories as above, the 2-cells
of V and of A, which are 3-cells in B, just go along for the ride in the equivalence.
Accordingly, so long as we deal with properties stable under such an equivalence,
we may simplify by supposing henceforth that both ® and * are strictly associative
— which allows us to write XY for X®Y in V and X A for X *A in A, with 1 for 1.
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Moreover, because of the importance of the extremal case, we shall henceforth write
(A, B) rather than ((A, B)) in the general case, so that (1.1) becomes

®: A(XA,B)=2V(X, (A, B)); (1.4)
and we shall henceforth use ® without further explanation to denote this isomor-
phism.

Of course (—, —) admits a unique structure of 2-functor A°° x A — V for which
® is 2-natural in each variable. Let us write

e=eap:(A,BJA— B (1.5)
for the 2-natural counit of the adjunction, and recall that we have a multiplication
M =MZ::(B,C)(A B) - (A,C) (1.6)
determined, using the adjunction, by the commutativity of
(B,C)(A, B)A M4, (4,C0)A (1.7)
(B.C)el le
(B,C)B C,

as well as a “unit map” J = J4 : 1 — (A, A) which is the mate under & of
A: 1A — A (here given by the identity), so that we have

1A 24> (4, A)A —> A

equal to the identity. As is well known — see for example [6] — M and J provide the
composition and the unit for a V-category A, whose underlying ordinary category
is A and whose V-valued hom A(A, B) is (A, B).

For each A € A we have on (A, A) the structure of a monoid ((4, A), i, m),
where m : (A, A)(A, A) — (A, A) is M4, andi: 1 — (A, A) is J4. For a second ob-
ject B of A, let us write ((B, B), j, n) for the monoid structure; in the extremal case
where V = [A, A], these monoids are of course monads on A (meaning 2-monads,
since A is a 2-category).

Our central result concerns an adjunction

ne:f4f :A—>B (1.8)

in the 2-category A. Write w for (f, f*) : (A, A) — (B, B), noting that it is the
image under ® of the composite

4,BLY (4 ma—<>4-s B
which we shall denote more briefly by ¢ : (A, A)B — B.

In the very simple case where A = V = Cat with its cartesian monoidal
structure, A is a category and (A, A) = [A, A] is the strict monoidal category of
endofunctors of A. Now an adjunction f 4 f* : A — B in A is just an adjunction
in the original sense of the word; and Bénabou [1] observed that here w = (f, f*)
is part of a monoidal functor (w,w®,w). Indeed w sends u : A — A to f*uf,
and we have only to take w° : 1 — f*1f toben:1 — f*f, and to take w,, :
fruff*vf — f*uvf to be f*uevf. Our central aim is to prove a similar result in
the general case, providing for w the structure of a laz map of monoids in V. Doing
so is equivalent to providing for ¢ : (A, A)B — B the structure of a laz action on B
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of the monoid (A, A); and this observation allows us to enrich the central result as
follows. The evaluation e : (A, A)A — A is itself a strict action of (A, A) on A, and
we show f* : A — B to admit the structure of a lax map of lax (A, A)-algebras,
while f : B — A becomes a colax map of such algebras. Under further hypotheses
on the adjunction f - f*, which are certainly satisfied when it is an equivalence
(that is, when 7 and ¢ are invertible), the whole adjunction enriches to one in the
2-category Ps-(A, A)-Alg of pseudo (A, A)-algebras. When A has the structure of a
T-algebra, the corresponding map T' — (A, A) of monoids provides a 2-functor from
Ps-(A, A)-Alg to Ps-T-Alg carrying the adjunction to one in Ps-T-Alg, which can be
seen as a rule for transporting pseudo T-algebra structures along an equivalence.
Finally, the 2-functor from Ps-T-Alg to T-Alg, which we have in the case of a
flexible monoid T, carries the adjunction in Ps-T-Alg to one in T-Alg, giving a
rule for transporting (strict) T-algebra structures along an equivalence when T is
flexible.

We provide below the detailed statements of these and related results, along
with their proofs. First, we recall in the next section the definitions of lax maps of
monoids, of lax algebras, and of lax morphisms of lax algebras.

It is a pleasure to thank Ross Street for several helpful comments on the con-
tents of this paper.

2 The definitions

The 2-category Colax|2, V] has for objects the arrows f : X — Y of V, for
arrows f — f’ the triples (u, p, v) of the form

and for 2-cells (u, p,v) — (@, p, ) the pairs (o, 3) wherea:u >z and f:v — ¥
satisfy the obvious coherence condition [10, p.221]. This 2-category has an evident
monoidal structure in which the tensor product of f : X > Y andg: W — Z is
fg: XW — YZ. For monoids T = (T,%,m) and S = (S,7,n) in V (recall that
these are 2-monads in the case V = [A, A]), a laz map of monoids or lax monoid
map w = (w,w°,w) : T — S consists of a map w: T — S in V along with 2-cells

T TT ——T
N
J\S, SS—T—>S,

satisfying the three equations [9, (4.2-4.4)] which make of w : T — S a monoid in
Colax|[2,V]. If now z = (z, 2°,2) is another lax monoid map, a 2-cell  : w — z is
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said to be a monoid 2-cell if it makes commutative the diagrams

wi NWW ——s> wm
e
J i n.00 om
z\*
zt, n.zz — 2M,
z

wherein 66 denotes the common value of
S60.0T : SwwT — Sz.2T and 6S.T60:wSTw — 25.Tz.

Thus we have a 2-category Mon,;V of monoids in V, lax maps of these, and monoid
2-cells. A pseudo map of monoids is a lax one for which w° and w are invertible;
with the same notion of 2-cell, these form a 2-category Mon,). And of course a
strict map of monoids, or simply a monoid map, is just a lax one for which w° and
w are identities; with the same notion of 2-cell once again, these form a 2-category
MonV, which may also be called Mon,V if we wish to emphasize the strictness of
the maps.

When, in the definition above of lax monoid map, (S,j,n) is the monoid
((B, B), j,n) described in Section 1, to give the arrow w : T — (B, B) is equally,
by (1.4), to give an arrow t.: TB — B in A; similarly to give the 2-cells w° and w
is equally to give 2-cells

L, TB 2B 22> TB
<3
1

Ba TB—t)'Ba

B t Tt —_3,» t

and the three axioms on (w,w°,w) are easily converted to the three axioms [9,
(4.6-4.8)] for (t,%,%) to be a laz action of the monoid T on the object B of A. Itis a
pseudo action when  and % are invertible, and a strict action — or merely an action
— when ? and ? are identities. Reversing the sense of ¢ and ¢ produces the notion
of a colaz action of T on B. When (t,?,f) is a lax action of T on B, we call the
quadruple (B, t,t,%) a laz T-algebra; similarly for the notions of pseudo T-algebra,
of strict T-algebra (or merely T-algebra), and of colaz T -algebra.

If (B,b,g, b) and (A,a,d,a) are lax T-algebras, a laz morphism (or laz map)
from (B,b,'l;, b) to (A,a,a,d) is a pair (f, f) where f : B — A is a morphism in
A while f is a 2-cell a.Tf — fb satisfying the two axioms [9, (4.10) and (4.11)].
(Note that we have explained lax monoid maps as monoids in a suitable monoidal
2-category, and explained lax actions as lax monoid maps T — (B, B); the corre-
sponding rationale for the definition of lax morphisms of lax algebras will be given
a little later.)

The lax morphism is said to be a pseudo morphism, or just a morphism, of
the lax T-algebras when f is invertible, and to be a strict morphism when f is the
identity; while reversing the sense of f gives the notion of a colaz morphism. In the
case where 3, b, @, and @ are identities, we recover the usual notions of lax, pseudo,
strict, or colax morphisms of (strict) T-algebras; even for these, following the lead
of [4], we use “morphism” without a modifier to mean “pseudo morphism”. In the
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same way, when 3, b, @, and @ are invertible, we call (f, f) a lax morphism of pseudo
T-algebras, and so on.

The notion of algebra 2-cell p : f — g: (B, b, 3, b) — (A, a,@,a) is the same for
lax algebras, pseudo ones, or strict ones: namely a 2-cell ¢ : f — g in A satisfying
the single obvious equation. So we have 2-categories and inclusions

Lax-T-Alg, — Lax-T-Alg, = Lax-T-Alg — Lax-T-Alg,

of lax T-algebras with, respectively, strict morphisms, pseudo morphisms (often
just called morphisms), and lax morphisms; as well as the 2-category Lax-T-Alg,
whose morphisms are the colax ones. Similarly, there are strings of inclusions with
Lax-T-Alg, replaced by Ps-T-Alg, (when we restrict to the pseudo algebras) or by
T-Alg, (when we restrict to the strict ones).

We promised to give a “rationale” for the definition of lax morphism of lax
T-algebras; in fact our needs below in proving the central result make it more con-
venient to work with colax morphisms. We therefore define a 2-category Lax[2, A],
analogous to Colax[2, A], in which an object is once again a morphism f: B — A
in A, while an arrow (b,7,a) : f — g consists of morphisms b and a together with

a 2-cell T as in
D
lg
C

a y

B—2>
14
A——

and we have the obvious definition of 2-cell. There is an evident action of the
monoidal 2-category V on Lax[2, A, sending (T, f : B — A) to Tf : TB — TA,
and defined in the obvious way on morphisms and 2-cells. To give a map (b,7,a) :
Tf — g in Lax[2, A] is equally to give 8, p, and a as in

PP
-~ ¥ (B0,

T
N Ao

(4,C)

where 3 = ®b, a = ®a, and p = ®r; so that b, r, and a are recovered, using the
evaluation e, as b = ep,p.BB, 7 = eg c.pB, and a = e4 c.aA. If we now write

b

D
LD oy
{f,9} $»  (B,C)
v C
(a,cy "
for the comma object, to give (3, p, @) is equally to give amap vy : T — {f, g} in V:
namely the unique map for which uy = 3, Ay = p, and vy = a. These bijections
sending v to (u,\,v)y = (B, p,a) and sending (B, p,a) to (e.0B,e.pB,e.cA) =
(b, 7, a) clearly extend to 2-cells and become isomorphisms of categories, their com-
posite being a natural isomorphism

V(T,{f,9}) = Lax[2, A|(T f, 9) (2.1)
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exhibiting {f, —} as the right adjoint of the 2-functor V — Lax(2, A] sending T to
Tf. The counit Ef g : {f,g}f — g of the adjunction, which we may again call the
evaluation, has the form

E°
{f,9}B—L2—~D

{f.g}fl VET s lg

{fag}A -El—.> C,

f.9

and is obtained by setting T = {f, g} and y = 1, so that E0 = e.uB, E}, = e.AB,
and E'fg = e.vA. When g = f, the comma object {f, g} becomes

o ) o
B (BA)
\ /

(4,4)

By the general results on actions in Section 1, for any f : B — A the object {f, f}
admits a canonical structure ({f, f}, k,!) of monoid in V, where ! : {f, f}{f, f} —
{f, f} is determined by the commutativity in Lax[2,.4] of

U FHE 1Y —L {5, 1} f (2.2)
{f.f}E/..rl lEl.!
{f.7}f &, £,

and similarly k : 1 — {f, f} is determined by the equation Efs.kf = 15 in
Lax([2, A]. Moreover, for a monoid T = (T,%,m) in V, to give a lax monoid map
v :T — {f, f} is equivalently, by the earlier part of this section, to give (as its im-
age under (2.1)) a lax action (¢, ¢,c) : Tf — f. Here c consists of maps b: TB — B
and a: TA — Ain A and a 2-cell f: fb — a.Tf, while € is a pair (b a) of 2-cells
b:1 > biBand@a: 1 — a.iA, and € is a pair (b,@) of 2-cells b : b.Tb — b.mB
and a : a.Ta — a.mA, all these data satisfying equations which assert precisely
that (b,g, b) and (a,@,a) are lax actions of T on B and A and that (f, f) is a colax
morphism (B, b,b,b) — (A, a,a,a) of lax T-algebras.

In particular, a strict monoid map « : T — {f, f} corresponds to strict actions
b:TB — Band a: TA — A, along with an f making (f, f) : (B,b) — (4,aq)
a colax morphism of T-algebras. The strict monoid maps g : T — (B, B) and
a:T — (A, A) corresponding to the strict actions b and a are the composites of «y
with u : {f, f} — (B, B) and v : {f, f} — (A, A); since vy here may be the identity
map of {f, f}, we conclude that u and v are themselves strict monoid maps.

We can be more explicit about the value of k : 1 — {f, f}: it corresponds of
course under (2.1) to the identity 1f — f, and hence is the unique k for which uk
and vk are the units j : 1 — (B, B) and 7 : 1 — (A, A) of the monoids (B, B) and
(A, A) while Ak = id.
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The explicit description of the multiplication ! : {f, f}{f, f} — {f, f} is slightly
more complicated. First we unravel (2.2) to obtain

{f,fHSf. f}B {f,.fH/f. f}B
\wi}f W}f
{f.f{e.uB) {f,fHf, F}A 1B {f,.fHS f}A
Y ﬂ’.j}(e.)\B) Y
{f.f}B {f,f HevA) {f.f}B 1A
WA w
Y Y
e.uB {f, f}A = e.uB {fv f}A
e.AB ﬂ e.AB ¢
Y Y
B evA B e.vA
\ | \ !
A A,
(2.3)

and then apply the isomorphism & to this equality. The resulting equality, at the
level of 1-cells, asserts that ul and vl are the composites

{f,fH{f, f} — (B, B)(B,B) — (B, B),

{f, fHL f} — (A, A)(A, A) — (4, 4),

(repeating our observation above that « and v are strict monoid maps); at the level
of 2-cells, it reduces, as we indicate below, to the assertion that Al is given by

wop? P g P
”}u{f,f}( , B) yxB.B) (B, A)(B’B)M (B.1)
U PN f}/y <\>(* P I
| | \ < A \wff) / \
(A, A){.f,f}\x a,ax (A, ANB, A) (. A)
(4, 4)(4, A 222 > (4, A).
(2.4)

Since the image under ® of the right side of (2.3) is the composite A/, we must
exhibit (2.4) as the image under ® of the left side of (2.3); and this left side
is the “vertical” composite of e AB.{f, f}e.{f, f}uB with evA.{f, f}e.{f, f}\B.
Because the action * : ¥ x A — A, denoted by juxtaposition, is a 2-functor, we
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have AB.{f, f}e = (B, A)e.A\(B, B)B, so that

eABAf, f}e{f, f}uB =e.(B,A)e.A\(B, B)yB.{f, f}uB
=e.MB.\(B,B)B.{f, f}uB,
where the second step uses (1.7) to replace e.(B, A)e by e. M B; and the image
MM\(B,B){f, f}u of e MB.A(B, B)B.{f, f}uB under ® is the top half of (2.4).
Similar arguments justify the steps in
evA{f, fle{f, f}A\B = e.(A, A)ew(B, A)B.{f, f}\B
=e.MB.(A, A)AB.v{f, f}B;

and the image M.(A, A)A\.v{f, f} of this last under @ is the bottom half of (2.4).

3 The central result
We begin with the following, due to Street [16, Proposition 5]:
Lemma 3.1 Let

w Bs
N
D I A

N
c

be a comma object in the 2-category A. If f has a right adjoint given by n,¢ :
fd f*: A— B, then v has a right adjoint given by (,id : v 4 v* : C — D,
where v* is the unique map satisfying uwv* = f*g, \* = g, and vv* = 1; while
¢ : 1 - v*v is the unique 2-cell for which v{ : v — vv*v is the identity on v(= vv*v)
and u{ : u — uv*v is the composite
*A
u—"> f*fu L2 f*9v = w*v.

Remark 3.2 There is of course a similar result where we replace the comma
object by an iso-comma object, and the adjunction f - f* by an equivalence; but
we shall not need to refer to this below.

Returning now to the general situation of a monoidal 2-category V acting on
a 2-category A with a right adjoint expressed by the 2-natural isomorphism ® of
(1.4), consider an arbitrary adjunction 7,¢ : f 4 f*: A — B in A, and note that
the 2-functor (B, —) : A — V takes this adjunction into an adjunction
(B,n),(B,¢) : (B, f) 4 (B, f*) : (B, A) — (B, B)

in V. Supposing henceforth V to admit comma objects, we can apply Lemma 3.1
to this adjunction and to the comma object

b

,,/‘B ) @
W b BA
SN

(4, 4)
to get:
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Proposition 3.3 In the presence of the adjunction n,e : f 1 f* : A — B, the
map v : {f,f} — (A, A) has a right adjoint given by {,id:v 1z : (A, A) — {f, f},
where z is the unique map satisfying uz = (f, f*), Az = (f,¢) : (f, ff*) — (f, A),
and vz = 1; while { : 1 — zv is the unique 2-cell for which v{ = id and u( is the
composite

.n)u (B,f* )A

—— (B, f* flu——(f,f*)v.

The result of the following lemma is very like that of (8, Theorem 1.2], of which
it is not, however, a consequence; the situation is rather that the proof-techniques
of that paper adapt so readily to the present lemma that we can safely leave the
details to the reader.

Lemma 3.4 Let o, : p 10 : S —» T be an adjunction in the monoidal
2-category V, where T and S have monoid structures (T,i,m) and (S, j,n). Then
there is a bijection between enrichments of p to a colax monoid map (p,p’, p¥)
and enrichments of o to a laz monoid map (0,0°,0), where 0° and & are given
respectively by the pasting composites

T L o >T Y
/Ut\U‘/ / Uﬂ;\ I o* XU‘/
1 ; > S ’ > 9§

>SS

n

We now apply the lemma to the adjunction ¢,id : v - 2 : (A,A) — {f, f}-
We saw in Section 2 that v is a strict monoid map, which we can see as a colax
monoid map (v, id, id); it follows from the lemma that z admits an enrichment to a
lax monoid map (z, 2°, z) where z° is given by

{£. 5} > {f, £}
/ N “‘/
. > (A, A)
or simply Ck, while Z is given by
{f, {5, £} ‘ = {f, f} ————{
PN \“‘/
(A, A)(A, A) - (A, A)(A,A) ——— > (A, A)

or simply (l.zz. Note tha.t, since v{ = id by Proposition 3.3, we have v2° = id
and vz = id; thus the composite (vz,vz°,vZ) of the strict monoid map v and the
lax monoid map z = (z, 2°, z) is the identity monoid map 1 = (1, id, id) : (A, A) —
(A, A).

Let us set w = (f, f*) : (A,A) — (B, B), as indicated in Section 1. Then
w = uz by the definition of z; and since u is a strict monoid map while z = (z, 2°,2)
is a lax monoid map, we have a lax monoid map

(w,w®, w) = (uz,uz’,u2) : (A, A) — (B, B).
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To complete our central result, therefore, it remains to describe more explicitly w®
and w; or equivalently to describe the ¢ and the ¢ which enrich the t : (A, A)B — B
of Section 1, given by

(A, 4)B L2

—5 (A, A)A—=> A AN B,
to the lax action (¢,%,%) of (A, A) on B corresponding to the lax monoid map
(w, w°, w).

Now w° = uz°® = u(k, which, by Proposition 3.3 and the observation in Sec-
tion 2 that Ak = id, is just the 2-cell (B, n)uk in

(B, 4)

1—k>{faf}—u>(B’B) >(B’B);

1

and since uk = j, this is just (B,n)j. Moreover, applying ®~! to each side of the
equality w°® = (B, n)j shows that t:1- tiBis given by 7 : 1 — f* f; observe here,
using the naturality of ¢, that f*f = f*e.iA.f = f*e.(A, A)f.iB = t.iB.

It remains to describe the 2-cell

(A, A)(A,A) —— (A, A)

wwl z 1,,,

(Bv B)(B’B) T (B$ B),

or equivalently the component

(A, A)(A, A)B —22> (4, A)B
(A.A)tl =_tb lt
(A,A)B . > B

of the lax action (¢, , t) of (A, A) on B. Now w = uZz = u(l.zz, so from the definition
of u¢ in Proposition 3.3 it follows that w is given by the pasting composite

(B, B) ~ (B, B)
/ (A U‘B (B,f*)
(A, A) (A, A) —= {f, FH [, f} —— (. f} (B, A)
N
(A, 4) .

(3.1)



330 G.M. Kelly and Stephen Lack

Using the description (2.4) of Al and the equations vz = 1 and uz = (f, f*),
we see that Al.zz may be written as

% \wf ry ~ (B, B)
p {f,f}( , B) {xB.B) (B, A)(B,B) (B.f)
(4, 4)(4, A>/7 BT 5, A T (B, 4)
e e~ wf D7
(4, A){f, f} baas (44 B4 |ua
\
(4, A)(4, A) 2L - (4, A).
(3.2)

Using the equation Az = (f,¢) to simplify (3.2), and substituting the result into
(3.1), we conclude that @ is the composite:

Jf*Y(B,B
{f.£*)({B,B) (B.f)(B.B)
€){B,B
Y rex )W (B.f) (8.5)
B
(A,A)(f,f")
(A,A)(B,f) M (ﬁ)
Aa,4)(f.e) v v

B B » (B, B).

(A A)(A A?A A)(jASA’A)( ’A)—M>( aA) (B.f*) ( ’B>

By the “extraordinary” naturality of the M’s and one of the triangular equations,
this reduces to

(A, A)(B, B)

(A A)(f.f" A,A)(B.f)
HA.4) (1)

(A, A)(A, A) W ~ (A, A)(B, A) — (B, 4)

B, B
(Bf)(’ )

and so, using extraordinary naturality once again, to

(B, B)

(B.f*%) (B,f)
U(B,e)

(A,A)(AA) — (A A) —— vy (B, A) > (B, A) ——>

— > (B, B).
(3.3)

(B.f7)
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Finally ? is obtained from w by applying ( ) B and composing with the evaluation
e : (B, B)B — B; by the ordinary and the extraordinary 2-naturality of e this gives

B
;y/u>gk
(4, A)(A,A)B ——> (A, A)B —> (A, A)A — A - ~A—>B,

(AAf

which is perhaps more readily seen as a 2-cell ¢t.(4, A}t — t.mB by using the
2-naturality of e once more, to display it in the form

(A, A)(A, A)B mB > (A, A)B (3.4)
(A,A)(AA)f L l(A.A)f

(A, A)(A, A)A mA > (4, A)A
(A,A)el lc

(A, A)A - > A
. ;

NA,A)e
(A, A)B - (A, A)A—~A——B.

(AA)f
Summing up, we have as our central result:

Theorem 3.5 Let the monotdal 2-category V admit comma objects, and let it so
act on the 2-category A that we have the adjunction ® : A(XA, B) = V(X, (A, B)).
Then each adjunctionn,e: f 1 f*: A — B in A gives rise to a lax map of monoids
(w,w°,w) : (A, A) — (B, B) in V, where w = (f, f*) and w° is given by (B,n)j,
while w is given by (3.3). In fact to give a lax map (w,w°,w) : (A, A) — (B, B) of
monoids is equally to give a laz action (t,t,1) of the monoid (A, A) on B; and here
t: (A, AYB — B is the composite

AN 4 A st o B,

(A, A)B 224

while t = ®~1(w®) is given by n and T = &~ 1(@) is given by (3.4). When n and ¢
are tnvertible, so that the adjunction f 1 f* is an equivalence, the 2-cells w°, w, t,
and t are invertible, so that (w,w®, w) is a pseudo map of monoids, while (t,,7) is
a pseudo action of (A, A) on B.

4 The enrichments of f and f*

We continue to suppose satisfied the hypotheses of Theorem 3.5. As we saw
in Section 3, the lax monoid map (z, 2°,2) : (A, A) — {f, f} satisfies u(z,2°,2) =
(w, w®,w) and v(z,2°,z) = 1 in Mon; V. Since the lax monoid map (w,w®,w) :
(A, A) — (B, B) corresponds to the lax action (t,?,f) : (A, A)B — B and the strict
monoid map 1 : (A, A} — (A, A) corresponds to the strict action e : (A, A)A — A,
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it follows from our observations in Section 2 that we have a colax map (f, f) :
(B,t,?,f) — (A, e) of lax (A, A)-algebras, where the diagram

(A,AAB—>B
(A,A)fJ (%3 lf
(A, A)A—— A

is the image under ®~! of Az. Since Az = (B, €)(f, A) by Proposition 3.3, an easy
calculation exhibits f as the 2-cell

A, ABL ama—>p4— I . p
(A'A)fl < |f
1 €
(4, A)A >

e

It now follows from [8, Theorem 1.2] that we have a lax map ( .7 :(Ae) -
(B, t,t,1) of lax (A, A)-a.lgebras, where the 2-cell f* is the composite

(A, A)A > (A, A)A £ > A
(A,A)e .
(AA)f* (A,A)f
(A,A)B - B - > B;

which, on substituting for f its explicit value above and using one of the triangular
equations, gives

(A, A)A :

> A
(A,A)f* !
XA, A)e

(4, A)B ———— (A, A)A—> A—>B

as the value of 7.

When f = ce.(A, A)f is invertible — and so in particular when ¢ itself is
invertible — we have a lax map (f, f) of lax (A, A)-algebras, where f = f~1, and by
[8, Proposition 1.3] we have an adjunction (£, f) - (f*, f*) in Lax-(A, A)-Alg,. We
state this formally only in the most important case where ¢ is itself invertible; then
both f and f* are invertible so that (f, ) and (f*, f*) become pseudomorphisms:

Theorem 4.1 Let the counit € : ff* — 1 of the adjunction n,e : f 4 f* :
A — B be invertible. Then we have an adjunction n,¢ : (f,f) 4 (f*,f*) : (A, e) —
(B,t,t,t) in Lax-(A, A)-Alg, where f is given by e 'e.(A, A)f and f* is given
by f*e.(A,A)e. When 7 too is invertible, so that the original adjunction is an
equivalence in A, botht and? are invertible, so that the adjunction (f, DAY
becomes an equivalence in Ps-(A, A)-Alg.

A somewhat different case that has been useful historically, as the motivation
for introducing the concept of flezibility for 2-monads, is that where we suppose the
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invertibility only of f* = f*e.(A, A)e, which gives us an adjunction

me: (fH) AT (Ae) = (B4, 14,7)

(with ¢ too invertible) in the 2-category Lax-(A, A)-Alg, of lax (A, A)-algebras and
colaz maps. The historical example supposed 7 too to be invertible — indeed, to
be an identity — so that also ¢ was invertible, and we were dealing with pseudo
(A, A)-algebras. To regain lax maps instead of colax ones, we need only to pass
to the dual case by supposing the original adjunction n,e : f 4 f* : A — B to
lie in .A%° rather than A. Leaving the reader to work through the simple dualizing
process, we merely state the result (which essentially repeats [8, Theorem 3.2], itself
a generalization of [5).)

Theorem 4.2 With V and A as before, letn,e : f 4 f* : A — B have ¢ invert-
ible, and let fe.(A, A)n be invertible. Then we can enrich the adjunction f 4 f*
to an adjunction n,e : (f,f) 4 (f*,f*) : (A,s,5,3) — (B, e) in Ps-(B, B)-Alg,.

5 The monoid (f, f*): (A, A) — (B, B) as an endo-object

Before turning to the applications of the above to transport of structure, we
revisit our central results in Theorem 3.5 and in the prologue to Theorem 4.1, to
cast a new light on them. The first of these asserts that, under the conditions of
the theorem, the map w = (f, f*) : (A, A) — (B, B) underlies a lax monoid map
(w,w®,w). By Section 2, such a lax monoid map is the same thing as a monoid in
the monoidal 2-category Colax[2, V]. Now probably the most direct way of showing
an object of a monoidal 2-category to admit a monoid structure is to exhibit it
as an “object ((A, A)) of endomorphisms” in the context of an action admitting
the adjunction ® of (1.1); in this way we saw (A, A) to be a monoid in Section 1,
and {f, f} in Section 2: the latter involving the action of V on Lax(2,V] and the
adjunction (2.1). Of course V also acts on Colax[2, A] in the dual fashion, with a
right adjoint say {f, g}’, so that a strict monoid map T — {f, f}’ corresponds to
a lax map (f, f) of T-algebras. These three are all examples of monoids in V; and
the question suggests itself whether the monoid (w,w®,w) in Colax[2, V], enriching
w = (f,f*) : (A,A) — (B, B), is an object of endomorphisms for some suitable
action.

To this end, we consider an action of Colax[2, V] on Colax[2, A] which extends
the action above of V on Colax[2, A]. The 2-functor * : Colax[2, V] x Colax|2, 4] —
Colax[2, A] on objects sends (p : T — S,g : A — B) to pg : TA — SB;
on morphisms it sends ((a, A, §), (a,8,b)) to (aa, A8, Bb); and on 2-cells it sends
((v, 8), (&,m)) to (7€, dn). That this is indeed an action is immediate. Consider now
what it is to give a morphism (a,8,b) : pg — h, as in

TA——C (5.1)

SB—b*D.
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It comes to giving the images (o, ¢, §) of (a, 8, b) under the isomorphism @, as in

T —%>(A,C) (5.2)

wl

P of} (A, D).

Y
S—ﬁ> (B, D)

In general, this is not of the form p — o for some object o of Colax[2,V]: the
present action does not admit a right adjoint like that in (1.1). Suppose however
that the morphism g is a right adjoint — say ¢ = f* where, as before, we have
n,€:f1f*=g: A— Bin A. These same data constitute, in .A°P, an adjunction
n,e:g 1 f: A — B, which is sent by the 2-functor (—, D) : A°? — V to the
adjunction
(n, D), (¢, D) : (g, D) 4 (£, D) : (A, D) — (B, D)

in V. Accordingly, to give the ¢ : (9, D)Bp — (A, h)a of (5.2) is equally (see [13])
to give a 2-cell ¢ : Bp — (f, D)(A, h)a = (f, h)a, where 9 is given in terms of ¢ as
the pasting composite

T —— (A,C) (5.3)
wl)
P (A, D)
9.D) f,D)
) / ﬂ(nk\
S —> (B D) > (B D)

with a similar formula giving ¢ in terms of ). The passage from ¢ to ¢ is clearly
2-natural in the p and in the h of (5.1), so that we have a 2-natural isomorphism

Colax|2, A](pg, h) = Colax(2,V](p, (f, h)).
Thus, although we have for a general g no adjunction of the form
Colax|2, A)(pg, h) = Colax(2, V](p, [9, h]),

yet we do have such a [g, h] when g is of the form f*, it being given by [g, k] = (f, h);
more succinctly, we have [f*, h] = (f, h). In particular, (f, f*) : (A,A) — (B,B) is
the value of [f*, f*], which is a monoid in Colax[2, V] because it has the form of an
object of endomorphisms.

We now turn to our second main result, namely the observation in Section 4
that f : B — A underlies a colax map of lax (A, A)-algebras, or equivalently that
f* : A — B underlies a lax map of such algebras. We can approach the latter, too,
in terms of the present action of Colax[2,V] on Colax[2, A].

We may identify an object T of V with the object 17 : T — T of Colax[2,V)];
and a monad structure on T gives rise to one on 17, with the same notation. To
give a [lax] action of such a monad on an object g : A — B of Colax(2, 4] is clearly
to give [lax] actions of T on A and on B, along with a lax map (g9,9) : A — B of
such [lax] T-algebras; and the same is true when we omit each “[lax]”. Accordingly
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to enrich f* : A — B to a lax map of lax (A, A)-algebras, we have only to provide in
Colax[2, A] a lax action (A, A)f* — f*, or equivalently to provide in Colax[2,V] a
lax monoid map (A, A) — [f*, f*]. Recall that (A, A) here stands for 1: (4, A) —
(A, A), while [f*, f*] = (f, f*) : (A, A) — (B, B). We simplify now by writing C
for (A, A) and D for (B, B), with k : C — D for (f, f*); recall that C = (A, A) is
a monoid (C,i,m) in V, while D = (B, B) is a monoid (D, j,n),and k: C — D is
a monoid in Colax(2, V], or equally a lax map (k, k°, E) of monoids in V, where k°
and k have the forms

/C cC——¢C
1< k kk =;> k
I D, DD ——D.

What we seek is a lax monoid map (h, h°,ﬁ) : 1¢ — k in Colax(2, V]. For h we take
the map (1, 4d, k) as in
1

c——C
1 1k
C ——>D.
Next, h° has to be a 2-cell
fom 1——>C to 1—>C——>C
1—D 1 i>C > D,
for which we take the pair (id, k°). Similarly the 2-cell &
from CC ——>CC—2—->C to CC-—2>C——>C
lll kkl é k lll ll lk
CC —5>DD——>D CC—7—>C—>D

is provided by the pair (id, 75) The easy verification that (h, h°,71) is indeed a lax
map of monoids provides us with the desired enrichment (f*, f*) of f* to a lax map
of lax (A, A)-algebras.

We carry this analysis no further, since the calculations which give the explicit
values of (f, f*) : (A, A) — (B, B) and of (f*,f*) : A — B are no shorter if we
begin with these present observations than were our calculations above based on
the observations of Sections 3 and 4.

6 Transport of structure along an equivalence

We restrict ourselves here to the important case where the adjunction 7,¢ :
f 1 f*: A— Bis an equivalence in A; the reader interested in the more general
situations of the previous section will easily make the necessary extensions. We are
used in universal algebra to the transport of structure along an isomorphism: if T
is a monad on the mere category A, ifa: TA — A is an action of T on A € A, and
if f: B — A is an isomorphism in A with inverse f* : A — B, there is a unique
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action b: TB — B of T on B for which f becomes an isomorphism of T-algebras
— namely that given by b = f*a.Tf. What replaces this result when A is a
2-category, the monad T = (T, ¢, m) is a 2-monad, and the isomorphism f: B — A
is replaced by the adjoint equivalence f 4 f*? We make use of the results above,
taking for V the monoidal 2-category [A, A], and supposing A complete and locally
small, so that we have the adjunction ® : A(X A, B) & [A, A](X, (A, B)). It is well
known — see for instance [13] — that a strict map o : T — S of monads on A
(2-monads, of course, since A is a 2-category) induces a 2-functor o* : S-Alg —
T-Alg, commuting with the forgetful 2-functors to .A, and restricting to a 2-functor
S-Alg, — T-Alg,. We need a less strict analogue of this: we show that a pseudo
map a = (o,a°,@) : T — S of monads induces a 2-functor o* : Ps-S-Alg —
Ps-T-Alg, again commuting with the forgetful 2-functors to A, and again admitting
a restriction aj : Ps-S-Alg, — Ps-T-Alg, to the strict maps of pseudo algebras.
First, a pseudo action s = (s,5,5) of S on B corresponds as in Section 2 to a pseudo
map o = (0,0°,0) : S — (B, B) of monads, which composes with a = (¢, a°, @)
to give a pseudo map p = (p,p°,p) : T — (B, B), corresponding to a pseudo
action r = (,7,7) of T on B; and (B, r,7,7) is the image under o* of (B, s,§,3).
Next, given a morphism f : B — B’ where (B, s,5,5) and (B’,s’,§,5') are pseudo
S-algebras, to give f the structure of a morphism (that is, a pseudo morphism) of
pseudo S-algebras is to give a pseudo monad map v : S — ((f, f)) with xy =0 and
x'v = o, where

(6.1)

)

x/f(B )Qj’
«f, ) (B, B')
N %')

)

X (BB

is the iso-comma object in [A,.A]; and then the composite pseudo monad-map
vya : T — (£, f)) corresponds to a morphism (f, f) : a*(B, s,5,5) — a*(B',s',5,7)
which is the desired a*(f, f). The isomorphism f is an identity — that is, the
morphism (f, f) is strict — when v : S — ((f, f)) factorizes through the canonical

6:(f,f) = (f, ), where (f, f) is the pullback
(B, B)

7 %j )
(f, f) (B,B') ;
[N ﬁa’)

(B',B’

in which case ya factorizes through 6. Thus o* does indeed send strict morphisms to
strict morphisms, and we have established the 2-functors a* : Ps-S-Alg — Ps-T-Alg
and o] : Ps-S-Alg, — Ps-T-Alg,.

With these tools at hand, we return to the question of transporting structure:
let us have the adjoint equivalence 7,6 : f 4 f* : A —» B in A, and a pseudo
action (a,@,a) of T on A. This corresponds to a pseudo monad-map (o, a°,a) :
T — (A, A), where o : T — (A, A) is the image under ® of a : TA — A. This
a = (a,a°, a) induces a 2-functor a* : Ps-(A, A)-Alg — Ps-T-Alg which carries the
adjoint equivalence (£, f) 4 (f*, f*) in Ps-(A, A)-Alg of Theorem 4.1 to an adjoint
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equivalence
ne:a*(f, ) da*(f*,7*) : a*(A,e) - a*(B,t,1,1)

in Ps-T-Alg. Since the strict action e : (A, A)A — A corresponds to the identity
morphism (A, A} — (A, A), the pseudo T-algebra a*(A,e) is the (A,aqa,a,a) we
started with. Calculating a*(B, t,1,1) is also straightforward, but we do it explicitly
below only for the important case where A is a strict T-algebra, with @ and @
identities. In fact there is a theoretical sense in which it suffices to study this case:
it is shown in [3] that, under modest conditions on T, a pseudo T-algebra is just
a T’-algebra for another monad T”; we shall return to this observation below, in
connection with flerible monads.

We take (A, a), then, to be a strict T-algebra, observing that o : T — (A, A),
as the image under ® of a : TA — A, satisfies e.aA = a. (Note that we have earlier
used ¢ for the unit and m for the multiplication not only of (A, A) but also of T;
but continuing to do so will lead to no confusion.) Let us write (B, b,g, b) for the
T-algebra o*(B,t,t,%). Since b : TB — B is the composite t.aB, while t is given
by the composite

(4, B 4 mya—» a7t B,

the naturality of a along with the equation e.aA = a gives b as the composite

Tf a £
TB——TA > A > B.

Similarly ) is simply n: 1 — f*f = f*a.Tf.iB, while by the description (3.4) of ¢
we see that b is given by

mB

TTB ~TB (6.2)
TTfl l’r,f
TTA mA ~TA
Tal a
a Y
TA > A
Tf.l \ £
fp7e Y
TB———;—>TA——> A—>B.

Similarly, o*(f,f) = (f,f) and o*(f*,F*) = (f*,f*), where f is given by
e 'a.Tf:aTf — ff*a.Tf(= fb), and f* by f*a.Te : (b.Tf* =)f*a.TfTf* —
f*a. Summing up, we have:

Theorem 6.1 Given the equivalence n,e : f 4 f* : A — B in the complete
and locally small 2-category A, and an algebra (A,a) for the monad T = (T,i,m)
on A, the equivalence enriches to an equivalence

ne: (f,F)A(f* F*): (A,a) - (B,b,b,D)

in Ps-T-Alg, where b= n and b is given by f*a.Te.Ta.T%f as in (6.2), and where
f=€_la.Tf and f* = f*a.Te.
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Consider the case where A = Cat and T = (T,i,m) is the 2-monad whose
algebras are the strict monoidal categories. A consequence of the coherence theo-
rem for monoidal categories is that for any monoidal category B there is a strict
monoidal category A — that is, a strict T-algebra (A,a) — and an equivalence
nme: f4f*: A— B with f and f* strong monoidal functors. Now suppose
that B is a skeleton of the category of countable sets, equipped with the cartesian
monoidal structure; then the monoidal structure on A is again the cartesian one, for
some choice of binary products and terminal object. If the equivalence ,¢ : f 4 f*
underlay an equivalence in T-Alg, then the monoidal structure on B would be both
cartesian and strict. By an argument due to Isbell [14, p.160], however, this is
impossible.

In general, then, it is not possible to enrich an adjoint equivalence to one in
T-Alg. However such an enrichment does exist when the monad T is flexible —
a notion, originally introduced in [8], which we now recall. First note that, in
the present case where V = [A, A|, so that a monoid in V is a monad on A, the
2-categories Mon; V, Mon, V, and MonV of Section 2 are conveniently renamed
Mnd,; A, Mnd, A, and Mnd A. In particular we have the inclusion 2-functor J :
Mnd A — Mnd, A; and it was shown in Blackwell’s thesis [3] that a partial left
adjoint to J is defined at the monad T if A is cocomplete and T has some rank.
(An endofunctor T of A is said to have rank k, where k is a regular cardinal, if T
preserves k-filtered colimits.) To say that the partial adjoint is defined at T means,
of course, that there is a pseudo map p : T — T’ of monads on A such that, for any
monad S on A, the 2-functor Mnd A(T", S) — Mnd,, A(T, S) given by composition
with p is an isomorphism of 2-categories. In more elementary terms, every pseudo
map g : T — S is of the form hp for a unique strict map h : TV — S, and every
monad 2-cell a : hp — h'p, where the monad maps h and h’ are strict, is Bp for a
unique monad 2-cell 3: h — K.

In particular, there is a unique strict monad map q : 7V — T for which ¢gp = 17.
Even before Blackwell’s result, Kelly had shown in [9] that, whenever the partial
left adjoint is defined at T, there is an invertible 2-cell p : 17 = pq with pp = id
and gp = id, so that we have in Mnd, A the equivalence

pid:qdp: T - T.

Taking S = (B, B) in the universal property of p : T — T’ shows that to give a
pseudo action of T' on B is just to give a strict action of 7" on B. And taking for S
the ((f, f)) of (6.1) shows that enriching f : B — B’ to a morphism (f, f) of pseudo
T-algebras is the same as enriching it to a morphism of T”-algebras. Accordingly
we have an isomorphism of 2-categories

Ps-T-Alg = T'-Alg
which commutes with the underlying 2-functors to .4, and which restricts to an
isomorphism of 2-categories
Ps-T-Alg, = T'-Alg,;
moreover, by a similar argument, it extends to an isomorphism
Ps-T-Alg, = T'-Alg,.

This is the intent of our earlier remark that a pseudo T-algebra is just a T"-
algebra for a certain monad T’. The strict monad map ¢ : T — T induces a
2-functor ¢* : T-Alg — T'-Alg, restricting to T-Alg, — T’-Alg, and extending to
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T-Alg, — T'-Alg,. If we identify T"-Alg with Ps-T-Alg via the isomorphism above,
q* : T-Alg — T'-Alg is of course nothing but the inclusion T-Alg — Ps-T-Alg.

The notion of flexibility was introduced by Kelly in [8] as a property of 2-
monads, which is the case of interest here; later it was generalized to be a property
of algebras for a 2-monad, of which a 2-monad itself is a special case — see [4];
in another special case introduced there, flexibility is a property of a weight for
Cat-enriched limits, the corresponding flezible limits being studied in [2].

Supposing the monad T on A to be such that p : T — T’ exists as above, with
q : T' — T the unique strict map for which gp = 1, we say that T is flexible if there
is some strict map 7 : T — T’ for which gr = 1. Since we have p : 1 = pq as above,
we have pr : 7 = pgr = p; so that besides the equivalence p,id: ¢ 1p: T — T’ in
Mnd, A, we now have an equivalence

oid:qdr: T > T (6.3)

in Mnd A itself. One easily sees that (supposing the left adjoints to exist) the
monad T is always flexible, and in fact a monad S is flexible precisely when it is a
retract in Mnd A of some T”; the details can be found in [4]. For a flexible T, the
equivalence of 2-categories

q* d4r* : T'-Alg = Ps-T-Alg — T-Alg
induced by the equivalence (6.3) restricts of course to an equivalence
q" Hr* : T'-Alg, = Ps-T-Alg, — T-Alg,

between the Eilenberg-Moore 2-categories for the monads.
We can now give our main result on flexible monads:

Theorem 6.2 Let n,e : f 1 f* : A — B be an equivalence in the complete,
cocomplete, and locally-small 2-category A, let T = (T,i,m) be a flexible monad
on A having some rank, let a : TA — A be an action (meaning a strict one) of T
on A, and let gr = 17, where q: T’ — T is as above and 7 is a strict monad map.
Then the given equivalence has an enrichment to an equivalence

me: (£, )" f): (Aa) - (B,b)
in T-Alg.

Proof Identifying Ps-T-Alg with the isomorphic T”-Alg, we find the desired
equivalence as the image under 7* : Ps-T-Alg — T-Alg of the equivalence of Theo-
rem 6.1. Note here that the (A, a) in the equivalence of Theorem 6.1 really denotes
q*(A, a) — the T-algebra (A, a) seen as a pseudo T-algebra — and that r*q*(A, a)
is (A, a) itself, since gr = 1. O

Remark 6.3 That the scope of the theorem is extremely broad will be clear
from the forthcoming article [11], where it is shown that a monad T on Cat is
flexible if the structure of a T-algebra can be presented by operations and equations,
in the sense of [12], in such a way that there are no equations between objects, only
between maps; with similar results for many other 2-categories in place of Cat.
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