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Semi-Free Circle Actions on Spmc~Manifolds

By

Yasuhiko KITADA*

Introduction

When a compact Lie group acts differentiably on smooth mani-
folds, various results have been known concerning the characteristic
numbers of the manifolds. The most frequently used tool is Atiyah-
Singer Lefschetz formula [2]. However, several approaches have
been made to obtain similar results by geometric methods. Hattori
and Taniguchi [6] investigated the cobordism groups of oriented or
weakly almost complex manifolds with S1-actions and recovered Kos-
niowski formula [8] and Atiyah-Singer formula [2]. But as for Spin-
manifolds, no cobordism theoretic interpretation of Atiyah-Hirzebruch
theorem [3] has been known so far.

In this paper we consider Spinc-manifolds with semi-free S1-actions.
By purely geometric methods, we obtain Todd genus formula which
relates the Todd genus of the manifold and the local behaviour of
the S1-action around the fixed point sets. A similar formula has been
given by Petrie [9] using Atiyah-Singer Lefschetz formula and the
Dirac operator.

As applications of our Todd genus formula, we can prove the results
of Kosniowski [8] and Atiyah-Hirzebruch [3] in the semi-free case.

§1. Equivariant Characteristic Classes

Let M" be an oriented closed smooth manifold of dimension n.
We choose a Riemannian metric on the tangent bundle TM of M and
denote by FM its associated S0(?z)-bundle. By a Spinc-structure on
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M, we mean a Spinc(«)-bundle PM on M with an equivalence FM^

PM x spinc(n)SO(n) of S0(n)-bundles. Here Spinc(rc) acts on S0(n) via

the canonical projection 0C: Spinc(n)->SO(n) (see the Appendix). Usually

in cobordism theories, Spinc-structures are defined on the stable tangent

bundle of the manifold. But since stable Spinc-structures are in one-

to-one correspondence with the Spinc-structures in our sense (see e.g.

[10]), there will arise no confusion.

Let G be a compact Lie group acting effectively and differentiably

on M from the left. We may assume that the Riemannian metric on

M is G-invariant by the usual averaging process and then G induces

a bundle map action on FM. That is, there exists a left action of G

on FM which commutes with the right principal SO(n)-action and the

G-action is compatible with the G-action on M shown by the com-

mutativity of the diagram below.

If, in addition, M has a Spinc-structure PM and G acts on PM commut-

ing with the right principal Spinc(/i)-action compatibly with the reduction

PM-»FM, we say that G acts on M preserving the Spinc-structure or

that G acts on (M, PM).

Take G = S1 the circle group and let & and &' be families of

closed subgroups of S1 with &=>&'. Consider the objects (<p, M",

PM) where Mn is an oriented smooth manifold with a Spinc-structure

PM and (p is an S1-action on (Mw, PM) with the additional condition

that the isotropy subgroup (S1)* belongs to & if xeM and (S1)* belongs

to J^' if xedM. Introducing a usual cobordism relation to these

objects, we obtain cobordism groups Q?PinC(Sl; J5", &') and tPv'l*c(Sl\

^) = Qfp^c(S1' &, 0) as in [5].

If p: P-*X is a right principal Spinc(ra)-bundle over a space X,

it is well known that it determines an element o)(P) in H2(X; Z) whose

reduction modulo 2 is the second Stiefel-Whitney class of P. This

class is usually called the "cvclass" of the Spinc(n)-bundle5 but we

shall call it co-class instead.
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Let X be a space with a left action of a compact Lie group G

and EG-+BG be a universal right principal G-bundle. We define XG =

EG x GX to be the orbit space of EG x X under the left G-action g(e,

x) = (eg"1
9 gx). The orbit space G\X of a left G-space X is denoted

by X. When p: P->X is a right principal Spinc(n)-bundle and G acts

on (X, P) compatibly with the projection p and commuting with the

right principal Spinc(n)-action, then we define its G-equivariant co-class

by coG(P) = o}(PG)eH2(XG; Z). If moreover P is a Spinc-structure

of a manifold X, we write o}x = a>(P) and o)§ = coG(P).

Let p: P-^X be a Spinc(n)-bundle with an S1 -action and consider

maps

Lemma 1.1.

Proof. From the diagram of bundle maps

p <_£^L_ ES1 x P - > Psl

\P \idxp

we see that 7i*(Psi) = jP2(^) anc^ the Lemma follows.

Proposition 1.2. Let p: P-»X be a SpincO)-fci/wdte and S1 act

on P as bundle automorphisms (trivially on X). Then the action

determines a homomorphism r: S1-^Spinc(n) (see Conner and Floyd

[5]). Then we have

Here degr is the degree of the map

detc°r: S1 - »SpincO) - >SO(2) (see the Appendix)

and we made identifications H2(Xsi\ Z) = H2(BSl xX; Z)^H2(BSl ;

Z)®l@\®H2(X',Z)^H2(B8l\Z)®H2(X\ Z) by the natural homeo-

morphism Xsi=BSlxX and the Kunneth formula, a fs the canonical
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generator of H2(BSl ; Z). In particular, if P is an extension of a

Spm(ri)-bundle P and the Sl -action on P is induced by an S1 -action

of P9 then o>sl(P) = 0.

Proof. Let cosl(P) = nm@u where mzZ and ueH2(X;Z). By

Lemma 1.1, we know that u = co(P). Since we have only to compute

m, we shall restrict ourselves to a fiber over a point xeX. Then

(Px)si is a Spinc(rc)-bundle over BS1 induced by the map BriBS1-*

BSpinc(n). co-class is induced by the map £(detc): £SpincO)-»BSO(2)

by definition. Hence a)sl(Px) = (degr)a. If P is an extension of a Spin

(ft)-bundle, then r factors through Spin(n). Hence degr = 0 and co(P) = 0.

§2, Free S1-actions on SpiW-manifoIds

Let (M", PM) be a Spinc-manifold with a free S1 -action. The

tangent bundle IM of M" has a subbundle i' composed of tangent vec-

tors orthogonal to the S1 -orbits of M. The associated S0(?i--l)-bundle

F'M is a reduction of the tangent oriented orthonormal ??~frame bundle

FM of Mn. F'M has a Spinc(n-~l)-reduction P'M obtained as the

fiber product of PM~+FM and F'M-*FM. All these bundles have induced
S1-actions. Let n: M-»M be the orbit map, then this defines a principal

S1 -bundle denoted by £. Under these conditions we have the following

lemma whose proof is clear from the definitions.

Lemma 2.1. Ftf = Sl\F'M is a tangent frame bundle of M = S1\M

and PM = SI\PM is a Spinc -structure on M. And we have equivalences

of bundles with S1-actions:

(the action on MxS1 is trivial in the fiber S1)

Let M" be as before and consider the (n + l)-manifold Wn+1=M xD 2 /~

where (x, v)~(gx, gv) for xeM,veD2 (unit disk in C) and g$Sl

(unit sphere in C). Define maps i: M-*W, p: W-*M and j:M-+W by

i(x) = [;c, 1],X[>, »]) = M and j(M) = C^O]. Let S1 act on W by
g[x, v] = [gx, v]. Then z,j, and p are S1-equivariant maps. Consider

the Spinc(n-l)xC/(l)-bundle Q = p*(Pa®£) over W. Then Q is a re-
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duction of the tangent bundle of W and the restriction of Q to M gives

an S^equi variant isomorphism i*Q^P'M®(Mx £7(1)) by Lemma 2.1.

Therefore we get the lemma below.

Lemma 2.2.

i*a)(Q) =

where c is the Euler class of £.

Now, with the use of the wsl -classes, we can give cobordism-

theoretic description of Spinc-manifolds with free S1 -actions.

Proposition 2.3. Let {1} denote the family of closed subgroups of

S1 consisting of the triuial subgroup only. Then

where the right hand side is the bordism group of BU(i) associated

with the Spin0 spectrum MSpinc(/c) (see [10] for a precise definition).

Proof. To a Spinc-manifold (M", PM) with a free S1 -action cp,

we assign the manifold (M, PM) and the l/(l)-bundle £ defined before.

Clearly, this construction defines a homomorphism

A: asp^CS1; {!})

Conversely, for each representative (N11"1, PN, 0 of Q**}fc(BU(l))9

let MM be the total space £c of C with the S1 -action gx = xg~l (xe£c,

SfeS1). We can give a Spinc-structure PM on M by the extension of

the Spinc(n — l)-bundle n*PM. This procedure leads to a well-defined

homomorphism

A':

In view of Lemmas 2.1 and 2.2, it is clear that A and A' are inverses

to each other.

Before going over to the next section, we shall compute the a)sl-

classes in the case of free actions. The results will be crucial in the
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treatment of semi-free S1 -actions.

Let (M, PM) be a Spinc-manifold with a free S1 -action as before.

Let the bundle £, TT: M-»M, be classified by the map c: M-+BS1 and

c: M-*ESl be a lift of c,

M -<^ESl

1 I
M-£-» BS1

Then (c, id): M-+ES1 xM is a homotopy equivalence of free S1-spaces.

Hence we get a homotopy equivalence

c: M - >Msi

whose homotopy inverse p2 is induced from the second projection of

ESlxM.

Lemma 2.4. Under these conditions,

holds,

Proof. Since we have seen that PM is the extension of P'M9

is the extension of (P'M)si. Therefore, cosl(PM) = cosl(Pf
M).

From Lemma 2.1,

where the maps are as follows:

Msi ^^ (M)^^^^1 x M -fi* M.

Since O)SI(PM) = G)SI(-PM) an^ P2°ns^==P2^ we get the assertion.
Let Ffn+1 be as in Lemma 2.2, and jsi: Msi-»Wsi be the map

induced by idxj: ES1 XM-+ES1 x W. Since S1 acts trivially on M,

Msi is homeomorphic to BSlxM and we make the canonical identifica-

tion

M; Z)
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as in Proposition 1.2.

Lemma 2.5. Under these conditions

where a is the canonical generator of H2(BSiiZ).

Proof. By Proposition 1.2, it is easy to see that

On the other hand, J*Q = PM®£ holds. And the result is immediate.

§3. Semi-free S1 -act ions on Spinc-manifolds

It is well known that we have an exact sequence of abelian groups
(see e.g. [5], [11]).

0 - >GS P inc ( s i . {5if i^^QSpin^si.^ 1},

> 0

where {S1, 1} is the family of subgroups of S1 consisting of the whole
group S1 and the trivial group.

First, remark that we have already constructed a right inverse of
d implicitly in §2. To be precise, let (JV""1, PN) be an (n — ̂ -dimen-
sional Spinc-manifold with a free S1 -action q>. Then, the orbit manifold
N has a Spinc-structure by Lemma 2.1, and by taking the associated
Z)2-bundle W of the principal S1 -bundle £ given by JV-»iV3 we know

by Lemma 2.2 that W has a natural S1 -action cp' which preserves the
natural Spinc-structure Pw obtained as the extension of the Spinc(ft — 2)x

[/(l)-bundle p*(PN®£) where p: W-»N is the projection of the D2-
bundle. In this way, we define a map

i//: O^rCS1; {!})— >a***'(S*; {51, 1},

by W[p,tf,P*]) = [>', W,PW1.

Lemma 3.1. if/ is a right inverse of d,
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Proof. It is clear from the construction that dW=N with the

original S1-action. But by the remark just before Lemma 2.2, PW\N =

P/v© trivial [/(l)-bundle. Hence P^ = PjvxS p i n C ( / I_1 )Spinc(n) is induced

by the Spinc-structure Pw.

The next step is to clarify the structure of the group Q?v'lnC(Sim,

{S1, 1}, {I}). Take a representative (<:/?, M", PM) of this group and

let {Xt} be the fixed point set components of the S1-action on M".

Choose a small S1-invariant closed tubular neighborhood Vi for each

Xt so that no Vt meets the boundary of M". Then each Vt, as an

n-manifold, has the Spinc-structure PVl induced by PM. It is easy to

sec that [>, M, PM] = Z[>, V19 PKi] in Q^S1; [5J, i], {!]) (see
i

e.g. [6]). Let &n be a collection of triples (r/?, K, X) such that

i) K is an /i-dimensional Spinc-manifold.

ii) V is a linear disk bundle over the manifold X with projection

p: V-*X. The dimension of the fibers may vary over connected com-

ponents of X.

Hi) cp is a semi-free S1-action on V which preserves the Spinc-

structure Pv of V.

iv) The fixed point set of </> equals exactly X.

v) The S1-action defines linear bundle automorphisms of K

^,, forms an abclian semi-group under disjoint union. We introduce

a natural cobordism relation in 3$n. Let Bn be the set of equivalence

classes of 38n under this relation. Then Bn becomes an abelian group.

Lemma 3.2. The group Q?v'lnC(S1:, {S\ 1], {!}) is isomorphic to

Bn.

Proof. Use similar arguments as in [5],

Take a representative ($>, F, X) of £„. Let {^TJ be the connected

components of X and 2qt = codim (JQ in V. Put Vi = p"1(Xi) and pt =

p\Vt. Since (^)si is homotopy equivalent to (Xj)si=BSl x X i y we shall

identify H2((V^si\ Z) with H^BS1; Z)®H2(Xi'Z) as in Proposition

1.2. Then the cquivariant co-class of Vt is given by cosl(PKi) = 'ia©xi
where /$eZ, xiEH2(Xi; Z) and cc is the canonical generator of H2(BSi;
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Z), Let s^, Xi'+Vi be the zero-section and consider maps

rFhcn

7c*wsl(jf PVi) =

By Lemma LI, Xi = s*

Let W^dVi^D2!^ where (v, a)~(gv, ga) for ^reS1 and K^V^

(—Wi) where we identify dVL with dWt via v*-+[v9 1]. PF£ has a

natural 51 -action g\_v, a] = \_gv, a] and AT£ has an 51 -action compatible
with those on V{ and W{. From the arguments just before Lemma 2.2,

we see that Kt has a natural Spinc-structure P^-, and the 51 -action

preserves the Spi restructure. We have the following diagram of maps.

in nt '

* Pi

where chjhk{ and Si arc inclusions and nh /^,/7 f , fii9 /zf and ^£ are
projections of bundles. We will compute wsl(PKt) using the Mayer-

Victoris sequence of the triad ((/^V; (Ki) s i , ( H^j^i).

0 -- > //2((^)si) -i-* ̂ ((^)i)e^2(( WOsi) -^ ^2((3^/)si) — > 0

If we identify H2((Vi)^)®H2((Wi)s,) with H2((BS1 x Xt)®H2(BS^ x

dVi) by the natural isomorphism induced by the homotopy equivalences,

we see that

If we put cosl(Pv.) = lia + sfa}Vi, then by Lemma 2.5,

Since /j(eosl(PJCi))=0, we have

^iji f =/ ,c+ /7f j*a> r t and
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By Lemma 1.1, we can compute co(PK.) from the maps

KI ^-^— ES^xKt - «-* (Kt)si .

Then it can be shown that

Of )~ * TC*J~ * (( 1 ® jf <y K.) © ( 1 ® flf sf wVi )) = pfsfcoVl.

Here /?£ is the Euler class of the canonical ^-bundle over Kt. Hence
we have a>Ki = (li + l ) p i + pfsfa>Vi. When we consider the second Stiefel-

Whitney class of p^1(x) (xeXJ, it is seen that w2(pr1O)) = (^+ 1)

(Pi\PT1W) modulo 2. On the other hand, since ptl(x) is diifeomor-
phic to CPqi where 2^^ = codim(lr

f)9 we have /i = #f modulo 2. Thus
we have proven the lemma below.

Lemma 3.3. Let ((p,V,X)e&n. For each component Xt of X,

let 2#f = codim(lr
f) in F, then o}s\PVi) = l i ® s f ( D v . for some integer lt

satisfying / f=^£(mod. 2) and Kt has a natural Spinc-structure with

O)K. = (/£ + l)Pi -\-pfsfcQVi. The natural semi-free Sl-action on Kt pre-

serves this Spmc-structure.

Henceforth we put m£ = (/ f--^)/2 in the remainder of this paper.

Using this lemma, we can clarify the structure of Spinc-manifolds
with semi-free S1 -actions.

Theorem 3.4.

CS1; {S1, 1},
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where Z* = Z— {0} and O^p i n C(-) Is the bordism group associated to

the spectrum MSpinc(fc).

Proof. Take an element ( ( p , V , X ) of &n which can be regarded

as a representative of Q^^S1; {S1, 1}, {!}) by Lemma 3.2. For each

component Xt of X, Vt has a complex structure defined by the Sl-

action. Vt with this complex structure is written by Ff. Then Xl

has a Spinc-structure and the correspondence (<p, V, X)-»{(Xt, Ff, m^i

defines a well-defined homomorphism

0: asp^CS"; (S1, 1}, {!}) — > S Qg^CZxl?^)).
g^i

In order to show that (P is an isomorphism of abelian groups, we

shall construct an inverse *F of 0. Take a representative (X, F, m)

of O^E^g (Z x BU(q)) where V is a complex ^-dimensional vector bundle
over an (n — 2#)-dimensional connected manifold X with a Spinc-structure
and meZ. Let ;?: F-»l" be the projection. Since TF=/?*TX©^*F, we

have a SpincO-2#) x C7(^)-structure P1®P2 on F. Let the S^action

on P2 be given by a homomorphism /: S1 -> I7(^) in the sense of
Conner and Floyd [5]. Then define /': Sl -+ SO(2q) x SO(2) by f(z) =
(rf(z), zdeg(/)+2m) where r : U (q) -+ SO (2q) is the canonical injective

homomorphism. It is known ([!]) that /' lifts to a homomorphism

/": S1->Spinc(2^). Letting Sl act on P^ trivially and on P2 by /', we

get an S1 -action on the Spinc(«)-ex tension Pv of P1@P2. Then we
define a homomorphism

V: Z, Q**J?;(ZxBU(q)) — QJP'-^1; {51, 1}, {!})
€^1

by !F[JT, F, m] = [>, F, JT]. Then it is easy to see that $W = identity
by Proposition 1.2.

Conversely, let IX, Fc, m] = 3>(|>, F, JT]). From the construction

of W and (P we see that the Spinc-structures on F are equal in !F([Jf,

Fc, m]) and [9, F, X]. So we have only to show that the S^-actions

on Pv are equal. Let / and /' be the homomorphisms S1 ->Spinc(«)
corresponding to [>, F, X] and W(iX, Fc, m\) respectively,, Since /

and /' induce the same action on the tangent frame bundle FY of F,
(t)cof=(j)Cof' holds where 0C is the canonical projection Spinc(«)-»SO(«).
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But since deg(detc°/) = deg(detc°/') = # + 2m,/ and /' must be conjugate

and therefore homotopic by a homotopy of homomorphisms (see the

Appendix). This homotopy gives a cobordism. Hence W([X, Fc, m]) =

[<p, F, JT] proving that W<l> = identity. Proposition 2.3 together with

Lemma 3.1 shows that we have a splitting (also denoted by \jj):

But by Lemma 2.5, we know that the image of if/ is given by q=l9

m = Q. This completes the proof.

§4. Todd Genus Formula for Semi-free S1-actions on

Spinc-manifolds and its Applications

Take a representative (cp9V9X)=(((p9 K^)], of Q**ln°(Sl'9 [Sl, 1},

{ ! } ) = £„. In the argument of Lemma 3.3, we have manifolds {Kt}

with semi-free ^-actions which preserve the Spmc-structures [PKl}.

This defines a homomorphism

which is clearly a left inverse of /?.

Let (<p, Mn, PM) be a Spinc-manifold with a semi-free 51-action (p

with fixed point set components {ATj and their closed tubular neigh-

borhoods {Fj. Then [<p, Afn, PM] = £ £[<?> ^i> ̂ 1 = X! [<P> ^i» ̂ J in

^ i i
fljpinc(5'1; {Sl, I } ) . Recall that the $l-class is defined by a multiplica-

tive sequence of polynomials associated to (%/T/2)/(sinh(N/T/2)).

9t(M;rf) = exp(rf)«t(Af) is defined for deH2(M;Q) and is called the

generalized Todd class ^"(M) when M'J is a Spinc-manifold and d=coM/2.

In our case, f (M) = ̂ (M) [M] is given by f(M) = 2 f(^). We
i

shall follow the line of Borel and Hirzebruch [4] §22 to compute each

f(Ki) = ̂ i(Ki; coJi:./2)[^]. The normal bundle v/ of Xt in M" has a

natural complex structure induced by the given S1 -action. Then the

bundle pt along the fibers of pt has a natural almost complex structure

and by [4] §7 and §15, we-have an isomorphism of complex vector

bundles over Kt:
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where rjt is the canonical complex line bundle over Kt with c1(f7i) = J?i-

Hence cl(pi) = pf(cl(vi)) + (qi+l^i and ^f) = exp(-(pf(c1(vl)) + tel+l)j8i)/
2)&~(Pi) where ^" is the usual complex Todd class defined by z/(l —

exp(-z)).

where p/s is the Gysin homomorphism induced by the projection

Using the fact that l(K^) = p^\(X(p^ and

pf sfcoM by Lemma 3.3, we have

= pf,(exp (mMrWmXi \ (s?a>M ~ c,

where st: X^M is the inclusion map.

We can calculate pt-tt(exp(m^)^"(A)) by the methods developed in [4]
§22. As a consequence, we get the following results.

if m^<

tlWau-cAvMMlXa

if m^-

Here vf is the complex conjugate of v^. Thus we have obtained the

following formula for semi-free Sl -actions on Spinc-manifolds.

Theorem 4.1. (Todd genus formula). Suppose that Sl acts semi-

freely on a Spmc-manifold Mn preserving its Spinc-structure. Then

the generalized Todd genus of M is given by

T(M)= %
m . ^ O

+
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where {Xt} are fixed point set components of the action.

Now we are in a position to apply the Todd genus formula for
manifolds which admit semi-free S1 -actions. We shall begin with Spin-
manifolds,

Theorem 4.2. (Atiyah and Hirzebruch [3]). // a connected Spin-

manifold Mn admits a nontrivial semi-free S1-action, then A(M) = Q.

Proof. Suppose that S1 acts semi-freely on (Mn, PM) where PM is
the Spin-structure of Mw. Let Xt be the fixed point set components

and P~PM\Xt. Consider the Spinc(n)-extensions PM = ^MxsPin(n)Spinc(X)
and P^PjXspi^Spin^n). Then p. = PM|^ and (P^si is also a Spmc(n)-

extension of the Spin (n)-bundle (Pf)si? and we have lt = Q for each i
by Proposition 1 .2. Hence mt = (lt — qt)/2 satisfies —qi^m^ — l.

Consequently, A(M) = T (M) = 0 by the Todd genus formula.

Remark: It seems wothwhile noting that in the Spin case each
term T(Ki) vanishes if the action is semi-free.

Next we shall consider semi-free S1 -actions on almost complex mani-
folds. Let Mn be an almost complex manifold and suppose that we

are given a semi-free S1 -action on Mn which preserves the almost com-
plex structure UM whose structure group is U(p) where 2p = n. Then
the normal bundle of each fixed point set component Xt has a decom-
position vt = vf®vl of complex vector bundles where gES1eC acts on
vf (resp. vj") as the multiplication of the complex number g (resp. g~1}.

Then, if we put df = dimcvf and df = dimcv;

Theorem 4.3. (Kosniowski [8]). // an almost complex manifold

Mn admits an almost complex semi-free S1 -action, then its Todd genus

is given by

Proof, Around a fixed point set component Xi9 the S1 -action can

be expressed ([5]) by the map ft: S^t/O?) where
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Then by Proposition 1 .2, lt = deg (det (ft)) = dl — di hence mi =—di. The

first part of the theorem follows from the Todd genus formula since

the non-vanishing terms occur when mf = 0 namely dt=qt. For the se-

cond equality, consider the reversed S1-action given by (g, x)-+g~lx

(geSi
)xeM) and apply the Todd genus formula with mt=—d^.

Appendix

We shall present necessary elementary facts on the group Spinc(n).

The main reference here is Husemoller [7].

Let T(R") be the tensor algebra over R". The standard orthonor-

mal basis of R'1 is expressed by (cl3...5e,f).

Definition. Clifford algebra Cn is an R-algebra defined by T(Rn)/I

where / is the ideal generated by elements of the form x®x-\-<x,x>i

(xeR"). Here, < , > is the standard inner product in R".

There is a canonical inclusion Rn-»Cn and we shall consider Rn

as embedded in Cn. Then C,, is an R-algebra with generators 1, ei9

e2,...,en and relations are:

Cn is a Z2-graded algebra with decomposition:
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We define a linear involution on Cn by

(*!... jg* = *,...*! (x,eR»).

Definition, pin(n) is the subgroup of Cn generated by S""1 in the

units of Cn and Spin(n) is pin(X)nC°.

Definition, 0: Spin(n)-»S0(n) is defined by (f)(u)(x) =

0 is the well known double covering of SO(n). Next, consider

the map 0: Spin(n + 2)->S0(n + 2) and the subgroup SO(n)xSO(2)

of SO(n + 2).

Definition. Spinc(w) = 0- * (S0(n) x SO(2)).

0c = jpi00. spinc(w) - >SO(n)xSO(2) - >SO(n)

x SO(2) - >SO(2) .

It is known that we have a commutative diagram of homomorphisms

(see e.g. [1]):

U(n) -^i> S0(2)
~l tdetc

SO(2ri) ^p- Spinc(2«)

where r is the canonical injection.

Proposition. Let f, g: Sl-*Spmc(n) be homomorphisms such that

there exists an element aeSO(n) with a(0c°/(z))oc~1 =0co#(z) for all

zeS1. Then there exists an element u in Spinc(/?) with u(f(z))u~1 =

g(z) for all zeS1 if and only if detc°f=dQtc°g.

Proof. Let detco/= detc°g and take weSpinc(n) so that $c(w) = oc.

Then h(z) = uf(z)u~1 is a homomorphism 51-^Spinc(w) with (/)°h = (/)°g.

Since 0 has discrete kernel, fc and g must coincide. The converse is

trivial.

Remark. Under the conditions of this proposition, / and g are

homotopic by a homotopy of homomorphisms since Spinc(n) is path=

connected.
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