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Semi-Free Circle Actions on Spin¢-Manifolds

By

Yasuhiko KiTADA*

Introduction

When a compact Lic group acts differentiably on smooth mani-
folds, various rcsults have been known concerning the characteristic
numbers of the manifolds. The most frequently used tool is Atiyah-
Singer Lefschetz formula [2]. However, several approaches have
been made to obtain similar results by geometric methods. Hattori
and Taniguchi [6] investigated the cobordism groups of oriented or
weakly almost complex manifolds with S'-actions and recovered Kos-
niowski formula [8] and Atiyah-Singer formula [2]. But as for Spin-
manifolds, no cobordism theoretic interpretation of Atiyah-Hirzebruch
theorem [3] has been known so far.

In this paper we consider Spin¢-manifolds with semi-frcc S!-actions.
By purely geomctric mcthods, we obtain Todd genus formula which
relates the Todd genus of the manifold and the local behaviour of
the St-action around thc fixed point sets. A similar formula has becen
given by Petrie [9] using Atiyah-Singer Lefschetz formula and the
Dirac operator.

As applications of our Todd genus formula, we can prove the results
of Kosniowski [8] and Atiyah-Hirzebruch [3] in the semi-free case.

§1. Equivariant Characteristic Classes

Let M" be an oriented closed smooth manifold of dimension .
We choose a Riemannian metric on the tangent bundle 7,, of M and
denote by F, its associated SO(n)-bundle. By a Spin¢-structure on
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M, we mean a Spin¢(n)-bundle P,, on M with an equivalence Fy=x
Py X spineySO(n) of SO(n)-bundles. Here Spin¢(n) acts on SO(n) via
the canonical projection ¢°: Spin¢(n)—SO(n) (see the Appendix). Usually
in cobordism theories, Spin¢-structures are defined on the stable tangent
bundle of the manifold. But since stable Spin¢-structures are in one-
to-one correspondence with the Spinc¢-structures in our sense (see e.g.
[10]), there will arise no confusion.

Let G be a compact Lie group acting effectively and differentiably
on M from the left. We may assume that the Riemannian metric on
M is G-invariant by the usual averaging process and then G induces
a bundle map action on F,. That is, there exists a left action of G
on F, which commutes with the right principal SO(n)-action and the
G-action is compatible with the G-action on M shown by the com-
mutativity of the diagram below.

GXFM — FM
lidxprnj J{proj

GXM — M

If, in addition, M has a Spin¢-structure P,, and G acts on P, commut-
ing with the right principal Spin¢(n)-action compatibly with the reduction
Py—Fy, we say that G acts on M preserving the Spin¢-structure or
that G acts on (M, Py).

Take G=S!' the circle group and let & and &’ be families of
closed subgroups of S! with #>%’'. Consider the objects (¢, M",
P,) where M" is an oriented smooth manifold with a Spin°-structure
P, and ¢ is an S!-action on (M", P,) with the additional condition
that the isotropy subgroup (S!), belongs to & if xe M and (S!), belongs
to &' if xedM. Introducing a usual cobordism relation to these
objects, we obtain cobordism groups Q5Pin°(S'; #, F') and QSrin(S!;
F)=Q5pin%(St; #, ¢) as in [5].

If p: P»X is a right principal Spin°(n)-bundle over a space X,
it is well known that it determines an element w(P) in H?(X; Z) whose
reduction modulo 2 is the second Stiefel-Whitney class of P. This
class is usuvally called the ‘‘c,-class” of the Spin¢(n)-bundle, but we
shall call it w-class instead.
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Let X be a space with a left action of a compact Lie group G
and EG—BG be a universal right principal G-bundle. We define X ;=
EGx X to be the orbit space of EGx X under the left G-action g(e,
x)=(eg~!, gx). The orbit space G\X of a left G-space X is denoted
by X. When p: P-X is a right principal Spin¢(n)-bundle and G acts
on (X, P) compatibly with the projection p and commuting with the
right principal Spin¢(n)-action, then we define its G-equivariant w-class
by w%P)=w(Pg)eH*(X;; Z). If moreover P is a Spin®-structure
of a manifold X, we write wy=w(P) and w§=wCP).

Let p: P»X be a Spin°(n)-bundle with an S'-action and consider
maps

X P2 ES'xX =, X',
Lemma 1.1.
n*wS'(P)=p%w(P).
Proof. From the diagram of bundle maps

P> ESIxP— Py,

l,, li{lxp lpm

X 5~ ES'x X — X
we see that 7*(Pgi)~p%(P) and the Lemma follows.

Proposition 1.2. Let p: P»X be a Spin®(n)-bundle and S!' act
on P as bundle automorphisms (trivially on X). Then the action
determines a homomorphism r: S!'—Spin¢(n) (see Conner and Floyd
[51). Then we have

o®'(P)=(deg r)a@w(P).
Here degr is the degree of the map
detéor: S1— Spin¢(n)— SO(2) (see the Appendix)

and we made identifications H?*(Xs; Z)=H?*(BS'xX; Z)~H?(BS?;
ZH)R1DI®H*(X; Z)~H?*(BS'; ZY®H*(X; Z) by the natural homeo-
morphism Xg=BS!'x X and the Kiinneth formula. o is the canonical
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generator of H?*(BS'; Z). In particular, if P is an extension of a
Spin (n)-bundle P and the S'-action on P is induced by an S!-action
of P, then wS'(P)=0.

Proof. Let «S'(P)=ma®u where meZ and ueH?*X;Z). By
Lemma 1.1, we know that u=w(P). Since we have only to compute
m, we shall restrict ourselves to a fiber over a point xeX. Then
(P)s: is a Spin¢(n)-bundle over BS! induced by the map Br: BS'—
BSpin¢(n). w-class is induced by the map B(det¢): B Spin¢(n)—BSO(2)
by definition. Hence w®'(P,)=(degr)x. If P is an extension of a Spin
(n)-bundle, then r factors through Spin(n). Hence degr=0 and w(P)=0.

§2. Free Sl-actions on Spin°-manifolds

Let (M®, P,) be a Spin°-manifold with a free S'-action. The
tangent bundle t,, of M" has a subbundle ' composed of tangent vec-
tors orthogonal to the S'-orbits of M. The associated SO(n—1)-bundle
Fi is a reduction of the tangent oriented orthonormal n-frame bundle
Fy of M Fj has a Spin‘(n—1)-reduction Pj; obtained as the
fiber product of Py,—F, and F{—F,. All these bundles have induced
Sl.actions., Let m: M—M be the orbit map, then this defines a principal
St-bundle denoted by ¢. Under these conditions we have the following
lemma whose proof is clear from the definitions.

Lemma 2.1. Fy=S!\Fjy is a tangent frame bundle of M=S'\M
and Pyz=S'\Pj; is a Spin°-structure on M. And we have equivalences

of bundles with S'-actions:

n*Py=P) and n*é=MxS'.
(the action on M xS' is trivial in the fiber S!)

Let M" be as before and consider the (n+1)-manifold Wr*l=M x D2/~
where (x, v)~(gx, gv) for xeM,veD? (unit disk in C) and geS?
(unit sphere in C). Define maps i: M—W, p: W—=M and j: M—W by
i(x)=[x, 1], p([x, v])=[x] and j([x])=[x,0]. Let S* act on W by
glx, v]=[gx, v]. Then i,j, and p are S!-equivariant maps. Consider
the Spin¢(n—1)x U(1)-bundle Q=p*(Pz®E&) over W. Then Q is a re-
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duction of the tangent bundle of W and the restriction of Q to M gives
an Sl-equivariant isomorphism *Q=~P;, ®(M xU(1)) by Lemma 2.1.
Therefore we get the lemma below.

Lemma 2.2.
*u(Q)=w(P)=wy=n*wg

w(Q)=p*(wg +¢)

where c is the Euler class of £.
Now, with the use of the wS'-classes, we can give cobordism-
theoretic description of Spinc-manifolds with free S!-actions.

Proposition 2.3. Let {1} denote the family of closed subgroups of
St consisting of the trivial subgroup only. Then

Qpine(St; (1) = (BU()

where the right hand side is the bordism group of BU(l) associated
with the Spin¢ spectrum M Spinc(k) (see [10] for a precise definition).

Proof. To a Spin¢-manifold (M", P,) with a free S!-action ¢,
we assign the manifold (M, Py) and the U(1)-bundle ¢ defined before.
Clearly, this construction defines a homomorphism

A: QST {1)— QR (BU()).

Conversely, for each representative (N""!, Py, {) of Q3rin?(BU(1)),
let M" be the total space E, of { with the S!-action gx=xg~! (xe€E,
geS'). We can give a Spin¢-structure P,, on M by the extension of
the Spin¢(n—1)-bundle #*Py. This procedure leads to a well-defined
homomorphism

A': QRp® (BU()— Q3P (815 {1}).

In view of Lemmas 2.1 and 2.2, it is clear that 4 and A’ are inverses
to each other.

Before going over to the next section, we shall compute the wS'-
classes in the casc of f{ree actions. The results will be crucial in the
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treatment of semi-free S!-actions.

Let (M, P,,) be a Spin°-manifold with a free S!-action as before.
Let the bundle ¢, n: M—M, be classified by the map c¢: M—»BS! and
¢: M—ES! be a lift of c.

M £, ES!?

1]

M_<, BS!

Then (¢, id): M—ES'xM is a homotopy equivalence of free S!-spaces.
Hence we get a homotopy equivalence

C: M——-)Msl

whose homotopy inverse p, is induced from the second projection of
ES'x M.

Lemma 2.4. Under these conditions,
(i) =0y
holds.

Proof. Since we have seen that P, is the extension of Pj, (Py)st
is the extension of (Pj,)s:. Therefore, wS'(P,)=wS'(P}y).
From Lemma 2.1,

0% (Pjy) ="' (n*Py) = (m51)* "' (Prr) =§1 p3 x(Pz)

where the maps are as follows:
Msl E&) (M)Sl=BS1 x M -2, M.

Since @S'(Py)=w%'(Py) and p,omgi=p,, we get the assertion.

Let W»*l be as in Lemma 2.2, and jg:: Mgi—» W, be the map
induced by idxj: ESIxM—ES!xW. Since S! acts trivially on M,
Mg, is homeomorphic to BS!xM and we make the canonical identifica-

tion

H2(Mg:; Z)=H2(BS'; Z)DH(M; Z)



SEMI-FREECIRCLE ACTIONS 607
as in Proposition 1.2.
Lemma 2.5. Under these conditions
(Js)*aS'(Q)= —a@(wy +¢)
where o is the canonical generator of H?*(BS!; Z).
Proof. By Proposition 1.2, it is easy to see that
wS'(§)=—a®c.

On the other hand, j*Q=Pz@®¢ holds. And the result is immediate.

§3. Semi-free S'-actions on Spin°-manifolds

It is well known that we have an exact sequence of abelian groups
(see e.g. [5], [11D).

0

> QRpint(Sh; {81, 1)) £, @fpint(s {SY, 1}, {1])
—2, QSpipe(St; {1}) — 0

where {S!, 1} is the family of subgroups of S! consisting of the whole
group S!' and the trivial group.

First, remark that wec have already constructed a right inverse of
0 implicitly in §2. To be precise, let (N*~!, Py) be an (n—1)-dimen-
sional Spin¢-manifold with a free S'-action ¢. Then, the orbit manifold
N has a Spin¢-structure by Lemma 2.1, and by taking the associated
D2-bundle W of the principal S'-bundle ¢ given by N—N, we know
by Lemma 2.2 that W has a natural S'-action ¢’ which preserves the
natural Spin¢-structure Py obtained as the extension of the Spin¢(n—2)x
U(1)-bundle p*(Py®¢&) where p: W—»N is the projection of the D2-
bundle. In this way, we define a map

Yo QSeipe(St; {1}) — Qfeine(st; {S1, 1}, {1})
by l/’([(P9 Nn PN])=[§0’, VVs PW]

Lemma 3.1. ¢ is a right inverse of 0.
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Proof. Tt is clear from the construction that oW=N with the
original S!-action. But by the remark just before Lemma 2.2, P, |N=
Py@® trivial U(l)-bundle. Hence Py=PyXgyi,c—1)Spin’(n) is induced
by the Spin‘-structure Py.

The next step is to clarify the structure of the group QSrin®(St;
{SL, 1}, {1}). Take a representative (¢, M", P,) of this group and
let {X;} be the fixed point set components of the S'-action on M".
Choose a small St-invariant closed tubular neighborhood V; for each
X; so that no V; meets the boundary of M". Then each V, as an
n-manifold, has the Spin‘-structure P, induced by P,. It is casy to
sec that [p, M, Pyl=%[¢, V, Py ] in Qyin*(St; {S§', 1], {1}) (scc
e.g. [6]). Let &#, be a ::ollection of triples (¢, V, X) such that

i) V is an n-dimensional Spin¢-manifold.

i) V is a linear disk bundle over the manifold X with projection
p: V-»X. The dimension of the fibers may vary over connected com-
ponents of X.

iii) ¢ is a semi-free S!-action on V which preserves the Spine-
structure P, of V.

iv) The fixed point set of ¢ cquals exactly X.

v) The St-action dcfincs lincar bundle automorphisms of V.

4, forms an abclian semi-group under disjoint union. We introduce
a natural cobordism relation in &#,. Let B, be the set of equivalence
classes of &, under this relation. Then B, becomes an abelian group.

Lemma 3.2. The group Q3Pin°(St; {S' 1}, {1}) is isomorphic to
B,.

Proof. Use similar arguments as in [5].

Take a representative (¢, V, X) of B,. Let {X;} be the connected
components of X and 2¢g;=codim(X;) in V. Put V;=p 4X,) and p;=
p|V;. Since (V))s: is homotopy equivalent to (X;)s:=BS!xX;, we shall
identify H2((V))s:; £) with H?(BS'; Z)®H?(X;; Z) as in Proposition
1.2. Then the cquivariant w-class of V; is given by wS'(P,,)=la®x;
where [jeZ, x;e 1*(X;; £) and « is the canonical gencrator of H2(BS!;
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Z). Let ;0 X;—V,; be the zcro-section and consider maps
X, L2 ES'X X, = (X;)s:=BS' x X,.
Then
n*(usl(s?Pn)=[J§w(S?PV1)=17’§s’ikw(Pv,-)=P§S?wVi .

By Lemma .1, x;=sFwy,.

Let W;=0V;xD?*| ~ where (v,a)~(gv, ga) for geS!' and K;=V;U
(—W;) where we identify oV,; with oW; via v—[v, 1]. W; has a
natural S'-action g[v,a]l=[gv,a] and K; has an S'-action compatible
with those on V; and W;. From the arguments just before Lermama 2.2,
we see that K; has a natural Spincstructure P, and the S'-action
pteserves the Spinc-structure,  We have the following diagram of maps.

C

oV, h
~

h— R
ﬁ\ lh‘- I // Jvki
b

Ki Pi i —> Vi
S

n,
74
i
\\
~

where ¢;, j;, k; and s; arc inclusions and 7, y;, p;, id;, 1; and p; are
projections of bundles. We will compute w3'(Pg,) using the Mayer-
Vietoris sequence of the triad ((K;)gi; (Vi)st, (Wi)g1).

0 -— H2((Ki)s1) —o HX((Vi)s) @ H2((W))s1) —— H*((0V)51) — 0

If we identify H?((V;)s1) @ H*((W))s:) with H2((BS' x X;) @ H*(BS' x
0V;) by the natural isomorphism induced by the homotopy equivalences,
we see that

(@ l+1@x)B(nx®@1+1®yp))=(ny—ny)c+ifx—y.
If we put wS'(P,)=Ila+sfw,, then by Lemma 2.5,

S (P ) =2 ®@1+1Q@sFw, )B(—a® 1+ 1® (ws7,+¢)).
Since ts(wS'(Pg,))=0, we have

wy ,=l,c+ptsfwy, and
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s(0%' (Pg))=(I2@1+1@sfwy )@ (—a®1 +1Q((/; +1)c +fitstwy,)
=(;+D(RIDI®c)- (@1 ®a®1)
+((1®@sfwy,) @ (1@ ifstwy,)) .
By Lemma 1.1, we can compute w(Pg,) from the maps
K22 ES'xK, —* 5 (K))s:.
Then it can be shown that
(P3) ' (@®1®1®c)=p;
(P In*s T (a®@1@a®1)=0
(PP In*s (1@ sFwy,) ® (1@ ifstwoy,))=ptstoy,.

Here f; is the Euler class of the canonical S'-bundle over K;. Hence
we have wg,=(l;+1)p;+ p¥s¥w,,. When we consider the second Stiefel-
Whitney class of pjl(x) (xeX;), it is seen that w,(p;i(x))=(/;+1)
(B;1p71(x)) modulo 2. On the other hand, since pj'(x) is diffeomor-
phic to CP9 where 2g;=codim(X;), we have /;=g; modulo 2. Thus
we have proven the lemma below.

Lemma 3.3. Let (¢,V,X)e %, For each component X; of X,
let 2q;=codim (X;) in V, then wS'(P,)=I1;®sfwy,, for some integer I,
satisfying [;=q;(mod. 2) and K; has a natural Spin®-structure with
wg,=;+1)B;+p¥stwy,. The natural semi-free S'-action on K; pre-
Serves this Spin-structure.

Henceforth we put m;=(/;—¢;)/2 in the remainder of this paper.
Using this lemma, we can clarify the structure of Spin¢-manifolds
with semi-free S'-actions.

Theorem 3.4.
Qfpin®(81; {8, 1}, {1 = ¥ Q5rip/(Z x BU(q))
q=1

QSpinc(S1; {51, 1} 2 Q8Pip*(Z* x BU(1))+ X Q525 (Zx BU(q))
q>1
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where Z*=Z— {0} and Q$Pi"°(*) is the bordism group associated to
the spectrum MSpin®(k).

Proof. Take an element (¢, V, X) of #, which can be regarded
as a representative of QSrin°(S1; {S1, 1}, {1}) by Lemma 3.2. For each
component X; of X,V,; has a complex structure defined by the S!-
action. V,; with this complex structure is written by V§. Then X;
has a Spin°-structure and the correspondence (¢, ¥V, X)—{(X;, V¢, m))};
defines a well-defined homomorphism

@: QSpinc(St; {S1, 1}, {1}) — X Qﬁaiz";(Zx BU(q)) .
q21

In order to show that @ is an isomorphism of abelian groups, we
shall construct an inverse ¥ of &. Take a representative (X, V, m)
of QS$rip’(Z x BU(q)) where V is a complex g-dimensional vector bundle
over an (n—2q)-dimensional connected manifold X with a Spin¢-structure
and meZ. Let p:V— X be the projection. Since tT,=p*1,®p*V, we
have a Spin¢(n—2q)x U(g)-structure P,@P, on V. Let the S!'-action
on P, be given by a homomorphism f: S'—U(q) in the sense of
Conner and Floyd [5]. Then define f': S!'— SO(2q)x SO(2) by f'(z)=
(rf(2), z9eN*+2m)  where r: U(q)—SO(2g) is the canonical injective
homomorphism. It is known ([1]) that s’ lifts to a homomorphism
f": St—>Spin°(2g). Letting S' act on P, trivially and on P, by f”, we
get an S'-action on the Spin¢(n)-extension P, of P,®P,. Then we
define a homomorphism

Vi ¥ QPE(Zx BUGQ) — QST (S, 1}, {1}
q=

by Y[X,V,m]l=[¢e,V, X]. Then it is easy to see that ®Y¥ =identity
by Proposition 1.2.

Conversely, let [X, Ve, m]=®([¢, V, X]). From the construction
of ¥ and & we see that the Spin‘-structures on V are equal in P([X,
Ve, m]) and [, V, X]. So we have only to show that the S'-actions
on P, are equal. Let f and f” be the homomorphisms S!—Spin¢(n)
corresponding to [¢, ¥V, X] and Y ([X, V¢, m]) respectively. Since f
and f’ induce the same action on the tangent frame bundle F, of V,
¢cof=¢f" holds where ¢ is the canonical projection Spin¢(n)—SO(n).
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But since deg(det®of)=deg(detcof’)=qg+2m, f and f’' must be conjugate
and therefore homotopic by a homotopy of homomorphisms (see the
Appendix). This homotopy gives a cobordism. Hence Y([X, V¢, m])=
[o, V, X] proving that Y& =identity. Proposition 2.3 together with
Lemma 3.1 shows that we have a splitting (also denoted by y¥):

Y Q%ein°(BU(1)) — qz>:1 Qspin(Zx BU(q)) .

But by Lemma 2.5, we know that the image of Y is given by g¢g=]1,
m=0. This completes the proof.

8§4. Todd Genus Formula for Semi-free S!-actions on
Spin¢-manifolds and its Applications

Take a representative (¢, V, X)={(¢, V;, X;)}; of QSpin°(St; {S1, 1},
{1})=B,. In the argument of Lemma 3.3, we have manifolds {K;}
with semi-free S'-actions which preserve the Spincstructures {Py }.
This defines a homomorphism

b: QSeine(S1; {81, 1}, (1}) — QSeine(S1; (81, 1})

which is clearly a left inverse of f.

Let (¢, M", Py) be a Spin‘-manifold with a semi-free S'-action ¢
with fixed point set components {X;} and their closed tubular neigh-
borhoods {V;}. Then [¢, M", Py]1=3 b[o,V; X;1=2 [0, K;, P¢,] in
QSein(S1: {81 1}). Recall that the sj[fclauss is defined 1E)y a multiplica-
tive sequence of polynomials associated to (y/z/2)/(sinh(y/z/2)).
i’A[(M; d)=exp(d)§[(M) is defined for de H?>(M; Q) and is called the
generalized Todd class 7 (M) when M" is a Spinc-manifold and d=w,,/2.

In our case, T(M)=5 (M)[M] is given by T(M)=% T(X,). We
shall follow the line of Borel and Hirzebruch [4] §22 to lcompute each
T(K;)=%(K;; wg,/2)[K;]. The normal bundle v; of X; in M” has a
natural complex structure induced by the given S!-action. Then the
bundle p; along the fibers of p; has a natural almost complex structure
and by [4] §7 and §15, we have an isomorphism of complex vector
bundles over X;:
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Pi®le=pf(vi®1c)®n;

where #; is the canonical complex line bundle over K; with ¢(n)=p.
Hence c¢,(p)=p¥(c;(v))+(q;+1)B; and A(p)=exp(—(pf(c:(v))+(q:+ 1B/
2)7(p;) where J is the usual complex Todd class defined by z/(1—
exp (—z)).

T(K) =exp (wg,/2)WK)K;]

= pus(exp (wx, )UK )X,]
where p;; is the Gysin homomorphism induced by the projection
pit Ki—X;.

Using the fact that 9(K)=prN(X)N(p,) and wg,=(g;+2m;+ 1)+
p¥sfw, by Lemma 3.3, we have

T‘(Ki) = pis(exp (miﬁi)'g—(ﬁi))ﬁ(xi; (s¥wp—c,(v))2)[X{]

where s;: X;—M is the inclusion map.
We can calculate p;(exp(m;$)7(p;)) by the methods developed in [4]
§22. As a consequence, we get the following results.

(L+chiymd(X; (sfoy—c,ODDIX]  if m20
(L+chyy et st DAX 5 (s¥wp— ¢ ())DX]
T(Ki)=
| if m=—(q;+1
Lo if —g<m=<-—1.
Here v; is the complex conjugate of v;,, Thus we have obtained the
following formula for semi-free S'-actions on Spin¢-manifolds.

Theorem 4.1. (Todd genus formula). Suppose that S' acts semi-
freely on a Spin®-manifold M" preserving its Spin°-structure. Then
the generalized Todd genus of M is given by

T(M)= T (L+chiyd(X;; (sfoy—c()/)IX0]

b3 (hchy)y o DI (o — e G)2IX]

mi=—(qit+1)
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where {X,} are fixed point set components of the action.

Now we are in a position to apply the Todd genus formula for
manifolds which admit semi-free S!-actions. We shall begin with Spin-
manifolds.

Theorem 4.2. (Atiyah and Hirzebruch [3]). If a connected Spin-
manifold M* admits a nontrivial semi-free S'-action, then A(M)=0.

Proof. Suppose that S! acts semi-freely on (M, P,) where P, is
the Spin-structure of M". Let X; be the fixed point set components
and P;=P,|X;. Consider the Spinc(n)-extensions Py =Py X gpincmSPinc(n)
and P;=P; X 5., Spin(n). Then P;=P,|X; and (P)s: is also a Spin‘(n)-
extension of the Spin(n)-bundle (P))s:, and we have [;=0 for each i
by Proposition 1.2. Hence m;=(l;—¢q;)/2 satisfies —g;=m;< —1.
Consequently, A(M)=T(M)=0 by the Todd genus formula.

Remark: It seems wothwhile noting that in the Spin case each
term T(K;) vanishes if the action is semi-free.

Next we shall consider semi-free S!-actions on almost complex mani-
folds. Let M" be an almost complex manifold and suppose that we
are given a semi-free S'-action on M" which preserves the almost com-
plex structure U, whose structure group is U(p) where 2p=n. Then
the normal bundle of each fixed point set component X; has a decom-
position v;=v{®v; of complex vector bundles where geS!'eC acts on
v} (resp.v;) as the multiplication of the complex number g (resp. g~1).
Then, if we put df=dimcvf and di =dimgvy, df +d7=q;=codim (X})/2.

Theorem 4.3. (Kosniowski [8]). If an almost complex manifold
M" admits an almost complex semi-free S'-action, then its Todd genus
is given by

T(M)= 3 T(X)= 2 T(X).

d;=q; di=qy

Proof. Around a fixed point set component X;, the S!-action can
be expressed ([5]) by the map f;: S'—U(p) where
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Then by Proposition 1.2, [;=deg(det(f))=di —d: hence m;=—d:. The
first part of the theorem follows from the Todd genus formula since
the non-vanishing terms occur when m;=0 namely d:=g;. For the se-
cond equality, consider the reversed S'-action given by (g, x)—g ix
(geS!', xe M) and apply the Todd genus formula with m;=—d:.

Appendix

We shall present necessary elementary facts on the group Spin¢(n).
The main reference here is Husemoller [7].

Let T(R") be the tensor algebra over R*. The standard orthonor-
mal basis of R” is expressed by (cy,..., €,).

Definition. Clifford algebra C, is an R-algebra defined by T(R")/I
where I is the ideal generated by elements of the form x®x+ <x, x>1
(xeR"). Here, < , > is the standard inner product in R*.

There is a canonical inclusion R*—C, and we shall consider R*
as embedded in C,. Then C, is an R-algebra with generators 1, e,
e5,..., e, and relations are:

eiej+ejei=0 (l #])
(e)?=-1.
C, is a Z,-graded algebra with decomposition:

C,=C°®C;.
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We define a linear involution on C, by
(X1 Xp)* =X 50Xy (x;eR").

Definition. pin(n) is the subgroup of C, generated by S"! in the
units of C, and Spin(n) is pin(n)n CY.

Definition. ¢: Spin(n)—SO(n) is defined by @(u)(x)=uxu®*.

¢ is the well known double covering of SO(n). Next, consider
the map ¢: Spin(n+2)-»S0O(n+2) and the subgroup SO(n)xSO(2)
of SO(n+2).

Definition. Spinc(n)=¢p~1(S0(n) x SO(2)).
¢¢=po¢: Spinc(n)—> SO(n) x SO(2)—> SO(n)
detc=p,o¢: Spin¢(n)— SO(n) x SO(2)—— SO(2).

It is known that we have a commutative diagram of homomorphisms

(see e.g. [1D):
U(n) <=t SO(2)

[N

SO(2n) 5= Spin°(2n)
where r is the canonical injection.

Proposition. Let f, g: S'—Spin(n) be homomorphisms such that
there exists an element oeSO(n) with a(pcof(z))at=¢cg(z) for all
zeS!. Then there exists an element u in Spinc(n) with u(f(z)u 1=
g(z) for all zeS! if and only if detof=detcog.

Proof. Let detcof=detccg and take ueSpin(n) so that ¢<(u)=a.
Then h(z)=uf(z)u~! is a homomorphism S'—-Spin¢(n) with @oh=dog.
Since ¢ has discrete kernel, & and g must coincide. The converse is

trivial.

Remark. Under the conditions of this proposition, f and g are
homotopic by a homotopy of homomorphisms since Spin¢(n) is path-
connected.
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