Semi-Free Circle Actions on Spin^c-Manifolds

Вy

Yasuhiko KITADA*

Introduction

When a compact Lie group acts differentiably on smooth manifolds, various results have been known concerning the characteristic numbers of the manifolds. The most frequently used tool is Atiyah-Singer Lefschetz formula [2]. However, several approaches have been made to obtain similar results by geometric methods. Hattori and Taniguchi [6] investigated the cobordism groups of oriented or weakly almost complex manifolds with S^1 -actions and recovered Kosniowski formula [8] and Atiyah-Singer formula [2]. But as for Spinmanifolds, no cobordism theoretic interpretation of Atiyah-Hirzebruch theorem [3] has been known so far.

In this paper we consider Spin^c-manifolds with semi-free S^1 -actions. By purely geometric methods, we obtain Todd genus formula which relates the Todd genus of the manifold and the local behaviour of the S^1 -action around the fixed point sets. A similar formula has been given by Petrie [9] using Atiyah-Singer Lefschetz formula and the Dirac operator.

As applications of our Todd genus formula, we can prove the results of Kosniowski [8] and Atiyah-Hirzebruch [3] in the semi-free case.

§1. Equivariant Characteristic Classes

Let M^n be an oriented closed smooth manifold of dimension n. We choose a Riemannian metric on the tangent bundle τ_M of M and denote by F_M its associated SO(n)-bundle. By a Spin^c-structure on

Communicated by N. Shimada, May 7, 1974.

^{*} Department of Mathematics, Tokyo Institute of Fechnology, Tokyo.

Yasuhiko Kitada

M, we mean a Spin^c(*n*)-bundle P_M on *M* with an equivalence $F_M \cong P_M \times_{\text{Spin}^c(n)} SO(n)$ of SO(n)-bundles. Here Spin^c(*n*) acts on SO(n) via the canonical projection $\phi^c \colon \text{Spin}^c(n) \to SO(n)$ (see the Appendix). Usually in cobordism theories, Spin^c-structures are defined on the stable tangent bundle of the manifold. But since stable Spin^c-structures are in one-to-one correspondence with the Spin^c-structures in our sense (see e.g. [10]), there will arise no confusion.

Let G be a compact Lie group acting effectively and differentiably on M from the left. We may assume that the Riemannian metric on M is G-invariant by the usual averaging process and then G induces a bundle map action on F_M . That is, there exists a left action of G on F_M which commutes with the right principal SO(n)-action and the G-action is compatible with the G-action on M shown by the commutativity of the diagram below.

$$\begin{array}{ccc} G \times F_M & \longrightarrow & F_M \\ & & \downarrow^{id \times proj} & & \downarrow^{proj} \\ G \times M & \longrightarrow & M \end{array}$$

If, in addition, M has a Spin^c-structure P_M and G acts on P_M commuting with the right principal Spin^c(n)-action compatibly with the reduction $P_M \rightarrow F_M$, we say that G acts on M preserving the Spin^c-structure or that G acts on (M, P_M) .

Take $G = S^1$ the circle group and let \mathscr{F} and \mathscr{F}' be families of closed subgroups of S^1 with $\mathscr{F} \supset \mathscr{F}'$. Consider the objects (φ, M^n, P_M) where M^n is an oriented smooth manifold with a Spin^c-structure P_M and φ is an S^1 -action on (M^n, P_M) with the additional condition that the isotropy subgroup $(S^1)_x$ belongs to \mathscr{F} if $x \in M$ and $(S^1)_x$ belongs to \mathscr{F}' if $x \in \partial M$. Introducing a usual cobordism relation to these objects, we obtain cobordism groups $\Omega_n^{\text{spin}^c}(S^1; \mathscr{F}, \mathscr{F}')$ and $\Omega_n^{\text{spin}^c}(S^1; \mathscr{F}) = \Omega_n^{\text{spin}^c}(S^1; \mathscr{F}, \varphi)$ as in [5].

If $p: P \to X$ is a right principal $\operatorname{Spin}^{c}(n)$ -bundle over a space X, it is well known that it determines an element $\omega(P)$ in $H^{2}(X; \mathbb{Z})$ whose reduction modulo 2 is the second Stiefel-Whitney class of P. This class is usually called the " c_{1} -class" of the $\operatorname{Spin}^{c}(n)$ -bundle, but we shall call it ω -class instead. Let X be a space with a left action of a compact Lie group G and $EG \rightarrow BG$ be a universal right principal G-bundle. We define $X_G = EG \times_G X$ to be the orbit space of $EG \times X$ under the left G-action $g(e, x) = (eg^{-1}, gx)$. The orbit space $G \setminus X$ of a left G-space X is denoted by \overline{X} . When $p: P \rightarrow X$ is a right principal Spin^c(n)-bundle and G acts on (X, P) compatibly with the projection p and commuting with the right principal Spin^c(n)-action, then we define its G-equivariant ω -class by $\omega^G(P) = \omega(P_G) \in H^2(X_G; \mathbb{Z})$. If moreover P is a Spin^c-structure of a manifold X, we write $\omega_X = \omega(P)$ and $\omega_X^G = \omega^G(P)$.

Let $p: P \rightarrow X$ be a Spin^c(n)-bundle with an S¹-action and consider maps

$$X \xleftarrow{p_2} ES^1 \times X \xrightarrow{\pi} X_S^1.$$

Lemma 1.1.

$$\pi^*\omega^{S^1}(P) = p_2^*\omega(P).$$

Proof. From the diagram of bundle maps

$$P \xleftarrow{p_2} ES^1 \times P \longrightarrow P_{S^1}$$

$$\downarrow^p \qquad \qquad \downarrow^{id \times p} \qquad \qquad \downarrow^{p_{S^1}}$$

$$X \xleftarrow{p_2} ES^1 \times X \xrightarrow{\pi} X_{S^1}$$

we see that $\pi^*(P_{S^1}) \cong p_2^*(P)$ and the Lemma follows.

Proposition 1.2. Let $p: P \rightarrow X$ be a $\text{Spin}^{c}(n)$ -bundle and S^{1} act on P as bundle automorphisms (trivially on X). Then the action determines a homomorphism $r: S^{1} \rightarrow \text{Spin}^{c}(n)$ (see Conner and Floyd [5]). Then we have

$$\omega^{S^1}(P) = (\deg r) \alpha \oplus \omega(P).$$

Here degr is the degree of the map

$$det^{c} \circ r: S^{1} \longrightarrow Spin^{c}(n) \longrightarrow SO(2) \qquad (see \ the \ Appendix)$$

and we made identifications $H^2(X_{S^1}; \mathbb{Z}) = H^2(BS^1 \times X; \mathbb{Z}) \cong H^2(BS^1; \mathbb{Z}) \otimes 1 \oplus 1 \otimes H^2(X; \mathbb{Z}) \cong H^2(BS^1; \mathbb{Z}) \oplus H^2(X; \mathbb{Z})$ by the natural homeomorphism $X_{S^1} = BS^1 \times X$ and the Künneth formula. α is the canonical generator of $H^2(BS^1; \mathbb{Z})$. In particular, if P is an extension of a Spin(n)-bundle \tilde{P} and the S¹-action on P is induced by an S¹-action of \tilde{P} , then $\omega^{S^1}(P)=0$.

Proof. Let $\omega^{S^1}(P) = m\alpha \oplus u$ where $m \in \mathbb{Z}$ and $u \in H^2(X; \mathbb{Z})$. By Lemma 1.1, we know that $u = \omega(P)$. Since we have only to compute m, we shall restrict ourselves to a fiber over a point $x \in X$. Then $(P_x)_{S^1}$ is a Spin^c(n)-bundle over BS^1 induced by the map $Br: BS^1 \rightarrow B$ Spin^c(n). ω -class is induced by the map $B(\det^c): B$ Spin^c(n) $\rightarrow BSO(2)$ by definition. Hence $\omega^{S^1}(P_x) = (\deg r)\alpha$. If P is an extension of a Spin (n)-bundle, then r factors through Spin(n). Hence $\deg r = 0$ and $\omega(P) = 0$.

§2. Free S¹-actions on Spin^c-manifolds

Let (M^n, P_M) be a Spin^c-manifold with a free S¹-action. The tangent bundle τ_M of M^n has a subbundle τ' composed of tangent vectors orthogonal to the S¹-orbits of M. The associated SO(n-1)-bundle F'_M is a reduction of the tangent oriented orthonormal *n*-frame bundle F_M of M^n . F'_M has a Spin^c(n-1)-reduction P'_M obtained as the fiber product of $P_M \rightarrow F_M$ and $F'_M \rightarrow F_M$. All these bundles have induced S^1 -actions. Let $\pi: M \rightarrow \overline{M}$ be the orbit map, then this defines a principal S^1 -bundle denoted by ξ . Under these conditions we have the following lemma whose proof is clear from the definitions.

Lemma 2.1. $F_{\overline{M}} = S^1 \setminus F'_M$ is a tangent frame bundle of $\overline{M} = S^1 \setminus M$ and $P_{\overline{M}} = S^1 \setminus P'_M$ is a Spin^c-structure on \overline{M} . And we have equivalences of bundles with S^1 -actions:

 $\pi^* P_M = P'_M$ and $\pi^* \xi = M \times S^1$. (the action on $M \times S^1$ is trivial in the fiber S^1)

Let M^n be as before and consider the (n+1)-manifold $W^{n+1} = M \times D^2/\sim$ where $(x, v) \sim (gx, gv)$ for $x \in M, v \in D^2$ (unit disk in C) and $g \in S^1$ (unit sphere in C). Define maps $i: M \to W, p: W \to \overline{M}$ and $j: \overline{M} \to W$ by i(x) = [x, 1], p([x, v]) = [x] and j([x]) = [x, 0]. Let S^1 act on W by g[x, v] = [gx, v]. Then i, j, and p are S^1 -equivariant maps. Consider the Spin^c $(n-1) \times U(1)$ -bundle $Q = p^*(P_M \oplus \xi)$ over W. Then Q is a reduction of the tangent bundle of W and the restriction of Q to M gives an S^1 -equivariant isomorphism $i^*Q \cong P'_M \oplus (M \times U(1))$ by Lemma 2.1. Therefore we get the lemma below.

Lemma 2.2.

$$i^*\omega(Q) = \omega(P) = \omega_M = \pi^*\omega_M$$
$$\omega(Q) = p^*(\omega_M + c)$$

where c is the Euler class of ξ .

Now, with the use of the ω^{S^1} -classes, we can give cobordismtheoretic description of Spin^c-manifolds with free S¹-actions.

Proposition 2.3. Let $\{1\}$ denote the family of closed subgroups of S^1 consisting of the trivial subgroup only. Then

$$\Omega_n^{\operatorname{Spin}^c}(S^1; \{1\}) \cong \Omega_{n-1}^{\operatorname{Spin}^c}(BU(1))$$

where the right hand side is the bordism group of BU(1) associated with the Spin^c spectrum M Spin^c(k) (see [10] for a precise definition).

Proof. To a Spin^c-manifold (M^n, P_M) with a free S^1 -action φ , we assign the manifold (\overline{M}, P_M) and the U(1)-bundle ξ defined before. Clearly, this construction defines a homomorphism

$$A: \quad \Omega^{\operatorname{Spin}^{c}}_{n}(S^{1}; \{1\}) \longrightarrow \Omega^{\operatorname{Spin}^{c}}_{n-1}(BU(1)).$$

Conversely, for each representative (N^{n-1}, P_N, ζ) of $\Omega_{n-1}^{\text{Spin}^c}(BU(1))$, let M^n be the total space E_{ζ} of ζ with the S^1 -action $gx = xg^{-1}$ ($x \in E_{\zeta}$, $g \in S^1$). We can give a Spin^c-structure P_M on M by the extension of the Spin^c(n-1)-bundle π^*P_M . This procedure leads to a well-defined homomorphism

$$A': \quad \Omega_{n-1}^{\operatorname{Spin}^{c}}(BU(1)) \longrightarrow \Omega_{n}^{\operatorname{Spin}^{c}}(S^{1}; \{1\}).$$

In view of Lemmas 2.1 and 2.2, it is clear that A and A' are inverses to each other.

Before going over to the next section, we shall compute the ω^{s^1} classes in the case of free actions. The results will be crucial in the treatment of semi-free S^1 -actions.

Let (M, P_M) be a Spin^c-manifold with a free S¹-action as before. Let the bundle $\xi, \pi: M \to \overline{M}$, be classified by the map $c: \overline{M} \to BS^1$ and $\tilde{c}: M \to ES^1$ be a lift of c.

$$\begin{array}{ccc} M \xrightarrow{\tilde{c}} ES^{1} \\ \pi & & \downarrow \\ \overline{M} \xrightarrow{c} BS^{1} \end{array}$$

1

Then $(\tilde{c}, id): M \rightarrow ES^1 \times M$ is a homotopy equivalence of free S^1 -spaces. Hence we get a homotopy equivalence

$$\bar{c}: \overline{M} \longrightarrow M_{S^1}$$

whose homotopy inverse \bar{p}_2 is induced from the second projection of $ES^1 \times M$.

Lemma 2.4. Under these conditions,

$$\bar{c}^{*}(\omega_{M}^{S^{1}}) = \omega_{\overline{M}}$$

holds.

Proof. Since we have seen that P_M is the extension of P'_M , $(P_M)_{S^1}$ is the extension of $(P'_M)_{S^1}$. Therefore, $\omega^{S^1}(P_M) = \omega^{S^1}(P'_M)$. From Lemma 2.1,

$$\omega^{S^{1}}(P_{M}) = \omega^{S^{1}}(\pi^{*}P_{\overline{M}}) = (\pi_{S^{1}})^{*}\omega^{S^{1}}(P_{\overline{M}}) = \pi^{*}_{S^{1}}p_{2}^{*}\omega(P_{\overline{M}})$$

where the maps are as follows:

$$M_{S^1} \xrightarrow{\pi_{S^1}} (\overline{M})_{S^1} = BS^1 \times \overline{M} \xrightarrow{p_2} \overline{M}$$
.

Since $\omega^{S^1}(P'_M) = \omega^{S^1}(P_M)$ and $p_2 \circ \pi_{S^1} = \bar{p}_2$, we get the assertion.

Let W^{n+1} be as in Lemma 2.2, and $j_{S^1}: \overline{M}_{S^1} \to W_{S^1}$ be the map induced by $id \times j: ES^1 \times \overline{M} \to ES^1 \times W$. Since S^1 acts trivially on \overline{M} , \overline{M}_{S^1} is homeomorphic to $BS^1 \times \overline{M}$ and we make the canonical identification

$$H^{2}(\overline{M}_{S^{1}}; \mathbb{Z}) = H^{2}(BS^{1}; \mathbb{Z}) \oplus H^{2}(\overline{M}; \mathbb{Z})$$

606

as in Proposition 1.2.

Lemma 2.5. Under these conditions

$$(j_{S^1})^*\omega^{S^1}(Q) = -\alpha \oplus (\omega_{\overline{M}} + c)$$

where α is the canonical generator of $H^2(BS^1; \mathbb{Z})$.

Proof. By Proposition 1.2, it is easy to see that

$$\omega^{S^1}(\xi) = -\alpha \oplus c.$$

On the other hand, $j^*Q = P_M \oplus \xi$ holds. And the result is immediate.

§3. Semi-free S¹-actions on Spin^c-manifolds

It is well known that we have an exact sequence of abelian groups (see e.g. [5], [11]).

$$0 \longrightarrow \Omega_n^{\text{Spin}^c}(S^1; \{S^1, 1\}) \xrightarrow{\beta} \Omega_n^{\text{Spin}^c}(S^1; \{S^1, 1\}, \{1\})$$
$$\xrightarrow{\partial} \Omega_{n-1}^{\text{Spin}^c}(S^1; \{1\}) \longrightarrow 0$$

where $\{S^1, 1\}$ is the family of subgroups of S^1 consisting of the whole group S^1 and the trivial group.

First, remark that we have already constructed a right inverse of ∂ implicitly in §2. To be precise, let (N^{n-1}, P_N) be an (n-1)-dimensional Spin^c-manifold with a free S¹-action φ . Then, the orbit manifold \overline{N} has a Spin^c-structure by Lemma 2.1, and by taking the associated D^2 -bundle W of the principal S¹-bundle ξ given by $N \rightarrow \overline{N}$, we know by Lemma 2.2 that W has a natural S¹-action φ' which preserves the natural Spin^c-structure P_W obtained as the extension of the Spin^c $(n-2) \times U(1)$ -bundle $p^*(P_N \oplus \xi)$ where $p: W \rightarrow \overline{N}$ is the projection of the D^2 -bundle. In this way, we define a map

$$\psi: \quad \Omega_{n-1}^{\text{Spin}^{c}}(S^{1}; \{1\}) \longrightarrow \Omega_{n}^{\text{Spin}^{c}}(S^{1}; \{S^{1}, 1\}, \{1\})$$

by $\psi([\varphi, N, P_N]) = [\varphi', W, P_W].$

Lemma 3.1. ψ is a right inverse of ∂ .

Proof. It is clear from the construction that $\partial W = N$ with the original S^1 -action. But by the remark just before Lemma 2.2, $P_W|N = P'_N \oplus$ trivial U(1)-bundle. Hence $P_N = P'_N \times_{\text{Spin}^c(n-1)} \text{Spin}^c(n)$ is induced by the Spin^c-structure P_W .

The next step is to clarify the structure of the group $\Omega_n^{\text{spin}e}(S^1; \{S^1, 1\}, \{1\})$. Take a representative (φ, M^n, P_M) of this group and let $\{X_i\}$ be the fixed point set components of the S^1 -action on M^n . Choose a small S^1 -invariant closed tubular neighborhood V_i for each X_i so that no V_i meets the boundary of M^n . Then each V_i , as an *n*-manifold, has the Spin^c-structure P_{V_i} induced by P_M . It is casy to see that $[\varphi, M, P_M] = \sum_i [\varphi, V_i, P_{V_i}]$ in $\Omega_n^{\text{spin}e}(S^1; \{S^1, 1\}, \{1\})$ (see e.g. [6]). Let \mathscr{B}_n be a collection of triples (φ, V, X) such that

i) V is an *n*-dimensional Spin^{*c*}-manifold.

ii) V is a linear disk bundle over the manifold X with projection $p: V \rightarrow X$. The dimension of the fibers may vary over connected components of X.

iii) φ is a semi-free S¹-action on V which preserves the Spin^c-structure P_V of V.

iv) The fixed point set of φ equals exactly X.

v) The S^1 -action defines linear bundle automorphisms of V.

 \mathscr{B}_n forms an abelian semi-group under disjoint union. We introduce a natural cobordism relation in \mathscr{B}_n . Let B_n be the set of equivalence classes of \mathscr{B}_n under this relation. Then B_n becomes an abelian group.

Lemma 3.2. The group $\Omega_n^{\text{Spin}}(S^1; \{S^1, 1\}, \{1\})$ is isomorphic to B_n .

Proof. Use similar arguments as in [5].

Take a representative (φ, V, X) of B_n . Let $\{X_i\}$ be the connected components of X and $2q_i = \operatorname{codim}(X_i)$ in V. Put $V_i = p^{-1}(X_i)$ and $p_i = p|V_i$. Since $(V_i)_{S^1}$ is homotopy equivalent to $(X_i)_{S^1} = BS^1 \times X_i$, we shall identify $H^2((V_i)_{S^1}; \mathbb{Z})$ with $H^2(BS^1; \mathbb{Z}) \oplus H^2(X_i; \mathbb{Z})$ as in Proposition 1.2. Then the equivariant ω -class of V_i is given by $\omega^{S^1}(P_{V_i}) = l_i \alpha \oplus x_i$ where $l_i \in \mathbb{Z}$, $x_i \in H^2(X_i; \mathbb{Z})$ and α is the canonical generator of $H^2(BS^1;$ Z). Let $s_i: X_i \rightarrow V_i$ be the zero-section and consider maps

$$X_i \xleftarrow{p_2} ES^1 \times X_i \xrightarrow{\pi} (X_i)_{S^1} = BS^1 \times X_i.$$

Then

$$\pi^* \omega^{S^1}(s_i^* P_{V_i}) = p_2^* \omega(s_i^* P_{V_i}) = p_2^* s_i^* \omega(P_{V_i}) = p_2^* s_i^* \omega_{V_i}.$$

By Lemma 1.1, $x_i = s_i^* \omega_{V_i}$.

Let $W_i = \partial V_i \times D^2 / \sim$ where $(v, a) \sim (gv, ga)$ for $g \in S^1$ and $K_i = V_i \cup (-W_i)$ where we identify ∂V_i with ∂W_i via $v \mapsto [v, 1]$. W_i has a natural S^1 -action g[v, a] = [gv, a] and K_i has an S^1 -action compatible with those on V_i and W_i . From the arguments just before Lemma 2.2, we see that K_i has a natural Spin^c-structure P_{K_i} and the S^1 -action preserves the Spin^c-structure. We have the following diagram of maps.

where e_i , j_i , k_i and s_i are inclusions and π_i , μ_i , μ_i , $\bar{\mu}_i$, h_i and ρ_i are projections of bundles. We will compute $\omega^{S^1}(P_{K_i})$ using the Mayer-Vietoris sequence of the triad $((K_i)_{S^1}; (V_i)_{S^1}, (W_i)_{S^1})$.

$$0 \longrightarrow H^2((K_i)_{S^1}) \xrightarrow{s} H^2((V_i)_{S^1}) \oplus H^2((W_i)_{S^1}) \xrightarrow{t} H^2((\partial V_i)_{S^1}) \longrightarrow 0$$

If we identify $H^2((V_i)_{S^1}) \oplus H^2((W_i)_{S^1})$ with $H^2((BS^1 \times X_i) \oplus H^2(BS^1 \times \overline{\partial V_i})$ by the natural isomorphism induced by the homotopy equivalences, we see that

$$t((n_1\alpha \otimes 1 + 1 \otimes x) \oplus (n_2\alpha \otimes 1 + 1 \otimes y)) = (n_1 - n_2)c + \bar{\mu}_i^* x - y.$$

If we put $\omega^{S^1}(P_{V_i}) = l_i \alpha + s_i^* \omega_{V_i}$, then by Lemma 2.5,

$$s(\omega^{S^1}(P_{K_i})) = (l_i \alpha \otimes 1 + 1 \otimes s_i^* \omega_{V_i}) \oplus (-\alpha \otimes 1 + 1 \otimes (\omega_{\overline{\partial V_i}} + c)).$$

Since $ts(\omega^{S^1}(P_{K_i}))=0$, we have

$$\omega_{d1} = l_{\mu}c + \bar{\mu}_{i}^{*}s_{\mu}^{*}\omega_{V}$$
, and

YASUHIKO KITADA

$$s(\omega^{S^1}(P_{K_i})) = (l_i \alpha \otimes 1 + 1 \otimes s_i^* \omega_{V_i}) \oplus (-\alpha \otimes 1 + 1 \otimes ((l_i + 1)c + \overline{\mu}_i^* s_i^* \omega_{V_i}))$$
$$= (l_i + 1)(\alpha \otimes 1 \oplus 1 \otimes c) - (\alpha \otimes 1 \oplus \alpha \otimes 1)$$
$$+ ((1 \otimes s_i^* \omega_{V_i}) \oplus (1 \otimes \overline{\mu}_i^* s_i^* \omega_{V_i})).$$

By Lemma 1.1, we can compute $\omega(P_{K_i})$ from the maps

 $K_i \xleftarrow{p_2} E S^1 \times K_i \xrightarrow{\pi} (K_i)_{S^1}$.

Then it can be shown that

$$(p_2^*)^{-1}\pi^*s^{-1}(\alpha \otimes 1 \oplus 1 \otimes c) = \beta_i$$

$$(p_2^*)^{-1}\pi^*s^{-1}(\alpha \otimes 1 \oplus \alpha \otimes 1) = 0$$

$$(p_2^*)^{-1}\pi^*s^{-1}((1 \otimes s_i^*\omega_{V_i}) \oplus (1 \otimes \bar{\mu}_i^*s_i^*\omega_{V_i})) = \rho_i^*s_i^*\omega_{V_i}.$$

Here β_i is the Euler class of the canonical S^1 -bundle over K_i . Hence we have $\omega_{K_i} = (l_i + 1)\beta_i + \rho_i^* s_i^* \omega_{V_i}$. When we consider the second Stiefel-Whitney class of $\rho_i^{-1}(x) \ (x \in X_i)$, it is seen that $w_2(\rho_i^{-1}(x)) = (l_i + 1)$ $(\beta_i | \rho_i^{-1}(x))$ modulo 2. On the other hand, since $\rho_i^{-1}(x)$ is diffeomorphic to CP^{q_i} where $2q_i = \operatorname{codim}(X_i)$, we have $l_i \equiv q_i$ modulo 2. Thus we have proven the lemma below.

Lemma 3.3. Let $(\varphi, V, X) \in \mathscr{B}_n$. For each component X_i of X, let $2q_i = \operatorname{codim}(X_i)$ in V, then $\omega^{S^1}(P_{V_i}) = l_i \oplus s_i^* \omega_{V_i}$ for some integer l_i satisfying $l_i \equiv q_i \pmod{2}$ and K_i has a natural Spin^c-structure with $\omega_{K_i} = (l_i + 1)\beta_i + \rho_i^* s_i^* \omega_{V_i}$. The natural semi-free S¹-action on K_i preserves this Spin^c-structure.

Henceforth we put $m_i = (l_i - q_i)/2$ in the remainder of this paper.

Using this lemma, we can clarify the structure of Spin^c-manifolds with semi-free S^1 -actions.

Theorem 3.4.

$$\Omega_n^{\operatorname{Spin}^c}(S^1; \{S^1, 1\}, \{1\}) \cong \sum_{q \ge 1} \Omega_{n-2q}^{\operatorname{Spin}^c}(\mathbb{Z} \times BU(q))$$
$$\Omega_n^{\operatorname{Spin}^c}(S^1; \{S^1, 1\}) \cong \Omega_{n-2}^{\operatorname{Spin}^c}(\mathbb{Z}^* \times BU(1)) + \sum_{q \ge 1} \Omega_{n-2q}^{\operatorname{Spin}^c}(\mathbb{Z} \times BU(q))$$

where $\mathbf{Z}^* = \mathbf{Z} - \{0\}$ and $\Omega_n^{\text{Spin}c}(\cdot)$ is the bordism group associated to the spectrum $M\text{Spin}^c(k)$.

Proof. Take an element (φ, V, X) of \mathscr{B}_n which can be regarded as a representative of $\Omega_n^{\text{spin}c}(S^1; \{S^1, 1\}, \{1\})$ by Lemma 3.2. For each component X_i of X, V_i has a complex structure defined by the S^{1-} action. V_i with this complex structure is written by V_i^c . Then X_i has a Spin^c-structure and the correspondence $(\varphi, V, X) \rightarrow \{(X_i, V_i^c, m_i)\}_i$ defines a well-defined homomorphism

$$\Phi: \Omega^{\mathrm{Spin}^{c}}_{n}(S^{1}; \{S^{1}, 1\}, \{1\}) \longrightarrow \sum_{q \geq 1} \Omega^{\mathrm{Spin}^{c}}_{n-2q}(\mathbb{Z} \times BU(q)).$$

In order to show that Φ is an isomorphism of abelian groups, we shall construct an inverse Ψ of Φ . Take a representative (X, V, m) of $\Omega_{n^2-2q}^{\operatorname{spin}c}(\mathbb{Z} \times BU(q))$ where V is a complex q-dimensional vector bundle over an (n-2q)-dimensional connected manifold X with a Spin^c-structure and $m \in \mathbb{Z}$. Let $p: V \to X$ be the projection. Since $\tau_V = p^* \tau_X \oplus p^* V$, we have a $\operatorname{Spin}^c(n-2q) \times U(q)$ -structure $P_1 \oplus P_2$ on V. Let the S¹-action on P_2 be given by a homomorphism $f: S^1 \to U(q)$ in the sense of Conner and Floyd [5]. Then define $f': S^1 \to SO(2q) \times SO(2)$ by $f'(z) = (rf(z), z^{\deg(f)+2m})$ where $r: U(q) \to SO(2q)$ is the canonical injective homomorphism. It is known ([1]) that f' lifts to a homomorphism $f'': S^1 \to \operatorname{Spin}^c(2q)$. Letting S^1 act on P_1 trivially and on P_2 by f'', we define a homomorphism

$$\Psi: \sum_{q \ge 1} \Omega_{n-2q}^{\text{Spin}c}(\mathbb{Z} \times BU(q)) \longrightarrow \Omega_n^{\text{Spin}c}(S^1; \{S^1, 1\}, \{1\})$$

by $\Psi[X, V, m] = [\varphi, V, X]$. Then it is easy to see that $\Phi \Psi =$ identity by Proposition 1.2.

Conversely, let $[X, V^c, m] = \Phi([\varphi, V, X])$. From the construction of Ψ and Φ we see that the Spin^c-structures on V are equal in $\Psi([X, V^c, m])$ and $[\varphi, V, X]$. So we have only to show that the S¹-actions on P_V are equal. Let f and f' be the homomorphisms $S^1 \rightarrow \text{Spin}^c(n)$ corresponding to $[\varphi, V, X]$ and $\Psi([X, V^c, m])$ respectively. Since f and f' induce the same action on the tangent frame bundle F_V of V, $\phi^{c_0}f = \phi^{c_0}f'$ holds where ϕ^c is the canonical projection $\text{Spin}^c(n) \rightarrow \text{SO}(n)$. But since $\deg(\det^{c_0} f) = \deg(\det^{c_0} f') = q + 2m$, f and f' must be conjugate and therefore homotopic by a homotopy of homomorphisms (see the Appendix). This homotopy gives a cobordism. Hence $\Psi([X, V^c, m]) =$ $[\varphi, V, X]$ proving that $\Psi \Phi = \text{identity}$. Proposition 2.3 together with Lemma 3.1 shows that we have a splitting (also denoted by ψ):

$$\psi: \ \Omega^{\operatorname{Spin}^c}_{n-2}(BU(1)) \longrightarrow \sum_{q \ge 1} \Omega^{\operatorname{Spin}^c}_{n-2q}(\mathbb{Z} \times BU(q)) \,.$$

But by Lemma 2.5, we know that the image of ψ is given by q=1, m=0. This completes the proof.

§4. Todd Genus Formula for Semi-free S¹-actions on Spin^c-manifolds and its Applications

Take a representative $(\varphi, V, X) = \{(\varphi, V_i, X_i)\}_i$ of $\Omega_n^{\text{Spin}}(S^1; \{S^1, 1\}, \{1\}) \cong B_n$. In the argument of Lemma 3.3, we have manifolds $\{K_i\}$ with semi-free S^1 -actions which preserve the Spin^c-structures $\{P_{K_i}\}$. This defines a homomorphism

$$b: \ \Omega_n^{\operatorname{Spin}^c}(S^1; \{S^1, 1\}, \{1\}) \longrightarrow \Omega_n^{\operatorname{Spin}^c}(S^1; \{S^1, 1\})$$

which is clearly a left inverse of β .

Let (φ, M^n, P_M) be a Spin^c-manifold with a semi-free S^1 -action φ with fixed point set components $\{X_i\}$ and their closed tubular neighborhoods $\{V_i\}$. Then $[\varphi, M^n, P_M] = \sum_i b[\varphi, V_i, X_i] = \sum_i [\varphi, K_i, P_{K_i}]$ in $\Omega_n^{\text{Spin}c}(S^1; \{S^1, 1\})$. Recall that the $\hat{\mathfrak{A}}$ -class is defined by a multiplicative sequence of polynomials associated to $(\sqrt{z}/2)/(\sinh(\sqrt{z}/2))$. $\hat{\mathfrak{A}}(M; d) = \exp(d)\hat{\mathfrak{A}}(M)$ is defined for $d \in H^2(M; Q)$ and is called the generalized Todd class $\tilde{\mathscr{T}}(M)$ when M^n is a Spin^c-manifold and $d = \omega_M/2$.

In our case, $\tilde{T}(M) = \tilde{\mathscr{T}}(M) [M]$ is given by $\tilde{T}(M) = \sum_{i} \tilde{T}(K_{i})$. We shall follow the line of Borel and Hirzebruch [4] §22 to compute each $\tilde{T}(K_{i}) = \hat{\mathfrak{A}}(K_{i}; \omega_{K_{i}}/2)[K_{i}]$. The normal bundle v_{i} of X_{i} in M^{n} has a natural complex structure induced by the given S^{1} -action. Then the bundle $\hat{\rho}_{i}$ along the fibers of ρ_{i} has a natural almost complex structure and by [4] §7 and §15, we have an isomorphism of complex vector bundles over K_{i} :

$$\hat{\rho}_i \oplus \mathbf{1}_{\mathbf{C}} \cong \rho_i^* (v_i \oplus \mathbf{1}_{\mathbf{C}}) \otimes \eta_i$$

where η_i is the canonical complex line bundle over K_i with $c_1(\eta_i) = \beta_i$. Hence $c_1(\hat{\rho}_i) = \rho_i^*(c_1(v_i)) + (q_i+1)\beta_i$ and $\hat{\mathfrak{A}}(\hat{\rho}_i) = \exp(-(\rho_i^*(c_1(v_i)) + (q_i+1)\beta_i)/2)\mathcal{F}(\hat{\rho}_i)$ where \mathcal{F} is the usual complex Todd class defined by $z/(1 - \exp(-z))$.

$$\widetilde{T}(K_i) = \exp(\omega_{K_i}/2)\widehat{\mathfrak{A}}(K_i)[K_i]$$
$$= \rho_i * (\exp(\omega_{K_i}/2)\widehat{\mathfrak{A}}(K_i))[X_i]$$

where $\rho_{i\sharp}$ is the Gysin homomorphism induced by the projection

$$\rho_i: K_i \longrightarrow X_i.$$

Using the fact that $\hat{\mathfrak{A}}(K_i) = \rho_i^* \hat{\mathfrak{A}}(X_i) \hat{\mathfrak{A}}(\hat{\rho}_i)$ and $\omega_{K_i} = (q_i + 2m_i + 1)\beta_i + \rho_i^* s_i^* \omega_M$ by Lemma 3.3, we have

$$\widetilde{T}(K_i) = \rho_{i*}(\exp(m_i\beta_i)\mathscr{T}(\hat{\rho}_i))\widehat{\mathfrak{U}}(X_i; (s_i^*\omega_M - c_1(v_i))/2)[X_i]$$

where $s_i: X_i \rightarrow M$ is the inclusion map.

We can calculate $\rho_{i*}(\exp(m_i\beta_i)\mathcal{F}(\hat{\rho}_i))$ by the methods developed in [4] § 22. As a consequence, we get the following results.

$$\tilde{T}(K_i) = \begin{cases} (1 + ch\bar{v}_i)^{m_i} \hat{\mathfrak{A}}(X_i; (s_i^* \omega_M - c_1(v_i))/2) [X_i] & \text{if } m_i \ge 0\\ (1 + chv_i)^{-(m_i + q_i + 1)} \hat{\mathfrak{A}}(X_i; (s_i^* \omega_M - c_1(\bar{v}_i))/2) [X_i] & \text{if } m_i \le -(q_i + 1)\\ 0 & \text{if } -q_i \le m_i \le -1 \,. \end{cases}$$

Here \bar{v}_i is the complex conjugate of v_i . Thus we have obtained the following formula for semi-free S¹-actions on Spin^c-manifolds.

Theorem 4.1. (Todd genus formula). Suppose that S^1 acts semifreely on a Spin^c-manifold M^n preserving its Spin^c-structure. Then the generalized Todd genus of M is given by

$$\begin{split} \tilde{T}(M) &= \sum_{m_i \ge 0} (1 + ch\bar{v}_i)^{m_i} \hat{\mathfrak{A}}(X_i; (s_i^* \omega_M - c_1(v_i))/2) [X_i] \\ &+ \sum_{m_i \le -(q_i+1)} (1 + chv_i)^{-(m_i+q_i+1)} \hat{\mathfrak{A}}(X_i; (s_i^* \omega_M - c_1(\bar{v}_i))/2) [X_i] \end{split}$$

where $\{X_i\}$ are fixed point set components of the action.

Now we are in a position to apply the Todd genus formula for manifolds which admit semi-free S^1 -actions. We shall begin with Spin-manifolds.

Theorem 4.2. (Atiyah and Hirzebruch [3]). If a connected Spinmanifold M^n admits a nontrivial semi-free S¹-action, then $\hat{A}(M)=0$.

Proof. Suppose that S^1 acts semi-freely on (M^n, \tilde{P}_M) where \tilde{P}_M is the Spin-structure of M^n . Let X_i be the fixed point set components and $\tilde{P}_i = \tilde{P}_M | X_i$. Consider the Spin^c(*n*)-extensions $P_M = \tilde{P}_M \times_{\text{Spin}(n)} \text{Spin}^c(n)$ and $P_i = \tilde{P}_i \times_{\text{Spin}(n)} \text{Spin}^c(n)$. Then $P_i = P_M | X_i$ and $(P_i)_{S^1}$ is also a Spin^c(*n*)extension of the Spin(*n*)-bundle $(\tilde{P}_i)_{S^1}$, and we have $l_i = 0$ for each *i* by Proposition 1.2. Hence $m_i = (l_i - q_i)/2$ satisfies $-q_i \le m_i \le -1$. Consequently, $\hat{A}(M) = \tilde{T}(M) = 0$ by the Todd genus formula.

Remark: It seems wothwhile noting that in the Spin case each term $\tilde{T}(K_i)$ vanishes if the action is semi-free.

Next we shall consider semi-free S^1 -actions on almost complex manifolds. Let M^n be an almost complex manifold and suppose that we are given a semi-free S^1 -action on M^n which preserves the almost complex structure U_M whose structure group is U(p) where 2p=n. Then the normal bundle of each fixed point set component X_i has a decomposition $v_i = v_i^+ \oplus v_i^-$ of complex vector bundles where $g \in S^1 \in C$ acts on v_i^+ (resp. v_i^-) as the multiplication of the complex number g (resp. g^{-1}). Then, if we put $d_i^+ = \dim_C v_i^+$ and $d_i^- = \dim_C v_i^-$, $d_i^+ + d_i^- = q_i = \operatorname{codim}(X_i)/2$.

Theorem 4.3. (Kosniowski [8]). If an almost complex manifold M^n admits an almost complex semi-free S¹-action, then its Todd genus is given by

$$T(M) = \sum_{d_i^+ = q_i} T(X_i) = \sum_{d_i^- = q_i} T(X_i).$$

Proof. Around a fixed point set component X_i , the S¹-action can be expressed ([5]) by the map $f_i: S^1 \rightarrow U(p)$ where

Then by Proposition 1.2, $l_i = \deg(\det(f_i)) = d_i^* - d_i^-$ hence $m_i = -d_i^-$. The first part of the theorem follows from the Todd genus formula since the non-vanishing terms occur when $m_i = 0$ namely $d_i^* = q_i$. For the second equality, consider the reversed S¹-action given by $(g, x) \rightarrow g^{-1}x$ $(g \in S^1, x \in M)$ and apply the Todd genus formula with $m_i = -d_i^+$.

Appendix

We shall present necessary elementary facts on the group $\text{Spin}^{c}(n)$. The main reference here is Husemoller [7].

Let $T(\mathbf{R}^n)$ be the tensor algebra over \mathbf{R}^n . The standard orthonormal basis of \mathbf{R}^n is expressed by (c_1, \ldots, c_n) .

Definition. Clifford algebra C_n is an **R**-algebra defined by $T(\mathbf{R}^n)/I$ where I is the ideal generated by elements of the form $x \otimes x + \langle x, x \rangle = 1$ $(x \in \mathbf{R}^n)$. Here, \langle , \rangle is the standard inner product in \mathbf{R}^n .

There is a canonical inclusion $\mathbb{R}^n \to C_n$ and we shall consider \mathbb{R}^n as embedded in C_n . Then C_n is an \mathbb{R} -algebra with generators 1, e_1 , e_2, \ldots, e_n and relations are:

$$e_i e_j + e_j e_i = 0$$
 $(i \neq j)$
 $(e_i)^2 = -1$.

 C_n is a \mathbb{Z}_2 -graded algebra with decomposition:

$$C_n = C_n^0 \oplus C_n^1$$
.

We define a linear involution on C_n by

$$(x_1...x_p)^* = x_p...x_1 \qquad (x_i \in \mathbf{R}^n).$$

Definition. pin(n) is the subgroup of C_n generated by S^{n-1} in the units of C_n and Spin(n) is pin(n) $\cap C_n^0$.

Definition. ϕ : Spin(n) \rightarrow SO(n) is defined by $\phi(u)(x) = uxu^*$.

 ϕ is the well known double covering of SO(n). Next, consider the map ϕ : Spin $(n+2) \rightarrow SO(n+2)$ and the subgroup $SO(n) \times SO(2)$ of SO(n+2).

Definition. Spin^c(n) = $\phi^{-1}(SO(n) \times SO(2))$.

$$\phi^c = p_1 \circ \phi: \operatorname{Spin}^c(n) \longrightarrow SO(n) \times SO(2) \longrightarrow SO(n)$$

$$\det^{c} = p_{2} \circ \phi: \operatorname{Spin}^{c}(n) \longrightarrow SO(n) \times SO(2) \longrightarrow SO(2)$$

It is known that we have a commutative diagram of homomorphisms (see e.g. [1]):

$$U(n) \xrightarrow{\det} SO(2)$$

$$r \downarrow \qquad \downarrow \qquad \uparrow \qquad \uparrow^{det^{c}}$$

$$SO(2n) \xleftarrow{\phi^{c}} Spin^{c}(2n)$$

where r is the canonical injection.

Proposition. Let $f, g: S^1 \to \text{Spin}^c(n)$ be homomorphisms such that there exists an element $\alpha \in SO(n)$ with $\alpha(\phi^c \circ f(z))\alpha^{-1} = \phi^c \circ g(z)$ for all $z \in S^1$. Then there exists an element u in $\text{Spin}^c(n)$ with $u(f(z))u^{-1} =$ g(z) for all $z \in S^1$ if and only if $\det^c \circ f = \det^c \circ g$.

Proof. Let det^cof = det^cog and take $u \in \text{Spin}^{c}(n)$ so that $\phi^{c}(u) = \alpha$. Then $h(z) = uf(z)u^{-1}$ is a homomorphism $S^{1} \rightarrow \text{Spin}^{c}(n)$ with $\phi \circ h = \phi \circ g$. Since ϕ has discrete kernel, h and g must coincide. The converse is trivial.

Remark. Under the conditions of this proposition, f and g are homotopic by a homotopy of homomorphisms since $\text{Spin}^{c}(n)$ is path-connected.

616

References

- [1] Atiyah, M. F., Bott, R. and Shapiro, Λ., Clifford modules, Top. 3 (1964), suppl. 1, 3–38.
- [2] Atiyah, M. F. and Singer, I. M., The index of elliptic operators: III, Ann. of Math. 87 (1968), 546-603.
- [3] Atiyah, M. F. and Hirzebruch, F., Spin-manifolds and group actions, Essays on Topology and Related Topics, 1970, 18-28.
- [4] Borel, A. and Hirzebruch, F., Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458–538, II, Amer. J. Math. 81 (1959), 315–382.
- [5] Conner, P. E. and Floyd, E. E., Maps of odd period, Ann. of Math. 84 (1966), 132–156.
- [6] Hattori, Λ. and Taniguchi, II., Smooth S¹-actions and bordism, J. Math. Soc. Japan 24 (1972), 701-731.
- [7] Husemoller, D., "Fibre Bundles", McGraw-Hill, 1966.
- [8] Kosniowski, C., Applications of the holomorphic Lefschetz formula, Bull. London Math. Soc., 2 (1970), 43–48.
- [9] Petrie, T., Smooth S¹ actions on homotopy complex projective spaces and related topics, Bull. A. M. S. 78 (1972), 105–153.
- [10] Stong, R. E., Notes on cobordism theory, Math. Notes, Princeton Univ. Press, 1968.
- [11] Uchida, F., Cobordism groups of semi-free S^{1} and S^{3} -actions, Osaka J. Math. 7 (1970), 345–351.