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1 Introduction

Recently several authors [2, 3, 8, 14] have considered bundles of C*-algebras
obtained by applying to certain continuous fields of C*-algebras product op-
erations such as taking a tensor product with a fixed C*-algebra or a crossed
product by a group acting fibrewise. We consider the fundamental question,
touched on in these articles, of the continuity of the resulting product bundles.

To describe the problem we will use the following idea of a continuous
bundle of C*-algebras over a locally compact Hausdorff space.

Definition 1.1 A bundle of C*-algebras, or C*-bundle over a locally compact
Hausdorff space X is a triple & = (X, : 4 — A, A), where 4 is a C*-
algebra, the bundle C*-algebra, and for each x € X, 4, is a C*-algebra and 7,
a x-epimorphism of 4 onto 4, such that

(i) {n, : x € X} is faithful, ie. ||a]| = sup,cy |lax|l, where a, = m.(a) for
each x;

(i) for f € Co(X) and a € 4, there is an element fa € 4 such that (fa), =
f(x)a, for x € X. When it is clear what the maps m, are, &/ will be written
simply (X,A4,,4). A continuous bundle of C*-algebras is a C*-bundle &/ =
(X,Ay,A) which also satisfies
(iii) for a € 4, the function N(a) : x — ||a;|| is in Co(X).

This definition is equivalent to the classical definition of a continuous field
of C*-algebras [5, 10.3.1] when X is compact, but has the conceptual and
notational advantage that the algebra of sections is a C*-algebra even when
X is not compact. We can identify 4 with the *-algebra of elements 7y in the
cartesian product [],cy 4. for which there is an a € A with y, = m,(a) for
x € X. If T is the *-algebra of elements of ][],y 4 which coincide on compact
subsets of X with elements of A, the triple (X,4,, ') is a continuous field of
C*-algebras in the sense of [5], and Co(I') = A. Conversely, if (X, 4, T)
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is a continuous field of C*-algebras on X and A is the *-algebra of y € I'
such that the function x — ||74|| is in Co(X), then 4 is a C*-algebra and
(X,my : A — Ay, A), where the m, are the obvious coordinate morphisms, is a
continuous bundle in the sense of (1.1), with 4 = Co(I'). Thus the concepts of
continuous bundle and continuous field of C*-algebras are essentially equivalent
for locally compact base spaces. The term bundle seems to us more appropriate
than field in view of the increasing interplay between C*-algebra theory and
topology.

If o = (X,4,,4) is a continuous bundle of C*-algebras, and B is another
C*-algebra, there are natural bundles &/ ® B and & ®pq B over X with bundle
algebras 4 ®min B and A4 ®pqy B, respectively, defined as follows.

1. Since {n, : x € X} is a faithful family of morphisms on A4, the family
{n,®id: 4 ® B — A, ® B;x € X} is faithful on 4 ® B (where, from now on,
® denotes ®min). Thus 4 ® B can be identified with a *-algebra of bounded
elements of [, ,(4: ® B). If fc is defined for f € Co(X) and c € A® B
so that when ¢ = a® b with a € 4 and b € B, f(a® b) = (fa) ® b, then
the triple &/ ® B = (X,4, ® B,A ® B) satisfies (i) and (iii) of Definition 1.1,
but it is not clear that (ii) always holds. It is, in fact, always true that for
¢c € A® B, x — ||(n, ® id)(c)|| is lower semicontinuous (see sect. 2), so
that (ii) holds exactly when this function is also upper semicontinuous for
all c.

2. Since A4 is an ideal of its multiplier algebra M(4), and B is an ideal
of its unitization B, 4 ®pe B is an ideal of M(4) ®pax B, and any irreducible
representation n of 4 ®mqe B extends to an irreducible representation 7 of
M(A) ®max B. The algebra Cy(X) is identified with a C*-subalgebra of the
centre Z(M(A)) of M(4), and so Co(X)®1 C Z(M(A)®maxB). Thus | cot)®1
is a character of Co(X) ® 1, corresponding to evaluation at some point x € X
which depends only on 7. Let J, = {a € 4 : a, = 0}. Then J, = Cp (X )4,
where Co (X) = {f € Co(X) : f(x) =0}, and 7(J; ® 1) = 0. Since (4 Qmax
B)/(Jx ®max B) = Ax Qmax B, it follows that n factors through A, ®me B via
the quotient map 7, oy id : 4 Omax B — Ax Omax B. If ¢ € A @pax B, then
|le]] = sup,||n(c)||, where the supremum is over all irreducible representations
of A®maxB. Thus |c|| = sup,¢ y [|(7 Omarid)(c)||, and 4 ®pa. B can be identified
with a *-subalgebra of erx(Ax ®max B). If the module action of Cy(X) on
A @max B is defined so that f(a ® b) = (fa)® b for f € Co(X),a € A and
b € B, and is extended to arbitrary ¢ € 4 ®pa B by linearity and continuity,
conditions (i) and (iii) of Definition (1.1) again hold, and it is always true that
for ¢ € A @max B, the function x — ||(7x @max id)(c)|| is upper semicontinuous.
Thus (ii) will hold if and only if this function is lower semicontinuous. The
bundle (X, 7ty Qmax id : A Qmax B — Ax Qmax B,A max B) will be denoted by
A @max B.

Before we embarked on this investigation it was widely believed that
a product bundle of form &/ ® B would always satisfy (ii) for continuous
&. Surprisingly, we have found that there are instances where upper semicon-
tinuity can fail. Similarly lower semicontinuity can fail for bundles of form
A Omax B.



Operations on continuous bundles of C*-algebras 679

For a continuous bundle & = (X,n, : 4 — A,,A) with J, = kerm, for
x € X, the continuity of «/®B is closely linked to exactness for the sequences

0>/, ®B—>4®B—>4,Q®B—0 (*)

(Rieffel [14] had already observed this). In general exactness of a short exact
sequence of C*-algebras need not be preserved on taking a minimal C*-tensor
product with another C*-algebra [16], [18], and this fact turns out to be the
key to producing examples of continuous C*-bundles &/ and C*-algebras B
such that &/ ® B does not satisfy (ii). We actually go further, and give a new
characterisation of exact C*-algebras (Theorem 4.5), which may be summarised
as

Theorem A Let B be a C*-algebra. Then B is exact if and only if for any
continuous bundle o/ = (N, 4,,A) of C*-algebras on the one-point compacti-
fication N of N, with A separable, o/ ® B is continuous.

A sufficient condition for (%) to be exact for arbitrary B is that 4 be an
exact C*-algebra. This implies [10] that each A, is exact, and the question
arises whether, conversely, exactness of each 4, implies that of 4. Again, this
is not always true, and we have the following criterion (see Theorem 4.6) for
exactness of 4:

Theorem B Let o/ = (X,A,,A) be a continuous bundle of C*-algebras with
each A, exact. Then the following conditions are equivalent:
(i) A is exact;
(ii) for any C*-algebra B, the bundle o/ @ B is continuous;
(iii) each of the quotient maps m, : A — A, is locally liftable (in the sense of

(11]).

Using results from [11], we construct examples of bundles (X, 4,,4), with
each 4, exact, for which one of the m,’s has no local lifting. It then follows
by Theorem B that 4 is not exact.

Turning to an analogous question for the maximal C*-tensor product, we
obtain

Theorem C Let B be a C*-algebra. Then B is nuclear if and only if for
any continuous bundle o/ = (N, A;,A) of C*-algebras, with A separable, the
bundle of @uyax B is continuous.

The plan of the paper is as follows. Section 2 is devoted to preliminaries on
bundles of C*-algebras, in particular, criteria for upper and lower semicontinu-
ity. In Sect. 3 we consider the continuity question for product bundles of form
o @max B, where o is a continuous C*-bundle. As well as proving Theorem
C, we give an explicit example of a product bundle of this type which is not
continuous. In Sect. 4 we examine analogous questions for product bundles of
form o/ ® B. We give several examples of discontinuous bundles of this type
and establish the characterisations summarised above as Theorems A and B.
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2 Continuity criteria for bundles of C*-algebras

2.1 Upper and lower semicontinuity for a bundle of C*-algebras

Let (X,4,,4) be a continuous bundle of C*-algebras on a locally compact
Hausdorfl space X. Condition (iii) of Definition (1.1) says that 4 is a Co(X)-
module. The following nondegeneracy property holds.

Lemma 2.1 A4 is the closure of Co(X)A.

Proof. (i) Co(X)A C A.

(ii) Let 0facd,e >0,andlet Y ={x€X:|af 2 e} and Y ={x €
X :||a]| > €/2}. Then Y C ¥, and Y and Y’ are compact. Let f : X — [0,1]
be a continuous function such that f|y =1, flx—y = 0. Then for x ¢ Y,

I(fa—ak| £ (f&x) + Dllall < 2e.

Thus || fa — a|| < 2, and, since fa € Cy(X)4 and € is arbitrary, the result
follows. a

If A is a C*-algebra which is a Cy(X)-module, for a locally compact
Hausdorff space X, then Co(X) C Z(M(4)). More generally, let 4 be a C*-
algebra, suppose Cy(X) C Z(M(A)) for such an X, with Cy(X)4 = 4, and let
n, : A — A, be a faithful family of *-epimorphisms such that for each x € X,

mn(fa) = f(x)m(a) (a€Ad).

Then (X, n, : A — A,,A) satisfies conditions (i) and (iii) of Definition 1.1, but
in general the function x — ||n.(a)|| will not be continuous for a € 4. The
next lemma gives a criterion for the lower semicontinuity of this function.

Lemma 2.2 The function x — ||n.(a)|| is lower semicontinuous for a € A if
and only if, for any closed subset X' C X and dense subset D of X', the
morphisms np = @, cp 7 and nyr = @,y T have the same kernel.

Proof. =: Let X' be a closed subset of X, let D be dense in X’, and let
a € kernp. For x € X’ and ¢ > 0, there is a neighbourhood U of x in
X such that ||ny(a)|| 2 ||nc(a)l| — € for y € U. Now DN U=+¢, and for
yebnNnU

Inx(@)ll = llmy(a)l| +€=€.

Since ¢ is arbitrary, ||n.(a)|| =0 and a € kerny.

<: Suppose that x — ||m,(a)| is not lower semicontinuous for some a at
some x € X. Then for some ¢ > 0, there is a net {x;} in X such that
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x = lim; x; and ||n.,(a)|| < ||nc(a)]| — € for all i. Replacing a with |a| and
using functional calculus, we can assume that n,,(a) = 0 for all 4 and n,(a) 0.
Letting D = {x; : 4 € A} and X' = D, a € kernp, but a ¢ kermy/, a
contradiction. O

Let us now take 4 and X as in the previous lemma, and let J, denote the ideal
Co,xA of 4; clearly J, C kerm, for x € X. A useful (and well-known) criterion
for the upper semicontinuity of the functions x — ||n.(a)|| is

Lemma 2.3 The function x — ||m,(a)|| is upper semicontinuous on X for all
a € A if and only if J, = kern, for x € X.

Proof. =: Suppose a € kern,. Given € > 0, there is a neighbourhood U of x
such that ||n,(a)|| £ € for y € U. Let f : X — [0,1] be a continuous function
such that f(x)=1 and f(y) =0 (y € U). Then

lla = (1 = flall = sup |Imy(a) — (1 = f(¥)my(a)|
yeX
= sup | f(M)llImy(a)ll
yeX
<e.

Since ¢ is arbitrary, a € J,. Since J; C ker n,,J; = ker 7,.

<:Letacd, xeX ande > 0. If b€ 4 and f € Cy(X) are chosen so that
f(x) =0 and ||a — fb|| £ ||n(a)|| + /2, there is a neighbourhood U of x
such that | f(»)|||6]| < €/2 for y € U. For such y,

(@l < [Imy(a) = FD)my (B + IS (P)my(B)]
< lla— fbl +¢/2
< |lne(a)|| + €.
Since € is arbitrary, the map x — ||n.(a)|| is upper semicontinuous at x.  [J

2.2 Continuity of tensor and crossed product bundles

Throughout this section X will be a locally compact Hausdorfl space and &/ =
(X,m, : A — Ay, A) a continuous bundle of C*-algebras on X. If B is another
C*-algebra, the product bundles ./ ® B and o/ ®max B were defined in the
introduction.

Now let G be a locally compact group, and let «, be a continuous action
of G on A, (by *-automorphisms) for x € X. If for eaccha € 4 and g € G
there is an element a9(a) € 4 such that m.(a?(a)) = od(a,) for x € X, the
action o of G on A is continuous, and {o, },ex is said to be a continuous field
of actions of G. In this case we can define natural bundle structures on X
associated with the full and reduced crossed products 4 >, G and 4 ><,, G
analogous to the tensor product bundles. For x € X the morphism 7, : 4 — A4;
is a G-map (relative to the actions a and o), so that =, extends naturally to
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*-epimorphisms nl : 4 >9, G — 4, ><,, G and 10" : 4><,, G — 4, >4, G.
We thus obtain bundles &/ ><, G = (X, 4, >4, G,4 >9, G) and & ><,, G =
(X, Ax ><4,,r G,A ><,, G) which satisfy (i) and (iii) of Definition (1.1). When
all the actions «, are trivial, these bundles reduce to the tensor product bundles
A @max C*(G) and & ® C;(G), respectively.

As is well known, the bundles & Qo B and & @, G are upper semicon-
tinuous (cf [14]). Short proofs of this fact follow easily from Lemma 2.3, and
indeed for the maximal tensor product bundle, the result is a special case of
the next lemma. The crossed product result is proved analogously. Let v be
a C*-norm on the algebraic tensor product 4 ® B, and let 4 ®, B denote the
completion. For x € X, the closure J; ®,B of J; ®B in AQ, B is an ideal. The
quotient of 4 ®, B by this ideal is naturally isomorphic to the completion of
Ax ® B with respect to some C*-norm v,. Let n; @, id be the corresponding
quotient morphism.

Lemma 24 If ¢ € A ®, B, then the function x — ||(n, ®,, id)(c)| is upper
semicontinuous.

Proof. Since ker(n, ®,, id) = J, ®, B = Cy1(X)4 ®,B = Cy (X )(4 ®, B), the
result is immediate from Lemma 2.3. O

Turning to the bundles & ® B and & ><,, G, these are known to be lower
semicontinuous [14]; we include a short proof for the tensor product case which
uses Lemma 2.2.

Lemma 2.5 If ¢ € A ® B, then the function x — ||(n, ® id)(c)|| is lower
semicontinuous.

Proof. Letting D C X, X' = D and 4 = nyx/(d4), for x € X',m, factors
through A, that is, 1, = @, o my, where 7, is a *-epimorphism from A to A,.
Let G € A with #,(d) = 0 for x € D. Then @ = ny/(a) for some a € A,
and ||n.(a)|| = 0 for x € D, and hence for x € X', since x — ||m(a)| is
continuous. Thus @ = 0, and {7, : x € D} is a faithful family of morphisms
on A4, so that {#, ®id : x € D} is a faithful family of morphisms on AQ®B.
Suppose ¢ € ker(n, ® id) for x € D. Then (7, ® id)((nx’ ® id)(c)) = 0 for
x € D, so that (ny: @ id)(c) = 0, and (7, ® id)(c) = 0 for x € X’. The result
now follows from Lemma 2.2. O

Remarks 2.6 1. When B is a nuclear C*-algebra, the norms || « ||max and ||+ ||min
coincide on A ©® B and 4, ® B (x € X), so that the bundles &/ ®qc B and
2 ® B coincide. For ¢ € AQ® B, the function x — ||c,|| is upper semicontinuous
by Lemma 2.4 and lower semicontinuous by Lemma 2.5, hence continuous.

2. When G is an amenable group, B>, G = B ><,, G for any C*-algebra
B [13], so that the bundles arising from the full and reduced crossed products
of 4 by G coincide. Since one is upper, and the other lower, semicontinuous,
the continuity of & >, G follows.

If we apply the discussion preceding Lemma 2.4 to the norm ||« ||mn on
A®B, each quotient (A®B)/(J;®B) is naturally isomorphic to some completion
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Ay ®,, B of A, ® B. The norms ||+ ||, and ||+ ||m» coincide exactly when the
sequence
05/ ®B—>A4®B—4,8B—-0 (%)

is exact. This leads to the following useful criterion for &/ ®B to be continuous.

Proposition 2.7 The bundle o/ ® B is continuous if and only if () is exact
for xe X.

Proof. <: Since exactness of () implies ||+ ||, = ||+ |lmn for x € X, the
bundles (X, 4, ®,, B,A®B) and (X, 4, ® B,A® B) coincide. Since these bundles
are upper and lower semicontinuous, respectively, their continuity follows.

=:Letc € A®B, x € X and let U be a neighbourhood of x. If £ : X — [0,1]
is a continuous function such that f(x) =1 and f|x\y =0,

| fell = sup [|(z, ® id)(fc)]|
yeEX
= sup f(y)||(n, ®id)(c)|
yeX
< sup ||(m, @ id)(c)||
yeuU
and
l(nx ®y, id)(C)|| = [[(mx ®v, id)(f)|
s\ fell.
Thus

(7 ®y, id)()|| < sup [|(ny ® id)(c)]|
yeu

and, since U is an arbitrary neighbourhood of x, the continuity assumption
implies |(m ®y, id)(e)]| = [|(n: ® id)(c)ll, whence |« ||y, = ||  [|min- 0

Corollary 2.8 Let of = (X, Ay, A) be a continuous bundle of C*-algebras. For
a C*-algebra B, the bundle o/ ® B is continuous when either A or B is exact.

Proof. When B is exact, it is immediate that (x) is exact for all x, so that
the result follows. If 4 is exact, it has property C of Archbold and Batty by
results of [1] and [11], and this implies that (x) is exact for arbitrary B by [1,
Theorem 3.4]. O

Remarks 2.9 1. We shall give a converse to this in Sect. 4.
2. If 4 is exact, so is 4, for x € X, by [10].
3 The operation + @ B

Recall that if 4, B and C are C*-algebras such that 4 C B, the inclusion map
A®C — BEC extends to a *-homomorphism 1 : 4 @pax C — B ®@ax C Which
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is, in general, not injective. In what follows we write 4 ®max C C B @max C to
indicate that 1 is injective.

If C is a nuclear C*-algebra, ||+ [lmax = || * [lmin On A@C and BOC, so that
1 is injective, since, by a basic property of the minimal norm, A®C C B®C. It
is known, conversely, that if, for a given C, 1 is injective for any B and 4 C B,
then C is nuclear ([7], see also the proof of Theorem 3.1 below). It follows,
that if C is any nonnuclear C*-algebra, there are B and 4 C B such that the
corresponding map 1 : A ®pmax C — B ®max C is not a monomorphism. We now
construct, given such 4, B and C, a continuous bundle 2 = ([0,1],7; : D —
D,,D) such that the bundle 2 ®,q; C is not continuous.

Fix o € [0,1] and let D, = {f € C([0,1],B) : f(a) € A}, Dy = B for
x € [0,1]\{a}; Dy = 4 and let 7, : D — D, be the map f — f(x) (x € [0,1]).
Then 2, = ([0,1],D,,D,) is a continuous bundle of C*-algebras (it is, in fact,
a subbundle of the trivial bundle ([0, 1], B, C([0, 1], B)). By our assumption on
A, B and C, there is an & in 4 ® C such that ||h||4g..c > ||AllB@m.c- Let
h= Zl a; @ ¢; and let a; be the function on [0,1] taking the constant value
a; (i =1,2,...,m). Then each a; € D, h—zla,@)c,eD@CCD@me
and

|bl|s@ume  (x*+a)

lAllagm.c (x=a).

(7t ®max 1d)(A)| = {

Thus ||4y]| > ||| for x#a, and |A|| is constant on the set [0,1]\ {«}, so
that the function x — ||i|| is not lower semicontinuous at x = a (it is clearly
upper semicontinuous on [0, 1]). It follows that the product bundle 2y @max C
is not continuous.

Examples 3.1 1. To exhibit concrete examples of such bundles 92,, we take
A = C = CX(IF,), the regular C*-algebra of the free group IF, on two gen-
erators, and B the Cuntz algebra O,. By a well-known result of Choi [4],
0, has a unital C*-subalgebra x-isomorphic to C}(PSLy(Z)) = CX(Z; * Zs).
As many people have observed, since Z, * Z3 has a subgroup isomorphic to
IF,,! C!(IF;) is *-isomorphic to a C*-subalgebra of C;(Z; * Z;) and hence
of 0,. Accordingly we identify 4 with'a closed *-subalgebra of B. Since ¢,
is nuclear, but ||+ |lmax #1 * lmin on C;(IF2) ® C;(IF2) [15], the corresponding
map 1 : A ®max C — B ®max C = B® C is not injective. In fact an explicit
example of an h € 4 ® C such that ||A||max * ||Allmin is given in [17]. In the
corresponding product bundle Dy ®max C, the function x — ||A| is not lower
semicontinuous at x = «.

2. Example 1 can be modified so that the resulting bundle on [0,1]
has the additional property that the fibre algebras are constant. Let Ep =
C:(Fy), Ey—1 = Oy (i = 1,2,...) and let E be the infinite spatial ten-
sor product ® E;. Letting 4, = E®A and By = EQ®B, 4, is a C*-
subalgebra of B and E~XEQ®A = E®B,. Let h € A® C be such that

L1f a and b are the generators of Z, * Z3, with a? = b = 1, the elements bab and .ababa
generate such a subgroup
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All4@muc > lI7ll5@y.c and let k = 1z ®h € ;. Then [|k||l4,@mmc = [1All4gma.cs
since 4 Qmax C = (lg ® 4) ®max C C (E ® A) Qmax C = A} @max C canoni-
cally. Similarly, [|k[|3,@,.c = lAll8@mec, $O that [[kll4,@mc > llk|l5i@n.c. The
above construction now yields a bundle 4, = ([0, 1], D,,D,) with D, = E for
0 < x < 1. The element k € Dy ®pmax C constructed from k as above has the
property that the function x — ||k,|| is not lower semicontinuous at x = a.

3. By taking the restricted direct product of the bundles %, for all « in
[0,1], we obtain a continuous bundle ([0, 1],D,,D) with constant fibre such
that D ®u. C contains, for each « € [0,1], an 4 such that x — ||A,|| is not
lower semicontinuous at x = a. If instead of taking the direct sum we take
the infinite spatial tensor product of the %,, the resulting bundle has the same
properties, and in addition each fibre is simple (since @, C;(IF,) and hence E
are simple).

The method used in constructing these examples also yields the following
characterisation of nuclearity.

Theorem 3.2 For a C*-algebra C the following conditions are equivalent:
(i) C is nuclear;

(ii) if A C B are C*-algebras, then A ®pax C C B Qpar C;

(ili) if A C B are separable C*-algebras, then A ®pa C C B Qpax C;

(iv) for every continuous C*-bundle o/ = (N, 4,,4), with A separable, the

bundle o Qo C is continuous;

(v) for every continuous C*-bundle o/ = (X,Ax,A) over a locally compact

space X, the bundle of ®pqc C is continuous.

Proof. (i) = (v): This follows immediately from Remark 2.6(1).

(v) = (iv): Trivial.

(iv) = (iii): Let 4 C B be separable C*-algebras, and let D be the algebra
of sequences {(a;):a, € B (i = 1,2,...),lim,_,oc a; exists and is in 4}. Then
D is a C*-algebra, and putting D; = B (i € N), Dy = 4, and taking 7; : D —
D; and no : D — Do to be the morphisms (a;) — a; and (a;) — lim; a;,
respectively, 9 = (N, n, : D — D,,D) is a continuous C*-bundle over N with
separable bundle algebra D.

By hypothesis the product bundle 2 ®q C is continuous. Let d € 4 © C,
so that d = Z;:l @ ® ¢/ for suitable @/ € 4 and ¢/ € C, let @ be the element
of D with constant entry &, for | £ j £ m, and let d be the element of the
product bundle with constant entry d. Then

(7, ®id)(d)|| = [|[(mx @ idNTF ® /)|

JIEZd @ lsgc  (n=12,..)
I ®ugnac (n=0).

By the continuity of the function n — ||(n, ® id)(d)| at oo, it follows that

14)| 4@ e = 141l 8@ mecc

as required.
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(iii) = (ii): The separable C*-subalgebras of B form a net {B;},c, partially
ordered by inclusion. If B; C B, then B; ®max C C By ®max C by hypothesis.
We can thus form the inductive limit C*-algebra lim_,(B; ®me: C), which is
the completion B ®, C of B ® C relative to some C*-norm v. For x € BO C
there is a B; such that x € B; ® C. If A C B and x € 4 ® C, we can choose
B, to be contained in A. Thus

Il4@mac = IXl1B;8mec = IXllzo,c S IXllB@pac 5

since B;OCCA®C. Since A®C CBOC, |xllpgnc < X/l 4@nac. Thus x
has the same norm considered either as an element of 4 ®gx C O B @pax C.
It follows that 4 ®max C € B ®max C.

(i1) = (i): This follows from [7, Theorem 6.2], but for completeness we
outline a short proof. If x is a faithful nondegenerate representation of C on a
Hilbert space H, let A = n(C)’ and B = B(H). The map a®c — an(c) extends
by linearity and continuity to a representation 7 of 4 ®ma: C on H. Since by
hypothesis 4 ®may C C B ®max C, there is a representation o of B ®max C 00 a
Hilbert space K D H such that for x € A ®pax C, Eqo(x)Ey|y = 7i(x), where
Ep is the orthogonal projection of X onto H. The map p of B(H) into itself
given by p(x) = Eyo(x ® 1)Ex|y is then a norm one projection of B(H) onto
A. Thus A4, and hence 4’ = n(C)" are injective. In particular, C** is injective,
and so C is nuclear. O

Remarks 3.3 A further condition (iv)’, obtained by replacing N by [0,1] in
condition (iv) of Theorem 3.2, is easily seen to be equivalent to conditions
(i) - (iv) of the theorem using the construction preceding Examples 3.1.

4 The operation : ®,ix B

4.1 Constructing separable continuous bundles of C*-algebras

Let By, B,,... be a sequence of separable unital C*-algebras and 4 a separable
unital C*-subalgebra of @<, B; = {(b:) : b; € B (i = 1,2,...),sup ||bi|| < oo}
containing the ideal I = {(a;) € @ B; : lim;_ ||a;|| = 0} of zero sequences.
Let m; be the coordinate projection of @ B; onto B; (1 =1,2,...).

Lemma 4.1 There is a sequence ky < k, < ... of natural numbers such that

if o, = ’,"=','q'" my, then lim;_,o ||0i(a)|| exists for a € A.

Proof. Let Ao, = A/ly, with qﬁotient map n: A — Ay, and let a',a%,...bea

sequence dense in 4. We define the sequence k; < & < ... of natural numbers
so that for i = 1,2,...,

ki —1 X . .
9 7!1(0’)” = lIln(@)ll| = /D)l
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for 1 £ j < i. To do this we actually define mductxvely two sequences k; and
k,’,thhl—ko——ko<kl<k < ky < kj < ..., such that for i = 1 and
1sj<i

S?) m(a’)” = lIn(a)ll = /)l

1=k,

and

< (/||

711(0’)

” EBk ()

=K

for r = k. If k; and k] are defined, since ||n(a)|| = limsup ||n;(a)|| for a €
@ B, choose ki4y > k! such that

sop @)l 5 (14 5 ) @)

2 141
for 1 £j <i+1, and choose k/,, > ki, so that if r 2 ki1,
oo i r 1 .
@ @) - || B m@)|| £ —||
=Kl I= kul + 1
forl<j=<i
Fori=1,2,... let g; = fg;(," m;. From the construction of the sequence
{k:} it follows that for i = 1,2,..., lim;_, ||o;(a")|| exists and equals ||n(a’)].
Thus lim;_, [|oj(a)| exists for a € 4. O

Let 4; = 0i(4) = @,"‘ 'B;. We can regard 4 as a C*-subalgebra of
@,= A;. Since A4 contains the ideal Iy of zero-sequences in € B;, Iy coincides
with the ideal of sequences in €D;°, 4; tending to zero at infinity. Since 4 is
unital, it follows that C(N) C 4, where C(IN) is identified with the algebra of
sequences in @) 4; whose entries are scalar multiples of the identity. Letting
A = A/ly and 0., = m, we have

Corollary 4.2 The algebra A is a C(N)-module, and (N, 6, : A — A4, 4) is a
continuous bundle of C*-algebras.

Let M; be the C*-algebra of i x i complex matrices, let M = @7, M,
and let I, be the ideal of zero-sequences in M. It was shown in [14] that a
C*-algebra C is exact if and only if the sequence

0L C-MC—>MILH®C -0 (*)
is exact.

Proposition 4.3 Let C be an inexact C*-algebra. Then there is a continuous
C*-bundle s/ = (N, A,,A) with A separable such that o/ QC is not continuous.
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Proof. If C is not exact, (x) is not exact, which implies that there is an
x € ker(n®id) such that x € Iy ® C, where n : M — M/I, is the quotient map.
Let 4 be a separable unital C*-subalgebra of M containing Ip and such that
x € A® C. Applying Lemma 4.1 and Corollary 4.2 with B; = M; (i = 1,2,...),
there is a continuous bundle (N, o, : A — A,,A) such that [y = ker 0. Since

0 < dist(x,lo ® C) = limsup ||(g, ® id)(x)]| ,

and (0o ® id)(x) = 0, the function n — ||(¢, ® id)(x)|| is not upper semicon-
tinuous at oo. O

Examples 4.4 1. Let G be a countable residually finite group with property T,
for example SL3(Z). Then there is a sequence 7y, 72,... of mutually inequiv-
alent irreducible unitary representations on finite dimensional Hilbert spaces
Hy,H,,... such that any finite dimensional irreducible unitary representation of
G is equivalent to one of the m;. If C = @D;°, B(H,), then the C*-subalgebra
A = C*((@ 7 )(G)) of C contains the ideal Jy of zero sequences in C, and
the sequence

0—-Jy®A4A—-ARA— (A/Jh))®4—0

is not exact (see [18] for details). Taking B; = B(H;) (i = 1,2,...), the above
construction yields a continuous bundle &/ = (N,A,,,A) with each 4; a direct
sum of finitely many of the B;, for i < oo, and 4., = 4/Jp, such that o/ ® 4
is not continuous. It is unknown whether, for a specific choice of G such as
SL3(Z), the representations 7, 7,... can be chosen in such a way that for all
a € A, lim;_ ||mi(a)|| exists. If this is the case, the sequences {m;} and {a;}
coincide. In this example all the 4; for i < oo are finite dimensional, hence
exact. It is not at present known whether A4/Jy is exact for any choice of G. It
is known that C(SL,(Z)) is a subalgebra of a nuclear C*-algebra, for n 2 2
(cf [11]), and it can be shown that for any G of the type under consideration,
the canonical morphism C*(G) — C}(G) has a factorisation

C*(G) — A — AlJy — CH(G) .

2. To obtain an example of a continuous bundle &/ = (N, 4,,4) with all
the 4, exact but &/ ® B not continuous for some B, we use results from [11].
Recall [11] that for any C*-algebra 4, C(4) =cone(A4) is the unitization of the
C*-algebra Cy((0,1])®4. Thus C(4) C C([0, 1)) ®A4. If 4 is exact, then so are
A, C([0,1]) ® A and hence C(4). When G is a countable group, the regular
C*-algebra C*(G) is known to be exact in many cases, in particular when G is
amenable, G is a free group IF, (n = 2,3,...,00) or G = SL,(Z) (n =2,3,...)
[11]. (It is conjectured, but, so far as we know, unproved, that C}(G) is exact
for all countable G).

Let G be a countable, nonamenable residually finite group. By [11, Sect. 7]
(see also [16]) there is an ideal J of the full group C*-algebra D = C*(FF)
such that D/J = C}(G) (= B, say), and such that the sequence

0-J®D—-D®D—-BRD—-0
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is not exact. By [11, Proposition 5.1 and Lemma 6.1], there are a sequence
ni,ny,... in N and a C*-subalgebra 4 C M = P2, M,, such that, if I is the
ideal of zero sequences in M, Iy C 4, A/ly = C(B) and the sequence

0—-Ih,®D—-A48D - C(BYRD —0

is not exact. Applying the above construction, we obtain a continuous C*-
bundle o = (N, A, A) on N, with the 4, finite dimensional for n < oo
and A = C(B) such that o/ ® D is not continuous. Choosing G so that
C7(G) is exact, for example taking G = SLy(Z), all the fibre algebras A, (n=
1,2,...,00) are exact. Since the product bundle is not exact, it follows by
Corollary 2.8, that 4 is not exact. Thus for a continuous C*-bundle (X, A4,,A4),
exactness of 4, for all x does not imply that 4 is exact, in general. We shall
give necessary and sufficient conditions under which exactness of A4, for all x
does imply exactness of 4 in Theorem 4.6.

3. Example 2 can be modified to give a continuous C*-bundle & =
(N, An,A) with constant exact fibre algebra such that ./ ® D is not continuous.
Let D; (i = 1,2,...) be a sequence of C*-algebras consisting of 4y, 4,...,4cc,
each occurring an infinite number of times. Since spatial tensor products and
inductive limits of exact C*-algebras are exact, it follows that the algebras
C=Q~" D,A4,=C®4, (necN)and 4 = C®4 are exact. Then A, =C
(n=12,...,00)and &/ = C® &/ = (N,id¢c ® m,: A — A,,A) is continuous,
by Lemma 2 8, but &/ ®D is not continuous, since it contains the discontinuous
bundle of Example 2 as a subbundle.

4.2 A characterisation of exactness

The techniques of the previous section give the following general result.

Theorem 4.5 For a C*-algebra C the following conditions are equivalent:
(i) C is exact,
(ii) The sequence

0= RC—-MQRC - M/I))C — 0

s exact,

(iii) for every continuous C*-bundle s/ = (X, Az, A) with X locally compact,
the bundle o/ ® C is continuous;

(iv) for every continuous C*-bundle of = (N, Ay,A) with A separable, the
bundle o/ ® C is continuous.

Proof. (ii) < (i): this is just [9, Theorem 1.1].
(i) = (iii): This follows by Corollary 2.8.
(iii) = (iv): Trivial.
(iv) = (i): This follows immediately from Proposition 4.3. O
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4.3 A characterisation of continuous C*-bundles with exact bundle
C*-algebras

Let (X,n, : A — A,,A) be a continuous bundle of C*-algebras. If 4 is exact,
then by Remark 2.9(2), each A4, is exact, and, as remarked in the proof of
Corollary 2.8, for any C*-algebra B and x € X, the sequence

02/, ®B—-AQB—>A,B—0 (*)

is exact. Effros and Haagerup [6, Theorem 3.2] showed that (*) is exact for
arbitrary B precisely when the quotient map =, is locally liftable, that is, for any
finite dimensional operator subsystem Z C A4,, there is a completely positive
isometry 1z, : Z — A such that 7, 0 17, = idz.

If, conversely, each 4, is exact, we have already seen that 4 need not be
exact, and the question that arises is under what circumstances we can con-
clude that 4 is exact. This is answered by the following theorem. Here the
amalgamated minimal tensor product 4 ®c,(x) B of the C*-algebras of contin-
uous bundles (X, 7, : 4 — A,,A) and (X, 0, : B — B,,B) over the same space
X is the algebra (@, x(7: ® 6,))(4 ® B).

Theorem 4.6 Let of = (X,Ax,A) be a continuous bundle of C*-algebras on a
locally compact Hausdorff space X, such that each A, is exact. The following
conditions are equivalent:

(i) the algebra A is exact;

(ii) the map n, : A — A, is locally liftable for x € X;
(iii) for every C*-algebra B, the bundle o ® B is continuous;
(iv) for every continuous C*-bundle # = (X, 0, : B — B,,B) on X, the bundle
K74 Rco(x) B=XnQ0 :4 Qcyx) B — A, ®B,,A ®cyx) B) is continuous,
(v) for every continuous C*-bundle # = (Y,6, : B — B,,B) on a locally
compact space Y, the bundle Z/ % = (X xY,n,®0, : A®B — 4,®B,,AQB)
is continuous.

To prove this theorem we need a number of preparatory results.

Lemma 4.7 Let A and B be C*-algebras. For ¢ € A® B, ||c||min is the supre-
mum of .

[(f ® g)(d‘c*cd)] g
(f ®g)(d*d)

over all pure states g € P(4), g € P(B) and d € A ® B such that (f ®
g)(d*d)=*0.

Proof. Let (ns,Hy, &) be the triple consisting of an irreducible representation
of A on a Hilbert space H; with cyclic unit vector £, corresponding to f €
P(A) by the GNS construction. Since the families {n; : f € P(4)} and {n :
g € P(B)} of irreducible representations of 4 and B, respectively, are faithful,
the family

{ny®mn,: f € P(4),g € P(B)}



Operations on continuous bundles of C*-algebras 691

is faithful on A® B (cf [15]). f 0%c € A® B, and € > 0, there are f € P(4)
and g € P(B) such that |[(n; ® ny)(c)|| 2 ||c|lmin — €/2. There isad € AO®B
such that ¢ = ((ny ® my)(d))(¢r ® &) is a unit vector and

[y ® ) ()l 2 (my @ mg)(e)ll = €/2 2 ||c|lmin — € -
Thus (f ® g)(d*d) =1 and
lelizin 2 (f ® g)(d"c"ed) Z (lcllmin —€)? -
Since € is arbitrary, the result follows. ]

Lemma 4.8 Ler (X, 7, : A — Ay, A) be a continuous bundle of C*-algebras on
a locally compact space X, and let D C X. If xo € D, f € P(4y,), ai,...,a, €
A and € > 0, then there are x € D and f € S(Ay) such that

|f(m(a) — f(np(@)) e (1 <i<n).

Proof. Letting Ap = np(A) and defining 7, : 4p — 4, by A, onp = ny
for x € D, limy_ ||n:(a)|| = ||7(a)|| for @ € A. Thus 4,, is a quotient
of Ap. Let my : Ap — A,, be the quotient map. Taking S C S(4p) to be
the set of states on Ap of form ¢ o @, for x € D, ¢ € S(4,), then for
a€dAp, a2 0<% f(a) 20 (f €S). If f is a pure state of 4, then fomg
is a pure state of Ap and, by [5, 3.4.1], f o mp is in the weak closure of S.
Thus there are an x € D and an f € S(4,) with the required properties. I

Proposition 4.9 Let (X,n, : A — Ay, A) and (Y,0, : B — B,,B) be continuous
bundles of C*-algebras over the locally compact Hausdorff spaces X and Y.
Then the function (x,y) — ||(nx ® 6, )(c)|| is lower semicontinuous on X x Y
for each c € A® B.

Proof. Suppose that ||(n, ® g,)(c)|| is not lower semicontinuous for some
c € A®B at zg = (xo,y0). Then there are an ¢ > 0 and a net {z;};cx
converging to zg such that ||c; || £ ||c,|| — 3¢ for all 4. Let d € 4 ©® D with
llc = d|| < e. Then

”dz,,“min by ”dzo”min — € (/ € A) . (*)

By Lemma 4.7 there are hg € 4,, ©By,, f € P(4,,) and g € P(B,,) such that
(f ® g)(hho) = 1 and
1
[(f ® 9)(hgdydzyho)]? 2 |ldzll —€/3.

Choose A € A ® B such that h,) = ho. There are ay,az,...,am,@ms1,...,a, € A4
and by,by,...,by, by, ..,by € B such that

Wd*dh =S a®b ad Fh= 3 a®b;.
i=1 i=m+1

Let ¢ > 0, where a suitably small value of &’ will be chosen later in the
proof. If z; = (x;,y;) for 4 € A, then lim;x; = xo. If U is a neighbourhood
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of xp in X and D is the set {x; : x; € U}, applying Lemma 4.8, there are an
x €D and f € S(4;) such that

|[f(r(@)) = f(mp(@))| S (1 ign).

It follows that there is a refinement {z;};c 4 of the net {z;},e4, with A’ C 4,
converging to zo and such that for each 2 € A’ there is an f; € S(4,,)
satisfying

[fi(me(ai)) = f(m(a)) £ € (1 £i<n).

Repeating this argument for subsets D C Y of form {y; : y; € V}, where
V is a neighbourhood of yp in ¥, we get a refinement {z;};c4 of the net
{z:};en, with A” C A, converging to zo and such that for each 4 € A” there
is a g; € S(By,) satisfying

1gi(0,,(5)) — gloy, (b)) S € (1 £iZn).

It is now easy to see that, for a suitable choice of &/, determined by
larlls---sllaall, 1&1lls-- -5 16alls (f ® g)(hgdydh) and €, for any A€ A”

(h@mmyymur [U®M%a%mi_
(2 ®gi)(h3he,) (f ® 9)(h5ho)
It follows that ||d;, ||min = ||dz|lmin — 2€/3, which contradicts (*). Thus the

given function is lower semicontinuous. a

>

€/3.

Lemma 4.10 Let &/ = (X,n, : A — Ay,A) and # = (Y,0, : B — B,,B) be
continuous bundles of C*-algebras.

L. fARB=XxY,n,®0,:A®B — A, ® By,A® B) is a continuous
bundle, so is o Q B.

2. If A, is exact for x € X and o/ ® B is a continuous bundle, then the
bundle o/ @ & is continuous.

Proof. 1. Let ¢ € A®B. The function (x, y) — ||[(n. ®0,)(c)|| is in Co(X X ¥)
and for fixed x,

sup 5 © 7, )l = I © id)e)]

If ¢ > 0, a simple compactness argument shows that there is a neighbourhood
U of x such that

(e ® 3y )(e)|| S [|(mx ® 0y)(O)l| + €
forx e U and ye?Y. Thus
l(ne @ id) ()| = [I(mx ® id)(e)l| + €

for x’ € U. This shows that the map x — ||(n, ® id)(c)|| is upper semicon-
tinuous. Since this map is also lower semicontinuous, by Lemma 2.5, it is
continuous.
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2. For fixed x exactness of 4, implies that 4,®2 is continuous, by Corollary
2.8. For ¢ € A®B, the function (x, y) — [|(n:®a,)(c)|| is lower semicontinuous,
by Proposition 4.9. So to prove (2), it is enough to show that this function is
also upper semicontinuous for all c.

Suppose that for some ¢ the function is not upper semicontinuous at
(x0, ¥0). Then there are an € > 0 and a net {(x;, y;)}ica such that (xo, yo) =
lim;(x,;, u;) and

I(nx, ® Gy, YOI 2 (7 ® Oy o)l + €

for / € A. Since the bundle 4,, ® # is continuous, there is a neighbourhood
U of y in Y such that

(7 ® 33 )Nl = [(7xy ® 03 )E)I| + /3

for y € U. Let f: Y — [0,1] be a continuous function such that f|y\y =
0, f(») = 1. Replacing ¢ by (1® f)c and refining the net {(x;, y;)}, we can
assume that

sup [|(7;, ® ay)(c)“ £ (mx ® O'yo)(c)” +€/3
yeyY

and
(7, ® 0y, )| Z [|(mxy ® 0 )(C)]| + 3e/4
for 2 € A. For some neighbourhood ¥ of xy in X
ll(me ® id)(e)]| £ [I(mx, ® id)(e)]] + &/3
< ll(myy ® 0y, Xl + 2€/3
for x € V. Choose 4 so that (x;,y;) € ¥V x U. Then
l(mxy ® 03, )(O)| + 3¢/4 < ||(mx, ® 7, )|

£ [I(my, ® id)(e)l
= N|(rey ® 03 )] + 2¢/3 .

This is a contradiction. So (x,y) — [[(n: ® o,)(c)|| is upper semicontinuous
for all ¢, and (2) follows. m]

Proposition 4.11 Let (X,n, : A — A,,A) be a continuous bundle of C*-
algebras such that each A, is exact and, for any C*-algebra B, the sequence

0-—>JX®B—+A®B—»AI®B—>0 (*)

is exact. Then A is exact.
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Proof. 1. We prove first that if n: 4 — B(H) is any factor representation of
A and J = ker n, then 4/J is exact and the sequence

0-J®B—-AQB—(4/J)®B —0 (xx)

is exact for any B. Extending n to a representation T of M(4) on H, 7 restricted
to Co(X) is a character of Cy(X) since 7 is a factor representation of A. This
implies that for some x € X, J, CJ. Thus 4/J is a quotient of 4,. Since the
latter is exact, so is A/J.

Let ¢ be in the kernel of the quotient morphism J ® B — (J/J,) ® B. Since
J/J)®B C (4/J,)®B = A, ®B, ¢ € ker(n, ®id) = J;, ® B, since (*) is exact.
It follows that in the commutative diagram

0 0 0

| |

0> J®B — J®B — (JJ,)®B —0

| @ |

0—- JLi®B — A®B — (4)®B —0

! !

0—» 0 — UNH®B 4 U)H®B —0
| | |
0 0 0

the rows and and outer columns are exact. (The exactness of the right-hand
column follows from [1, Theorem 3.4], since A,, being exact, has property C
[10]). It is now easy to see, by a standard diagram-chasing argument, 2 that
the centre column, i.e. (*%), is exact.

2. Let

0—-K—-B—-B/K-—0

be a short exact sequence of C*-algebras. If 7 is an irreducible representation
of A ® B such that n(4 ® K) = {0}, the restrictions m; and n, of 7 to 4 and
B, respectively, are factor representations, and my(K) = {0}. Let J = ker 7.
Then J ® B C ker n and, since the sequence (**) is exact,

(4®B)/(J®B)=(4/J)®B

canonically, and n = 7T o (¢ ® idg), where ¢ : 4 — A/J is the quotient
morphism and 7 is an irreducible representation of (4//) ® B. By part (1) of
the proof A/J = m;(4) is exact, and moreover 4 ® K C kern, which implies
that (4/J) ® K C ker . Thus the sequence

0 — (4))®K — (4/J)® B — (A/J) ® (B/K) = 0

2 Known variously as the 3 x 3- and 9-lemma
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is exact, and so @ = 7 o (idgy ® Y), where Y : B — B/K is the quotient
morphism and 7 is an irreducible representation of A/M) ® (B/K).

Now ¢ @ ¥ = (idsy ® ¥) o (¢ ® idg) = (¢ ® idi) o (idy ® ¥), and
SO =7To (idA/J ® l/l) [e] ((p ® ldg) = (ﬁo(q)@ldg/[()) o] (ldA ® l//). If x €
(A®B)\ (A®K), we can choose 7 so that n(x)=+0 and 4 ® K C ker . Then
(1% o (¢ @ idgik )) ((id4 ® ¥ )(x)) = n(x) =0, which implies that (id,®)(x) +0,
i.e x & ker(idg ® ¥). Since x is arbitrary, it follows that ker(id, ® ) = A® K,
which is equivalent to the exactness of the sequence

04K ->4®B—>A4AQ(B/K)— 0.
Since B and K < B are arbitrary, 4 is exact. ]

Proof of Theorem 4.6 (i) = (iii): By [10], if 4 is exact it has property C.
This implies [1, Theorem 3.4] that the sequence

0/ ®B—>A48B—4,8B—0 (*)

is exact for any B and x € X. By Proposition 2.7 the bundle &/ ® B is
continuous.

(ili) = (v): This follows immediately from Lemma 4.10(2).

(v) = (iv): Since the bundle &/ ®c,x) # is obtained from the bundle
o/ ® # by restriction to the diagonal {(x,x) :x € X} C X x X, the result is
immediate.

(iv) = (iii): Let # be the trivial C*-bundle on X with fibre B. Then the
product bundle ./ ®c,x) %, which is continuous by assumption, is just o/ ® B.

(iii) = (i): By Proposition 2.7, the continuity of the bundle <7 ® B implies
the exactness of the sequence

0/ ®B—-4QB—>4,B—0 (%)

for each x € X. Since each 4, is exact, Proposition 4.11 implies that 4 is
exact.

(iii) < (ii): As remarked earlier, the exactness of (x) for all B is equivalent
to the map =, being locally liftable, by [6, Theorem 3.2]. O

Remark 4.12 Another route from (v) to (i) is the following. If # = (¥,0, :
B — B,,B) is a continuous bundle, then the continuity of the product bundle
&/ ® # implies that of the bundle 4 ® %, by Lemma 4.10(1). By Theorem 4.5
A is exact.

5 Concluding remarks

1. Recall that a continuous C*-bundle # = (X,B,,B) is trivial when B =
Co(X,A4), By = A (x € X) for some C*-algebra and n.(f) = f(x) for f €
Co(X). Thus # = <y ® 4, where <y is the trivial bundle on X with fibre
<. For any C*-algebra C, Z2QC X (A k)®C = Ik ®A®C), so
that 4 ® C is itself continuous. If &, is a subbundle of 4, it follows that
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B, ® C is also continuous. If 4, is a continuous bundle for which #; ® C
is not continuous for some C, as is the case for the bundles of Examples 4.4,
4, cannot be subtrivial, i.e. a subbundle of a trivial bundle. In particular, if
B, = (X,n, : A — A, A), there cannot exist a family g, of representations of
the algebras 4, on a fixed Hilbert space H such that the function x — gx(m:(a))
is norm-continuous. This contrasts with a recent result of Blanchard [3] that for
any continuous C*-bundle # = (X, 4,,4) with 4 separable, there is a family
of representations o, : Ay — B(H) such that the function x — g,(nx(a)) is
strongly continuous for a € 4. It would be interesting to know under what
circumstances a continuous bundle will be subtrivial. There is some evidence
to suggest that this will be the case if all the fibre algebras are nuclear.

2. We have not considered continuity conditions for crossed product bundles
of form & >, G and &/ >, , G. As noted in Sect. 2, when the actions are
trivial, these bundles reduce to the tensor product bundles & ®maxC*(G) and
o ® C*(G), respectively. By Theorem 3.2, &/®usC*(G) is continuous for
arbitrary continuous .7 if and only if C*(G) is nuclear, which is the case for
discrete G if and only if G is amenable, by [12, Theorem 4.2]. By Remark
2.6 (2), amenability of G implies the continuity of any crossed product bundle
oA >, G = >, G.

The position for reduced crossed products is less clear. By Theorem 4.5,
& ® C*(G) is continuous for arbitrary continuous ./ if and only if C}(G) is
exact. As we mentioned earlier, it appears to be still unknown whether C}(G)
is exact for all discrete G. If & = (X,4,,4) is a continuous C*-bundle and
x — &, is a continuous field of actions of a discrete group G on &, then
by reasoning similar to the proof of Proposition 2.7 it can be shown that the
bundle &/ ><,,, G is continuous if and only if each of the sequences

0> Jy >, G—oA>9%,G—> 4:><,,G—0

is exact. Exactness questions of this type will be considered in another paper.
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