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3 Around the Chern–Simons Functional

In this section we move from surfaces to threefolds, along with connections and
bundles on them. By studying the topological Chern–Simons action functional
on the space of connections on a three-dimensional manifold with boundary,
we recover the definition of the symplectic structure on the moduli space of flat
connections on a compact Riemann surface. Similarly, the holomorphic Chern–
Simons functional on ∂̄-connections over three-dimensional Fano manifolds is
related to the holomorphic symplectic structure on the moduli spaces of stable
bundles over K3 or abelian surfaces.

Furthermore, the corresponding path integrals for these Chern–Simons
functionals in the abelian case can be used to define the Gauss linking number
of oriented curves in three-dimensional space and its holomorphic analogue,
the polar linking number of holomorphic curves.

3.1 A Reminder on the Lagrangian Formalism

A motion of a particle on a manifold can be described by the least action
principle. Consider an action functional

S[q] =
∫ t1

t0

L(q(t), q̇(t), t) dt

defined on the space C[t0, t1] of smooth maps q : [t0, t1] → M of the interval
[t0, t1] to the manifold M . Here L is a (time-dependent) Lagrangian function,
L : TM × R → R, which we assume to depend only on t, q, and its first
derivative q̇ := dq/dt.

For a path variation δq one can find the corresponding variation of the
action functional, i.e., the linear-in-δq term of the difference S[q + δq] − S[q]:

δS[q] =
∫ t1

t0

E δq dt + p δq|t1t0 ,

where

E :=
∂L(q, q̇, t)

∂q
− d

dt

∂L(q, q̇, t)
∂q̇

and

p :=
∂L(q, q̇, t)

∂q̇
.

(Here and below we assume the summation over the coordinates q =
(q1, . . . , qd): pδq :=

∑
j pjδq

j , pj := ∂L(q, q̇, t)/∂q̇j , etc.)

Exercise 3.1 Prove the variation formula. (Hint: use integration by parts.)

This way the variation δS can be regarded as a 1-form on the infinite-
dimensional space C[t0, t1] of “virtual trajectories” of the particle.
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Fig. 3.1. A small variation of the path q(t) with fixed endpoints.

Definition 3.2 The least action principle states that the actual trajectories
of the particle are the critical points of this action functional: δS[q] = 0.

By confining ourselves to variations with fixed ends, δq(t0) = δq(t1) = 0,
we come to a necessary condition on the extremals. Namely, actual particle
trajectories satisfy the Euler–Lagrange equation E = 0, i.e.,

∂L(q, q̇, t)
∂q

− d

dt

∂L(q, q̇, t)
∂q̇

= 0 .

Denote by E [t0, t1] the space of all solutions to the Euler–Lagrange equation,
i.e., the space of such trajectories.

Exercise 3.3 A free particle of mass m moving in the space R
d with a po-

tential energy V : R
d → R has the Lagrangian L(q, q̇, t) = m|q̇|2/2−V (q), the

difference of its kinetic and potential energies. Prove that the Euler–Lagrange
equation for this L gives the Newton equation of motion:

mq̈ = −grad V (q) .

Now we restrict the variation 1-form δS to the space of extremals E [t0, t1],
which is singled out by the Euler–Lagrange equation. On this space of “tra-
jectories with free ends” we obtain

δS = p δq|t1t0 = σ1 − σ0 , (3.5)

where σi := p δq|ti
, i = 0, 1 are the corresponding 1-forms on C[t0, t1]. One

can regard the above as a relation between these three 1-forms: σ0, σ1, and
δS, which holds for their restrictions to the space of extremals E [t0, t1].

Now, by applying the exterior differential δ (on the infinite-dimensional
manifold C[t0, t1]) to both sides of the relation (3.5) above and using δ2 = 0,
we obtain δσ0 = δσ1, which holds on E [t0, t1]. This means that the space
E [t0, t1] turns out to be naturally equipped with a closed 2-form ω defined by

ω := δσ0 = δσ1 .

Definition 3.4 A manifold N equipped with a closed 2-form ω (not neces-
sarily nondegenerate) is called presymplectic.
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Consider the distribution of null-spaces of this 2-form in N .

Exercise 3.5 (i) Assuming that this distribution has constant rank, prove
that it is integrable, i.e., it is tangent to a foliation in N .

(ii) Assuming that this null-foliation is a fibration π : N → N ′, prove that
the base of this fibration carries a natural symplectic structure, i.e., (N ′, ω′)
is a symplectic manifold such that π∗ω′ = ω.

The above discussion shows that whenever the space of extremals E [t0, t1]
is a manifold, it is in fact a presymplectic manifold. However, the 2-form ω is
often degenerate. The phase space P of the particle can be described as the
corresponding symplectic manifold. (Here we implicitly assume that various
regularity conditions are satisfied to guarantee that both E [t0, t1] and the
phase space are smooth manifolds.)

Exercise 3.6 Check that for the above example of a particle motion in R
d

this definition of the phase space P coincides with T ∗
R

d equipped with the
natural symplectic structure.

Remark 3.7 [393, 79, 341] The discussed Lagrangian formalism can be gen-
eralized to infinite-dimensional target manifolds M or to higher-dimensional
domains instead of the interval [t0, t1]. These are the objects that a field theory
deals with. Consider, for example, a local action functional

S[ϕ] =
∫

N

L(ϕ(x), ∂ϕ(x)) dnx

describing a field theory on an n-dimensional manifold N with boundary ∂N .
Here x = (x1, . . . , xn) are local coordinates on N , ϕ is a map from N to
a target manifold M or a section of some bundle on N , ∂ϕ are the first
derivatives of ϕ, while the Lagrangian L can depend on additional structures
on N . As in the one-dimensional situation described above, one can pose a
variational problem δS[ϕ] = 0, which leads to the Euler–Lagrange equations.

Suppose first that N = I × Σ, where I is an interval and a manifold Σ
has dimension n− 1. One can consider t ∈ I as the time variable and identify
the field theory with an infinite-dimensional classical mechanics, where the
space of maps ϕ : Σ → M plays the role of the target. In particular, one has
a presymplectic manifold of extremals EN and the symplectic phase space P
associated to N (or, rather, to Σ).

Alternatively, one can associate the phase spaces P0 and P1 to the cor-
responding boundary components ∂N = Σ1 − Σ0 of N , and equip the total
phase space P0 × P1 with the product symplectic structure. There is a nat-
ural projection αN of the space EN of extremals into the product P0 × P1,
since it “tautologically” projects to each factor: one describes the extremals
via different boundary components, taking the orientation of the latter into
account. Then the relation 0 = δ2S = δσ1 − δσ0 that held on EN now reads
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that the image αN (EN ) of EN is an isotropic submanifold in the symplectic
manifold P0 × P1.

Definition 3.8 A submanifold of a symplectic manifold is isotropic if the
restriction of the symplectic form to this submanifold is zero.

Exercise 3.9 Let f : (N1, ω1) → (N2, ω2) be a diffeomorphism between two
symplectic manifolds. Prove that f is a symplectic map, i.e., ω1 = f∗ω2, if and
only if the graph of f is an isotropic submanifold in the symplectic manifold
(N1 × N2, ω1 � ω2).

(An isotropic submanifold of maximal possible dimension, which is equal
to half the dimension of the symplectic manifold, is called a Lagrangian sub-
manifold; cf. Section I.4.5. This is the case for the graph of f .)

One can see that the image αN (EN ) is indeed isotropic in P0×P1, since the
2-form δσ1− δσ0 is exactly the restriction of the product symplectic structure
of P0 × P1 (with different orientations of the boundary components) to this
image.

The latter formulation of the presymplectic/isotropic properties of the
space of extremals EN extends naturally to the general case of a manifold
N with boundary consisting of several components Σ1, . . . , Σk. Associate the
phase space Pj to each component Σj , thinking of a neighborhood of Σj

in N as a product I × Σ. One has the relations δS = σ1 + · · · + σk and
δσ1 + · · · + δσk = 0 on the space of extremals EN , where σj stands for the
contribution of the corresponding boundary component. The latter shows that
the image αN (EN ) under the natural map αN : EN → P1 × · · · × Pk is
isotropic with respect to the product symplectic structure on the phase space
P1 × · · · × Pk. We refer to [341, 79] for more details.

Remark 3.10 The philosophy of holomorphic orientation (see Sections 2.2
and 2.3) can be applied to field-theoretic notions in the following way. Suppose
we have an action functional

S[ϕ] =
∫

M

L(ϕ, ∂ϕ) dnx

on smooth fields ϕ (e.g., functions, connections, etc.) on a real (oriented)
manifold M , and this functional is defined by an n-form Ldnx, which depends
on the fields and their derivatives.

Then one can suggest the following complex analogue SC of the action
functional S for a complex n-dimensional manifold X equipped with a “polar
orientation,” i.e., with a holomorphic or meromorphic n-form µ:

SC[ϕ] :=
∫

X

µ ∧ L(ϕ, ∂̄ϕ) dnx̄ .
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Here ϕ stands for smooth fields on a complex manifold X. Now the (0, n)-form
Ldnx̄ is integrated against the holomorphic orientation µ over X.

Furthermore, the interrelation between the extremals of the real functional
S[ϕ] (on smooth fields) on the real manifold M and the boundary values of
those fields on ∂M is replaced by the analogous interrelation for the complex
functional SC[ϕ] (still on smooth fields) on a complex manifold X (equipped
with an n-form µ) and on the polar divisor Y := div∞µ ⊂ X (equipped with
the residue (n − 1)-form ν := res µ).

The above discussion will allow us to see in the next two sections how
the symplectic structures on the moduli of flat connections and holomorphic
bundles on surfaces arise naturally from the Lagrangian formalism related to
the topological and holomorphic Chern–Simons functionals.

3.2 The Topological Chern–Simons Action Functional

Let N be a real compact oriented three-dimensional manifold with boundary
∂N = Σ. As usual in the “real case,” we take G to be a compact simply

Σ3

Σ1

Σ2

Fig. 3.2. Three-dimensional manifold N with boundary ∂N = Σ1 ∪ Σ2 ∪ Σ3.

connected simple Lie group with the corresponding Lie algebra g. Denote the
nondegenerate invariant (Killing) bilinear form on g by tr(XY ) := 〈X,Y 〉.
Fix a trivial G-bundle E over N and let A denote the space of connections in
the bundle E. Upon fixing a reference flat connection, we think of A as the
space Ω1(N, g).

Definition 3.11 The topological Chern–Simons action functional is the fol-
lowing real-valued function on the space of connections A:

CS(A) :=
∫

N

tr(A ∧ dA) +
2
3

∫
N

tr(A ∧ A ∧ A) ,

where a connection A ∈ A is understood as a g-valued 1-form on N .

Proposition 3.12 The set of extremals, i.e., solutions of the Euler–Lagrange
equation, for the Chern–Simons functional CS is the space of flat connections
in the G-bundle E over the manifold N .
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Proof. For a small variation δA of a connection A ∈ A the corresponding
variation of the functional is

δ CS =
∫

N

tr(δA ∧ dA) +
∫

N

tr(A ∧ dδA) + 2
∫

N

tr(δA ∧ A ∧ A)

=
∫

N

d tr(A ∧ δA) + 2
∫

N

tr (δA ∧ (dA + A ∧ A))

=
∫

∂N

tr(A ∧ δA) + 2
∫

N

tr (δA ∧ (dA + A ∧ A)) ,

where at the last step we used the Stokes formula.
By imposing the boundary condition δA|∂N = 0 on variations δA, we

obtain the Euler–Lagrange equation

dA + A ∧ A = 0 ,

i.e., the equation of vanishing curvature F (A) = 0 on N . Hence the space of
solutions of this equation is exactly the space of flat connections on the real
threefold N . �

The first term in the above calculation of δ CS gives the boundary contri-
bution, the 1-form

∑
σj on the extremals, where the summation is taken over

the boundary components of ∂N . Take N = I ×Σ to be a finite cylinder over
a closed two-dimensional surface Σ. Then the presymplectic structure on the
space of flat connections on N , i.e., on the extremals for our action functional,
is ω = δσ for

σ :=
∫

Σ

tr(a ∧ δa) ,

where a := A|Σ denotes the restriction of a flat connection A from the man-
ifold N to either of its boundary components Σ. (Here we omit the index
j = 0, 1 for σj , since ω = δσ0 = δσ1.)

Exercise 3.13 Verify that the 2-form ω = δσ is degenerate on the space of
flat connections on the surface Σ exactly along the gauge equivalence classes
of the connections {a}. (Hint: the 2-form δσ =

∫
Σ

tr(δa∧δa) is the restriction
of the canonical 2-form ω from the set of all connections to the subset of flat
connections on Σ; cf. Definition 2.1.)

Thus the moduli space of flat connections MΣ on the surface Σ appears
as the natural symplectic (or phase) space for this presymplectic space of
flat connections on Σ, and we obtain yet another definition of the symplectic
structure on MΣ from Section 2.1.

Corollary 3.14 The moduli space MΣ of flat connections on a surface Σ
is naturally symplectic as the phase space for extremals of the Chern–Simons
action functional for connections on the threefold N = I × Σ.
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Remark 3.15 To see why this action functional is called topological we
now check the invariance property of the Chern–Simons action with re-
spect to gauge transformations of the connections. Let M be a compact
three-dimensional manifold without boundary and suppose that A and Ã are
connections in a G-bundle over M that are sent to each other by a gauge
transformation g:

Ã = gAg−1 − dgg−1 .

Then the Chern–Simons actions for them are related as follows:

CS(Ã) = CS(A) +
1
3

∫
M

tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
.

Recall that the 3-form 1
24π2 tr(g−1dg)∧3 is the pullback under the map g :

M → G of an integral closed 3-form η on the compact simply connected
simple Lie group G (see Proposition 2.16 in Appendix A.2; cf. Section II.1.3).
Thus the integral of this form depends only on topological properties of the
map g and can be expressed as

1
24π2

∫
M

tr(g−1dg)∧3 =
∫

M

g∗η ,

which is an integer, since the 3-form η generates H3(G, Z). The latter implies
that the exponential exp

(
i

4π CS(A)
)

is gauge invariant:

i

4π
CS(Ã) − i

4π
CS(A) = 2πi · 1

24π2

∫
M

tr(g−1dg)∧3 ∈ 2πi · Z .

Remark 3.16 An interesting integer-valued invariant for a homology
3-sphere M was introduced by Casson and is closely related to the gauge-
theoretic constructions above [70]. Roughly speaking, the Casson invari-
ant Cas(M) is defined as the algebraic number of the conjugacy classes of
irreducible SU(2)-representations of the fundamental group π1(M). In other
words, it counts the number of irreducible flat SU(2)-connections on M mod-
ulo conjugation. The homology restriction on the threefold M is related to
the fact that if H1(M) �= 0, then the moduli space of flat connections on M
might not be zero-dimensional, and in particular, it would not consist of a
finite number of points. The reason for restricting to SU(2) is clarified in the
following exercise.

Exercise 3.17 Show that the only reducible representation ρ : π1(M) →
SU(2) is the trivial one. (Hint: Reducible representations of π1(M) in SU(2)
are necessarily abelian and hence factor through the homology H1(M). This
homology group is trivial for a homology 3-sphere.)

Now consider a Heegaard splitting of M into two handlebodies M =
M1 ∪Σ M2 glued together along their common boundary, an embedded sur-
face Σ ⊂ M . Consider the moduli space MΣ of flat connections in the trivial
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SU(2)-bundle on the surface Σ. Define two submanifolds L1 and L2 of the
symplectic manifold MΣ as those (equivalence classes of) flat connections on
the surface Σ that extend to M1 and M2 respectively. One can show that these
submanifolds are Lagrangian. Their intersection points L1 ∩L2 correspond to
flat connections extendable to the whole of M . Thus the Casson invariant is
defined as the intersection number of these submanifolds,

Cas(M) = #(L1, L2) ,

where we assume that the submanifolds intersect transversally, and exclude
the intersection corresponding to the trivial representation; see details, for
example, in [364].

3.3 The Holomorphic Chern–Simons Action Functional

A complex three-dimensional manifold X equipped with a nowhere vanish-
ing meromorphic 3-form µ can be regarded as a complex analogue of a
real oriented manifold with boundary, following the general philosophy that
we adopted in Sections 2.2 and 2.3. Accordingly, one can complexify the
Lagrangian formalism to this situation. Here we define a holomorphic analogue
of the Chern–Simons action functional for (X,µ) and relate it to Mukai’s holo-
morphic symplectic structures on moduli of holomorphic bundles over complex
surfaces, following [195, 85].

Let GC be a complex simple and simply connected Lie group and EC a
complex GC-bundle over the manifold X. As before, let us denote by AX

C
the

space of (0, 1)-connections in the bundle EC.

Definition 3.18 The holomorphic Chern–Simons action functional CSC :
AX

C
→ C is defined via

CSC(A) :=
∫

X

µ ∧
(
〈A ∧ ∂̄A〉 +

2
3
〈A ∧ A ∧ A〉

)

for any (0, 1)-connection A ∈ AX
C

thought of as a gC-valued (0, 1)-form on X.
As usual, we assume that the 3-form µ has only first-order poles, and hence
the integral above is well defined.

Proposition 3.19 The extremals of the holomorphic Chern–Simons func-
tional are holomorphic structures in the complex bundle EC.

Proof. Indeed, in the same way as in the real case and by using the Cauchy–
Stokes formula we come to the Euler–Lagrange equation

∂̄A + A ∧ A = 0
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in the holomorphic setting. Its solutions are (0, 1)-connections A with van-
ishing (0, 2)-curvature, F 0,2(A) = 0, and each such connection defines the
corresponding holomorphic structure in the complex bundle EC. �

Consider now the “boundary term” of the variation δ CSC, which now de-
scends to the polar divisor of the meromorphic 3-form µ. Denote this polar
divisor by Y := div∞µ ⊂ X. Note that the residue ν := resY µ is a nonva-
nishing 2-form on the divisor Y , since µ itself is nonvanishing (see Exercise
2.19). In particular, the canonical bundle of Y has to be trivial, so that Y is
either a K3 surface or a complex torus.

To define the presymplectic structure in the real case we considered a
cylinder M = I × Σ over a Riemann surface Σ. Here we look at the complex
analogue of such a cylinder. Namely, let X = CP

1 × Y be the product of
CP

1 and a K3 surface or abelian surface Y . Suppose that Y is endowed
with a holomorphic (necessarily nonvanishing) 2-form ν, and consider the
meromorphic 3-form µ = (dz/z) ∧ ν on X, where dz/z is a 1-form on the
complex line CP

1. One can see that ν = resz=0 µ = − resz=∞ µ.
Now the variation of the holomorphic Chern–Simons functional satisfies

the relation δ CSC = σ0,C + σ∞,C on the space of extremals, which are the
integrable (0, 1)-connections on X, i.e., the connections with vanishing (0, 2)-
curvature. Here σ0,C and σ∞,C stand for the contributions of the corresponding
components z = 0 and z = ∞ of the polar divisor of µ.

This allows us to introduce the holomorphic presymplectic structure ωC =
δσC on the “boundary values” of the extremals, i.e., on the space of integrable
connections on the surface Y . Explicitly, the holomorphic 1-form σC is

σC :=
∫

Y

ν ∧ tr(a ∧ δa) ,

where a := A|z=0 is the restriction of a (0, 1)-connection A in EC from the
threefold X to the surface Y (understood as one component {z = 0}×Y ⊂ X
of the polar divisor of µ), δa is the corresponding variation of a, and ν =
resz=0 µ is a holomorphic 2-form on Y .

One can show that, similarly to the real case, the presymplectic structure
ωC is degenerate along the orbits of the action of the complex group of gauge
transformations GY

C
on integrable (0, 1)-connections (i.e., holomorphic struc-

tures) in the bundle EC over Y . After taking the quotient with respect to the
group action, we obtain a nondegenerate holomorphic symplectic structure on
the moduli space of (stable) holomorphic bundles on the K3 or abelian sur-
face Y . (Here, as usual, we are concerned with the moduli space only locally
around a smooth point.) Thus the holomorphic Lagrangian formalism gives
an alternative approach to Mukai’s result discussed before:

Theorem 3.20 ([283]) There exists a holomorphic symplectic structure ωC

on the moduli space MY of stable holomorphic GC-bundles over a K3 or
abelian surface Y .
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Remark 3.21 It turns out that there exists a holomorphic analogue of the
Casson invariant for a Calabi–Yau manifold X; see [85, 366]. Instead of a
Heegaard splitting of a real manifold, one considers a degeneration of this CY
manifold to an intersection of two Fano manifolds. The divisor of intersection
is a K3 or abelian surface, and one counts in a special way the holomorphic
bundles over Y extendable to both of these two Fano manifolds.

We also note that the holomorphic Chern–Simons action functional has
more complicated transformation properties with respect to gauge transfor-
mations. After a “large” gauge transformation, the value of the functional
differs by a multiple of the integrals

∫
X

µ ∧ g∗η. The latter can be viewed as
the integrals of the meromorphic 3-form µ over the three-cycles in X that are
Poincaré dual to the 3-form g∗η for various maps g : X → GC. The values of
these integrals can form a lattice or even a dense set in C; hence considering
the exponential similar to exp

(
i

4π CS(A)
)

does not allow one to extract a
gauge-invariant quantity in the holomorphic setting.

3.4 A Reminder on Linking Numbers

Let M be a simply connected oriented manifold and let γ1 and γ2 be two
nonintersecting oriented closed curves in M . Pick an oriented surface D1 ⊂ M
(a Seifert surface for the curve γ1) such that the curve γ1 is the oriented
boundary of the surface D1 and such that D1 and γ2 intersect transversally.

Definition 3.22 The linking number lk(γ1, γ2) of the curves γ1 and γ2 is the
intersection number of the surface D1 and the curve γ2, i.e., the number of
intersections of the curve γ2 with the surface D1 counted with orientation (see
Figure 3.3):

lk(γ1, γ2) = #(D1, γ2).

γ2
γ1

Fig. 3.3. Linking of two oriented curves.

The sign at each intersection point is obtained by forming there a frame from
the orientation frames for D1 and γ2, and comparing it with the orientation
of the ambient manifold M .

Proposition 3.23 The linking number lk(γ1, γ2) is
(i) independent of the choice of a Seifert surface D1,
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(ii) symmetric in γ1 and γ2,
(iii) invariant with respect to isotopy of the curves, provided they do not

intersect each other,
(iv) well defined in any (not necessarily simply connected) oriented three-

dimensional manifold M , provided that both curves γ1 and γ2 are homologous
to 0 in M .

Note that if the manifold M is not simply connected and only one of the
curves is homologous to 0 in M , but the other is not, the linking number
might not be well defined. For instance, take M = T

3 and two curves, one of
which is homologous to 0, while the other is a generator in H1(T3, Z). Then
by taking different Seifert surfaces for the first curve one obtains either 0 or
1 for their linking number; see Figure 3.4.

Fig. 3.4. Two Seifert surfaces for the horizontal circle in the cube-torus T
3 = R

3/Z
3,

one “inside” and one “outside,” give linking numbers ±1 and 0, respectively, for the
intersection with the “vertical” cycle.

Exercise 3.24 Prove the above proposition. Furthermore, show also that the
linking number is actually invariant when the curve γ1 changes to a curve (or
a collection of curves) γ̃1 homologous to γ1 in the complement M \ γ2 (see
Figure 3.5).

γ1

γ̃1

γ2

Fig. 3.5. The homologous curves γ1 and γ̃1 have the same linking number with the
curve γ2.
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Needless to say, the linking number easily generalizes to manifolds of any
dimension n, provided that the linking submanifolds are homologous to zero
and have “linking dimensions”: the sum of their dimensions equals n − 1.

Remark 3.25 There exists the Gauss integral formula for the linking number
of two curves γ1 and γ2 in R

3. Recall it here in a somewhat “symbolic form,”
which we need further.

Let ∆ ⊂ M × M denote the diagonal in M × M and let δ stand for
its Poincaré dual current, a closed 3-form supported on the diagonal, [δ] ∈
H3(M × M, R). Then we can write

lk(γ1, γ2) = #(∆,D1 × γ2) =
∫

x∈D1

∫
y∈γ2

δ(x, y) , (3.6)

where #(∆,D1 × γ2) is the intersection number of ∆ and D1 × γ2 ⊂ M ×M .
One can split the 3-form δ into the homogeneous components

δ = δ3,0 + δ2,1 + δ1,2 + δ0,3 ,

where δi,j denotes the component that is an i-form on the first factor of
M × M , and a j-form on the second factor. Note that in equation (3.6) we
had to integrate only over the component δ2,1, since all the other integrals
vanish. This component is an exact 2-form in x on D1, which allows us to
apply the Stokes formula:

lk(γ1, γ2) =
∫

x∈D1

∫
y∈γ2

δ2,1(x, y) =
∫

x∈γ1

∫
y∈γ2

d−1
x δ2,1(x, y) .

For R
3 the (1, 1)-form d−1

x δ2,1(x, y) on the torus γ1×γ2 assumes the standard
Gauss form

1
4π

· (−−−→x − y,
−→
dx,

−→
dy)

‖−−−→x − y‖3
,

where (·, ·, ·) is the mixed product of three vectors in R
3.

Remark 3.26 In what follows we need a bit of calculus of such δ-type forms.
Let δγ be the Dirac δ-type 2-form supported on a closed oriented curve γ in
a simply connected threefold M . (Alternatively, the curve γ can be regarded
as a de Rham current, a linear functional on 1-forms on M , whose value is
the integral of the 1-form over γ.) The integral of this 2-form δγ over a two-
dimensional surface counts the intersection number of this surface with the
curve γ. Then by using the decomposition of the diagonal 3-form δ into the
homogeneous components, we can express

δγ(x) =
∫

y∈γ

δ2,1(x, y) ,
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where we denote the coordinates on the first and the second factors of M ×M
by x and y respectively. Choose a surface D ⊂ M whose boundary is γ = ∂D.
Similarly, we can define the δ-type 1-form supported on the surface D by

δD(x) =
∫

y∈D

δ1,2(x, y) .

The relation ∂D = γ is equivalent to the relation between the corresponding
δ-forms: dxδD(x) = δγ(x), due to the Stokes theorem, or more explicitly,

δγ(x) =
∫

y∈D

dx(δ1,2)(x, y) ,

where dx denotes the exterior derivative applied to the x-coordinates only.
Finally, if γ1 and γ2 are two nonintersecting curves, we have

lk(γ1, γ2) =
∫

x∈D1

δγ2(x) =
∫

M

δD1(x) ∧ δγ2(x) =
∫

M

δD1 ∧ dδD2 , (3.7)

where ∂D2 = γ2. The latter form suggests a common nature of the linking
number and the A ∧ dA-part of the Chern–Simons functional, which we are
going to study below.

3.5 The Abelian Chern–Simons Path Integral and Linking
Numbers

We start with a reminder on finite-dimensional Gaussian integrals. Let (x,Qx)
be a symmetric negative-definite form in the Euclidean R

n. The classical
Gauss integral

∫
R

exp(−qx2/2)dx =
√

2π/q

has the multidimensional analogue

∫
Rn

e
1
2 (x,Qx) dnx =

(
(2π)n

det(−Q)

) 1
2

.

Now fix a vector J ∈ R
n and consider the integral

ZQ(J) :=
∫

Rn

e
1
2 (x,Qx)+(x,J) dnx =

∫
Rn

eSJ (x) dnx

corresponding to the shift SJ(x) := 1
2 (x,Qx) + (x, J) of the quadratic form

by a linear term. (The initial integral is ZQ(0).) This integral can easily be
solved by completing the square. Indeed, let x0 be a solution of the equation
Qx0 + J = 0, i.e., x0 = −Q−1J . Then by introducing a shifted variable
x̃ = x−x0 and using the translation invariance of the measure dnx, we obtain
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ZQ(J) =
∫

Rn

eSJ (x̃+x0) dnx

=
∫

Rn

exp
{1

2
(x̃ + x0, Q(x̃ + x0)) + (x̃ + x0, J)

}
dnx

=
∫

Rn

exp
{1

2
(x̃, Qx̃) +

1
2
(x0, Qx0) + (x0, J)

}
dnx̃

= eSJ (x0)

∫
Rn

e
1
2 (x̃,Qx̃) dnx̃ = e

1
2 (x0,J) ZQ(0) .

Thus, we have

ZQ(J)
ZQ(0)

= eSJ (x0) = e
1
2 (x0,J) = e−

1
2 (Q−1J,J) . (3.8)

Remark 3.27 When the space R
n is replaced by some infinite-dimensional

vector space, the integrals defining ZQ(0) and ZQ(J) usually do not make
sense. However, one can “calculate” their ratio, which often turns out to
be well defined. Note that the second of the equivalent expressions for
the ratio ZQ(J)/ZQ(0) in formula (3.8) has the form exp(1

2 (x0, J)) =
exp(− 1

2 (x0, Qx0)), which allows us to avoid looking for the inverse Q−1 of
the corresponding operator in the infinite-dimensional space.

Consider an application of this idea to the abelian Chern–Simons path
integral. Let A be the space of connections in a U(1)-bundle over a real three-
dimensional simply connected manifold M without boundary. We can think
of such connections as real-valued 1-forms on M . Denote by CS : A → R

the Chern–Simons action functional on A = Ω1(M, R), which now becomes a
quadratic form

CS(A) =
∫

M

A ∧ dA ,

since the group U(1) is abelian and the cubic term A ∧ A ∧ A vanishes. Note
that the kernel of this quadratic form is the space of exact 1-forms dΩ0 ⊂
Ω1(M, R).

Fix some linear functional J on Ω1(M, R), i.e., a de Rham current on this
space, and define

SJ(A) :=
1
2

∫
M

A ∧ dA +
∫

M

A ∧ J .

for A ∈ Ω1(M, R). We also impose the condition dJ = 0, so that the linear
term

∫
M

A ∧ J is well defined on the quotient Ω1(M)/dΩ0(M). Now make
the following “formal” definition.

Definition 3.28 The abelian Chern–Simons path integral is the expression
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ZCS(J) :=
∫

Ω1/dΩ0
eSJ (A) DA ,

where DA stands for a translation-invariant measure on the infinite-
dimensional space Ω1(M)/dΩ0(M).

Rather than trying to define the measure and the path integral precisely,
we are going to see what the above formal manipulations with Gaussian inte-
grals give us in this situation, where, in a sense, the operator Q is replaced by
the outer derivative d. By formula (3.8) for the ratio ZQ(J)/ZQ(0) we obtain

ZCS(J)
ZCS(0)

= eSJ (A0) = e
1
2

∫
M

A0∧J ,

where A0 is a solution of the equation dA0 + J = 0. (Recall that J is a closed
current on a simply connected M , and hence it is exact, i.e., this equation
formally has a solution.)

Now we would like to specify the functional J on 1-forms A ∈ Ω1(M, R) to
be the integral of the form over a collection of curves in the simply connected
manifold M . Let γi, i = 1, . . . , k, be closed oriented nonintersecting curves
in the manifold M . We set J =

∑
i qi δγi

, where δγi
is the δ-type 2-form on

M supported on the curve γi, while qi are real parameters. By applying the
calculus of δ-forms (see Remark 3.26) we obtain that the ratio ZCS(J)/ZCS(0)
assumes the following explicit form:

ZCS(J)
ZCS(0)

= exp
{1

2

∫
M

A0 ∧ J
}

= exp
{1

2

∫
M

A0 ∧
∑

i

qi

∫
y∈γi

δ2,1(x, y)
}

= exp
{1

2

∫
M

A0 ∧
∑

i

qi

∫
y∈Di

dxδ1,2(x, y)
}

= exp
{1

2

∫
M

−dA0 ∧
∑

i

qi

∫
y∈Di

δ1,2(x, y)
}

= exp
{1

2

∫
M

⎛
⎝∑

j

qj

∫
z∈γj

δ2,1(x, z)

⎞
⎠ ∧

(∑
i

qi

∫
y∈Di

δ1,2(x, y)

) }

= exp
{1

2

∑
i,j

qiqj

∫
M

δγj
(x) ∧ δDi

(x)
}

= exp
{1

2

∑
i,j

qiqj lk(γj , γi)
}

Here we have used the Stokes theorem, as well as the definition of A0 as a
solution of the equation dA0 + J = 0.

Corollary 3.29 ([340, 318]) For the functional J defined as the integral of
1-forms over a collection of curves in a threefold, the ratio ZCS(J)/ZCS(0)
counts the pairwise linking numbers of these curves.
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Note also that above, in the latter sum, we had to assume that i �= j, so
that the linking number was defined. The case of self-linking is much more
subtle. It leads to divergences of the path integral and requires some additional
specifications, such as framing, for its normalization; see [54]. The value ZCS(0)
in the case without any curve corresponds to the Ray–Singer torsion of the
manifold M [340].

The topological Chern–Simons path integral has a holomorphic analogue.

Definition 3.30 (cf. [390]) For a three-dimensional Calabi–Yau manifold
X with a holomorphic 3-form µ the holomorphic abelian Chern–Simons path
integral is the expression

ZCS(J) :=
∫

Ω0,1/∂̄Ω0,0
eSCJ (A) DA ,

where
SCJ(A) :=

1
2

∫
X

µ ∧ A ∧ ∂̄A + 〈CJ,A〉

is the quadratic form shifted by the linear functional CJ on the space of
(0, 1)-connections A ∈ Ω0,1(X, C).

Remark 3.31 For a complex curve C ⊂ X equipped with a holomorphic
1-form α define the linear functional on (0, 1)-connections A by assigning
〈CJC , A〉 :=

∫
C

α ∧ A. Similarly to the topological case, if such a functional
CJ corresponds to a collection of complex curves, the holomorphic abelian
Chern–Simons path integral can be described in terms of the polar linking
number, a holomorphic analogue of the Gauss linking number, which we define
in Section 4.3. The relation of this functional with the holomorphic analogue
of linking was established in [134, 195, 366].

The abelian theory is a particular case of the general Chern–Simons path
integral. In the topological case we consider a link L = ∪iγi in a compact
real threefold M . Let A be the affine space of all connections in the (trivial)
G-bundle over M for a compact simply connected simple Lie group G. We
identify A with the space Ω1(M, g) of 1-forms on M with values in the Lie
algebra g of G. Finally, let GM = C∞(M,G) be the group of gauge transfor-
mations in the bundle.

Definition 3.32 The nonabelian Chern–Simons path integral for a link L ⊂
M is the following function of a parameter k:

ZCS(L; k) =
∫

A/GM

{
exp

{
ik

∫
M

tr
(

A ∧ dA +
2
3
A ∧ A ∧ A

)}

×
∏

γi⊂L

tr
(

P exp
∫

γi

A

) }
DA,
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where P exp is the path-ordered exponential integral of a nonabelian connec-
tion A over γi, and DA is an appropriate measure on the moduli space of the
connections A/GM .

Remark 3.33 Witten showed in [389] that for M = S3 and G = SU(2) this
path integral leads to the Jones polynomial for the link L. Other link or knot
invariants can be obtained by changing the group. Note that they are always
Vassiliev-type invariants of finite order [35, 36]. There are various ways to give
ZCS(L; k) and the corresponding link invariants rigorous definitions (see, e.g.,
the combinatorial [327] or probabilistic [5] approaches).

The extension of these results to a holomorphic version of the nonabelian
Chern–Simons path integral is an intriguing open problem. The more compli-
cated gauge transformation property of the holomorphic Chern–Simons action
functional already makes the first step, writing out the corresponding path in-
tegral for an arbitrary collection of complex curves in a Calabi–Yau threefold,
a serious problem; see some discussion in [391, 134, 366].
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